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Abstract
Learning tasks play an increasingly prominent role in quantum information and computation. They
range from fundamental problems such as state discrimination and metrology over the framework of
quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants
of state tomography. However, the many directions of quantum learning theory have so far evolved
separately. We propose a mathematical formalism for describing quantum learning by training on
classical-quantum data and then testing how well the learned hypothesis generalizes to new data.
In this framework, we prove bounds on the expected generalization error of a quantum learner
in terms of classical and quantum information-theoretic quantities measuring how strongly the
learner’s hypothesis depends on the data seen during training. To achieve this, we use tools from
quantum optimal transport and quantum concentration inequalities to establish non-commutative
versions of decoupling lemmas that underlie classical information-theoretic generalization bounds.

Our framework encompasses and gives intuitive generalization bounds for a variety of quantum
learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum
parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a
foundation for a unifying quantum information-theoretic perspective on quantum learning.
Keywords: quantum learning, generalization bounds, quantum mutual information, quantum opti-
mal transport
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1. Introduction

The intersection of machine learning and quantum physics has developed into a vibrant area of re-
search. On the one hand, along the lines of using (at least partially) quantum learners for classical
data, there are proposals for machine learning models based on quantum circuits (Biamonte et al.,
2017; Dunjko and Briegel, 2018; Havlı́ček et al., 2019), such as the so-called variational quantum
machine learning models and quantum kernel methods. On the other hand, there has been signif-
icant progress in learning from quantum data. Inspired by “pretty good tomography” (Aaronson,
2007), viewing quantum experiments through the lens of learning from quantum data has given rise
to ‘shadow’ protocols (Aaronson, 2019; Huang et al., 2020) that use few copies of an unknown
quantum state to predict many of its properties. The learning perspective has also led to insights
into the potential for quantum advantage of fully quantum over conventional experiments (Huang
et al., 2021; Aharonov et al., 2022; Chen et al., 2022b,a; Huang et al., 2022; Caro, 2022a; Chen
et al., 2023a,b). Moreover, from the viewpoint of computer science, quantum theory allows for new
kinds of oracular access to an unknown object that is to be learned (Bshouty and Jackson, 1998),
and thus potentially (though not always) for more efficient learning algorithms (Arunachalam and
de Wolf, 2017). Even fundamental problems of quantum information theory, such as state or pro-
cess tomography (Haah et al., 2016; O’Donnell and Wright, 2016; Haah et al., 2023; Zhao et al.,
2023) or state discrimination (Helstrom, 1969; Holevo, 1974; Yuen et al., 1975), can be interpreted
as tasks of learning from quantum data (Guţă and Kotłowski, 2010; Sentı́s et al., 2019).

As quantum machine learning and quantum learning theory have grown, so has the number of
different quantum learning scenarios and mathematical descriptions thereof. This is reminiscent
of the plethora of approaches to generalization and sample complexity bounds in classical ma-
chine learning theory (Vapnik and Chervonenkis, 1971; Pollard, 1984; Littlestone and Warmuth,
1986; Kearns and Schapire, 1994; Dudley, 1999; McAllester, 1999; Bousquet and Elisseeff, 2002;
Bartlett and Mendelson, 2002; Dwork et al., 2006). Recently, information-theoretic generalization
bounds (Hellström et al., 2023), going back to (Xu and Raginsky, 2017; Russo and Zou, 2019),
have emerged as a promising approach towards unifying these varied results. Furthermore, they
may help overcome the limitations of uniform generalization bounds (Zhang et al., 2017, 2021),
which have recently also been pointed out for quantum machine learning models (Gil-Fuster et al.,
2024). However, a similarly unifying perspective on quantum learning has so far been lacking.

In the spirit of unification, we propose a mathematical framework for quantum learning proce-
dures that train on data composed of classical samples as well as quantum data states, and then pro-
duce a classical and/or quantum hypothesis to be used for prediction on new classical-quantum data.
We prove that the generalization behavior of such quantum learners – that is, how well they gen-
eralize from available training data to previously unseen data – can be controlled through classical
and quantum information-theoretic quantities, which quantify how much information the learner’s
hypothesis contains about the data, combined with concentration properties of the loss observables
used for training. We demonstrate several applications of this quantum version of the central insight
from (Xu and Raginsky, 2017; Russo and Zou, 2019). To mention a few, it allows us to provide a
new perspective on quantum state classification tasks (Guţă and Kotłowski, 2010), and recover the
seminal result of (Aaronson, 2007) on PAC learning quantum states as well as the results of (Chung
and Lin, 2021; Caro, 2021; Fanizza et al., 2022) on learning state preparation procedures.
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1.1. Main results

Our first contribution is a unifying framework capable of capturing a wide variety of quantum learn-
ing problems. Having formulated the framework, we then use it to prove information-theoretic gen-
eralization bounds for quantum learners and demonstrate applications to learning quantum states,
learning classical functions from entangled quantum data, and quantum state classification.

1.1.1. UNIFIED INFORMATION-THEORETIC FRAMEWORK

Learners as maps. Classical randomized (supervised) learning algorithms can be modeled as
channels. They take as input training data, which is a set S = (Z1, . . . , Zm) of |S| = m i.i.d. data
points drawn from a probability distribution P over an instance space Z. The output of a learner is
a random variable called the hypothesis taking values in a hypothesis space W. We often think of
the input domain Z as being a Cartesian product Z = X×Y, and the hypothesis space W as a subset
of YX, so that a hypothesis is in fact a (randomized) function w : X → Y. The learner can then be
identified with a conditional probability distribution P (W |S) for the hypothesis given the data.

In analogy, we propose to think of quantum learning algorithms A as quantum procedures that
take as input data represented by a quantum state ρ coming from a quantum instance space Z . The
output of a quantum learner is a hypothesis state taking values in a space W . In particular, without
loss of generality, we can take Z to be a space of classical-quantum “CQ states” of the form

ρ = E
S∼Pm

[
|S⟩⟨S| ⊗ ρ(S)

]
, (1)

where ρ(S) is a quantum state on the Hilbert space Htrain. Typically, we consider Htrain
∼=⊗m

i=1Cd, where d is the local dimension, and assume the quantum training data to factorize as
ρ(S) =

⊗m
i=1 ρ(Zi) for d-dimensional states ρ(Zi). (Note that we consider an analogous classical

“factorization” by working with i.i.d. data S ∼ Pm.) Similarly W consists of states of the form

σA = E
(S,W )∼PA

[
|S,W ⟩⟨S,W | ⊗ σA(S,W )

]
, (2)

where PA is a joint distribution over data and hypothesis induced by the learner, and σA(S,W )
is a quantum state on the Hilbert space Hhyp. The learning procedure consists of two steps that
can be iterated: measurement and post-processing. The measurements may be implemented by
positive operator-valued measures (POVMs), and the associated instruments. Here, a POVM maps
states to classical probability distributions over outcomes, and the instruments give the correspond-
ing mappings to post-measurement states. We allow randomized classical post-processing of the
measurement outcomes as well as quantum post-processing of the post-measurement states.

Risk for classical learners. In classical learning theory, the performance of a hypothesis on a data
point is evaluated by a loss function ℓ : W × Z → R≥0. Accordingly, the true risk of a hypothesis
w ∈ W relative to the distribution P is

RP (w) = E
Z∼P

[ℓ(w,Z)]. (3)

The goal of a learner is to output a randomized hypothesis W that has small true risk RP (W ),
either in expectation or with high success probability. However, the data distribution P is typically
unknown, so the learner cannot directly evaluate RP (w) for a candidate hypothesis w. Instead, the
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average loss of a hypothesis on available training data serves as a proxy for the true risk. For training
data S = (Z1, . . . , Zm) and hypothesis w ∈ W, the empirical risk is defined by

R̂S(w) =
1

m

m∑
i=1

ℓ(w,Zi) . (4)

In contrast to RP (w), a classical learner with access to S can in principle evaluate R̂S(w) for any
w ∈ W. When the focus is on the average performance of a learner, the quality of R̂S(W ) as a
proxy for RP (W ) may be quantified by the expected generalization error

genP (A) = E
(S,W )∼PA

[
RP (W )− R̂S(W )

]
. (5)

We refer to bounds on genP (A) simply as generalization bounds1. Such bounds then give rise to
guarantees on when successful training, quantified by small empirical risk, leads to small true risk.

Risk for quantum learners. In translating the above recipe for evaluating the performance of a
learner to the quantum scenario, we encounter a fundamental obstacle: Quantum data that has been
used for training may be irreversibly modified by measurements and post-processing, and cannot be
reused for evaluating the empirical risk of a hypothesis obtained at the end of the training process.

Therefore, we introduce an additional quantum system to capture test data. That is, we now
allow ρ(S) in the quantum data state of Equation (1) to be states on a composite Hilbert space
Hdata = Htest ⊗ Htrain. Note that ρ(S) can be correlated or even entangled across the test-train
bipartition of the data Hilbert space. The action of the learner on the training data subsystem then
leads to a hypothesis state as in Equation (2), with σA(S,W ) now a quantum state on the Hilbert
space Htest ⊗Hhyp.

Lifting the notion of loss function to a quantum observable, we work with a family of (non-
negative) loss observables {L(S,W )} ⊂ B(Htest ⊗Hhyp). We then define the expected empirical
risk of the quantum learner A as the expectation value of the observable L(S,W ) on the hypothesis
state σ(S,W ), further averaged over PA. That is,

R̂ρ(A) = E
(S,W )∼PA

[
Tr[L(S,W )σA(S,W )]

]
. (6)

In contrast, we define the expected true risk of A as

Rρ(A) = E
(S̄,W̄ )∼PA

Zm⊗PA
W

[
Tr
[
L(S̄, W̄ )

(
ρtest(S̄)⊗ σAhyp(S̄, W̄ )

)]]
, (7)

where we have “decoupled” the quantum test and training data systems before letting the learner
act, and we have also decoupled the classical training data and hypothesis random variables. Here, a
state with a subscript denotes a reduced density matrix obtained by tracing out the other subsystems.
Mathematically, this is achieved by a partial trace, for example, we have ρtest(S̄) = Trtrain[ρ(S̄)]
and σAhyp(S̄, W̄ ) = Trtest[σ

A(S̄, W̄ )]. Finally, we define the expected generalization error as the
difference between expected true and empirical risks,

genρ(A) = Rρ(A)− R̂ρ(A). (8)

1. Concentration bounds for the generalization error are also often of interest, but we primarily consider bounds in
expectation in this article.
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Our main goal is to bound genρ(A) in terms of properties of the CQ data ρ, the loss observables
L(S,W ), and the learner A.

One may consider alternative notions of decoupling and alternative definitions for the quantum
risks. These notions may also be tailored differently to capture the essence of the learning task at
hand. In the next paragraph, we motivate our decoupling approach to the definition of true risk and
generalization error by a comparison to the classical framework, and demonstrate how it extends
established notions from classical learning theory. In addition to reducing to the expected empirical
and true risk in the classical case, these choices give rise to natural notions of risks and general-
ization error for a variety of quantum learning tasks (see Appendix C). Moreover, our definitions
account for the desiderata that R̂ρ(A) should incorporate all aspects in which the learner’s actions
“contaminate” the test data, whereas the test data in Rρ(A), both classical and quantum, must be
completely untarnished by the learner. This justifies Equations (7) and (8) as the quantum extension
of (Xu and Raginsky, 2017)’s change-of-measure/decoupling perspective on classical generalization
analysis.

Classical → quantum: motivating our framework and bounds. Before formally stating our
bounds on the generalization error in quantum learning, it is natural to wonder how our framework
for describing quantum learners and their generalization behavior compare with existing work.
Here, we provide such a comparison to information-theoretic generalization bounds in classical
learning theory. We begin with (Xu and Raginsky, 2017) and arrive at our quantum framework via
an intermediate (classical) extension, which is reminiscent of information-theoretic approaches to
out-of-distribution generalization (Hellström et al., 2023, Section 9.2)

First, we recall the main result of (Xu and Raginsky, 2017): Assuming that for Zi ∼ P the
random variable ℓ(w,Zi) is β-sub-gaussian for all w ∈ W – a special case of our assumption
(locCMGF) below – (Xu and Raginsky, 2017, Theorem 1) proved that the classical expected gener-
alization error defined in Equation (5) is bounded as

|genP (A)| ≤
√

2β2

m
I(S;W ) , (9)

where I(S;W ) is the mutual information (MI) between training data and hypothesis random vari-
ables. A simple but crucial observation underlying this bound: It amounts to a statement about de-
coupling two random variables. Namely, we can rewrite the expected true risk as EW∼PA

W
[RP (W )] =

ES̄∼Pm EW̄∼PA
W
[R̂S̄(W̄ )]. This has the same form as the expected empirical risk, given by the ex-

pression E(S,W )∼PA [R̂S(W )], but the training data and hypothesis random variables have been
replaced by independent copies thereof. Informally speaking, (Xu and Raginsky, 2017, Theorem 1)
thus tells us that decoupling training data and hypothesis comes at a cost depending on the mutual
information I(S;W ).

Next, as an intermediate step towards our quantum framework, we introduce a variant of this
result by adding test data to the classical learning-theoretic framework discussed above. Concretely,
suppose we have test data Ste = (Zte,i)

m
i=1 and training data Str = (Ztr,i)

m
i=1, where the pairs

(Zte,i, Ztr,i) are drawn i.i.d. from some probability distribution P over Z × Z. Note that while
different pairs are independent, the two random variables Zte,i, Ztr,i within any single pair may not
be. During training, a learner A has access to Str but not to Ste, so its output behaviour may still be
described by a conditional distribution P (W |Str). However, the relevant performance measures are
now taken w.r.t. test instead of training data. That is, we now consider the expected empirical testing
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risk ESte,Str,W [R̂Ste(W )] and the expected true testing risk EW [RPte(W )], where Pte denotes the
marginal of P on the first subsystem. Two extreme examples illustrate the utility of this setup:
First, if Zte,i and Ztr,i are perfectly correlated, we recover exactly the setting considered in (Xu and
Raginsky, 2017). In contrast, if Zte,i and Ztr,i are independent and have the same distribution, then
the expected generalization error trivially vanishes.

Also in this setting, the expected true risk can be obtained from the expected empirical risk via
decoupling as before, starting with the rewriting EW [RPte(W )] = ES̄tr,S̄te,W̄ [R̂S̄te

(W̄ )]. However,
W depends on Ste only through Str, so decoupling can now be achieved in different ways: We
can decouple W from Str as before, or we can decouple Ste from Str, or we can (unnecessarily)
decouple both pairs simultaneously. More rigorously, using (Xu and Raginsky, 2017, Lemma 1), we
can show that if ℓ(w,Zte,i), with Zte,i ∼ Pte, is β-sub-gaussian, then the expected generalization
error satisfies∣∣∣∣EW [RPte(W )]− E

Ste,Str,W
[R̂Ste(W )]

∣∣∣∣ ≤
√

2β2

m
I(Ste;W ) ≤

√
2β2

m
min{I(Str;W ), I(Str;Ste)} ,

(10)
where the last inequality follows from the data processing inequality and the chain rule.

We can now describe the final step towards our quantum framework. To do so, we return to the
setting of (Xu and Raginsky, 2017) on the classical side, assuming only training data but no test
data. This is for simplicity of presentation, our bounds can be extended to the case with classical
training and test data. On the quantum side, however, we assume both a test and a training data
system, which may share classical correlations or quantum entanglement. Thus, going from the
expected empirical risk R̂ρ(A) to the expected true risk Rρ(A) now requires two decoupling steps,
the first quantum – from a general bipartite state σA(S,W ) to a tensor product state τA(S,W ) by
decoupling the quantum test and train systems before the action of the learner – and the second
classical – going from correlated random variables S,W to independent copies S̄, W̄ . Our gener-
alization bounds below show that the first decoupling step contributes an expected quantum mutual
information (QMI) plus Holevo information and the second a classical MI. Notably, whereas a sin-
gle decoupling step was sufficient in the case of classical test data, our classical-quantum decoupling
indeed consists of two non-trivial decoupling steps.

1.1.2. GENERALIZATION ERROR BOUNDS

Assumptions. The framework and formalism described above can capture a variety of learning
scenarios. In order to prove bounds on the generalization error, we will assume mild properties
to be satisfied by the learner, the data, and the loss observables. To avoid clutter, in the following
we suppress dependencies on S,W in the notation where it is clear from the context. That is, we
write σ instead of σ(S,W ) and L instead of L(S,W ). Additionally, we will frequently denote
τA = τA(s, w) = ρtest(s) ⊗ σAhyp(s, w) = ρtest ⊗ σAhyp. Here and throughout, a state with a
subsystem subscript denotes the reduced state on that subsystem.

As in many classical works on this subject, bounds on the moment generating function (MGF)
allow for characterizing the concentration properties of the value of the loss observable around its
expectation value. However, due to the noncommutative setting at hand, we consider the following
two generalizations:

(QMGF) Quantum MGF/tail bound: For every (s, w) ∈ Zm ×W, let the logarithmic quantum mo-
ment generating function of the loss observable L with respect to the product state τA be
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bounded by convex functions ψ+, ψ− : R → R which satisfy ψ±(0) = ψ′
±(0) = 0, i.e.

log Tr
[
τAeλ(L−Tr[LτA]1)

]
≤

{
ψ+(λ) if λ ≥ 0

ψ−(λ) if λ < 0
. (QMGF)

(CMGF) Classical MGF/tail bound: For every w ∈ W, let the logarithmic moment generating func-
tion of the expectation value Tr[LτA] of the loss observable L in the product state τA, viewed
as a random variable, be bounded by convex functions ϕ+, ϕ− : R → R which satisfy
ϕ±(0) = ϕ′±(0) = 0, i.e.,

log E
S∼Pm

[
eλ(Tr[Lτ

A]−ES∼Pm [Tr[LτA]])
]
≤

{
ϕ+(λ) if λ ≥ 0

ϕ−(λ) if λ < 0
. (CMGF)

If the convex functions ψ± and ϕ± are of the form λ 7→ α2λ2

2 and λ 7→ β2λ2

2 , respectively, then
we speak of an α-sub-gaussian QMGF and a β-sub-gaussian CMGF. We describe some scenarios
of interest in which these assumptions are satisfied in Section 1.1.3.

Generalization bounds. Can the generalization error of the quantum learner A on the data ρ be
controlled in terms of quantities that we can interpret, giving us a handle on how one can produce
a hypothesis that attains a balance between fitting the training data and performing well on unseen
data? We answer this question in the affirmative, and show that assuming classical and quantum
MGF bounds allows us to control the generalization error via quantities measuring the classical and
quantum information shared between data and hypothesis.

Our first main result is the following generalization bound for quantum learners.

Theorem 1 (Informally stated; see Theorem 17) If the classical-quantum data state ρ and the
loss observable satisfy (QMGF) and (CMGF), then the expected generalization error of A satisfies

± genρ(A) ≤ ψ∗−1
∓

(
E

(S,W )∼PA
[I(test; hyp)σA ] + E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w

)])
+ ϕ∗−1

∓ (I(S;W )) ,

(11)

where ψ∗−1
∓ and ϕ∗−1

∓ denote the inverses of the Legendre transforms of ψ∓ and ϕ∓.

In Equation (11), the following quantities from classical and quantum information theory ap-
pear (see Appendix A for formal definitions): I(S;W ) is the mutual information (MI) between the
training data S and the hypothesis W . I(test; hyp)σA = I(test; hyp)σA(S,W ) denotes the quantum
mutual information (QMI) between test and hypothesis systems in the output state σA(S,W ) pro-
duced by the learner. Finally, χ({P (x), ρ(x)}x∈X) denotes the Holevo information of an ensemble
of states, which is connected to how much information about x ∼ P can be extracted from ρ(x). It
is given by H(Ex∼P [ρ(x)])− Ex∼P [H(ρ(x))], the difference between the (von Neumann) entropy
of the average state and the expected (von Neumann) entropy of a state drawn from the ensemble.

Theorem 1 provides a theoretical guideline for designing a learner A. Namely, we expect
better generalization performance for learners whose measurements and post-processing do not
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induce strong correlations between the available data set and the output hypothesis. Naturally,
we inherit a caveat from classical learning theory: Learning typically requires both good perfor-
mance on the training data and good generalization. Thus, our bounds provide an information-
theoretic perspective on the bias-variance trade-off in quantum learning. On the one hand, for good
training performance, a learner has to extract information about the underlying concept from the
available classical-quantum data. On the other hand, for good generalization, the amount of ex-
tracted/accessible classical and quantum information should be limited.

In the sub-gaussian case, the inverse Legendre transforms can be computed explicitly and the
generalization error bound takes an appealingly simple form.

