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Abstract
This work studies embedding of arbitrary VC classes in well-behaved VC classes, focusing particu-
larly on extremal classes. Our main result expresses an impossibility: such embeddings necessarily
require a significant increase in dimension. In particular, we prove that for every d there is a class
with VC dimension d that cannot be embedded in any extremal class of VC dimension smaller than
exponential in d.

In addition to its independent interest, this result has an important implication in learning the-
ory, as it reveals a fundamental limitation of one of the most extensively studied approaches to
tackling the long-standing sample compression conjecture (Warmuth, 2003). Concretely, the ap-
proach proposed by Floyd and Warmuth (1995) entails embedding any given VC class into an ex-
tremal class of a comparable dimension, and then applying an optimal sample compression scheme
for extremal classes. However, our results imply that this strategy would in some cases result in
a sample compression scheme at least exponentially larger than what is predicted by the sample
compression conjecture.

The above implications follow from a general result we prove: any extremal class with VC
dimension d has dual VC dimension at most 2d + 1. This bound is exponentially smaller than the
classical bound 2d+1−1 of Assouad (1983), which applies to general concept classes (and is known
to be unimprovable for some classes). We in fact prove a stronger result, establishing that 2d + 1
upper bounds the dual Radon number of extremal classes. This theorem represents an abstraction
of the classical Radon theorem for convex sets, extending its applicability to a wider combinatorial
framework, without relying on the specifics of Euclidean convexity. The proof utilizes the topolog-
ical method and is primarily based on variants of the Topological Radon Theorem (Bajmóczy and
Bárány, 1979).
Keywords: Sample Compression Schemes, VC Dimension, Maximum Classes, Extremal Classes,
The Topological Method, Radon Numbers, Borsuk-Ulam Numbers
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1. Introduction and Main Results

A common idea throughout mathematics is the one of transforming an abstract object of interest
into a related “nice” object, possessing useful properties. For example, transforming general func-
tions into smooth functions, transforming arbitrary graphs into connected graphs, or transforming
geometric bodies into convex sets. In algebraic geometry, a classical example is the resolution of
singularities where the goal is to “make varieties smooth”. Quantitatively, it is often important to
understand how much we need to “add” to an arbitrary object to make it “nice”. For instance, we
can ask how many edges we need to add to a graph to make it connected, or how much volume we
must add to a body to make it convex.

This general idea has also come up in various contexts within learning theory. For example
the use of surrogate or regularized losses to accelerate optimization algorithms. Another example,
which arises in the context of sample compressions concerns embedding VC classes within extremal
classes (a.k.a. lopsided, ample, or shattering-extremal; see e.g. Lawrence (1983); Dress (1996);
Moran (2012)). Extremal classes enjoy many properties which are useful in the context of learning
theory, for example, for defining sample compression schemes of size equal the VC dimension
Moran and Warmuth (2016), or proper optimal PAC learners Bousquet et al. (2020). For this reason,
there has been much interest in transforming arbitrary concept classes into extremal classes, and
understanding how much one needs to add to an arbitrary class to make it extremal. Concretely,
determining how much the VC dimension must increase (defined below).

This question has been studied in many works (e.g., Floyd and Warmuth, 1995; Chepoi et al.,
2020, 2022; Rubinstein et al., 2015; Rubinstein and Rubinstein, 2022, and numerous references
below), but it has remained open whether it is always possible to avoid a significant increase in
VC dimension (e.g., a universal constant factor). The question has been of particular interest in
the literature on sample compression schemes, since if it were possible to embed arbitrary concept
classes into extremal classes without significantly increasing the VC dimension, it would imme-
diately imply a positive resolution of the long-standing sample compression conjecture (Warmuth,
2003).

In the present work, we prove that for some concept classes C, it is necessary to add quite a
lot to make it extremal; that is, any extremal class containing C must have exponentially larger VC
dimension. More generally, for any class C, we argue that the increase in VC dimension must be at
least proportional to the Radon number of version spaces (which is never smaller than the dual VC
dimension). In particular, our result implies that the commonly-studied approach aiming to resolve
the sample compression conjecture by embedding in extremal classes cannot significantly improve
over the size of known sample compression schemes (Moran and Yehudayoff, 2016).

1.1. The Sauer-Shelah-Perles and Pajor Inequalities

The Sauer-Shelah-Perles1 (SSP) inequality is one of the basic results in the Vapnik-Chervonenkis
(VC) theory. It is a key technical lemma in the proof of the fundamental equivalence between finite
VC dimension, uniform laws of large numbers, and PAC learnability. The SSP inequality also plays
a significant role in geometry, combinatorics, and model theory.

1. The result was independently proven by Vapnik and Chervonenkis (1968); Sauer (1972); Shelah (1972), with Vapnik
and Chervonenkis (1968) having proven a slightly weaker version. Shelah (1972) gives credit also to Micha Perles.
Word has it that, amusingly, Perles proved the result twice, ten years apart, and with different proofs! This unique
contribution has humorously led some to refer to it as the Perles-Sauer-Shelah-Perles Lemma.
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Definition 1 (VC Dimension) A concept class C ⊆ {0, 1}n is said to shatter a set {x1, . . . , xk} ⊆
[n] if

{(c(x1), . . . , c(xk)) : c ∈ C} = {0, 1}k

(by convention, the empty set is always shattered). The VC dimension of C, denoted by vc(C), is the
largest size of a set that is shattered by C.

Theorem 2 (Sauer-Shelah-Perles Inequality (Sauer, 1972; Shelah, 1972)) Let C ⊆ {0, 1}n be
a concept class, and let d = vc(C). Then,

|C| ≤
(

n

≤ d

)
:=

d∑
i=0

(
n

i

)
.

The SSP inequality is tight: for every n and d, there exist classes that achieve equality in it. These
classes are interesting and have a relatively rigid structure. They also arise naturally in geometrically
defined classes such as halfspaces in Rn (Gärtner and Welzl, 1994).

Definition 3 (Maximum Classes) A class C ⊆ {0, 1}n is called a maximum class if |C| =
(
n
≤d

)
,

where d = vc(C).

A notable generalization of the SSP inequality was proven by Pajor (1985):

Theorem 4 (Pajor Inequality (Pajor, 1985)) Let C ⊆ {0, 1}n be a concept class, and let

shatter(C) = {A ⊆ [n] : A is shattered by C}.

Then,
|C| ≤ |shatter(C)|.

Pajor’s inequality indeed implies the SSP inequality, because the size of A ∈ shatter(C) is |A| ≤
vc(C). Pajor’s inequality is also tight. Classes that meet Pajor’s inequality with equality are known
as lopsided (Lawrence, 1983), ample (Dress, 1996), or shattering-extremal (Moran, 2012). In this
text, we use the term extremal (Moran, 2012; Moran and Warmuth, 2016).

Definition 5 (Extremal Classes) A class C ⊆ {0, 1}n is called extremal if |C| = |shatter(C)|.

