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Abstract

We study computational and statistical aspects of learning Latent Markov Decision Processes
(LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch
from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several
notions of δ-separation of the constituent MDPs. The main thrust of this paper is in establishing
a nearly-sharp statistical threshold for the horizon length necessary for efficient learning. On the
computational side, we show that under a weaker assumption of separability under the optimal pol-
icy, there is a quasi-polynomial algorithm with time complexity scaling in terms of the statistical
threshold. We further show a near-matching time complexity lower bound under the exponential
time hypothesis.

Keywords: Partially observable reinforcement learning

1. Introduction

Reinforcement Learning (Kaelbling et al., 1996; Sutton and Barto, 2018) captures the common
challenge of learning a good policy for an agent taking a sequence of actions in an unknown, dy-
namic environment, whose state transitions and reward emissions are influenced by the actions
taken by the agent. Reinforcement learning has recently contributed to several headline results in
Deep Learning, including Atari (Mnih et al., 2013), Go (Silver et al., 2016), and the development of
Large Language Models (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022). This
practical success has also sparked a burst of recent work on expanding its algorithmic, statistical
and learning-theoretic foundations, towards bridging the gap between theoretical understanding and
practical success.

In general, the agent might not fully observe the state of the environment, instead having imperfect
observations of its state. Such a setting is captured by the general framework of Partially Observ-
able Markov Decision Processes (POMDPs) (Smallwood and Sondik, 1973). In contrast to the
fully-observable special case of Markov Decision Processes (MDPs) (Bellman, 1957), the setting
of POMDPs is rife with statistical and computational barriers. In particular, there are exponential
sample lower bounds for learning an approximately optimal policy (Krishnamurthy et al., 2016;
Jin et al., 2020), and it is PSPACE-hard to compute an approximately optimal policy even when the
transition dynamics and reward function are known to the agent (Papadimitriou and Tsitsiklis, 1987;
Littman, 1994; Burago et al., 1996; Lusena et al., 2001). In view of these intractability results, a
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fruitful research avenue has been to identify conditions under which statistical and/or computational
tractability can be resurrected. This is the avenue taken in this paper.

In particular, we study Latent Markov Decision Processes (LMDPs), a learning setting wherein,
as its name suggests, prior to the agent’s interaction with the environment over an episode of H
steps, nature samples an MDP, i.e. the state transition dynamics and the reward function, from a
distribution ρ over MDPs, which share the same state and action sets. The learner can fully observe
the state, but cannot observe which MDP was sampled, and she also does not know the distribution ρ.
However, she can interact with the environment over several episodes for which, at the beginning
of each episode, a fresh MDP is independently sampled from ρ. The learner’s goal is to learn a
policy that optimizes her reward in expectation when this policy is used on a random MDP sampled
from ρ.

LMDPs are a special case of (overcomplete) POMDPs,1 which capture many natural scenarios. For
example, learning in an LMDP can model the task facing a robot that is moving around in a city
but has no sensors to observe the weather conditions each day, which affect the pavement condi-
tions and therefore the dynamics. Other examples include optimizing the experience of users drawn
from some population in a web platform (Hallak et al., 2015), optimizing the outcomes of patients
drawn from some population in healthcare provision (Steimle et al., 2021), and developing an opti-
mal strategy against a population of possible opponents in a dynamic strategic interaction (Wurman
et al., 2022). More broadly, LMDPs and the challenge of learning in LMDPs have been stud-
ied in a variety of settings under various names, including hidden-model MDPs (Chades et al.,
2012), multi-task RL (Brunskill and Li, 2013; Liu et al., 2016), contextual MDPs (Hallak et al.,
2015), hidden-parameter MDPs (Doshi-Velez and Konidaris, 2016), concurrent MDPs (Buchholz
and Scheftelowitsch, 2019), multi-model MDPs (Steimle et al., 2021), and latent MDPs (Kwon
et al., 2021b; Zhan et al., 2022; Chen et al., 2022a; Zhou et al., 2023).

Despite this work, we lack a complete understanding of what conditions enable computationally
and/or sample efficient learning of optimal policies in LMDPs. We do know that some conditions
must be placed, as in general, the problem is both computationally and statistically intractable.
Indeed, it is known that an exponential number of episodes in the size L of the support of ρ, is
necessary to learn an approximately optimal policy (Kwon et al., 2021b), and even when the LMDP
is known, computing an optimal policy is PSPACE-hard (Steimle et al., 2021).

A commonly studied and intuitively simpler setting, which is a main focus of this paper, is that of
δ-strongly separated LMDPs, where every pair of MDPs in the support of ρ are δ-separated in the
sense that for every state-action pair their transition distributions differ by at least δ in total varia-
tion distance. Even in this setting, however, we lack a sharp characterization of the horizon length
that is necessary and sufficient for sample-efficient learning. Previous works either require a very
long horizon2 (i.e. H " SA, Brunskill and Li (2013); Hallak et al. (2015); Liu et al. (2016)) or

1. Indeed, if S is the state space shared by all MDPs in the support M of the distribution ρ over MDPs, we may view
this LMDP as a POMDP with state space SˆM. The state transition dynamics of this POMDP only allow transitions
from state ps,mq to state ps1,m1

q when m “ m1, and the transition probability from ps,mq to ps1,mq on action a is
determined by the transition probability from s to s1 on action a in MDP m. The observation model of this POMPD
drops m when observing the state ps,mq, and the initial state ps0,mq is sampled by first sampling m „ ρ, and then
sampling s0 from the initialization distribution of MDP m.

2. Even under such a long horizon, Brunskill and Li (2013); Hallak et al. (2015); Liu et al. (2016) have to require
additional restrictive assumptions, e.g. the diameter of each MDP instance is bounded.
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impose extra assumptions on the predictive state representation of the underlying LMDP (Kwon
et al., 2021b).Other simplifying assumptions that have been studied include hindsight observability,
i.e. observability of the index of the sampled MDP at the end of each episode, under which near-
optimal regret guarantees have been obtained in certain parameter regimes (Kwon et al., 2021b;
Zhou et al., 2023), as well as test-sufficiency (Zhan et al., 2022; Chen et al., 2022a) and decodabil-
ity (Efroni et al., 2022), but here the known sample complexity bounds scale exponentially with the
test-sufficiency/decodability window.

Our Contributions. In this paper, we nearly settle the challenge of learning in δ-strongly sepa-
rated LMDPs, by providing a near-sharp characterization of the horizon length necessary for effi-
cient learnability.

Our lower bound (Theorem 3.1) shows that, for there to be an algorithm that learns an ε-optimal
policy in a δ-strongly separated LMDP from a polynomial number of samples, it must be that the
horizon scales as

H Á
logpL{εq

δ2
,

where L is the number of MDPs in the mixture. The threshold H‹ —
logpL{εq

δ2
has a fairly intuitive

interpretation: when H ě H‹, we can use the history up to step H‹ to recover the unobservable
index of the underlying MDP instance with error probability at most ε (Proposition 4.1).

We complement our lower bound by proposing a sample-efficient algorithm (Algorithm 1) for learn-
ing an ε-optimal policy in a δ-strongly separated LMDP when

H Á
logpLS{εδq

δ2
.

Our sample complexity guarantees also hold beyond the strong separation condition. We study
the setting where the MDP instances are separated under every policy (Section 4), a condition that
is comparably less restrictive than the strong separation condition. We relax this separation as-
sumption even further to separation under an optimal policy, although we need to make some extra
assumptions in this case to preserve sample-efficiency (Section 4.1).

As a further application, we consider learning N -step decodable LMDPs, which is a natural class of
structured LMDPs where strong separation does not hold. For such a class of LMDPs, we provide
a sample-efficiency guarantee when H ě 2N , and we also provide a lower bound which shows that
this threshold is sharp.

Finally, we study the computational complexity of computing an optimal policy in a known sepa-
rated LMDP, i.e. the problem of planning. We show that the threshold H‹ tightly captures the time
complexity of planning: it gives rise to a natural planning algorithm (Algorithm 2) with near-optimal
time complexity under the exponential time hypothesis (ETH).

1.1. Related works

Planning in partially observable environment. Planning in a known POMDP has long been
known to be PSPACE-compete (Papadimitriou and Tsitsiklis, 1987; Littman, 1994; Burago et al.,
1996; Lusena et al., 2001), and planning in LMDP inherits such hardness (Chades et al., 2012;
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Steimle et al., 2021). The recent work of Golowich et al. (2022b,a) established a property called
“belief contraction” in POMDPs under an observability condition (Even-Dar et al., 2007), which
leads to algorithms with quasi-polynomial statistical and computational efficiency.

Learning in partially observable environment. It is well-known that learning a near-optimal
policy in an unknown POMDP is statistically hard in the worst-case: in particular, the sample
complexity must scale at least exponentially in the horizon (Liu et al., 2022a; Krishnamurthy et al.,
2016). Algorithms achieving such upper bounds are developed in (Kearns et al., 1999; Even-Dar
et al., 2005). Under strong assumptions, such as full-rankness of the transition and observation
matrices or availability of exploratory data, several algorithms based on spectral methods (Hsu et al.,
2012; Azizzadenesheli et al., 2016; Guo et al., 2016; Xiong et al., 2021) and posterior sampling
(Jahromi et al., 2022) have also been proven to be sample-efficient. However, due to the nature
of their strong assumptions, these works fall short of addressing the challenge of exploration in an
unknown partially observable environment.

Towards addressing this challenge, a line of recent works proposed various structural problem
classes that can be learned sample-efficiently, including reactive POMDPs (Jiang et al., 2017), re-
vealing POMDPs (Jin et al., 2020; Liu et al., 2022a,c), low-rank POMDPs with invertible emis-
sion operators (Cai et al., 2022; Wang et al., 2022), decodable POMDPs (Efroni et al., 2022),
regular PSRs (Zhan et al., 2022), reward-mixing MDPs (Kwon et al., 2021a, 2023), PO-bilinear
classes (Uehara et al., 2022b), POMDPs with deterministic latent transition (Uehara et al., 2022a),
and POMDPs with hindsight observability (Lee et al., 2023). Based on the formulation of predictive
state representation (PSR), Chen et al. (2022a); Liu et al. (2022b) proposed (similar) unified struc-
tural conditions which encompass most of these conditions, with a unified sample-efficient algo-
rithm Optimistic Maximum Likelihood Estimation (OMLE). As LMDPs are a subclass of POMDPs,
all of these results can be applied to LMDPs to provide structural conditions that enable learnability.
However, when instantiated to LMDPs, these structural conditions are less intuitive, and in general
they are incomparable to our separability assumptions and do not capture the full generality of the
latter.

RL with function approximation. RL with general function approximation in fully observable
environment has been extensively investigated in a recent line of work (Jiang et al., 2017; Sun et al.,
2019; Du et al., 2021; Jin et al., 2021; Foster et al., 2021; Agarwal and Zhang, 2022; Chen et al.,
2022b; Xie et al., 2022; Liu et al., 2023, etc.), and some of the proposed complexity measures
and algorithms (e.g. Model-based Optimistic Posterior Sampling (Agarwal and Zhang, 2022; Chen
et al., 2022b), and Estimation-to-Decision (Foster et al., 2021)) also apply to partially observable
RL. In this work, our analysis of OMLE utilizes several tools developed in Liu et al. (2022a); Chen
et al. (2022b,a); Xie et al. (2022).

2. Preliminaries

Latent Markov Decision Process. An LMDP M is specified by a tuple
␣

S,A, pMmq
L
m“1, H, ρ,R

(

,
where M1, ¨ ¨ ¨ ,ML are L MDP instances with joint state space S, joint action space A, horizon H ,
and ρ P ∆prLsq is the mixing distribution over M1, ¨ ¨ ¨ ,ML, and R “ pRh : S ˆA Ñ r0, 1sqHh“1

is the reward function. For m P rLs, the MDP Mm is specified by Tm : S ˆ A Ñ ∆pSq along
with the initial state distribution νm P ∆pSq. In what follows, we will parametrize each LMDP by
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a parameter θ (Section 2.2), but for now we provide a few definitions without overburdening the
notation.

In an LMDP, the latent index of the current MDP is hidden from the agent: the agent can only see
the resulting transition trajectory. Formally speaking, at the start of each episode, the environment
randomly draws a latent index m‹ „ ρ (which is unobservable) and an initial state s1 „ νm‹ ,
and then at each step h, after the agent takes action ah, the environment generates the next state
sh`1 „ Tm‹p¨|sh, ahq following the dynamics of MDP Mm‹ . The episode terminates immediately
after aH is taken.