Corollary 2 (Informally stated; see Corollary 23) If the classical-quantum data and the loss ob-
servable satisfy an α-sub-gaussian (QMGF) and a β-sub-gaussian (CMGF) condition, then

|genρ(A)| ≤

√
2α2

(
E

(S,W )∼PA
[I(test; hyp)σA ] + E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w

)])
+
√
2β2I(S;W ) .

(12)

We have already assumed that S = (Zi)
m
i=1 consists of i.i.d. examples. Now, we additionally

assume that ρ(S) =
⊗m

i=1 ρi(Zi) is a tensor product of quantum data states, and that the mea-
surements and channels performed by the learner A also factorize. (In fact, if A produces only a
classical but no quantum hypothesis, we can drop this factorization requirement on A.) Then, our
states after the action of the learner also factorize as σA =

⊗m
i=1 σ

A
i and τA =

⊗m
i=1 τ

A
i , with

σAi = σAi (zi, w) and τAi = τAi (zi, w). Finally, we assume that the loss observable is an average of
local losses, L = 1

m

∑m
i=1 Li, with Li = Li(zi, w) acting non-trivially only on the ith tensor factor.

The natural analogues of (QMGF) and (CMGF) become:

(locQMGF) Local QMGF: For every i ∈ [m], for every (zi, w), each local Li satisfies (QMGF) w.r.t. τAi
with bound ψ±,i.

(locCMGF) Local CMGF: For every i ∈ [m], for every w, each local Tr[Liτ
A
i ] satisfies (CMGF) w.r.t. P

with bound ϕ±,i.

In addition to serving as natural quantum counterparts of common assumptions used to derive
classical information-theoretic generalization bounds, we identify several scenarios in which (loc-
QMGF) and (locCMGF) are satisfied in Appendix B.2. As before, we speak of αi-sub-gaussian
(locQMGF) and βi-sub-gaussian (locCMGF) if the convex functions ψ±,i and ϕ±,i are of the form

λ 7→ α2
i λ

2

2 and λ 7→ β2
i λ

2

2 , respectively. If the sub-gaussianity parameters are the same for all i,
that is, if αi = α and βi = β for all i, then we simply speak of α-sub-gaussian (locQMGF) and
β-sub-gaussian (locCMGF). In this scenario, Corollary 2 becomes:
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Corollary 3 (Informally stated; see Corollary 24) If the classical-quantum data and the loss ob-
servable satisfy an α-sub-gaussian (locQMGF) and a β-sub-gaussian (locCMGF) condition, then

|genρ(A)| ≤

√
2α2

m

(
E

(S,W )∼PA
[I(test; hyp)σA ] + E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w

)])

+

√
2β2

m
I(S;W ) .

(13)

Corollary 3 tells us: We can control the expected generalization error by choosing the training
data size m to be on the order of the maximum between the classical and quantum information
shared between the data and the learner’s hypothesis. Conversely, if only a limited amount of data
is available, then to guarantee good generalization, we have to limit the classical and quantum
information that the learner accumulates about the data accordingly. As we explain in Appendix B,
Corollary 3 can be extended to the case of different local loss observables, which also have different
sub-gaussianity parameters αi and βi (see Corollary 24), and to stable learners employing channels
that approximately preserve locality (see Corollary 25).

1.1.3. APPLICATIONS

Our framework and generalization bounds capture a variety of settings. Therefore, we envision
that our approach can lead to new insights by providing a novel perspective on diverse quantum
learning problems. Here, we highlight only three applications, but to fundamental problems in
quantum learning. For further examples in quantum parameter estimation, variational quantum
machine learning, approximate quantum membership problems, learning quantum state preparation
procedures, quantum differential privacy, and inductive quantum learning see Appendix C.

PAC learning quantum states. (Aaronson, 2007) pioneered the use of learning-theoretic perspec-
tives for quantum information problems. The seminal contribution of this work was to formulate
“pretty good state tomography” in a PAC learning sense and to analyze its sample complexity. Here,
instead of aiming for a (classically described) approximation to an unknown quantum state in trace
distance, one considers the relaxed task of producing a (classically described) hypothesis state that
accurately approximates the expectation value on a test measurement drawn from an underlying data
distribution, with high success probability. While full state tomography requires resources scaling
exponentially with the number n of qubits (O’Donnell and Wright, 2016; Haah et al., 2017), this
PAC relaxation has sample complexity scaling linearly in n (Aaronson, 2007).

In Appendix C.1, we use Corollary 3 to reproduce this fundamental insight into learning quan-
tum states within our framework of in-expectation learning. Concretely, we give a simple learning
strategy achieving an in-expectation version of (Aaronson, 2007, Theorem 1.1) with the same de-
pendence on the Hilbert space dimension d and the approximation accuracy ε. Our formulation
allows us to naturally describe an end-to-end learning strategy that starts from (possibly entangled)
copies of the unknown quantum state. As part of our derivation, we extend an argument due to (Xu
and Raginsky, 2017) to prove that information-theoretic generalization guarantees reproduce classi-
cal in-expectation excess risk bounds for regression based on the fat-shattering dimension (Kearns
and Schapire, 1994; Bartlett and Long, 1998; Anthony and Bartlett, 2000).
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We highlight that our in-expectation guarantees show that for each observable seen during train-
ing, a number of copies independent of d is sufficient to achieve overall reliable expectation value
estimates. In essence, there are distinct classical (“how many observables”) and quantum (“how
many copies of ρ per observable”) aspects to the sample complexity. Only the first is d-dependent.
Our perspective thus provides a natural intermediary between the “measure log log(d) many times”
setting of (Aaronson, 2007, Objection 6) and the “measure once” scenario of (Aaronson, 2007,
Theorem 1.3). This illustrates how studying in-expectation bounds can complement studying the
concentration properties of the generalization error.

Quantum PAC learning from entangled data. A central question in quantum learning theory
(Arunachalam and de Wolf, 2017) is whether and when quantum access to data allows one to learn
an unknown classical object (typically a function) more sample- and/or computationally efficiently
than is possible purely classically. A prominent way of modeling quantum (access to) data is via
superposition examples (Bshouty and Jackson, 1998), which then admit questions of PAC learning
from quantum oracle access.

We propose a variant of quantum superposition examples: Viewing a single classical training
example as a mixed state ρ =

∑
z P (z) |z⟩⟨z| diagonal in the computational basis, we take a purifi-

cation and consider the resulting entangled state |ϕ⟩ =
∑

z

√
P (z) |z⟩test ⊗ |z⟩train as describing

the joint system of a single quantum test and training example. Multiple copies of this bipartite
state then form the overall data. The entanglement between test and training data is an inherently
quantum analogue to a classical scenario with perfectly correlated test and training data.

For this notion of quantum data access, we study learners that perform simple measurements
followed by classical post-processing. We show how to analyze the generalization performance
of such learners purely quantumly by describing the measurement and post-processing jointly by
a quantum channel acting on the training data. In particular, we demonstrate that Corollary 3 in
this case reproduces the main result of (Xu and Raginsky, 2017). Notably, it does so via the QMI
contribution in the upper bound, which highlights the relevance and necessity of this term.

Quantum state discrimination and classification. Distinguishing between different candidate
states when given copies of an unknown quantum state is a fundamental task in quantum information
science (Bae and Kwek, 2015). The optimal measurement for binary state discrimination, the case
of two candidates, is well understood (Helstrom, 1969; Holevo, 1973). For distinguishing between
multiple states, necessary and sufficient optimality criteria are known (Holevo, 1974; Yuen et al.,
1975), but in general do not give rise to an explicit construction for the optimal POVM. Only in
certain symmetric cases can the optimal measurement be made explicit (Ban et al., 1997; Eldar and
Forney, 2001; Eldar et al., 2004), often via the pretty good (or square root) measurement (Hausladen
and Wootters, 1994; Hausladen et al., 1996). These results, however, presuppose that classical
descriptions for the possible candidate states are known in advance.

More recently, distinguishing between two a priori unknown quantum states was considered as
a classification problem inspired by machine learning approaches to pattern recognition (Guţă and
Kotłowski, 2010; Sentı́s et al., 2019; Rosati, 2022). Here, the goal is to learn a distinguishing POVM
from (labelled) copies of the unknown states. We formulate a PAC version of quantum state classifi-
cation (see Appendix B). Then, our information-theoretic generalization guarantees yield bounds on
the sample size sufficient to ensure that a learned POVM, which performs well on available training
data, will also successfully classify previously unseen state pairs in-expectation over an underlying
distribution over pairs. These may serve as a guiding principle for avoiding overfitting in quantum
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state classification. In particular, our results imply that limiting the complexity of the admissible
hypothesis POVMs and thus the maximum information content of a hypothesis, for instance by
imposing locality restrictions, will favorably affect the required amount of quantum data.

1.2. Discussion and outlook

In this work, we have established a mathematical framework for reasoning about tasks of learning
from data that is part classical and part quantum. In addition to proving generalization error bounds
for quantum learners in such scenarios, we have also demonstrated a variety of applications that our
framework encompasses. Importantly, our bounds are information-theoretic in nature. Thus, they
come with an intuitive interpretation and provide a perspective on quantum learning that can benefit
from insights in quantum information theory.

The average-case and in-expectation generalization bounds give an insightful perspective that is
complementary to worst-case analyses, which have thus far been more widespread in the literature
on quantum learning. The former illuminates certain features that are not apparent in the latter,
raising the question of re-examining established results in a new or different light. We hope our
work motivates future work on quantum learning to also consider in-expectation generalization
alongside worst-case behavior.

With part of our contribution being the formulation of a novel framework, our work raises many
interesting follow-up questions. In the following, we highlight some of them.

Average-case vs. worst-case. As is typical in PAC learning, our results address the average perfor-
mance on instances drawn from an (unknown) underlying distribution. For instance, our risk bounds
for “pretty good tomography” (Aaronson, 2007) hold w.r.t. a distribution over 2-outcome POVMs.
In contrast, recent progress in shadow tomography (Aaronson, 2019; Bădescu and O’Donnell, 2021;
Huang et al., 2021) and classical shadows (Huang et al., 2020; Elben et al., 2022) has focused on
making correct predictions in the worst-case simultaneously over many observables. Moreover, re-
cent work (Huang et al., 2021) has drawn attention to the notable contrast between the average-case
and the worst-case when it comes to the potential for a quantum advantage in learning. Extending
our information-theoretic perspective on quantum learning to these worst-case scenarios could give
us novel ways of probing this frontier.

Open Problem 1 Establish a quantum information-theoretic characterization of the performance
of learners for shadow tomography.

Quantum-quantum learners. A recent spate of results (Aharonov et al., 2022; Chen et al., 2022a,b;
Huang et al., 2022; Caro, 2022a; Huang et al., 2023b; Dutkiewicz et al., 2023) has emphasized the
role of quantum-enhanced experiments for learning quantum channels. In particular, the ability to
coherently and sequentially query the unknown channel on input states of our choice is an example
of quantum enhancement. Can our framework be further developed to incorporate learning from
such query access to a quantum-to-quantum channel?

Open Problem 2 Establish a quantum information-theoretic characterization of the performance
in learning quantum-to-quantum channels in a query input model.

11
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Optimality and technical improvements. One might raise the question of whether information-
theoretic bounds on the expected generalization error are tight. This is already a non-trivial open
question in the classical setting. In the quantum world, the problem of state discrimination is very
well understood information-theoretically. We speculate that a notion of average-case state discrim-
ination may be an approach towards understanding the optimality of our bounds.

Finally, (Xu and Raginsky, 2017; Russo and Zou, 2019) have led to a series of follow-up works,
including techniques to tighten information-theoretic generalization bounds (Asadi et al., 2018; Bu
et al., 2019), improvements relying on (evaluated) sample-wise and/or conditional mutual informa-
tion (Steinke and Zakynthinou, 2020; Haghifam et al., 2020; Hellström and Durisi, 2021; Haru-
tyunyan et al., 2021; Hellström and Durisi, 2022; Chu and Raginsky, 2023; Hellström et al., 2023),
and connections to optimal transport (Esposito and Gastpar, 2022) and convex analysis (Lugosi and
Neu, 2022, 2023). These results may inspire improvements to our quantum generalization bounds
and potentially connections to quantum optimal transport (De Palma and Trevisan, 2021; De Palma
and Rouzé, 2022; De Palma and Trevisan, 2023).

In spite of the rich structure and wealth of open problems in this area of research, simply trans-
lating these ideas to quantum learning is fraught with pitfalls: for example, there is no unique
quantum analogue to the classical notion of conditioning. Breakthrough progress in our quantum
information-theoretic understanding of learning will require proving genuinely quantum statements
which may not have classical analogues.

2. Technical overview

In this section we give an outline of the ideas involved in the development of our framework, and
a taste of the techniques that we use in proving our generalization bounds. The proofs of clas-
sical information-theoretic generalization bounds, starting from assumptions analogous to Equa-
tion (CMGF), typically proceed as follows2: First, the mutual information between data and hy-
pothesis can be expressed as the expected relative entropy between the the distribution of the
data conditioned on the hypothesis and the unconditioned distribution of the data, I(S;W ) =
EW∼PA

W
[D(PA

Zm|W ∥PA
Zm)]. Next, the relative entropies are rewritten via the Donsker-Varadhan

representation of the relative entropy (see, for example, (Boucheron et al., 2013, Corollary 4.15)),
which in this case in particular implies

D(PA
Zm|W ∥PA

Zm) ≥ E
S∼PA

Zm|W

[λf(W,S)]− log E
S∼PA

Zm

[
eλf(W,S)

]
∀λ ∈ R , (14)

for f(W,S) = 1
m

∑m
i=1 ℓ(W,Zi). The second term is controlled based on assumptions on the loga-

rithmic MGF, which in particular introduces a term −ES∼PA
Zm

[λf(W,S)] = −λES∼PA
Zm

[R̂S(W )].
After an optimization over λ, one can rearrange and average over the hypothesis to obtain an
information-theoretic generalization bound.

An obstacle to extending this argument to our setting with classical-quantum data is the lack
of a quantum analogue of conditioning the data on the hypothesis. To circumvent this obstacle,
we decompose the generalization error into a classical and a quantum part. As highlighted in the
previous subsection, this decomposition is a feature inherent to our classical-quantum setup: Even

2. Starting from different sub-gaussianity assumptions, variations on this reasoning can be successful, see, e.g., (Bu
et al., 2019, Proposition 1).
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after extending the classical learning framework to include test data, it still admits a generalization
bound with a single classical mutual information term, no decomposition into separate terms is
needed. In our decomposition, the classical part is a difference of two terms that differ only in
whether the underlying classical data and hypothesis random variables are correlated or decoupled.
Thus, it can be controlled with the classical proof strategy outlined above. The quantum part takes
the form of a classical expectation value of the difference between the quantum expectation values
Tr[Lσ], of the loss observable on the state σ, and Tr[LτA], the expectation value on its decoupled
counterpart τA = ρtest ⊗ σAhyp. To control this quantum decoupling, we lift the classical proof
strategy to our non-commutative quantum setting, replacing Donsker-Varadhan by a combination
of Petz’s variational characterization of the relative entropy (Petz, 1988) and the Golden-Thompson
inequality. Assuming (QMGF), this yields the quantum relative entropy lower bound

D(σA∥τA) ≥ λ
(
Tr[LσA]− Tr[LτA]

)
−

{
ψ+(λ) if λ ≥ 0

ψ−(λ) if λ < 0
. (15)

Now, we can optimize over λ and rearrange to obtain a bound on Tr[Lσ] − Tr[LτA] in terms of
E(S,W )∼PA [D(σA∥τA)]. After showing that this expected relative entropy equals the expression

E(S,W )∼PA [I(test; hyp)σA ] +ES∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w

)]
, we combine this quantum

decoupling bound with the bound on the classical part to obtain Theorem 1.

The usefulness of classical generalization bounds depends on whether and how quickly they
decay as the training data size m increases. Typically, such a decrease is proved under an i.i.d. as-
sumption on the data. To strengthen Theorem 1 for i.i.d. quantum data, adhering to a tensor prod-
uct structure, we invoke tools from quantum optimal transport. On the one hand, (De Palma and
Trevisan, 2023, Theorem 8.1), restated as Lemma 30, shows that Lipschitz observables have sub-
gaussian QMGFs w.r.t. any tensor product state:

Tr

[
exp

(
log

(
m⊗
i=1

ρi

)
+ λH

)]
≤ exp

(
λ2m∥H∥2Lip

2

)
. (16)

While this is weaker than bounds of the form (QMGF) due to Golden-Thompson, we demonstrate
that such a QMGF bound is still sufficient for our above proof strategy. This then allows us to im-
prove Theorem 1 achieve a bound that decays with 1/

√
m if both quantum data and learner factorize,

assuming local loss observables (Corollary 3). On the other hand, the machinery of quantum Lip-
schitz constants allows us to go beyond quantum learners that factorize. In particular, it guides us
to define a stability criterion for quantum learners in terms of Wasserstein-1 distances, a quantum
version of classical replace-one stability (Bousquet and Elisseeff, 2000, 2002; Shalev-Shwartz et al.,
2010). Namely, if the underlying classical data sets differ in only few data points, then the associated
quantum processing channels employed by a stable learner differ only by a small amount, measured
in terms of a Schatten-1–to–Wasserstein-1 norm. Combining our newly established sub-gaussianity
of Lipschitz observables w.r.t. tensor products with the classical bounded differences concentration
inequality (McDiarmid, 1989), we can then extend our generalization guarantees to stable quantum
learners with a controlled increase in Wasserstein-1 distances (Corollary 25).
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Costin Bădescu and Ryan O’Donnell. Improved quantum data analysis. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1398–1411, 2021. doi:
10.1145/3406325.3451109.

Joonwoo Bae and Leong-Chuan Kwek. Quantum state discrimination and its applications. Journal
of Physics A: Mathematical and Theoretical, 48(8):083001, 2015. doi: 10.1088/1751-8113/48/
8/083001.

Masashi Ban, Keiko Kurokawa, Rei Momose, and Osamu Hirota. Optimum measurements for
discrimination among symmetric quantum states and parameter estimation. International Journal
of Theoretical Physics, 36:1269–1288, 1997. doi: 10.1007/BF02435921.

Leonardo Banchi, Jason Pereira, and Stefano Pirandola. Generalization in quantum machine learn-
ing: A quantum information standpoint. PRX Quantum, 2(4):040321, 2021. doi: 10.1103/
PRXQuantum.2.040321.

Leonardo Banchi, Jason Luke Pereira, Sharu Theresa Jose, and Osvaldo Simeone. Statistical com-
plexity of quantum learning. Advanced Quantum Technologies, page 2300311, 2024. doi:
10.1002/qute.202300311.
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Ángela Capel, Cambyse Rouzé, and Daniel Stilck França. The modified logarithmic sobolev in-
equality for quantum spin systems: classical and commuting nearest neighbour interactions.
arXiv preprint arXiv:2009.11817, 2020. URL https://arxiv.org/abs/2009.11817.

Matthias C. Caro. Binary classification with classical instances and quantum labels. Quantum
Machine Intelligence, 3:18, 2021. doi: 10.1007/s42484-021-00043-z.

Matthias C Caro. Learning quantum processes and Hamiltonians via the Pauli transfer matrix. arXiv
preprint arXiv:2212.04471, 2022a. URL https://arxiv.org/abs/2212.04471.

Matthias C. Caro. Quantum Learning Theory. Dissertation, Technische Universität München,
München, 2022b. URL http://mediatum.ub.tum.de/node?id=1634443.

Matthias C. Caro and Ishaun Datta. Pseudo-dimension of quantum circuits. Quantum Machine
Intelligence, 2:14, 2020. doi: 10.1007/s42484-020-00027-5.

Matthias C. Caro, Elies Gil-Fuster, Johannes Jakob Meyer, Jens Eisert, and Ryan Sweke. Encoding-
dependent generalization bounds for parametrized quantum circuits. Quantum, 5:582, 2021. doi:
10.22331/q-2021-11-17-582.

Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz
Cincio, and Patrick J Coles. Generalization in quantum machine learning from few training data.
Nature Communications, 13:4919, 2022. doi: 10.1038/s41467-022-32550-3.

Matthias C. Caro, Hsin-Yuan Huang, Nicholas Ezzell, Joe Gibbs, Andrew T. Sornborger, Lukasz
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Appendix A. Preliminaries and Notation

We establish some minimal preliminaries and notation regarding quantum information and comput-
ing, and refer the reader to textbooks such as (Wilde, 2013; Nielsen and Chuang, 2010) for details.