While every maximum class is extremal, the converse does not hold.
Extremal classes are notable for their characterization through a range of equivalent definitions,

which may initially seem quite distinct. For example, Lawrence (1983) discovered extremal classes
in his investigation of sign patterns of convex sets: {sign(v) : v ∈ K}, where K ⊆ Rn is
convex. He defined these classes in a manner that is unrelated to Theorem 4 and does not even
rely on the notion of shattering. Consequently, these classes have been independently identified in
various contexts, including discrete geometry (Lawrence, 1983), functional analysis (Pajor, 1985),
extremal combinatorics (Bollobás, Leader, and Radcliffe, 1989; Bollobás and Radcliffe, 1995), and
computational biology (Dress, 1996).

3



CHASE CHORNOMAZ HANNEKE MORAN YEHUDAYOFF

A pictorial definition of a sample compression scheme

ReconstructorCompressor S′, B

S

input sample
h

output hypothesis

Figure 1: S′ is a subsample of S and B is a binary string of additional information.

1.2. Sample Compression Schemes

Sample compression schemes were introduced by Littlestone and Warmuth (1986) in their seminal
paper as a tool for proving generalization bounds in learning theory. More generally, this concept
can be understood as a mathematical model for data simplification. It is akin to a scientist who
collects a large number of experimental observations and then selects a small, representative sub-
set. The scientist’s aim is to develop a hypothesis from this subset that can accurately predict the
outcomes of the remaining, unselected observations.

A sample compression scheme comprises a compressor and a reconstructor (see Figure 1). The
compressor gets an input sequence of labeled examples S. From this sequence, the compressor
selects a subsequence S′ and sends it to the reconstructor, along with a binary string B of additional
information. The reconstructor then uses S′ and B to generate a hypothesis h = h(S′, B). The aim
is that the hypothesis h correctly classifies the entire input sequence S, including on those examples
in S that are not transmitted to the reconstructor.

Definition 6 A sample compression scheme for a concept class C is defined by the following crite-
rion. For any input sequence S = {(xi, yi)}mi=1 that is realizable2 by C, the hypothesis h = h(S′, B)
generated by the reconstructor must be consistent with the entire input sample S; i.e. h(xi) = yi
for all i ∈ [m]. We say that the size of the compression scheme is s if the number of bits in B plus
the size of S′ is at most s.

A classical example of a sample compression scheme for the class of d-dimensional linear classi-
fiers is the Support Vector Machine algorithm in Rd. Here, the compressor sends to the reconstructor
the d+ 1 support vectors which determine the maximum margin separating hyperplane.

Many well-studied classes admit a sample compression of size equal to their VC dimension. Lit-
tlestone and Warmuth (1986) asked about a general connection between the VC dimension and the
size of the sample compression scheme. This became one of the most extensively studied and long-
standing problems in the theory of learning. Moran and Yehudayoff (2016) affirmatively demon-
strated the existence of a sample compression scheme with size exponential in the VC dimension.
Yet, it remains an open question whether every class has a compression scheme of size linear or
polynomial in its VC dimension, as explicitly asked in Floyd and Warmuth (1995). Warmuth (2003)
has offered a $600 reward for solving this problem. For a broader discussion, see e.g. Chapter 17 in
Wigderson (2019) or Chapter 30 in Shalev-Shwartz and Ben-David (2014).

2. I.e. there exists c ∈ C such that c(xi) = yi for all i ≤ m.
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Conjecture 7 (Floyd and Warmuth (1995); Warmuth (2003)) For every concept class C there
exists a sample compression scheme of size O(vc(C)).

In their important work, Floyd and Warmuth (1995) layed an approach aimed at resolving the
sample compression conjecture. This approach is based on a simple two-step program.

Floyd and Warmuth Program

1. Prove that any maximum class C with VC dimension d has a sample compression scheme
of size O(d).

2. Prove that any class C with VC dimension d is contained within a maximum class with
VC dimension O(d).

The Floyd and Warmuth program has been a prominent method in attempts to resolve Con-
jecture 7. Several studies have explored this approach, including works by Ben-David and Litman
(1998); Warmuth (2003); Kuzmin and Warmuth (2007); Rubinstein, Bartlett, and Rubinstein (2009);
Rubinstein and Rubinstein (2012); Rubinstein, Rubinstein, and Bartlett (2015); Moran and Warmuth
(2016); Chepoi, Knauer, and Philibert (2020, 2021, 2022); Chalopin, Chepoi, Moran, and Warmuth
(2022); Rubinstein and Rubinstein (2022); Chalopin, Chepoi, Inerney, Ratel, and Vaxès (2023).

In their work, Floyd and Warmuth (1995) addressed the first step of their program by demon-
strating that every maximum class C admits a sample compression scheme of size equal to its VC
dimension. Following this, a series of subsequent works expanded on the scheme proposed by Floyd
and Warmuth (1995). Specifically, Moran and Warmuth (2016) extended it to extremal classes,
thereby affirming Conjecture 7 for this category of classes. This extension not only confirmed the
conjecture for extremal classes but also simplified Floyd and Warmuth’s program. It demonstrated
that the second step of their program could be relaxed, showing that it is sufficient to embed any
class in an extremal class while maintaining a comparable VC dimension.

For the second step, Floyd and Warmuth (1995) exhibited a class C that is maximal (not max-
imum), meaning that any addition of a concept to this class would increase its VC dimension, but
is not maximum. This finding implies that not every class C can be extended to a maximum class
without increasing the VC dimension. In the other direction, a recent study by Rubinstein and Ru-
binstein (2022) proved that any intersection-closed class is contained in an extremal class with a VC
dimension at most 11 times larger.

Our first main result places a barrier on Floyd and Warmuth’s program, proving that it cannot
prove Conjecture 7.

Theorem A (Main Result I) For every integer d > 0, there exists a concept class C with
vc(C) = d such that every extremal class C′ such that C ⊆ C′ has vc(C′) ≥ 2d − 1.

Theorem A suggests that the best outcome achievable via Floyd and Warmuth’s program would
be a sample compression scheme of size 2d − 1. This would be on par with the best known scheme
by Moran and Yehudayoff (2016), which is of size 2O(d). However, even reaching this benchmark
appears non-trivial, which brings us back to the first paragraph of this work. Can we embed arbitrary
classes in “nice” classes?
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Open Question 1 Is there a function f : N → N such that every concept class with VC dimension d
is contained in a maximum (extremal) class with VC dimension f(d)?

A special case of maximum classes is hyperplane arrangements (see Example 5). The smallest
dimension of a hyperplane arrangement that contains a class C is equivalent to the sign rank of the
matrix (Mc,x) defined by Mc,x = c(x). Alon, Moran, and Yehudayoff (2017) proved that if we
replace “maximum class” by “hyperplane arrangment” in the question, then the answer is negative.
For every m, there is a class of VC dimension two that cannot be embedded in an m-dimensional
hyperplane arrangement.