Policies. A policy π “ tπh : pS ˆ Aqh´1 ˆ S Ñ ∆pAquhPrHs is a collection of H functions.
At step h P rHs, an agent running policy π observes the current state sh and takes action ah „
πhp¨|τhq P ∆pAq based on the whole history τh “ pτh´1, shq “ ps1, a1, . . . , sh´1, ah´1, shq. (In
particular, we have written τh´1 “ ps1, a1, . . . , sh´1, ah´1q.) The policy class ΠRND is the set of
all such history-dependent policies, and ΠDM is the set of all deterministic Markov policies, namely
tuples π “ tπh : S Ñ AuhPrHs.

For any policy π P ΠRND, the interaction between π and the LMDP M induces a distribution Pπ of
the whole trajectory τH “ ps1, a1, ¨ ¨ ¨ , sH , aHq. The value of π is defined as

V pπq “ Eπ

«

H
ÿ

h“1

Rhpsh, ahq

ff

.

We also use rPπ to denote the joint probability distribution of the latent index m‹ and trajectory τH
under policy π.

Miscellaneous notations For probability distributions p, q on a discrete measure space X , the
Hellinger distance and Bhattacharyya divergence are defined as

D2
H pp, qq :“

1
2

ř

xPX p
a

ppxq ´
a

qpxqq2, DBpp, qq “ ´ log
ř

xPX
a

ppxqqpxq.

For expression f, g, we write f À g if there is an absolute constant C such that f ď Cg. We also
use f “ Opgq to signify the same thing.

2.1. Strong separation and separation under policies

In this section we introduce the various notions of separability we consider in this paper.

Definition 2.1 (Strong separation, Kwon et al. (2021b)) An LMDP is δ-strongly separated if for
all m, l P supppρq such that m ‰ l,

DTV pTmp¨|s, aq,Tlp¨|s, aqq ě δ, @s P S, a P A.

Definition 2.2 (Decodability, Efroni et al. (2022)) An LMDP M is N -step decodable if for any
trajectory τN “ ps1, a1, ¨ ¨ ¨ , sN q, there is at most one latent index m P supppρq such that τN is
reachable starting from s1 in the MDP instance Mm (i.e., the probability of observing s2, ¨ ¨ ¨ , sN
in Mm starting at s1 and taking actions a1, ¨ ¨ ¨ , aN´1 is non-zero). In other words, there exists a
decoding function ϕM that maps any reachable trajectory τN to the latent index m.
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More generally, we can consider separability under the induced distributions over a trajectory. For
any policy π, we define

Mm,hpπ, sq :“ rTπ
mppa1, s2, ¨ ¨ ¨ , ah´1, shq “ ¨|s1 “ sqs P ∆ppAˆ Sqh´1q, (1)

where Tπ
m is the probability distribution of the trajectory in the MDP instance Mm and under policy

π.

For any increasing function ϖ : NÑ R, we can define ϖ-separation as follows, which requires that
the separation between any two MDP instances grow as ϖ.

Definition 2.3 (Separation with respect to a policy) An LMDP is ϖ-separated under π if for all
m, l P supppρq such that m ‰ l,

DBpMm,hpπ, sq,Ml,hpπ, sqq ě ϖphq, @h ě 1, s P S.

We also define ϖ´1pxq :“ min th ě 1 : ϖphq ě xu. In Section 4, we show that if the LMDP is ϖ-
separated under all policies and H Á ϖ´1plogpproblem parametersqq, then a near-optimal policy
can be learned sample-efficiently.

In particular, strong separation indeed implies separation under all policies.

Proposition 2.4 If the LMDP M is δ-strongly separated, then it is ϖδ-separated under any policy
π P ΠRND, where ϖδphq “

δ2

2 ph´ 1q.

Proposition 2.5 The LMDP M is N -step decodable if and only if it is ϖN -separated under all

policy π P ΠRND, where ϖN phq “

#

0, h ă N,

8, h ě N.

The proof of Proposition 2.5 is provided in Appendix C.1. More generally, the following lemma
gives a simple criteria for all-policy separation.

Lemma 2.6 If an LMDP is ϖ-separated under any Markov policy π P ΠDM, then it is ϖ-separated
under any general policy π P ΠRND.

2.2. Model-based function approximation

In this paper, we consider the standard model-based learning setting, where we are given an LMDP
model class Θ and a policy class Π Ď ΠRND. Each θ P Θ parameterizes an LMDP Mθ “
␣

S,A, pMθ,mq
L
m“1, H, ρθ, R

(

, where the state space S, action space A, horizon H , integer L rep-
resenting the number of MDPs, and reward function R are shared across all models, ρθ specifies
the mixing weights for the L MDP instances under θ, and the MDP instance Mθ,m is specified by
pTθ,m, νθ,mq for each m P rLs. For each model θ P Θ and policy π P ΠRND, we denote Pπ

θ to be
the distribution of τH in Mθ under policy π, and let Vθpπq be the value of π under Mθ.

We further assume that (a) the ground truth LMDP is parameterized by a model θ‹ P Θ (realizabil-
ity); (b) the model class Θ admits a bounded log covering number logNΘp¨q (Definition A.1); (c)
the reward function R is known and bounded,

řH
h“1 sups,aRhps, aq ď 1. 3

3. For simplicity, we only consider deterministic known reward in this paper. For random reward rh P t0, 1u that
possibly depends on the latent index m, we can consider the “augmented” LMDP with the augmented state s̃h`1 “

psh`1, rhq similar to Kwon et al. (2021b).
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In addition to the assumptions stated above, we also introduce the following assumption that the
ground truth LMDP admits certain low-rank structure, which is a common assumption for sample-
efficient partially observable RL (Wang et al., 2022; Chen et al., 2022a; Liu et al., 2022b).

Assumption 2.7 (Rank) The rank of an LMDP Mθ is defined as dθ :“ maxmPrLs rankpTθ,mq. We
assume that the ground truth model θ‹ has rank d ă 8.

Learning goal. The learner’s goal is to output an ε-optimal policy pπ, i.e. a policy with sub-
optimality V‹ ´ Vθ‹ppπq ď ε, where V‹ “ maxπPΠ Vθ‹pπq is the optimal value of the ground truth
LMDP.

3. Intractability of separated LMDP with horizon below threshold

Given the exponential hardness of learning general LMDPs, Kwon et al. (2021b) explore several
structural conditions under which a near-optimal policy can be learned sample-efficiently. The core
assumptions there include a strong separation condition (Definition 2.1) together with the bound

H ě δ´4 log2pS{δq logpLSAε´1δ´1q. (2)

A natural question is whether such an assumption on the horizon is necessary. The main result
of this section demonstrates the necessity of a moderately long horizon, i.e. in order to learn a
δ-strongly separated LMDP in polynomial samples, it is necessary to have a horizon length that
(asymptotically) exceeds logpL{εq

δ2
.

Theorem 3.1 (Corollary of Theorems D.1 and D.2) Suppose that there exists an integer d ě 1
and an algorithm A with sample complexity maxtS,A,H,L, ε´1, δ´1ud that learns an ε-optimal
policy with probability at least 3{4 in any δ-strongly separated LMDP with H ě HthrepL, ε, δq,
for some function HthrepL, ε, δq. Then there exists constants cd, εd, Ld (depending on d) and an
absolute constant δ0 such that

HthrepL, ε, δq ě
cd logpL{εq

δ2
, @δ ď δ0, ε ď εd, L ě maxpLd, δ

´1q.

The proof of Theorem 3.1 is presented in Appendix D, where we also provide a more precise
characterization of the sample complexity lower bounds in terms of H (Theorems D.1 and D.2).
The lower bound of the threshold Hthre is nearly optimal, in the sense that it almost matches the
learnable range (as per Corollary 4.4 below).

The following theorem provides a simpler lower bound for horizon length H “ Θ̃
`

δ´1 logL
˘

. For
such a short horizon, we show that we can recover the exponential lower bound developed in Kwon
et al. (2021b) for learning non-separated LMDPs.

Theorem 3.2 Suppose that δ P p0, 1
4e2
s, H ě 3, A ě 2, L ě 2C log2p1{δq are given such that

CH logH logp1{δq ď
logL

δ
. (3)

Then there exists a class of δ-strongly separated LMDPs, each LMDP has L MDP instances,
S “ plogLqOplogHq states, A actions, and horizon H , such that any algorithm requires Ω

`

AH´2
˘

samples to learn an 1
4H -optimal policy with probability at least 3

4 .
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Proof idea for Theorem 3.1. Theorem 3.1 is proved by transforming the known hard instances
of general LMDPs (Appendix D.1) to hard instances of δ-strong separated LMDPs. In particular,
given a LMDP M , we transform it to a δ-strongly separated LMDP M 1, so that each MDP instance
Mm of M is transformed to a mixture of MDPs tMm,ju, where each Mm,j “Mibµm,j is an MDP
obtained by augmenting Mi with a distribution µm,j of the auxiliary observation (this operation b
is formally defined in Definition D.6). The δ-strongly separated property of M 1 is ensured as long
as DTV

`

µm,j , µm1,j1

˘

ě δ for different pairs of pm, jq ‰ pm1, j1q, and intuitively, M 1 is still a hard
instance if the auxiliary observation does not reveal much information of the latent index.

Such a transformation is possible as long as H “
oplogLq

δ2
. Here, we briefly illustrate how the

transformation works for LMDP M consisted of only 2 MDP instances M1,M2. Using Proposi-
tion 3.3, we define the augmented MDPs M1,j “ M1 b µj for j P supppν1q and M2,j “ M2 b µj

for j P supppν2q, and assigning the mixing weights based on ν1, ν2. Then, result (1) ensures the
transformed LMDP is δ-strongly separated, and result (2) ensures the auxiliary observation does not
reveal much information of the latent index. The details of our transformation for general LMDPs
is presented in Appendix D.2.

Proposition 3.3 (Simplified version of Proposition D.8) Suppose that parameter δ, c ą 0 and in-
teger n ě 2 satisfy Cn log2 n ď min

␣

c´1, δ´1
(

. Then for L ě n2, H ď
c logL
δ2

, there exists L1 ď L
distributions µ1, ¨ ¨ ¨ , µL1 over a set O satisfying |O| ď OplogLq, such that:

(1) DTV pµi, µjq ě δ for i ‰ j.

(2) There exists ν1, ν2 P ∆prL1sq such that supppν1q and supppν2q are disjoint, and

DTV

´

Ei„ν1µ
bH
i ,Ej„ν2µ

bH
j

¯

ď L´n,

where for any distribution µ, µbH is the distribution of po1, ¨ ¨ ¨ , oHq where oh „ µ independently.

Tighter threshold for decodable LMDPs For δ-strongly separated LMDP, Theorem 3.1 gives a
lower bound of Hthre that scales as logpL{εq

δ2
and nearly matches the upper bounds (Corollary 4.4).

The following result shows that, for N -step decodable LMDPs, we can identify the even tighter
threshold of H: when H ď 2N ´ ωp1q, there is no sample-efficient algorithm; by contrast, when
H ě 2N , OMLE is sample-efficient (Corollary 4.5).

Theorem 3.4 Suppose that integers N ě n ě 2, A ě 2 are given. Then for H “ 2N ´ n,
there exists a class of N -step decodable LMDPs with L “ n, S “ 3N ´ 1 states, A actions, and
horizon H , such that any algorithm requires Ω

`

An´1
˘

samples to learn an 1
4n -optimal policy with

probability at least 3
4 .

4. Learning separated LMDPs with horizon above threshold

In this section, we show that δ-strongly separated LMDP, or more generally, any LMDP under
suitable policy separation assumptions, can be learned sample-efficiently, as long as the horizon H
exceeds a threshold that depends on the separation condition and the logarithm of other problem
parameters.
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Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)
Input: Model class Θ, policy class Π, exploration strategy pp¨q : Π Ñ ΠRND, parameter β ą
0, εs P p0, 1s, W ě 1.
Initialize: Θ1 “ Θ, D “ tu.
for k “ 1, . . . ,K do

Set // See (5) for definition of eθ,W.

pθk, πkq “ argmax
pθ,πq

Vθpπq, s.t. θ P Θk, eθ,W pπq ď εs.

Execute πk
sep “ ppπkq to collect a trajectory τkH , and add pπk

sep, τ
k
Hq into D.