We use H to denote a Hilbert space, and different Hilbert spaces are distinguished by subscripts.
We denote the set of bounded operators on H by B(H) and the trace class operators on H by
T1(H). The space of density operators (i.e., positive semidefinite trace class operators with trace
1) on H is denoted by S(H). It describes the space of quantum states on H, we will use the
terms ‘density operator’ and ‘quantum state’ interchangeably. Throughout the paper, we work with
finite-dimensional Hilbert spaces H ∼= Cd, but as we sometimes consider states with classical
subsystems on a continuous alphabet, we nevertheless employ the notion of trace class operators.
When viewing multiple quantum systems with associated Hilbert spaces H1, . . . ,Hm as a single
composite quantum system, the associated Hilbert space is the tensor product

⊗m
i=1Hi. We obtain

the reduced density matrix ρj on subsystem j of a multipartite state ρ1,...,m ∈ S(
⊗m

i=1Hi) via
a partial trace over the remaining subsystems, ρj = Tr1,...,j−1,j+1,...,m[ρ1,...,m]. A trace with a
subscript always indicates a partial trace over the Hilbert space with the same subscript.
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We next define states that have both classical and quantum subsystems:

Definition 1 (Classical-Quantum (CQ) States) Let X be a (classical) measurable space, let H
be a Hilbert space. Let P be a probability measure on X and let X ∋ x 7→ ρ(x) ∈ S(H) be
a (Borel-)measurable mapping from elements of the alphabet to quantum states. The associated
classical-quantum (CQ) state is given by

E
x∼P

[
|x⟩⟨x| ⊗ ρ(x)

]
. (17)

Here, the expectation value can be understood as a Bochner integral of a function mapping to a
Banach space. If X is a finite alphabet, then the expression in Equation (17) simplifies to

E
x∼P

[
|x⟩⟨x| ⊗ ρ(x)

]
=
∑
x∈X

P (x) |x⟩⟨x| ⊗ ρ(x) . (18)

Quantum information theory is a rich field and has successfully “quantized” a variety of notions
from classical information theory. We will make use of the quantum counterpart of the classical
relative entropy (also known as Kullback-Leibler divergence).

Definition 2 (Quantum relative entropy) The quantum relative entropy between a density opera-
tor ρ ∈ S(H) and a positive semi-definite σ ∈ B(H) is given by

D(ρ∥σ) =

{
Tr[ρ(log ρ− log σ)] if supp(ρ) ⊆ supp(σ)

+∞ else
. (19)

Here, the support of ρ is, by Hermiticity, the orthogonal complement of its kernel, that is, supp(ρ) =
(ker(ρ))⊥.

From the quantum relative entropy, we can now obtain the quantum mutual information. It
measures how much information one subsystem in a bipartite quantum state carries about the other
subsystem.

Definition 3 (Quantum mutual information) Let ρ = ρAB ∈ S(HA ⊗HB) be a bipartite quan-
tum state. The quantum mutual information (QMI) between subsystems A and B in the quantum
state ρ = ρAB is given by

I(A;B)ρ = D(ρAB∥ρA ⊗ ρB) = H(ρA) +H(ρB)−H(ρAB) , (20)

where H(σ) = −Tr[σ log(σ)] denotes the von Neumann entropy.

When applied to a CQ state, the QMI gives rise to the so-called Holevo information:

Definition 4 (Holevo information) Let {P (x), ρ(x)}x∈X be an ensemble of quantum states. The
Holevo information is given by the QMI between the classical and quantum registers in the associ-
ated CQ state:

χ ({P (x), ρ(x)}x∈X) = I(C : Q)Ex∼P [|x⟩⟨x|⊗ρ(x)] . (21)

26



INFORMATION-THEORETIC GENERALIZATION BOUNDS FOR LEARNING FROM QUANTUM DATA

The Holevo information can equivalently be expressed as

χ ({P (x), ρ(x)}x∈X) = H

(
E

x∼P
[ρ(x)]

)
− E

x∼P
[H(ρ(x))] = E

x∼P

[
D

(
ρ(x)

∥∥∥∥∥ E
x̃∼P

[ρ(x̃)]

)]
.

(22)

In addition to quantum states, we need mathematical descriptions for measurements as well as
for general processing of quantum systems. To describe measurements, we use positive operator-
valued measures (POVMs).

Definition 5 (POVMs and post-measurement states) The set of effect operators E(H) on a Hilbert
space H is given by E(H) = {E ∈ B(H) | E = E† ∧ 0 ≤ E ≤ 1H}. A collection
{Ek}Kk=1 ⊂ E(H) with

∑K
k=1Ek = 1H is called K-outcome POVM. When measuring a POVM

{Ek}Kk=1 on a state ρ ∈ S(H), the probability of observing outcome k is Tr[Ekρ]. Moreover,
conditioned on observing outcome k, the post-measurement state is given by

ρk :=

√
Ekρ

√
Ek

Tr[Ekρ]
. (23)

The dynamics of quantum systems can be mathematically described by quantum channels.

Definition 6 (Quantum channels – Schrödinger picture) A linear map Λ : T1(Hin) → T1(Hout)
between trace class operators on Hilbert spaces Hin and Hout is called a quantum channel (in
the Schrödinger picture) if it is completely positive (CP) and trace-preserving (TP). Here, we
call Λ completely positive if, for any Haux, (idT1(Haux) ⊗ Λ)(ρ) is positive-semidefinite whenever
ρ ∈ T1(Haux ⊗ Hin) is positive semidefinite, and we call Λ trace-preserving if Tr[Λ(ρ)] = Tr[ρ]
holds for all ρ ∈ T1(Hin).

According to Definition 6, we describe a general quantum process with a CPTP map. This is the
Schrödinger picture perspective, in which we view states as evolving. Complementary to this, we
can define the dual Λ∗ : B(Hout) → B(Hin) of Λ via the requirement Tr[EΛ(ρ)] = Tr[Λ∗(E)ρ]
∀ρ ∈ S(Hin), E ∈ E(Hout). The Heisenberg picture map Λ∗ is completely positive if and only if
Λ is. Also, Λ being TP is equivalent to Λ∗ being unital (U), i.e., Λ∗(1Hout) = 1Hin . Thus, quantum
channels in the Heisenberg picture are linear CPU maps.

Finally, we recall two recently introduced notions from quantum optimal transport. These con-
stitute alternatives to the trace distance between multi-qudit states and the operator norm for multi-
qudit observables, respectively, and take locality into account.

Definition 7 (Quantum Wasserstein-1 distance (De Palma et al., 2021)) Let ρ, σ ∈ S((Cd)⊗m)
be two m-qudit states. The quantum Wasserstein-1 distance ∥ρ− σ∥W1 between ρ and σ is defined
as

∥ρ− σ∥W1 = min

{
m∑
i=1

ci

∣∣∣∣∣ ci ≥ 0 : ∃ρ(i), σ(i) ∈ S((Cd)⊗m), 1 ≤ i ≤ m s.t.
Tri[ρ

(i)] = Tri[σ
(i)]∀i ∧ ρ− σ =

∑m
i=1 ci

(
ρ(i) − σ(i)

) } . (24)

The quantum Wasserstein-1 distance between quantum states induces a notion of quantum Lip-
schitz constant for observables via duality.
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Figure 1: Framework for learning from classical-quantum data: The quantum learner A acts on
the classical data and on the training subsystem of the quantum data via a measurement
followed by classical and quantum post-processing. The performance of the resulting
classical and quantum hypotheses are then evaluated via a loss measurement that also
takes the testing subsystem of the quantum data into account. The training and testing
subsystems may initially be correlated or even entangled.

Definition 8 (Quantum Lipschitz constant (De Palma et al., 2021)) Let H = H† ∈ B((Cd)⊗m)
be an m-qudit observable. The quantum Lipschitz constant ∥H∥Lip of H is defined as

∥H∥Lip = max
{
Tr[HX] | X = X† ∈ B((Cd)⊗m) : Tr[X] = 0 ∧ ∥X∥W1 ≤ 1

}
(25)

= max
1≤i≤m

max
{
Tr[H(ρ− σ)] | ρ, σ ∈ S((Cd)⊗m) : Tri[ρ] = Tri[σ]

}
. (26)

Appendix B. Framework and main result

B.1. Framework for learning from classical-quantum data

We aim to provide a formalism for learning from quantum data given as a classical-quantum (CQ)
state. Our framework is visualized in Figure 1. We suppose that the data comes in the form of a CQ
state

ρ = E
S∼Pm

[
|S⟩⟨S| ⊗ ρ(S)

]
, (27)

with P a probability measure over a classical measurable instance space Z, and with ρ(s) a density
operator on a (typically composite) data Hilbert space Hdata, ρ(s) ∈ S(Hdata), for each s ∈ Zm.

A quantum learner A now consists of:

(i) a (possibly trivial) decomposition of the data Hilbert space into a tensor product of a test data
and a training data Hilbert space, Hdata = Htest ⊗Htrain,

(ii) a measurable hypothesis space W,
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(iii) POVMs {EA
s (w)}w∈W on Htrain for each s ∈ Zm, describing the measurements used by the

learner to extract classical information from the training data state and leading to probability
distributions3 QA

s on W defined via QA
s (w) = Tr[Es(w) Trtest[ρ(s)]],

(iv) a quantum hypothesis Hilbert space Hhyp,

(v) a family of quantum channels {ΛA
s,w : T1(Htrain) → T1(Hhyp)}(s,w)∈Zm×W.

That is, the learner A proceeds as follows: First, conditioned on the classical data s, A performs
the measurement described by the POVM {EA

s (w)}w∈W on the training data subsystem of ρ(s)
and classically records the measurement outcome. Second, conditioned on both the classical data
s and the observed measurement outcome w, A applies the quantum channel ΛA

s,w to the post-
measurement state of the training data subsystem. This way, the action of the learner A on the CQ
data state ρ leads to the CQ output state

σA = E
S∼Pm

[
|S⟩⟨S| ⊗ E

W∼QA
S

[
(idtest⊗ΛA

S,W )
(
ρA(S,W )

)
⊗ |W ⟩⟨W |

]]
(28)

= E
S∼Pm

E
W∼QA

S

[
|S⟩⟨S| ⊗ (idtest⊗ΛA

S,W )
(
ρA(S,W )

)
⊗ |W ⟩⟨W |

]
(29)

= E
S∼Pm

E
W∼QA

S

[
|S⟩⟨S| ⊗ σA(S,W )⊗ |W ⟩⟨W |

]
, (30)

where we have defined the post-measurement state

ρA(s, w) =

(
1test ⊗

√
EA

s (w)
)
ρ(s)

(
1test ⊗

√
EA

s (w)
)

Tr[EA
s (w)ρtrain(s)]

, (31)

Note that σA(s, w) ∈ S(Htest⊗Hhyp) for every (s, w) ∈ Zm×W. If we denote by PA the induced
probability distribution over Zm ×W with

PA(s, w) = Pm(s) ·QA
s (w), (32)

denote its marginal on W by PA
W, and its conditional distribution for the data given the hypothesis

W by PA
data|W , we can interchange the order of the expectations in Equation (30) and rewrite σA

as
σA = E

W∼PA
W

E
S∼PA

data|W

[
|S⟩⟨S| ⊗ σA(S,W )⊗ |W ⟩⟨W |

]
. (33)

Remark 9 In the language used in Section 1.1.1 to compare our framework to the classical one,
the setup described above assumes perfectly correlated classical training and test data. This choice
was made to simplify the presentation. However, one may extend the framework by considering
the classical part of the data to consist of (in general correlated) training and test data. Naturally,
the POVMs and channels performed by the learner should only depend on the training data but
not on the test data. This straightforward extension of our framework then also encompasses the

3. This formulation implicitly assumes that W is discrete. If W is continuous, we can instead work with associated
probability densities qAs (w) = Tr[Es(w)Trtest[ρ(s)]]. Our framework and results encompass both the discrete and
the continuous case. We choose discrete-case notation merely for simplicity.

29



CARO GUR ROUZÉ STILCK FRANÇA SUBRAMANIAN

classical extension of the (Xu and Raginsky, 2017) framework with test data that we describe in
Section 1.1.1. Note that including separate classical test data also enables us to describe tasks
in which the training data distribution is different from the test data distribution, for example in
scenarios of covariate shift, where out-of-distribution generalization becomes relevant. This may
allow for connecting our framework to recent work on out-of-distribution generalization in learning
quantum processes (Caro et al., 2023; Huang et al., 2023a).

Remark 10 Instead of describing A in terms of POVMs and channels, we could merge these objects
into a description in terms of quantum instruments (compare (Heinosaari and Ziman, 2011, Chapter
5)). We have chosen a formulation based on POVMs and channels in order to make the presentation
more concrete and widely accessible.

Example 1 (Quantum state classification) As an illustrative example, we consider a task of quan-
tum state classification, in which the quantum learner should PAC learn a two-outcome POVM that
distinguishes between pairs of d-dimensional states weighted according to prior probabilities. This
can be viewed as a version of the problem studied in (Guţă and Kotłowski, 2010) but with an under-
lying distribution over weighted pairs of states. To formalize this problem, we consider a probability
distribution Pweight⊗Ppair over the space [0, 1]×

(
S(Cd)× S(Cd)

)
of weights and pairs of states. If

the learner has access to m labeled quantum examples generated from this distribution, the overall
classical-quantum data is described by the state

ρ = E
{π(i)

0 ,(σ
(i)
0 ,σ

(i)
1 )}mi=1∼(Pweight⊗Ppair)m

[
m⊗
i=1

(
π
(i)
0 |0⟩⟨0| ⊗ (σ

(i)
0 )⊗2 + (1− π

(i)
0 ) |1⟩⟨1| ⊗ (σ

(i)
1 )⊗2

)]
(34)

= E
{π(i)

0 }mi=1∼Pm
weight

 ∑
s=(z1,...,zm)∈{0,1}m

(
m∏
i=1

π(i)zi

)
|s⟩⟨s| ⊗ E

{(σ(i)
0 ,σ

(i)
1 )}mi=1∼Pm

pair

( m⊗
i=1

σ(i)zi

)⊗2
 ,

(35)

where we used the notation π(i)1 = 1 − π
(i)
0 . If we define Z = {0, 1}, if we let P be the probability

distribution on Z defined via

P (zi) = E
{π(i)

0 }mi=1∼Pm
weight

[
π(i)zi

]
∀zi ∈ {0, 1}, (36)

and if we further define the density operators ρ(s) acting on the Hilbert space Hdata = Htest ⊗
Htrain = (Cd)⊗m ⊗ (Cd)⊗m as

ρ(s) = E
{(σ(i)

0 ,σ
(i)
1 )}mi=1∼Pm

pair

( m⊗
i=1

σ(i)zi

)⊗2
 ∀s = (z1, . . . , zm) ∈ {0, 1}m, (37)

then, we see that

ρ = E
S∼Pm

[
|S⟩⟨S| ⊗ ρ(S)

]
(38)

in accordance with Equation (27).
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To describe a quantum learner A in this setting, take the quantum hypothesis space Hhyp = C
to be trivial and consider a measurable hypothesis space W. Here, we imagine each w ∈ W to
be associated to a two-outcome qudit POVM {F (w),1d − F (w)}, which describes a measurement
that the learner could use for the distinguishing task. Now, to every s ∈ {0, 1}m we associate a
POVM {EA

s (w)}w∈W. Note: As T1(Hhyp) = T1(C) = C is trivial, so is the family of quantum
channels {ΛA

s,w : T1(Htrain) → T1(Hhyp)} in this setting. That is, ΛA
s,w(·) = Tr[(·)] for all s, w.

Thus, according to Equation (33), the action of the learner A on ρ leads to the output state

σA = E
W∼PA

W

E
S∼PA

data|W

[
|S⟩⟨S| ⊗ σA(S,W )⊗ |W ⟩⟨W |

]
, (39)

with the probability distribution PA on {0, 1}m ×W given by

PA(s, w) = Pm(s) · Tr [Es(w)ρtrain(s)] (40)

and with the post-measurement subsystem states

ρtest(s) = ρtrain(s) = E
{(σ(i)

0 ,σ
(i)
1 )}mi=1∼Pm

pair

[
m⊗
i=1

σ(i)zi

]
∀s = (z1, . . . , zm) ∈ {0, 1}m. (41)

This concludes the example, we now return to the discussion of our general framework.

Given a learner A and a data CQ state as described above, we now define relevant notions of
risk/error. In classical notion theory, the most commonly used such notions are those of empirical
and true risk. As discussed in Section 1.1.1, the expected empirical risk arises as an average of losses
with correlated training data and hypothesis random variables. In contrast, the expected true risk
can be understood as an average of losses after decoupling training data and hypothesis. To define
analogous notions for quantum learning, we go from loss functions to loss observables. Moreover,
we extend the intuition that decoupling makes the difference between empirical and true risk to a
decoupling on both the classical and the quantum level.

For the next three definitions, ρ, A, PA, and σA are as introduced above, and we consider a
family of self-adjoint loss observables {L(s, w)}(s,w)∈Zm×W with L(s, w) ∈ B(Htest ⊗Hhyp).

Definition 11 (Expected empirical risk) The expected empirical risk of A w.r.t. ρ as measured by
{L(s, w)}(s,w)∈Zm×W is defined as

R̂ρ(A) := E
(S,W )∼PA

[
Tr[L(S,W )σA(S,W )]

]
. (42)

Definition 12 (Expected true risk) The expected true risk of A w.r.t. ρ and {L(s, w)}(s,w)∈Zm×W

is defined as

Rρ(A) := E
(S̄,W̄ )∼Pm⊗PA

W

[
Tr
[
L(S̄, W̄ )

(
ρtest(S̄)⊗ σAhyp(S̄, W̄ )

)]]
. (43)

As before, here we let S̄, W̄ denote independent copies of S and W .
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Definition 13 (Expected generalization error) The expected generalization error of A w.r.t. ρ as
measured by {L(s, w)}(s,w)∈Zm×W is defined to be

genρ(A) := Rρ(A)− R̂ρ(A), (44)

the difference between the expected true and empirical risks of A w.r.t. ρ and {L(s, w)}(s,w)∈Zm×W.

Remark 14 Note that there is some freedom in our definition of channels ΛA
s,w and loss observables

L(s, w) because of the duality of Schrödinger and Heisenberg pictures. Concretely, if ΛA
s,w =

Λ
′′A
s,w ◦ Λ′A

s,w and if we define L
′
(s, w) = (idtest⊗Λ

′′A
s,w)

∗(L(s, w)), then the expected empirical and
true risks obtained by considering Λ

′A
s,w and L

′
(s, w) coincide with those originally obtained from

ΛA
s,w and L(s, w).

Next, we illustrate these definitions in two concrete examples. First, we demonstrate how they
recover the classical case, before continuing the discussion of our state classification application.

Example 2 Starting from Definitions 11 to 13, we can reproduce the corresponding classical no-
tions of expected empirical risk, expected true risk, and expected generalization error in (at least)
the following two ways: On the one hand, if we assume all involved quantum systems to be trivial
(i.e., Hdata = Hhyp = C), then the loss observables are real scalars. Interpreting these as clas-
sical loss functions, we recover the notions familiar from the classical case. On the other hand,
even when (some of) the involved quantum systems are non-trivial, if we consider loss observables
L(s, w) = ℓ(s, w) · 1test,hyp given by multiples of the identity, with classical loss function values
ℓ(s, w) = 1

m

∑m
i=1 ℓ(w, zi), then the trace-normalization of σA(s, w) and ρtest(s) ⊗ σAhyp(s, w)

ensures that we again obtain the same quantities as in the classical case. As we will see later, our
results for this latter setting indeed reproduce the classical bounds of (Xu and Raginsky, 2017).

Example 3 (Quantum state classification – Example 1 continued) To obtain reasonable notions
of risk in the quantum state classification setting of Example 1, we can take the loss observables for
s = (z1, . . . , zm) ∈ {0, 1}m and w ∈ W to be

L(s, w) =
1

m

m∑
i=1

1
⊗(i−1)
d ⊗ ((1− zi)(1d − F (w)) + ziF (w))⊗ 1

⊗(m−i)
d . (45)

With this choice, the expected empirical risk from Definition 11 becomes

R̂ρ(A) = E
(S,W )∼PA

[
Tr[L(S,W )σA(S,W )]

]
(46)

= E
(S,W )∼PA

[
1

m

m∑
i=1

Tr

[
((1− Zi)(1d − F (W )) + ZiF (W )) E

(σ
(i)
0 ,σ

(i)
1 )∼Ppair

[
σ
(i)
Zi

]]]
(47)

= E
({π(i)

0 ,(σ
(i)
0 ,σ

(i)
1 )}m

i=1,W )∼PA

[
1

m

m∑
i=1

(
π
(i)
0 Tr[(1d − F (W ))σ

(i)
0 ] + π

(i)
1 Tr[F (W )σ

(i)
1 ]
)]

, (48)

where the last step uses the definition of P from Example 1 and, in a slight abuse of notation, uses
PA to also denote the induced joint distribution over weighted pairs of states and hypotheses. This
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induced distribution can explicitly be written as

PA
(
{π(i)0 , (σ

(i)
0 , σ

(i)
1 )}mi=1, w

)
=

(
m∏
i=1

Pweight(π
(i)
0 )

)
·

(
m∏
i=1

Ppair(σ
(i)
0 , σ

(i)
1 )

)
·
∑

s∈{0,1}m

(
m∏
i=1

π(i)zi

)
· Tr

[
EA

s (w)ρtrain(s)
]
.