1.3. Dual VC Dimension

We establish Theorem A by distinguishing extremal classes from general classes with the same VC
dimension, focusing on the interplay between VC and dual VC dimensions.

Definition 8 (Dual Class and VC dimension) Let C ⊆ {0, 1}n be a class. Each x ∈ [n] defines a
function fx : C → {0, 1} by fx(c) = c(x). The dual class of C is C⋆ = {fx : x ∈ [n]}. The dual VC
dimension of C is vc⋆(C) = vc(C⋆).

The VC and dual VC dimensions are exponentially related:

Theorem 9 (Assouad (1983)) Every concept class C satisfies

⌊log vc(C)⌋ ≤ vc⋆(C) ≤ 2vc(C)+1 − 1.

Both inequalities are sharp (in some cases). While the relationship between VC and dual VC di-
mensions is fully understood for general classes, our result provides an exponential improvement
for extremal classes (in the right inequality).

Theorem B (Main Result II) Every extremal concept class C satisfies

⌊log vc(C)⌋ ≤ vc⋆(C) ≤ 2vc(C) + 1.

Theorem A is a corollary of Theorem B. Indeed, choose a concept class C, with vc(C) = d and
vc⋆(C) = 2d+1 − 1. This class can be chosen as a dual of a class C1, witnessing the sharpness of
the right bound in Theorem 9, that is, of C1 for which vc⋆(C1) = d and vc(C1) = 2d+1 − 1. Let C′

be an extremal class such that C′ ⊇ C. Theorem B implies that

2d+1 − 1 = vc⋆(C) ≤ vc⋆(C′) ≤ 2vc(C′) + 1.

The left bound in Theorem B follows from Theorem 9; it is tight for all VC dimensions as demon-
strated by cubes (see Example 2 in Appendix A). We leave it as an open question whether the upper
bound in Theorem B is tight for all VC dimensions. In Appendix A we demonstrate that it is tight
for d = 1 (Example 4) and notice that hyperplane arrangements yield extremal classes (in fact,
maximum classes) with vc(C) = d and vc⋆(C) = d+ 1 (Example 5).

Open Question 2 Is it true that for every d ∈ N there exists an extremal class C with vc(C) = d
and vc⋆(C) = 2d+ 1? Is there such a maximum class?
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1.4. Abstract Convexity

To state our most general result we use the language of abstract convexity theory. An (abstract)
convexity space offers a simplified yet profound abstraction of Euclidean convexity. This concept
originated in the work of Levi (1951) and was later given its current formalization by Kay and
Womble (1971). For a detailed introduction to this subject, readers may refer to the survey by
Danzer, Grünbaum, and Klee (1963), or the more recent book van de Vel (1993).

A convexity space is a pair (Ω,F) where F ⊆ 2Ω is a family of subsets that satisfies the
following conditions:

• ∅,Ω ∈ F .

• F is closed under intersections.

Sets within F are termed convex sets. Convexity spaces are prevalent in mathematics, manifesting
in forms such as closed sets in topological spaces, subgroups of groups, subtrees of graphs, and
more. We note that in van de Vel (1993), the convexity space is also required to be closed under
nested unions. However, all the convexity spaces that we use in this paper can be assumed to be
finite, in which case this requirement becomes redundant.

Many basic concepts associated with convexity are still definable in this abstract setting. For
instance, a convex set F ∈ F is termed a half-space if its complement is also convex.3 The convex
hull of a set P ⊆ Ω, denoted by conv(P ) = convF (P ), is the intersection of all convex sets F ∈ F
that contain P . These definitions enable the abstraction of classical results, such as Radon’s Theo-
rem (Radon, 1921), Helly’s Theorem (Helly, 1923), and the Weak Epsilon-Net Theorem (Bárány,
Füredi, and Lovász, 1990; Alon, Bárány, Füredi, and Kleitman, 1992; Moran and Yehudayoff, 2020;
Holmsen and Lee, 2021).

Definition 10 (Radon Numbers) Let (Ω,F) be a convexity space. We say that p1, . . . , pn ∈ Ω are
Radon-independent if conv({pi : i ∈ I}) ∩ conv({pj : j ∈ J}) = ∅ for every non-trivial partition
I ∪ J = [n]. The Radon number of F is the largest size of a Radon-independent set.

The classical Radon Theorem asserts that the Radon number of the convex sets in Rd is equal to
d+ 1. We now explain how to associate a convexity space to every concept class. These convexity
spaces were implicitly studied in learning theory (more details follow). We note that there are
also other ways to associate a convexity space to a concept class (for example, version spaces4 are
convex).

Definition 11 (Convexity Space of a Class) The convexity space of a class C ⊆ {0, 1}n is defined
as follows. The domain is Ω = C. The half-spaces are sets of the form

Cx,y = {c ∈ C : c(x) = y}

where x ∈ [n] and y ∈ {0, 1}. The convex sets in F = FC are arbitrary intersections of these
half-spaces.

3. In the standard Euclidean context, not all half-spaces are open or closed.
4. Given a concept class C and a sequence of labeled examples {(xi, yi)}mi=1, the associated version space is {c ∈ C :

c(xi) = yi for all i}.
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For X ⊆ [n] and t : X → {0, 1}, let us define

CX,t = {c ∈ C : c(x) = t(x) for x ∈ X}.

Because CX,t =
⋂

x∈X Cx,t(x), the set CX,t is convex. The other way around, every non-empty
convex set has this form.

Definition 12 (Radon Number of a Class) The Radon number of a concept class C, denoted r(C),
is the Radon number of the associated convexity space FC .

We relate the dual Radon number to the VC dimension of extremal classes.

Theorem C (Main Result III) Let C ⊆ {0, 1}n be an extremal concept class. Then,

r(C) ≤ 2vc(C) + 1.

Moreover, the following lower bounds on r(C) hold

⌊log(2vc(C) + 2)⌋ ≤ r(C) for any class C;
vc(C) + 1 ≤ r(C) for any maximum class C ̸= {0, 1}n;

⌊log(2vc(C) + 2)⌋ = r(C) for C = {0, 1}n.

The right bound in Theorem B follows from the first bound in Theorem C, because every
c1, . . . , ck ∈ C that is shattered by C⋆ is Radon independent; in particular, vc∗(C) ≤ r(C). In-
deed if I ∪ J = [k] is a non-trivial partition then there exists x such that ci(x) = 1 for all i ∈ I and
cj(x) = 0 for all j ∈ J . The complementing pair of half-spaces Cx,1 and Cx,0 separate {ci : i ∈ I}
and {cj : j ∈ J} and hence their convex hulls are disjoint.

The upper bound on r(C) in Theorem C is the main technical result of the paper and is proven in
Section 2. Example 5 in Appendix A shows that it is also tight up to a factor of two. The two lower
bounds on r(C) are proven in Propositions 21 and 23 in Appendix B. Additionally, Examples 2
(cube) and 3 (dented cube) in Appendix A show that these lower bounds are tight; the proofs that the
values in these examples are as claimed are in Propositions 22 and 25 in Appendix B. These lower
bounds demonstrate that the dual Radon numbers can abruptly drop when adding a single concept.
Determining the tightness of the upper bound is left as an open question for future research.