Update confidence set

Θk`1 “

"

pθ P Θ :
ř

pπ,τqPD logPπ
pθ
pτq ě maxθPΘ

ř

pπ,τqPD logPπ
θ pτq ´ β

*

.

end
Output: pπ :“ Unifp

␣

π1, ¨ ¨ ¨ , πK
(

q.

A crucial observation is that if that an LMDP Mθ is ϖ-separated under policy π, then the agent can
“decode” the latent index from the trajectory τh, with error probability decaying exponentially in
ϖphq.

Proposition 4.1 Given an LMDP Mθ and parameter W ě 1, for any trajectory τW “ ps1, a1, ¨ ¨ ¨ , sW q,
we consider the latent index with maximum likelihood under τW :

mθpτW q :“ argmax
mPsupppρθq

log ρθpmq ` log νθ,mps1q `
W´1
ÿ

h“1

logTθ,mpsh`1|sh, ahq. (4)

Then as long as Mθ is ϖ-separated under π, the decoding error can be bounded as

eθ,W pπq :“ rPπ
θ pmθpτW q ‰ m‹q ď L exp p´ϖpW qq, (5)

where we recall that rPπ
θ is the joint probability distribution of the latent index m‹ and trajectory τH

in the LMDP Mθ under policy π.

The OMLE algorithm was originally proposed by Liu et al. (2022a) for learning revealing POMDPs,
and it was later adapted for a broad class of model-based RL problems (Zhan et al., 2022; Chen
et al., 2022b,a; Liu et al., 2023). Based on the observation above, we propose a variant of the
OMLE algorithm for learning separated LMDPs.

Algorithm. On a given class Θ of LMDPs, the OMLE algorithm (Algorithm 1) iteratively per-
forms the following steps while building up a dataset D consisting of trajectories drawn from the
unknown LMDP:

1. (Optimism) Construct a confidence set Θk Ď Θ based on the log-likelihood of all trajectories
within dataset D. The optimistic (model, policy) pair pθk, πkq is then chosen greedily while
ensuring that the decoding error eθk,W pπ

kq is small.
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2. (Data collection) For an appropriate choice of exploration strategy pp¨q (described in Defini-
tion E.1), execute the explorative policy πk

sep “ ppπkq, and then collect the trajectory into
D.

Guarantees. Under the following assumption on all-policy separation with a specific growth func-
tion ϖ, the OMLE algorithm can learn a near-optimal policy sample efficiently. In particular, when
Θ is the class of all δ-strongly separated LMDPs, then Assumption 4.2 is fulfilled automatically
with Π “ ΠRND and ϖphq “ δ2

2 ph´ 1q (Proposition 2.4).

Assumption 4.2 (Separation under all policies) For any θ P Θ and any π P Π, θ is ϖ-separated
under π.

Theorem 4.3 Suppose that Assumption 2.7 and Assumption 4.2 hold. We fix any πsep P Π, set pp¨q
as in Definition E.1, and choose the parameters of Algorithm 1 so that

β ě 2 logNΘp1{T q ` 2 logp1{pq ` 2, K “ C0
Ld2AH2ιβ

ε2
, εs “

ε2

C0Ld2H2ι
,

where ι “ logpLdH{εq is a log factor, C0 is a large absolute constant. Then, as long as W is
suitably chosen so that

W ě ϖ´1plogpL{εsqq, H ´W ě ϖ´1plogp2Lqq, (6)

Algorithm 1 outputs an ε-optimal policy pπ with probability at least 1´ p after observing K trajec-
tories.

Note that the parameter W can always be found satisfying the conditions of Theorem 4.3 as long
as H ě ϖ´1plogp2Lqq ` ϖ´1plogpL{εsqq. In particular, OMLE is sample-efficient for learning
δ-strongly separated LMDPs with a moderate requirement on the horizon H (which nearly matches
the lower bound of Theorem 3.1).

Corollary 4.4 Suppose that |S| “ S and Θ is the class of all δ-strongly separated LMDPs. Then
as long as

H ě
10 logpLSε´1δ´1q ` C

δ2
(7)

for some absolute constant C, we can suitably instantiate Algorithm 1 so that it outputs an ε-optimal
policy pπ with high probability using K “ rOpL2S4A2H4

ε2
q episodes.

Compared to the results of Kwon et al. (2021b), Corollary 4.4 requires neither a good initializa-
tion that is close to the ground truth model, nor does it require additional assumptions, e.g. test-
sufficiency, which is also needed in Zhan et al. (2022); Chen et al. (2022a). Furthermore, Kwon
et al. (2021b) also requires (2), while the range of tractable horizon (7) here is wider, and it nearly
matches the threshold in Theorem 3.1. A more detailed discussion is deferred to Appendix B.

Furthermore, OMLE is also sample-efficient for learning N -step decodable LMDPs, as long as
H ě 2N .

Corollary 4.5 (Learning decodable LMDPs) Suppose that Θ is a class of N -step decodable LMDPs
with horizon length H ě 2N . Then we can suitably instantiate Algorithm 1 so that it outputs an
ε-optimal policy pπ with high probability using K “ rOpLd

2AH2 logNΘ

ε2
q episodes.

10
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In Efroni et al. (2022), a sample complexity that scales with AN is established for learning general
N -step decodable POMDPs. By contrast, Corollary 4.5 demonstrates that for N -step decodable
LMDPs, a horizon length of H ě 2N suffices to ensure polynomial learnability. As Theorem 3.4
indicates, requiring H ě 2N´Op1q is also necessary for polynomial sample complexity, and hence
the threshold H ě 2N is nearly sharp for N -step decodable LMDPs. This result also demonstrates
that the condition (6) (and our two-phase analysis; see Appendix E.2) is generally necessary for
Theorem 4.3.

4.1. Sample-efficient learning with two-policy separation

In general, requiring separation under all policies is a relatively restrictive assumption, because it
is possible that the LMDP is well-behaved under only a small subset of policies that contains the
optimal policy. In this section, we discuss the sample-efficiency of OMLE under the following
assumption of separation under an optimal policy.

Assumption 4.6 (Separation under an optimal policy) There exists an optimal policy π‹ of the
LMDP Mθ‹ , such that Mθ‹ is ϖ-separated under π‹.

In order to obtain sample-efficiency guarantee, we also need the following technical assumption on
a prior-known separating policy πsep. Basically, we assume that in each LMDP, the MDP instances
are sufficient “diverse” under πsep, so that any mixture of them is qualitatively different from any
MDP model.

Assumption 4.7 (Prior knowledge of a suitable policy for exploration) There exists a known pol-
icy πsep and parameters pWexp, αq such that for any model θ P Θ, the following holds:

(a) Mθ is ϖ-separated under πsep.

(b) For any MDP model Tref and state s P S, it holds that for any λ P ∆psupppρθqq,

DTV

´

Em„λ

”

Mθ
m,Wexp

pπsep, sq
ı

,Mref,Wexppπsep, sq
¯

ě αp1´max
m

λmq, (8)

where

Mref,hpπsep, sq “
“

Tπsep

ref ppa1, s2, ¨ ¨ ¨ , shq “ ¨|s1 “ sq
‰

P ∆ppS ˆAqh´1q

is the distribution of trajectory induced by running πsep on the MDP with transition Tref .

Theorem 4.8 Suppose that Assumption 2.7, Assumption 4.6, and Assumption 4.7 hold. We set pp¨q
based on πsep as in Definition E.1, and choose the parameters of Algorithm 1 so that

β ě 2 logNΘp1{T q ` 2 logp1{pq ` 2, K “ C0
L3d5AH6ι3β

α2ε4
, εs “

αε2

C0Ld2H2ι
,

where ι “ logpLdHα´1ε´1q is a log factor, C0 is a large absolute constant. Then, as long as W is
suitably chosen so that

W ě ϖ´1plogpL{εsqq, H ´W ěWexp,

Algorithm 1 outputs an ε-optimal policy pπ with probability at least 1´ p.

In Appendix E.7, we also provide a sufficient condition of Assumption 4.7, which is more intuitive.
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5. Computation complexity of separated LMDPs

In this section, we investigate the computational complexity of planning in a given LMDP, i.e. a
description of the ground truth model θ‹ is provided to the learner.4 For planning, a longer horizon
does not reduce the time complexity (in contrast to learning, where a longer horizon does help).

In general, we cannot expect a polynomial time planning algorithm for δ-strongly separated LMDP,
because even the problem of computing an approximate optimal value in any given δ-strongly sep-
arated LMDP is NP-hard.

Proposition 5.1 If there is an algorithm that computes the ε-approximate optimal value of any
given δ-strongly separated LMDP in polypL, S,A,H, ε´1, δ´1q time, then P=NP.

On the other hand, utilizing the Proposition 4.1, we propose a simple planning algorithm (Algo-
rithm 2) for any LMDP that is separated under its optimal policy. The algorithm design is inspired
by the Short Memory Planning algorithm proposed by Golowich et al. (2022b).

Theorem 5.2 Suppose that in the LMDP M , there exists an optimal policy π‹ such that M is ϖ-
separated under π‹. Then Algorithm 2 with W ě ϖ´1plogpL{εqq outputs an ε-optimal policy pπ in
time

pSAqW ˆ polypS,A,H,Lq.

As a corollary, Algorithm 2 can output an ε-optimal policy (along with an ε-approximate optimal
value) of any given δ-strongly separated LMDP in time

pSAq2δ
´2 logpL{εq ˆ polypL, S,A,Hq.

In the following, we demonstrate such a time complexity is nearly optimal for planning in δ-strongly
separated LMDP, under the Exponential Time Hypothesis (ETH):

Conjecture 5.3 (ETH, Impagliazzo and Paturi (2001)) There is no 2opnq-time algorithm which
can determine whether a given 3SAT formula on n variables is satisfiable.

In the following theorems, we provide quasi-polynomial time lower bounds for planning in δ-
strongly separated LMDP, assuming ETH. In order to provide a more precise characterization of
the time complexity lower bound in terms of all the parameters pL, ε, δ, Aq, we state our hardness
results in with varying pL, ε, δ, Aq pair, with mild assumptions of their growth. To this end, we
consider F “ tpbtqtě1, bt ď bt`1 ď 2btu, the set of all increasing sequences with moderate growth.

Theorem 5.4 Suppose that we are given a sequence of parameters C “ tpεt, At, δtqutě1, such that
the sequences plog ε´1

t qtě1, pδ´1
t qtě1, plogAtqtě1 P F , and

εt ď
δ10t

plogAtq
5
, εt ď

1

t
, @t ě 1. (9)

Then, under Exponential Time Hypothesis (Conjecture 5.3), no Aopδ´2 logp1{εqq-time algorithm can
determine the ε-optimal value of any given δ-strongly separated LMDP with pε, δ, Aq P C whose
parameters H,L, S satisfy H ď

logp1{εq

δ2
and max tL, Su “ polyplogp1{εq, logA, δ´1q.

4. In this section, we omit the subscript of θ‹ for notational simplicity, because the LMDP M “ Mθ‹ is given and
fixed.
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Algorithm 2 Short Memory Planning with Context Inference
Data: W ě 1, LMDP model M “Mθ‹

Set pVm,H`1pHq “ 0 for all m P rLs
for h “ H,H ´ 1, ¨ ¨ ¨ ,W do

For each pair psh, ah,mq P S ˆAˆ rLs, update

pQm,hpsh, ahq “ Esh`1„Tmp¨|sh,ahq

”

pVm,h`1psh`1q

ı

`Rhpsh, ahq.

Set pVm,hpshq “ maxah
pQm,hpsh, ahq and store πm,hpshq “ argmaxah

pQm,hpsh, ahq.
end
for each τW “ ps1, a1, ¨ ¨ ¨ , sW q do

Compute m “ mpτW q and set

pV pτW q “ Ppm|τW q ¨ pVm,W psW q.

end
for h “W ´ 1, ¨ ¨ ¨ , 1 do

For each pτh, ahq P pS ˆAqh, update

pQpτh, ahq “ Esh`1|τh,ah

”

pV pτh, ah, sh`1q

ı

`Rhpsh, ahq, @τh, ah

Set pV pτhq “ maxah
pQpτh, ahq and store πhpτhq “ argmaxah

pQpτh, ahq.
end
Result: description of the determinstic policy pπ given by

pπpτhq “

#

πhpτhq, h ăW,

πh,mpτW qpshq, h ěW.