(49)

Thus, Equation (48) is exactly the expected probability that the quantum learner misclassifies an
unknown state, where the average is over the joint distribution of training data and hypothesis. This
is the natural notion of expected empirical risk in this scenario.

The expected true risk according to Definition 12 is

Rρ(A) = E
(S̄,W̄ )∼Pm⊗PA

W

[
Tr
[
L(S̄, W̄ )

(
ρtest(S̄)⊗ σA

hyp(S̄, W̄ )
)]]

(50)

= E
({π̄(i)

0 ,(σ̄
(i)
0 ,σ̄

(i)
1 )}m

i=1,W̄ )∼(Pweight⊗Ppair)m⊗PA
W

[
1

m

m∑
i=1

(
π̄
(i)
0 Tr[(1d − F (W̄ ))σ̄

(i)
0 ] + π̄

(i)
1 Tr[F (W̄ )σ̄

(i)
1 ]
)]

(51)

= E
(π̄0,(σ̄0,σ̄1),W̄ )∼Pweight⊗Ppair⊗PA

W

[
π̄0 Tr

[
(1d − F (W̄ ))σ̄0] + π̄1 Tr[F (W̄ )σ̄1

]]
, (52)

where the random variables with bars again denote independent copies of the respective unbarred
random variables. Thus, the expected true risk is exactly the expected probability that the quantum
learner misclassifies an unknown state from a new, independently drawn weighted pair, a natural
choice of expected true risk in this setting. Hence, the expected generalization error from Def-
inition 13 indeed reproduces the natural expression, namely the difference between the expected
misclassification probability on a randomly drawn new data point and the expected average mis-
classification probability over the training data. This concludes the discussion of risks for our state
classification tasks.

In Appendix C, we demonstrate that the general notions of risks introduced in Definitions 11
to 13 reproduce further natural performance measures for suitably chosen loss observable L in
learning scenarios such as PAC learning quantum states, learning classical functions from entangled
quantum data, and quantum parameter estimation, among others.

B.2. Generalization bounds for learning from classical-quantum data

The remainder of this section is concerned with proving that classical and quantum moment gen-
erating function assumptions lead to expected generalization error bounds in terms of quantities
measuring the classical and quantum information between the data and the output of the learner.
This lifts the following intuition from classical to quantum learning: Learners generalize well (in
distribution) if they produce hypotheses that do not depend too strongly on the specific dataset that
they were trained on.

Table 1 compiles relevant notation for the formulation of our results. Before stating them,
we recall the following definition from convex analysis and a lemma about the quantum relative
entropy:
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Object Notation

Probability density of classical data P

Input data CQ state ρ = ES∼Pm [|S⟩⟨S| ⊗ ρ(S)]

POVMs associated with learner A EA
s (w)

Joint distribution induced by learner A PA

CPTP maps associated with learner A ΛA
s,w

Learner output σA = E(S,W )∼PA
[
|S⟩⟨S| ⊗ σA(S,W )⊗ |W ⟩⟨W |

]
Loss observables L(s, w)

Quantum mutual information I(·; ·)•
Holevo information χ({·, ·})

Quantum log-MGF bound ψ±

Classical log-MGF bound ϕ±

Table 1: Notation for the various mathematical objects appearing in this section.

Definition 15 (Fenchel-Legendre dual) Let ψ : R → R be lower-semi-continuous and convex.
The Fenchel-Legendre dual ψ∗ : R → R is defined as

ψ∗(t) = sup
λ∈R

{λt− ψ(λ)}. (53)

Lemma 16 (Petz’s variational characterization of the quantum relative entropy (Petz, 1988))
Let σ1, σ2 ∈ S(H) be two quantum states. Then, the relative entropy between σ1 and σ2 can be

rewritten as follows:

D(σ1∥σ2) = sup
H=H†∈B(H)

{Tr[σ1H]− log Tr[exp (log(σ2) +H)]}. (54)

We can now state and prove our main result:

Theorem 17 (Expected generalization error bound via quantum mutual information) Assume
that, for every (s, w) ∈ Zm ×W,

log Tr
[
(ρtest(s)⊗ σA

hyp(s, w))e
λ(L(s,w)−Tr[L(s,w)(ρtest(s)⊗σA

hyp(s,w))]1test,hyp)
]
≤

{
ψ+(λ) if λ ≥ 0

ψ−(λ) if λ < 0
,

(QMGF)
where ψ+, ψ− : R → R are convex, differentiable at 0, and satisfy ψ±(0) = ψ′

±(0) = 0. Moreover,
assume that, for every w ∈ W,

log E
S∼Pm

[
eλ(Tr[L(S,w)(ρtest(S)⊗σA

hyp(S,w))]−ES̃∼Pm [Tr[L(S̃,w)(ρtest(S̃)⊗σA
hyp(S̃,w))]])

]
≤

{
ϕ+(λ) if λ ≥ 0

ϕ−(λ) if λ < 0
,

(CMGF)
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where ϕ+, ϕ− : R → R are convex, differentiable at 0, and satisfy ϕ±(0) = ϕ′±(0) = 0. Then,

± genρ(A) ≤ ψ∗−1
∓

(
E

(S,W )∼PA
[I(test; hyp)σ(S,W )] + E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w∈W

)])
+ ϕ∗−1

∓ (I(S;W )) .

(55)

Our proof is inspired by the reasoning used in the classical case, for instance in (Xu and Ra-
ginsky, 2017; Raginsky, 2019; Bu et al., 2020), but differs from it in three non-trivial ways. First,
one central ingredient in the classical argument, namely the Donsker-Varadhan representation of the
classical relative entropy, has to be replaced by its quantum counterpart, Lemma 16. Second, to deal
with potential complications about matrix exponentials arising from non-commutativity, we rely on
the Golden-Thompson inequality. Finally, while there is only one decoupling step in the classical
proof, our scenario requires both a classical and a quantum decoupling. Thus, our analysis uses an
additional decomposition of the expected generalization error compared to the classical case.
Proof When combined with the Golden-Thompson inequality (see, e.g., Bhatia, 1997, Section
IX.3), which tells us that Tr[eA+B] ≤ Tr[eAeB] for Hermitian matrices A and B, Lemma 16
implies, for every (s, w) ∈ Zm ×W and for all λ ∈ R,

D(σA(s, w)∥ρtest(s)⊗ σAhyp(s, w)) (56)

≥ λTr[L(s, w)σA(s, w)]− log Tr
[
exp

(
log(ρtest(s)⊗ σAhyp(s, w)) + λL(s, w)

)]
(57)

≥ λTr[L(s, w)σA(s, w)]− log Tr
[
(ρtest(s)⊗ σAhyp(s, w)) exp (λL(s, w))

]
(58)

= λ
(
Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σAhyp(s, w))]

)
− log Tr

[
(ρtest(s)⊗ σAhyp(s, w))e

λ(L(s,w)−Tr[L(s,w)(ρtest(s)⊗σA
hyp(s,w))]1test,hyp)

] (59)

≥ λ
(
Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σAhyp(s, w))]

)
−

{
ψ+(λ) if λ ≥ 0

ψ−(λ) if λ < 0
.

(60)

Here, the first step uses Lemma 16, the second is due to the Golden-Thompson inequality, the third
step is a simple rewriting, and the final step consists in plugging in Equation (QMGF).

We can now rearrange this inequality and optimize over λ to obtain:

Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σA
hyp(s, w))] ≤ inf

λ>0

D(σA(s, w)∥ρtest(s)⊗ σA
hyp(s, w)) + ψ+(λ)

λ
,

(61)

−
(
Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σA

hyp(s, w))]
)
≤ inf

λ<0

D(σA(s, w)∥ρtest(s)⊗ σA
hyp(s, w)) + ψ−(λ)

λ
.

(62)

Using (Boucheron et al., 2013, Lemma 2.4), we can rewrite the infima in terms of the generalized
inverses ψ∗−1

± (s) = inf{t ≥ 0 | ψ∗
±(t) > s} of the Fenchel-Legendre duals of ψ± to obtain

Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σA
hyp(s, w))] ≤ ψ∗−1

+ (D(σA(s, w)∥ρtest(s)⊗ σA
hyp(s, w))),

(63)

−
(
Tr[L(s, w)σA(s, w)]− Tr[L(s, w)(ρtest(s)⊗ σA

hyp(s, w))]
)
≤ ψ∗−1

− (D(σA(s, w)∥ρtest(s)⊗ σA
hyp(s, w))).

(64)
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Next, we rewrite the expression of interest as

± genρ(A) (65)

= ± E
W∼PA

W

[
E

S̄∼Pm

[
Tr[L(S̄,W )

(
ρtest(S̄)⊗ σA

hyp(S̄,W )
)
]
]
− E

S∼PA
data|W

[
Tr[L(S,W )σA(S,W )]

]]
(66)

= E
W∼PA

W

E
S∼PA

data|W

[
±
(
Tr[L(S,W )

(
ρtest(S)⊗ σA

hyp(S,W )
)
]− Tr[L(S,W )σA(S,W )]

)]
(67)

+ E
W∼PA

W

[
±

(
E

S̄∼Pm

[
Tr[L(S̄,W )

(
ρtest(S̄)⊗ σA

hyp(S̄,W )
)
]
]

− E
S∼PA

data|W

[
Tr[L(S,W )

(
ρtest(S)⊗ σA

hyp(S,W )
)
]
])] (68)

For the first summand, we can use Equations (63) and (64) to obtain:

E
W∼PA

W

E
S∼PA

data|W

[
±
(
Tr[L(S,W )

(
ρtest(S)⊗ σAhyp(S,W )

)
]− Tr[L(S,W )σA(S,W )]

)]
(69)

≤ E
W∼PA

W

E
S∼PA

data|W

[
ψ∗−1
∓

(
D(σA(S,W )∥ρtest(S)⊗ σAhyp(S,W ))

)]
. (70)

For the second summand, thanks to Equation (CMGF), we can apply (Jiao et al., 2017, Theorem 2)
or (Bu et al., 2020, Theorem 1) (see also (Raginsky, 2019, p. 22) for a pedagogical presentation) to
the classical random variable Tr[L(S,W )

(
ρtest(S)⊗ σAhyp(S,W )

)
] and obtain:

E
W∼PA

W

[
±

(
E

S̄∼Pm

[
Tr[L(S̄,W )

(
ρtest(S̄)⊗ σAhyp(S̄,W )

)
]
]

− E
S∼PA

data|W

[
Tr[L(S,W )

(
ρtest(S)⊗ σAhyp(S,W )

)
]
])] (71)

≤ ϕ∗−1
∓ (I(S;W )) . (72)

Thus, we have shown the inequalities

± genρ(A) ≤ E
(S,W )∼PA

[
ψ∗−1
∓

(
D(σA(S,W )∥ρtest(S)⊗ σAhyp(S,W ))

)]
+ ϕ∗−1

∓ (I(S;W )) .

(73)
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As the ψ∗−1
∓ are concave (since ψ∗

∓ are convex), we can pull the expectation value inside the ψ∗−1
∓

without making the right-hand side smaller, by Jensen’s inequality. Then, it remains to observe that

E
(S,W )∼PA

[D(σA(S,W )∥ρtest(S)⊗ σAhyp(s,W ))] (74)

= E
(S,W )∼PA

[
−H(σA(S,W )) +H(σAhyp(S,W ))− Tr

[
σAtest(S,W ) log (ρtest(S))

]]
(75)

= E
(S,W )∼PA

[
I(test; hyp)σA(S,W ) −H(σAtest(S,W ))− Tr

[
σAtest(S,W ) log (ρtest(S))

]]
(76)

= E
(S,W )∼PA

[
I(test; hyp)σA(S,W ) −H(ρAtest(S,W ))− Tr

[
ρAtest(S,W ) log (ρtest(S))

]]
(77)

= E
(S,W )∼PA

[
I(test; hyp)σ(S,W )

]
− E

(S,W )∼PA

[
H(ρAtest(S,W ))

]
+ E

S∼Pm
[H(ρtest(S))] (78)

= E
(S,W )∼PA

[
I(test; hyp)σ(S,W )

]
+ E

S∼Pm

[
χ
({
PA
W|S(w), ρ

A
test(S,w)

}
w∈W

)]
. (79)

Here, the third equality used that σAtest(s, w) = ρAtest(s, w), because σA(s, w) and ρA(s, w) dif-
fer only by a CPTP map applied on the train subsystem. The fourth and fifth equalities used
that EW∼PA

W|S
[ρAtest(S,W )] = ρtest(S). This holds because the state EW∼PA

W|S
[ρA(S,W )] is ob-

tained from ρ(S) by applying the CPTP map idtest⊗
(∑

w

√
EA

S (w)(·)
√
EA

S (w)

)
, which acts

non-trivially only on the training data register and thus leaves the test data marginal invariant. The
fifth step also used Equation (22). Thus, after using Jensen to pull the expectation value inside ψ∗−1

∓
and then rewriting the expected relative entropy as above, we have completed the proof.

Remark 18 Our framework and Theorem 17 also encompass cases where classical and quantum
side information can be generated during the learning process. If the risks and sub-gaussianity as-
sumptions depend only on the data and hypothesis but not on the side information random variables
and quantum registers, then we recover Equation (55). That is, despite having more objects to take
into account, the final bound remains the same and in particular only depends on the data and the
hypothesis, not on additional side information.

Remark 19 Having presented the proof of Theorem 17, we comment on some modifications. On
the one hand, if we change the assumed Equation (QMGF) by allowing for (s, w)-dependent func-
tions ψ±;s,w, we can follow the same proof strategy. The obtained expected generalization error
bound will differ from Equation (55) only in the first term on the r.h.s., which gets replaced by
E(S,W )∼PA

[
ψ∗−1
∓;S,W

(
D(σA(S,W )∥ρtest(S)⊗ σAhyp(S,W ))

)]
.

On the other hand, if we change Equation (QMGF) to the (by Golden-Thompson weaker) as-
sumption that

Tr
[
elog(ρtest(s)⊗σA

hyp(s,w))+λ(L(s,w)−Tr[L(s,w)(ρtest(s)⊗σA
hyp(s,w))]1test,hyp)

]
≤

{
ψ+(λ) if λ ≥ 0

ψ−(λ) if λ < 0
,

(80)
we can still recover Equation (55). This can be seen by noticing that the second step in the proof of
Theorem 17 was exactly to apply Golden-Thompson.
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Finally, Theorem 17 and its proof simplify in different scenarios, for instance for learners that
produce either only a classical or only a quantum hypothesis. Concretely, if W is trivial, then
we obtain a variant of Equation (55) without the Holevo information term and without the second
summand on the r.h.s. In this case, the assumption Equation (CMGF) is not needed. Furthermore,
if Hhyp is trivial, then we obtain a variant of Equation (55) without the first summand on the right-
hand side. In this case, the assumption Equation (QMGF) is not needed. Similarly, if Z is trivial,
the second summand vanishes, whereas if Hdata is trivial, the first summand vanishes, so that we
recover (Xu and Raginsky, 2017, Lemma 1). Moreover, if σA(s, w) = σAtest(s, w) ⊗ σAhyp(s, w) is
already a tensor product state – for example if each ρA(s, w) factorizes or if each EA

s (w) is a pure
state projector (so that monogamy of entanglements forbids the pure post-measurement state on the
training system from being correlated or entangled with the test system) –, then we get a variant of
Equation (55) without the QMI term. Finally, if ρ(s) = ρtest(s)⊗ ρtrain(s) factorizes, then both the
QMI and the Holevo information contribution vanish and the assumption Equation (QMGF) is not
needed.

Remark 20 As a consequence of (Berta et al., 2017, Lemma 1 and Theorem 2) – who applied
Golden-Thompson in (Berta et al., 2017, Proposition 5) similarly to our use in the proof of Theo-
rem 17 –, we have in fact established an expected generalization error bound in terms of measured
quantum information quantities. Namely, relying on (Berta et al., 2017), we can tighten the initial
inequality in our proof to

DM(σA(s, w)∥ρtest(s)⊗ σAhyp(s, w)) (81)

≥ λTr[L(s, w)σA(s, w)]− log Tr
[
(ρtest(s)⊗ σAhyp(s, w)) exp (λL(s, w))

]
, (82)

where DM(ρ∥σ) denotes the measured relative entropy. The quantum relative entropy D(ρ∥σ)
upper bounds DM(ρ∥σ), but there can be a gap between these two quantities.

Example 4 (Example 2 continued) The loss observables L(s, w) = ℓ(s, w) · 1test,hyp considered
in Example 2 trivially satisfy Equation (QMGF) even for ψ± given by the 0-function. With this choice,
ψ∗
±(t) = +∞ for all t and ψ∗−1

± (s) = 0 for all s, so the first term in our bound vanishes. Thus,
Theorem 17 reproduces (Xu and Raginsky, 2017, Lemma 1) in this special case.

Theorem 17 takes a particularly simple and appealing form if the assumptions on the moment-
generating functions are sub-gaussianity assumptions. Before stating the corresponding result, we
recall the notions of sub-gaussianity in the cases of observables and random variables:

Definition 21 (Sub-gaussianity for observables) Let α > 0. A self-adjoint loss observable L ∈
B(H) is called α-sub-gaussian with respect to a quantum state σ ∈ S(H) if

log Tr
[
σ · eλ(L−Tr[Lσ]1)

]
≤ α2λ2

2
(83)

holds for all α ∈ R.

Example 5 Quantum concentration inequalities recently received considerable attention in the
literature. Prominent examples of classes of states for which bounds on the MGF are known include
the following:
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1. Local observables w.r.t. high-temperature Gibbs states (Kuwahara and Saito, 2020) and, more
generally, Lipschitz observables w.r.t. high temperature commuting Gibbs states (De Palma
and Rouzé, 2022; Capel et al., 2020) or 1D-commuting Gibbs states (Bardet et al., 2021),
are known to satisfy sub-gaussianity with α = O(1).

2. Local observables w.r.t. outcomes of shallow circuits also satisfy sub-gaussianity with α =
O(1) (Anshu and Metger, 2023).

3. Lipschitz observables w.r.t. tensor product states, up to a weakening à la Golden-Thompson
analogously to Equation (80), satisfy sub-gaussianity with α = O(1) (De Palma and Tre-
visan, 2023, Theorem 8.1).

4. More generally, (Anshu, 2016) proved concentration bounds for local observables w.r.t. states
with finite correlation length by bounding the MGF. However, they are weaker than sub-
gaussian concentration and depend on the dimension of the underlying lattice.

Definition 22 (Sub-gaussianity for random variables (Vershynin, 2018, Section 2.5)) Let α >
0. A real-valued random variable X is α-sub-gaussian if

logE
[
eλ(X−E[X])

]
≤ α2λ2

2
(84)

holds for all α ∈ R.

Example 6 Trivially, a gaussian random variable with variance β2 is β-sub-gaussian. By Hoeffd-
ing’s Lemma (Hoeffding, 1963), any random variable that almost surely takes values in a bounded
interval [a, b] is ( b−a

2 )-sub-gaussian. Finally, any L-Lipschitz function of a Haar-random variable
on the unit sphere in Rn is (CL√

n
)-sub-gaussian for a suitable C > 0 (see, e.g., (Vershynin, 2018,

Chapter 5)).

With these definitions, we can now compactly state the sub-gaussian versions of Theorem 17:

Corollary 23 Let α, β > 0. Assume that the loss observable L(s, w) is α-sub-gaussian w.r.t.
ρtest(s) ⊗ σAhyp(s, w) for every (s, w) ∈ Zm × W. Moreover, assume that the random variable
Tr[L(S,w)(ρtest(S)⊗ σAhyp(S,w))], with S ∼ Pm, is β-sub-gaussian for every w ∈ W. Then,

|genρ(A)| ≤

√
2α2

(
E

(S,W )∼PA
[I(test; hyp)σ(S,W )] + E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w∈W

)])
+
√
2β2I(S;W ) .

