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Abstract
In the well-studied agnostic model of learning, the goal of a learner– given examples from an

arbitrary joint distribution on Rd×{±1}– is to output a hypothesis that is competitive (to within ϵ)
of the best fitting concept from some class. In order to escape strong hardness results for learning
even simple concept classes in this model, we introduce a smoothed analysis framework where we
require a learner to compete only with the best classifier that is robust to small random Gaussian
perturbation.

This subtle change allows us to give a wide array of learning results for any concept that (1)
depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian
surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases
that are only known to be learnable in non-smoothed settings with respect to highly structured
distributions such as Gaussians.

Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frame-
works such as learning with margin. In particular, we obtain the first algorithm for agnostically
learning intersections of k-halfspaces in time kpoly(

log k
ϵγ ) where γ is the margin parameter. Before

our work, the best-known runtime was exponential in k (Arriaga and Vempala, 1999a).
Keywords: PAC Learning; Agnostic Learning; Margin; Halfspace; Geometric Concepts; Gaussian
Surface Area

1. Introduction

In the (agnostic) PAC learning model Valiant (1984a,b); Haussler (1992); Kearns et al. (1994),
a learner is given access to random labeled examples and has to compute a classifier that per-
forms approximately as well as the best classifier in a target concept class. More precisely, for
an instance distribution D over Rd × {±1} and a concept class F , the optimal error is defined as
opt = inff∈F Pr(x,y)∼D[f(x) ̸= y]. Without assumptions about the feature distribution and/or
the label generating process, learning is known to be computationally hard Kharitonov (1993);
Guruswami and Raghavendra (2006); Dachman-Soled et al. (2008); Khot and Saket (2008); Feld-
man et al. (2009); Klivans and Sherstov (2009); Diakonikolas et al. (2011); Feldman et al. (2011);
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Daniely and Vardi (2021). In particular, even learning halfspaces (linear classifiers) is intractable
without assumptions Kalai et al. (2005); Guruswami and Raghavendra (2006); Feldman (2006);
Daniely (2016).

In order to bypass these hardness results, a body of research has focused on beyond worst
case learning. The most common approaches are: (1) making distributional assumptions about the
underlying feature distribution, e.g., that it is Gaussian or uniform on the hypercube Linial et al.
(1993); Long (2003); Kalai et al. (2008); Klivans et al. (2008); Gopalan et al. (2008); Diakonikolas
et al. (2021); Kalai et al. (2009), or (2) assuming that the labels are not generated adversarially
Awasthi et al. (2015, 2016, 2017); Diakonikolas et al. (2019a, 2020); Chen et al. (2020); Zhang
et al. (2020); Diakonikolas et al. (2022).

Our Smoothed Learning Model In this work, we depart from those paradigms, and instead of
explicitly imposing structure on the feature or the label distributions we relax the notion of optimal-
ity. Inspired by the seminal works Spielman and Teng (2004); Spielman (2005) on the smoothed-
complexity of algorithms, we require the learner to compete against the minimum possible error
over classifiers that have been translated by a small Gaussian perturbation. Formally, we have the
following definition:

Definition 1 (Smoothed Agnostic Learning) Fix ϵ, σ > 0 and δ ∈ (0, 1). Let F be a class
of Boolean concepts and let D be a class of distributions over Rd. Let D be a distribution over
(x, y) ∈ Rd ×{±1} such that its x-marginal Dx ∈ D. We say that the algorithm A learns F in the
σ-smoothed setting if, after receiving i.i.d. samples from D, A outputs a hypothesis h : Rd → {±1}
such that, with probability at least 1− δ, it holds Pr(x,y)∼D[h(x) ̸= y] ≤ optσ + ϵ, where

optσ = inf
f∈F

E
z∼N

[
Pr

(x,y)∼D
[f(x+ σz) ̸= y]

]
. (1)

We observe that by taking σ = 0 in Definition 1 we recover the standard definition of agnostic
learning. On the other extreme as σ → ∞, every concept is evaluated on a random input unrelated
to the label y and the error essentially does not depend on the concept f . The smoothed agnostic
learning of Definition 1 is therefore an interpolation between the case where the instance distribution
D and the optimal classifier can be arbitrarily coupled (which corresponds to agnostic learning and
σ = 0) and completely decoupled (when σ = ∞). This decoupling allows us to avoid worst-case
concepts that can encode complexity-theoretic primitives.

Learning Concepts with Low Intrinsic Dimension We focus on the general class of concepts
with low intrinsic dimension, i.e., that implicitly depend on few relevant directions (these are also
known as linear or subspace juntas Vempala and Xiao (2011); De et al. (2019, 2021)). More pre-
cisely, a concept f is of low intrinsic dimension if there exists an — unknown to the learner —
subspace V of dimension at most k such that f only depends on the projection of x onto V ,
i.e., f(x) = f(projV x) for all x. We will also use the term “low-dimensional” for such con-
cepts. Perhaps the most well-studied low-dimensional concept class is that of halfspaces or linear
threshold functions Rosenblatt (1962); Minsky and Papert (1988), where k = 1. Another popular
low-dimensional class that has been extensively studied is intersections of k halfspaces Blum and
Kannan (1993); Arriaga and Vempala (1999a); Klivans and Servedio (2004); Klivans et al. (2008);
Vempala (2010). More broadly, in Definition 2 we define a general class of low dimensional con-
cepts with “well-behaved” decision boundary that includes the previous mentioned classes (and
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more) as special cases. Essentially all efficient algorithms in prior work for learning such concepts
(in fact even for learning halfspaces) rely on strong assumptions, such as Gaussianity (Kalai et al.,
2008; Klivans et al., 2008). We investigate whether it is possible to design efficient learning al-
gorithms in the smoothed setting of Definition 2 for natural concept classes while weakening the
distributional assumptions that have been used so far in the literature:

Can we relax the strong distributional assumptions (such as Gaussianity) required by previous
works and still obtain comparable efficient algorithms in the smoothed setting?

We answer the above question positively and show that efficient smoothed learning is possible
assuming only that the feature distribution is concentrated (e.g., bounded or sub-gaussian). In par-
ticular, our results in the smoothed setting establish learnability under discrete distributions that are
commonly used in hardness constructions in the standard agnostic setting (see, e.g., Daniely and
Vardi (2021)). At the same time, we show that our smoothed learning model improves and general-
izes prior models such as learning with margin. In fact, for standard non-smoothed settings such as
learning intersections of k-halfspaces with margin, we are able to obtain significant improvements
over the prior works as corollaries of our smoothed learning results.

1.1. Our Results

In this section we present our main contributions and discuss the connections of the smoothed
learning model of Definition 1 with other models.

Measure of Complexity: Gaussian Surface Area As mentioned above, we require that the con-
cept class is low-dimensional, i.e., that it depends on few relevant directions. Moreover, we assume
that it has bounded Gaussian Surface Area (GSA). The GSA of a boolean function f , denoted from
now on as Γ(f), is defined to be the surface area of its decision boundary weighted by the Gaussian
density, see Definition 19 for a formal definition. In the context of learning theory, GSA was first
used in Klivans et al. (2008) where it was shown that concepts with bounded GSA admit efficient
learning algorithms under Gaussian marginals. Since then, GSA has played a significant role as a
complexity measure in learning theory and related fields; see, e.g., Kane (2011); Neeman (2014);
Kontonis et al. (2019); De et al. (2021).

Definition 2 (Low-Dimensional, Bounded Surface Area Concepts) For k ∈ N and Γ > 0, a
concept f : Rd 7→ {±1} belongs in the class F(k,Γ) if:

1. There exists a subspace U of dimension at most k such that f(x) = f(projU (x)).

2. The Gaussian Surface Area of f , Γ(f) is at most Γ.

3. For every t ∈ Rd and r > 0, the function f(rx+ t) ∈ F(k,Γ).

Remark 3 (1) While we are using GSA as a complexity measure, we stress that we do not assume
that the x-marginal distribution is Gaussian. (2) The invariance under scaling and translation (the
third property of Definition 2) is a mild technical assumption that is satisfied by all classes that we
have discussed so far (halfspaces and functions of halfspaces, ptfs, etc.), see also Lemma 20.
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We note that halfspaces belong in F(1, O(1)), intersections of k halfspaces in F(k,O(
√
log k)),

and k-dimensional polynomial threshold functions of degree ℓ in F(k,O(ℓ)). Moreover, Defini-
tion 2 also contains non-parametric classes: for example, F(k,O(k1/4)) includes all convex bodies
in k dimensions, see Lemma 20. We remark that low-dimensional functions similar to those in
Definition 2 are also referred to (usually when the functions are real-valued) as Multi-index Models
(MiMs) — a common modeling assumption to avoid the curse of dimensionality in statistics Fried-
man et al. (1981); Huber (1985); Li (1991); Hall and Li (1993); Xia et al. (2002); Xia (2008).

1.1.1. MAIN RESULTS: SMOOTHED AGNOSTIC LEARNING UNDER CONCENTRATION

We show that we can efficiently learn assuming only concentration properties for the x-marginal.
More precisely, we assume that the distribution has sub-gaussian tails, i.e., for every unit direction
v it holds Prx∼Dx [|v · x| ≥ t] ≤ exp(−Ω(t2)).

Theorem 4 (Sub-Gaussian – Informal, see also Theorem 17) Let D be a distribution on Rd ×
{±1} with sub-gaussian x-marginal. There exists an algorithm that learns the class F(k,Γ) in the
σ-smoothed setting with N = dpoly(

kΓ
σϵ

) log(1δ ) samples and poly(d,N) runtime.

We remark that our result works even under weaker tail assumptions: in particular it suffices that
the tails are strictly sub-exponential, see Definition 15 and Theorem 17.

We observe that the runtime of Theorem 4 for learning a single halfspace (where k = 1) in the
smoothed setting qualitatively matches the best known runtime for agnostic learning under Gaussian
marginals. For concepts with bounded Gaussian surface area, in Klivans et al. (2008), under the
assumption that the x-marginal is Gaussian, an algorithm with dpoly(Γ/ϵ) runtime is given. When
the intrinsic dimension k = O(1), our results in the smoothed setting achieve the same runtime
and only require sub-gaussian tails. By a simple reduction to learning parities on the hypercube,
see Theorem 68, we obtain a Statistical Query (SQ) lower bound of dΩ(min(k,Γ)) for learning over
sub-gaussian marginals, showing that in some cases the exponential dependency on the surface area
or the intrinsic dimension to learn F(k,Γ) is unavoidable.

Our second result shows that we can significantly improve the runtime when the marginals are
bounded. Bounded marginals is a common assumption especially since it is often used together with
geometric margin assumptions. At a high-level, in our smoothed learning setting having bounded
∥x∥2 means that the ratio ∥x∥2/σ is more well behaved in the sense that the adversary, who picks x,
cannot overpower the smoothing noise σ (see Definition 1). Observe that if the adversary is allowed
to select x with arbitrarily large norm, the effect of Gaussian noise in Definition 1 is negligible and
we return to the standard agnostic setting.

Theorem 5 (Bounded – Informal, see also Theorem 18) Let D be a distribution on Rd × {±1}
with x-marginal bounded in the unit ball. There exists an algorithm that learns the class F(k,Γ) in
the σ-smoothed setting with N = kpoly(

Γ
ϵσ

) log(1δ ) samples and poly(d,N) runtime.

Using our theorem and bounds on the Gaussian surface area we readily obtain corollaries for
specific classes. For example, we efficiently learn intersections of k-halfspaces with kpoly(log k/(σϵ))

samples and arbitrary k-dimensional convex bodies with kpoly(k/(σϵ)) samples.
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1.1.2. APPLICATIONS

In this section we present several applications of our general smoothed learning results in standard
agnostic learning settings that have been considered in the literature. In many cases we obtain
significant improvements over the best-known results.

Agnostic Learning with Margin Our smoothed learning model is related to margin-based learn-
ing (originally defined in Ben-David and Simon (2000)) because, at a high-level, it incentivizes the
adversary not to place points very close to the decision boundary to create non-trivial instances. In
(agnostic) learning of a class C with γ-margin the feature distribution is typically assumed to be
bounded and the goal is to compute a classifier with error

Pr
(x,y)∼D

[h(x) ̸= y] ≤ inf
f∈C

Pr
(x,y)∼D

[
sup

∥u∥2≤γ
1{f(x+ u) ̸= y}

]
︸ ︷︷ ︸

margin-optγ

+ϵ . (2)

We show that for any concept class with intrinsic dimension k, for σ = Ω(γ/
√

k log(1/ϵ)), it holds
optσ ≤ margin-optγ+ϵ. Therefore, any learning algorithm for the smoothed learning setting can be
directly used to learn in the γ-margin setting. For the special case of intersections of k-halfspaces
we show that the gap between margin-optγ and optσ is ϵ by choosing σ = Ω(γ/

√
log k log(1/ϵ)).

Using this fact and Theorem 5 we obtain the following corollary.

Corollary 6 (Intersections of k-halfspaces with γ-margin) Let D be a distribution on Rd×{±1}
whose x-marginal is bounded in the unit ball and let C be the class of intersections of k-halfspaces.
There exists an algorithm that draws N = kpoly(log k/γϵ) log(1δ ) samples, runs in poly(d,N) time
and computes a hypothesis h such that, with probability at least 1 − δ, it holds Pr(x,y)∼D[h(x) ̸=
y] ≤ margin-optγ + ϵ.

We remark that, prior to our work, the best known runtime for learning intersections of k-
halfspaces with γ-margin in the agnostic setting from Arriaga and Vempala (1999b) was exponential
in the number of halfspaces that is kpoly(

k
γϵ

). Quasi-polynomial results similar to that of Corollary 6
were only known in the noiseless setting Klivans and Servedio (2004). Beyond intersections of
halfspaces with γ-margin, we obtain new results for other classes such as polynomial threshold
functions and general convex sets, see Section B.2 for more details.

Agnostic Learning under Smoothed Distributions We conclude with some applications of our
framework to the (different) scenario where the marginal distribution itself is smoothed. For ex-
ample, in Kane et al. (2013) sub-Gaussian marginals are smoothed by additive Gaussian noise; i.e.,
for some sub-Gaussian distribution D a sample from the smoothed distribution Dτ is generated as
x + τz for x ∼ D and z ∼ N . We remind the reader that our smoothed learning model of Def-
inition 1 does not try to make the x-marginal more benign by a Gaussian convolution as is done
in smoothed distribution learning settings Kalai and Teng (2008); Kalai et al. (2009); Kane et al.
(2013). In our model, the learner observes i.i.d. examples from the original marginal Dx and not
from the convolution Dx + σN . Perhaps surprisingly, we show that Theorem 4 can be used to
significantly improve the results of Kane et al. (2013) and other results for learning with smoothed
marginals:
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Corollary 7 (Informal, see also Theorem 36) Let Dτ be a smoothed sub-Gaussian distribution.
There exists an algorithm that agnostically learns the class F(k,Γ) with N = dpoly(

kΓ
τϵ

) log(1δ )
samples and poly(d,N) runtime.

We remark that Corollary 7 (i) generalizes the results of Kane et al. (2013) to any class of k-
dimensional concepts with bounded surface area and (ii) yields an exponential improvement over
Kane et al. (2013) where the runtime is doubly exponenential in k, i.e., dlog log(k/(τ/ϵ))

Õ(k)poly(1/(τϵ)).

Agnostic Learning under Anti-concentration Finally, another important direction considered
in the literature is making structural assumptions such as anti-concentration over the feature dis-
tribution. In particular, in Gollakota et al. (2023) apart from sub-gaussian tails the distribution is
assumed to satisfy anti-concentration over slabs, i.e., for any unit vector v and interval I it holds
that Prx∼Dx [v · x ∈ I] ≤ O(|I|), where |I| is the length of the interval. In Gollakota et al. (2023)
an algorithm for learning any function of a constant number of halfspaces is given with runtime
dpoly(1/ϵ). Using Theorem 4 we are able to obtain efficient algorithms for agnostic learning under
concentration and anti-concentration for functions of any number of halfspaces.

Corollary 8 (Informal, see also Theorem 33) Let D be a distribution on Rd × {±1} whose x-
marginal is sub-Gaussian and anti-concentrated. There exists an algorithm that agnostically learns
arbitrary functions of k halfspaces with N = dpoly(

k
ϵ
) log(1δ ) samples and poly(d,N) runtime.

