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Abstract
We revisit the well-studied problem of learning a linear combination of k ReLU activations given
labeled examples drawn from the standard d-dimensional Gaussian measure. Chen et al. (2023)
recently gave the first algorithm for this problem to run in poly(d, 1/ε) time when k = O(1), where
ε is the target error. More precisely, their algorithm runs in time (d/ε)quasipoly(k) and learns over
multiple stages. Here we show that a much simpler one-stage version of their algorithm suffices,
and moreover its runtime is only (dk/ε)O(k2).
Keywords: PAC learning, neural networks, multi-index models, method of moments, tensors

1. Introduction

We consider the well-studied problem of PAC learning one-hidden-layer ReLU networks from
Gaussian examples. Here, there are unknown weight vectors u1, . . . , uk ∈ Sd−1 and output weights
λ1, . . . , λk ∈ R, and we are given labeled examples (x1, f(x1)), . . . , (xN , f(xN )) for

f(x) ≜
k∑

i=1

λi relu(⟨ui, x⟩) , (1)

where x1, . . . , xN are drawn i.i.d. from the standard d-dimensional Gaussian measure γ. The goal
is to output some estimator f̂ for which

∥f − f̂∥L2(γ) ≤ ε , (2)

for some target error ε. In order for this to be scale-invariant, we adopt the standard (and necessary)
normalization convention of assuming that

∑
i |λi| ≤ R for some parameterR ≥ 1.

This problem has been a fruitful testbed both for proving rigorous guarantees on training neural
networks with gradient descent, and for developing new provably correct algorithms for nonconvex
regression in high dimensions. While it has been the subject of a long line of work (Janzamin et al.,
2015; Sedghi et al., 2016; Bakshi et al., 2019; Ge et al., 2018b,a; Gao et al., 2018; Diakonikolas
et al., 2020b; Zhang et al., 2016; Goel et al., 2017; Daniely, 2017; Goel and Klivans, 2019; Zhong
et al., 2017; Li and Yuan, 2017; Vempala and Wilmes, 2019; Zhang et al., 2019; Soltanolkotabi,
2017; Zhang et al., 2017; Diakonikolas et al., 2020a; Li et al., 2020; Goel et al., 2018; Allen-Zhu
et al., 2019; Chen et al., 2022; Diakonikolas and Kane, 2020; Chen et al., 2023), it remains open to
find a poly(k, d,R/ε) time algorithm for this problem without making any additional assumptions
on the network parameters. For a more thorough overview of related work, we refer the reader to
the discussion in Chen et al. (2022, 2023).

Recently, Chen et al. (2023) gave the first poly(d,R/ε) time algorithm for this problem in
the regime where k = O(1). Unfortunately, their dependence on k was rather large, namely
(dkR/ε)quasipoly(k). In this work, we obtain the following improvement:
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Theorem 1 There is an algorithm for PAC learning one-hidden-layer ReLU networks from Gaus-
sian examples with runtime and sample complexity (dkR/ε)O(k2).

In Diakonikolas et al. (2020b) (see also Goel et al. (2020)), it was shown, roughly speaking, that any
correlational statistical query (CSQ) algorithm time at least dΩ(k) to learn to constant error in this
setting. In particular, this lower bound applies to the standard approach in practice of running noisy
gradient descent with respect to square loss. The algorithm we use is also a CSQ algorithm, and our
Theorem 1 can thus be interpreted as saying that the lower bound of Diakonikolas et al. (2020b) is
qualitatively tight, up to the particular polynomial dependence on k in the exponent. In fact, as we
discuss in Remark 17 at the end of §4, for the specific hard instance constructed in the lower bound
of Diakonikolas et al. (2020b), the dependence on k in the exponent that our algorithm achieves can
actually be improved from quadratic to linear.

Comparison to Chen et al. (2023). Our algorithm can be thought of as a simplification of the
algorithm proposed by Chen et al. (2023) in the following sense.

The starting point for their algorithm was to form empirical estimates of the moment tensors
Tℓ =

∑
i λiu

⊗ℓ
i for various choices of ℓ and contract these along a random direction g ∈ Sd−1

into matrices Mℓ ≜ Tℓ(g, . . . , g, :, :) =
∑

i λi⟨ui, g⟩ℓ−2uiu
⊺
i . Intuitively, these matrices constitute

different linear combinations of the projectors uiu
⊺
i , and if we take enough different choices of ℓ,

these matrices will collectively span the subspace span(u1u
⊺
1, . . . , uku

⊺
k). So in principle, by taking

a suitable linear combination
∑

ℓ αℓMℓ of these matrices and computing its top-k singular subspace,
we can get access to the subspace spanned by the weight vectors, and then exhaustively enumerate
over an epsilon-net over this to find a suitable approximation to the unknown function f .

Unfortunately, as noted in Chen et al. (2023), there are a host of technical hurdles that arise in
implementing this strategy, because there might be some weight vectors that are arbitrarily close
to each other. A priori, this means that for any suitable choice of coefficients {αℓ}, some of the
αℓ’s would have to be very (in fact, arbitrarily) large, which would require estimating the moment
tensors to arbitrarily small precision.