(85)

Proof This follows from Theorem 17 with the log-MGF bounds ψ± : R → R, ψ±(x) =
α2x2

2 and
ϕ± : R → R, ϕ±(x) = β2x2

2 . This leads to ψ∗−1
± (ξ) =

√
2α2ξ and ϕ∗−1

± (ξ) =
√
2β2ξ.

So far, our generalization error bounds do not explicitly depend on the training data size m. To
achieve such a dependence, we now impose an i.i.d. structure on the quantum data, in addition to the
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already assumed (but not yet fully exploited) i.i.d. structure on the classical training data S ∼ Pm.
Namely, we assume that the data Hilbert space and states factorize as

Hdata = Htest ⊗Htrain =

m⊗
i=1

(Htest,i ⊗Htrain,i) =

m⊗
i=1

Hdata,i , (86)

ρ(s) = ρ(z1, . . . , zm) =

m⊗
i=1

ρi(zi) , with ρi(zi) ∈ S(Htest,i ⊗Htrain,i) . (87)

For our next result, we consider learners and loss observables that adhere to this factorization. On
the one hand, we assume that the POVMs and channels used by the learner A factorize asEA

s (w) =
EA

z1,...,zm(w) =
⊗m

i=1E
A
zi (w) and ΛA

s,w = ΛA
z1,...,zm,w =

⊗m
i=1 Λ

A
zi,w with EA

zi (w) ∈ E(Htrain,i)

and ΛA
zi,w : T1(Htrain,i) → T1(Hhyp,i). Note that this in particular comes with factorizations

Hhyp =
⊗m

i=1Hhyp,i of the hypothesis Hilbert space and σA(s, w) =
⊗m

i=1 σ
A
i (zi, w) of the state

after the action of A, with σAi (zi, w) ∈ S(Htest,i ⊗ Hhyp,i). On the other hand, we assume the
loss observables to be of the local form L(s, w) = 1

m

∑m
i=1 Li(zi, w), with Li(zi, w) ∈ B(Htest,i⊗

Hhyp,i) acting only on the ith test and hypothesis subsystems. (For readability, we notationally
suppress identities on the remaining subsystems when convenient.) In this setting, Corollary 23
gives the following result:

Corollary 24 Assume the above factorization for the quantum data and the learner A as well
as the above local structure of the loss observables. Moreover, assume that Li(zi, w) is αi-sub-
gaussian w.r.t. ρtest,i(zi) ⊗ σAhyp,i(zi, w) for every (zi, w) ∈ Z × W and 1 ≤ i ≤ m, and that the

random variable Tr
[
Li(Zi, w)(ρtest,i(Zi)⊗ σAhyp,i(Zi, w))

]
, with Zi ∼ P , is βi-sub-gaussian for

every w ∈ W and 1 ≤ i ≤ m. Then,

|genρ(A)| ≤

√√√√2
∑m

i=1 α
2
i

m2

(
E

(S,W )∼PA

[
m∑
i=1

I(test; hyp)σA
i (Zi,W )

]
+ E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w∈W

)])

+

√
2
∑m

i=1 β
2
i

m2
I(S;W ) .

(88)

In particular, if αi = α0 and βi = β0 for all 1 ≤ i ≤ m, then

|genρ(A)| ≤

√√√√2α2
0

m

(
E

(S,W )∼PA

[
m∑
i=1

I(test; hyp)σA
i (Zi,W )

]
+ E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w∈W

)])

+

√
2β2

0

m
I(S;W ) .

(89)

Proof See Appendix D.

We point out that the factorization assumption on the POVM elements EA
s (w) is not needed

if A produces only a classical hypothesis. In this case, the hyp quantum system is trivial. Thus,
ρtest(s) ⊗ σAhyp(s, w) = ρtest(s) =

⊗m
i=1 ρtest,i(zi) factorizes by assumption, which is sufficient
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for the proof of Corollary 24. Even in this setting, the Holevo information term in the bound is an
in general non-trivial quantum contribution.

If, however, the learner produces a non-trivial quantum hypothesis, our current proof strategy
does rely on the factorization assumption. Notice, however, that Example 5 already contains QMGF
bounds w.r.t. non-product states. Thus, insights into CMGF bounds w.r.t. non-product states may
allow future work to improve upon our proof of Corollary 24, extending it to more general (non-
product) learners.

Let us return to our continuing example of quantum state classification and see the implications
of our generalization bounds in that setting.

Example 7 (Quantum state classification – Examples 1 and 3 continued) As the learner A in
our quantum state classification example produces only a classical hypothesis and as the initial
quantum data states ρ(s) factorize across the test-train bipartition, it suffices to verify a suitable
classical sub-gaussianity assumption. Observe that, for every (s, w) ∈ {0, 1}m ×W, the state

ρtest(s) = E
{(σ(i)

0 ,σ
(i)
1 )}mi=1∼Pm

pair

[
m⊗
i=1

σ(i)zi

]
=

m⊗
i=1

E
{(σ(i)

0 ,σ
(i)
1 )}mi=1∼Pm

pair

[
σ(i)zi

]
=

m⊗
i=1

ρtest,i(zi) (90)

is anm-fold tensor product. Moreover, the loss observables defined in Example 3 are local w.r.t. this
tensor factorization. So, to apply Corollary 24, we consider the sub-gaussianity parameter β0 of the
random variable Tr[((1− Zi)(1d − F (w)) + ZiF (w))ρtest(Zi)], with Zi ∼ P . Without any prior
assumptions on the distribution P and on the mapping z 7→ ρ(z), the random variable of interest
takes values in [0, 1] because 0 ≤ F (w), 1 − F (w) ≤ 1. Thus, Hoeffding’s Lemma (Hoeffding,
1963) implies β0 ≤ 1/2 for every w ∈ W. Therefore, Corollary 24 yields

|Rρ(A)− R̂ρ(A)| ≤
√

1

2m
I(S;W ) . (91)

If W is finite, then we immediately have the mutual information upper bound I(S;W ) ≤ log|W|.
Hence, our above bound implies that we can guarantee a small expected generalization error as
soon as the training data size m is of the same order as the number of bits needed to describe the
classical hypotheses. If W is infinite, we may first discretize and then apply the bound. Concretely,
if ε > 0 and if Wε ⊆ W is an ε-covering net for W w.r.t. the sup-norm, then |Rρ(A) − R̂ρ(A)| ≤
ε+
√

1
2m log|Wε|. If there are no prior assumptions on the admissible effect operators {F (w)}w∈W,

then we cannot expect better bounds on the cardinality of an ε-covering net for W than log|Wε| ≤
Õ
(
min{d/ε2, d2 log(1/ε)}

)
(Cheng et al., 2016, Section 4)4. In the case of n qubits, we have d = 2n

and the resulting bound scales exponentially with n. This can be improved if {F (w)}w∈W is limited.
For example, if F (w) is a sum of k-local Pauli terms for every w ∈ W, where k = O(1), then,
since there are at most O(nk) such terms, one can obtain an improved covering number bound
of log|Wε| ≤ Õ(nk log(1/ε)), which scales polynomially in n. This can be improved further if
the locality assumption is strengthened to geometric locality. Note that these bounds on I(S;W )
are worst-case and we expect tighter algorithm-dependent bounds to be possible when taking the
POVMs {EA

s (w)}w∈W chosen by the learner into account. This concludes the discussion of our
state classification example.

4. Here, the Õ hides non-leading logarithmic factors.
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As it concerns a special case with only a classical hypothesis, Equation (91) can already be
deduced from the classical generalization bounds of (Xu and Raginsky, 2017). In the next section,
we demonstrate the applicability of our general framework and our generalization error bounds
for a variety of quantum learning problems, including scenarios that cannot be studied with the
purely classical framework. Before this discussion, we conclude this section with an extension
of Corollary 24 to stable learners that use channels leading to a controlled increase of Lipschitz
constants:

Corollary 25 Assume the above factorization for the quantum data and the POVMs used by the
learner as well as the above local structure for the loss observables. Furthermore, assume that the
Heisenberg picture duals (ΛA

s,w)
∗ of the channels ΛA

s,w used by A satisfy ∥(ΛA
s,w)

∗∥Lip→Lip ≤ C1

as well as maxs∼s′,w∥(ΛA
s,w − ΛA

s′,w)
∗∥Lip→∞ ≤ C2, where s ∼ s′ denotes neighboring training

data sets (i.e., training data sets that differ only in a single data point). Then,

|genρ(A)|

≤
2
√
2 max
i,zi,w

∥Li(zi, w)∥
√
m

(√
C1

(
E

(S,W )∼PA

[
I(test; hyp)σA(S,W )

]
+ E

S∼Pm

[
χ
(
{PA

W|S(w), ρ
A
test(S,w)}w∈W

)])

+
√
(1 + C1(1 + C2))I(S;W )

)
.

(92)

In the assumed bound ∥(ΛA
s,w)

∗∥Lip→Lip ≤ C1, the Lipschitz constants considered are w.r.t. the
factorizations Htest ⊗ Hhyp =

⊗m
i=1(Htest,i ⊗ Hhyp,i) and Htest ⊗ Htrain =

⊗m
i=1(Htest,i ⊗

Htrain,i). Similarly, the Lipschitz constants relevant for the stability assumption maxs∼s′,w∥(ΛA
s,w−

ΛA
s′,w)

∗∥Lip→∞ ≤ C2 are w.r.t. Htest ⊗ Hhyp =
⊗m

i=1(Htest,i ⊗ Hhyp,i). Again, the POVM
factorization assumption is not needed if the learner only produces a classical hypothesis.
Proof Recall from Remark 14 that we obtain the same notions of risk when absorbing the channels
ΛA
s,w into the loss observables via the Heisenberg picture. Thus, instead of proving sub-gaussianity

of L(s, w) w.r.t. ρtest(s) ⊗ σAhyp(s, w), we can also establish sub-gaussianity of (ΛA
s,w)

∗(L(s, w))

w.r.t. ρtest(s) ⊗ ρAtrain(s, w). We do this in the first part of the proof. As ∥(ΛA
s,w)

∗∥Lip→Lip ≤ C1,
we have

∥(ΛA
s,w)

∗(L(s, w))∥Lip ≤ C1∥L(s, w)∥Lip ≤ 2C1maxi,zi,w ∥Li(zi, w)∥
m

, (93)

where the last step used (De Palma et al., 2021, Proposition 8). Therefore, according to (De Palma
and Trevisan, 2023, Theorem 8.1), which we restate as Lemma 30, the observable (ΛA

s,w)
∗(L(s, w))

satisfies a version of (m−1/2 · 2C1maxi,zi,w ∥Li(zi, w)∥)-sub-gaussianity w.r.t. the m-fold tensor
product

⊗m
i=1 ρtest,i(zi) ⊗ ρAtrain,i(zi, w) weakened analogously to Equation (80). As argued in

Remark 19, this weaker version is a sufficient quantum sub-gaussianity for our purposes.
Next, we establish a suitable classical sub-gaussianity. To this end, take two training data sets

s = (z1, . . . , zm), s′ = (z′1, . . . , z
′
m) ∈ Zm that differ in exactly one data point, i.e., ∃1 ≤ i ≤ m

such that zi ̸= z′i and zj = z′j for all j ̸= i. For this relation, we use the shorthand s ∼ s′. Then,
because of our assumed factorization of the quantum data states and of the POVMs used by the
learner, the post-measurement states ρtest(s) ⊗ ρAtrain(s, w) and ρtest(s) ⊗ ρtrain(s

′, w) agree after
tracing out the ith subsystem, i.e., Trtest,i;hyp,i[ρtest(s) ⊗ ρAtrain(s, w)] = Trtest,i;hyp,i[ρtest(s

′) ⊗
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ρAtrain(s
′, w)] for all w ∈ W. Hence, by definition of the quantum Lipschitz constant (compare

(De Palma et al., 2021, Definition 8)), we obtain the bound∣∣Tr[L(s, w) (ρtest(s)⊗ σA
hyp(s, w)

)
]− Tr[L(s′, w)

(
ρtest(s

′)⊗ σA
hyp(s

′, w)
)
]
∣∣ (94)

=
∣∣Tr[(ΛA

s,w)
∗(L(s, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]− Tr[(ΛA

s′,w)
∗(L(s′, w))

(
ρtest(s

′)⊗ ρAtrain(s
′, w)

)
]
∣∣
(95)

≤
∣∣Tr[(ΛA

s,w)
∗(L(s, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]− Tr[(ΛA

s,w)
∗(L(s′, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]
∣∣

(96)

+
∣∣Tr[(ΛA

s,w)
∗(L(s′, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]− Tr[(ΛA

s′,w)
∗(L(s′, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]
∣∣

(97)

+
∣∣Tr[(ΛA

s′,w)
∗(L(s′, w))

(
ρtest(s)⊗ ρAtrain(s, w)

)
]− Tr[(ΛA

s′,w)
∗(L(s′, w))

(
ρtest(s

′)⊗ ρAtrain(s
′, w)

)
]
∣∣

(98)

≤
∣∣Tr[(L(s, w)− L(s′, w))

(
ρtest(s)⊗ σA

hyp(s, w)
)
]
∣∣ (99)

+
∣∣Tr[(ΛA

s,w − ΛA
s′,w)

∗(L(s′, w))
(
ρtest(s)⊗ ρAtrain(s, w)

)
]
∣∣ (100)

+
2C1 maxi,zi,w ∥Li(zi, w)∥

m
(101)

≤ ∥L(s, w)− L(s′, w)∥ · ∥ρtest(s)⊗ σA
hyp(s, w)∥1 (102)

+ ∥(ΛA
s,w − ΛA

s′,w)
∗(L(s′, w))∥ · ∥ρtest(s)⊗ ρAtrain(s, w)∥1 (103)

+
2C1 maxi,zi,w ∥Li(zi, w)∥

m
(104)

≤ 2maxi,zi,w ∥Li(zi, w)∥
m

+
2C1 maxi,zi,w ∥Li(zi, w)∥

m
· max
s∼s′,w

∥(ΛA
s,w − ΛA

s′,w)
∗∥Lip→∞ (105)

+
2C1 maxi,zi,w ∥Li(zi, w)∥

m
(106)

=
2maxi,zi,w ∥Li(zi, w)∥

m

(
1 + C1

(
1 + max

s∼s′,w
∥(ΛA

s,w − ΛA
s′,w)

∗∥Lip→∞

))
(107)

≤ 2maxi,zi,w ∥Li(zi, w)∥
m

(1 + C1 (1 + C2)) . (108)

Therefore, the random variable Tr[L(S,w)
(
ρtest(S)⊗ σAhyp(S,w)

)
], with S ∼ Pm, is sub-gaussian

with sub-gaussianity parameter
(
m−1/2 · 2maxi,zi,w ∥Li(zi, w)∥ (1 + C1 (1 + C2))

)
, by McDiarmid’s

bounded differences inequality (McDiarmid, 1989).
We can now apply Corollary 23 with the classical and quantum sub-gaussianity parameters

established above and obtain the claimed generalization bound.

A short discussion of the assumptions made on the channels ΛA
s,w is in order. On the one hand,

we assume that their Heisenberg duals (ΛA
s,w)

∗ lead to a bounded increase in quantum Lipschitz
constants, namely that ∥(ΛA

s,w)
∗∥Lip→Lip ≤ C1. Equivalently, the maps ΛA

s,w should lead to a lim-
ited increase of quantum Wasserstein-1 norms, that is, ∥ΛA

s,w∥W1→W1 ≤ C1. This is satisfied for
approximately locality-preserving channels such as constant-depth circuits or short-time evolutions
under a local Lindblad generator (De Palma and Trevisan, 2023; De Palma et al., 2023)(with asso-
ciated Lieb-Robinson bound). Also, as the proof of (De Palma and Trevisan, 2023, Theorem 8.1)
shows, this property is satisfied with C1 = 1 for m-fold tensor products of single-qudit channels.
Moreover, for channels described by quantum circuits with local depolarizing noise, we obtain a
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C1 that decays exponentially with the circuit depth for large enough noise strength compared to the
size of the light-cone of each layer (compare the proof of (Hirche et al., 2023, Proposition IV.8.)).

On the other hand, we assume that ∥(ΛA
s,w−ΛA

s′,w)
∗∥Lip→∞ ≤ C2 for any neighboring data sets

s ∼ s′. Note that, as a consequence of (De Palma et al., 2021, Proposition 9) we can rewrite this
as ∥(ΛA

s,w − ΛA
s′,w)

∗∥Lip→∞ = ∥ΛA
s,w − ΛA

s′,w∥1→W1 ≤ C2. This is a stability assumption: When
the two classical data sets s, s′ differ in only a single data point, the quantum channels ΛA

s,w and
ΛA
s′,w employed by the learner A must not differ too much. It is reminiscent of classical replace-

one stability (Bousquet and Elisseeff, 2000, 2002; Shalev-Shwartz et al., 2010). Using (De Palma
et al., 2021, Corollary 2), we see that this quantum stability assumption is for example satisfied if,
for every s ∼ s′ and for every w, we can write ΛA

s,w − ΛA
s′,w = (Ns,w − Ns′,w)Mw with Mw

an arbitrary CPTP map and with CPTP maps Ns,w,Ns′,w that act non-trivially only on a constant
number of training data subsystems. As this is in particular satisfied for learners that factorize, we
can indeed view Corollary 25 as an extension of Corollary 24.

One strength of the results presented in this section is that they encompass a variety of learn-
ing tasks. However, when applied to a specific scenario, they do not necessarily lead to optimal
bounds. For instance, our bounds in Corollaries 24 and 25 have a “slow rate” of 1/

√
m, which is to

be contrasted with the “fast rate” of 1/m recently achieved by, among others, (Hellström and Durisi,
2021; Grunwald et al., 2021; Wang and Mao, 2023) for classical information-theoretic generaliza-
tion bounds and by (Mai and Alquier, 2017) in the context of PAC-Bayesian quantum state tomog-
raphy w.r.t. squared Frobenius norm. We leave proving improved quantum information-theoretic
generalization bounds with fast rates to future work.

Appendix C. Applications

C.1. PAC learning quantum states

For our first application, we consider a setting of PAC learning quantum states, going back to
(Aaronson, 2007). Here, the goal is to predict expectation values w.r.t. an unknown state on av-
erage over an unknown distribution over effect operators. Take the data Hilbert space

Hdata = Htest ⊗Htrain = ((Cd)⊗mtest)⊗m ⊗ ((Cd)⊗mtrain)⊗m (C.1.1)

for some d ∈ N and m,mtest,mtrain ∈ N. Let the quantum data state ρ be the CQ state given by

ρ = E
S=(Z1,...,Z2m)∼P 2m

[(
2m⊗
i=1

|Zi⟩⟨Zi|

)
⊗ (ρ⊗mtest

0 )⊗m ⊗ (ρ⊗mtrain
0 )⊗m

]
, (C.1.2)

where ρ0 ∈ S(Cd) is the unknown qudit state to be PAC-learned, we imagine that each z ∈ Z comes
with an associated qudit effect operatorE(z) ∈ E(Cd), andP is an unknown probability distribution
over Z. That is, the CQ data consists of independent copies of an unknown state that we are trying
to learn, as well as of (classical descriptions of) random two-outcome POVM measurements drawn
i.i.d. from P .

We describe a simple quantum learner A for this scenario as follows: Take Hhyp to be trivial,
and take W to be some measurable hypothesis space. Here, we imagine each classical hypothesis
w ∈ W to be associated to some hypothesis state ρ0(w) ∈ S(Cd) that the learner could output.
Upon seeing the classical data s = (z1, . . . , z2m) ∈ Z2m, the learner performs a two-step procedure:
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Let ε̃ > 0 be an auxiliary accuracy parameter, which we determine later. First, the learner takes
W1 ⊂ W to be a ε̃-covering of the hypothesis space W w.r.t. the empirical seminorm ∥·∥2,{zj}mj=1

defined as

∥w∥2,{zj}mj=1
=

√√√√ 1

m

m∑
j=1

|Tr[E(zj)ρ0(w)]|2 . (C.1.3)

Second, for each m+1 ≤ i ≤ 2m, the learner measures the 2-outcome POVM {E(zi),1−E(zi)}
separately on mtrain copies of ρ0, obtaining outcomes b(i)ℓ , 1 ≤ ℓ ≤ mtrain, and then uses the
empirical average b̃(i) := 1

mtrain

∑mtrain
ℓ=1 b

(i)
ℓ as an estimate of Tr[E(zi)ρ0]. The quantum learner

then outputs an empirical risk minimizing hypothesis

ŵ ∈ argmin
w∈W1

1

m

2m∑
i=m+1

∣∣∣Tr[E(zi)ρ0(w)]− b̃(i)
∣∣∣ =: argmin

w∈W1

R̂train

s(m+1):2m,b
(i)
ℓ

(w). (C.1.4)

If there are multiple empirical risk minimizers, the tie is broken arbitrarily (but, for simplicity of
notation, deterministically). Note: Both building the empirical covering net and performing empir-
ical risk minimization over that net are computationally inefficient in general. Here, we focus on
information-theoretic aspects and ignore computational complexity.

