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Abstract
In the instance-optimal identity testing introduced by Valiant and Valiant (2014), one is given the
(succinct) description of a discrete probability distribution q, as well as a a parameter ε ∈ (0, 1] and
i.i.d. samples from an (unknown, arbitrary) discrete distribution p. The goal is to distinguish with
high probability between the cases (i) p = q and (ii) dTV(p,q) > ε, using the minimum number of
samples possible as a function of (some simple functional of) q and ε. This is in contrast with the
standard formulation of identity testing, where the sample complexity is taken as worst-case over
all possible reference distributions q. Valiant and Valiant provided upper and lower bounds on this
question, where the sample complexity is expressed in terms of the “ℓ2/3 norm” of some (truncated
version) of the reference distribution q. However, these upper and lower bounds do not always
match up to constant factors, and can differ by an arbitrary multiplicative gap for some choices of q.
The question then is: what is the tight characterization of the sample complexity of instance-optimal
identity testing? What is the “right” functional Φ(q) for it?
Keywords: distribution testing, hypothesis testing, statistics, finite-sample guarantees

1. Introduction

In the identity testing problem, one is given the (succinct) description of a discrete probability
distribution q over a domain of size k, as well as a a parameter ε ∈ (0, 1] and i.i.d. samples from an
(unknown, arbitrary) discrete distribution p. The goal is to distinguish with high probability between
the cases (i) p = q and (ii) dTV(p,q) > ε,1 using the minimum number of samples possible as a
function of (some simple functional of) k and ε. Specifically, the sample complexity n = n(k, ε) is
the least number such that there exists a (possibly randomized) algorithm T : ∆(X )×X n → {0, 1}
such that, for every q,

• PrX∼q⊗n [T (q, X) = 1] ≤ 1/3.

• If dTV(p,q) > ε, then PrX∼p⊗n [T (q, X) = 0] ≤ 1/3.

This question, as well as many variants (including one where the Type I and Type II errors, here set
to 1/3, are allowed to be any probability δ ∈ (0, 1]), have been thoroughly studied in the theoretical
computer science literature (and, in some form or the other, in the statistics literature), specifically
in the broader area of distribution testing; and its sample complexity, as a function of all relevant
parameters, is known up to constant factors to be

n(k, ε) = Θ(
√
k/ε2)

1. Recall that the total variation distance between two distributions p,q over domain X is given by dTV(p,q) =
supS(p(S)− q(S)), where the supremum is taken over all (measurable, but here we only deal with finite domains
and the counting measure) subsets S ⊆ X .
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which is achieved by several different, efficient algorithms. See, e.g., Canonne (2020); Balakrishnan
and Wasserman (2018); Goldreich (2017) and Canonne (2022) for surveys and a detailed monograph
about this question.

However, this formulation is rather coarse, as it does not allow the sample complexity to depend
on the specific reference distribtuion q (but instead is worse-case over all possible distributions on a
domain of size k)2. This leaves out a lot of nuance and possible improvements: intuitively, if q has
small support, or is concentrated over very few elements (say, k′ ≪ k), then testing identity to q
should depend on k′, not on k! Moreover, this rules out testing identity over infinite (but discrete)
domains, such as X = N. To address this, Valiant and Valiant (2014) introduced instance-optimal
identity testing (or, as Goldreich (2017) prefers to term it, massively parameterized identity testing),
where the sample complexity n is allowed to be a function of the reference distribution q itself, not
of the domain size k = |X |. For this formulation to make sense, of course, one needs to identify a
suitable, “succinct” functional3 Φ: ∆(X )×(0, 1] → N of the reference distribution (and the distance
ε), to avoid tautological statements of the kind “the sample complexity is the least number of i.i.d.
samples required to solve the question with respect to reference q.”