Their workaround was to argue that if one takes the top-k singular subspaces of sufficiently
many different Mℓ’s and computes their joint span U , this space will contain some weight vectors.
One can then subtract these from the unknown function and recurse. Unfortunately, the error in
estimating weight vectors in each stage compounds exponentially in k, and under their analysis,
Θ(log k) rounds of recursion are needed, which ultimately leads to their (d/ε)quasipoly(k) runtime.

In the present work, we show that this multi-stage approach is unnecessary, and in fact all of
the information needed to reconstruct f is present in the subspace U computed in the first round
of their algorithm.1 The central ingredient in our analysis is a univariate polynomial construction
(Lemma 7) that shows, roughly speaking, that for any cluster S ⊆ [k] of weight vectors which
are poly(1/d, 1/k, ε/R)-far from all other weight vectors, there exists a linear combination of
Mℓ’s which is equal to

∑
i∈S λiuiu

⊺
i . Crucially, the coefficients in this linear combination can

be upper bounded by a quantity depending only on d, k,R/ε and not on the distances between the
weight vectors. These linear combinations certify that U contains a vector close to each such cluster
(Corollary 16), and we show (Lemma 9) that these vectors are enough to approximate f .

1. In fact, we show that it is present even in a certain low-dimensional approximation to this subspace. For technical
reasons, it is essential to work with this approximation instead of the full subspace in order to get the claimed (k/ε)k

2

dependence in Theorem 1, as opposed to a (k/ε)k
4

dependence.
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Independent Work. Diakonikolas and Kane (2023), in a concurrent work, also obtained an algo-
rithm for learning one-hidden-layer ReLU networks from Gaussian examples. Their sample com-
plexity and runtime is (dk/ε)O(k), which has an improved exponential dependence on k compared
to ours, which is exponential in k2. However, their algorithm is improper, meaning it cannot output
a hypothesis that is also a linear combination of ReLUs, whereas our algorithm is proper.

2. Preliminaries

Notation. Given a positive integer k, we use [k] to denote the set of integers {1, 2, . . . , k}. Like-
wise, given two positive integers b ≥ a, we use [a : b] to denote the set of integers {a, a+1, . . . , b}.

Given functions a, b : R≥0 → R≥0, we use a = O(b) and a ≲ b interchangeably to denote that
there exists an absolute constant C such that a(z) ≤ C · b(z) for all z sufficiently large.

Given any function f : Rd → R and a distribution γ over Rd, we write ∥f∥L2(γ) =
√
Ex∼γ [f(x)2],

recalling that γ denotes the standard d-dimensional normal distribution N (0,1).
We will always use ui to denote a vector in the d-dimensional unit sphere Sd−1, and λi, µi to

denote real-valued scalars. For a vector v, we use ∥v∥ to denote its ℓ2 norm (or Euclidean norm),
and ∥v∥1 to denote its ℓ1 norm. Given a real symmetric matrix M , we use ∥M∥op to denote its
operator norm, and ∥M∥F to denote its Frobenius norm.

2.1. ReLU networks

Lemma 2 (Lemma 2.1 in Chen et al. (2023)) Given f =
∑k

i=1 µi relu(⟨ui, ·⟩), there exist w ∈
Rd and λ1, . . . , λk ∈ R such that f = ⟨w, ·⟩+

∑k
i=1 λi |⟨ui, ·⟩|.

In light of Lemma 2, given w ∈ Rd and (λ1, u1), . . . (λk, uk) ∈ R× Sd−1, let

fw,λ,u(x) ≜ ⟨w, x⟩+
k∑

i=1

λi |⟨ui, x⟩| . (3)

We use the following bound relating parameter closeness to L2(γ)-closeness for such functions.

Proposition 3 (Lemma 3.3, restated, in Chen et al. (2021)) For x ∼ γ and any unit vectors u, u′,

E[(|⟨u, x⟩| − |⟨u′, x⟩|)2] ≲ ∥u− u′∥2 . (4)

2.2. Moment tensors

Given g ∈ Sd−1 and ℓ ∈ N, define

Tℓ({λi, ui}) ≜
k∑

i=1

λiu
⊗ℓ
i and Mg

ℓ ({λi, ui}) ≜
k∑

i=1

λi⟨ui, g⟩ℓ−2uiu
⊺
i , (5)

noting that the latter can be obtained by contracting the former along the direction g in the first ℓ−2
modes, which we denote by Mg

ℓ ({λi, ui}) = Tℓ({λi, ui})(g, · · · , g, :, :). When g and {λi, ui} are
clear from context, we denote these by Tℓ and Mℓ respectively.

These objects can be estimated from samples as follows. Let Heℓ(·) denote the degree-ℓ proba-
bilist’s Hermite polynomial. The polynomials { 1√

ℓ!
Heℓ}ℓ≥1 form an orthonormal basis for the space
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of functions which are square-integrable with respect to γ. Define the normalized Hermite tensor
Sℓ : Rd → (Rd)⊗ℓ to be the tensor-valued function whose (i1, . . . , iℓ)-th entry, given input x ∈ Rd,
is
∏d

j=1
1√
ℓj !