Open Question 3 Is it the case that for every d ∈ N there exists an extremal class C with vc(C) = d
and r(C) = 2d+ 1? Is there such a maximum class?

Our final result summarizes the relationship between the dual Radon number and dual VC di-
mension. This result, while less central, completes the triangular relationship between VC, dual
VC, and dual Radon.
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Theorem D

1. Every concept class C satisfies vc⋆(C) ≤ r(C).

2. For general classes, r(C) is not upper-bounded by vc(C) or vc∗(C).

3. If C is extremal, then r(C) ≤ 2vc
⋆(C)+2 − 1, and this bound is tight up to a multiplicative

factor.

Theorem D is proven in Proposition 27 in Appendix B. The fact that the dual Radon number
of a class is not upper-bounded by its VC and dual VC dimensions is demonstrated by the class of
singletons (Example 1 in Appendix A). Example 3 (dented cube) in Appendix A demonstrates that
for extremal classes, the dual Radon number can indeed be exponential with respect to the dual VC
dimension.

Organization. The rest of this manuscript is organized as follows. Section 2 provides a proof of
our main result, that is, r(C) ≤ 2vc(C)+1 for extremal class C; it also introduces the relevant topo-
logical notions and theorems. The remaining sections are moved to the appendices. In Appendix A
we present several, rather simple, examples that demonstrate the sharpness of our bounds. The sup-
plementary proofs, all of which are mostly elementary, are provided in Appendix B; this includes
showing that the values of the relevant parameters in examples are indeed what they are claimed to
be. Finally, in Appendix C we give a broader discussion on the topological notions introduced in
Section 2.

2. Main Proof

We now present the proof for the upper bound in Theorem C. As previously discussed, Theorem A
and Theorem B are derived as corollaries. Consider an extremal class C ⊆ {0, 1}n; our goal is to
demonstrate that r(C) ≤ 2vc(C) + 1. The proof employs a topological approach. For this purpose,
we define a cube complex (see Figure 2). We think of the cube complex as a topological subspace of
[0, 1]n. It comprises cubes of various dimensions that are glued together according to the structure
of C.

Definition 13 (The Cube Complex) The cube complex Q = Q(C) ⊆ [0, 1]n of C ⊆ {0, 1}n is
defined as follows. The vertices of Q are the concepts of C. The cubes of Q are the “filled cubes of
C”.

Formally, a d-cube in C is a pair (Y, f), where Y ⊆ [n] is of size |Y | = d and f is a function
f : [n] \ Y → {0, 1} such that for every g : Y → {0, 1} there is a concept c ∈ C such that
c(x) = g(x) for every x ∈ Y and c(x) = f(x) for every x ∈ [n] \ Y .

For a cube (Y, f) of C, we define the corresponding solid cube (Y, f)Q ⊆ [0, 1]n as

(Y, f)Q = {v ∈ [0, 1]n : v(x) = f(x) for x ∈ Y }.

We now define the cubes of Q as the collection (Y, f)Q, over all cubes (Y, f) of C.

Let us note several basic facts about the cube complex Q(C) that we are going to utilize:

9
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• For a d-cube (Y, f) of C, d = |Y | is called the dimension of this cube, and it coincides with the
topological dimension of (Y, f)Q. We define the dimension of Q = Q(C), denoted dim(Q),
as the maximum dimension of its cube;

• 0-cubes of V , also called vertices of V , are precisely the concepts of C. Here we assume
that a concept c ∈ C ⊆ {0, 1}n is naturally identified with the point in [0, 1]n with the same
coordinates. Moreover, every point of Q(C) with all coordinates in {0, 1} corresponds to a
concept of C. This essentially means that C is “embedded” into Q(C);

• We say that (Y1, f1) is a subcube of (Y2, f2) if Y1 ⊆ Y2 and f2 is a restriction of f1 to [n]−Y2.
Then (Y1, f1)Q ⊆ (Y2, f2)Q if and only if (Y1, f1) is a subcube of (Y2, f2). In this case we
also say that (Y1, f1)Q is a subcube of (Y2, f2)Q;

• Any subcube of a cube (Y, f)Q of Q(C) is a cube of Q(C). Also, any cubes (Y1, f1) and
(Y2, f2) of Q(C) either disjoint, or intersect by a cube of Q(C). This property enables us to
indeed call Q(C) a cube complex, as opposed to it being just a collection of cubes.

(0,0,0)

(0,1,0)

(1,0,0)

(1,1,0)

(0,0,1)

(0,0,0)

(0,1,0)

(1,0,0)

(1,1,0)

(0,0,1)

Figure 2: A 2-dimensional illustration of the cube complex for the extremal class C =
{000, 010, 110, 100, 001}. It has 5 vertices (0-dimensional cubes), 5 edges (1-dimensional
cubes), and 1 square (2-dimensional cube). The square corresponds to a cube (Y, f) of C
with Y = {1, 2} and f : 3 7→ 0. A unique maximal edge, connecting (0, 0, 0) and (0, 0, 1),
corresponds to a cube with Y = {3} and f : 1 7→ 0, 2 7→ 0.

For Y ⊆ [n], we say that Y is strongly shattered by C if there is a cube (Y, f) in C. It is
well-known that for extremal classes strong shattering is equivalent to shattering; see, for example,
Bollobás and Radcliffe (1995).5 It then follows that for an extremal C, dim(Q) = vc(C).

A key concept that we utilize in the proof is the Radon number of a topological space. Denote
by ∆d the standard d-dimensional simplex (with d+1 vertices), and by ∂∆d its boundary, which is
homeomorphic to the (d− 1)-dimensional sphere Sd−1 ⊂ Rd.

Definition 14 (Radon number of a topological space) For a topological space X , the Radon num-
ber r(X) is the largest integer d such that there is a continuous mapping f : ∂∆d+1 → X such that
the images of disjoint faces are disjoint. The map f is called a Radon map.

Alternatively, r(X)+1 is the minimal integer d such that for every continuous map f : ∂∆d+1→
X , there is a pair of disjoint faces whose images intersect. The name “Radon number” is motivated
by the famous Topological Radon Theorem.

5. The authors use the terms strongly traced and traced.

10
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Theorem 15 (Topological Radon Theorem (Bajmóczy and Bárány, 1979))

r(Rd) = d− 1.

Our proof consists of two main steps, whose statements are now easy to formulate. First, we
prove that for an extremal class C the “topological” Radon number r(Q(C)) can be lower-bounded
by the “discrete” Radon number r(C).

Proposition 16 Let C be an extremal class, and let c1, . . . , ck ∈ C be Radon independent. Then,
there exists a Radon map f : ∂∆k−1 → Q(C). In particular, r(Q(C)) ≥ r(C)− 2.

The second step upper bounds the Radon number of an arbitrary simplicial complex in terms of
its dimension.