1.2. Technical Overview

Our main plan is to use low-degree polynomials that can be efficiently optimized via L1-regression,
similar to the works of Kalai et al. (2005); Klivans et al. (2008). In general, in the agnostic setting,
one has to construct a polynomial p(x) that achieves almost optimal L1 error with the label y. To
do this, we have to prove that for every concept f in the class, there exists a low-degree polynomial
p such that Ex∼Dx [|p(x)− f(x)|] ≤ ϵ.

In the distribution-specific setting, i.e., when x comes from the Gaussian or the uniform dis-
tribution on the hypercube, it is known that such a polynomial of degree poly(Γ/ϵ) exists Klivans
et al. (2008). However, without assumptions on D, low-degree polynomial approximations of f do
not exist even when the f is a simple concept such as a linear threshold function.

Polynomial Approximation in the Low-Dimensional Space Our high-level plan is to treat the
smoothed learning setting as a non-worst-case approximation setting and show that given some f ,
with high probability over the smoothing z, the translated concept x 7→ f(x+ σz) will have a low-
degree polynomial approximation. For simplicity, in this sketch, we will assume that σ = 1. The
general case can be found in the full proof; see Section 3.1 and also Remark 10. We will construct
a family of polynomials pz(x) such that their expected L1 error over the smoothing z is small:

E
z∼N

[
E

x∼Dx

[|pz(x)− f(x+ z)|]
]
≤ ϵ .

We observe that since every f(x) depends only on a k-dimensional space U , the projection of
the input x down to U is just a linear transformation that does not affect the degree of polynomial
approximation. Therefore, from now on, we may assume x lies in the k-dimensional space U and
construct our polynomial approximation there.
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Duality Between Input and Smoothing Parameter Our first step is to think of the smoothing
random variable as the actual input to the function and treat x as a fixed parameter. Therefore,
as a function of z, we now have to approximate the translated function fx(z) = f(x + z). Even
though z is not available to the learner, when we think of fx(z) as a function of the Gaussian
noise random variable, we can utilize strong approximation results known under the Gaussian. In
particular, we can replace the boolean function fx(z) by its smooth approximation given by the
Ornstein-Uhlenbeck operator defined as Tρfx(z) = Es∼N [fx(

√
1− ρ2 · z+ ρ s)].

Using the fact that the concept class of Definition 2 is closed under translation, we have that,
since Γ(f) ≤ Γ, the GSA of the translated concept fx(z) as a function of z is also at most Γ. Using
this fact and a result from Ledoux and Pisier (see Lemma 12) that bounds the L1 approximation
error of the Ornstein-Uhlenbeck noise operator, we obtain that with ρ = poly(ϵ/Γ) it holds that

E
z∼N

[|Tρfx(z)− fx(z)|] ≤ ϵ .

So far, we replaced fx with Tρfx, but have we made progress? We observe that Tρfx(z) =

Es∼N [f(x+
√
1− ρ2z+ ρs)]. The variable x, which is supposed to be input of the polynomial, is

still in the function f . Without distributional assumptions on Dx the degree to approximate f can
be arbitrarily large.

From Approximating f(·) to Approximating Density Ratios To avoid approximating the con-
cept f , we observe that we can express the Ornstein-Uhlenbeck operator as follows:

Tρfx(z) = E
s∼N (x/ρ,I)

[
f(
√
1− ρ2z+ ρs)

]
= E

s∼Q

[
f(
√
1− ρ2z+ ρs) · N (s;x/ρ, I)

Q(s)

]
,

where Q(s) is a distribution that we carefully design. We have managed to decouple the variable
x from the function f(·), and now the task is to create a polynomial approximation of the density
ratio N (s;x/ρ,I)

Q(s) , which — at the very least — is a continuous function of x. For this to be possible,
we need that the ratio of densities has a bounded L1 norm with respect to x ∼ Dx. When x is
bounded, we can simply select Q to be the standard Gaussian; see Proposition 9. For sub-Gaussian
(or strictly sub-exponential) marginals, we select a distribution Q with heavier (exponential) tails
than Dx. For this overview, we focus on the case of bounded marginals and refer to Section 3.2 for
the more general result.

We observe that the approximating function has to be polynomial in x but can be an arbitrary
function of z and s. Therefore, we select a weighted combination of polynomials (that is still a
polynomial in x but not a polynomial in z):

pz(x) = E
s∼Q

[f(
√
1− ρ2z+ ρs) q(x, s)] .

To bound the L1 distance of Tρfx(z) and pz(x), since f is boolean and, in particular, bounded, it
suffices to show that the polynomial q(x, s) approximates the ratio of normals N (s;x/ρ, I)/N (s).
We construct an explicit polynomial approximation of this ratio using the Taylor expansion of the
exponential function and show that a degree roughly poly(log(1/ϵ)/ρ) suffices; see Lemma 14. By
our choice of ρ, we conclude that the degree of the family of polynomials pz that we construct is at
most poly(Γ/ϵ).
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Dimension Reduction and Polynomial Regression Having constructed polynomial approxima-
tions with high probability over the smoothing random variable z, we can use the standard L1

polynomial regression algorithm; see Kalai et al. (2008); Klivans et al. (2008). For the case of
bounded marginals, we show that we can also perform a dimension-reduction preprocessing step by
a random projection. Even though the class of concepts of Definition 2 is non-parametric, we show
that under bounded GSA, it is possible to reduce the dimension to poly(kΓ/ϵ); see Section 3.3.

2. Preliminaries and Notation

Notation We use small boldface characters for vectors and capital bold characters for matrices.
We use [d] to denote the set {1, 2, . . . , d}. For a vector x ∈ Rd and i ∈ [d], xi denotes the i-

th coordinate of x, and ∥x∥2 :=
√∑d

i=1 x
2
i the ℓ2 norm of x. We use x · y :=

∑n
i=1 xiyi as

the inner product between them. We use 1{E} to denote the indicator function of some event E.
We use Ex∼D[f(x)] for the expectation of f(x) according to the distribution D and PrD[E] for
the probability of event E under D. For simplicity, we may omit the distribution when it is clear
from the context. For µ ∈ Rd,Σ ∈ Rd×d, we denote by N (µ,Σ) the d-dimensional Gaussian
distribution with mean µ and covariance Σ. We simply use N for the standard normal distribution.
In cases where the dimension is not clear from the context we shall use Nk to denote the standard
normal on k-dimensions. For (x, y) distributed according to D, we denote Dx to be the marginal
distribution of x.

3. Smoothed Agnostic Learning under Concentration

In this section, we present our algorithms for smoothed learning under bounded and (strictly)
sub-exponential marginals. The polynomial approximation results are in Section 3.1 for bounded
marginals and in Section 3.2 for strictly sub-exponential marginals. In Section 3.3 we present our
algorithmic results and the dimension-reduction process for learning under bounded-marginals.

3.1. Polynomial Approximation: Bounded Marginals

In this section we present and prove our main polynomial approximation result for bounded marginals
showing that, in expectation over the noise variable z, there exists some polynomial pz(x) that ap-
proximates the translated concept function f(x + z). The proof of Proposition 9 is split into two
steps. Similar to our discussion in Section 1.2, we first fix x and try to approximate fx(z). The first
step is to replace f by its smoothed version Tρfx (see Definition 11) and show that it is close to fx.
The second step, see Lemma 13, is to construct a polynomial approximation of Tρfx (similar to the
way we constructed polynomial approximations to the Hermite coefficients of fx in Section 1.2).

Proposition 9 (Polynomial Approximation of Random Translations) Fix ϵ > 0 and sufficiently
large universal constant C > 0. Let D be a distribution on Rd such that all points x in the support
of D have ∥x∥2 ≤ R. Let f ∈ F(k,Γ). There exists a family of polynomials pz parameterized by
z of degree at most C(Γ/ϵ)4R2 log(1/ϵ) such that Ez∼N Ex∼D

[
|pz(x) − f(x + z)|

]
is at most ϵ,

and every coefficient of pz is bounded by dC
(
(Γ/ϵ)4R2 log(1/ϵ)

)2
.

Remark 10 We remark that in Proposition 9 we have assumed that σ = 1 to simplify notation. Us-
ing the fact that the surface area bound of the concepts of Definition 2 is invariant under translation
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and positive scaling, we can apply Proposition 9 with R′ = R/σ for the function x 7→ f(σ(xσ + z))

and obtain a polynomial of degree Õ((Γ/ϵ)4(R/σ)2). See also Theorem 43.

Proof We use the following Gaussian noise operator to transform f(·) into a smooth function that
is easier to approximate.

Definition 11 (Ornstein-Uhlenbeck Noise Operator) Let k ∈ N and ρ ∈ [0, 1]. We define the
Ornstein-Uhlenbeck operator Tρ : {Rd → R} → {Rd → R} that maps f : Rd → R to the function
Tρf : Rd → R with Tρf(x) = Ez∼N [f(

√
1− ρ2 · x+ ρ · z)] .

We will use the following result showing that under the assumption that some function g has
bounded GSA, the Ornstein-Uhlenbeck operator Tρg yields a good approximation to g in L1.

Lemma 12 (Pisier (1986); Ledoux (1994)) Let ρ ∈ [0, 1] and consider a function f : Rd →
{±1}. It holds Ez [|Tρf(z)− f(z)|] ≤ 2

√
πρ · Γ(f).

Let fx be the translated function defined as fx(z) = f(x + z). From Lemma 12, we have
Ez∼N [|Tρfx(z)− f(z+ x)|] ≤ 2

√
πρ · Γ.

Choosing ρ = O(ϵ2/Γ2) makes this error at most ϵ/2. We now approximate Tρfx using a
polynomial. To do this we prove the following result. We provide a proof sketch here, and refer to
the Supplementary Material for the details and the formal statement, see Lemma 37.

Lemma 13 (Approximating the Ornstein-Uhlenbeck Smoothed Concept Tρfx(·)) Let D be a
distribution on Rd with every point x in the support of D having ∥x∥2 at most R. Let f : Rd →
{±1} and fx : Rd → R be defined as fx(z) = f(x+z). Then, for any ϵ > 0, there exist polynomials
pz parameterized by z for degree at most O((R/ρ)2 log(1/ϵ)), such that Ex∼D Ez∼N

[
|pz(x) −

Tρfx(z)|
]
≤ ϵ.

Before we prove Lemma 13 we use it to conclude the proof of Proposition 9. From Lemma 13, we
get a polynomial pz of degree C(Γ/ϵ)4R2 log(1/ϵ) such that Ex∼D Ez∼N

[
|Tρfx(z) − pz(x)|

]
≤

ϵ/2 where C is a large universal constant. The coefficients of pz are bounded by dC
(
(Γ/ϵ)4R2 log(1/ϵ)

)2
.

By a triangle inequality, we get Ex∼D Ez∼Nk

[
|pz(x)− f(z+ x)|

]
≤ ϵ.

Sketch of the Proof of Lemma 13 We observe that Tρfx(z) = Es∼N [f(x +
√
1− ρ2z + ρs)]

has the variable x inside f . Recall that our goal is to construct a polynomial in x and, since we have
no control over f (which can possibly be very hard to approximate pointwise with a polynomial),
we decouple f and x in the expression of Tρfx by writing the function as an expectation over a
Gaussian centered at x/ρ.

Tρfx(z) = E
s∼N

[
f(x+

√
1− ρ2z+ ρs)

]
= E

s∼N (x/ρ,I)

[
f(
√
1− ρ2z+ ρs)

]
,

Next, we can recenter the expectation around zero and express the Ornstein-Uhlenbeck operator as
follows:

Tρfx(z) = E
s∼N

[
f(
√

1− ρ2z+ ρs) · N (s;x/ρ, I)

N(s;0, I)

]
= E

s∼N

[
f(
√
1− ρ2z+ ρs) · e−

∥x∥22
2ρ2

+(x/ρ)·s
]
.

9
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To construct our polynomial, we now approximate e
− ∥x∥22

2ρ2
+(x/ρ)·s using the 1-dimensional Tay-

lor expansion of the exponential function q(x, s) = qm
(
−∥x∥22

2ρ2
+ (x/ρ) · s

)
where qm(t) = 1 +∑m−1

i=1
ti

i! is the degree m− 1 Taylor approximation of ex. Thus, our final polynomial pz(x) is

pz(x) = E
s∼N

[
f(
√

1− ρ2z+ ρs) · q(x, s)
]
. (3)

Let ∆(x) be defined as the error term Ez∼N [|pz(x)− Tρ(fx(z))|]. We have that

∆(x) = E
z∼N

[
E

s∼N

[
|f(
√
1− ρ2z+ ρs)| ·

∣∣q(x, s)− e
− ∥x∥22

2ρ2
+(x/ρ)·s∣∣]]

≤ E
s∼N

[∣∣q(x, s)− e
− ∥x∥22

2ρ2
+(x/ρ)·s∣∣] , (4)

where for the inequality we used the fact that |f(x)| = 1 for all x. We now observe that when
s ∼ N the random variable −∥x∥22/(2ρ2) + (x/ρ) · s is distributed as N (−α2/2, α2), where
α = −∥x∥22/ρ2. Therefore, we have reduced the original polynomial approximation problem to
showing that the Taylor expansion of the exponential function converges fast in L1 to ex with re-
spect to N (−α2/2, α2). The proof of the following lemma is technical and can be found in the
Supplementary Materical (see Lemma 37). Here we give a heuristic argument.

Lemma 14 (Approximation of ex with respect to N (−α2/2, α2)) Fix α > 0 and sufficiently
large universal constant C > 0. Let p be the polynomial p(x) =

∑m−1
i=0

xi

i! with m = Cα2 log(1/ϵ).
We have that Ex∼N (−α2/2,α2)[|ex − p(x)|] ≤ ϵ.

Proof [Sketch] We first observe that since the Gaussian has mean −α2/2 and variance α2 using
the strong concentration of the Gaussian (whose tail decays faster than the exponential growth
of ex and its Taylor expansion, see Lemma 37 for more details) we may assume that we only
have to approximate the exponential function in the interval [−α2/2− O(α

√
log(1/ϵ)),−α2/2 +

O(α
√

log(1/ϵ))]. By Taylor’s theorem we have that for any interval [a, b] it holds that |p(x)−ex| ≤
ebmax(|a|, |b|)m/m!. Therefore, we have that by picking degree m = O(α2 log(1/ϵ)) we can make
the error of the Taylor expansion at most ϵ.

Using Lemma 14 with α = ∥x/ρ∥2 we obtain that with degree O((R/ρ)2 log(1/ϵ)) the L1 error
of the polynomial q(x, s) in Equation (4) is at most ϵ. To bound the coefficients of the polynomial
pz(x) we use the fact that f(x) is boolean (and therefore bounded) and the fact that the input of the
Taylor expansion in q(x, s) is bounded. For the full proof, see the Supplementary Material.

3.2. Polynomial Approximation: Strictly Sub-Exponential Marginals

In this section we prove our polynomial approximation for the more general class of Strictly Sub-
Exponential distributions, defined as follows.

Definition 15 (Strictly Sub-exponential Distributions) A distribution D on Rd is (α, λ)-strictly
sub-exponential for α, λ > 0 if for all ∥v∥2 = 1, Prx∼D[|x · v| > t] ≤ 2 · e−(t/λ)1+α

.

Our main goal in this section is to prove the following polynomial approximation result which is a
generalization of Proposition 9. We refer to Lemma 50 in the appendix for the formal statement.

10
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Proposition 16 (Polynomial Approximation: Strictly Sub-Exponential Marginals) Let C be a
large universal constant. Let D be a distribution on Rk that is (α, λ)-strictly subexponential.
Let f : Rk 7→ {±1} be a boolean function in F(k,Γ). Then there exist polynomials pz of de-

gree at most
(
CλkΓ2 log(1/ϵ)/ϵ2

)64(1+1/α)3 , parameterized by z whose (expected) L1 error is
Ez∼Nk

Eu∼D

[
|pz(u)− f(z+ u)|

]
≤ ϵ.