Heℓj (xj), where ℓj is the number of occurrences of j within (i1, . . . , iℓ).

Lemma 4 (Lemma 4.2 in Chen et al. (2023)) Let ℓ ∈ {1, 2, 4, 6, . . .} and

Cℓ ≜

{
1/2 if ℓ = 1
Heℓ(0)+ℓHeℓ−2(0)√

2πℓ!
if ℓ even

(6)

Let η > 0. Given samples {(xi, fw,λ,u(xi)}i∈1,...,N for xi ∼ γ and N ≥ ℓO(ℓ)d2ℓR2/η2, with high
probability the tensor

T̂ =
1

2CℓN

∑
i

fw,λ,u(xi) · Sℓ(xi) (7)

satisfies ∥T̂ − Tℓ∥F ≤ η if ℓ is even, and otherwise satisfies ∥T̂ − w∥2 ≤ η if ℓ = 1. In particular,
for even ℓ, if we define M̂g

ℓ ≜ T̂ℓ(g, · · · , g, :, :) then ∥M̂g
ℓ −Mg

ℓ ∥F ≤ η.

When g and N are clear from context, we will use M̂ℓ to refer to the empirical estimate M̂g
ℓ which

is obtained using N samples. We will also use ŵ to refer to T̂ when ℓ = 1 to emphasize that it is an
empirical estimate of the linear component w in fw,λ,u.

2.3. Random contraction

As in Chen et al. (2023), our algorithm is based on extracting information about the parameters of
the network from {Mg

ℓ } for a random choice of unit vector g. The randomness in g ensures that
with high probability, any two weight vectors ui, uj are close/far if and only if their projections
⟨ui, g⟩, ⟨uj , g⟩ are as well. Formally:

Lemma 5 (Lemma 2.2 in Chen et al. (2023)) With probability at least 4/5 over random g ∈
Sd−1, for all i, j and σ ∈ {±1},

c√
d
· 1
k2
≤ |⟨ui + σuj , g⟩|
∥ui + σuj∥

≤ c′√
d
·
√
log k (8)

for some absolute constants c, c′ > 0.

Henceforth, we condition on the event that g satisfies Lemma 5. We will denote

zi ≜ ⟨ui, g⟩ (9)

and, because of the absolute values in the definition of fw,λ,u, we may assume without loss of
generality that

0 ≤ z1 ≤ · · · ≤ zk . (10)
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2.4. Estimating test error

Our algorithm will produce a list of many candidate estimates, at least one of which is guaranteed
to be sufficiently close in L2(γ) to fw,λ,u. In order to identify an estimate from the list with this
property, we use the following standard result on validation:

Lemma 6 Let F : Rd → R be a 2R-Lipschitz one-hidden-layer ReLU network of size at most 2k.
Let δ > 0, and let υ > 0 be a parameter satisfying υ2 < 4R2k. Given N ≳ k2(R/υ)4 log(1/δ)
samples x1, . . . , xN ∼ γ, we have that∣∣∣E

γ
[F 2]− 1

N

N∑
i=1

F (xi)
2
∣∣∣ ≤ υ2. (11)

We will ultimately take F to be fw,λ,u − f̂ for various f̂ in our list of estimates. All of the f̂ we
consider will beR-Lipschitz and have size at most k, so F = fw,λ,u− f̂ will satisfy the hypotheses
of Lemma 6.

3. Polynomial construction

A key tool in establishing our main result is the following polynomial construction.

Lemma 7 Let 0 < ∆ < 1, and let −1 ≤ x1 < · · · < xk ≤ 1. Suppose there are indices
1 ≤ a < b ≤ k such that xb+1 > xb +∆ and xa > xa−1 +∆. Then, there exists a degree (at most)
k2 polynomial p with coefficients bounded by O(1/∆)O(k2) such that

p(xs) = 1[a ≤ s ≤ b] (12)

for all s ∈ [k].

Proof Define I = [a : b] to be the set of indices between a and b, inclusive. We consider the
polynomial

p(x) =
∏
j ̸∈I

(
1−

∏
i∈I

x− xi
xj − xi

)
. (13)

It is clear that the degree of this polynomial is at most |I| · (k − |I|) ≤ k2. Next, because every
xi ∈ [−1, 1] and every |xj − xi| ≥ ∆, it is clear that

∏
j∈I

x−xi
xj−xi

has all coefficients bounded by

O(1/∆)k, which means the full polynomial p(x) has all coefficients bounded by O(1/∆)k
2
.

Next, we evaluate this polynomial on xs, where s ∈ I . In this case, note that
∏

i∈I
xs−xi
xj−xi

= 0

for any j ̸∈ I , because when we set i = s, the fraction is 0. Therefore, 1−
∏

i∈I
xs−xi
xj−xi

= 1 for all
j ̸∈ I , so p(xs) =

∏
j ̸∈I 1 = 1. Finally, we evaluate this polynomial on xs, where s ̸∈ I . Note that

for j = s,
∏

i∈I
xs−xi
xj−xi

= 1, so 1 −
∏

i∈I
xs−xi
xj−xi

= 0 for j = s. Therefore, p(xs) = 0, because one
of the terms in the product that comprises p evaluates to 0.