Theorem 5.5 Suppose that we are given a sequence of parameters C “ tpLt, At, δtqutě1, such that
the sequences plogLtqtě1, pδ

´1
t qtě1, plogAtqtě1 P F , pLtqtě1 is strictly increasing, and

log logLt !
logAt

δ2t
ď poly logLt, @t ě 1. (10)

Then, under Exponential Time Hypothesis (Conjecture 5.3), no A
o
´

δ´2 logL
log logL

¯

-time algorithm can
determine the ε-optimal value of any given δ-strongly separated LMDP with pL,A, δq P C whose
parameters H,L, S satisfy H ď

logL
δ2

, and ε “ 1
polyplogLq

, S “ exp
`

Oplog2 logLq
˘

.

In particular, the results above show that under ETH, a time complexity that scales with Aδ´2 logpL{εq

is hard to avoid for planning in δ-strongly separated LMDP, in the sense that our iteration complex-
ity lower bounds apply to any planning algorithm that works for general parameters pL,A, δ, εq.
Therefore, the threshold H‹ —

logpL{εq

δ2
indeed also captures the computational complexity of plan-

ning.
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Appendix A. Technical tools

A.1. Covering number

Definition A.1 (Covering) A ρ-cover of the LMDP model class Θ is a tuple ppP,Θ0q, where Θ0 Ă Θ
is a finite set, and for each θ0 P Θ0, π P ΠRND, pPπ

θ0
p¨q P RT

ě0 specifies an optimistic likelihood
function such that the following holds:

(1) For θ P Θ, there exists a θ0 P Θ0 satisfying: for all τ P T H and π P ΠRND, it holds that
pPπ
θ0
pτq ě Pπ

θ pτq.

(2) For θ P Θ0, π P ΠRND, it holds
›

›

›
Pπ
θ pτH “ ¨q ´

pPπ
θ pτH “ ¨q

›

›

›

1
ď ρ2.

The optimistic covering number NΘpρq is defined as the minimal cardinality of Θ0 such that there
exists rP such that prP,Θ0q is an optimistic ρ-cover of Θ.

The above definition of covering is taken from Chen et al. (2022b). It is known that the covering
number defined above can be upper bounded by the bracket number adopted in Zhan et al. (2022);
Liu et al. (2022b). In particular, when Θ is a class of LMDPs with |S| “ S, |A| “ A, horizon H ,
and with L latent contexts, we have

logNΘpρq ď CLS2A logpCLSAH{ρq,

where C is an absolute constant (see e.g. Chen et al. (2022a); Liu et al. (2022a)).

A.2. Information theory

In this section, we summarize several basic inequalities related to TV distance, Hellinger distance
and Bhattacharyya divergence.

Lemma A.2 For any two distribution P,Q over X , it holds that DTV pP,Qq ď
?
2DHpP,Qq, and

DTV pP,Qq ě D2
H pP,Qq “ 1´ exp p´DBpP,Qqq. (11)

Conversely, we also have (Pinsker inequality)

DBpP,Qq ě ´
1

2
logp1´D2

TVpP,Qqq ě
1

2
D2

TVpP,Qq. (12)

Lemma A.3 (Foster et al. (2021, Lemma A.11)) For distributions P,Q defined on X and function
h : X Ñ r0, Rs, we have

EPrhpXqs ď 3EQrhpXqs ` 2RD2
HpP,Qq.

Lemma A.4 For any pair of random variable pX,Y q, it holds that

EX„PX

“

DTV

`

PY |X ,QY |X

˘‰

ď 2DTV pPX,Y ,QX,Y q .

Conversely, it holds that

DTV pPX,Y ,QX,Y q ď DTV pPX ,QXq ` EX„PX

“

DTV

`

PY |X ,QY |X

˘‰

.
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Lemma A.5 (Chen et al. (2022b, Lemma A.4)) For any pair of random variable pX,Y q, it holds
that

EX„PX

“

D2
H

`

PY |X ,QY |X

˘‰

ď 2D2
H pPX,Y ,QX,Y q .

Conversely, it holds that

D2
H pPX,Y ,QX,Y q ď 3D2

H pPX ,QXq ` 2EX„PX

“

D2
H

`

PY |X ,QY |X

˘‰

.

A.3. Technical inequalities

Lemma A.6 For distributions P1, ¨ ¨ ¨ ,PL P ∆pOq and µ, ν P ∆prLsq so that supppµqXsupppνq “
H, we have

DBpEi„µrPis,Ej„νrPjsq ě min
i‰j

DBpPi,Pjq ´ logpL{2q.

As a corollary, if DBpPi,Pjq ě logL for all i ‰ j, then for any µ, ν P ∆prLsq, we have

DTV pEi„µrPis,Ej„νrPjsq ě
1

2
DTV pµ, νq .

Proof. By definition,

exp p´DBpEi„µrPis,Ej„νrPjsqq “
ÿ

x

b

Ei„µrPipxqsEj„νrPjpxqs

ď
ÿ

x

ÿ

i,j

b

µpiqνpjqPipxqPjpxq

“
ÿ

i,j

a

µpiqνpjq exp p´DBpPi,Pjqq

ď

˜

ÿ

i

a

µpiq

¸˜

ÿ

j

a

νpjq

¸

max
i‰j

exp p´DBpPi,Pjqq

ď
L

2
exp

ˆ

´min
i‰j

DBpPi,Pjq

˙

,

where the last inequality follows from the fact that
ř

i

a

µpiq ď
a

#supppµq and
ř

j

a

νpjq ď
a

#supppνq. Taking ´ log on both sides completes the proof. l

Lemma A.7 Suppose that for distributions P1, ¨ ¨ ¨ ,PL P ∆pOq, we have DBpPi,Pjq ě logp2Lq
for all i ‰ j. Then for the matrix M “ rP1, ¨ ¨ ¨ ,PLs P ROˆL, there exists M` P RLˆO such that
}M`}1 ď 2 and M`M “ IL.

Proof. We construct M` explicitly. Consider the matrix Z P RLˆO given by

rZsm,o “
Pmpoq

ř

iPrLs Pipoq
.
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Then clearly }Z}1 ď 1, and the matrix Y “ ZM is given by

rY sl,m “
ÿ

oPO

PlpoqPmpoq
ř

iPrLs Pipoq
.

For l ‰ m, we know

0 ď rY sl,m ď
ÿ

oPO

PlpoqPmpoq

2
a

PlpoqPmpoq
“

1

2

ÿ

oPO

a

PlpoqPmpoq “
1

2
exp p´DBpPl,Pmqq ď

1

4L
.

Furthermore,

0 ď 1´ rY sm,m “
ÿ

oPO

ÿ

l‰m

PlpoqPmpoq
ř

iPrLs Pipoq
“

ÿ

l‰m

rY sl,m ď
1

4
.

Combining these two inequalities, we know }IL ´ Y }1 ď
1
2 , and hence

›

›Y ´1
›

›

1
ď 2. Therefore,

we can take M` “ Y ´1Z so that }M`}1 ď
›

›Y ´1
›

›

1
}Z}1 ď 2 and M`M “ IL. l

A.4. Eluder arguments

In this section, we present the eluder arguments that are necessary for our analysis in Appendix E.
The following proposition is from Chen et al. (2022a, Corollary E.2) (with suitable rescaling).

Proposition A.8 (Chen et al. (2022a)) Suppose we have a sequence of functions tfk : Rn Ñ

RukPrKs:

fkpxq :“ max
rPR

J
ÿ

j“1

|xx, yk,j,ry| ,

which is given by the family of vectors tyk,j,rupk,j,rqPrKsˆrJsˆR Ă Rn. Further assume that there
exists L1 ą 0 such that fkpxq ď L1 }x}1.

Consider further a sequence of vectors pxiqiPI Ă Rn such that the subspace spanned by pxiqiPI has
dimension at most d. Then for any sequence of p1, ¨ ¨ ¨ , pK P ∆pIq and constant M ą 0, it holds
that

K
ÿ

k“1

M ^ Ei„pkrfkpxiqs ď

g

f

f

e4d log

ˆ

1`
KdL1maxi }xi}1

M

˙

«

KM `

K
ÿ

k“1

ÿ

tăk

Ei„ptrfkpxiq
2s

ff

.

The following proposition is an generalized version of the results in Xie et al. (2022, Appendix D).
We provide a proof for the sake of completeness.

Proposition A.9 (Xie et al. (2022)) Suppose that p1, ¨ ¨ ¨ , pK is a sequence of distributions over X ,
and there exists µ P ∆pX q such that pkpxq{µpxq ď Ccov for all x P X , k P rKs. Then for any
sequence f1, ¨ ¨ ¨ , fK of functions X Ñ r0, 1s and constant M ě 1, it holds that

K
ÿ

k“1

Ex„pkfkpxq ď

g

f

f

e2Ccov log

ˆ

1`
CcovK

M

˙

«

2KM `

K
ÿ

k“1

ÿ

tăk

Ex„ptfkpxq
2

ff
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Proof. For any x P X , define

p̃kpxq “Mµpxq `
ÿ

tďk

ptpxq.

Then by Cauchy inequality,

Ex„pkfkpxq “
ÿ

xPX
pkpxqfkpxq ď

d

ÿ

xPX

pkpxq2

p̃kpxq

ÿ

xPX
p̃kpxqfkpxq2.

Applying Cauchy inequality again, we obtain

K
ÿ

k“1

Ex„pkfkpxq ď

g

f

f

e

K
ÿ

k“1

ÿ

xPX

pkpxq2

p̃kpxq
¨

g

f

f

e

K
ÿ

k“1

ÿ

xPX
p̃kpxqfkpxq2

Notice that
ÿ

xPX
p̃kpxqfkpxq

2 ďM ` 1`
ÿ

tăk

Ex„ptfkpxq
2,

and hence it remains to bound
K
ÿ

k“1

ÿ

xPX

pkpxq
2

p̃kpxq
ď

ÿ

xPX
Ccovµpxq ¨

K
ÿ

k“1

pkpxq

p̃kpxq
.

Using the fact that u ď 2 logp1` uq@u P r0, 1s, we have

K
ÿ

k“1

pkpxq

p̃kpxq
ď 2

K
ÿ

k“1

log

ˆ

1`
pkpxq

p̃kpxq

˙

ď 2
K
ÿ

k“1

log

ˆ

1`
pkpxq

Mµpxq `
ř

tăk ptpxq

˙

“ 2 log

ˆ

Mµpxq `
ř

tďK ptpxq

Mµpxq

˙

ď 2 log

ˆ

1`
CcovK

M

˙

Combining the inequalities above completes the proof. l

Proposition A.10 Suppose that T P RSˆpSˆAq is a transition matrix such that rankpTq “ d. Then
there exists a distribution ν P ∆pSq such that Tps1|s, aq ď d ¨ νps1q @ps, a, s1q P S ˆAˆ S.

Proof. Consider the set

P “ tTp¨|s, aq : s P S, a P Au Ă RS .

Then rankpTq “ d implies that P spans a d-dimensional subspace of RS . Clearly, P is compact, and
hence it has a barycentric spanner (Awerbuch and Kleinberg, 2008), i.e. there exists tν1, ¨ ¨ ¨ , νdu Ď
P , such that for any µ P P , there are λ1, ¨ ¨ ¨ , λd P r´1, 1s such that

µ “ λ1ν1 ` ¨ ¨ ¨ ` λdνd.

Therefore, we can take ν “ 1
d

řd
i“1 νi. l
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Appendix B. Further comparison with related work

In Kwon et al. (2021b), to learn a δ-strongly separated LMDP, the proposed algorithms require a
horizon H Á δ´4 log2pS{δq logpLSAε´1δ´1q, and also one of the following assumptions:

• a good initialization, i.e. an initial approximation of the latent dynamics of the ground truth
model, with error bounded by opδ2q (Kwon et al., 2021b, Theorem 3.4).

• The so-called sufficient-test condition and sufficient-history condition, along with the reach-
ability of states (Kwon et al., 2021b, Theorem 3.5).

Chen et al. (2022a) further show that, for general LMDPs (not necessarily δ-strongly separated),
the sufficient-test condition itself implies that the OMLE algorithm is sample-efficient. More con-
cretely, their result applies to any W -step revealing LMDP. A LMDP is W -step α-revealing if the
W -step emission matrix

Kpsq :“ rTmps2:W “ s|s1 “ s, a1:W´1 “ aqsps,aq,m P R
pAˆSqW´1ˆrLs

admits a left inverse K`psq for all s P S such that }K`psq}1 ď α´1. This condition implies the
standard W -step revealing condition of POMDPs (Liu et al., 2022a; Chen et al., 2022a) because the
state s is observable in LMDPs5. In particular, the following theorem now follows from Chen et al.
(2022a, Theorem 9).

