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Stochastic optimization methods in modern machine learning often require carefully
tuning algorithmic parameters at significant cost in time, computation, and expertise. This
reality has led to sustained interest in developing adaptive (or parameter-free) algorithms
that require minimal or no tuning [1, 2, 4–8, 10–15, 17–20]. However, these adaptive methods
typically have worse suboptimality bounds than their non-adaptive counterparts. Are exist-
ing methods “as adaptive as possible,” or is there room for improvement? Put differently, is
there a fundamental price to be paid (in terms of rate of convergence) for not knowing the
problem parameters in advance?

To answer these questions, we draw inspiration from the “price of anarchy” in algorithmic
game theory [16] and introduce the “price of adaptivity” (PoA). Roughly speaking, the
PoA measures the multiplicative increase in suboptimality due to uncertainty in problem
parameters. We show the following PoA lower bounds for non-smooth stochastic convex
optimization:

1. When the initial distance to the optimum is unknown we show that the PoA is at
least logarithmic for expected suboptimality. When the gradient norm is known, the
upper bound of McMahan and Orabona [9] matches our lower bound. Combined with
Carmon and Hinder [1], our lower bound also implies that in-expectation parameter-
free guarantees are fundamentally worse than high-probability guarantees.

2. When the initial distance to the optimum is unknown we also show that the PoA
is at least doubly-logarithmic for any suboptimality quantile. This establishes the
near-optimality of Carmon and Hinder [1].

3. When there is uncertainty in both distance and gradient norm, we show that the PoA
must be polynomial in the level of uncertainty. This lower bound also nearly matches
a combination of upper bounds from the literature [1, 3].

4. Heavy-tailed noise (specifically, stochastic gradients with only bounded second mo-
ment) significantly increases the previous PoA bound, precluding meaningful adaptiv-
ity when both the distance and gradient second moment are unknown. In contrast,
when all problem parameters are known, heavy-tailed noise does not affect the optimal
rate of convergence.
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