Lemma 7 will end up being applied on ⟨ui, g⟩2 for some random vector g. Using linear combinations
of the matrices M̂ℓ described in §2.2, we can estimate

∑
λip(⟨ui, g⟩2)uiu⊺i for any polynomial p.

Lemma 7 allows us to choose a polynomial p that isolates out a “cluster” of somewhat close vectors
{ui}i∈I , as long as the remaining vectors uj (for j ̸∈ I) are of distance at least ∆ away. Hence,
the linear combination of the matrices M̂ℓ corresponding to this choice of p will result in a matrix
which closely approximates the direction of ui for i ∈ I .
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Algorithm 1: NETLEARN(f, ε)
Input: Sample access to unknown one-hidden-layer network fw,λ,u, target error ε
Output: ε-close estimate f̂ for fw,λ,u

τ ← Cε
k , ξ ← Cε

kR , ∆← C2ξ2τε
2k4d3/2R , η′ = ν ← C2ξ2τ∆O(k2)

d·R , η = (η′)2.
N ← (kd)O(k2)R2/η2, Nval ← O((kR/ε)4 log(kR/ε)).
Form estimates {M̂ℓ}ℓ=2,4,...,2k2+2 and ŵ from N samples {(xj , yj)}Nj=1. // see end of

§2.2

For each ℓ ∈ {2, 4, . . . , 2k2 + 2}, form the projector Πℓ to the span of the eigenvectors of M̂ℓ

with eigenvalue at least η′ in absolute value.
Compute

∑
ℓΠℓ, and let V denote the subspace spanned by the eigenvectors of

∑
ℓΠℓ with

eigenvalue at least ν.
Construct a ξ/2-net Nu in Euclidean distance over the set of vectors of unit norm in V .
Construct a ξ-net Nλ over the interval [−R,R].
Draw Nval additional samples {(xj , yj)}N+Nval

j=N+1.
for m = 0, 1, . . . , k do

for λ̂1, . . . , λ̂m ∈ Nλ and û1, . . . , ûm ∈ Nu do
if 1

N

∑N+Nval
j=N+1(yj − f

ŵ,λ̂,û
)2 ≤ ε2/2 then

return f
ŵ,λ̂,û

.
end

end
end
return Fail

4. Algorithm and analysis

Here we give an analysis for our main algorithm, NETLEARN, the full specification of which is
given in Algorithm 1. Roughly speaking, the algorithm proceeds by forming empirical estimates
M̂ℓ for the moment matrices Mℓ defined in Eq. (5) for ℓ ≤ O(k2), computing the top singular
subspaces of the various M̂ℓ, finding an O(k)-dimensional approximation V to the collective span
of these subspaces, and finally brute-forcing over V to find a sufficiently good estimate for fw,λ,u.

In the algorithm and analysis, we have several important parameters: η, η′, ν,∆, ξ, and τ . We
will not set the exact values of these parameters in the analysis until the end, but we will assume
that η ≤ η′, ν ≤ ∆ ≤ ξ, τ ≤ ε ≤ 1, where we recall that ε is our desired accuracy.

In §4.1, we introduce some conventions for handling weight vectors which are closely spaced by
dividing them up in our analysis into clusters. In §4.2 we give the main part of our analysis in which
we argue that the net Nu constructed in NETLEARN contains vectors close to a subset of weight
vectors of the unknown network fw,λ,u that could be used to approximate fw,λ,u to sufficiently
small error. We conclude the proof of Theorem 1 in §4.5.

4.1. Basic clustering

A key challenge in learning one-hidden-layer networks without making any assumptions on the
weight vectors is that parameter recovery is impossible, because there may exist weight vectors in

6



A FASTER AND SIMPLER ALGORITHM FOR LEARNING SHALLOW NETWORKS

the network which are arbitrarily close to each other. In Chen et al. (2023), the authors addressed
this by giving a rather delicate clustering-based argument based on grouping together weight vectors
that were close at multiple different scales.

In this work, we sidestep this multi-scale analysis and show that under a fixed scale, a naive
clustering of the weight vectors suffices for our analysis. Indeed, for a scale ∆ > 0 to be tuned
later, let I1 ⊔ · · · ⊔ Im be a partition of [k] into disjoint, contiguous intervals such that any adjacent
zi, zi+1 in the same interval are at most ∆-apart, whereas the distance between the endpoints of any
two intervals exceeds ∆. (Recall that zi ≜ ⟨ui, g⟩, where g is a randomly chosen unit vector, and
that we assume the indices are sorted in increasing order of zi.) We remark that I1, . . . , Im are only
referenced in the analysis, and our actual algorithm does not need to know this partition.

Note that under this partition, any two zi, zi′ in the same interval are at most k∆-apart. Recalling
that we are conditioning on the event of Lemma 5, this implies that for such i, i′,

∥ui − ui′∥ ≲ ∆ · k3
√
d . (14)

In every interval Ij , let i∗j denote its left endpoint. Also define

λj ≜
∑
i∈Ij

λi . (15)

For a threshold τ to be tuned later, define

Jbig ≜ {j ∈ [m] : |λj | > τ} . (16)

Intuitively, Jbig corresponds to clusters of neurons which are learnable, as the neurons coming from
those clusters do not “cancel” significantly with each other.