1.1. The Valiant–Valiant result.

Valiant and Valiant, in their influential paper, provided upper and lower bounds on the massively
parameterized identity testing question, where they expressed the sample complexity in terms of the
“ℓ2/3 norm” of some (truncated version) of the reference distribution q. Specifically, identifying any
discrete probability distribution p over X (without loss generality, X = N) with its probability mass
function, a sequence p ∈ [0, 1]N such that ∥p∥1 = 1, consider the following functional ΦVV(p, ε):

1. Let v(p) ∈ [0, 1]N be the non-increasing sequence obtained by sorting p (breaking ties
arbitrarily);

2. Let v(p)−max ∈ [0, 1]N be the sequence obtained from v(p) by removing the first element
(highest value) of the sequence;

3. Let v(p)−max
−ε ∈ [0, 1]N be the sequence obtained from v(p)−max by zeroing out all elements

v(p)−max
i for i > i(ε), where i(ε) := min{j :

∑∞
i=j+1 v(p)

−max
i ≤ ε}.

4. Set ΦVV(p, ε) := ∥v(p)−max
−ε ∥2/3, where ∥x∥2/3 =

(∑∞
i=1 |xi|2/3

)3/2
.

In other words, given a probability distribution p over N and a value ε ∈ (0, 1], ΦVV(p, ε) is
obtained by (1) sorting p, (2) removing its largest element and its “ε-tail, and (3) computing the
2/3-quasinorm of the resulting vector.

Valiant and Valiant then provided upper and lower bounds4 for the question, showing that the
sample complexity n(q, ε) of massively parameterized identity testing satisfies

Ω

(
max

(
1

ε
,
ΦVV(q, ε)

ε2

))
≤ n(q, ε) ≤ O

(
max

(
1

ε
,
ΦVV(q, ε/16)

ε2

))
(1)

2. This worst case is achieved for the uniform distribution over k elements.
3. Here, ∆(X ) denotes the probability simplex, that is, the set of probability distributions over X .
4. We believe there is a small gap in the proof of their lower bound, in cases where the reference distribution q is nearly

degenerate (namely, near-point mass); see Section 4 for more details.
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So, are we done? Not quite. While the above upper and lower bounds do look very similar, and
indeed for many natural choices of q will indeed be within constant factors, the difference between
ΦVV(q, ε) and ΦVV(q, ε/16) (due to the factor 16) can be made arbitrarily large! For instance, as
observed in Blais et al. (2017), for every k ≥ 2 there exists a relatively simple reference distribution
q over k elements5 such that

ΦVV(q, ε) = k
1−ε
2

+o(1)

That is, the ε is in the exponent, and so ΦVV(q, ε/16) and ΦVV(q, ε) differ by a kΘ(ε) factor.

2. A different characterization: the Blais–Canonne–Gur result

In later work, Blais et al. (2017) obtained a different set of upper and lower bounds for massively
parameterized identity testing, in terms of the so-called K-function between ℓ1 and ℓ2 spaces. Namely,
for a sequence a ∈ ℓ1 + ℓ2, define κa : (0,∞) → [0,∞) by

κa(t) = inf
(a′,a′′)∈ℓ1×ℓ2

a′+a′′=a

∥a′∥1 + t∥a′′∥2 (2)

and let ΦBCG(p, ε) := κ−1
p (1 − 2ε) for ε ∈ (0, 1/2]. Then Blais et al. (2017, Theorem 30,Theo-

rem 33) establish that the sample complexity n(q, ε) of massively parameterized identity testing
satisfies

Ω

(
ΦBCG(q, ε)

ε

)
≤ n(q, ε) ≤ O

(
max

(
1

ε
,
ΦBCG(q, ε/18)

ε2

))
(3)

and the upper and lower bounds are incomparable to those of (1) (see Blais et al. (2017, Section 6.3)).
What’s more, the upper and lower bounds do exhibit the same type of quantitative gaps as the
Valiant–Valiant result (also shown, for instance, for the same “Harmonic distribution”). Thus, ΦBCG

does not fully characterize the sample complexity of the question either!