As in Example 1, the family of quantum channels associated to this quantum learner is trivial,
since there is no quantum hypothesis. Thus, following Equation (33), when letting the learner A act
on the quantum data state ρ, we obtain the output state

σ = E
W∼PA

W

E
S∼PA

data|W
[|S⟩⟨S| ⊗ ρtest ⊗ |ŵ⟩⟨ŵ|] , (C.1.5)

with quantum test state ρtest = (ρ⊗mtest
0 )⊗m and with the probability distribution PA on Zm ×W

given by

PA(s, ŵ) = Pm(s) · PA(ŵ|s) = Pm(s) · P
B

(i)
ℓ |s

[
ŵ ∈ argmin

w∈W1

R̂train

s(m+1):2m,B
(i)
ℓ

(w)

]
, (C.1.6)

where the B(i)
ℓ are {0, 1}-valued random variables which become independent when conditioned

on s, with probability distributions

P
B

(i)
ℓ |s[B

(i)
ℓ = 1] = Tr[E(zi)ρ0] = 1− P

B
(i)
ℓ |s[B

(i)
ℓ = 0]

for all 1 ≤ ℓ ≤ mtrain and for all m + 1 ≤ i ≤ 2m. While more general quantum learners are
possible, for instance by allowing for general s-dependent POVM elements, the simple quantum
learner presented here is similar in spirit to (Aaronson, 2007) and (Xu and Raginsky, 2017, Section
4.2). As we show below, we can make guarantees on its performance based on Corollary 24.

Given that our quantum learner is based on empirical risk minimization, we define the loss
observables in analogy to the notion of empirical risk used above. Namely, for each 1 ≤ i ≤ m and
c
(i)
ℓ , we set

L
(i)

c
(i)
ℓ

(zi, w) = L
(i)

c
(i)
ℓ

(zi) =

mtest⊗
ℓ=1

(
c
(i)
ℓ E(zi) + (1− c

(i)
ℓ )(1d − E(zi))

)
(C.1.7)
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and

L(s, w) = L(s) =
∑

c
(i)
ℓ ∈{0,1}

R̂test

s(m+1):2m,c
(i)
ℓ

(w) · (1⊗mtest
d )⊗(i−1) ⊗ L

(i)

c
(i)
ℓ

(zi)⊗ (1⊗mtest
d )⊗(m−i),

(C.1.8)
with R̂test

s(m+1):2m,c
(i)
ℓ

(w) = 1
m

∑2m
i=m+1

∣∣∣Tr[E(zi)ρ0(w)]− 1
mtest

∑mtest
ℓ=1 c

(i)
ℓ

∣∣∣, Plugging these choices

into Definition 11, we obtain the expected empirical risk

R̂ρ(A) = E
S∼P 2m

E
C

(i)
ℓ |S

E
Ŵ

[
R̂test

S(m+1):2m,C
(i)
ℓ

(Ŵ )

]
, (C.1.9)

where the C(i)
ℓ are {0, 1}-valued random variables which become independent when conditioned on

s, with probability distributions

P
C

(i)
ℓ |s[C

(i)
ℓ = 1] = Tr[E(zi)ρ0] = 1− P

C
(i)
ℓ |s[C

(i)
ℓ = 0] (C.1.10)

for all 1 ≤ ℓ ≤ mtest and for allm+1 ≤ i ≤ 2m. Note that the Ŵ in this expression depends on the
random variablesB(i)

ℓ , which in turn depend on the random variables zi. Similarly, by Definition 12,
the expected true risk is

Rρ(A) = E
S̄∼P 2m

E
C̄

(i)
ℓ |S̄

Ē
Ŵ

[
R̂test

S̄(m+1):2m,C̄
(i)
ℓ

(
¯̂
W )

]
(C.1.11)

= E
Z̄m+1∼P

E
C̄

(m+1)
ℓ |S̄m+1

Ē
Ŵ

[∣∣∣∣∣Tr[E(Z̄m+1)ρ0(
¯̂
W )]− 1

mtest

mtest∑
ℓ=1

C̄
(m+1)
ℓ

∣∣∣∣∣
]
, (C.1.12)

where (Z̄m+1, C̄
(m+1)
ℓ ) has the same distribution as (Zm+1, C

(m+1)
ℓ ), ¯̂

W has the same distribution
as Ŵ (induced via the random variables B̄(i)

ℓ ), but (Z̄m+1, C̄
(m+1)
ℓ ) and ¯̂

W are independent.
Next, we apply Corollary 24. As there is no quantum hypothesis and as the initial quantum

data factorizes across the test-train bipartition, it suffices to verify the classical sub-gaussianity
assumption. We can rewrite

Tr

[
L
(i)

c
(i)
ℓ

(Zi, w)ρ
⊗mtest
0

]
= E

C
(i)
ℓ |Zi

[∣∣∣∣∣Tr[E(Zi)ρ0(w)]−
1

mtest

mtest∑
ℓ=1

C
(i)
ℓ

∣∣∣∣∣
]
, (C.1.13)

where, for any m + 1 ≤ i ≤ 2m, conditioned on Zi the random variables C(i)
1 , . . . , C

(i)
mtest are

i.i.d., take values in {0, 1}, and have mean Tr[E(Zi)ρ0]. So, Hoeffding’s inequality (Hoeffding,
1963) implies that the random variable Tr[E(Zi)ρ0] − 1

mtest

∑mtest
ℓ=1 C

(i)
ℓ is C√

mtest
-sub-gaussian

conditioned on Zi. Here and below, we use C to denote a constant that may change with each
occurrence. Next, using a triangle inequality and the equivalent formulation of sub-gaussianity in

46



INFORMATION-THEORETIC GENERALIZATION BOUNDS FOR LEARNING FROM QUANTUM DATA

terms of Lp-norm bounds (compare (Vershynin, 2018, Proposition 2.5.2), we obtain the bound

E
C

(i)
ℓ |Zi

[∣∣∣∣∣Tr[E(Zi)ρ0(w)]−
1

mtest

mtest∑
ℓ=1

C
(i)
ℓ

∣∣∣∣∣
]

(C.1.14)

≤ |Tr[E(Zi)ρ0(w)]− Tr[E(Zi)ρ0]|+ E
C

(i)
ℓ |Zi

[∣∣∣∣∣Tr[E(Zi)ρ0]−
1

mtest

mtest∑
ℓ=1

C
(i)
ℓ

∣∣∣∣∣
]

(C.1.15)

≤ 2 +
C

√
mtest

(C.1.16)

almost surely. So, the random variable Tr[L
(i)

c
(i)
ℓ

(Zi, w)ρ
⊗mtest
0 ], with Zi ∼ P , is

(
C(1 + 1√

mtest
)
)

-

sub-gaussian by Hoeffding’s Lemma (Hoeffding, 1963). Notice also that this sub-gaussianity re-
mains true if we further condition on Z1, . . . , Zm, since Tr[L(Z,w)ρtest] is independent of these
random variables. Thus, first conditioning onZ1, . . . , Zm and then applying Corollary 24, we obtain
the following expected generalization error bound:

|genρ(A)| =
∣∣EZ1,...,Zm

[
genρ(A)|Z1, . . . , Zm

]∣∣ (C.1.17)

≤ EZ1,...,Zm

[
|genρ(A)| |Z1, . . . , Zm

]
(C.1.18)

≤ EZ1,...,Zm


√√√√(C

m

(
1 +

1
√
mtest

)2
)
I(S; Ŵ |Z1, . . . , Zm)

 . (C.1.19)

Next, we bound the conditional mutual information I(S; Ŵ |Z1, . . . , Zm). By construction,
conditioned on Z1, . . . , Zm, the output hypothesis random variable Ŵ takes values in W1. Thus,
I(S; Ŵ |Z1, . . . , Zm) ≤ log2(|W1|). We can control |W1| using bounds from classical learning
theory. Notice that W1 is an empirical ε̃-covering net for (a subset of) the function class FS(Cd) of
d-dimensional quantum states viewed as functionals on effect operators, that is,

FS(Cd) =
{
E(Cd) ∋ E 7→ Tr[Eρ] ∈ [0, 1]

}
ρ∈S(Cd)

⊆ [0, 1]E(C
d). (C.1.20)

By (Mendelson and Vershynin, 2003, Theorem 1) (see also (Anthony and Bartlett, 1999, Sections
12 and 18), (Vidyasagar, 2003, Sections 4.2.2 and 4.2.4), or (Caro, 2022b, Section 3.3)), we can
find such a covering net of cardinality |W1| ≤ (2/ε̃)

C·fat(FS(Cd),cε̃), where c, C > 0 are some con-
stants and fat(F , α) denotes the α-fat-shattering dimension of a real-valued function class F , intro-
duced in (Kearns and Schapire, 1994). For our purposes, it suffices to know that the fat-shattering
dimension of FS(Cd) scales logarithmically in d: As shown in (Aaronson, 2007, Corollary 2.7),
fat(FS(Cd), γ) ≤ C log(d)/γ2 holds for all γ > 0, with C > 0 some constant. Therefore, we can take

our covering net W1 to have cardinality |W1| ≤ (2/ε̃)C log(d)/ε̃2 , for some constant C > 0. This
gives the conditional mutual information bound

I(S; Ŵ |Z1, . . . , Zm) ≤ log2(|W1|) ≤
C log(d)

ε̃2
· log

(
2

ε̃

)
. (C.1.21)

Plugging this back into our expected generalization error bound, we have shown:

genρ(A) ≤

√√√√(C
m

(
1 +

1
√
mtest

)2
)

log(d)

ε̃2
· log

(
2

ε̃

)
. (C.1.22)
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This shows that we can achieve good expected generalization performance with a training data size
m scaling only logarithmically in the dimension d.

We now demonstrate the usefulness of this expected generalization error bound as a tool in
bounding the expected excess prediction error of A, which we denote by excessρ(A) and which is
defined as the difference between the expected prediction error of A, given by

Ē
Ŵ

E
Z̄m+1

[∣∣∣Tr[E(Z̄m+1)ρ0]− Tr[E(Z̄m+1)ρ0(
¯̂
W )]

∣∣∣] , (C.1.23)

and the optimal achievable expected prediction error, given by

inf
w∈W

E
Z̄m+1

[∣∣Tr[E(Z̄m+1)ρ0]− Tr[E(Z̄m+1)ρ0(w)]
∣∣] . (C.1.24)

Namely, based on Equation (C.1.22), we show in Appendix D:

Corollary 26 The quantum learning algorithm described above satisfies the excess prediction er-
ror bound

excessρ(A) ≤ ε̃+ Õ

(√
log(d)

mε̃2
+

1
√
mtrain

+
1

√
mtest

)
. (C.1.25)

In particular, picking ε̃ = ε/2, our procedure achieves an expected excess prediction error of
at most ε for m ≤ Õ(log(d)/ε4) and mtrain,mtest ≤ Õ(1/ε2). This way, our information-theoretic
approach reproduces the essential feature of (Aaronson, 2007, Theorem 1.1), namely the favor-
able dimension-dependence, as well as the (1/ε4)-scaling. Moreover, whereas (Aaronson, 2007)
starts from classical training data obtained by measuring copies of the unknown state, our anal-
ysis begins with the quantum data and thereby simultaneously leads to bounds on m, mtrain,
and mtest. Here, mtrain and mtest are d-independent. Note: If we consider m, mtrain, and
mtest as fixed, determining our resources, then we can achieve an excess prediction error of or-
der max{ 4

√
log(d)/m,

√
1/mtrain,

√
1/mtest}.

Remark 27 From our reasoning leading to Corollary 26, one can extract a proof that extends the
reasoning from (Xu and Raginsky, 2017, Section 4.2) beyond binary classification to regression with
a continuous target space. This then shows how to recover in-expectation versions of known gen-
eralization bounds in terms of the fat-shattering dimension (Bartlett and Long, 1998; Anthony and
Bartlett, 2000) via an information-theoretic approach to generalization and may be of independent
interest.

Extension to entangled quantum data. The above discussion of PAC learning quantum states as-
sumed access to independent copies of the unknown state ρ0. We now discuss how our framework
and results can be applied if the copies of ρ0 are correlated/entangled across the test-train biparti-
tion. This should be viewed as a proof-of-principle demonstration, similar extensions beyond the
case of independent quantum data are possible also for the applications discussed in the following
subsections. Moreover, our framework can be modified to incorporate entanglement inside the test
and train subsystems, respectively, upon suitably redefining the expected true risk.

Consider CQ data of the form

ρ = E
S=(Z1,...,Z2m)∼P 2m

[(
2m⊗
i=1

|Zi⟩⟨Zi|

)
⊗ ρ̃

]
, (C.1.26)
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where ρ̃ ∈ S(Hdata) satisfies Trtest[ρ̃] = (ρ⊗mtrain
0 )⊗m and Trtrain[ρ̃] = (ρ⊗mtrain

0 )⊗m. Let us
analyze the same learning strategy as discussed above with the same choice of loss observable. The
expected empirical risk now becomes

R̂ρ(A) = E
S∼P 2m

E
D

(i)
ℓ |S

E
Ŵ

[
R̂test

S(m+1):2m,D
(i)
ℓ

(Ŵ )

]
, (C.1.27)

where the D(i)
ℓ are {0, 1}-valued random variables that conditioned on s have the joint distribution

P{D(i)
ℓ }|s[(D

(i)
ℓ )ℓ,i = (d

(i)
ℓ )ℓ,i] = Tr

[(
m⊗
i=1

mtest⊗
ℓ=1

(d
(i)
ℓ E(zi) + (1− d

(i)
ℓ )(1d − E(zi))

)
ρAtest(s, {b

(i)
ℓ }ℓ,i)

]
,

(C.1.28)
where the b(i)ℓ are the measurement outcomes obtained by measuring for each m + 1 ≤ i ≤ 2m,
the 2-outcome POVM {E(zi),1 − E(zi)} on the ith set of mtrain subsystems of ρ̃. Crucially,
whereas in our previous analysis the expected empirical risk depended on random variables C(i)

ℓ

that, conditioned on s, were independent of the outcome random variables B(i)
ℓ seen during training

(and thus of the induced hypothesis Ŵ ), now it depends on random variables D(i)
ℓ that may depend

on the B(i)
ℓ . This occurs because, due to the initially present correlations and entanglement, the

collapsing measurement performed by the learner on the training data subsystem may also influence
the test data subsystem. Thus, using the “contaminated” test data for validation may lead to a worse
risk estimate than in the i.i.d. case.

In our definition of expected true risk, we decoupled the test and training data subsystems before
letting the learner act. This ensures that, even if correlations or entanglement are present across the
test-train bipartition initially, our notion of expected true risk still reproduces the same quantity as
in the case of independent quantum copies,

Rρ(A) = E
Z̄m+1∼P

E
C̄

(m+1)
ℓ |S̄m+1

Ē
Ŵ

[∣∣∣∣∣Tr[E(Z̄m+1)ρ0(
¯̂
W )]− 1

mtest

mtest∑
ℓ=1

C̄
(m+1)
ℓ

∣∣∣∣∣
]
. (C.1.29)

The classical sub-gaussianity analysis is exactly the same as before. Now, we in addition have
to determine the quantum sub-gaussianity behavior. To this end, note that ρtest(s) = (ρ⊗mtrain

0 )⊗m

factorizes by assumption. Moreover, our loss observable is (2/m·mtest)-Lipschitz w.r.t. the factor-
ization into m · mtest subsystems. (This can be seen by a bounded differences argument: If two
density matrices coincide after tracing out a single subsystem, then at most one of the C̄(i)

ℓ in
R̂test

s(m+1):2m,C̄
(i)
ℓ

(w) changes, leading to an overall change bounded by 2/m·mtest.) Thus, after condi-

tioning on Z1, . . . , Zm, we can apply Corollary 24 and, as there is no quantum hypothesis, obtain
the following generalization bound:

|genρ(A)| ≤ E
Z1,...,Zm


√√√√ 8

m ·mtest
E

Zm+1,...,Z2m∼Pm

[
χ

({
PA
B

(i)
ℓ |S

({b(i)ℓ }ℓ,i), ρAtest(S, {b
(i)
ℓ }ℓ,i)

}
b
(i)
ℓ

)]
+ E

Z1,...,Zm


√√√√(C

m

(
1 +

1
√
mtest

)2
)
I(S; Ŵ |Z1, . . . , Zm)

 .
(C.1.30)
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The second summand can be controlled as in the case of i.i.d. quantum copies. The first sum-
mand, which can be viewed as a proxy for the maximal information about the training outcomes
b
(i)
ℓ accessible from the post-measurement state ρAtest(S, {b

(i)
ℓ }ℓ,i) on the test subsystem, requires

a separate analysis. Obtaining bounds on this term via quantities measuring the initial correla-
tions/entanglement between the test and train subsystems or via properties of the POVMs used by
the learner is an interesting challenge that we leave open for future work.

C.2. Quantum PAC learning from entangled data

Next, we demonstrate that our framework allows us to prove information-theoretic generalization
bounds for quantum PAC learning from entangled data, which can be viewed as a variation on the
usual standard PAC learning framework (Bshouty and Jackson, 1998; Arunachalam and de Wolf,
2017). The classical framework of (Xu and Raginsky, 2017), as reviewed in Section 1, considers
training data S consisting of i.i.d. examples Zi drawn from P . Written in terms of states diag-
onal in the computational basis, this data corresponds to the mixed state

(∑
z∈Z P (z) |z⟩⟨z|

)⊗m.
Instead of this classical data, we consider entangled quantum data representing a purification of
this probabilistic mixture. Namely, we consider a quantum data state ρ = (|ϕ⟩⟨ϕ|)⊗m with |ϕ⟩ =∑

z∈Z
√
P (z) |z⟩test ⊗ |z⟩train and thus

|ϕ⟩⊗m =
∑

z1,...zm∈Z

√
P (z1) · · ·P (zm) |z1, . . . zm⟩test ⊗ |z1, . . . zm⟩train (C.2.1)

=
∑
s∈Zm

√
Pm(s) |s⟩test ⊗ |s⟩train , (C.2.2)

where we identify the purifying system as the test data system. Here, the data is purely quantum,
there is no classical part. As our focus is on learning a classical function, we take Z = X× Y, with
X = {0, 1}n and Y = {0, 1} and accordingly Htest = Htrain = ((C2)⊗n ⊗ C2)⊗m. We write
Zi = (Xi, Yi) and take W ⊂ YX. We note that quantum data states as in Equation (C.2.2) can
be obtained from the more established quantum superposition examples of Bshouty and Jackson
(1998) by attaching an auxiliary register and applying CNOT gates, and the reverse conversion can
be achieved by applying CNOTs and discarding the auxiliary system.

Before proceeding further, let us comment on how this formulation compares to the classical
framework obtained by extending (Xu and Raginsky, 2017) to include test data, discussed in Sec-
tion 1.1.1. Recall that this classical description involved perfectly correlated test and training data
random variables; the entanglement between test and training subsystems in the pure state |ϕ⟩⊗m

can be viewed as a fully quantum analogue of this perfect correlation, with respect to the computa-
tional basis.

We are now ready to quantumly analyze a learner that acts according to a conditional probability
distribution PA(W |S). To this end, we consider a quantum learner A that measures the quantum
data in the computational basis and processes the observed outcomes via PA(W |S). To model
this without introducing classical random variables, we take the hypothesis space Hhyp = C|W |.
The quantum learner A, without performing any POVM with observed outcomes, implements the
channel

ΛA(ρ) =
∑
s∈Zm

∑
w∈W

⟨s| ρ |s⟩PA(w|s) |w⟩⟨w| . (C.2.3)
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Thus, the state after the action of the learner is given by

σA =
∑
s∈Zm

∑
w∈W

PA(s, w) |s⟩⟨s|test ⊗ |w⟩⟨w|hyp . (C.2.4)

To evaluate the performance of A, we take the loss observable L = 1
m

∑m
i=1 Li with

Li =
∑
zi∈Z

∑
w∈W

ℓ(w, zi) |zi⟩⟨zi|test,i ⊗ |w⟩⟨w|hyp , (C.2.5)

where ℓ : W × Z → R≥0 is some classical loss function. As the relevant operators commute, it is
easy to see that this choice reproduces the clasical notions of expected empirical risk

Tr[LσA] = E
(S,W )∼PA

[
R̂S(W )

]
(C.2.6)

and expected true risk

Tr[L(ρtest ⊗ σAhyp)] = E
(S̄,W̄ )∼Pm⊗PA

W

[
R̂S̄(W̄ )

]
= E

W∼PA
W

[RP (W )] . (C.2.7)

These are exactly the notions of risk familiar from the classical case.
Moreover, the QMGF bound for L w.r.t. ρtest ⊗ σAhyp coincides with the classical MGF bound

for 1
m

∑m
i=1 ℓ(W̄ , Z̄i). Also, as σA is diagonal, we see that I(test; hyp)σA = I(S;W ). Thus,

Corollary 23 reproduces the main result of (Xu and Raginsky, 2017) via the QMI term5. Here, both
the classical MI and the Holevo information terms vanish because there is no classical hypothesis.