Theorem B.1 The class of W -step α-revealing LMDPs can be learning using polypAW , α´1, L, S,H, ε´1q

samples.

Without additional assumption, it is only known that a δ-strongly separated LMDP is W -step α-
revealing with W “ r

2 logp2Lq

δ2
s and α “ 2. 6 Therefore, when applied to δ-strongly sepa-

rated LMDPs, Theorem B.1 gives a sample complexity bound that scales with Aδ´2 logL, which
is quasi-polynomial in pA,Lq. Further, as Theorem 3.2 indicates, such a quasi-polynomial sample
complexity is also unavoidable if the analysis only relies on the revealing structure of δ-strongly
separated LMDP and does not take the horizon length H into account.

On the other hand, our analysis in Appendix E is indeed built upon the revealing structure of δ-
strongly separated LMDP. However, we also leverage the special structure of separated LMDP, so
that we can avoid using the brute-force exploration strategy that essentially samples aH´W`1:H´1 „

UnifpAW´1q in the course of the algorithm. Such a uniform-sampling exploration approach for
learning the system dynamics of the last W steps is generally necessary in learning revealing
POMDPs, as the lower bounds of Chen et al. (2023) indicate. It turns out to be unnecessary for
separated LMDP. Appendix E.2 provides a technical overview with more details.

Appendix C. Proofs for Section 2

C.1. Proof of Proposition 2.4
Fix m, l P supppρq, m ‰ l. By definition,

DBpMm,h`1pπ, sq,Ml,h`1pπ, sqq

5. see, e.g. Chen et al. (2022a, Proposition B.10) or the proof of Theorem E.5 in Appendix E.6.
6. This result can be obtained by applying Lemma A.7 to the distributions of trajectories induced by policy

UnifpAW´1
q.
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“ ´ log
ÿ

a1:h,s2:h`1

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh`1|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh`1|s1 “ sq

“ ´ log
ÿ

a1:h,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sq ¨
ÿ

sh

a

Tmpsh`1|sh, ahqTlpsh`1|sh, ahq

“ ´ log
ÿ

a1:h,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sq ¨ exp p´DBpTmp¨|sh, ahq,Tlp¨|sh, ahqqq.

Because M is a δ-strongly separated LMDP, using (12), we know

DBpTmp¨|s, aq,Tlp¨|s, aqq ě
1

2
D2

TV pTmp¨|s, aq,Tlp¨|s, aqq ě
δ2

2
, @ps, aq P S ˆA.

Therefore, we can proceed to bound

DBpMm,h`1pπ, sq,Ml,h`1pπ, sqq

ě
δ2

2
´ log

ÿ

a1:h,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sq

“
δ2

2
´ log

ÿ

a1:h´1,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh|s1 “ sq ¨
ÿ

ah

πpah|s, a1, s2, ¨ ¨ ¨ , shq

“
δ2

2
´ log

ÿ

a1:h´1,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh|s1 “ sq

“
δ2

2
`DBpMm,hpπ, sq,Ml,hpπ, sqq.

Applying the inequality above recursively, we obtain DBpMm,h`1pπ, sq,Ml,h`1pπ, sqq ě
δ2

2 h, the
desired result. l

C.2. Proof of Proposition 2.5

Suppose that M is a N -step decodable LMDP. By definition of ϖN -separation, we only need to
show that for any m, l P supppρq, m ‰ l and policy π P ΠRND, it holds that

supppMm,hpπ, sqq X supppMl,hpπ, sqq “ H, @h ě N, s P S,

or equivalently,

Tπ
mpa1, s2, ¨ ¨ ¨ , sh|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh|s1 “ sq “ 0, @h ě N,@τh “ ps1, a1, ¨ ¨ ¨ , shq.

This is because the N -step decoability of M implies that for any τh “ ps1, a1, ¨ ¨ ¨ , shq, there exists
at most one m‹ P supppρq such that

Tm‹ps2|s1, a1q ¨ ¨ ¨Tm‹psh|sh´1, ah´1q ą 0.

The desired result follows immediately. l
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C.3. Proof of Lemma 2.6

For notational simplicity, we denote

BCpP,Qq “ expp´DBpP,Qqq.

Fix h ě 1 and m, l P supppρq, m ‰ l. We only need to show that the following policy optimization
problem

max
πPΠRND

BCpMm,h`1pπ, sq,Ml,h`1pπ, sqq (13)

is attained at a deterministic Markov policy. Recall that

BCpMm,h`1pπ, sq,Ml,h`1pπ, sqq

“
ÿ

a1:h,s2:h

b

Tπ
mpa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sqTπ

l pa1, s2, ¨ ¨ ¨ , sh, ah|s1 “ sq ¨ BCpTmp¨|sh, ahq,Tlp¨|sh, ahqq.

Therefore, (13) is attained at a policy π with

πhpshq “ argmax
aPA

BCpTmp¨|sh, aqTlp¨|sh, aqq.

Inductively repeating the argument above for h1 “ h, h´ 1, ¨ ¨ ¨ , 1 completes the proof. l

C.4. Proof of Proposition 4.1

Notice that mθpτW q “ argmaxmPsupppρq
rPθpm|τW q. Therefore,

rPπ
θ pm

‹ ‰ mθpτW qq “
ÿ

τW

rPθpm
‹ ‰ mθpτW q|τW q ¨ rPπ

θ pτW q

“
ÿ

τW

ÿ

m‰mθpτW q

rPθpm|τW q ¨ rPπ
θ pτW q

“
ÿ

m‹,τ

ÿ

m‰mθpτW q

rPθpm|τW q ¨ rPπ
θ pm

‹, τW q

ď
ÿ

m‹,τ

ÿ

m‰m‹

rPθpm|τW q ¨ rPπ
θ pm

‹, τW q

“
ÿ

m‰l

ÿ

τW

rPπ
θ pm, τW qrPπ

θ pl, τW q

rPπ
θ pτW q

“
ÿ

m‰l

ÿ

τW

rPπ
θ pm, τW |s1qrPπ

θ pl, τW |s1q

rPπ
θ pτW |s1q

rPθps1q.

For any s P S and m P rLs, we denote ρm|s “
rPθpm|s1 “ sq, and then

rPπ
θ pm, τW |s1 “ sq “ ρm|sTπ

θ,mpτW |s1 “ sq, rPπ
θ pτW |s1 “ sq “

ÿ

m

ρm|sTπ
θ,mpτW |s1 “ sq,
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Therefore, using the fact that

rPπ
θ pτW |s1 “ sq ě 2

a

ρm|sρl|s ¨
b

Tπ
θ,mpτW |s1 “ sqTπ

θ,lpτW |s1 “ sq,

we have

ÿ

τW

rPπ
θ pm, τW |s1qrPπ

θ pl, τW |s1q

rPπ
θ pτW |s1q

ď

?
ρm|sρl|s

2

ÿ

τW

b

Tπ
θ,mpτW |s1qTπ

θ,lpτW |s1q

“

?
ρm|sρl|s

2
exp

´

´DB

´

Mθ
m,W pπ, s1q,Mθ

l,W pπ, s1q
¯¯

.

Thus, taking summation over m ‰ l and using
ř

m‰l
?
ρm|sρl|s ď L´ 1 gives

rPπ
θ pmθpτW q ‰ m‹q ď L expp´ϖpW qq.

l

Appendix D. Proofs for Section 3

We first present two theorems that provide a more precise statement of our sample complexity lower
bounds.

Theorem D.1 There are constants c, C so that for any H ě 1, δ P p0, 1
4e2
s, L ě 2 and integer

2 ď n ď H ´ 1 satisfying

Cn log4 n ď min

"

logL

Hδ2
, δ´1, 2c

?
logL

*

, (14)

there exists a class of δ-strongly separated LMDPs with L hidden MDPs, S “ plogLqOplognq states,
A actions, and horizon H , so that any algorithm requires Ω

´

min tA,Lun´1
¯

samples to learn an
1
4n -optimal policy.

Theorem D.2 For any δ P p0, 1
4e2
s and integer n ě 2, there is Nn,δ ď 2Opp1`δnq log2 nq so that for

any ε ą 0, integer H,A ě 2 satisfying

n ă H ď
logp1{εq

40δ2
` n, ε ď

1

Nn,δ
, (15)

there exists a class of δ-strongly separated LMDPs with parameters pL, S,A,Hq, where

L ď Nn,δ, S ď HOpp1`δnq log2 nq,

such that any algorithm requires Ω
`

An´1
˘

samples to learn an ε-optimal policy.

We also present a slightly more general version of Theorem 3.2, as follows.

Theorem D.3 Suppose that δ P p0, 1
4e2
s, H ě n ` 1 ě 3, A ě 2, L ě 2C logn logp1{δq are given

such that

CH log n logp1{δq ď
logL

δ
. (16)
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Then there exists a class of δ-strongly separated LMDP with L hidden MDPs, S “ plogLqOplognq

states, A actions, horizon H , such that any algorithm requires Ω
`

An´1
˘

samples to learn an 1
4n -

optimal policy with probability at least 3
4 .

Based on the results above, we can now provide a direct proof of Theorem 3.1. In our proof, it turns
out that we can take cd “

1
Θ̃pdq

.

Proof of Theorem 3.1. Fix n “ 3d ` 1, δ0 “ 1
4e2

. We proceed to prove Theorem 3.1 by
decomposing

logpL{εq “ logpLq ` logp1{εq ď
1

2
maxtlogL, logp1{εqu,

and then show that HthrepL, ε, δq must be greater than each of the terms in the maximum above, by
applying Theorem D.1, Theorem D.3, and Theorem D.2 separately.

Let n1 “ Opn log4 nq be the LHS of (14), and N “ Nn,δ0 ď 2Opn log2 nq be given by Theorem D.2.
We choose Ld :“ 2C1n1 log

2 n1 for some large absolute constant C1 so that Ld ě N , and set εd “ 1
N ,

cd “
1

C1n1 log
2 n

. In the following, we work with L ě maxpLd, δ
´1q, ε ď εd.

Part 1. In this part, we prove the lower bound involving the term logL. We separately consider the
case δ ď 1

n1
(Theorem D.1) and δ ą 1

n1
(using Theorem D.3).

Case 1: δ ď 1
n1

. In this case, we take HL “ max
´

t
logL
n1δ2

u, n1

¯

. For H “ HL and any A ě 2,
applying Theorem D.1 gives a class of δ-strongly separated LMDPs with parameters pL, S1, A,Hq
where S1 ď plogLqOplognq, so that any algorithm requires Ω

`

pA^ Lqn´1
˘

samples for learning
εd-optimal policy (because εd ď

1
4n ). However, for A “ L, we have assumed that A succeeds with

max
␣

S1, L,HL, ε
´1
d , δ´1

(d
ď Ln´1 samples. Therefore, since we have assumed that A outputs an

ε-optimal policy if H ě HthrepL, ε, δq, we must have HL ă HthrepL, ε, δq.

Case 2: δ ą 1
n1

. In this case, we take HL “ t
logL

C1 log
2pnqδ

u. By definition, HL ą n. Hence, for
H “ HL and any A ě 2, applying Theorem D.3 gives a class of δ-strongly separated LMDPs with
parameters pL, S2, A,Hq where S2 ď plogLq

Oplognq, so that any algorithm requires Ω
`

An´1
˘

“

Ω
`

Ad`1
˘

samples for learning ε-optimal policy. However, for A ě max
␣

L, S2, H, ε´1, δ´1
(

, we
have assumed that A succeeds with Ad samples, as long as H ě HthrepL, ε, δq. Therefore, we must
have HL ă HthrepL, ε, δq.

Therefore, in both cases, we have HL ă HthrepL, ε, δq. By definition, it always holds that HL ě
1

C1n1 log
2 n
¨
logL
δ2

, and the desired result of this part follows.

Part 2. We take Hε “ t
logp1{εq

9δ2
u ` n. For any H ď Hε, A ě 2, Theorem D.2 provides a

class of δ-strongly separated LMDPs with parameters pL3, S3, A,Hq with L3 “ N and S3 ď

HOpp1`δnq log2 nq, so that any algorithm requires Ω
`

An´1
˘

“ Ω
`

Ad`1
˘

samples for learning ε-
optimal policy. However, for values A ě max

␣

N,S3, H, ε´1, δ´1
(

, we have assumed that A
succeeds with Ad samples. Therefore, since we have assumed that A outputs an ε-optimal policy if
H ě HthrepL, ε, δq, we must have Hε ă HthrepL, ε, δq.