The following shows that a linear combination of projectors to weight vectors from the same
cluster is well-approximated by a projector to a single weight vector in that cluster:

Proposition 8 For any j ∈ [m], and any fixed i′ ∈ Ij ,∥∥∥λjui′u
⊺
i′ −

∑
i∈Ij

λiuiu
⊺
i

∥∥∥
op

≲ ∆ · k3
√
d ∥λ∥1 . (17)

Proof First, note that by triangle inequality, ∥ui′u⊺i′ − uiu
⊺
i ∥op ≤ ∥ui′u

⊺
i′ − uiu

⊺
i′∥op + ∥uiu

⊺
i′ −

uiu
⊺
i ∥op = 2∥ui′ − ui∥, since ui and ui′ are both unit vectors. Hence, for any i ∈ Ij , we have

∥ui′u⊺i′ − uiu
⊺
i ∥op ≤ 2∥ui′ − ui∥ ≲ ∆ · k3

√
d (18)

by Eq. (14), from which the claim follows by triangle inequality.

Next, we show that to learn the nonlinear parts of fw,λ,u, it suffices to estimate λj and ui∗j for
clusters j ∈ Jbig.

Lemma 9 Let ε > 0. For sufficiently small constants c1, c2, c3 > 0, suppose

τ ≤ c1ε

k
, ξ ≤ c2ε

k ·max(1, ∥λ∥1)
, ∆ ≤ c3ε

k4
√
d ∥λ∥1

. (19)
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If the parameters {λ̂j , ûj}j∈Jbig ∈ Sd−1 × R satisfy |λ̂j − λj | ≤ ξ and ∥ûj − ui∗j ∥ ≤ ξ for all
j ∈ Jbig, then ∥∥∥ k∑

i=1

λi |⟨ui, ·⟩| −
∑
j∈Jbig

λ̂j |⟨ûj , ·⟩|
∥∥∥
L2(γ)

≤ ε (20)

Proof For every j (including j ̸∈ Jbig), we have by triangle inequality and Proposition 3,∥∥∥∑
i∈Ij

λi |⟨ui, ·⟩| − λj |⟨ûj , ·⟩|
∥∥∥
L2(γ)

≤
∑
i∈Ij

|λi| ·
∥∥|⟨ui, ·⟩| − |⟨ûj , ·⟩|∥∥L2(γ)

(21)

≲
∑
i∈Ij

|λi| · (∥ui − ui∗j ∥+ ∥ui∗j − ûj∥) (22)

≲ ∥λ∥1 ·
(
∆ · k3

√
d+ ∥ui∗j − ûj∥

)
(23)

≤ ∥λ∥1 · (∆ · k3
√
d+ ξ) . (24)

Furthermore, for all j ∈ Jbig,∥∥λj |⟨ûj , ·⟩| − λ̂j |⟨ûj , ·⟩|
∥∥
L2(γ)

= |λj − λ̂j | ·
∥∥|⟨ûj , ·⟩|∥∥L2(γ)

≲ ξ . (25)

and for all j ̸∈ Jbig,
∥λj |⟨ui∗j , ·⟩|∥L2(γ) ≲ |λj | ≤ τ. (26)

By triangle inequality and the fact that m ≤ k, we conclude that

∥∥∥ k∑
i=1

λi |⟨ui, ·⟩| −
∑
j∈Jbig

λ̂j |⟨ûj , ·⟩|
∥∥∥ ≲ ∥λ∥1 · (ξk +∆ · k4

√
d) + k(ξ + τ) , (27)

and the lemma follows from the bounds in Eq. (19).

4.2. Analysis of PCA: Overview

Let η be a parameter to be tuned later. By Lemma 4, using N = kO(k2)dO(k2)R2/η2 samples,
we can form an empirical estimate M̂ℓ for which ∥M̂ℓ −Mℓ∥F ≤ η, for any positive even ℓ ≤
O(k2). (We assume WLOG that M̂ℓ is symmetric.) In Line 1 of NETLEARN, we do this for all
ℓ ∈ {2, 4, . . . , 2k2 + 2}.

For each M̂ℓ, we can decompose it as

M̂ℓ =
d∑

i=1

ρ
(ℓ)
i w

(ℓ)
i (w

(ℓ)
i )⊺ , (28)

where ρ
(ℓ)
i ∈ R and w

(ℓ)
i ∈ Sd are the eigenvalues and eigenvectors, respectively, of M̂ℓ. In Line 1

of NETLEARN, we compute Πℓ as the projection to the span of the eigenvectors with eigenvalue at
least η′ in absolute value, i.e.,

Πℓ =
∑

i:|ρ(ℓ)i |≥η′

w
(ℓ)
i (w

(ℓ)
i )⊺ . (29)

8
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Next, in Line 1 of NETLEARN, we compute
∑

ℓΠℓ, which we can decompose as

∑
ℓ

Πℓ =
d∑

i=1

κiviv
⊺
i , (30)

where κi, vi are the eigenvalues and eigenvectors, respectively, of
∑

ℓΠℓ. We pick V as the span of
vi with |κi| ≥ ν.