Lemma 17 For a finite d-dimensional simplicial complex K, we have d− 1 ≤ r(K) ≤ 2d− 1.

The slightly weaker upper bound r(K) ≤ 2d can be derived as a consequence of the Topological
Radon Theorem. Indeed, by the geometric realization theorem, K can be embedded in R2d+1.
Thus, any Radon map into K yields a Radon map into R2d+1, and so r(K) ≤ r(R2d+1) = 2d.

The required bound can be obtained by combining Proposition 16 and Lemma 17 as follows.
Let Qt(C) be a triangulation of Q. That is, Qt is a finite simplicial complex such a) every simplex
of Qt is contained in a cube of Q of the same dimension, and b) every cube of Q is a finite union
of simplices of Qt of the same dimension. In particular, dim(Q) = dim(Qt) and Q and Qt are
homeomorphic as topological spaces, which implies r(Q) = r(Qt). It is well-known and easy to
check that some triangulation Qt of Q exists, see for example Lee and Santos (2017). Then

r(C) ≤ r(Q(C)) + 2 = r(Qt(C)) + 2

≤ 2 dim(Qt(C))− 1 + 2 = 2dim(Q(C))− 1 + 2 = 2vc(C) + 1.

To complete the proof, we thus need to prove Proposition 16 and Lemma 17. For the proof
of Proposition 16, let us first the following property of Q(C). Recall that a topological space Y is
k-connected if for every 0 ≤ ℓ ≤ k, any continuous map from an ℓ-dimensional sphere Sℓ into Y
can be extended to a continuous map from the (ℓ + 1)-dimensional ball Bℓ+1 into Y . For k = 1,
for example, this means that every copy of a circle in Y can be extended to a copy of a disc in Y .
Figuratively, we can freely deflate balloons inside Y .

Proposition 18 Let C be an extremal class, and let Y ⊆ C be an arbitrary non-empty convex, with
respect to the convexity space FC , subset of C. Then Q(Y ) ⊆ Q(C) is k-connected for every k ≥ 0.

Proof The proof relies on the following two results from Chalopin, Chepoi, Moran, and Warmuth
(2022) that emphasize the highly connected nature of extremal classes (the authors use the term
ample for extremal):

• If C is extremal then every CX,t is extremal.

• If C is extremal then the cubical complex Q(C) is collapsible.

11
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In Chalopin et al. (2022), the first bullet is Theorem 3.1 (6), but it is also a well-known property
of extremal classes. The second is their Proposition 4.12, and, to our knowledge, it was not known
before that. We refer the reader to the referenced paper for the definition of collapsibility; here we
only use the standard fact6 that collapsible spaces are k-connected for all k.

Now let us take a convex set Y ⊆ C. By Definition 11 and the discussion afterwards, Y = CX,t

for some X ⊆ [n] and t : X → {0, 1}. Then by the first item above, Y itself is extremal. And by
the second item, Q(Y ) is collapsible, and hence k-connected for all k.

Proof (Of Proposition 16). Let c1, . . . , ck ∈ C be Radon independent, and let ∆ = ∆k−1. Recall
that the abstract simplices of ∂∆ are precisely non-empty subsets of [k]. We are going to define
f : ∂∆ → Q = Q(C) such that for every simplex s with vertex set V (s) in ∂∆k−1,

f(s) ⊆ convQ(C(s)),

where C(s) = {ci : i ∈ V (s)} and convQ(W ) = Q(conv(W )) ⊆ Q(C), for W ⊆ C.
The map f is defined inductively. The ℓ-skeleton of ∂∆ comprises simplices of dimension at

most ℓ. We construct f first on the 0-skeleton, then on the 1-skeleton, and so forth. For ℓ = 0, we
need to define f on V (∂∆) = [k]. Naturally, we do it by putting f(i) = ci, for i ∈ [k]. Note that
here we use the fact that C is embedded into Q(C), that is, each ci ∈ C ⊆ {0, 1}n is treated as a
point in Q(C) ⊆ [0, 1]n. Then trivially, for every i ∈ [k], f(i) ∈ convQ(ci), as needed.

Now, assuming that f is defined on the ℓ-skeleton and we need to define it on the (ℓ + 1)-
skeleton. By the induction hypothesis, for every maximal (ℓ + 1)-dimensional simplex s, the map
f is already defined on its ℓ-skeleton ∂s. Moreover, for each ℓ-dimensional simplex s′ in s,

f(s′) ⊆ convQ(C(s′)) ⊆ convQ(C(s)).

As s ∼= Bℓ+1 and ∂s ∼= Sℓ, applying Proposition 18 to s with Y = conv(C(s)) gives an extension
of f to s with f(s) ⊆ convQ(C(s)).

This concludes the construction of the map f . Let us take any disjoint simplices s1 and s2
of ∂∆k−1. In particular, V (s1) and V (s2) are disjoint. As c1, . . . , ck are Radon independent, the
convex sets conv(C(s1)) and conv(C(s2)) are disjoint.

We claim that then Q1 = convQ(C(s1)) and Q2 = convQ(C(s2)) are also disjoint. Indeed,
both Q1 and Q2 are cube subcomplexes of Q(C), and hence their intersection Q1 ∩ Q2 is also a
cube subcomplex of Q(C). Hence, if Q1 ∩ Q2 is nonempty, it contains a 0-dimensional cube, that
is, a vertex, p. But vertices of a cube complex of a class are in bijective correspondence with the
elements of this class, that is, p ∈ Q1 = Q(conv(C(s1))) if and only if p ∈ conv(C(s1)), and
similarly, p ∈ conv(C(s1)), a contradiction.

Thus, the images f(s1) and f(s2) are disjoint for any disjoint simplices s1 and s2 of ∂∆k−1,
and hence f is Radon, as needed.

Finally, let us prove Lemma 17. Here we rely on two known results. The first is proved by
Guilbault (2010) in his simple proof of the Topological Radon Theorem using the Borsuk-Ulam
Theorem.

6. Chalopin et al. (2022), e.g., say that collapsibility is a stronger version of contractibility. It is well-known that a
contraction of Y enables to extend any continuous map Sℓ ∼= ∂Bℓ+1 → Y to a continuous map Bℓ+1 → Y .
Roughly speaking, the extension is constructed by emulating inside Y the contraction of Sℓ to a point in Bℓ+1 using
the contraction of Y .

12
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Proposition 19 (Guilbault (2010), Proposition 3.1) For every k ≥ 0, there is a continuous func-
tion λk : S

k → ∂∆k+1 such that images of the antipodal points lie in disjoint simplices.

The second result is a variant of the Borsuk-Ulan Theorem for general simplicial complexes that
was proven by Gonçalves, Jaworowski, and Pergher (2002).

Theorem 20 (Gonçalves et al. (2002)) Let K be a finite simplicial complex of dimension d. If
f : Sk → Kd is continuous and 2d ≤ k, then there exists x ∈ Sk so that f(x) = f(−x).