3. The work of Chhor and Carpentier

In Chhor and Carpentier (2022), the authors consider a generalization of the massively parameterized
identity testing to consider other distance metrics (i.e., all ℓp norms for p ∈ [1, 2], instead of the total
variation distance which corresponds to p = 1), and establish results analogous to Valiant and Valiant
(2014) for this range of metrics. Their focus, instead of the sample complexity, is the dual quantity:
namely, the optimal separation radius ε = ε(q, n, p) as a function of the reference distribution q, the
number of samples n, and the distance parameter p. The functional they obtain for p = 1 is closely
related to that of Valiant and Valiant, as it involves the 2/3-quasinorm of a truncated probability
vector obtained from q. The main difference is that the “tail” removed from q is with respect to the
square of the probabilities, not the probabilities themselves (see Chhor and Carpentier (2022, Eq. (5)).
We note that due to their focus on the separation radius, the result obtained in Chhor and Carpentier
(2022, Theorem 1) presents, once translated into sample complexity, the same shortcoming as that of
Valiant and Valiant and Blais, Canonne, and Gur: namely, they only characterize ε = ε(q, n, 1) up to
constant factors, which leads to the same “gap” in the sample complexity as before (constant factors
in the dependence on ε, which can affect the sample complexity by arbitrary amounts).

5. Namely, the “Harmonic distribution” q such that q(i) ∝ 1
i

for 1 ≤ i ≤ k.
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4. A small gap in the lower bound proof of Valiant and Valiant (for corner cases)

The lower bound argument given in Valiant and Valiant (2017, Proposition 2) (full version of Valiant
and Valiant (2014)) applies their Corollary 1, stating (using our notation, where q is the reference
distribution)

“Letting m be the index at which qi is maximized, consider the value of α for which
1
2

∑
i ̸=mmin(qi, αq

2/3
i ) = ε, and [. . . ]”

However, such a value of α is only guaranteed to exist when the maximum probability value of q,
namely qm, satisfies qm ≤ 1− 2ε. Indeed, if qm > 1− 2ε, then

1

2

∑
i ̸=m

min(qi, αq
2/3
i ) ≤ 1

2

∑
i ̸=m

qi =
1

2
(1− qm) < ε

and no setting of α > 0 can achieve the desired equality. Now, this is only a corner case, and does
not mean that the end result is incorrect – just that the proof as stated does not cover that case! We do
believe the theorem holds, even for such corner cases: proving it (Open Question 3) would be nice.

Note that this is not quite a trivial case, whenever ∥q∥∞ ∈ [1− 2ε, 1− ε], and in particular this
is not always captured by the Ω(1/ε) part of the stated lower bound of Valiant and Valiant (2017,
Proposition 2). As a small example: fr any given ε ∈ (0, 1/2) and k ≥ 2, consider the distribution
q = q(ε) supported on {1, 2, . . . , k} such that

q1 = 1− 3

2
ε, q2 = · · · = qk =

3ε

2(k − 1)

Then ΦVV(q, ε) = Θ(ε
√
k). Now, one can (relatively) easily check that testing identity to q with

distance parameter ε can be done with (and requires) Θ(
√
k/ε) samples; and the sample complexity

lower bound promised by Proposition 2 is, indeed, Ω
(
max

(
1
ε ,

ΦVV(q,ε)
ε2

))
= Ω

(√
k
ε

)
.

5. The open questions

This leads us to our (three) open questions:

Open Question 1 Is there a “succinct” functional Φ: ∆(X )×(0, 1] → N which fully characterizes
the sample complexity of massively parameterized identity testing, (or, say, up to constant factors)?
If so, what is it? If not, can we prove such a quantity cannot exist?

(Note that the “succinctness” requirement here is a little vague. Ideally, Φ should either have a closed
form, or be efficiently computable given the explicit description of the reference distribution q.)

Open Question 2 Put together, (1) and (3) imply a relation (and some inequalities) between the
“2/3-quasinorm” involved in ΦVV and the K-functional appearing in ΦBCG. However, this relation
goes through a very contrived argument, involved a statistical hypothesis testing problem! Is there a
direct, non-contrived proof that these two quantities are related?

Open Question 3 Fix the (small) gap in the lower bound proof of Valiant and Valiant (2014),
described in Section 4.

Prizes. For a resolution of Open Question 1, we offer $200 (AUD). For a resolution of Open
Question 2, we offer an extra large wombat plush toy. For a resolution of Open Question 3, we offer
four boxes of Tim Tams and a jar of Vegemite.
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