The main proof idea is similar to that of Proposition 9. However, there are significantly more tech-
nical hurdles in constructing the approximating polynomial for this case and we will only highlight
some of the main differences and refer to the Supplementary Material for the full proof. Similar to
the proof of Proposition 9, by using the result of Ledoux and Pisier Lemma 12 we obtain that it suf-
fices to approximate the function Tρfx(z) with some polynomial pz(x). Since f is low-dimensional
(see Definition 2) we can write f(x) = f(UTUx) for some k × d projection matrix U. Since the
polynomial regression algorithm is able to learn this linear transformation, from now on we assume
that f is an explicit k dimensional function f(u) : Rk 7→ {±1}. We will show that there exists a
polynomial of degree at most (Cλk log(1/ϵ)/ρ)64(1+1/α)3 that approximates Tρfu(z). Similar to
the proof of Proposition 9, the first step is to re-write the expression of Tρfu(z) so that u does not
appear inside the target function f . We observe that for any distribution Q we have

Tρfu(z) = E
s∼Q

[
f(
√

1− ρ2z+ ρs) · N (s;u/ρ, I)

Q(s)

]
= e

− ∥u∥22
2ρ2 E

s∼Q

[
f(
√
1− ρ2z+ ρs) · e−

∥s∥22
2

−logQ(s)e(u/ρ)·s
]
.

We observe that we can no longer take Q to be a Gaussian (like we did in Proposition 9) because
when u has weaker tails than the normal density the Eu∼D[

(N (s;u/ρ,I)
Q(s)

)2
] = +∞. To avoid this we

take Q to be the distribution on Rk with probability distribution function Q(s) ∝ e−∥s∥1 which has
exponential tails. We show, see Lemma 53 in Supplementary Material, that Ex∼Q[(

N (x;u,I)
Q(x) )2] ≤

CkeC∥u∥1 . Beyond working with the exponential reweighting function, another technical com-
plication is that we now have to carefully create a polynomial approximation over a strictly sub-
exponential distribution for the function e−∥s∥22 , see Lemma 52 in Supplementary Material. To do
this we use a tighter polynomial approximation using Chebyshev polynomials.

3.3. Efficient Algorithms for Learning under Concentration

Given the polynomial approximation construction of the previous sections one can directly run L1

polynomial regression to minimize E(x,y)∼D[|p(x)−y|] similar to Kalai et al. (2008). We now state
our main theorem for strictly sub-exponential distributions.

Theorem 17 Let k ∈ Z+ and ϵ, δ, σ ∈ (0, 1). Let D be a distribution on Rd × {±1} such that
the marginal distribution is (α, λ)-strictly subexponential. There exists an algorithm that draws

N = dpoly((kλΓ/(σϵ))
(1+1/α)3 )) samples, runs in time poly(d,N), and computes a hypothesis h(x)

such that, with probability at least 1− δ, it holds Pr(x,y)∼D[y ̸= h(x)] ≤ optσ + ϵ.

In the case of bounded marginals, we can significantly reduce the runtime of the algorithm by
performing a dimension reduction via a random Gaussian projection similar to the works of Arriaga
and Vempala (1999a) and Klivans and Servedio (2004). We show that when the x-marginal of
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the distribution is bounded then we can perform a random projection to reduce dimension down
to poly(kΓ/ϵ) for the class of concepts of Definition 2. Assuming that f ∈ F(k,Γ) we have
that there exists a k × d matrix U such that f(x) = f(UTUx). Let A be the random projection
matrix. It suffices to show that concept f(Ax) is close in L1 to the original concept f(x). We
once again use the fact that we can exchange the order of expectation so that we are able to use
the properties of the random Gaussian smoothing. We show, see Lemma 46 in the Supplementary
Material, that for every f ∈ F(k,Γ) it holds that Ez∼N

[
|f(u+z)−f(v+z)|

]
≤ O(Γ · ∥u−v∥2).

Therefore, we obtain that a random projection down to poly(kΓ/ϵ) dimensions will imply that
Ex∼Dx Ez∼N [[f(Ax + z) − f(x + z)|] ≤ ϵ. By performing polynomial regression in the low-
dimensional space we obtain the following improved runtime for bounded x-marginals.

Theorem 18 Let k ∈ Z+ and ϵ, δ, σ ∈ (0, 1). Let D be a distribution on Rd × {±1} whose x-

marginal is bounded in the unit ball. There is an algorithm that draws N = kÕ
(
(Γ/ϵ)4(1/σ2)

)
log(1δ )

samples, runs in time poly(d,N), and computes a hypothesis h(x) such that, with probability at
least 1− δ, it holds Pr(x,y)∼D[y ̸= h(x)] ≤ optσ + ϵ .

4. Applications and Connections with Other Models

In this section, we show connections between our model of smoothed learning and three important
models that have been previously studied: (1) learning with margin, (2) learning under smoothed
distributions and (3) learning with concentration and anti-concentration. We briefly discuss (1) and
(2) and defer (3) and other details to the Supplementary Material, see Section B.

Learning with Margin We show that any algorithm for smoothed agnostic learning can be di-
rectly used to learn in the agnostic setting with margin. For the formal definition of agnostic learn-
ing with γ-margin we refer to Equation (2) and Definition 22. We denote by ∂γf all points that
are in distance at most γ from the decision boundary. We observe (see Lemma 25) that optσ is not
much larger than margin-optγ , as long we have that for any x /∈ ∂γ it holds that the value of f is
unlikely to change by the random perturbation:

optσ ≤ margin-optγ + sup
x/∈∂γf

Pr
z∼N

[f(x+ σz) ̸= f(x)] .

For any boolean concept f , we show (see Lemma 26) that as long as σ is smaller than γ√
k log(1/ϵ)

it

holds that supx/∈∂γf Prz∼N [f(x+σz) ̸= f(x)] ≤ ϵ. While this holds in full generality, for specific
concept classes we are able to provide better bounds. In particular, for intersections of k halfspaces
we show, see Lemma 27, that picking σ = γ/

√
log k/ϵ suffices. Therefore, using Theorem 43 we

readily obtain the agnostic learning result for intersections of k-halfspaces of Corollary 6.

Agnostic Learning with Distributional Assumptions As mentioned, our smoothed agnostic
model generalizes agnostic learning with distributional assumptions. We denote by opt the stan-
dard optimal agnostic error under a distribution D. We see (see Lemma 30 in the Supplementary
Material) that optσ ≤ opt+Prx∼Dx,z∼N [f(x+σz) ̸= f(x)] . For the case of distribution smooth-
ing we have that the smoothed distribution Dτ is the convolution of Dx +N (0, τ2I). In that case
we have that Ex∼Dx,z∼N [f(x+ τz1 + σz2) ̸= f(x+ τz1)] ≤ O(σΓ

√
k

τ ) . Therefore, by choosing
σ = O(ϵτ/(Γ

√
k), we obtain that the gap between optσ and opt is at most ϵ. For this value of σ,
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we are able to recover the strong results of Corollary 7 which yields an exponential improvement
over the prior work Kane et al. (2013).

5. Conclusion and Open Problems

In this work we introduce a new beyond worst-case model for agnostic learning and show that it
is possible to obtain efficient algorithms with runtime that were previously known only under very
strong distributional assumptions, e.g., Gaussianity. Moreover, we show that our framework and re-
sults generalize over several settings considered in the literature — often improving the best known
results significantly (e.g., for the fundamental problem of learning intersections of k halfspaces with
margin). There are many interesting open questions in smoothed agnostic learning: Can we improve
the runtime of Theorem 4 and remove or make milder the exponential dependency on the intrinsic
dimension k? Is it possible to generalize the result beyond (strictly) sub-exponential tails? It seems
that when the adversary is left completely unrestricted to pick instances with arbitrarily large norm
∥x∥, the effect of Gaussian smoothing of Definition 1 is negligible. What are the weakest assump-
tions on the x-marginal that enable learnability?
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Appendix A. Gaussian Surface Area

Here we give the formal definition of Gaussian Surface Area of a concept and present some known
bounds for the concept classes that we consider in this work.

Definition 19 (Gaussian Surface Area) Let f be a boolean function, Γ(f) is the Gaussian surface
area of the set Af = {u ∈ Rk : f(u) = 1}, i.e., Γ(f) is the following quantity.

Γ(f) = lim inf
δ→0

1

δ
Pr

z∼N (0,Ik)

[
z ∈ Aδ

f \Af

]
, where Aδ

f = {u : min
v∈Af

∥u− v∥2 ≤ δ}

We use the following bounds on Gaussian surface area in our results.

Lemma 20 (Bounds on Gaussian surface area of various functions) The following are bounds
on the Gaussian surface area of some common classes of functions:

1. If f is a halfspace, then Γ(f) ≤ O(1)Klivans et al. (2008),

2. If f is an intersection of k halfspaces, then Γ(f) ≤ O(
√
log k)(Klivans et al. (2008), due to

Nazarov),

3. If f is an arbitrary boolean function of k halfspaces, then Γ(f) ≤ O(k) (folklore, see also
Lemma 21),

4. If f is the degree ℓ polynomial threshold function(PTF), then Γ(f) ≤ O(ℓ)Kane (2010),

5. if f is an arbitrary convex set on k variables, then Γ(f) ≤ O(k1/4)Ball (1993).

Lemma 21 (Gaussian Surface Area of functions of k halfspaces) Let f be a boolean function
on k halfspaces. Then, we have that Γ(f) ≤ O(k).

Proof Since f is a boolean function on k halfspaces, we have that for any input x, f(x) =
g
(
h1(x), h2(x), . . . , hk(x)

)
where h1, . . . , hk are halfspaces on Rd and g is an arbitrary boolean

function. For any function h, let Ah = {x ∈ Rd : h(x) = 1}. For any set S, let Sδ denote the set
of points at distance at most δ from S. For a boolean function h, let hc denote it’s complement.

Observe that Aδ
f \Af ⊆

(⋃k
i=1(A

δ
hi

\Ahi
)
)
∪
(⋃k

i=1(A
δ
hc
i
\Ahc

i
)
)
. Then, we have that

Γ(f) = lim inf
δ→0

1

δ
Pr

z∼N (0,Ik)

[
z ∈ Aδ

f \Af

]
≤

k∑
i=1

(
Γ(hi) + Γ(hci )

)
≤ O(k)

where the first inequality comes from a union bound and the second comes from the bound on
surface area of a single halfspace(Lemma 20).

Appendix B. Applications and Connections with Other Models

In this section, we show connections between our model of smoothed learning and three important
models that have been previously studied: (1) learning with margin, (2) learning under smoothed
distributions and (3) learning with concentration and anticoncentration. We prove that our results
straightforwardly imply improved results in each of these models. For example, we give the first
quasi-polynomial algorithm for agnostically learning intersections of halfspaces with margin.
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Concept Class Bounded Sub-Gaussian

Intersections of k halfspaces poly(d) · kpoly(
log k
ϵσ

) dpoly(
k
σϵ

)

Arbitrary functions of k halfspaces poly(d) · kpoly(
k
γϵ

)
dpoly(

k
σϵ

)

k-dimensional, ℓ-degree PTFs poly(d) · kpoly(
kℓ
γϵ

)
dpoly(

kℓ
σϵ

)

k-dimensional convex sets poly(d) · kpoly(
k
γϵ

)
dpoly(

k
σϵ

)

Table 1: Our results on smoothed agnostic learning.

B.1. Notation

We introduce some notation for that we use in this section. For distribution D on Rd × {±1}
and function f : Rd → {±1}, let err(f,D) = E(x,y)∼D[f(x) ̸= y] and let errσ(f,D) =
Ez∼N E(x,y)∼D[f(x+ σz) ̸= y].

B.2. Learning with Margin

In this section we investigate the connection of our smoothed learning model with (agnostic) learn-
ing with margin. We first define the model. As discussed in the introduction, this model disincen-
tivizes the adversary from placing points close to the boundary of the function in a bid to create
worst case instances.

Definition 22 (Agnostic Learning with Margin) Fix ϵ, γ > 0 and δ ∈ (0, 1). Let F ⊆ {Rd →
±1} be a class of Boolean concepts and let D be a class of distributions over Rd. Consider D to
be a distribution over Rd × {±1} such that Dx ∈ D. We say that the algorithm A learns F in the
γ-margin setting if, after receiving i.i.d. samples from D, A outputs a hypothesis h : Rd → {±1}
such that, with probability at least 1− δ, over the samples it holds

Pr
(x,y)∼D

[y ̸= h(x)] ≤ inf
f∈F

E
(x,y)∼D

[
sup

∥u∥2≤γ
1{f(x+ u) ̸= y}

]
+ ϵ . (5)

Remark 23 (Other definitions of agnostic learning with margin) We now highlight connections
to other previously studied notions of margin. An equivalent model to Definition 22 is to define the
γ-margin optimal error inffF E(x,y)∼D[1{f(x) ̸= y or x ∈ ∂γf}], see, e.g., Diakonikolas et al.
(2019b). Another related model is defined in Klivans and Servedio (2004) where they define the set
Fγ containing all functions f ∈ F that have γ-margin with respect to Dx, i.e., f ∈ Fγ if f ∈ F and
Prx∼Dx [x ∈ ∂γf ] = 0 and define the (margin) optimal error as inff∈Fγ Pr(x,y)∼D[f(x) ̸= y]. We
remark that our result readily applies to this variant as well.

A key tool that we use in our reductions is the notion of Gaussian sensitivity of a function at a
point, which we now define.

Definition 24 (Gaussian Sensitivity at x) Let f : Rd 7→ {±1}d be a boolean function. We define
the Gaussian σ-sensitivity of f at x as S(x;σ, f) := Prz∼N [f(x+ σz) ̸= f(x)].

We now prove our reduction. We show that a learner for the smooth agnostic model of Defi-
nition 1 can readily give an algorithm for agnostic learning with margin if we have bounds on the
Gaussian sensitivity at all points not in a γ neighbourhood of the function’s surface.
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Lemma 25 (From Margin to Smooth Agnostic) Fix some boolean function f : Rd 7→ {±1}d
and some distribution D over labeled examples on Rd × {±1}. We say that a point x lies in the
γ-boundary of f , x ∈ ∂γf, if there exists u with ∥u∥2 ≤ γ, such that f(x+ u) ̸= f(x). It holds

errσ(f,D) ≤ E
(x,y)∼D

[
sup

∥u∥2≤γ
1{f(x+ u) ̸= y}

]
+ sup

x/∈∂γf
S(x;σ, f) .

Proof We first observe that we change the order of expectations in the smoothed error of f and
consider E(x,y)∼D Ez∼N

[
1{f(x + σz) ̸= y}

]
. Now it suffices to show that for every (x, y) it

holds
Pr
z∼N

[f(x+ σz) ̸= y] ≤ sup
∥u∥2≤γ

1{f(x+ u) ̸= y}+ sup
x/∈∂γf

S(x;σ, f) .

For any labeled example (x, y) where x ∈ ∂γf we have that for any y ∈ {±1} there exists a u
with ∥u∥2 ≤ γ such that f(x + u) ̸= y: if y ̸= f(x) then pick u = 0 and if y = f(x) there
exists u with ∥u∥2 ≤ γ such that f(x + u) ̸= f(x) and therefore f(x + u) ̸= y. When x /∈ ∂γf
we have that sup∥u∥2≤γ 1{f(x + u) ̸= y} = 1{f(x) ̸= y}. By the triangle inequality we have
1{f(x+σz) ̸= y}−1{f(x) ̸= y} ≤ 1{f(x+σz) ̸= f(x)}. Therefore, by taking the expectation
with respect to z ∼ N we obtain the result.

Before, we can use the above lemma to get results in the margin setting, we need to bound
the Gaussian sensitivity(at points γ distance away from the surface) of various concepts. First,
we bound this quantity for an arbitrary function. We then obtain stronger bounds for the class of
intersections of halfspaces.

Lemma 26 (Gaussian Sensitivity of arbitrary functions under γ-margin) Let f : Rk 7→ {±1}
be a Boolean function. It holds supx/∈∂γf S(x;σ, f) ≤ e−(γ/σ)2/5+k. Equivalently for σ =

γ/
√
5k + 1/

√
log(1/ϵ), it holds supx/∈∂γf S(x;σ, f) ≤ ϵ .

Proof We first observe that, since x /∈ ∂γf , the sign of f will not change as long as the perturbation
σz has norm smaller than γ. Thus, we can bound S(x;σ, f) above by Prz∼N [σ∥z∥2 ≥ γ]. By
using a standard tail bound for the χ2 distribution, see, e.g., Lemma 1 Laurent and Massart (2000),
we obtain that Prz∼N [σ∥z∥2 ≥ γ] ≤ exp(−(γ/σ)2/5 + k).