Proof (Of Lemma 17). The lower bound d− 1 ≤ r(K) holds because K contains a d-dimensional
simplex. For the upper bound r(K) ≤ 2d − 1, we use the two results above. Given a Radon map
f : ∂∆k+1 → K, we can use the map λk to get a Borsuk-Ulam map g = f ◦ λk. That is, the map
g : Sk → Rd does not collapse antipodal points. By Theorem 20, we can deduce that k ≤ 2d−1.
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Appendix A. Examples

We now give examples that demonstrate that our bounds relating the Radon number, dual VC di-
mension, and VC dimension are nearly tight. These examples reveal that the lower bounds in The-
orems B, C, and D are tight, while the upper bounds are tight within constant multiplicative factors.
The determination of more precise bounds is left open for future research. This is summarized in
Table 1 below. The detailed analysis of the examples appears in Appendix B.

Theorem B
(VC vs. dual VC)

Theorem C
(VC vs. Radon)

Theorem D
(dual VC vs. Radon)

Upper Bound Examples 4 and 5 Examples 3, 4, and 5 Example 3
Lower Bound Example 2 Examples 2, 3, and 5 Examples 2 and 5

Table 1: Summary of examples demonstrating the tightness of our bounds. Our lower bounds are
tight, while the upper bounds are tight within constant multiplicative factors.

Our initial example demonstrates that for non-extremal concept classes C, the Radon number
cannot be upper-bounded solely as a function of the VC or dual VC dimensions. (However, the
lower bound by the dual VC dimension remains valid even for non-extremal classes, as stated in
Theorem D.)

Example 1 (Singletons) The class of singletons C = {1{i} : i ∈ [n]} is not extremal, and

1. vc(C) = 1.

2. vc⋆(C) = 1,

3. r(C) = n.

This illustrates that for non-extremal classes, the Radon number can be unbounded while both the
VC and dual VC dimensions remain as low as 1.

The upcoming examples pertain to Theorems B, C, and D. Refer to Table 1 for a roadmap
linking each example to its theorem.

Example 2 (Cube) The cube C = {0, 1}d is a maximum class satisfying:

1. vc(C) = d,
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2. vc⋆(C) = ⌊log d⌋,

3. r(C) = ⌊log(2d+ 2)⌋.

This demonstrates the tightness of the first lower bound in Theorem C and the lower bound in
Theorem B.

Example 3 (Dented cube) The dented cube C is obtained by removing the all-1 function from the
cube {0, 1}d+1. It is a maximum class satisfying:

1. vc(C) = d,

2. vc⋆(C) = ⌊log(d+ 1)⌋,

3. r(C) = d+ 1.

This example demonstrates that the second lower bound in Theorem C is tight. Additionally, it shows
that the upper bounds in Theorem C and Theorem D are tight within a constant multiplicative factor.

Example 4 Let

C = {01010101,11010101, 10010101, 01110101,
01100101, 01011101, 01011001, 01010111, 01010110}.

This class is maximum and satisfies:

1. vc(C) = 1,

2. vc⋆(C) = 3 (any three out of the four blue concepts are dually shattered),

3. r(C) = 3.

This confirms that the upper bounds in Theorem B and Theorem C are tight for d = 1.

A.1. Hyperplane Arrangements

We conclude with a geometric example of linear classifiers in Rd. Consider a collection of hyper-
planes H1, . . . ,Hn ⊆ Rd where each Hi is defined as Hi = {x : ⟨ai, x⟩ = bi} with ai ∈ Rd and
bi ∈ R. For each point x ∈ Rd \ (∪n

i=1Hi), associate a sign vector cx ∈ {±}n defined by:

cx(i) =

{
+ if ⟨ai, x⟩ > bi,

− if ⟨ai, x⟩ < bi.

Define the class C = {cx : x ∈ Rd}. Each c ∈ C corresponds to a cell induced by the hyperplane
arrangement (see Figure 3 for an illustration). We say that the hyperplanes are generic if for every
subset of hyperplanes {Hi1 , . . . ,Hik}, the intersection ∩k

j=1Hij has co-dimension k (and every
d + 1 hyperplanes do not intersect). For every d, n, there are generic hyperplane arrangements,
and as the name suggests a “typical” arrangement is generic. If the hyperplanes are generic, the
corresponding C is a maximum class of VC dimension d (Moran, 2012).
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Figure 3: A 2-dimensional hyperplane arrangement consisting of 3 lines and 7 cells. The class C is maxi-
mum. Its VC dimension is two because |C| < 8. Its dual VC dimension is one because |C⋆| < 4.
Its Radon number is three, because the three concept +−+,−++,−−− are Radon indepedent.

The convexity space F = FC corresponds to the standard notion of convexity. The half-space
Ci,y corresponds to the positive or negative, depending on y, half-space defined by Hi in Rd. The
classical Radon Theorem implies that r(C) ≤ d + 1 for all hyperplane arrangements in Rd (not
necessarily generic). Theorem D says that vc⋆(C) ≤ r(C) ≤ d+ 1.

Take d + 1 generic hyperplanes that support a simplex. The total number of cells we get is
2d+1 − 1. The VC dimension is d. The Radon number is d + 1 because the cells obtained by
flipping (with respect to the simplex) all hyperplanes but one are Radon independent. The dual VC
dimension is however at most log(d+1). In fact, we obtained a different description of Example 3.

To make the dual VC dimension larger, let p1, . . . , pd+1 ∈ Rd be d+ 1 points that are shattered
by hyperplanes h1, . . . , h2d+1 . These points can be chosen, for example, as the vertices of a full-
dimensional simplex. The hyperplanes can be chosen to be generic so that we get a maximum class
of VC dimension d. By construction, the dual VC dimension is at least d + 1, and, as discussed
above, it is also at most d+ 1.

Example 5 There are maximum classes C defined by arrangements of generic hyperplanes in Rd

fulfilling:

1. vc(C) = d,

2. vc⋆(C) = d+ 1,

3. r(C) = d+ 1.

This example demonstrates the tightness of the lower bounds in Theorem C and Theorem D, and
that the upper bounds in Theorem B and Theorem C are tight within a factor of 2.

A more general type of classes, called pseudogeometric range spaces, was defined and stud-
ied in Gärtner and Welzl (1994). Intuitively, this class is an abstraction of the class obtained
from generic hyperplanes in Rd, with pseudo-hyperplanes instead of hyperplanes, where pseudo-
hyperplanes are topological abstractions of linear hyperplanes. Their definition, however, is com-
binatorial and is inductively defined based on the following two ideas. First, a one-dimensional
pseudogeometric range space is a, combinatorially defined, line. Second, for d ≥ 2, a class is a
d-dimensional pseudogeometric range space if its intersection with any pseudo-hyperplane from
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it is a (d − 1)-dimensional pseudogeometric range space; here again, the intersection is defined
combinatorially.