Remark 28 In this section, we have described learning from quantum data in the form of a pure
entangled state. Recently, (Caro et al., 2024) proposed mixture-of-superposition quantum exam-
ples as an alternative to the more established superposition examples (Bshouty and Jackson, 1998;
Arunachalam and de Wolf, 2017) for agnostic quantum learning. Similarly, one may change the
model considered here and instead work with quantum data of the form ρ = (Ef∼FP

[(|ϕf ⟩⟨ϕf |)])⊗m,
where

|ϕf ⟩ =
∑
x∈X

√
PX(x) |x, f(x)⟩test ⊗ |x, f(x)⟩train , (C.2.8)

and where FP is the probability distribution on the function space {0, 1}{0,1}n induced by P via

FP (f) =
∏

x′∈{0,1}n
P(x,y)∼P

[
f(x′) = y | x = x′

]
. (C.2.9)

An analysis similar to the one presented above can also be carried out for this notion of quantum
data and again reproduces the classical bound of (Xu and Raginsky, 2017).

5. While the statement of (Xu and Raginsky, 2017, Theorem 1) is correct, the argument there was based on the claim
that, if X̄, Ȳ are independent random variables and if f(x, Ȳ ) is β-sub-gaussian for every x, then also f(X̄, Ȳ )
is β-sub-gaussian. This claim is in general not correct because of complications regarding centering, as pointed
out, e.g., in Appendix C of the arXiv version of (Negrea et al., 2019). This issue can be circumvented by first
conditioning on the hypothesis random variable (see, e.g., Raginsky, 2019, p. 22). Thus, our claim here is that
we have reproduced the following version of (Xu and Raginsky, 2017, Theorem 1) without the improvement via
conditioning: If 1

m

∑m
i=1 ℓ(W̄ , Z̄i) is ( β√

m
)-sub-gaussian, then Eq. (10) of (Xu and Raginsky, 2017) holds.
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C.3. Quantum parameter estimation

Next, we demonstrate how to incorporate quantum parameter estimation tasks, typically considered
in quantum metrology (Giovannetti et al., 2006) and quantum sensing Degen et al. (2017), into our
framework. Let Z = Θ ⊆ Rn be a parameter space, equipped with the induced Borel σ-algebra.
Consider the data Hilbert space

Hdata = Htest ⊗Htrain = ((Cd)⊗mtest)⊗m ⊗ ((Cd)⊗mtrain)⊗m. (C.3.1)

For an unknown probability measure P over Θ, let the quantum data state ρ be the CQ state

ρ = ES=(Z1,...,Zm)∼Pm

[(
m⊗
i=1

|Zi⟩⟨Zi|

)
⊗

(
m⊗
i=1

ρ(Zi)
⊗mtest

)
⊗

(
m⊗
i=1

ρ(Zi)
⊗mtrain

)]
,

(C.3.2)
where the ρ(Zi) are parameter-dependent qudit states, with the mapping z 7→ ρ(z) known in ad-
vance. Note: Even if this mapping is known in principle, one may not be able to prepare copies
of the respective state. Thus, when aiming to learn how to extract information about the unknown
parameter from the quantum system, it nevertheless makes sense to work with a finite number of
copies of each ρ(Zi).

The goal of a quantum learner here is to learn a POVM that, when performed on copies of ρ(Z),
produces an accurate estimate of the unknown parameter Z. Therefore, to model the learner, we
let Hhyp be trivial, and we take W to be some measurable hypothesis space such that each w ∈ W
is associated with a POVM {Fw(ẑ)}ẑ∈Z ⊆ E((Cd)⊗mtest). The action of the learner is described
by POVMs {EA

s (w)}w∈W ⊆ E(((Cd)⊗mtrain)⊗m), for s = (zi)i ∈ Zm. If we now define the loss
observables as

L(s, w) = L((zi)i, w) =
∑
ẑ∈Z

1

m

m∑
i=1

∥zi − ẑ∥p (1
⊗mtest
d )⊗(i−1) ⊗ Fw(ẑ)⊗ (1⊗mtest

d )⊗(m−i),

(C.3.3)
for some p ≥ 1, then we can evaluate the expected empirical risk (Definition 11) as

R̂ρ(A) = E(S,Ẑ)∼PA

[
1

m

m∑
i=1

∥∥∥Zi − Ẑ
∥∥∥
p

]
, (C.3.4)

where the classical data S = (Zi)i and the estimated parameter Ẑ have the joint probability distri-
bution

PA((zi)i, ẑ) =

(
m∏
i=1

P (zi)

)
·
∑
w∈W

Tr

[
EA

(zi)i
(w)

(
m⊗
i=1

ρ(zi)
⊗mtrain

)]
· Tr

[
Fw(ẑ)ρ(zi)

⊗mtest
]
.

(C.3.5)
Similarly, the expected true risk (Definition 12) is

Rρ(A) = EZ̄,Ẑ

[∥∥∥Z̄ − Ẑ
∥∥∥
p

]
, (C.3.6)

where
PA(z̄, ẑ) = P (z̄) · EW̄

[
Tr
[
FW̄ (ẑ)ρ(z̄)⊗mtest

]]
, (C.3.7)
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with the random variables Z̄ and W̄ being independent copies of Z and W . That is, the expected
empirical risk measures the expected average norm error that estimates produced from the learned
POVM make on the states that it has been learned from. Meanwhile, the expected true risk measures
the expected average norm error that estimates produced from the learned POVM make on a new
parameter setting drawn at random from the underlying distribution.

We next evaluate the guarantees of Appendix B for this setting. We are in the scenario of Corol-
lary 24 without a quantum hypothesis and without initial test-train entanglement, so it suffices to
study the sub-gaussianity parameter of the random variable

∑
ẑ∈Z ∥Zi − ẑ∥pTr[Fw(ẑ)ρ(Zi)

⊗mtest ] =

EẐ|Zi,w

[∥∥∥Zi − Ẑ
∥∥∥
p

]
for Zi ∼ P and for fixed w. If we assume the parameter space Z to have a

p-norm diameter Bp <∞, then this random variable is bounded by Bp and thus (Bp

2 )-sub-gaussian
by Hoeffding. Then, Corollary 24 implies

|Rρ(A)− R̂ρ(A)| ≤
√
Bp

2m
I((Zi)i;W ). (C.3.8)

Informally, this tells us: If the learned POVM performs well on the available classical-quantum data
and does not depend too strongly on any specific sample parameter setting seen during training,
then the POVM will also accurately extract the parameter of a previously unseen ρ(Z). Similarly to
Example 7, we may further bound the relevant mutual information in terms of the complexity of the
admissible POVMs. To the best of our knowledge, this is the first generalization bound for quantum
parameter estimation.

C.4. Variational quantum machine learning

In this subsection, we consider a task of classifying classical data via an embedding into quantum
states, similarly to (Banchi et al., 2021). To formalize this task, consider the data Hilbert space

Hdata = Hdata = ((Cd)⊗mtest)⊗m ⊗ ((Cd)⊗mtrain)⊗m. (C.4.1)

Let P be an unknown probability measure over a measurable input space X, let f : X → {1, . . . , k}
be an unknown labelling function, and consider the quantum data state

ρ = EX1,...,Xm∼Pm

[(
m⊗
i=1

|Xi, f(Xi)⟩⟨Xi, f(Xi)|

)
⊗

(
m⊗
i=1

ρ(Xi)
⊗mtest

)
⊗

(
m⊗
i=1

ρ(Xi)
⊗mtrain

)]
,

(C.4.2)
where the ρ(xi) are quantum states into which the classical inputs xi are embedded according to a
mapping x 7→ ρ(x), which may be known or unknown. While the mapping x 7→ ρ(x) is typically in
principle known in variational QML, since it is given by the parametrized circuit, it can nevertheless
make sense to work with a restricted number of copies of output states, for example if running the
quantum circuit itself is expensive. Importantly, while with a known mapping the output state
and expectation values thereof could be computed classically, this will become infeasible for large
system sizes. Then, using actual quantum circuits to prepare and measure states may be necessary.

The goal of a quantum learner in this scenario is to learn a POVM that, when performed on
copies of ρ(x), produces the correct label f(x) with high probability. Accordingly, we model the
learner by taking Hhyp to be trivial, and by taking W to be some hypothesis space such that each
w ∈ W is associated with a k-outcome POVM {Fw(ℓ)}kℓ=1 ⊆ E((Cd)⊗mtest). We describe the
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action of the learner by POVMs {EA
((xi,f(xi))i

(w)}w∈W ⊆ E(((Cd)⊗mtrain)⊗m), for ((xi, f(xi))i ∈
(X× {1, . . . , k})m. We now consider the loss observables

L(s, w) = L((xi, f(xi))i, w) =
1

m

m∑
i=1

∑
ℓ∈{1,...,k}\{f(xi)}

(1⊗mtest

d )⊗(i−1) ⊗ Fw(ℓ)⊗ (1⊗mtest

d )⊗(m−i).

(C.4.3)
According to Definition 11, this leads to the expected empirical risk

R̂ρ(A) = E(X1,...,Xm;W )∼PA

 1

m

m∑
i=1

∑
ℓ∈{1,...,k}\{f(Xi)}

Tr[FW (ℓ)ρ(Xi)
⊗mtest ]

 (C.4.4)

= E(X1,...,Xm;W )∼PA

[
1− 1

m

m∑
i=1

Tr[FW (f(Xi))ρ(Xi)
⊗mtest ]

]
, (C.4.5)

Similarly, according to Definition 12 we obtain the expected true risk

Rρ(A) = EX̄;W̄

 ∑
ℓ∈{1,...,k}\{f(X̄)}

Tr[FW̄ (ℓ)ρ(X̄)⊗mtest ]

 (C.4.6)

= EX̄;W̄

[
1− Tr[FW̄ (f(X̄))ρ(X̄)⊗mtest ]

]
. (C.4.7)

In words, R̂ρ(A) is the expected average misclassification probability on the available training data,
and Rρ(A) is the expected msiclassification probability on a fresh test data point. Thus, our notions
of risk are simply the expected version of those considered in (Banchi et al., 2021).

It remains to evaluate the guarantees proved in Appendix B for this scenario. According to
Corollary 24, we can focus on determining the sub-gaussianity parameter of the random variable
1 − Tr[Fw(f(Xi))ρ(Xi)

⊗mtest ] for Xi ∼ P and for fixed w. As this random variable takes values
in [0, 1], it is (12)-sub-gaussian by Hoeffding. So, Corollary 24 yields the expected generalization
error bound

|Rρ(A)− R̂ρ(A)| ≤
√

1

2m
I(((Xi, f(Xi)))i;W ). (C.4.8)

We leave it as an open question whether this bound can be directly related and compared to (Banchi
et al., 2021, Theorem 1) (see also the results in (Banchi et al., 2024)), which depends exponentially
on the 2-Rényi mutual information between the classical input and the quantum register for a single
copy. Moreover, it will be interesting to investigate whether recent quantum generalization bounds
based on (quantum) Fisher information (Abbas et al., 2021b,a; Haug and Kim, 2023) can be reinter-
preted in our information-theoretic framework. More generally, we envision that, similarly to how
classical information-theoretic generalization guarantees help overcome the limitations of uniform
generalization bounds pointed out in (Zhang et al., 2017, 2021), a quantum information-theoretic
perspective will be an important tool in remedying the drawbacks (Gil-Fuster et al., 2024) of re-
cently established uniform generalization bounds for variational quantum machine learning (Caro
and Datta, 2020; Caro et al., 2021; Chen et al., 2021; Popescu, 2021; Cai, 2021; Du et al., 2022;
Caro et al., 2022; Gyurik et al., 2023).
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C.5. Approximate quantum membership learning

Next, we discuss a task of learning a POVM that approximately decides membership of quantum
states in an a priori unknown set. To this end, consider the data Hilbert space

Hdata = Htest ⊗Htrain = ((Cd)⊗mtest)⊗m ⊗ ((Cd)⊗mtrain)⊗m. (C.5.1)

Let P be an unknown probability measure over qudit states. Let ε > 0. Consider the CQ data state

ρ = Eρ1,...,ρm∼Pm

[(
m⊗
i=1

|fP,ε(ρi)⟩⟨fP,ε(ρi)|

)
⊗

(
m⊗
i=1

ρ⊗mtest
i

)
⊗

(
m⊗
i=1

ρ⊗mtrain
i

)]
, (C.5.2)

where P ⊆ S(Cd) is a subset of qudit states, and fP,ε : S(Cd) → {0, 1,⊥} is defined as

fP,ε(ρ) =


1 if ρ ∈ P
0 if d1(ρ,P) ≥ ε

⊥ else

. (C.5.3)

Here, we used the notation d1(ρ,P) = infσ∈P ∥ρ− σ∥1. Thus, given an input state ρ, the function
value fP,ε(ρ) ε-approximately (and ambiguously for states with d1(ρ,P) < ε) decides whether
ρ is in P . If we let Q denote the probability measure over {0, 1,⊥} × S(Cd) induced by P via
Q(zi, ρi) = P (ρi)δzi,fP,ε(ρi), then we can rewrite ρ as

ρ = E(Z1,ρ1),...,(Zm,ρm)∼Qm

[(
m⊗
i=1

|Zi⟩⟨Zi|

)
⊗

(
m⊗
i=1

ρ⊗mtest
i

)
⊗

(
m⊗
i=1

ρ⊗mtrain
i

)]
(C.5.4)

= EZ1,...,Zm∼Qm
Z

[(
m⊗
i=1

|Zi⟩⟨Zi|

)
⊗

(
m⊗
i=1

Eρi∼QS(Cd)|Zi

[
ρ⊗mtest
i ⊗ ρ⊗mtrain

i

])]
. (C.5.5)

Thus, the data state has the form of Equation (27), with classical instance space Z = {0, 1,⊥}. This
rewriting also highlights a similarity to ambiguous state discrimination: The training data consists
of a classical label (saying “far from P”, “in P”, or ”marginal case”) and a quantum part given by
a conditioned average over copies of the corresponding quantum states. Given the data, the learner
should essentially produce a 2-outcome POVM that distinguishes between “ far from P” and “in
P” well on average, where the marginal cases do not matter.

More precisely, the goal of a learner is to learn a 2-outcome POVM for deciding whether a
state belongs to P or is ε-far from P . For states that are not in P but less than ε-far from P , any
of the two outcomes is deemed acceptable. To model such a learner, we let Hhyp be trivial, and
we take W to be some measurable hypothesis space such that each w ∈ W is associated with a
POVM {Fw,1

⊗mtest
d − Fw} ⊆ E((Cd)⊗mtest). The action of the learner is described by POVMs

{EA
(zi)i

(w)}w∈W ⊆ E(((Cd)⊗mtrain)⊗m), for (zi)i ∈ {0, 1,⊥}m. We define the loss observables as

L(s, w) = L((zi)i, w) (C.5.6)

=
1

m

m∑
i=1

(1⊗mtest
d )⊗(i−1) ⊗

(
δzi,0Fw + δzi,1(1

⊗mtest
d − Fw)

)
⊗ (1⊗mtest

d )⊗(m−i).

(C.5.7)
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This leads to an expected empirical risk

R̂ρ(A) = Eρ1,...,ρm;W

[
1

m

m∑
i=1

(
1ρi∈P Tr[(1⊗mtest

d − FW )ρ⊗mtest
i ] + 1d1(ρi,P)≥εTr[FWρ

⊗mtest
i ]

)]
,

(C.5.8)
where the joint distribution of ((ρi)i,W ) is given by

PA((ρi)i,W ) =

(
m∏
i=1

P (ρi)

)
· Tr

[
EA

(fP,ε(ρi))i
(W )

(
m⊗
i=1

ρ⊗mtrain
i

)]
. (C.5.9)

The expected true risk in this case becomes

Rρ(A) = Eρ̄;W̄

[
1ρ̄∈P Tr[(1⊗mtest

d − FW̄ )ρ̄⊗mtest ] + 1d1(ρ̄,P)≥εTr[FW̄ ρ̄
⊗mtest ]

]
, (C.5.10)

where ρ̄ and W̄ are independent random variables with joint product distribution

PA(ρ̄, W̄ ) = P (ρ̄) · Eρ̄1,...,ρ̄m∼Pm

[
Tr

[
EA

(fP,ε(ρ̄i))i
(W̄ )

(
m⊗
i=1

ρ̄⊗mtrain
i

)]]
. (C.5.11)

That is, the expected empirical risk is the expected average error that the learned POVM makes
on the data that it was learned from. In contrast, the expected true risk is the expected average
probability that the POVM makes a wrong prediction on a randomly drawn new state. (Again, the
classification of marginal cases is irrelevant.)

To apply Corollary 24, since there is only a classical hypothesis here and since there are no
initial correlations or entanglement across the test train bipartition, we study the sub-gaussianity
parameter of the random variable Tr

[(
δZi,0Fw + δZi,1(1

⊗mtest
d − Fw)

)
Eρi∼QS(Cd)|Zi

[
ρ⊗mtest
i

]]
.

This random variable takes the value 0 ≤ Tr
[
(1⊗mtest

d − Fw)Eρi∼QS(Cd)|1
[
ρ⊗mtest
i

]]
≤ 1 with

probability QZ(1) and the value 0 ≤ Tr
[
FwEρi∼QS(Cd)|0

[
ρ⊗mtest
i

]]
≤ 1 with probability QZ(0).

In particular, by Hoeffding’s inequality, it is (12)-sub-gaussian. Thus, Corollary 24 implies

|Rρ(A)− R̂ρ(A)| ≤
√

1

2m
I((Zi)i;W ). (C.5.12)

If the learner has prior knowledge indicating that membership in P can be (approximately) decided
using only few-copy measurements and chooses the set of admissible POVMs {Fw,1

⊗mtest
d − Fw}

with a suitable locality structure, this is expected to lead to an improved generalization performance
compared to a learner that considers general many-copy measurements as viable hypotheses (com-
pare also the discussion in Example 7). To the best of our knowledge, we are the first to take this
PAC perspective on quantum membership learning and to establish a generalization bound for it.

Remark 29 The learning problem described in this section can also be interpreted as learning
to solve an average-case version of quantum property testing for states, see (Montanaro and Wolf,
2016, Section 4). From this perspective, we are asking: Given data consisting of (copies of) quantum
states correctly classified according to an unknown property P of states and a proximity parameter
ε, learn a POVM that tests P w.r.t. proximity parameter ε well on average over states drawn from
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P . We note that formulating meaningful average-case property testing problems is subtle. For
instance average-case property testing w.r.t. uniformly random bit strings becomes trivial because
of the blow-up phenomenon for Hamming distance balls (Goldreich, 2011).

Complementary to the scenario discussed above, one might also consider testing for multiple
properties, drawn from an unknown distribution, on a fixed (but unknown) quantum state. Here, the
challenge would be to learn a mapping from a property P to an associated 2-outcome POVM that
classifies the unknown state ρ0 according to whether it has property P or is ε-far from it.

C.6. Learning quantum state-preparation channels from classical-quantum data

In this section, we discuss how our framework can incorporate recent work on learning classical-
to-quantum mappings (Chung and Lin, 2021; Caro, 2021; Fanizza et al., 2022). Let Z be some
measurable instance space. Let P be a probability measure over Z. Consider the data Hilbert space

Hdata = Htest ⊗Htrain = (Cd)⊗m ⊗ (Cd)⊗m. (C.6.1)

Take the CQ data state

ρ = E
(Z1,...,Zm)∼Pm

[(
m⊗
i=1

|Zi⟩⟨Zi|

)
⊗

(
m⊗
i=1

N (Zi)

)
⊗

(
m⊗
i=1

N (Zi)

)]
, (C.6.2)

where N : X → S(Cd) is an unknown qudit state-preparation channel. The goal of a quantum
learner with a hypothesis class {Nw}w∈W of classical descriptions of state preparation channels is to
output w such that performing Nw on inputs drawn from P approximates the action of the unknown
channel N on those inputs well in trace distance. Throughout, we assume that N (z) and Nw(z) are
pure states for all z ∈ Z and w ∈ W, and we therefore use notations like N (z) = |N (z)⟩⟨N (z)| for
these states.