For the sensitivity in the above bound to be less than ϵ, we need σ to be less than γ/
√
k +

γ/
√
log(1/ϵ). Recall that our smoothed learner’s runtime scales exponentially in 1/σ. Thus, we

pay poly(k) in the exponent for arbitrary functions. We now prove the improved bound for inter-
sections of halfspaces. Note for any ϵ > 0, we have that for all σ < γ/

√
2 log(k/ϵ), the sensitivity

at points at least γ distance from the surface is bounded by ϵ. This is a major improvement over the
case of general functions and this in turn implies our quasi-polynomial time algorithm for agnosti-
cally learning intersections of halfspaces with margin(as 1/σ is now only poly(log k)).

Lemma 27 (Gaussian Sensitivity of Intersections of k-halfspaces with γ-margin) Let f : Rd 7→
{±1} be an intersection of k-halfspaces and D a distribution over Rd. It holds that

sup
x/∈∂γf

S(x;σ, f) ≤ k exp(−γ2/(2σ2)) .
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Proof We split the proof in two cases. We first assume that the point x lies inside the intersection
of halfspaces, i.e., f(x) = +1. Denote by li(x) = wi · x + ti the linear functions defining the
intersection of halfspaces, i.e., f(x) = 1 if and only if li(x) ≥ 0 for all i = 1, . . . , k. The
probability that x+ σz is classified differently (i.e., f(x+ σz) = −1) is then

Pr
z∼N

[f(x+ σz) ̸= f(x)] = Pr
z∼N

[ k⋃
i=1

{li(x+ σz) < 0}
]
≤

k∑
i=1

Pr
z∼N

[
li(x) + σz ·wi < 0

]
. (6)

For an x inside the intersection, it must be that its distance from all faces of the polytope is at
least γ as otherwise the γ-margin assumption would be violated. Therefore, we have that for all
i = 1, . . . , k it holds that li(x) ≥ γ∥wi∥2. Therefore, we have that Prz∼N [li(x) + σz ·wi < 0] ≤
Prz∼N [∥wi∥2γ + σz ·wi < 0] = Prt∼N [t < −γ/σ] ≤ e−γ2/(2σ2) , where we used the tail bound
for the 1-dimension normal density. Therefore, when f(x) = +1 using Equation (6) we conclude
that

Pr
z∼N

[f(x+ σz) ̸= f(x)] ≤ k exp(−γ2/(2σ2)) .

We now move on to the case where f(x) = −1. Let C = {x : f(x) = +1} be the convex set
corresponding to the intersection, in this case we have

Pr
z∼N

[f(x+σz) ̸= f(x)] = Pr
z∼N

[x+σz ∈ C] = Pr
z∼N (x,σ2I)

[z ∈ C] =

∫
1

(2πσ2)d/2
e−

∥x−z∥22
2σ2 1{z ∈ C}dz .

Let πC(x) be the projection of x (that lies outside of C) onto C. Since C is convex, for any z ∈ C,
we have that ∥x− πC(x)∥22 + ∥πC(x)− z∥22 ≤ ∥x− z∥22. Therefore, it holds∫

1

(2πσ2)d/2
e−

∥x−z∥22
2σ2 dz ≤ e−

∥x−πC (x)∥22
2σ2

∫
1

(2πσ2)d/2
e−

∥πC (x)−z∥22
2σ2 dz

≤ e−
γ2

2σ2 Pr
z∼N (πC(x),σ2I)

[z ∈ C] ≤ e−
γ2

2σ2 ,

where for the penultimate inequality we used the margin assumption which implies that x must lie
γ-far from the boundary of C.

We are now ready to state and prove our main theorem about agnostic learning with geometric
margin γ.

Theorem 28 (Learning intersections of Halfspaces with γ-margin) Let D be a distribution on
Rd × {±1} where the x-marginal is bounded in the unit ball. Let F be the class of intersections
of k halfspaces. Then, there exists an algorithm that learns F in the γ-margin setting that takes
N = kpoly(log k/ϵγ) log(1/δ) samples, runs in time poly(d,N) and with probability at least 1 − δ,
over the samples it holds that

Pr
(x,y)∼D

≤ inf
f∈F

E
(x,y)∼D)

[ sup
∥u∥2≤γ

1{f(x+ u) ̸= y}] + ϵ .

Proof Let f∗ be the optimal hypothesis that minimizes the γ-margin error. From Lemma 27, we
have that supx/∈∂γf∗ S(x;σ, f) ≤ ϵ/2 when σ = γ/

√
2 log(2k/ϵ). The result is then implied by

Theorem 43 and Lemma 25.
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Theorem 29 (Learning F(k,Γ) with γ-margin) Let D be a distribution on Rd×{±1} where the
x-marginal is bounded in the unit ball. Then, there exists an algorithm that learns F in the γ-margin
setting that takes N = kpoly(k/ϵγ) log(1/δ) samples, runs in time poly(d,N) and with probability
at least 1− δ, over the samples it holds that

Pr
(x,y)∼D

≤ inf
f∈F(k,Γ)

E
(x,y)∼D)

[ sup
∥u∥2≤γ

1{f(x+ u) ̸= y}] + ϵ .

Proof Let f∗ be the function that achieves optimal γ-margin error. From Lemma 26, we have that
supx/∈∂γf∗ S(x;σ, f) ≤ ϵ/2 when σ = γ/

√
k log(2/ϵ. Our result is then implied by Lemma 25 and

Theorem 43.

Concept Class Runtime Model Source

Intersections of k halfspaces d · kÕ(k/ϵγ2) Agnostic Arriaga and Vempala (1999b)

Intersections of k halfspaces poly(d) · kpoly(log k/(γϵ)) Agnostic This work

Arbitrary functions of k halfspaces poly(d) · kpoly(k/(γϵ)) Agnostic This work

k dimensional Convex sets poly(d) · kpoly(k/(γϵ)) Agnostic This work

Table 2: Our results on distributions with geometric margin γ

B.3. Distribution Specific Learning

In this section, we study the classic setting of agnostic learning with respect to specific distributions.
Perhaps surprisingly, our smoothed learning model implies various new results in this standard
model.

First, we prove the following lemma that connects the smoothed error to the true error of a
function.

Lemma 30 (From Distribution Specific Agnostic to Smooth Agnostic) Fix some boolean func-
tion f : Rd 7→ {±1}d and some distribution D over labeled examples on Rd × {±1}. It holds

errσ(f,D) ≤ err(f,D) + E
x∼Dx

[S(x;σ, f)] .

Proof A triangle inequality implies that for any vectors x, z and label y, we have that 1{y ̸=
f(x + σz)} ≤ 1{f(x) ̸= y} + 1{f(x) ̸= f(x + σz)}. Taking expectation of (x, y) over D and
expectation of z over N (0, Id) implies the result.

Henceforth, we refer to the quantity Ex∼D[S(x;σ, f)] as the expected sensitivity of the function f
with respect to distribution D(or expected sensitivity of f for brevity).
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B.3.1. LEARNING WITH ANTI-CONCENTRATION AND CONCENTRATION

In this section, we consider the problem of agnostic learning when the marginal has both concen-
tration and anti concentration. In particular, we define the following notion of anti concentration.

Definition 31 (M -anti-concentrated distributions) We say that a distribution D on Rd is M -anti-
concentrated if for all ∥v∥2 = 1 and continuous intervals T ⊆ R, we have Pr[x · v ∈ T ] ≤ τ |T |

We consider M -anti-concentrated (α, λ)-strictly subexponential distributions in this section.
Let F be the class of arbitrary functions of k halfspaces. We prove that we can bound the expected
sensitivity of functions in F with respect to anti concentrated distributions.

Lemma 32 (Expected Gaussian Sensitivity of functions of halspaces with anticoncentration) Let
D be an M -anti concentrated distribution on Rd and let f be a boolean function on k halfspaces.
Then, for any ϵ > 0, we have that Ex∼D[S(x;σ, f)] ≤ k(2Mϵ+ e−ϵ2/(2σ2))

Proof Let f be the function f(x) = g
(
sign(w1 · x− b1), . . . , sign(wk · x− bk)

)
with ∥wi∥2 = 1

for all i ∈ [k] and g being an arbitrary boolean function on k variables. We can assume the bound on
the norms of the weights without loss of generality by renormalizing. Let S be the set of all vectors
y ∈ Rd such that there exists an i ∈ [k] such that wi ·y ∈ [bi−ϵ, bi+ϵ]. From M -anticoncentration
of D and a union bound, we have that Prx∼D[x ∈ S] ≤ k(2Mϵ).

We now bound S(x;σ, f) for x /∈ S. By definition of S, we have that |wi · x − bi| ≥ ϵ. Thus,
using a union bound and the tail bound for the 1-dimensional normal density, we have that

Pr
z∼N

[f(x+ σz) ̸= f(x)] ≤ ke−ϵ2/(2σ2)

Thus, we have Ex∼D[S(x;σ, f)] ≤ Prx∼D[x ∈ S] + ke−ϵ2/(2σ2) which completes the proof
since the first term is bounded by 2kMϵ.

We are now ready to give an algorithm to learn arbitrary boolean functions of k halfspaces under
strictly subexponential distributions with anti-concentration. We use our previous results on smooth
learning with respect to strictly subexponential distributions and the bound we proved above on the
expected sensitivity of these functions under anti concentrated distributions.

Theorem 33 (Agnostic Learning of functions of k halfspaces under anti-concentration) Let k ∈
Z+, ϵ, δ ∈ (0, 1) and M ∈ R. Let D be a distribution on Rd × {±1} such that the marginal distri-
bution is M -anticoncentrated (α, λ)-strictly subexponential. Let F be the class of all functions on

k halfspaces. There exists an algorithm that draws N = dpoly((λMk/ϵ)(1+1/α)3 ) log(1/δ) samples,
runs in time poly(d,N) and computes a hypothesis h(x) such that, with probability at least 1− δ,
it holds

Pr
(x,y)∼D

[y ̸= h(x)] ≤ min
f∈F

Pr
(x,y)∼D

[y ̸= f(x)] + ϵ .

Proof Let σ = (ϵ/(8
√
2Mk))

√
log(8/ϵ). The algorithm is simple. Run the algorithm from

Theorem 56 to get a hypothesis h with error at most optσ+ϵ/2. Since Γ(F) ≤ O(k), the algorithm

uses N = dpoly((λMk/ϵ)(1+1/α)3 ) log(1/δ) samples and runs in time poly(d,N). Using Lemma 32
with parameters σ and error ϵ/8Mk implies that Ex∼Dx [S(x;σ, f)] ≤ ϵ/2. From Lemma 30, we
get that the error of the classifier is at most minf∈F Pr(x,y)∼D[y ̸= f(x)] + ϵ.

24



SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

Concept Class Runtime Model Source

Arbitrary functions on k halfspaces poly(d) · d1/ϵ2 , k = O(1) Agnostic Gollakota et al. (2023)

Arbitrary functions on k halfspaces poly(d) · dpoly(k/ϵ) Agnostic This work

Table 3: Our results on strictly sub-exponential distributions with anticoncentration

B.3.2. LEARNING UNDER SMOOTHED DISTRIBUTIONS

Finally, we consider learning distribution that have been convolved with a Gaussian. This model
was studied in Kane et al. (2013). This is a natural beyond the worst-case model where the input
distribution is smoothed to make learnability easier. The problem of agnostically learning functions
of halfspaces under smoothed distributions was studied in Kane et al. (2013) where they obtained a
runtime that was double-exponential in the number of halfspaces. We significantly improve this by
reducing the runtime to only depend exponentially on the number of halfspaces.

For any distribution D on Rd, we denote the convolution D ∗ N (0, τ2Id) as Dτ . We call this a
τ -smoothed distribution. We argue that the expected sensitivity of functions in F(k,Γ) with respect
to τ -smoothed distributions strictly subexponential distributions is small .

Lemma 34 (Bounding Expected Sensitivity of Smoothed Distributions) Let f : Rd 7→ {±1}
be a function in F(k,Γ) and D be an (α, λ)-strictly subexponential distribution on Rd. Then, we
have that Ex∼Dτ [[S(x;σ, f)] ≤ O(σΓ

√
k/τ).

Proof Let fτ be the function defined as fτ (u) = f(τu) The quantity we want to bound is equal
to Ex∼D Ez1,z2∼N [|fτ ((1/τ)x+ z1 + (σ/τ)z2)− fτ ((1/τ)x+ z1)|]. We bound the inner expec-
tation pointwise for any x. Since F(k,Γ) is closed under shifts and the following argument only
relies on the bound on surface area, we assume that x = 0 without loss of generality.

Since fτ is k dimensional, we know that there exists an orthonormal matrix P such that fτ (x) =
fτ (PPTx). Let g be the function on Rk such that g(u) = fτ (Pu) for some orthonormal matrix P.
Clearly, fτ (x) = g(PTx). Using Lemma 45, we get that Γ(g) ≤ Γ. Thus, the quantity we want
to bound is Ez1,z2∼N [|g(PT z1 + (σ/τ)PT z2)− g(PT z1)|]. Using Lemma 46, we can bound this
term by O

(
ΓEz∼N (0,Ik)[∥(σ/τ)z∥2]]

)
≤ O(σΓ

√
k/τ). This completes the proof.

We also need the following lemma that proves that a τ -smoothed strictly subexponential distri-
bution is also strictly subexponential.

Lemma 35 Let D be an (α, λ)-strictly subexponential distribution on Rd and C > 0 be a suffi-
ciently large universal constant. Then, for any τ > 0, we have that Dτ is (min(α, 1), C·max(λ, τ))-
strictly subexponential.

Proof Let s = min(α, 1) and let r = max(λ, τ). For any unit norm vector v and t > 0, we have
that Pry∼Dτ [|v · y| ≥ t] is upper bounded by the maximum of the sum of Prz∼N [|v · τz| ≥ t]

and Prx∼D[|v · x| ≥ t] and 1. Let f(t) = 2 · e−t2/2τ2 and let g(t) = 2 · e−(t/λ)1+α
. Let q =

max(1, 4r). We have that f(t), g(t) ≤ 1/4 when t ≥ q. Thus, we have that Pry∼Dτ [|v · y ≥
q|] ≤ 2(f(t) + g(t)) ≤ 1. Let h(t) = 2 · e−(t ln 2/q)1+s ≥ 2 · e− ln 2(t/q)1+s

. Clearly, we have that
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h(q) ≥ 1/2 ≥ 2 ·max (f(q), g(q)). It is straightforward to see that h decreases slower than 2f and
2g. Thus, we have that 2h(t) ≥ max(2 · (f(t)+g(t)), 1) for all t ≥ 0. This implies that Pry∼Dτ ≤
2 · e−(t ln 2/q)1+s

for all t >≥ 0. This implies that Dτ is (min(α, 1), (4/ ln 2)max(λ, τ))-strictly
subexponential.

Now, we are ready to state and prove the main result of this section regarding agnostic learning
of functions with bounded surface area under τ -smoothed strictly subexponential distributions.

Theorem 36 (Agnostic learning under smoothed distributions) Let k ∈ Z+, ϵ, δ ∈ (0, 1) and
τ,Γ ∈ R+. Let D′ be an (α, λ)-strictly subexponential distribution on Rd. Let D be distribution on

Rd×{±1} with marginal D′
τ . Then, there exists an algorithm that draws N = dpoly

(
(λkΓ/(τϵ))(1+1/α)3 )

)
log(1/δ)

samples, runs in time poly(d,N) and computes a hypothesis h(x) such that, with probability at least
1− δ, it holds

Pr
(x,y)∼D

[y ̸= h(x)] ≤ min
f∈F(k,Γ)

Pr
(x,y)∼D

[y ̸= f(x)] + ϵ

Proof From Lemma 35, we know that D′
τ is (min(α, 1), Cmax(λ, τ))-strictly subexponential for

large universal constant C. For all f ∈ F(k,Γ), Lemma 34 implies that Ex∼D′
τ
[S(x;σ, f) ≤

ϵ/2 when σ = τ/2Γ
√
k. Now, we use Lemma 30 and Theorem 56 to obtain that there exists an

algorithm that draws N = dpoly
(
(kΓ/τϵ)(1+1/α)3

)
, runs in time poly(d,N) and outputs a hypothesis

h that has error at most minf∈F(k,Γ)Pr(x,y)∼D[y ̸= f(x)] + ϵ.