Our work suggests a different way to define and think of pseudo-hyperplane arrangements. Let
us first imagine a generic hyperplane arrangement realized in Rd, and denote by C its concept class.
The cube complex Q = Q(C) can be thought of as a dual object to the geometric realization. Each
point in Q is a cell in C. Two adjacent cells are connected by an edge in Q, four cells that meet at a
point define a square, and so forth. Thus, Q, as a topological space, can be embedded into Rd.

Based on this observation, it is natural to suggest that a maximum class C of VC dimension d
is a d-dimensional pseudogeometric range space in the sense of Gärtner and Welzl (1994) if and
only if its cube complex Q(C) is embeddable into Rd. This equivalence will be the topic of a future
study.

Appendix B. Proofs and Analysis of Examples

Here we analyze all examples in Appendix A. Some of the bounds in our main results are deduced
as corollaries.

Proposition 21 (First Lower Bound in Theorem C) For any class C,

⌊log(2vc(C) + 2)⌋ ≤ r(C).

Proof Suppose vc(C) = d, and, without losing generality, assume that C shatters [d]. Let k =
⌊log(2d + 2)⌋. In particular, D = (2k − 2)/2 ≤ d. We say that (I, J) is a (non-trivial, ordered)
partition of [k] if I, J ̸= ∅, I ⊔ J = [k], and 1 ∈ I . Let I be a set of all such partitions; the
last condition ensures that precisely one of (I, J) and (J, I) is in I. It is easy to see that then
|I| = (2k − 2)/2, and let us take an arbitrary bijection (I, J) 7→ xI,J from I to [D].

Let us now take ci ∈ C, for i ∈ [k], such that for every (I, J) ∈ I, ci(xI,J) = 0 if i ∈ I and
1 if i ∈ J . Such ci exist because C shatters [D] ⊆ [d]. We claim that the concepts c1, . . . , ck are
Radon independent. Indeed, let (I, J) ∈ I be a partition of [k], and let x = xI,J . Then ci(x) = 0
for all i ∈ I , and cj(x) = 1 for all j ∈ J . But then I ⊆ Cx,0 and J ⊆ Cx,1, which implies that
convC(I) ∩ convC(J) ⊆ Cx,0 ∩ Cx,1 = ∅, as needed.

Proposition 22 (Example 2 - Cube) For the cube C = {0, 1}d:

1. vc(C) = d,

2. vc⋆(C) = ⌊log d⌋,

3. r(C) = ⌊log(2d+ 2)⌋.

This example also confirms the last lower bound in Theorem C.
Proof The equality vc(C) = d is trivial. The bound vc⋆(C) = ⌊log d⌋ is also trivial and known
from the sharpness of the bound in Theorem 9; see Assouad (1983). From Proposition 21, r(C) ≥
⌊log(2d + 2)⌋. It remains to prove that r(C) ≤ log(2d + 2). The argument goes along the lines of
the proof of Proposition 21.
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We first prove the followng technical claim: for I, J ⊆ C, convC(I) ∩ convC(J) = ∅ if and
only if there is x ∈ [d] that separates I and J , that is, such that c(x) = 0 for all c ∈ I and c(x) = 1
for all c ∈ J , or the other way round.

Indeed, if there is such x, then convC(I) and convC(J) are trivially disjoint. In the other
direction, suppose convC(I) ∩ convC(J) = ∅. As explained below Proposition 18, every non-
empty convex set Y in FC is of the form Y = CX,t for X ⊆ [d] and t : X → {0, 1}. Write
convC(I) = CXI ,tI and convC(J) = CXJ ,tJ . As convC(I) and convC(J) are disjoint, there is
x ∈ XI ∩XJ such that tI(x) = 0 and tJ(x) = 1, or vice versa. But, by the definition of CX,t, this
means that c(x) = 0 for all c ∈ I and c(x) = 1 for all c ∈ J , or the other way round, as needed.

Now, suppose that c1, . . . , ck ∈ C are Radon shattered. We see that for each non-trivial ordered
partition (I, J) of [k], there is xI,J ∈ [d] that separates {ci : i ∈ I} and {cj : j ∈ J}. Moreover, it
is easy to see that the map (I, J) 7→ xI,J on I is one-to-one. As |I| = (2k − 2)/2, it follows that
d ≥ (2k − 2)/2.

Proposition 23 (Lower Bound for Maximum Classes in Theorem C) For any maximum class
C ̸= {0, 1}n, we have vc(C) + 1 ≤ r(C).

We use the following known property of extremal classes (see Chalopin, Chepoi, Moran, and
Warmuth (2022) or Chornomaz (2022)). For a class C ⊆ {0, 1}n, a set X ⊆ [n] is called minimal
non-shattered if X is not shattered by C and Y is shattered by C for every Y ⊊ X .

Lemma 24 For every extremal class C, if X is minimal non-shattered by C, then X contains a
unique forbidden trace t; that is, there is t : X → {0, 1} such that

• For every t′ : X → {0, 1} such that t′ ̸= t, there is c ∈ C such that t′(x) = c(x) for all
x ∈ X .

• There is no c ∈ C such that t(x) = c(x) for all x ∈ X .

Proof [Of Proposition 23] Let C ≠ {0, 1}n be a maximum class of VC dimension 0 < d < n. Fix
X ⊆ [n] of size |X| = d+ 1. Because C is maximum, the set X is minimal non-shattered. Let t be
its unique forbidden trace. Define a family of traces tx : X → {0, 1} for x ∈ X , as tx(y) = t(y)
for y ̸= x and tx(x) = 1− t(x). For each x ∈ X , let cx ∈ C be a concept witnessing trace tx.

We claim that the family {cx : x ∈ X} is Radon independent, so that r(C) ≥ d+ 1. Indeed, let
(I, J) be a non-trivial partition of X . By choice of (ci : i ∈ I),

convC({ci : i ∈ I}) ⊆ CJ,t|J

where t|J is a restriction of t to J . Similarly, convC({cj : j ∈ J}) ⊆ CI,t|I . Hence,

convC({ci : i ∈ I}) ∩ convC({cj : j ∈ J}) ⊆ CJ,tJ ∩ CI,tI = CX,t.

But CX,t = ∅ because t is a forbidden trace of C on X .

Proposition 25 (Example 3 - Dented cube) Let C = {0, 1}d+1 \ {(1, 1, . . . , 1)} be the dented
cube. Then,
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1. vc(C) = d,

2. vc⋆(C) = ⌊log(d+ 1)⌋,

3. r(C) = d+ 1.

Proof The first item is trivial and the second follows from Proposition 22. We only prove r(C) =
d+1. Proposition 23 says that r(C) ≥ d+1. So we only need to show that r(C) ≤ d+1. Suppose,
towards contradiction, that there are d+2 Radon shattered concepts c1, . . . , cd+2 ∈ C. Let us define
partitions Ii = {ci} and Ji = {cj : j ∈ [d + 2] − {i}} for i ∈ [d + 2]. Write convC(Ji) = CXi,ti

for some Xi ⊆ [n] and ti : Xi → {0, 1}. Because

∅ = convC(Ii) ∩ convC(Ji) = Ii ∩ CXi,ti

there is xi ∈ Xi such that ci(xi) ̸= ti(xi) and cj(xi) = ti(xi) for all j ̸= i. But this implies that the
map [d+ 2] ∋ i 7→ xi ∈ [d+ 1] is one-to-one, which is a contradiction.