Combining the two parts above completes the proof of Theorem 3.1. l
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In the remaining part of this section, we present the proof of Theorem D.1, Theorem D.2 and
Theorem D.3.

Organization In Appendix D.1, we present the hard instances of general (non-separated) LMDP
(Kwon et al., 2021b). Then we present our tools of transforming LMDP into separated LMDP in
Appendix D.2. The proofs of Theorem 3.2, Theorem D.1 and Theorem D.2 then follow.

Additional notations For any step h, we write τh “ ps1, a1, ¨ ¨ ¨ , sh, ahq and τh:h1 “ psh, ah, ¨ ¨ ¨ , sh1 , ah1q.
Denote

Pθpτhq “ Pθps1:h|dopa1:h´1qq, (17)

i.e., the probability of observing s1:h if the agent deterministically executes actions a1:h´1 in the
LMDP Mθ. Also denote πpτhq :“

ś

h1ďh πh1pah1 |τh1´1, sh1q, and then Pπ
θ pτhq “ Pθpτhq ˆ πpτhq

gives the probability of observing τh for the first h steps when executing π in LMDP Mθ.

D.1. Lower bound constructions for non-separated LMDPs

In this section, we review a lower bound of Kwon et al. (2021b) on the sample complexity of
learning latent MDPs without separation constraints; we state and prove some intermediate lemmas
regarding this lower bound which are useful later on in our proofs.

Theorem D.4 (Kwon et al. (2021b)) For n ě 1, there exists a class of LMDP with L “ n, S “
n ` 1, H “ n ` 1, such that any algorithm requires Ω

`

An´1
˘

samples to learn an 1
2n -optimal

policy.

In the following, we present the construction in Kwon et al. (2021b) of a family of LMDPs

M “
␣

Mθ : θ P An´1
(

Y tMHu. (18)

For any θ “ a P An´1, we construct a LMDP Mθ as follows.

• The state space is

S0 “ tsa, s‘,1, ¨ ¨ ¨ , s‘,nu.

• The action space is A and the horizon is H ě n` 1.

• L “ n, and for each m P rns, the MDP Mθ,m has mixing weight 1
n .

• In the MDP Mθ,m, the initial state is s‘,1, and the state sa is an absorbing state.

For m ą 1, the transition dynamics of Mθ,m is given as follows.

– At state s‘,h with h ă m´ 1, taking any action leads to s‘,h`1.

– At state s‘,m´1, taking action a ‰ am´1 leads to s‘,m, and taking action am´1 leads
to sa.

– At state s‘,h with m ď h ă n, taking action a ‰ ah leads to sa, and taking action ah
leads to s‘,h`1.

– At state s‘,n, taking any action leads to sa.
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The transition dynamics of Mθ,1 is given as follows.

– At state s‘,h with h ă n, taking action a ‰ ah leads to sa, and taking action ah leads
to s‘,h`1.

– The state s‘,n is an absorbing state.

• The reward function is given by Rhps, aq “ 1 ts “ s‘,n, h “ n` 1u.

Construction of the reference LMDP For θ̄ “ H, we construct a LMDP with state space S0 and
MDP instances Mθ̄,1 “ ¨ ¨ ¨ “ Mθ̄,n with mixing weights ρ “ Unifprnsq, where the initial state is
always s‘,1 and the transition is given by

Tθ̄,mps‘,h`1|s‘,h, aq “
n´ h

n´ h` 1
, Tθ̄,mpsa|s‘,h, aq “

1

n´ h` 1
, @h P rns,

and sa is an absorbing state.

Define Θ “ An´1 \
␣

θ̄
(

. An important observation is that for any θ P Θ, in the LMDP Mθ, any
reachable trajectory τH must have s1:H belonged to one of the following sequences

sh “ ps‘,1, ¨ ¨ ¨ , s‘,h, sa, ¨ ¨ ¨ , sa
looooomooooon

H´h

q, for some h P rns,

or sn,` “ ps‘,1, ¨ ¨ ¨ , s‘,n, s‘,n, ¨ ¨ ¨ , s‘,n
looooooomooooooon

H´n

q.

In particular, for any action sequence a1:H , we have

Pθ̄ps1:H “ sh|a1:Hq “
1

n
, @h P rns. (19)

We summarize the crucial property of the LMDP class tMθuθPΘ in the following lemma.

Lemma D.5 For each θ “ a P An´1, the following holds.

(a) For any action sequence a1:H such that a1:n´1 ‰ a, it holds

Pθps1:H “ sh|a1:Hq “
1

n
, @h P rns. (20)

On the other hand, for the action sequence a1:H such that a1:n´1 “ a,

Pθps1:H “ sn,`|a1:Hq “
1

n
, Pθps1:H “ sh|a1:Hq “

1

n
, @h P rn´ 1s. (21)

(b) For any policy π, define

wθpπq “
n
ź

h“1

πpah “ ah|s‘,1,a1, ¨ ¨ ¨ , s‘,hq. (22)

Then
ř

θPAn´1 wθpπq “ 1, and it also holds that

Vθpπq “
1

n
wθpπq, DTV

`

Pπ
θ ,Pπ

θ̄

˘

“
1

n
wθpπq.

In particular, the optimal value in θ is V ‹
θ “

1
n , attained by taking a in the first n´ 1 steps.
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Proof. We first prove (a). We inductively prove the following fact.

Fact: For 1 ď h ă n and any action sequence a1:h, there is a unique index m P rhs such that in the
MDP Mθ,m, taking action sequence a1:h leads to the trajectory s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,h Ñ sa.

The base case h “ 1 is obvious. Suppose that the statement holds for all h1 ă h. Then in the MDP
Mθ,1, ¨ ¨ ¨ ,Mθ,h, there are h´ 1 many MDPs such that taking a1:h´1 leads to sa at some step ă h,
and hence there is exactly one index m1 such that in Mθ,m1 , taking a1:h´1 leads to the state s‘,h.
Therefore, if ah ‰ ah, then taking a1:h in Mθ,m1 leads to s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,h Ñ sa. Otherwise, we
have ah “ ah, and a1:h in Mθ,h leads to s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,h Ñ sa. The uniqueness is also clear,
because for l ą h, taking a1:h always lead to s‘,h`1. This completes the proof of the case h.

Now, we consider any given action sequence a1:H . For any step h ă n, there exists a unique
index mphq such that in the MDP Mθ,mphq, taking action sequence a1:n leads to the trajectory
s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,h Ñ sa Ñ ¨ ¨ ¨ . Thus, there is also a unique index mpnq such that in the
MDP Mθ,mpnq, taking action sequence a1:n´1 leads to the trajectory s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,n. Then
there are two cases: (1) a1:n´1 ‰ a, then mpnq ‰ 1, and hence taking a1:H leads to the trajectory
s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,n Ñ sa Ñ ¨ ¨ ¨ in Mθ,mpnq. (2) a1:n´1 “ a, which implies mpnq “ 1, and hence
taking a1:H in Mθ,mpnq leads to the trajectory s‘,1 Ñ ¨ ¨ ¨ Ñ s‘,n Ñ s‘,n Ñ ¨ ¨ ¨ . This completes
the proof of (a).

We next prove (b) using (a). Notice that Vθpπq “ Pπ
θ psn`1 “ s‘,nq. By definition, sh`1 “ s‘,n

can only happen when the agent is in the MDP Mθ,1 and takes actions a1:n “ a, and hence

Pπ
θ psn`1 “ s‘,nq “ Pπ

θ ps1 “ s‘,1, a1 “ a1, ¨ ¨ ¨ , sn “ s‘,n, an “ anq

“
1

n
Tπ
θ,1ps1 “ s‘,1, a1 “ a1, ¨ ¨ ¨ , sn “ s‘,n, an “ anq

“
1

n

n
ź

h“1

πpah “ ah|s‘,1,a1, ¨ ¨ ¨ , s‘,hq “
1

n
wθpπq.

More generally, we have

2DTV

`

Pπ
θ ,Pπ

θ̄

˘

“
ÿ

τH

πpτHq ˆ |PθpτHq ´ Pθ̄pτHq|

“
ÿ

τH :s1:H“sn,`,a1:n´1“a

πpτHq ˆ

ˇ

ˇ

ˇ

ˇ

1

n
´ 0

ˇ

ˇ

ˇ

ˇ

`
ÿ

τH :s1:H“sn,a1:n´1“a

πpτHq ˆ

ˇ

ˇ

ˇ

ˇ

0´
1

n

ˇ

ˇ

ˇ

ˇ

“
2

n
πps‘,1,a1, ¨ ¨ ¨ , s‘,n´1,an´1q,

where the second equality is because PθpτHq ‰ Pθ̄pτHq only when s1:H P tsn, sn,`u and a1:n´1 “

a, and the last line follows from recursively applying
ř

ah
πpah|τh´1, shq “ 1. This completes the

proof of (b). l

D.2. Tools

Definition D.6 Suppose that M “ pS,A,T, µ,Hq is a MDP instance, O is a finite set, and µ P
∆pOq is a distribution. Then we define M b µ to be the MDP instance given by pS ˆ O,A,T b
µ, ρb µ,Hq, where we define

rTb µspps1, o1q|ps, oq, aq “ Tps1|s, aq ¨ µpo1q.
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Given a finite set O, Definition D.7 introduces a property of a collection of distributions µ1, . . . , µL1 P

∆pOq which, roughly speaking, states that the distributions µi are separated in total variation dis-
tance but that certain mixtures of H-wise tensorizations of the distributions µi are close in total
variation distance. Given that such collections of distributions exist, we will “augment” the hard
instance of (non-separated) LMDPs from Appendix D.1 with the µi (per Definition D.6) to create
hard instances of separated LMDPs.

Definition D.7 A pL,H, δ, γ, L1q-family over a space O is a collection of distributions tµiuiPrL1s Ă

∆pOq and ξ1, ¨ ¨ ¨ , ξL P ∆prL
1sq such that the following holds:

(1) supppξkq X supppξlq “ H for all k, l P rLs with k ‰ l.

(2) The distribution Qk :“ Ei„ξk

”

µbH
i

ı

P ∆pOHq satisfies DTV pQk,Q1q ď γ for all k P rLs.

(3) DTV pµi, µjq ě δ for all i ‰ j, i, j P Yksupppξkq.

Proposition D.8 and Lemma D.9 state that pL,H, δ, γ, L1q-families exist, for appropriate settings of
the parameters.

Proposition D.8 Suppose that H ě 1, δ P p0, 1
4e2
s. Then the following holds:

(a) Let d “ r4e2δHs. Then there exists a p2, H, δ, 0, Nq-family over r2dswith N ď min
`

1
2eδ , 2H

˘d.

(b) Suppose λ P r1, 1
4e2δ

s is a real number and d ě λ¨4e7δ2H . Then there exists is a p2, H, δ, γ,Nq-
family over r2ds with γ ď 4e´λd and N ď p2epλ` 1qqd.

Lemma D.9 Suppose that Q is a p2, H, δ, γ, Lq-family over a space O. Then there exists a p2r, H, δ, rγ, Lrq

family over space Or.

Proofs of the two results above are deferred to Appendices D.6 and D.7.

Definition D.10 (Augmenting an MDP with a family) Suppose that M “ pS,A, pMmq
L
m“1, H, ρ,Rq

is a LMDP instance and Q “ ptµiuiPrL1s, tξmumPrLsq is a pL,H, δ, γ, L1q-family over O. Then

M bQ “ pSˆO,A, pM 1
iq

L1

i“1, H, ρ1, R̃q is defined to be the following δ-strongly separated LMDP
instance:

• For each i P YmPrLssupppξmq Ă rL1s, there is a unique index mpiq P rLs such that i P
supppξmpiqq; we define M 1

i :“Mmpiq b µi, with mixing weight ρ1piq :“ ρmpiq ¨ ξmpiqpiq.

• The reward function R̃ is given by R̃hpps, oq, aq “ Rhps, aq.

Proposition D.11 Suppose that Mθ “ pS,A, pMθ,mq
L
m“1, H, ρ,Rq is a LMDP instance, Q is a

pL,H, δ, γ, L1q-family over O, so that Mθ bQ is a LMDP with state space S̃ “ S ˆO. Let ΠS be
the set of all H-step policies operating over S, and ΠS̃ be the set of all H-step policies operating
over S̃ .