Appendix C. Details of Section 3

C.1. Polynomial approximation

Lemma 37 (Approximating the Ornstein-Uhlenbeck Smoothed Concept Tρfx(·)) Let C > 0
be some large universal constant. Let D be a distribution on Rd with every point x in the support of
D having ∥x∥2 at most R. Let f : Rd → {±1} and fx : Rd → R be defined as fx(z) = f(x+ z).
Then, for any ϵ > 0, there exists a polynomial pz parameterized by z such that:

1. It holds that Ex∼D Ez∼N
[∣∣pz(x)− Tρfx(z)

∣∣] ≤ ϵ,

2. The degree of pz is at most C(R/ρ)2 log(1/ϵ), and every coefficient of pz is bounded in

absolute value by dC
(
(R/ρ)2 log(1/ϵ)

)2
.

Proof We observe that Tρfx(z) = Es∼N [f(x +
√

1− ρ2z + ρs)] has the variable x inside f .
Recall that our goal is to construct a polynomial in x and, since we have no control over f (which
can possibly be very hard to approximate pointwise with a polynomial), we decouple f and x in the
expression of Tρfx by writing the function as an expectation over a Gaussian centered at x/ρ.

Tρfx(z) = E
s∼N

[
f(x+

√
1− ρ2z+ ρs)

]
= E

s∼N (x/ρ,I)

[
f(
√
1− ρ2z+ ρs)

]
,
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Next, we can recenter the expectation around zero and express the Ornstein-Uhlenbeck operator as
follows:

Tρfx(z) = E
s∼N

[
f(
√
1− ρ2z+ ρs) · N (s;x/ρ, I)

N(s;0, I)

]
= E

s∼N

[
f(
√
1− ρ2z+ ρs) · e−

∥x∥22
2ρ2

+(x/ρ)·s
]
.

To construct our polynomial, we now approximate e
− ∥x∥22

2ρ2
+(x/ρ)·s using the 1-dimensional Tay-

lor expansion of the exponential function q(x, s) = qm
(
−∥x∥22

2ρ2
+ (x/ρ) · s

)
where qm(t) = 1 +∑m−1

i=1
ti

i! is the degree m− 1 Taylor approximation of ex. Thus, our final polynomial pz(x) is

pz(x) = E
s∼N

[
f(
√

1− ρ2z+ ρs) · q(x, s)
]
.

Let ∆(x) be defined as the error term Ez∼N [|pz(x)− Tρ(fx(z))|]. We have that ∆(x) is equal to

∆(x) = E
z∼N

[
E

s∼N

[
|f(
√
1− ρ2z+ ρs)| ·

∣∣q(x, s)− e
− ∥x∥22

2ρ2
+(x/ρ)·s∣∣]]

≤ E
s∼N

[∣∣q(x, s)− e
− ∥x∥22

2ρ2
+(x/ρ)·s∣∣] ,

where for the inequality we used the fact that |f(x)| = 1 for all x. We now observe that when
s ∼ N the random variable −∥x∥22/(2ρ2) + (x/ρ) · s is distributed as N (−α2/2, α2), where
α = −∥x∥22/ρ2. Therefore, we have reduced the original polynomial approximation problem to
showing that the Taylor expansion of the exponential function converges fast in L1 to ex with respect
to N (−α2/2, α2).

Lemma 38 (Approximation of ex with respect to N (−a2/2, a2)) Fix a > 0 and sufficiently large
universal constant C > 0. Let p be the polynomial p(x) =

∑m−1
i=0

xi

i! with m = Ca2 log(1/ϵ). We
have that Ex∼N (−a2/2,a2)[|ex − p(x)|] ≤ ϵ.

Proof Let ∆ = Ex∼D[|ex − p(x)|] = Et∼N (0,1)[|e−a2/2+at − p(−a2/2 + at)|]. We have that ∆
can be bounded as the sum of the following two terms:

∆1 = E
t∼N1

[
2e|−

a2

2
+at| · 1{|t| > T}

]
and ∆2 = E

t∼N1

[
e|−

a2

2
+at| ·

∣∣−a2

2 + at
∣∣m

(m!)
· 1{|t| ≤ T}

]
.

The second term’s bound comes from the fact that |pe(x) − ex| ≤ e|x|

m! · |x|m. The first term’s
bound follows from the fact that |pe(x) − ex| ≤ 2e|x| which is true because of the following fact
whose proof can be found in Section C.1.

Lemma 39 For any m ∈ N, let pm : R → R be defined as the degree m Taylor expansion of ex.
That is, pm(x) = 1 +

∑m
i=1

xi

i! . Then we have |pm(x)| ≤ e|x| for all x ∈ R.

We first bound ∆1. We have that

∆1 ≤ 2
√

E
t∼N1

[e|−a2+2at|] Pr
t∼N1

[|t| > T ] ≤ 4
√

E
t∼N1

[e−a2+2at] Pr
t∼N1

[|t| > T ]

≤ 4
√
eCa2−T 2/2 ≤ ϵ/2 ,
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when T = C ′a log(1/ϵ) for large constant C ′. The first inequality follows by applying Cauchy-
Schwartz. The second follows from the symmetry of the Gaussian distibution. We get the third
inequality by using the following fact (see Section C.1 for the proof) and bounds on the tail of the
Gaussian distribution.

Lemma 40 There exists a large enough universal constant C such that for every u ∈ R it holds

that Ex∼N1

[(
N (x;u,1)
N (x;0,1)

)2]
≤ eCu2

.

We now bound ∆2. We have that
∣∣−a2

2 + at
∣∣ is atmost a2

2 + aT when |t| ≤ T . Thus, we obtain
that

∆2 ≤ e
a2

2
+aT

(
a2

2 + aT
)m

(m!)
≤ eCa2

(
Ca2 log(1/ϵ)

m

)m

≤ ϵ/2 ,

when m = C ′′a2 log(1/ϵ) for large constant C ′′. Thus, the final error of our polynomial is at most
ϵ.

We set a = ∥x/ρ∥2 in the above claim. Thus, the degree m of our taylor expansion is bounded by
O((R/ρ)2 log(1/ϵ)). Thus, we obtain that the final error of our polynomial is

E
x∼D

E
z∼Nk

[
|(Tρfx(z)− pz(x))|

]
≤ E

x∼D

[
∆1(x)

]
≤ ϵ.

The degree of our polynomial pz(u) is O((R/ρ)2 log(1/ϵ)). We now bound the coefficients
of pz(x). Since f is bounded by 1, it suffices to bound the coefficients of x in the polynomial
Ex∼N

[
q(x, s)

]
Since q(x, s) = pe

(
−∥x∥22

2ρ2
+ ⟨(x/ρ), s⟩

)
, it is a composition of a univariate poly-

nomial pe and a multivariate polynomial r(x, s) = −∥x∥22
2ρ2

+ ⟨(x/ρ), s⟩. We use the following fact
about the coefficients of the composition of polynomials. The proof can be found in Section C.1.

Lemma 41 Let p1(x) be a polynomial on R having degree ℓ1 and coefficients bounded by t1.
Let p2(x) be a polynomial on Rd of degree ℓ2 with coefficients bounded by t2. The polynomial
q(x) = p1(p2(x)) has coefficients bounded by t1t

ℓ1
2 · (Cd)2ℓ1ℓ2 for large constant C.

Thus for a fixed x, we have obtain that the coefficients of q(u,x) are bounded by ∥x∥m∞ ·
(C1k)

m for large enough constant C1. Thus, the coefficients of Ex∼N
[
q(u,x)

]
are bounded by

Ex∼N
[
∥x∥m∞ · (C1k)

m
]

which is bounded above by (C2d)
m2

for large enough C2. This follows
from the fact that ∥x∥m∞ ≤

∑k
i=1 |xi|m and the fact that Ex∼N

[
|xi|m

]
is atmost (C3m)m for

some constant C3. Thus, we finally conclude that the coefficients of pz(u) are bounded above by

dC
(
(R/ρ)2 log(1/ϵ)

)2
for some large constant C.

Proof [Proof of Lemma 39] For any x ∈ R, |pm(x)| ≤ pm(|x|). We prove the claim by induction on
m. Clearly, p0(x) = 1 ≤ e|x|. Now, by induction, we have | d

dxpm(x)| = |pm−1(x)| ≤ e|x| ≤ d
dxe

x

where the last inequality holds for all x > 0. Also, we have pm(0) = e0. Thus, we get that
|pm(x)| ≤ e|x|.
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Proof [Proof of Lemma 40] The proof is below is a obtained by completing the squares.

E
x∼N1

[(
N (x;u, 1)

N (x; 0, 1)

)2
]
=

∫
z∈R

e−
1
2(2u

2+z2−4uz)dz

=

∫
z∈R

eu
2 · e−

1
2
(2u−z)2dz ≤ eCu2

.

Lemma 42 Let p(u) be a polynomial on Rk having degree ℓ and coefficients bounded by t. Then
q(u) = (p(u))m has coefficients bounded by tm · (Ck)ℓm for large constant C.

Proof The number of monomials in a polynomial of degree ℓ on Rk is at most
∑ℓ

i=0

((
k
i

))
=(

k+ℓ
k

)
≤ (e ·(k+1))ℓ. Expanding q(x) = (p(x))m as a sum, we get (Ck)ℓm product terms for large

constant C. Each of the terms in this sum have coeffients bounded by tm. Since every monomial
is formed as a sum of a subset of these terms, we get that the coefficients of each monomial in q is
bounded by tm · (Ck)ℓm

Proof [Proof of Lemma 41] Let p1(x) =
∑ℓ1

i=0 cix
i. Thus, q(x) =

∑ℓ1
i=0 ci (p2(x))

i. For any
monomial of q, the contribution to the coefficient from each term in the previous sum is atmost
t1 · tℓ12 · (Ck)ℓ1ℓ2 for large constant C from Lemma 42. Thus, the coefficients are bounded by
ℓ1t1 · tℓ12 · (Ck)ℓ1ℓ2 ≤ t1t

ℓ1
2 · (Ck)2ℓ1ℓ2

C.2. Random Projection and Polynomial Regression

We are now ready to implement the second and third steps in our plan. The algorithmic idea is
simple: reduce dimension by applying a random projection and then run polynomial regression in
this low dimension space.

Algorithm 1 Agnostic Learner for Smooth Boolean Concepts with Random Projection

Input: Labeled Dataset S = {(xi, yi)}i∈[N ], degree ℓ, subspace dimension m
Output: Hypothesis h

Sample Random Matrix R ∈ Rm×d with each entry sampled from N (0,1)√
m

Find polynomial p of degree at most ℓ such that p minimizes 1
N

∑N
i=1 |p(Rxi)− yi|

Choose t ∈ [−1, 1] such that
∑N

i=1 1[sign
(
p(Rxi)− t

)
̸= yi] is minimized.

Output hypothesis h, such that h(x) = sign
(
p(Rx)− t

)
The above algorithm is run with degree and subspace dimension chosen according to the error

we target. We boost the success probability using a standard technique of repeating the algorithm
multiple times and choosing the hypothesis that performs best on an independently chosen vali-
dation set. Our choice of the subspace dimension m depends on the intrinsic dimension of our
function f . The degree ℓ we choose depends on the degree bound we obtain from Proposition 9.
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For projection matrix P ∈ Rd×k, let f(x) = f(PPTx) = g(PTx) for all x. We argue that with
good probability over the random projection matrix R, we have that ∥PTx − (PTRTRx)∥2 is
bounded(Lemma 44) for all sample points (x, y) in our input data set. Using this and the bounds on
surface area, we argue that Ez∼N |f(x + σz) − f(RTRx + σz)| is bounded for all x in the data
set. Thus, we can treat Rx as our inputs and the work in the m-dimensional space. From here, the
proof is straightforward and uses ideas similar to Kalai et al. (2005). We now describe in full detail
the proof of our main theorem.

Theorem 43 Let k ∈ Z+ and ϵ, δ, σ ∈ (0, 1). Let D be a distribution on Rd × {±1} whose x-

marginal is bounded in the unit ball. There exists an algorithm that draws N = kÕ
(
(Γ/ϵ)4(1/σ2)

)
log(1/δ)

samples, runs in time poly(d,N), and computes a hypothesis h(x) such that, with probability at
least 1− δ, it holds Pr(x,y)∼D[y ̸= h(x)] ≤ optσ + ϵ .

Proof The algorithm is as follows: run Algorithm 1 O
(
log(1/δ)/ϵ

)
times with the same random

matrix R and fresh samples each time with parameters N, ℓ, k which will be chosen later. Output
the hypothesis that has the lowest error on a validation set of size O

(
log(1/δ)/ϵ2

)
. Clearly the run

time is dominated by the time required for polynomial regression which is at most poly(d,N).
We now argue the correctness of the algorithm. Let f∗ ∈ F(k,Γ) be the optimal function that

achieves optσ. There exists some orthonormal matrix P ∈ Rd×k such that f∗(u) = f∗(PPTu)
for all u ∈ Rd. We say that matrix R is (α)-good for a set S if ∥PTx − PTRTRx∥2 ≤ α for all
x ∈ S. We crucially use the following claim which we prove in the end of this section.

Lemma 44 Let S ⊆ Rd with ∥x∥2 ≤ B for all x ∈ S and W ∈ Rk×d with ∥W∥2 ≤ λ. Sample a
m×d random matrix R with every entry sampled from N (0,1)√

m
where m = O

(
(Bλ)2k log(|S|/δ)/ϵ2

)
.

Then, with probability 1− δ, we have that ∀x ∈ S, ∥Wx− (WRTRx)∥2 ≤ ϵ

We choose the dimension m in such a way that Lemma 44 implies with probability at least 1−
(δϵ/16) that the random gaussian matrix R is (ϵ/(32Γ))-good for a given set S of size N . Having
chosen m in this way, it is easy to see that with probability at least 1 − (δ/2), the random matrix
R is (ϵ/(32Γ))-good for at least 1 − (ϵ/8) mass of the datasets S drawn from D⊗N . Henceforth,
we assume that R satisfies the above property. From here, our analysis is similar to the proof of
Theorem 5 of Kalai et al. (2005) accompanied with applications of Lemma 44 and Proposition 9.

Consider the sample dataset S = {(xi, yi)}i∈[N ] of size N in a single run of Algorithm 1. Let pS
be the polynomial chosen by the algorithm and let hS be the corresponding hypothesis that the algo-
rithm outputs. From the proof of Theorem 5 of Kalai et al. (2005), we have that 1

N

∑N
i=1 1[hS(xi) ̸=

yi] ≤ min
(

1
2N

∑N
i=1 |pS(Rxi) − yi|, 1

)
. We now bound ES∼D⊗N [1[hS(xi) ̸= yi]] by bounding

the expectation of the right hand side. We have that

min

(
1

2N

N∑
i=1

|pS(Rxi)− yi|, 1
)

≤ min

(
E

z∼N

[
1

2N

N∑
i=1

|pz(Rxi)− yi|

]
, 1

)

≤ min

(
E

z∼N

[
1

2N

N∑
i=1

|pz(Rxi)− f∗(xi + σz)|

]
, 1

)
︸ ︷︷ ︸

∆1(S)

+ E
z∼N

[
1

2N

N∑
i=1

|f∗(xi + σz)− yi|

]
︸ ︷︷ ︸

∆2(S)
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The first inequality follows from the fact that pS is the minimizer of the error and thus beats any
polynomial pz which we choose later. The second is a triangle inequality. We bound the two terms
separately. For any function f , let fσ be the function defined as fσ(x) = f(σx). Let g∗ be the
function on Rk defined as g∗(u) = f∗(Pu). Recall that f∗(x) = f∗(PPTx) = g∗(PTx). We use
the following claim to bound the surface area of g∗ by Γ. The proof is available in the end of this
section.

Lemma 45 Let f : Rd → {±1} be a function such that f(x) = f(PPTx) for some orthonormal
matrix P ∈ Rd×k. Define g : Rk → {±1} to be the function g(y) = f(Px). Then, we have that
Γ(g) = Γ(f).

First consider ∆1(S). We define the terms

∆11(S) = E
z∼N

[
1

2N

N∑
i=1

|pz(Rxi)− f∗(RTRxi + σz)|

]

and

∆12(S) = E
z∼N

[
1

2N

N∑
i=1

|f∗(RTRxi + σz)− f∗(xi + σz)|

]
to help us bound ∆1(S).