Proposition 26 (Example 4) For the class

C = {01010101,11010101, 10010101, 01110101,
01100101, 01011101, 01011001, 01010111, 01010110},

it holds that

1. vc(C) = 1,

2. vc⋆(C) = 3 (any three out of the four blue concepts are dually shattered),

3. r(C) = 3.

Proof It can be verified that vc(C) = 1 and that it indeed dually shatters any three out of the
four blue concepts, witnessing vc∗(C) ≥ 3. This analysis can be simplified by noticing that C is
highly symmetric: it remains the same under permutations that exchange the pairs of even and odd
vertices, for example, 01234567 7→ 23671045. The class C is maximum because |C| = 9 =

(
8
≤1

)
.

Theorem C implies that 3 ≤ vc⋆(C) ≤ r(C) ≤ 2vc(C) + 1 = 3, and so vc⋆(C) = r(C) = 3, as
claimed.

Proposition 27 (Theorem D)

1. Every concept class C satisfies vc⋆(C) ≤ r(C).

2. For general classes, r(C) is not upper-bounded by vc(C) or vc∗(C).

3. If C is extremal, then r(C) ≤ 2vc
⋆(C)+2 − 1, and this bound is tight up to a multiplicative

factor.
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Proof The fact that vc⋆(C) ≤ r(C) was already proved in the discussion following Theorem C.
The fact that r(C) is, in general, unbounded with respect to vc(C) or vc∗(C) is demonstrated by
the class of singletons (Example 1). For the third item, let C be extremal. Theorem C says that
r(C) ≤ 2vc(C) + 1. Theorem 9 says that vc(C) ≤ 2vc

∗(C)+1 − 1. Thus,

r(C) ≤ 2vc(C) + 1 ≤ 2(2vc
∗(C)+1 − 1) + 1 = 2vc

∗(C)+2 − 1.

The tightness up to a factor of 2 is demonstrated by the dented cube (Example 3) where d + 1 =
2k − 1. In this case, r(C) = 2k − 1 and vc∗(C) = ⌊log(2k − 1)⌋ = k − 1.

Appendix C. Discussion of the Main Proof

We conclude with a discussion of the Radon number, which is an interesting concept that merits a
discussion in its own right. Most of the relevant concepts have been introduced in the main proof
(Section 2).

The classical Radon Theorem asserts that the maximal size of a Radon-independent set in Rd is
d+1 with respect to the usual convexity structure. Equivalently, it says that the maximal k for which
there is a linear Radon map f : ∂∆k+1 → Rd is d − 1. The Topological Radon Theorem extends
it by allowing f to be any continuous function. This opens the way to defining Radon numbers for
arbitrary topological spaces, as we no longer depend on neither convexity nor linearity.

Other concepts can be formulated similarly. For example, we can define the Borsuk-Ulam
number bu(X) of a topological space X as a maximal d such that there is a Borsuk-Ulam map
f : Sd → X; that is, a continuous map that does not collapse antipodal points. This way, Theo-
rem 19 proves that for all topological spaces X ,

r(X) ≤ bu(X).

The Topological Radon theorem (r(Rd) = d − 1) becomes a consequence of the Borsuk-Ulam
theorem (bu(Rd) = d − 1), and Lemma 17 (r(K) ≤ 2d − 1) a consequence of Theorem 20
(bu(K) ≤ 2d− 1). It is natural to ask if the opposite direction holds.

Open Question 4 Is it true that for an arbitrary topological space X , we have r(S) = bu(S)? Is
it true for the special case of simplicial complexes?

The question can be thought of as a rigidity property of antipodality. A positive answer says
that the existence of a Borsuk-Ulam map implies the existence of a Radon map. The Borsuk-Ulam
condition just requires that there is no collapse of antipodal points. The Radon condition requires
e.g. that the image of a point is disjoint from all of its “opposite faces”.

In the one-dimensional case, the answer seems to be positive. For the special case of simplicial
complexes, if there is a Borsuk-Ulam map from the circle S1 to a graph, then the graph is not a path
(or a collection of disjoint paths). Then in the graph, there is either a cycle or a vertex of degree at
least three. In both cases, there is a Radon map from ∂∆2 to this graph. For general topological
spaces X , consider the path space of X . Namely, the space of continuous maps [0, 1] → X . If there
are two paths whose union is connected but is not a path then there is a Radon map (there is a point
of “degree three”). Otherwise, the space X itself is a path, which is a contradiction to the existence
of a Borsuk-Ulam map.
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The argument for the one-dimensional case is different than the proof that a Radon map yields
a Borsuk-Ulam map using Theorem 19. Even for the one-dimensional case, there is no proof of this
kind. That is, there is a one-dimensional space X and a Borsuk-Ulam map f : S1 → X so that for
every continuous map g : ∂∆2 → S1, the map g ◦ f is not Radon. The space X can be chosen to
be the circle S1, and the map f can be chosen to be the map that wraps around three times.

In the Topological Radon Theorem, we can deal with two types of maps: ∂∆d+1 → X and
∆d+1 → X . We used the first option, but it also makes sense to use the second. If we denote this
modified version of the Radon number by r′(X), then r′(X) ≤ r(X) for all X . For Euclidean
space, we have r′(Rd) = r(Rd) for all d, which could explain why this distinction is not made in
the context of the Topological Radon Theorem. However, while r(Sd) = bu(Sd) = d as witnessed
by the identity map, it seems that proving r′(Sd) = d− 1 should not be too hard.

We were not able to find an explicit definitions of topological Radon or Borsuk-Ulam numbers in
the literature. They were, however, implicitly studied. For example, the aforementioned Gonçalves
et al. (2002) addressed bu(K), Jaworowski and Izydorek (1993) studied the Borsuk-Ulam number
of contractible simplicial complexes, and Vendruscolo et al. (2011) of products of manifolds. The
latter paper, in fact, explicitly introduces a setup akin to (and even more general than) our definition
of bu(S), and also has a good list of relevant references. The most systematic approach that we are
aware of is developed in the book Matoušek et al. (2003) under the name of Z2-coindex of a space.
This setup, nevertheless, is different because the target space is also required to have an involution,
and the maps to be equivariant.

Finally, let us discuss the topological Radon number of a class C, defined as the Radon number
of the cube complex Q = Q(C):

rt(C) = r(Q).

The bound r(C) ≤ rt(C)+2 from Proposition 16 is specific to extremal classes. For example, in the
(non-extremal) singletons class C in Example 1, the complex Q is a collection of n isolated points,
and so rt(C) = 0 while r(C) = n. The connection between r and rt for extremal classes utilizes
their topological nature in an essential way.
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