For any policy π P ΠS , we let Pπ
θ,Q denote the distribution of trajectory under π in the LMDP

Mθ bQ, and we let Vθ,Qpπq denote the value function of π. Then the following statements hold:

(a) We can regard ΠS as a subset of ΠS̃ naturally, because any policy π P ΠS can operate over
state space S̃ “ S ˆ O by ignoring the second component of the state s̃ P S̃. Then, for any
policy π P ΠS , Vθpπq “ Vθ,Qpπq. In particular, V ‹

θ ď V ‹
θ,Q.
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(b) For any policy π P ΠS̃ , we define πQ “ Eo1:H„Q1rπp¨|o1:Hqs P ΠS , i.e. πQ is the policy that
executes π over state space S by randomly drawing a sequence o1:H „ Q1 at the beginning
of each episode. Then we have |Vθ,Qpπq ´ VθpπQq| ď γ.

(c) For LMDPs with parameters θ, θ̄ and any policy π P ΠS̃ , it holds

DTV

´

Pπ
θ,Q,Pπ

θ̄,Q

¯

ď 2γ `DTV

´

PπQ
θ ,PπQ

θ̄

¯

.

Proof. For any s̃ “ ps, oq P S̃ “ S ˆ O, we denote s̃r1s “ s. Fact (a) follows directly from the
definition: for any policy π P ΠS ,

Vθ,Qpπq “ Eπ
θ,Q

«

H
ÿ

h“1

R̃hps̃h, ahq

ff

“ Eπ
θ,Q

«

H
ÿ

h“1

Rhps̃hr1s, ahq

ff

“ Eπ
θ rRhpsh, ahqs,

where the last equality is because the marginal distribution Pπ
θ,Q over pS ˆAqH agrees with Pπ

θ by
our construction. This completes the proof of (a).

We next prove (b) and (c). In the following, we fix any policy π P ΠS̃ .

By definition, for any τH “ ps̃1, a1, ¨ ¨ ¨ , s̃H , aHq P pS̃ ˆ AqH , we have s̃h “ psh, ohq P S ˆ O,
and

Pπ
θ,QpτHq “

ÿ

iPrL1s

ρ1piq ˆ Pπ
M 1

θ,i
pτHq

“
ÿ

mPrLs

ρpmq
ÿ

i

ξmpiqPπ
Mθ,mbµi

pτHq

“
ÿ

mPrLs

ρpmq
ÿ

i

ξmpiq ˆ πpτHq ˆ Pθ,mps1:H |a1:Hq ˆ µipo1q ¨ ¨ ¨µipoHq

“
ÿ

mPrLs

ρpmq ˆ πpτHq ˆ Pθ,mps1:H |a1:Hq ˆQmpo1:Hq.

Consider the distribution pPπ
θ,Q P ∆ppS̃ ˆAqHq given as follows:

pPπ
θ,QpτHq “ πpτHq ˆQ1po1:Hq ˆ Pθps1:H |a1:Hq

“ πpτHq ˆQ1po1:Hq ˆ
ÿ

mPrLs

ρpmqPθ,mps1:H |a1:Hq.

Then, by definition,

Pπ
θ,QpτHq ´

pPπ
θ,QpτHq “ πpτHq ˆ

ÿ

mPrLs

ρpmqPmps1:H |a1:Hq ¨ pQmpo1:Hq ´Q1po1:Hqq,

and hence

DTV

´

Pπ
θ,Q,

pPπ
θ,Q

¯

“
1

2

ÿ

τH

ˇ

ˇ

ˇ
Pπ
θ,QpτHq ´

pPπ
θ,QpτHq

ˇ

ˇ

ˇ
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ď
1

2

ÿ

τH

πpτHq ˆ
ÿ

mPrLs

ρpmqPmps1:H |a1:Hq ¨ |Qmpo1:Hq ´Q1po1:Hq|

“
1

2

ÿ

mPrLs

ρpmq
ÿ

o1:H

|Qmpo1:Hq ´Q1po1:Hq|
ÿ

s1:H ,a1:H

πpps, oq1:H , a1:Hq ˆ Pmps1:H |a1:Hq

“
1

2

ÿ

mPrLs

ρpmq
ÿ

o1:H

|Qmpo1:Hq ´Q1po1:Hq| ď γ,

where the last line follows from the fact that for any fixed o1:H , πpps, oq1:H , a1:HqˆPmps1:H |a1:Hq
gives a probability distribution over ps1:H , a1:Hq.

Let pEπ
θ,Q be the expectation taken over pPπ

θ,Q. Then it holds that

pEπ
θ,Q

«

H
ÿ

h“1

R̃hps̃h, ahq

ff

“
ÿ

τH

πpτHq ˆQ1po1:Hq ˆ Pθps1:H |a1:Hq ˆ

˜

H
ÿ

h“1

Rhpsh, ahq

¸

“
ÿ

s1:H ,a1:H

˜

ÿ

o1:H

Q1po1:Hq ¨ πpa1:H |s1:H , o1:Hq

¸

ˆ Pθps1:H |a1:Hq ˆ

˜

H
ÿ

h“1

Rhpsh, ahq

¸

“
ÿ

s1:H ,a1:H

πQpa1:H |s1:Hq ˆ Pθps1:H |a1:Hq ˆ

˜

H
ÿ

h“1

Rhpsh, ahq

¸

“ VθpπQq,

where the last line follows from our definition of πQ, which is a policy given by

πQp¨q “ Eo1:H„Q1rπp¨|o1:Hqs.

Therefore, we can bound

|Vθ,Qpπq ´ VθpπQq| “

ˇ

ˇ

ˇ

ˇ

ˇ

Eπ
θ,Q

«

H
ÿ

h“1

R̃hps̃h, ahq

ff

´ pEπ
θ,Q

«

H
ÿ

h“1

R̃hps̃h, ahq

ffˇ

ˇ

ˇ

ˇ

ˇ

ď DTV

´

Pπ
θ,Q,

pPπ
θ,Q

¯

ď γ,

and hence complete the proof of (b).

Similarly, using the fact that DTV

´

Pπ
θ,Q,

pPπ
θ,Q

¯

ď γ and DTV

´

Pπ
θ̄,Q,

pPπ
θ̄,Q

¯

ď γ, we have

DTV

´

Pπ
θ,Q,Pπ

θ̄,Q

¯

ď 2γ `DTV

´

pPπ
θ,Q,

pPπ
θ̄,Q

¯

.

Further, by definition,

DTV

´

pPπ
θ,Q,

pPπ
θ̄,Q

¯

“
1

2

ÿ

τH

πpτHq ˆQ1po1:Hq ˆ |Pθps1:H |a1:Hq ´ Pθ̄ps1:H |a1:Hq|

“
1

2

ÿ

s1:H ,a1:H

˜

ÿ

o1:H

Q1po1:Hq ¨ πpa1:H |s1:H , o1:Hq

¸

ˆ |Pθps1:H |a1:Hq ´ Pθ̄ps1:H |a1:Hq|
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“
1

2

ÿ

s1:H ,a1:H

πQpa1:H |s1:Hq ˆ |Pθps1:H |a1:Hq ´ Pθ̄ps1:H |a1:Hq|

“ DTV

´

PπQ
θ ,PπQ

θ̄

¯

.

Combining the above two equations completes the proof of (c). l

Fix an action set A and n P N. Recall the MDPs Mθ, indexed by θ P An´1 Y tHu, introduced in
(18). Proposition D.12 below uses Lemma D.5 to show that when these MDPs are augmented with
a pn,H, δ, γ, Lq-family per Definition D.6, then the resulting family of LMDPs also requires many
samples to learn.

Proposition D.12 Suppose that n ě 2, A ě 2, H ě n` 1, γ P r0, 1
4nq, and Q is a pn,H, δ, γ, Lq-

family over O. Consider

ĂM “
␣

Mθ bQ : θ P An´1
(

Y tMH bQu,

which is a class of δ-strongly separated LMDPs with parameters pL, S,A,Hq, where S “ pn `

1q |O|. Suppose A is an algorithm such that for any M P ĂM, A interacts with M for T episodes
and outputs an 1

4n -optimal policy pπ for M with probability at least 3
4 . Then it holds that

T ě
1

8
min

"

1

2γ
,An´1 ´ 2

*

.

Proof. In the following, we denote θ̄ “ H, consistently with the notations in Appendix D.1.

Notice that by Proposition D.11 (a), for any θ P An´1, we have V ‹
θ,Q ě

1
n . Furthermore, for any

π P ΠS̃ ,

Vθ,Qpπq ď VθpπQq ` γ “
1

n
wθpπQq ` γ.

In the following, for each θ P An´1, we denote ĂMθ :“ Mθ b Q and w̃θpπq “ wθpπQq for any
policy π P ΠS̃ (recall the definition of wθp¨q in (22)). Therefore, using item (b) of Lemma D.5, if π
is 1

4n -optimal in ĂMθ, then we have w̃θpπq ě
3
4 ´ nγ ą 1

2 . Also notice that by Proposition D.11 (c)
and Lemma D.5 (b),

DTV

´

Pπ
θ,Q,Pπ

θ̄,Q

¯

ď 2γ `DTV

´

PπQ
θ ,PπQ

θ̄

¯

“ 2γ ` w̃θpπq. (23)

Consider the following set of near-optimal policies in ĂMθ:

Π‹
θ :“

"

π P ΠS̃ : V ‹
θ,Q ´ Vθ,Qpπq ď

1

4n

*

Ď

"

π P ΠS̃ : w̃θpπq ą
1

2

*

. (24)

We know PA
θ,Qppπ P Π‹

θq ě
3
4 , where we use PA

θ,Q to denote the probability distribution induced by

executing A in the LMDP ĂMθ. Using the fact (from Lemma D.5) that
ř

θPAn´1 w̃θpπq “ 1, we also
know that Π‹

θ XΠ‹
θ1 “ H for any θ ‰ θ1 P An´1. Therefore,

ÿ

θPAn´1

PA
θ̄,Qppπ P Π

‹
θq ď 1.
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Hence, there is a set Θ0 Ă An´1 such that |Θ0| ě An´1´ 2, and for each θ P Θ0, PA
θ̄,Qppπ P Π

‹
θq ď

1
2 , which implies that

DTV

´

PA
θ,Q,PA

θ̄,Q

¯

ě
1

4
, @θ P Θ0.

Now we proceed to upper bound the quantity DTV

´

PA
θ,Q,PA

θ̄,Q

¯

. Notice that the algorithm A

can be described by interaction rules
␣

πptq
(

tPrT s
, where πptq is a function that maps the history

pτ p1q, ¨ ¨ ¨ , τ pt´1qq to a policy in ΠRND to be executed in the t-th episode. Then, by Lemma A.4, it
holds that

DTV

´

PA
θ,Q,PA

θ̄,Q

¯

ď

T
ÿ

t“1

EA
θ̄

”

DTV

´

Pπptq

θ,Q ,Pπptq

θ̄,Q

¯ı

“ T ¨ Eπ„qA

”

DTV

´

Pπ
θ,Q,Pπ

θ̄,Q

¯ı

,

where qA P ∆pΠRNDq is the distribution of π “ πptq with t P UnifprT sq and pπp1q, ¨ ¨ ¨ , πpT qq „ PA
θ̄

.
Therefore, using (23), we know

DTV

´

PA
θ,Q,PA

θ̄,Q

¯

ď 2Tγ ` T ¨ Eπ„qAw̃θpπq,

where the last equality follows from Lemma D.5 (b). Taking summation over θ P Θ0, we obtain

|Θ0| ¨ 2Tγ ` T ě
ÿ

θPΘ0

p2Tγ ` T ¨ Eπ„qAw̃θpπqq ě
1

4
|Θ0| .

The desired result follows immediately. l

D.3. Proof of Theorem 3.2 and Theorem D.3

Proof of Theorem D.3 Fix a given n ď H ´ 1, we set r “ rlog2 ns. By Proposition D.8
(a) and Lemma D.9, there exists a pn,H, δ, 0, L0q-family over r2dsr, where d “ r4e2δHs and
L0 ď

`

1
2eδ

˘dr. Notice that (3) and logL Á log n logp1{δq together ensure that L0 ď L. Hence,
applying Proposition D.12 completes the proof. l

Proof of Theorem 3.2 Notice that for sufficiently large constant C, the presumptions of The-
orem 3.2 that logL ě C log2p1{δq and (3) together ensure we can apply Theorem D.3 with
n “ H ´ 1, and hence the proof is completed. l

D.4. Proof of Theorem D.1

Set λ “ 2n log2 n. Also set

d “ max
␣

r2λ´1n logLs, rλ ¨ 4e7Hδ2s
(

. (25)

Notice that we have 1 ď λ ď 1
4e2δ

as long as we choose the absolute constant C ě 8e2 in (14).
Then, applying Proposition D.8 (b), there exists a p2, H, δ, γ,Nq-family over r2ds with

N ď pepλ` 1qqd, γ ď 4e´dλ.
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Denote r “ rlog2 ns. By our assumption (14), we have logL ě pc´1 log nq2, and hence choosing c
sufficiently small and C sufficiently large ensures that we have N r ď L. Further, by our choice of
d in (25), we have rγ ď L´n.