Observe that ∆11(S) = Ez∼N

[
1
2N

∑N
i=1 |pz(Rxi)− g∗(PTRTRxi + σPT z)|

]
. Condition-

ing on the event that R is (ϵ/(32Γ))-good for S, we have that ∥PTRTRxi∥2 ≤ ∥PTxi∥2 + ϵ
for all i ∈ [N ]. Recall that g∗(y + σz) = g∗σ(y/σ + z). Using the fact that F(k,Γ) is closed
under scaling, we have that Γ(g∗σ) ≤ Γ. Thus, using Proposition 9, we obtain a polynomial qz
of degree ℓ = O

(
(Γ/ϵ)4(1/σ2) log(1/ϵ)) such that Ex∼DS

Ez∼N
[
|g∗σ
(
(PTRTR/σ)x + PT z

)
−

qz(P
TRTRx/σ)|

]
≤ ϵ/4 where DS is the uniform distribution over the samples S. Let pz be the

polynomial pz(u) = qz(P
TRTu/σ). Clearly, pz(Rx) = qz(P

TRTRx/σ). Thus, we obtain that
∆11(S) ≤ ϵ/8.

Observe that ∆12(S) is equal to Ez∼N

[
1
2N

∑N
i=1 |g∗(PTRTRxi + σz)− g∗(PTxi + σz)|

]
.

We use the following lemma(proof in the end of this section) along with the fact that R is (ϵ/(32Γ))-
good for S to obtain that ∆12(S) ≤ ϵ/4.

Lemma 46 Let F be a class of binary functions with sufficiently smooth decision boundaries that
is close under arbitrary translations, and whose elements have Gaussian Surface area bounded by
Γ. Then, for u,v ∈ Rd, we have Ez∼N

[
|f(u+ z)− f(v + z)|

]
≤ 8 · Γ · ∥u− v∥2.

From a triangle, inequality, it follows that ∆1(S) ≤ min
(
∆11(S) + ∆12(S), 1

)
. Thus, we get that

∆1(S) ≤ (3ϵ/8) when R is (ϵ/(32Γ))-good for S and at most 1 otherwise. Also recall that the
second event happens with probability at most ϵ/8 over S. Thus, we have that ES∼D⊗N [∆1(S)] ≤
3ϵ/8 + ϵ/8 ≤ ϵ/2. Thus, we have that

E
S∼D⊗N

[
min

(
1

2N

N∑
i=1

|pS(Rxi)− yi)|, 1
)]

≤ E
S∼D⊗N

[∆1(S) + ∆2(S)] ≤ ϵ/2 + E
S∼D⊗N

[∆2(S)] ≤ optσ + ϵ/2
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The final inequality follows from the definition of optσ. Thus, we have that

E
S∼D⊗N

[
1

N

N∑
i=1

1[hS(xi) ̸= yi]

]
≤ optσ + ϵ/2.

Since our hypothesis hS is a PTF of degree ℓ on m variables, VC theory tells us that for N =
poly(mℓ/ϵ), we have that

E
S∼D⊗N

[
Pr

(x,y)∼D
[y ̸= hS(x)]

]
≤ optσ + 3ϵ/4.

By Markov’s inequality, we have that with probaility atleast ϵ/16 over samples S, we have
that Pr(x,y)∼D[y ̸= hS(x)] ≤ optσ + 7ϵ/8. Let h1, h2, . . . , hr be the r hypotheses outputted
on the r = O(log(1/δ)/ϵ) repetitions of algorithm 2. With probability at least 1 − δ/4, there
exists i ∈ [r] such that Pr(x,y)∼D[y ̸= hi(x)] ≤ optσ + 7ϵ/8. Thus, using the validation set
of size O(log(1/δ)/ϵ2), with probability at least 1 − δ/4, we choose a hypothesis h such that
Pr(x,y)∼D[y ̸= h(x)] ≤ optσ + ϵ. Thus with total error probability of at most δ, our algorithm
outputs a hypothesis h such that

Pr
(x,y)∼D

[y ̸= h(x)] ≤ optσ + ϵ

We now calculate the required parameters. The degree ℓ is O
(
(Γ/ϵ)4(1/σ2) log(1/ϵ)

)
. The

dimension m is O
(kΓ2 logN

(ϵσ)2
log(k/(δϵ))

)
and the number of samples N = poly(mℓ/ϵ). We get that

these conditions are satisfied when N = poly

((
kΓ2/(σϵ)2

)ℓ) and m ≥ poly

(
kΓ2 log(k/(δϵ))

(ϵσ)2

)
.

Lemma 47 (Arriaga and Vempala (1999b)) Let S ⊆ Rd with ∥x∥2 ≤ 1 for all x ∈ S and
w ∈ Rd with ∥w∥2 ≤ 1. Sample a m × d random matrix R with every entry sampled from N (0,1)√

m

where m = O
(
log(|S|/δ)/ϵ2

)
. Then, with probability 1 − δ, we have that ∀x ∈ S, |⟨w,x⟩ −

⟨Rw,Rx⟩| ≤ ϵ

Proof [Proof of Lemma 44] Using Lemma 47 on set S with ϵ′ = ϵ/(
√
kλB) and δ′ = δ/k we get

that with probability at least 1− δ/k,

|⟨Wi,x⟩ − ⟨RWi,Rx⟩| ≤ ∥Wi∥2∥x∥2ϵ′ ≤ ϵ/
√
k

for fixed i ∈ [k]. The first inequality follows from the definition of norm and the second inequality
follows from the fact that ∥Wi∥2 ≤ ∥W∥2 for all i. Now, applying a union bound gives us that
|⟨Wi,x⟩ − ⟨RWi,Rx⟩| ≤ ϵ/

√
k for all i ∈ [k]. Thus, with probability at least 1− δ, we have

∥Wx−WRTRx∥2 ≤
√
k
∥∥Wx−WRTRx

∥∥
∞ ≤ ϵ

Proof [Proof of Lemma 45] Since the Gaussian density is spherically symmetric, we have that the
Gaussian surface area is spherically symmetric under rotations. Thus, we can assume that PT =
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[
I 0

]
where I is the k × k identity matrix. We have that f(x) = f(xk) where xk

i = xi for i ≤ k

and 0 otherwise. Let Af = {x ∈ Rd : f(x) = 1}. Similarly, define Ag = {y ∈ Rk : g(x) = 1}. It
is easy to see that Af = Ag × Rd−k. We are now ready to prove the lemma. For any set S, let Sδ

denote the set of points at distance at most δ from S. Then, we have that

Γ(f) = lim inf
δ→0

1

δ
Pr

z∼N (0,Id)

[
z ∈ Aδ

g×Rd−k\Ag×Rd−k
]
= lim inf

δ→0

1

δ
Pr

z∼N (0,Ik)

[
z ∈ Aδ

g\Ag

]
= Γ(g)

Proof [Proof of Lemma 46] Let g(t) = Ez∼N [|f(u+z)−f(u+ t · v−u
∥v−u∥2 +z)|]. We first observe

that, if g is differentiable, then
∫ ∥u−v∥2
t=0 g′(t) dt = Ez∼N [|f(u + z) − f(v + z)|]. Therefore,

it suffices to show that g′ is differentiable and to bound the quantity g′(t) uniformly over t ∈
[0, ∥u− v∥2] by O(Γ).

Let Af = {x ∈ Rd : f(x) = 1} and Af (u) such that x ∈ Af (u) iff x + u ∈ Af . Recall that
we have f : Rd → {±1} and therefore we may express g(t) as follows, where w = v−u

∥v−u∥2 .

g(t) = 2 Pr
z∼N

[z ∈ Af (u)△Af (u+ t ·w)]

where △ is the symmetric difference. Let B(t) = Af (u)△Af (u + t · w). Then, we have the
following

g′(t) = lim
δ→0

g(t+ δ)− g(t)

δ

= lim
δ→0

2

δ
·
(

Pr
z∼N

[z ∈ B(t+ δ) \B(t)]− Pr
z∼N

[z ∈ B(t) \B(t+ δ)]
)
.

In order to bound |g′(t)| (which is an upper bound for g′(t)), we bound the quantity corresponding to
the first term in the limit limδ→0

2
δ ·Prz∼N [z ∈ B(t+δ)\B(t)] (and similarly the one corresponding

to the other term). In particular, we have B(t+ δ) \B(t) ⊆ Af (u+ t ·w)△Af (u+ (t+ δ) ·w),
which implies that |g′(t)| ≤ 4 limδ→0

1
δ Prz∼N [z ∈ Af (u+ t ·w)△Af (u+(t+ δ) ·w)]. Denote

with Aδ
f the set containing all the points with distance at most δ from the boundary of Af . Denote

with fu the function with fu(x) = f(u+x). Since F is closed under translations and only contains
functions with sufficiently smooth boundaries (see, e.g., (Kane, 2010, Proposition A.3)), we have
that

Γ ≥ Γ(fu+tw) = lim
δ→0

Prz∼N [z ∈ Aδ
fu+tw

]

2δ

Observe now that Af (u + t · w)△Af (u + (t + δ) · w) ⊆ Aδ
fu+tw

, which therefore implies the
desired bound.

Lemma 48 Let Q1 be a univariate distribution such that Ex∼Q1 [|x|p] ≤ (C · p)p where C is a
constant associated with the distribution and p ≤ t. Then,

E
x∼Q1

[h2t (x+ u)] ≤ t5t · C2tmax(1, u2t)
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Proof We have that

ht(x) =
√
t!

⌊
t
2

⌋∑
m=0

(−1)m

m!(t− 2m)!

xn−2m

2m
.

We have

E
x∼Q1

(x+ u)d = E
x∼Q1

[
d∑

i=0

(
d

i

)
xiud−i

]
≤ 2d

n
max
i=0

E
x∼Q1

[
|x|iud−i

]
≤ 2d(Cd)dmax(1, ud) .

This implies that

E
x∼Q1

[h2t (x+ u)] ≤ E
x∼Q1


t2t ·

⌊
t
2

⌋∑
i=0

⌊
t
2

⌋∑
j=0

(x+ u)2t−2i−2j




≤ t2t · t222t(2Ct)2tmax(1, u2t)

≤ t5t · C2tmax(1, u2t)

Lemma 49 Let Q be a multivariate product distribution on Rk such that for any i ∈ [k] and any
p ∈ N we have Ew∼Q[|wi|p] ≤ (C · p)p for some constant C > 0. Let S ∈ Nk be a multi index.
Then

E
w∼Q

[H2
S(w − u)] ≤ C |S| log |S|max{1, ∥u∥2|S|∞ }

Proof

E
w∼Q

[H2
S(w − u)] = E

w∼Q

∏
i∈[k]

h2Si
(wi − ui)


=
∏
i∈[k]

E
w∼Q

[
h2Si

(wi − ui)
]

≤
∏
i∈[k]

S5Si
i C2Si max{1,u2Si

i } (Lemma 48)

= exp

∑
i∈[k]

5Si log(Si)

C2
∑

i∈[k] αi
∏
i∈[k]

max{1,u2Si
i }

≤ C |S| log |S|max{1, ∥u∥2|S|∞ }
(
∑

i∈[k] Si = |S|, ui ≤ ∥u∥∞, log(Si) ≤ log(|S|))
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Appendix D. Deferred proofs from Section 4

Lemma 50 Let D be a distribution on Rk that is (α, λ)-strictly subexponential. Let f : Rk 7→
{±1} be a boolean function such that for all r ∈ Rk it holds that the GSA of fr is at most Γ. Then
there exists a polynomial pz parametrized by z and large universal constant C such that

1. The (expected) L1 error of pz, Ez∼Nk
Eu∼D

[
|pz(u)− f(z+ u)|

]
is at most ϵ,

2. The degree of pz is at most
(
CλkΓ2 log(1/ϵ)/ϵ2

)64(1+1/α)3 ,

3. Every coefficients of pz is bounded(in absolute value) by e(CλkΓ2 log(1/ϵ)/ϵ2)
70(1+1/α)3

.

Proof From Lemma 12, we have Ez∼N (0,I) [|Tρfu(z)− f(z+ u)|] ≤ 2
√
πρ · Γ. Choosing ρ =

O(ϵ2/Γ2) makes this error at most ϵ/2.
We now approximate Tρfu using a polynomial.We know that Eu∼D Ez∼N [|Tρfu(z)− fu(z)|]

is at most
√

Eu∼D Ez∼N

[
(Tρfu(z)− fu(z))

2
]
. Thus, using Lemma 51, we get a polynomial

pz of degree
(
Cλk log(1/ϵ)Γ2/ϵ2

)64(1+1/α)3 such that Eu∼D Ez∼N
[
|Tρfu(z) − pz(u)|

]
≤ ϵ/2

where C is a large universal constant. Also recall that the coefficients of pz are bounded by

e(Cλk log(1/ϵ)/ρ)70(1+1/α)3

. From a triangle inequality, we get Eu∼D Ez∼N
[
|pz(u)− f(z+u)

]
≤ ϵ.

We now construct the polynomial approximator for Tρfu and bound it’s error.

Lemma 51 (Polynomial approximation of Tρfu) Let D be a (α, λ)-strictly subexponential dis-
tribution on Rk and f : Rk → {±1} be any function. Let fu be the function defined as fu(x) =
f(u+ x). Then, there exists a polynomial pz(u) parametrized by z and large universal constant C
such that

1. It holds that Eu∼D Ez∼Nk

[
(pz(u)− Tρfu(z))

2
]
≤ ϵ,

2. The degree of the polynomial pz is at most (Cλk log(1/ϵ)/ρ)64(1+1/α)3 ,

3. Every coefficient of pz is bounded(in absolute value) by e(Cλk logB log(1/ϵ)/ρ)70(1+1/α)3

.

Proof Let Q be the distribution on Rk with probability distribution function Q(x) = 1
2k
e−

∑
|xi|.

We have that

Tρfu(z) = E
x∼Nk

[
f(u+

√
1− ρ2z+ ρx)

]
= E

x∼N (u/ρ,I)

[
f(
√
1− ρ2z+ ρx)

]
= E

x∼Q

[
f(
√

1− ρ2z+ ρx) · N (x;u/ρ, I)

Q(x)

]
= e

− ∥u∥22
2ρ2 E

x∼Q

[
f(
√
1− ρ2z+ ρx) · e−

∥x∥22
2

−logQ(x)e(u/ρ)·x
]
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where the second equality follows by recentering the distribution of x and the final equality comes
from expanding the ratio of the two probability density functions.

We now define a polynomial pz(u) approximating Tρfu(z). To do this, we approximate e−
∥u∥22
2ρ2

and eu·x using polynomials in u. First, we use a polynomial p1(u) to approximate e

(
−∥u∥22
2ρ2

)
. This

polynomial is given by the following lemma whose proof is at the end of this section. We choose
the parameters later.

Lemma 52 Let b ∈ Z+. Let D be a (α, λ)-strictly subexponential distribution on Rk. Then, there
exists a polynomial q of degree O

(
(b2λk log(1/ϵ))2+2/α

)
such that

1. The approximation error Ex∼D

[(
q(x)− e(−∥x∥22)

)b]
is upper bounded by ϵ

2. Every coefficient of q is bounded(in abolute value) by kO((b
2λk log(1/ϵ))2+2/α) .

Second, to approximate e(u/ρ)·x, we use the function p2(u,x) = pe((u/ρ) ·x)1{∥x∥2 ≤ T} where
pe(x) = 1 +

∑m−1
i=1

xi

i! is the degree m− 1 Taylor approximation of ex. We choose m and T later.
Thus, our final approximation Tρfu is

pz(u) = p1(u) E
x∼Q

[
f(
√

1− ρ2z+ ρx) · e−
∥x∥22

2
−logQ(x)p2(u,x)

]
︸ ︷︷ ︸

q(u)

.

pz(u) is a polynomial in u as both p1 and p2 are polynomials in u when x is fixed and the de-
pendence on x gets marginalized out making q a polynomial as well. The indicator variable in
the definition of p2 makes our calculations easier and the analysis cleaner. We now want to bound
Eu∼D Ez∼N

[
(pz(u) − Tρfu(z))

2
]
. To help us analyse the error, we define the ”hybrid” function

p̃z(u) such that

p̃z(u) = e
− ∥u∥22

2ρ2 E
x∼Q

[
f(
√
1− ρ2z+ ρx) · e−

∥x∥22
2

−logQ(x)p2(u,x)

]
.