With our framework, we now formalize this setting for a learner that produces only a classical
hypothesis, by taking Hhyp to be trivial, and we define our loss observables as

L(s, w) = L((zi)i, w) =
1

m

m∑
i=1

1
⊗(i−1)
d ⊗ Li(zi, w)⊗ 1

⊗(m−i)
d , (C.6.3)

with local loss observables
Li(zi, w) = 1d −Nw(zi) . (C.6.4)

With these choices, Definitions 11 and 12 lead to the expected empirical risk

R̂ρ(A) = E
(S,W )∼PA

[
1− 1

m

m∑
i=1

|⟨NW (Zi)|N (Zi)⟩|2
]

(C.6.5)

= E
(S,W )∼PA

[
1

m

m∑
i=1

(
1

2
∥NW (Zi)−N (Zi)∥1

)2
]
, (C.6.6)

and the expected true risk

Rρ(A) = E
Z̄,W̄

[1− |⟨NW̄ (Z̄)|N (Z̄)⟩|2] = E
Z̄,W̄

[(
1

2
∥NW̄ (Z̄)−N (Z̄)∥1

)2
]
. (C.6.7)
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That is, the expected empirical risk is the expected squared trace distance between the output states
of the true channel and the hypothesis channel averaged over the training data, whereas the expected
true risk considers the average squared trace distance on a fresh input state.

In this scenario, we can apply Corollary 24. Namely, for every fixed w ∈ W, the random
variable Tr[Li(Zi, w)N (Zi)] with Zi ∼ P takes values in [0, 1] and thus is (12)-sub-gaussian by
Hoeffding. Hence, the generalization error can be bounded as

|genρ(A)| ≤
√

1

2m
I(S;W ) . (C.6.8)

If W is finite, we can bound I(S;W ) ≤ log|W|, thus recovering an in-expectation version of the
sample complexity bound of (Chung and Lin, 2021). If W is infinite, we can resort to empirical
covering net arguments similarly to Example 7 and Appendix C.1. When the maps in W only ever
output two possible quantum states, this approach, combined with standard bounds on the size of
an empirical covering net via the VC-dimension (Vapnik and Chervonenkis, 1971) (compare for in-
stance (Vershynin, 2018, Section 8.3.4) and (Caro, 2022b, Section 3.3)), leads to an in-expectation
version of the guarantee proved in (Caro, 2021, Section 4.1). More generally, using covering nets
w.r.t. empirical Schatten q-norms as in (Fanizza et al., 2022, Definition 1), we can obtain general-
ization bounds similar in spirit to (Fanizza et al., 2022, Theorem 4), which we may turn into bounds
on the expected excess risk following the line of reasoning from Appendix C.1. Note, however,
that these upper bounds on the mutual information via capacity measures are worst-case, we expect
tighter data- and algorithm-dependent bounds to be possible.

Let us point out that the reasoning in this subsection was specific to state preparation channels
outputting pure states, so that the overlap serves as a measurable quantity tightly related to the
trace distance. For channels outputting mixed states, other loss observables would be required to
obtain risks that accurately reflect the desired average trace distance approximation to the true output
states. In the case of only two possible known output states, one may use the Holevo-Helstrom
measurement as in (Caro, 2021). However, for the general case, the “right” choice is not immediate.
We believe that measurements in a random orthonormal basis as used in (Chung and Lin, 2021) or
the quantum data analysis approach of (Fanizza et al., 2022) may serve as inspiration for how to
incorporate channels with mixed output states. Assuming purified access, an alternative route may
proceed via combining the well known Fuchs-van de Graaf inequalities (Fuchs and Van De Graaf,
1999) with a recent quantum fidelity estimation procedure for low-rank states (Wang et al., 2023).

C.7. Generalization bounds for differentially private quantum learners

Differential privacy (Dwork et al., 2014) is a robust framework that ensures the privacy of indi-
viduals in a dataset by adding controlled noise to the data or to the output of data analyses, which
becomes crucial when training machine learning models on sensitive information. In machine learn-
ing, integrating differential privacy helps in mitigating the risks of data leakage and model inversion
attacks, ensuring that the model’s predictions do not inadvertently reveal private information about
any individual in the training data. With the advent of quantum machine learning, several works
tried to quantize the basic concepts, definitions and results of differential privacy (Hirche et al.,
2023; Angrisani et al., 2023; Angrisani and Kashefi, 2022; Nuradha et al., 2023; Aaronson and
Rothblum, 2019; Zhou and Ying, 2017; Du et al., 2021). Classically, differentially private learners
are known to satisfy mutual information stability (Feldman and Steinke, 2018), which can then be
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plugged into information-theoretic generalization bounds (see also (Hellström et al., 2023, Section
7.6)). Additionally, in the case of locally differentially private (LDP) classical learners, strong data
processing inequalities (DPIs) have been established (see (Asoodeh and Zhang, 2022; Zamanlooy
and Asoodeh, 2023; Angrisani et al., 2023) and the references therein), which also aid in controlling
the entropic quantities appearing in our bounds. Here, we give proof-of-principle demonstrations for
how recent quantum results on contraction properties of LDP channels and measurements (Hirche
et al., 2023; Angrisani and Kashefi, 2022) can be used within our framework to analyze the gener-
alization behavior of such quantum learners.

First, suppose that all channels ΛA
s,w used by the learner A are ε-LDP (see (Hirche et al., 2023,

Section V) or (Angrisani and Kashefi, 2022, Section 2.2) for a definition). Then, combining (An-
grisani and Kashefi, 2022, Corollary 3.1) with the Pinsker inequality, we see that

I(test; hyp)σA(s,w) ≤ 2ε(1− e−ε)
√

2I(test; train)ρA(s,w) . (C.7.1)

Using Jensen’s inequality, this means that the relevant expected QMI in our generalization bounds
is upper bounded as

E
(S,W )∼PA

[
I(test; hyp)σA(S,W )

]
≤ 2

√
2ε(1− e−ε)

√
E

(S,W )∼PA
[I(test; train)ρA(S,W )] . (C.7.2)

To further upper bound the average QMI in the post-measurement states ρA(s, w), we can write
I(test; train)ρA(S,W ) in terms of von Neumann entropies, and use concavity of the entropy as well
as the definition of the Holevo information χ to arrive at

E
(S,W )∼PA

[I(test; train)ρA(S,W )] ≤ I(test; train)E(S,W )∼PA [ρA(S,W )] + χ
(
{PA(s, w), ρA(s, w)}

)
(C.7.3)

≤ I(test; train)ρ + χ
(
{PA(s, w), ρA(s, w)}

)
, (C.7.4)

where the last step used the data-processing inequality. Thus, we control the QMI contribution to
the generalization error in terms of the initial QMI present in the data and a proxy for the maximum
accessible information about the measurement outcomes accessible from the post-measurement en-
semble. When performing a similar analysis for a learner using general (not ε-LDP) channels ΛA

s,w,
a direct application of DPI yields the weaker I(test; hyp)σA(s,w) ≤ I(test; train)ρA(s,w) instead of
Equation (C.7.1). Once we note that 1− e−ε = ε+O(ε2), we obtain the following rule of thumb:
We expect the QMI contribution to the generalization error to improve by a factor of O(ε2) when
using ε-LDP quantum channels.

Next, we turn our attention to the classical MI term in our generalization bounds. Here, we
assume that the learner A uses an overall ε-LDP POVM. As the POVM {|s⟩⟨s| ⊗ EA

s (w)}s,w is
not LDP even if every {EA

s (w)}w is, we make the simplifying assumption that the learner uses an
s-independent ε-LDP POVM {EA(w)}w. Then, we can write I(S;W ) = ES∼Pm [D(PA

W|S∥P
A
W)],

where PA
W|S is the outcome distribution when measuring {EA(w)}w on ρ(S), and where PA

W is the

outcome distribution when measuring {EA(w)}w on ES̃∼Pm [ρ(S̃)]. As we assume {EA(w)}w to
be ε-LDP, (Angrisani and Kashefi, 2022, Lemma 3.1) now implies

I(S;W ) ≤ 2eε(1− e−ε)2 E
S∼Pm

[
D

(
ρ(S)

∥∥∥ E
S̃∼Pm

[ρ(S̃)]

)]
(C.7.5)

= 2eε(1− e−ε)2 χ ({Pm(s), ρ(s)}s∈Zm) , (C.7.6)
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where the second step used Equation (22). So, the classical MI contribution to the generalization
error is controlled by the Holevo information of the quantum data states. Again, compared to a
general learner, we expect the classical MI contribution to the generalization error to be smaller by
a factor of O(ε2) when using an (s-independent) ε-LDP POVM.

In this subsection, we have used our generalization guarantees to show that requiring a quantum
learner A to be ε-LDP – both in terms of the channels and the measurement used – is expected to be
beneficial for generalization performance. While our discussion here already highlights the benefits
of an LDP assumption for generalization in a broad sense, it would be interesting to instantiate
this insight for specific quantum learning tasks of interest. Moreover, while our discussion focused
on local differential privacy, it does not yet apply to differentially private quantum learners. The
question of whether quantum differential privacy implies a version of mutual information stability
useful for quantum generalization error bounds remains open. Finally, we have demonstrated how to
use local differential privacy to control the classical and quantum mutual information terms in our
generalization bounds. Investigating the effect of ε-LDP assumptions on the Holevo information
term would give further insight into the relevance of ε-LDP to generalization when processing
entangled quantum data.

C.8. Generalization bounds for inductive supervised quantum learning

(Monras et al., 2017) considered quantum learners described by multipartite quantum channels act-
ing on quantum training data and on the input marginals of test states. Then, they defined the
expected risk as the expectation value of a loss observable measured on the output of the learner and
on the output marginals of the test states. We can formulate this in our framework as follows: We
take a trivial classical instance space Z and consider the data Hilbert space

Hdata = Htest ⊗Htrain = Htest,out ⊗ (Htest,in ⊗Htrain,in) (C.8.1)

= (Cdout)⊗mtest ⊗ ((Cdin)⊗mtest ⊗ (Cd)⊗mtrain) . (C.8.2)

Then we take a quantum data state of the form

ρ = ρ⊗mtest
test ⊗ ρtrain , (C.8.3)

with ρtest ∈ S(Cdout ⊗ Cdin). The goal of the learner is to use ρtrain to predict the mapping from
the input to the output parts of the test systems.

We will consider quantum learners with hypothesis space Hhyp
∼= Htest,out that first perform

a POVM {1test,in ⊗ EA(w)}w∈W that act non-trivially only on the [train, in] subsystem, and,
depending on the observed outcome, apply quantum processing of the form (ΛA

w)
⊗mtest ⊗ idtrain,in,

with each ΛA
w : T1(Cdin) → T1(Cdout) acting only on one of the [test, in] subsystems. To measure

the performance of such a learner, we use a local loss observable of the form

L(w) = L̄ =
1

m

mtest∑
i=1

1
⊗(i−1)
dout,dout

⊗ L0 ⊗ 1
⊗(m−i)
dout,dout

, (C.8.4)

where L0 ∈ B(Cdout ⊗ Cdout). With these choices, the expected empirical risk

E
W∼PA

W

[
Tr
[
L̄σA(W )

]]
(C.8.5)
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reproduces what (Monras et al., 2017) simply call expected risk, whereas our expected true risk

E
W∼PA

W

[
Tr
[
L̄(ρ⊗mtest

test,out ⊗ σA(W )hyp)
]]

(C.8.6)

does not have a direct counterpart in (Monras et al., 2017). Note: While the inductive (i.e., “measure-
then-process”) learners that we consider here are not the most general form of quantum learner from
ρ, we have a motivation for this focus. Namely, formulated in our language (Monras et al., 2017,
Theorem 1) implies that, under a non-signalling assumption, quantum learners can approximately
be assumed to be inductive. Here, the approximation is w.r.t. the expected empirical and true risks
arising from a loss observable as in Equation (C.8.4) and improves with growing mtest because of
a quantum de Finetti type behavior.

We can apply our generalization guarantees in this setting as follows: Notice that, since the
POVM act trivially on [test, in] and since the quantum processing is a tensor power of single-
system channels, both σA(w) and ρtest,out ⊗ σA(w)hyp factorize according to the tensor product
structure Htest,out ⊗Hhyp

∼= (Cdout ⊗ Cdout)⊗mtest . As the loss observable is local w.r.t. the same
factorization, Corollary 24 applies and, simply using boundedness ofL to get sub-gaussianity, yields
the generalization bound

∣∣genρ(A)
∣∣ ≤

√√√√C∥L∥2
mtest

E
W∼PA

W

[
mtest∑
i=1

I(test, out; hyp)σA
i (W )

]
. (C.8.7)

Thus, the framework of (Monras et al., 2017) fits naturally into our formulation, and this way our
framework gives rise to a notion of generalization error that can be analyzed quantum information-
theoretically. This, to the best of our knowledge, led us to the first generalization bound that applies
to arbitrary inductive quantum learners.

Appendix D. Auxiliary Results and Proofs

Lemma 30 (Restatement of (De Palma and Trevisan, 2023, Theorem 8.1)) Let H be a Hermi-
tian m-qudit observable. Let ρ =

⊗m
i=1 ρi be an m-fold tensor product of qudit states. Then, for

any λ ∈ R,

Tr[elog(ρ)+λH ] ≤ e
λ2m∥H∥2Lip

2 . (D.1)

Proof [Proof of Corollary 24] First, note that the sub-gaussianity assumption on the Li(zi, w) im-
plies

log Tr
[(
ρtest(s)⊗ σA

hyp(s, w)
)
· eλ(L(s,w)−Tr[L(s,w)(ρtest(s)⊗σA

hyp(s,w))]1test,hyp)
]

(D.2)

=

m∑
i=1

log Tr

[(
ρtest,i(Zi)⊗ σA

hyp,i(zi, w)
)
· e

λ
m (Li(zi,w)−Tr[Li(zi,w)(ρtest,i(Zi)⊗σA

hyp,i(zi,w))]1test,hyp,i)
]

(D.3)

≤
m∑
i=1

α2
iλ

2

2m2
. (D.4)

Therefore, L(s, w) is α-sub-gaussian w.r.t. ρtest(s) ⊗ σAhyp(s, w) with sub-gaussianity parameter

α = m−1
√∑m

i=1 α
2
i , for every (s, w) ∈ Zm ×W.
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Using the sub-gaussianity assumption on the Tr[Li(Zi, w)
(
ρtest,i(Zi)⊗ σAhyp,i(Zi, w)

)
], we

see that

log E
S∼Pm

[
eλ(Tr[L(S,w)(ρtest(S)⊗σA

hyp(S,w))]−ES∼Pm [Tr[L(S,w)(ρtest(S)⊗σA
hyp(S,w))]])

]
(D.5)

=

m∑
i=1

log E
Zi∼P

[
e

λ
m (Tr[Li(Zi,w)(ρtest,i(Zi)⊗σA

hyp,i(Zi,w))]−EZi∼P [Tr[Li(Zi,w)(ρtest,i(Zi)⊗σA
hyp,i(Zi,w))]])

]
(D.6)

≤
m∑
i=1

β2
i λ

2

2m2
. (D.7)

In other words, Tr[L(S,w)
(
ρtest(S)⊗ σAhyp(S,w)

)
], with S ∼ Pm, is β-sub-gaussian with sub-

gaussianity parameter β = m−1
√∑m

i=1 β
2, for every w ∈ W. Therefore, we can apply Corol-

lary 23 and obtain the claimed bound, once we use that σA(s, w) =
⊗m

i=1 σ
A
i (zi, w) implies

I(test; hyp)σA(s,w) =
∑m

i=1 I(test; hyp)σA
i (zi,w).

Proof [Proof of Corollary 26] On the one hand, we have∣∣∣∣Ē
ŵ

E
Z̄m+1

[∣∣Tr[E(Z̄m+1)ρ0]− Tr[E(Z̄m+1)ρ0( ¯̂w)]
∣∣]−Rρ(A)

∣∣∣∣ (D.8)

≤ E
Z̄m+1

E
C̄

(m+1)
ℓ |Z̄m+1

[∣∣∣∣∣Tr[E(Z̄m+1)ρ0]−
1

mtest

mtest∑
ℓ=1

C̄
(m+1)
ℓ

∣∣∣∣∣
]

(D.9)

≤ C
√
mtest

, (D.10)

where the first step is an application of the reverse triangle inequality and the second step is via
first conditioning on Z̄m+1 and then using Hoeffding-based sub-gaussianity, as already argued in
Appendix C.1. On the other hand, we have

R̂ρ(A) = E
S∼P 2m

E
C

(i)
ℓ |S

E
Ŵ

[
R̂test
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+ 2 E
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+ C

(
1

√
mtrain

+
1

√
mtest

)
. (D.23)

Here, the first step is plugging in the definition of R̂
S(m+1):2m,C

(i)
ℓ

(·), the second step holds by

applying the triangle inequality twice, the third step uses the definition of Ŵ , the fourth step is one
more triangle inequality, and the final step follows from Hoeffding-type sub-gaussianity bounds.

To finish the proof, we need the following fact:

Claim 31 With the notation introduced above,

E
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[
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m
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≤ inf
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∣∣]+ ε̃+ C

√
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m
. (D.25)

where C > 0 is some positive constant.

Proof See below.

Combining Theorem 31 with our previous upper bound on R̂ρ(A), we have shown

R̂ρ(A) ≤ inf
w∈W

E
Z̄m+1

[∣∣Tr[E(Z̄m+1)ρ0]− Tr[E(Z̄m+1)ρ0(w)]
∣∣]+ ε̃ (D.26)

+ C
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log(|W1|)

m
+

1
√
mtrain

+
1

√
mtest

)
. (D.27)

Finally, once we recall the bound |W1| ≤ (2/ε̃)C log(d)/ε̃2 on the size of the covering net, we can
bring together our upper bound on Rρ(A), our upper bound on R̂ρ(A), and our generalization error
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bound to obtain

excessρ(A) ≤ genρ(A) + ε̃+O
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)
, (D.29)

as claimed.

Proof [Proof of Theorem 31] First recall that the chosen covering net W1 depends only onZ1, . . . , Zm,
so that we can exchange EZm+1,...,Z2m∼Pm and infw∈W1 to obtain the bound

E
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Next, we define the following pieces of notation for the true risk with perfectly accurately evaluated
quantum expectation values

R(w) := E
Z̄m+1∼P

[∣∣Tr[E(Z̄m+1)ρ0(w)]− Tr[E(Z̄m+1)ρ0]
∣∣] , (D.33)

the empirical risk with perfectly accurately evaluated quantum expectation values

R̂s(w) :=
1

m

m∑
j=1

|Tr[E(zj)ρ0(w)]− Tr[E(zj)ρ0]|, (D.34)

and the corresponding true risk minimizers

wW1 ∈ argminw∈W1
R(w), wW ∈ argminw∈WR(w), (D.35)

and empirical risk minimizers

ŵW1 ∈ argminw∈W1
R̂s(w), ŵW ∈ argminw∈W R̂s(w). (D.36)

With this, we can rewrite and bound
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64



INFORMATION-THEORETIC GENERALIZATION BOUNDS FOR LEARNING FROM QUANTUM DATA

= E
(Z1,...,Zm)∼Pm
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Here, the second-to-last step used a reverse triangle inequality, and the final step holds because W1

is by definition a ε̃-covering net for W w.r.t. ∥·∥2,{Zj}mj=1
and thus also w.r.t. ∥·∥1,{Zj}mj=1

. Next,

observe that, for any fixed w ∈ W1, the random variableR(w)− R̂(w) is an average ofm i.i.d. cen-
tered 2-bounded random variables and thus is ( C√

m
)-sub-gaussian by Hoeffding’s Lemma. Using the

equivalence of sub-gaussianity in terms of MGF bounds and tail bounds (Vershynin, 2018, Proposi-
tion 2.5.2), this can now be combined with a union bound over W1 to see that the random variable
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R(w) − R̂(w) is (C
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m )-sub-gaussian. Therefore, using again the Lp bound ver-
sion of sub-gaussianity (Vershynin, 2018, Proposition 2.5.2), we conclude
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m
. (D.49)

Plugging this into our previous bound and rearranging, we get the claimed inequality.
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