In analyzing PCA, we have two main steps. First, in §4.3 we show that V has low dimension.
This is because we wish to brute force over choices of û1, . . . , ûm in V to find a suitable set of
directions. Next, in §4.4 we show that every ui, where i ∈ j for j ∈ Jbig, is close to V . This will
allow us to prove that there exists an approximate solution in our brute force search.

4.3. V has low dimension

Consider any fixed ℓ ∈ {2, 4, . . . , 2k2 + 2}, and consider the empirical estimate M̂ℓ for which
∥M̂ℓ−Mℓ∥F ≤ η. To bound the dimension of V , we first show that every not-too-small eigenvector
of M̂ℓ (for all ℓ) is close to the span of {ui}ki=1.

Lemma 10 Suppose that w is a (unit) eigenvector of M̂ℓ with eigenvalue at least η′ in absolute
value. Then, w is within Euclidean distance η/η′ of the subspace span({ui}).

Proof Suppose M̂ℓw = ρw for some |ρ| ≥ η′. Note that ∥Mℓw−M̂ℓw∥ ≤ ∥M̂ℓ−Mℓ∥op ·∥w∥ ≤ η,
since ∥w∥ = 1. Hence, Mℓw is within η of ρw. However, note that

Mℓw =
k∑

i=1

λi⟨ui, g⟩ℓ−2 · uiu⊺iw =
k∑

i=1

λi⟨ui, g⟩ℓ−2 · ⟨ui, w⟩ · ui,

which is in the span of {ui}ki=1. Hence, ρw is within η of span({ui}), and since |ρ| ≥ η′, this means
w is within η/η′ of span({ui}).

Let U = span({ui}). Let ΠU be the projection matrix onto U , and Π⊥
U be the projection matrix

onto the orthogonal complement of U . Using Lemma 10, we can bound the inner product between
Π⊥

U and the projection matrix Πℓ.

Corollary 11 For every ℓ, Tr(Π⊥
U ·Πℓ) ≤ d (η/η′)2.

Proof First, note that (w(ℓ)
i )⊺Π⊥

Uw
(ℓ)
i = ∥Π⊥

Uwi∥2, which is precisely the squared distance from
w

(ℓ)
i to span({ui}). So, if |ρ(ℓ)i | ≥ η′, then Tr(Π⊥

U · w
(ℓ)
i (w

(ℓ)
i )⊺) = w

(ℓ)
i Π⊥

Uwi ≤ (η/η′)2 by
Lemma 10. Recalling the definition of Πℓ in Eq. (30), we obtain the claimed bound.

Because there are at most O(k2) choices of ℓ, this implies that Tr(Π⊥
U ·

∑
ℓΠℓ) ≤ O(dk2) · (η/η′)2.

Now, let ΠV be the projection matrix to the subspace V . We now bound Tr(Π⊥
U ·ΠV ).

Proposition 12 We have that Tr(Π⊥
U ·ΠV ) ≤ O(dk2(η/η′)2/ν).

9
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Proof Recall that
∑

ℓΠℓ has eigendecomposition
∑d

i=1 κiviv
⊺
i . Since every Πℓ is positive semidef-

inite, this means κi ≥ 0 for all i. Moreover, ΠV =
∑

i:κi≥ν viv
⊺
i , which means that ν ·ΠV ≼

∑
ℓΠℓ.

Therefore, Tr(Π⊥
U ·ΠV ) ≤ 1

ν · Tr(Π⊥
U ·

∑
ℓΠℓ) ≤ O(dk2(η/η′)2/ν).

Hence, we have the following bound on the dimension of V .

Lemma 13 We have that Tr(ΠV ) ≤ k + O(dk2(η/η′)2/ν). Hence, the dimension of V is at most
k +O(dk2(η/η′)2/ν).

Proof For any projection matrix to a subspace S, its trace is the same as the dimension of S. So,
we just need to prove that Tr(ΠV ) ≤ k +O(dk2(η/η′)2/ν).

Note that Tr(ΠV ) = Tr(ΠV · (ΠU +Π⊥
U )) = Tr(ΠV ·ΠU ) + Tr(ΠV ·Π⊥

U ). Since ΠV ,ΠU ≼ I
as they are projection matrices, Tr(ΠV · ΠU ) ≤ Tr(ΠU ) = dim(U) ≤ k. By Proposition 12, we
have that Tr(ΠV ·Π⊥

U ) ≤ O(dk2(η/η′)2/ν). This completes the proof.

4.4. Each important ui is (almost) in the span of V

In this subsection, we show that every “important” ui (i.e., where i ∈ Ij for j ∈ Jbig) is reasonably
close to the span of this subspace V .

We recall that V is the subspace found in line 5 of Algorithm 1, and ΠV is the projection to V .
We also define Π⊥

V = I −ΠV to be the projection matrix to the orthogonal complement of V .
First, we show that every Mℓ does not have large inner product with the projection Π⊥

V .

Lemma 14 For all ℓ ∈ {2, 4, . . . , 2k2 + 2}, we have that |Tr(Π⊥
V ·Mℓ)| ≤ d · (∥λ∥1 · ν +O(η′)).