We have that

E
u∼D

E
z∼Nk

[
(Tρfu(z)−pz(u))

2
]
≤ 2· E

u∼D

[
E

z∼Nk

[
(Tρfu(z)− p̃z(u))

2
]

︸ ︷︷ ︸
∆1(u)

+ E
z∼N

[
(p̃z(u)− pz(u))

2
]

︸ ︷︷ ︸
∆2(u)

]

from the fact that (a + b)2 ≤ 2(a2 + b2). We now bound ∆1(u) and ∆2(u) separately. We have
that

∆1(u) = E
z∼Nk

E
x∼Q

[
f2(
√
1− ρ2z+ ρx)e

2

(
−∥u∥22
2ρ2

− ∥x∥22
2

−logQ(x)

) (
p2(u,x)− e(u/ρ)·x

)2]
= E

z∼Nk

E
x∼Q

[
e

(
− ∥u∥22

ρ2
−∥x∥22−2 log Φ(x)

)(
p2(u,x)− e(u/ρ)·x

)2]
︸ ︷︷ ︸

∆̃1(u)
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since |f(x)| = 1. Observe that ∆̃1(u) can be bounded as the sum of the following two terms.

∆11(u) = E
x∼Q

[
e

(
−∥u∥22

ρ2
−∥x∥22−2 logQ(x)

)
e2|(u/ρ)·x|

(m!)2
|(u/ρ) · x|2m1{∥x∥ ≤ T}

]
and

∆12(u) = E
x∼Q

[
e

(
−∥u∥22

ρ2
−∥x∥22−2 logQ(x)

)
e2(u/ρ)·x1{∥x∥ > T}

]
where we used the fact that |pe(x)−ex| ≤ e|x|

m! · |x|
m and the fact that p2(u,x) = 0 when ∥x∥2 ≥ T .

We first bound ∆11. We have that

∆11(u) ≤ 2 · E
x∼Q

[
e

(
− ∥u∥22

ρ2
−∥x∥22−2 logQ(x)

)
+2(u/ρ)·x

]
(T∥u/ρ∥2)2m

(m!)2

≤ 2 · (T∥u/ρ∥2)
2m

(m!)2

√√√√ E
x∼Q

[(
N (x;u/ρ, I)

Q(x)

)4
]
≤ Ck

1 e
C1∥u/ρ∥1 (T∥(u/ρ∥2)

2m

(m!)2

where C1 is a large constant. The first inequality follows using the fact that Q is symmetric( we
replaced e|(u/ρ)·x| by 2e(u/ρ)·x) and the second inequality follows from an application of Cauchy
Schwartz. The last inequality follows from following claim whose proof is in the end of this section.

Lemma 53 Define the distribution Q on Rk with density function Q(x) = (1/2)ke−∥x∥1 . Then,
there exists a large universal constant C such that for every vector u, it holds that

E
x∼Q

[(
N (x;u, I)

Q(x)

)4
]
≤ CkeC∥u∥1 .

We now compute Eu∼D [∆11(u)] as we will need it later.

E
u∼D

[∆11(u)] ≤ Ck
1

√√√√ E
u∼D

[
e2C1∥u/ρ∥1

]
E

u∼D

[
(T∥u/ρ∥2)4m

(m!)4

]

≤ Ck
1

√√√√ E
u∼D

[
e2C1∥u/ρ∥1

] k∑
i=1

km E
u∼D

[
(T |ui/ρ|)4m

(m!)4

]

≤ C(Cλk/ρ)3+3/α
(

CkeTλ

mα/1+α · ρ

)4m

≤ δ

when m = (C ′Tλk/ρ)3+3/α log(1/δ) where C ′ is a large enough constant. The first inequality
follows from an application of the Cauchy-Schwartz inequality. The second inequality uses the fact
that ∥u∥2 ≤

√
k ∥u∥∞ ≤

√
k
∑k

i=1 |ui|. The third inequality is obtained using Definition 11 and
the following claim.

Lemma 54 (Section D.1) If D on Rk is (α, λ)-strictly subexponential, then for any constant b > 0,
we have

E
u∼D

[
eb∥u∥1

]
≤ C(Cbλk)3+3/α

for large enough constant C > 0.
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We now bound ∆12(u).

∆12(u) ≤

√√√√ E
x∼Q

[(
N (x;u/ρ, I)

Q(x)

)4
]
· Pr
x∼Q

[∥x∥2 > T ]

≤

√√√√ E
x∼Q

[(
N (w;u/ρ, I)

Q(x)

)4
]
· k · e−T/k

≤ Ck
2 e

C2∥u/ρ∥1e−T/k

where the first inequality is Cauchy-Schwartz. The last inequality follows from Lemma 53. The
second inequality follows from the following fact about the exponential tail(proof in the end of this
section).

Lemma 55 Let D be the distribution on Rk with density function Φ(x) = (1/2)ke−∥x∥1 . We have
that

Pr
x∼D

[∥x∥2 > T ] ≤ 2k · e−T/k

Thus, we have that

E
u∼D

[∆12(u)] ≤ Ck
2 · E

u∼D

[
eC2∥u/ρ∥1

]
e(−T/k) ≤ Ck · C(Cλk/ρ)3+3/α · e(−T/k) ≤ δ

when T = ((Cλk/ρ)4+4/α log(1/δ)).
Plugging this into the bound for m, we get m ≤ (C ′λk log(1/δ)/ρ)15(1+1/α)2 for large constant

C ′. Thus we now get Eu∼D [∆1(u)] ≤ Eu∼D

[
∆11(u) + ∆12(u)

]
≤ ϵ/4 when δ = ϵ/8.

We now bound ∆2(u). We have that

∆2(u) = E
z∼Nk

[
(p̃z(u)− pz(u))

2
]

= E
z∼Nk

[(
p1(u)− e

− ∥u∥22
2ρ2
)2 · ( E

x∼Q

[
f(
√
1− ρ2z+ ρx) · e−

∥x∥22
2

−logQ(x) · p2(u,x)
])2]

≤
(
p1(u)− e−

∥u/ρ∥22
2
)2 · E

z∼Nk

[(
E

x∼Q

[
f(
√
1− ρ2z+ ρx) · e−

∥x∥22
2

−logQ(x) · p2(u,x)
])2]

where the last inequality follows since u doesn’t depend on z. We bound the last term in the product
above as

E
z∼Nk

[(
E

x∼Q

[
f(
√
1− ρ2z+ ρx) · e−

∥x∥22
2

−logQ(x) · p2(u,x)
])2]

≤ E
x∼Q

[
e−∥x∥22−2 logQ(x)

]
· E
x∼Q

(1 + m−1∑
i=1

(
(u/ρ) · x

)i
i!

)2

1{∥x∥2 < T}


≤ 22k E

x∼Q

[
e−∥x∥22+2∥x∥1

]
·

(
m−1∑
i=0

(T∥u/ρ∥2)i
)2

≤ Ck ·

(
m−1∑
i=0

(T∥u/ρ∥2)i
)2

for large enough constant C. The first inequality follows from an application of Cauchy Schwartz
and the fact that f is boolean. The second inequality comes from expanding p2 and conditioning on
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the event that ∥x∥2 < T . The last inequality comes from applying Cauchy Schwartz once more and
using Lemma 53 with u set to zero.

Thus, we have

E
u∼D

[∆2(u)] ≤ Ck E
u∼D

[(
p1(u)− e−

∥u/ρ∥22
2
)2 · (m−1∑

i=0

(T∥u/ρ∥2)i
)2]

≤ Ck

√√√√ E
u∼D

[(
p1(u)− e−

∥u/ρ∥22
2

)4]
· E
u∼D

[(m−1∑
i=0

(T∥u/ρ∥2)i
)4]

≤ Ck · δ ·

√
E

u∼D

[
(mTm)4

m−1
max
i=0

∥u∥4i2
]

≤ Ck · δ · (mTm)2(4mkλ)2m

≤ ϵ/4

when δ is chosen accordingly. The second inequality is obtained by applying Cauchy-Schwartz.
p1(u) is chosen such that it has approximation error δ2 when using Lemma 60 with exponent 4.
The penultimate inequality is obtained by using the fact that ∥u∥2 ≤

√
k ∥u∥∞ and then using

Definition 15. The degree of p1(u) required to get this error is O
(
(C ′m2k2λ log(1/ϵ)/ρ)2+2/α

)
where C ′ > 0 is a large enough universal constant.

Putting everything together, we get that Eu∼DEz∼N
[
(Tρfu(z)−pz(u))

2
]
≤ ϵ. The total degree

of pz(u) is deg(p1) + deg(p2) which is at most (Cλk log(1/ϵ)/ρ)64(1+1/α)3 for large enough C.
We now bound the coefficients of pz. To do this we first recall the definition of pz(u) and

observe some properties. Recall that pz(u) = p1(u) · q(u) where

q(u) = E
x∼Q

[
f(
√

1− ρ2z+ ρx) · e−
∥x∥22

2
−logQ(x) · p2(u/ρ,x)

]
.

Thus, pz(u) is the product of two polynomials. p1(u) has bounded coefficients as given by Lemma 52.
We now bound the coefficients of q(u). Since p2(u,x) = pe((u/ρ) · x)1{∥x∥2 ≤ T}, the q(u)
term only picks up non zero values when ∥x∥2 ≤ T . Note that for each fixed w, the term inside
the expectation is a polynomial in u. Thus, proving an absolute bound on the coefficients when
∥x∥2 ≤ T will bound the final coefficients of q(u).

We now bound the coefficients of the polynomial f(
√
1− ρ2z+ρx)·e−

∥x∥22
2

−logQ(x)·p2(u/ρ,x)
where x is a fixed vector of norm atmost T. Since ∥x∥2 ≤ T , we also have that |xi| ≤ T for all

i ∈ [k]. We know that f is bounded by 1 and e
(−∥x∥222−logQ(x))

≤ ek∥x∥1 ≤ ek
2T . Now, we bound

the coefficients of p2(u,x). This is the composition of two polynomials, pe(x) and (u/ρ) · x. The
degree of pe is m and the coefficients are at most 1. The degree of (u/ρ) · x is 1 and coefficients
are bounded by T/ρ. Applying Lemma 41, we get that the coefficients of p2(u,x) are bounded by
eO(mk log T/ρ). Putting everything together, we obtain that the coefficients of q(u) are bounded by
eO(k2m2/ρ) as T ≤ m. Putting together the coefficient bounds for p1(u) and q(u), we get that the

coefficients of pz are bounded by atmost e(Cλk logB log(1/ϵ)/ρ)70(1+1/α)3

for large constant C and for
any z.
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D.1. Proof of Theorem 56

We give our algorithm here for completeness. We run polynomial regression and the hypothesis we
output is a PTF with an appropriately chosen bias term.

Algorithm 2 Agnostic Learner for Smooth Boolean Concepts

Input: Labeled Dataset S = {(xi, yi)}i∈[N ], degree ℓ,
Output: Hypothesis h

Find polynomial P of degree at most ℓ such that P minimizes 1
N

∑N
i=1 |P (xi)− yi|

Choose t ∈ [−1, 1] such that
∑N

i=1 1[sign
(
P (xi)− t

)
̸= yi] is minimized.

Output hypothesis h, such that h(x) = sign
(
P (x)− t

)
We are now ready to state and prove the main theorem of this section.

Theorem 56 Let k ∈ Z+ and ϵ, δ, σ ∈ (0, 1). Let D be a distribution on Rd × {±1} such that
the marginal distribution is (α, λ)-strictly subexponential. There exists an algorithm that draws

N = dpoly
(
(kλΓ/(σϵ))(1+1/α)3 )

)
samples, runs in time poly(d,N), and computes a hypothesis h(x)

such that, with probability at least 1− δ, it holds

Pr
(x,y)∼D

[y ̸= h(x)] ≤ min
f∈F(k,Γ)

E
z∼N

Pr
(x,y)∼D

[y ̸= f(x+ σz)] + ϵ .

Proof
Let ℓ = O

((
λkΓ2 log(1/ϵ)/(σϵ2)

)64(1+1/α)3
)

and N = poly(dℓ/ϵ). We denote the marginal

distribution of D by Dx. The algorithm for this task is simple, repeat Algorithm 2 r = O(log(1/δ)/ϵ)
times with degree ℓ and N fresh samples each time. Output the hypothesis that has the minimum
loss on an independent validation set of size O(log(1/δ)/ϵ2). The time required is the time required
for polynomial regression which is poly(d,N).

We now analyze the correctness. Let f∗ ∈ F(k,Γ) that be the function that achieves optσ.
Using the fact that the function is low dimensional, there exists an orthonormal matrix P such that
f∗(x) = f∗(PPTx) for all x. This implies that f∗(x) = g∗(Px) where g∗ is the function on
Rk defined as g∗(u) = f∗(Pu). Let fσ be defined as the function defined as fσ(u) = f(σu).
Lemma 45 and the fact that F(k,Γ) is closed under scaling imply that Γ(g∗σ) ≤ Γ.

Lemma 57 If D on Rd is (α, λ)-strictly subexponential, then for any A ∈ Rk×d, the distribution
of y = Ax when x ∼ D is

(
α, λ∥A∥2

)
-strictly subexponential.

From the above claim(proof at the end of the section), observe that for x sampled from Dx, the
distribution of PTx/σ is (α, λ/σ)-strictly subexponential on Rk. Thus, Lemma 50 implies that
there exists a polynomial pz with degree at most ℓ and coefficients at most kpoly(ℓ) such that

E
x∼Dx

E
z∼N

[
|pz(PTx)− g∗σ

(
PTx/σ + z

)
|
]
≤ ϵ/2 .

We first analyze the success probability of one run of the algorithm. Let S = {(xi, yi)}i∈[N ]

be the set of samples and let pS , hS be the polynomial and hypothesis output by the algorithm.
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From the proof of Theorem 5 of Kalai et al. (2005), we have that 1
N

∑N
i=1 1{hS(xi) ̸= yi} ≤

1
2N

∑N
i=1 |pS(xi)− yi|. We now bound the right hand side. We have that

1

2N

N∑
i=1

|pS(xi)− yi| ≤
1

2N

N∑
i=1

|pz(PTxi)− yi|

≤ 1

2N

N∑
i=1

|f∗(xi + σz)− yi|+
1

2N

N∑
i=1

|f∗(xi + σz)− pz(xi)|

where z is an arbitrary vector from Rk. The first follows from the fact that p minimizes the empir-
ical error among polynomials of degree less than ℓ and the last inequality follows from a triangle
inequality. Observe that the expectation(with respect to z ∼ N (0, Id) and (x, y) ∼ D) of the right
hand side of the last equality is optσ + ϵ/2. Thus, we have that

E
S∼D⊗N

[
1

N

N∑
i=1

1{hS(xi) ̸= yi}
]
≤ optσ + ϵ/2

Since our hypothesis hS is a PTF of degree ℓ on m variables, VC theory tells us that for N =
poly(dℓ/ϵ), we have that

E
S∼D⊗N

[
Pr

(x,y)∼D
[y ̸= hS(x)]

]
≤ optσ + 3ϵ/4

By Markov’s inequality, we have that with probability at least ϵ/16 over samples S, we have
that Pr(x,y)∼D[y ̸= hS(x)] ≤ optσ + 7ϵ/8. Let h1, h2, . . . , hr be the r hypotheses outputted
on the r = O(log(1/δ)/ϵ) repetitions of algorithm 2. With probability at least 1 − δ/4, there
exists i ∈ [r] such that Pr(x,y)∼D[y ̸= hi(x)] ≤ optσ + 7ϵ/8. Thus, using the validation set
of size O(log(1/δ)/ϵ2), with probability at least 1 − δ/4, we choose a hypothesis h such that
Pr(x,y)∼D[y ̸= h(x)] ≤ optσ + ϵ. Thus with total error probability of at most δ, our algorithm
outputs a hypothesis h such that

Pr
(x,y)∼D

[y ̸= h(x)] ≤ optσ + ϵ

Lemma 58 If D on Rk is (α, λ)-strictly subexponential, then we have

Pr
x∼D

[∥x∥2 > T ] ≤ 2k · e(−(T/kλ)(1+α)) .

Proof

Pr
x∼D

[∥x∥2 > T ] ≤ Pr
x∼D

[
k∑

i=1

|xi| > T

]
≤

k∑
i=1

Pr
x∼D

[|xi| > T/k] ≤ 2k · e(−(T/kλ)(1+α))

where the second inequality follows from a union bound and the last follows from Definition 15.
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Proof [Proof of Lemma 53] The proof below is a straightforward calculation by completing the
squares.