Proof Recalling Eq. (30) and the definition of V , we have Π⊥
V =

∑
i:κi<ν viv

⊺
i . So,

Tr
(
Π⊥

V ·
∑
ℓ

Πℓ

)
=

∑
i:κi<ν

κi ≤ d · ν .

Next, since Π⊥
V and Πℓ are both positive semidefinite, Tr(Π⊥

V ·Πℓ) ≥ 0, so for all ℓ,

Tr(Π⊥
V ·Πℓ) ≤ d · ν . (31)

Note that all the eigenvalues of Mℓ are bounded by ∥λ∥1 in absolute value since ⟨ui, g⟩ ≤ 1.
Because ∥M̂ℓ −Mℓ∥op ≤ ∥M̂ℓ −Mℓ∥F ≤ η, all of the eigenvalues ρ

(ℓ)
i of M̂ℓ are bounded by

∥λ∥1 + η in absolute value. Recalling that Πℓ is the projector to the span of the eigenvectors of M̂ℓ

with eigenvalue of magnitude at least η′, we have that

−(∥λ∥1 + η) ·Πℓ − η′ · I ≼ M̂ℓ ≼ (∥λ∥1 + η) ·Πℓ + η′ · I. (32)

By combining Equations (31) and (32), and the fact that ∥Mℓ − M̂ℓ∥op ≤ η, we have that

|Tr(Π⊥
V ·Mℓ)| ≤ (∥λ∥1 + η) · Tr(Π⊥

V ·Πℓ) + Tr(Π⊥
V · (η + η′) · I)

≤ d · (∥λ∥1 · ν +O(η′)) .

Next, we show that this implies that for every “important” ui, u
⊺
iΠ

⊥
V ui is small, which will be

essential to showing that ui must be close to the span of V . The proof of this will crucially use the
polynomial construction from Lemma 7.

10
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Lemma 15 Suppose that i ∈ Ij for some j ∈ Jbig. Then,

|u⊺iΠ
⊥
V ui| ≤

1

τ

[
O(1/∆)O(k2) · d · (∥λ∥1 · ν + η′) +O(∥λ∥1 · k3d3/2 ·∆)

]
. (33)

Proof Let p(x) =
∑k2

ℓ=0 pℓx
ℓ be the polynomial from Lemma 7 s.t. p(⟨ui, g⟩2) = 1[i ∈ Ij ]. Then,

k2∑
ℓ=0

pℓM2+2ℓ =
k2∑
ℓ=0

pℓ ·
k∑

i=1

λi · ⟨ui, g⟩2ℓuiu⊺i =
k∑

i=1

λi ·
k2∑
ℓ=0

pℓ⟨ui, g⟩2ℓuiu⊺i =
∑
i∈Ij

λiuiu
⊺
i .

Since |⟨ui, g⟩ − ⟨ui′ , g⟩| ≥ ∆ for all i ∈ Ij , i
′ ̸∈ Ij , and since we are assuming ⟨ui, g⟩, ⟨ui′ , g⟩ ≥ 0,

this implies that |⟨ui, g⟩2 − ⟨ui′ , g⟩2| ≥ ∆2 for all i ∈ Ij , i
′ ̸∈ Ij . Hence, Lemma 7 implies every

coefficient pℓ ≤ O(1/∆2)k
2
= O(1/∆)O(k2), so by Lemma 14 we have∣∣∣Tr

(
Π⊥

V ·
∑
i∈Ij

λiuiu
⊺
i

)∣∣∣ ≤ O(1/∆)O(k2) · d · (∥λ∥1 · ν + η′) .

By Proposition 8, we have that∣∣∣Tr(Π⊥
V · λj · uiu⊺i )

∣∣∣ ≤ O(1/∆)O(k2) · d · (∥λ∥1 · ν + η′) +O(∥λ∥1 · k3d3/2 ·∆) .

Since j ∈ Jbig, this means |λj | ≥ τ , implying the bound on |u⊺iΠ⊥
V ui| = |Tr(Π⊥

V · uiu
⊺
i )|.

As a corollary, we have that ui is close to the span of V .

Corollary 16 For any i ∈ Ij where j ∈ Jbig, the distance from ui to V is at most

τ−1/2
√

O(1/∆)O(k2) · d · (∥λ∥1 · ν + η′) +O(∥λ∥1 · k3d3/2 ·∆) . (34)

Proof Write ui = ΠV ui + Π⊥
V ui. Note that ΠV ui ∈ span(V ), so we just need to bound ∥Π⊥

V ui∥.
But Π⊥

V is a projection, so ∥Π⊥
V ui∥2 = u⊺iΠ

⊥
V ui. The claim follows by Lemma 15.

4.5. Putting everything together

We recall thatR ≥ 1 is a promised upper bound for ∥λ∥1. For small constant C > 0, take

τ =
Cε

k
, ξ =

Cε

k · R
, ∆ =

C2ξ2τ · ε
2k4d3/2 · R

, η′ = ν =
C2ξ2τ ·∆O(k2)

d · R
, η = (η′)2 . (35)

Under this, by Lemma 13 the dimension of V is at most k + O(d · k2 · ν), since η′ = ν and
η = (η′)2. However, ν ≤ C2 · ξ2/d ≤ C2/(k2d). So if C is small enough, the dimension of V is
at most k + 0.1, so is at most k. By Corollary 16, for i ∈ Ij , j ∈ Jbig, every ui has distance at most√

O(C2ξ2τ)
τ ≤ ξ

4 to V . For C sufficiently small, we also have that τ, ξ,∆ satisfy the constraints of

Lemma 9. Finally, it is straightfoward to verify that 1/η = (dkR/ε)O(k2).
Now, for each j ∈ Jbig, we recall the definition of λ̄j . Since |λ̄j | ≤ R by our assumption that∑
|λi| ≤ R, by the definition of Nλ (see Line 1 of Algorithm 1), there exists λ̂j ∈ Nλ within

11
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distance ξ of λ̄j . Next, ui∗j has distance at most ξ
2 to V , and importantly, ∥ui∗j − ΠV ui∗j ∥ ≤

ξ
4 and

so |∥ΠV ui∗j ∥ − 1| ≤ ξ
4 . So, for u =

ΠV ui∗
j

∥ΠV ui∗
j
∥ , ∥ui∗j − u∥ ≤ ξ

2 . Therefore, by the definition of Nu

(see Line 1 of Algorithm 1), there exists ûj within distance ξ of ui∗j .

Therefore, our algorithm will find some mbig = |Jbig| and (λ̂1, û1), . . . , (λ̂mbig
, ûmbig

) satisfying
the conditions of Lemma 9, which will thus be within ε of the true answer in the distance ∥ · ∥L2(γ).

The runtime is dominated by the time it takes to estimate {Mℓ} and w, which requires

(k2d)O(k2) · R2/η2 = (dkR/ε)O(k2) (36)

samples by Lemma 4, and the time it takes to enumerate over sets of at most k vectors from Nu, and
over weights from Nλ, which are of size

|Nu| ≤ O(1/ξ)O(k) = O(kR/ε)O(k) and |Nλ| ≤ O(kR/ε)O(k) . (37)

We remark that the net Nu can be algorithmically constructed by selecting random points. Indeed,
for any point x on a k-dimensional sphere, a random point on the sphere is within ξ/2 of x with
probability at least Ω(ξ)k, so for any ξ/2-net N∗

u of size O(1/ξ)k, if Nu is constructed as O(1/ξ)2k

random points on the sphere, then every point in N∗
u will be within ξ/2 of at least one point in Nu

with high probability. So, Nu is a ξ-net of the k-dimensional unit sphere. Hence, we enumerate
over at most (|Nu| · |Nλ|)O(k) ≤ O(k · R/ε)O(k2) candidate solutions.

By Lemma 6, our algorithm will successfully verify any candidate solution {(λ̂i, ûi)}mi=1 for
each 0 ≤ m ≤ k, using O(k2(R/ε)4 log(1/δ)) samples. If we set δ = Θ(1/(|Nλ| · |Nu|))k,
then by a union bound the algorithm will successfully verify every candidate solution, and thus will
succeed. Hence, we need to only draw O(k4(R/ε)4 · log(kR/ε)) samples.

This yields the claimed time/sample complexity bound of (dkR/ε)O(k2).

Remark 17 As the above proof makes clear, the quadratic dependence on k in the dO(k2) runtime
for NETLEARN comes from the degree of the polynomial construction in Lemma 7, and the final
brute force search (the latter only contributes to runtime, not to sample complexity). Note however
that the upper bound of k2 on the degree in this construction is somewhat pessimistic. Recall from
the proof of Lemma 7 that the polynomial p defined in Eq. (13) has degree at most |I| · (k − |I|),
where I is any one of the clusters of neurons indexed by j ∈ Jbig. In particular, if each such I is of
constant size, e.g., then the degree of p is actually O(k), and the sample complexity of NETLEARN

(and the runtime barring the final brute force search) improves to dO(k).
One simple situation where this happens is if all the weight vectors are ∆′ = poly(ε/R, 1/k, 1/d)-

separated, in which case we can tune the ∆ parameter in the analysis appropriately to ensure that
all of the relevant intervals I are of size 1. For example, in the hard instance in the CSQ lower bound
of Diakonikolas et al. (2020b), the weight vectors are of the form uj = cos(πj/k) ·v+sin(πj/k) ·w
for orthogonal unit vectors v, w (see Eq. (3) therein) and are thus Ω(1/k)-separated. Moreover,
the span of {uj} has rank 2, and the proof of Lemma 13 implies the dimension of V is at most 2 as
well. Thus, the runtime of brute force can also be reduced to exponential in k, rather than in k2.
Our algorithm is a CSQ algorithm,2 and on this instance it has runtime matching the lower bound.

2. Note that we need to estimate E[(y− f̂(x))2] for various choices of f̂ in Line 1 of NETLEARN, and technically this is
not a CSQ. We can nevertheless remedy this by instead estimating E[2y · f̂(x)− f̂(x)2] and outputting the estimator
f̂ which maximizes this quantity.
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