E
x∼Q

[(
N (x;u, I)

Q(x)

)4
]

=
23k

(2π)2k

∫
z∈Rk

e−(2∥u∥22+2∥z∥22−4u·z−3∥z∥1)dz =
23k

(2π)2k
·

k∏
i=1

∫
zi∈R

e−(2u2
i+2z2i−4uizi−3|zi|)dzi

≤ (C ′)k ·
k∏

i=1

∫
zi∈R

e−(2u2
i+2z2i−4uizi−3zi)dzi ≤ (C ′)ke−9k/2 ·

k∏
i=1

∫
zi∈R

e6uie−(2
√
2zi−(

√
2ui−3/

√
2))2

≤ CkeC∥u∥1

where C ′, C are appropriately chosen constants.

Lemma 59 If D on Rk is (α, λ)-strictly subexponential, then for any constant b > 0 and vector v
with ∥v∥2 = 1, we have

E
u∼D

[
eb|v·u|

]
≤ C(Cbλ)3+3/α

for large enough constant C > 0.

Proof

E
u∼D

[
eb|v·u|

]
= 1 +

∞∑
i=1

Eu∼D

[
bi|v · u|i

]
i!

≤ 1 +
∞∑
i=1

biλi(i)i/(1+α)

(i/e)i
≤ 1 +

∞∑
i=1

(
beλ

iα/(1+α)

)i

≤ 1 +

(2beλ)1+1/α∑
i=1

(beλ)i +

∞∑
i=1

1

2i
≤ 1 + (beλ)(2beλ)

1+1/α+1 +

∞∑
i=1

1

2i
≤ C(Cbλ)3+3/α

.

for some constant C > 0. The first equality follows from a Taylor expansion, and the rest are
straightforward calculations.

Proof [Proof of Lemma 54]

E
u∼D

[
eb∥u∥1

]
≤ E

u∼D

[
k∏

i=1

eb|ui|

]
≤

k∏
i=1

(
E

u∼D

[
ebk|ui|

])1/k

≤ C(Cbλk)3+3/α

where the penultimate inequality follows from Hölder and the last inequality follows from Lemma 59.

Proof [Proof of Lemma 55]

Pr
x∼D

[∥x∥2 > T ] ≤ Pr
x∼D

[
k∑

i=1

|xi| > T

]
≤

k∑
i=1

Pr
x∼D

[|xi| > T/k] ≤ 2k · e−T/k

where the last inequality follows from the tail of a univariate exponential random variable.

42



SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

Proof [Proof of Lemma 57] Let v be a vector such that ∥v∥2 = 1. Observe that |v · (Ax)| =
|(ATv) ·x| ≤ ∥ATv∥2|u ·x| ≤ ∥A∥2|u ·x| where u = ATv

∥ATv∥2 . We have that Prx∼D[|v ·(Ax)| ≥
t] ≤ Prx∼D[|u · x| ≥ t/∥A∥2] ≤ 2 · e−(t/λ∥A∥2)1+α)

. Considering the second condition from
Definition 15, we have that(

E
x∼D

[
|v ·Ax|m

])1/m

≤ ∥A∥2
(

E
x∼D

[
|u · x|m

])1/m

≤ ∥A∥2λm1/(1+α) .

Finally, we have that Ex∼D

[
e(|(Ax)·v|/λ∥A∥2)1+α] ≤ Ex∼D]

[
e(|x·v|/λ)

1+α] ≤ 2 .

We now show that under any (α, λ)-strictly subexponential distribution, we can approximate the
function e−∥x∥22 by a polynomial of degree O

(
b2λ(k log(1/ϵ))1+1/α

)
. For this, we use the following

theorem from Aggarwal and Alman (2022).

Lemma 60 For T > 0 and error ϵ > 0, there exists a polynomial p such that

1. supx∈[0,T ] |p(x)− e(−x)| ≤ ϵ

2. deg(p) ≤ O(
√

T log(1/ϵ)), if T = ω (log 1/ϵ)

3. p(x) =
∑deg(p)

i=0 cix
i where |ci| ≤ e

(
C
(√

T log(1/ϵ)
))

for all i ≤ deg(p). Here C is a large
enough constant.

The bound on the coefficients is not explicitly stated in Aggarwal and Alman (2022) and hence we
calculate them.

Lemma 61 Every coefficient of the polynomial p in Lemma 60 is bounded( in absolute value) by
eC

√
T log(1/ϵ)

Proof To bound the coefficients, we first recall their polynomial. Their polynomial p(t) of degree
ℓ =

√
T log(1/ϵ) approximating e−t is

p(t) =
ℓ∑

r=0

2r−1Ar,T/2Qr(2t/T − 1)

where Qr(t) = 21−r
∑⌊r/2⌋

s=0

(
r
2s

)
(t2− 1)str−2s and |Ar,λ| ≤ C2r for large constant C. The asymp-

totics of Ar,λ is explicitly stated in Aggarwal and Alman (2022). We now bound the coefficients of
the polynomial Qr(t). We bound the coefficient of tj in each term of the summation for arbitrary j.
The coefficients of (t2 − 1)s are bounded by Cs

1 for large constant C1 by using Lemma 41. From
the expression of Qr(t), we have that each term in the summation contributes

(
r
2s

)
Cs
1 ≤ Cr

2 for
large constant C2. The previous inequality follows from the fact that s < r and

(
n
k

)
≤ 2n. Thus,

summing from 0 to ⌈r/2⌉ bounds the final coefficient of tj by Cr
3 for some constant C3. Thus, the

coefficients of Qr(2t/T − 1) are bounded by Cr
4 for constant C4 by using Lemma 41 again. Now

since Ar,T/2 ≤ C2r, summing from 0 to l gives us that the coefficients are bounded by eC
′ℓ for large

constant C ′
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We can now prove our result about approximating e−∥x∥22 under strictly subexponential distri-
butions.
Proof [Proof of Lemma 52] Let p =

∑deg(p)
i=0 cix

i be the polynomial obtained from Lemma 60
with error ϵ/2 and T = ω(log(1/ϵ)) to be chosen later. Our final polynomial is q(x) = p

(
∥x∥22

)
.

Clearly, deg(q) = 2 · deg(p) = O(
√
T log(1/ϵ). We now bound the error.

E
x∼D

[(
q(x)− e(−∥x∥22)

)b]
≤ ϵ/2 + Ex∼D

[(
q(x)− e(−∥x∥22)

)b
1{∥x∥22 ≥ T}

]
≤ ϵ/2 +

√
E

x∼D

[(
q(x)− e(−∥x∥22)

)2b]
· E
x∼D

[
1{∥x∥22 ≥ T}

]
≤ ϵ/2 +

√
2k · E

x∼D
[(|q(x)|+ 1)2b] · e(−(

√
T/kλ)(1+α)) .

The first inequality follows from the approximation error of p when ∥x∥22 ≤ T . We use Lemma 58
for the last inequality.

We now bound Ex∼D

[
(|q(x)|+ 1)2b

]
. We have that

E
x∼D

[(|q(x)|+ 1)2b] ≤ E
x∼D


1 +

deg(p)∑
i=0

|ci|∥x∥2i2

2b


≤ (deg(p) + 1)2b
deg(p)
max
i=0

|ci|2b
deg(p)
max
i=0

E
x∼D

[
∥x∥4bi2

]
≤ e

(
Cb
√

T log(1/ϵ)
)

E
x∼D

[(√
k ∥x∥∞

)4b√T log(1/ϵ)
]

≤
√
ke

(
Cb
√

T log(1/ϵ)
) k∑

i=1

E
x∼D

[
(|xi|)4b

√
T log(1/ϵ)

]
for large enough constant C.

The first inequality follows from the definition of q and the second follows from linearity of
expectation and a straightforward calculation: (deg(p) + 1)2b is the total number of terms in the
summation when expanded, max

deg(p)
i=0 |ci|2b is an upper bound on any coefficient in the expansion

and max
deg(p)
i=0 Ex∼D[∥x∥4bi2 ] is an upper bound on the expectation of any term in the expansion. The

third inequality follows from the fact that ∥x∥2 ≤
√
k ∥x∥∞. The second term in the right hand side

of the last inequality above can be bounded by using Definition 15. Putting it all together,we get that

k·Ex∼D

[
(|q(x)|+ 1)2b

]
e(−(

√
T/kλ)(1+α)) is bounded by e

(
C′

(
b2 log λ log k log(T log(1/ϵ))

√
T log(1/ϵ)−(T/

√
kλ)(1+α)/2

))
where C ′ is a large enough constant.

Choosing T = O
((

b2λk log(1/ϵ)
)3+3/α

)
makes the total error less than ϵ. Since T is ω(log 1/ϵ),

the degree of the final polynomial is O(
√

T log(1/ϵ)) which is O
(
(b2λk log(1/ϵ))2+2/α

)
.

We now bound the coefficients of q. We have that q(x) = p(∥x∥22) is the composition of
two polynomials, p and ∥x∥22. The degree of p is O(

√
T log(1/ϵ)) and coefficients bounded by
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e
O
(√

T log(1/ϵ)
)

. The degree of ∥x∥22 is 2 and it has coefficients equal to 1. Thus, using Lemma 41
with these polynomials, we get that the coefficients of q are bounded by kO((b

2λk log(1/ϵ))2+2/α).

Appendix E. SQ Lower Bound for Smoothed Agnostic Learning

E.1. Background on SQ Lower Bounds

Our lower bound applies for the class of Statistical Query (SQ) algorithms. Statistical Query (SQ)
algorithms are a class of algorithms that are allowed to query expectations of bounded functions
of the underlying distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 62 Let D be a distribution on labeled examples supported on X × {−1, 1}, for some
domain X . A statistical query is a function q : X × {−1, 1} → [−1, 1]. We define STAT(τ) to be
the oracle that given any such query q(·, ·) outputs a value v such that |v−E(x,y)∼D [q(x, y)] | ≤ τ ,
where τ > 0 is the tolerance parameter of the query.

The SQ model was introduced by Kearns Kearns (1998) in the context of supervised learning
as a natural restriction of the PAC model Valiant (1984a). Subsequently, the SQ model has been
extensively studied in many contexts (see, e.g., Feldman (2016) and references therein). The class
of SQ algorithms is rather broad and captures a range of known supervised learning algorithms.
More broadly, several known algorithmic techniques in machine learning are known to be imple-
mentable using SQs. These include spectral techniques, moment and tensor methods, local search
(e.g., Expectation Maximization), and many others (see, e.g., Feldman et al. (2017a,b)). Recent
work Brennan et al. (2021) has shown a near-equivalence between the SQ model and low-degree
polynomial tests.

Statistical Query Dimension To bound the complexity of SQ learning a concept class C, we use
the SQ framework for problems over distributions Feldman et al. (2017a).

Definition 63 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
family of distributions. We denote by B(D, D) the decision (or hypothesis testing) problem in which
the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.

Definition 64 (Pairwise Correlation) The pairwise correlation of two distributions with proba-
bility density functions D1, D2 : Rn → R+ with respect to a distribution with density D : Rn →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) :=∫
Rn D1(x)D2(x)/D(x) dx− 1.

Definition 65 We say that a set of s distributions D = {D1, . . . , Ds} over Rn is (γ, β)-correlated
relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i ̸= j, and |χD(Di, Di)| ≤ β for all i.

Definition 66 (Statistical Query Dimension) For β, γ > 0 and a decision problem B(D, D),
where D is a fixed distribution and D is a family of distributions, let s be the maximum integer
such that there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated rela-
tive to D and |DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is
defined to be s, and denoted by SD(B, γ, β).
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Lemma 67 (Corollary 3.12 of Feldman et al. (2017a)) Let B(D, D) be a decision problem, where
D is the reference distribution and D is a class of distributions. For γ, β > 0, let s = SD(B, γ, β).
For any γ′ > 0, any SQ algorithm for B requires queries of tolerance at most

√
γ + γ′ or makes at

least sγ′/(β − γ) queries.

E.2. SQ Lower Bound on the Dependence on the Dimension and the Smoothing Parameter

Theorem 68 (SQ-Lower Bound) Fix d ∈ N. Let σ ∈ (0, 1) and k ∈ N such that σ ≤ O(1/
√
log k).

Any SQ algorithm that learns the class of degree k PTFs in the smoothed agnostic setting (with re-
spect to the uniform distribution on the hypercube) with any accuracy ϵ < 1/100 either requires
queries with tolerance at most d−Ω(k) or makes at least dΩ(k) queries.

Proof
Given a subset S ⊆ {±1}d, we denote by χS(x) the parity function on the subset S, i.e.,

χS(x) =
∏

i∈S xi. We can extend the domain of χS to all of Rd as χS(x) = sign(
∏

i∈S xi) which
is a degree |S| Polynomial Threshold Function (PTF) and hence has surface area C|S| for some
universal constant C > 0. Observe that we have that χS ∈ F(k,Ck).

For every subset S of {0, 1}d of size m, we define the distribution DS on {±1}d × {±1} to
be the distribution of the pair (x, χS(x)) where x ∼ Ud is drawn uniformly at random from the
Boolean hypercube Ud = {±}d (we use Ud to denote both the d-dimensional Boolean hypercube
and the uniform distribution over it). Moreover, we define N to be the distribution of (x, y) where x
is drawn uniformly from the Boolean hypercube and y is ±1 with probability 1/2. We let Dk be the
set of all distributions DS for every subset S ⊆ {0, 1}d of size at most k. We will show that given a
learner for PTFs in the smoothed agnostic setting(under the uniform distribution on the hypercube),
we can solve the decision problem B(Dk, N). Since all parities are pairwise orthogonal, it is well
known that the set of distributions Dk is (0, 1) correlated. Therefore, by Lemma 67 we obtain that
any algorithm that solves the decision problem B either requires a query of tolerance d−Ω(k) or
makes at least dΩ(k) queries (since the class Dk contains

(
d
k

)
distributions).

We now show that using an algorithm A that learns a hypothesis h(·) such that Pr(x,y)∼D[h(x) ̸=
y] ≤ Ez∼N Pr(x,y)∼D[χS(x + σz) ̸= y] + ϵ for some ϵ ≤ 1/100 we can solve the k-parity
decision problem B(Dk, N) defined above. Let h(·) be the hypothesis returned by A. We can
perform a statistical query of tolerance τ = 1/10 to obtain an estimate of the error of h(·),
q = E(x,y)∼D[1{h(x) ̸= y}]. If q ≤ 1/2 − 2τ we declare that D corresponds to a k-parity,
otherwise we declare that D = N . We observe that if D actually corresponds to a k-parity(with set
S), then we have that

E
z∼N

Pr
(x,y)∼D

[χS(x+ σz) ̸= y] ≤ E
z∼N

Pr
x∼Ud

[χS(x+ σz) ̸= χS(x)]

≤ max
x∈Ud

Pr
z∼N

[ k⋃
i=1

{
σ|wi · z| ≥ 1/2

}]
,

where the final inequality follows by the definition of χS :: for any x ∈ Ud we have that if sign(xi+
σzi) ≤ 1/2 for all i then χS(x) = χS(x + σz). Using the tail of the Gaussian density, we
have that Prz∼N

[⋃k
i=1

{
σ|z| ≥ 1/2

}]
≤ k exp(−Ω(1/(σ)2)) ≤ k exp(−Ω(1/σ)2) ≤ 1/10

when σ ≤ O(1
√
log k). Therefore, by using a statistical query of tolerance 1/10 and the learning

algorithm A we can solve the k-parity decision problem.

46



SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

47


	Introduction
	Our Results
	Main Results: Smoothed Agnostic Learning under Concentration
	Applications

	Technical Overview

	Preliminaries and Notation
	Smoothed Agnostic Learning under Concentration
	Polynomial Approximation: Bounded Marginals
	Polynomial Approximation: Strictly Sub-Exponential Marginals
	Efficient Algorithms for Learning under Concentration

	Applications and Connections with Other Models
	Conclusion and Open Problems
	Gaussian Surface Area
	Applications and Connections with Other Models
	Notation
	Learning with Margin
	Distribution Specific Learning
	Learning with Anti-Concentration and Concentration
	Learning under Smoothed Distributions


	Details of Section 3
	Polynomial approximation
	Random Projection and Polynomial Regression

	Deferred proofs from Section 4
	Proof of thm:smoothlearningsubgaussian

	SQ Lower Bound for Smoothed Agnostic Learning
	Background on SQ Lower Bounds
	SQ Lower Bound on the Dependence on the Dimension and the Smoothing Parameter