Hence, by Lemma D.9, there exists a pn,H, δ, L´n, Lq-family over r2dsr, and we denote it as Q.
Applying Proposition D.12 to Q, we obtain a family ĂM of δ-strongly separated LMDPs, with state
space S̃ “ S ˆ r2dsr, and any algorithm requires Ω pAn ^ Lnq samples to learn ĂM. Noticing that
|S̃| ď pn` 1qp2dqr “ plogLqOplognq completes the proof. l

D.5. Proof of Theorem D.2

Let d0 “ r4e2δpn` 1qs, r “ rlog2 ns, and H̄ “ H ´ n´ 1. By Proposition D.8 and Lemma D.9,
there exists a pn, n ` 1, δ, 0, Nq-family over r2d0sr with N ď min

`

1
2eδ , 2n

˘d0r. In particular, we
choose Nn,δ “ p4nNq

2, and then it holds that Nn,δ “ 2Opp1`δnq log2 nq.

Applying Proposition D.12 to this family, we obtain ĂM a class of δ-strongly separated LMDP with
state space S̃ “ S0ˆr2d0s

r, action space A, horizon n`1. Recall that by our construction in Propo-
sition D.12 (and Appendix D.1), for each θ P An´1 Y

␣

θ̄
(

,ĂMθ is given by pS̃,A, pĂMθ,mq
N
m“1, n`

1, ρθ, R̃q, and the mixing weight ρθ P ∆prN sq of the MDPs ĂMθ,1, ¨ ¨ ¨ , ĂMθ,N does not depend on
θ, i.e. ρθ “ ρ for a fixed ρ P ∆prN sq. Furthermore, for each m P rN s, the initial distribution
νθ,m of ĂMθ,m is also independent of θ, i.e. νθ,m “ νm for a fixed νm P ∆pS̃q. We also know that
R̃ “ pR̃h : S̃ ˆAÑ r0, 1sqn`1

h“1 is the reward function.

For each θ, we construct an augmented δ-strongly separated LMDP ĂM`
θ with horizon H , as follows.

Fix d “ 2rC1 logN s for a large absolute constant C1 so that there exists µ1, ¨ ¨ ¨ , µN P t´1, 1ud

such that xµi,1y “ 0@i P rN s and }µi ´ µj}1 ě d{2 (see e.g. Lemma F.4). Denote δ̄ “ 4δ and set
η “ 1

2 .

• The state space is S̃` “ S̃ \ S` \ tterminal1, ¨ ¨ ¨ , terminalNu, where

S` “

!

pk1, ¨ ¨ ¨ , kdq P Nd : k1 ` ¨ ¨ ¨ ` kd ď H̄ ´ 1
)

.

We will construct the transition so that at the state outside S̃ , the transition does not depend
on θ. We also write BS` “

␣

pk1, ¨ ¨ ¨ , kdq P Nd : k1 ` ¨ ¨ ¨ ` kd “ H̄ ´ 1
(

.

• The initial state is always p0, ¨ ¨ ¨ , 0q P S`.

• For s P S`zBS`, we set

Tmps` ei|s, aq “
1` δ̄µmris

d
.

• For s P BS`, we define

pmpsq “
d
ź

i“1

p1` δ̄µmrisq
sris,
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and we set p̄psq “ minlPrNs plpsq,

Tmps
1|s, aq “ η

p̄psq

pmpsq
¨ νmps

1q, s1 P S̃,

and Tmpterminalm|s, aq “ 1´ η p̄psq

pmpsq
.

• For state s P tterminal1, ¨ ¨ ¨ , terminalNu, we set Tmpterminalm|s, aq “ 1.

• The reward function is given by R̃`
h “ 0 for all h P rH̄s, and R̃`

H̄`h
“ R̃h for h P rn` 1s.

By our construction, it is clear that ĂM`
θ is δ-strongly separated, and |S̃`| ď n`N ` 2`Hd.

Furthermore, we can also notice that for any trajectory τH “ ps1:H , a1:Hq such that sH̄`1 R S̃,
the probability Pθ,`pτHq “ P`pτHq does not depend on θ. Furthermore, for any trajectory τH̄ , the
probability Pθ,`pτHq “ P`pτHq is also independent of θ.

Now, we consider the event E “

!

sH̄`1 P S̃
)

. Notice that the probability Pθ,`pEq “ p also does
not depend on θ.

Lemma D.13 For any trajectory τH̄ “ ps1:H̄ , a1:H̄q, we have

Pθ,`pτH̄`1:H “ ¨|E, τH̄q “ Pθ,Qpτ1:n`1 “ ¨q,

which does not depend on τ .

Proof. For any reachable trajectory τH̄ “ ps1:H̄ , a1:H̄q, we have sh`1 “ sh ` eih for all h ă H̄ .
Hence, for m P rN s and s P S̃ ,

P
ĂM`

θ,m
pτH̄ , sH̄`1 “ sq “

H̄
ź

h“1

Tmpsh`1|sh, ahq

“ Tmps|sH̄ , aH̄q ˆ
H̄´1
ź

h“1

1` δ̄µmrihs

d

“ Tmps|sH̄ , aH̄q ˆ
1

dH̄´1

d
ź

i“1

p1` δ̄µmrisq
sH̄ ris

“ νmpsq ˆ η
p̄psH̄q

pmpsH̄q
ˆ

pmpsH̄q

dH̄´1

“ ηνmpsq ˆ
p̄psH̄q

dH̄´1
,

which is independent of θ. Hence, for any θ P Θ, we have

rPθ,`pm
‹ “ m, sH̄`1 “ s|E, τH̄q “

ρpmqP
ĂM`

θ,m
pτH̄ , sH̄`1 “ sq

ř

lPrNs

ř

sPS̃ ρpmqP
ĂM`

θ,l
pτH̄ , sH̄`1 “ sq

“ ρpmqνmpsq.
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In other words, conditional on the event E and any reachable trajectory τH̄ , the posterior distri-
butions of pm‹, sH̄`1q in ĂM`

θ is the same as the distribution of pm‹, s1q in ĂMθ. Hence, for any
trajectory τ P pS̃ ˆAqH´H̄ that starts with s P S̃, we have

Pθ,`pτH̄`1:H “ τ |E, τH̄q

“
ÿ

mPrNs

rPθ,`pτH̄`1:H “ τ |m‹ “ m, sH̄`1 “ sq ¨ rPθ,`pm
‹ “ m, sH̄`1 “ s|E, τH̄q

“
ÿ

mPrNs

ρpmqνmpsqP
ĂMθ,m

pτH̄`1:H “ τ |m‹ “ m, sH̄`1 “ sq

“ Pθ,Qpτ1:n`1 “ τq,

where in the second equality we also use the fact that in the MDP ĂM`
θ,m and starting at state s P S̃,

the agent will stay in S̃ , and the transition dynamics of ĂM`
θ,m over S̃ agrees with ĂMθ,m. This

completes the proof of Lemma D.13. l

Using the observations above and Lemma D.13, we know that for any policy π P ΠS̃` , we have

Vθ,`pπq “ p ¨ EτH̄´1|E

“

Vθ,Qpπp¨|τH̄´1qq
‰

,

where Pθ,`pEq “ p, the expectation is taken over distribution of τH̄´1 conditional on the event E,
and πp¨|τH̄´1q is regarded as a policy for the LMDP ĂMθ by conditional on the trajectory τH̄´1 and
restricting to S̃ .

Therefore, for each π P ΠS̃` , there is a corresponding policy π` “ EτH̄´1|E

“

πp¨|τH̄´1q
‰

P ΠS̃ ,
such that Vθ,`pπq “ p ¨ Vθ,Qpπ`q “ pw̃θpπq. Similarly, we can also show that (using (23))

DTV

´

Pπ
θ,`,Pπ

θ̄,`

¯

“ pDTV

´

Pπ`

θ,Q,P
π`

θ̄,Q

¯

ď pw̃θpπ`q.

The following lemma provides a lower bound of p (the proof of Lemma D.14 is deferred to the end
of this section).

Lemma D.14 It holds that

Pθ,`pEq “ p ě
η

N
p1´ δ̄2qH̄´1.

In particular, p ą 2nε.

With the preparations above, we now provide the proof of Theorem D.2, whose argument is analo-
gous to the proof of Proposition D.12.

Proof of Theorem D.2 Suppose that A is an algorithm such that for any M P ĂM, A interacts with
M for T episodes and outputs an 1

4n -optimal policy pπ for M with probability at least 3
4 .

Notice that V ‹
θ,Q “

p
n , and ε ă p

2n . Thus, if pπ is p
4n -optimal in ĂM`

θ , then w̃θpπq ą
1
2 . Now, consider

the following set of near-optimal policies in ĂM`
θ :

Π‹
θ,` :“

!

π P ΠS̃` : π is ε-optimal in ĂM`
θ

)

. (26)
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Then Π‹
θ,` are mutually disjoint for θ P An´1. We then have

PA
θ,`ppπ P Π

‹
θ,`q ě

3

4
,

ÿ

θPAn´1

PA
θ̄,`ppπ P Π

‹
θq ď 1.

Repeating the argument as in the proof of Proposition D.12 gives T ě 1
4ppA

n´1 ´ 2q, and the
desired result follows. l

Proof of Lemma D.14. We next lower bound the probability p. By definition,

Pθ,`psH̄`1 P S̃q “
ÿ

τH̄ reachable,sH̄`1PS̃

Pθ,`pτH̄ , sH̄`1q

“
ÿ

τH̄ reachable,sH̄`1PS̃

ÿ

mPrNs

ρpmqP
ĂM`

θ,m
pτH̄ , sH̄`1 “ sq

“
ÿ

τH̄ reachable

η ¨
p̄psH̄q

dH̄´1

“
ÿ

i1,¨¨¨ ,iH̄´1Prds

η

dH̄´1
¨ p̄
´

ei1 ` ¨ ¨ ¨ ` eiH̄´1

¯

ě
η

dH̄´1

¨

˝

ÿ

i1,¨¨¨ ,iH̄´1Prds

1

p̄
´

ei1 ` ¨ ¨ ¨ ` eiH̄´1

¯

˛

‚

´1

,

where in the last line we apply Cauchy inequality. Notice that for any s P BS`,

1

p̄psq
“ max

lPrNs

1

plpsq
ď

ÿ

lPrNs

1

plpsq
,

and we also have

ÿ

i1,¨¨¨ ,iH̄´1Prds

1

pm

´

ei1 ` ¨ ¨ ¨ ` eiH̄´1

¯ “
ÿ

i1,¨¨¨ ,iH̄´1Prds

1
śH̄´1

h“1 p1` δ̄µmrihsq
“

˜

ÿ

i

1

1` δ̄µmris

¸H̄´1

“

ˆ

d

2
ˆ

1

1` δ̄
`

d

2
ˆ

1

1´ δ̄

˙H̄´1

“
dH̄´1

p1´ δ̄2qH̄´1
,

where the second line follows from the fact that µm P t´1, 1ud and xµm,1y “ 0. Combining the
inequalities above gives p ě η

N p1´ δ̄2qH̄´1.

In particular, to prove p ą 2nε, we only need to prove pH̄ ´ 1q log 1
1´δ̄2

ď logp1{p4Nnεqq. Notice

that log 1
1´δ̄2

ď δ̄2

1´δ̄2
, δ̄ “ 4δ, and we also have 1

4nNε ě
1?
ε

using ε ď 1
Nn,δ

“ 1
p4nNq2

. Combining
these completes the proof. l

D.6. Proof of Proposition D.8

Towards proving Proposition D.8, we first prove the following proposition, which provides a simple
approach of bounding TV distance between mixtures of distributions of a special form.
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Proposition D.15 Let n, d P N be given. For x P r´1, 1sd, we consider the distribution

Qx “

„

1` xr1s

2d
;
1´ xr1s

2d
; ¨ ¨ ¨ ;

1` xrds

2d
;
1´ xrds

2d

ȷ

P ∆pr2dsq. (27)

Then, for distributions µ, ν over r´1, 1sd, it holds that

DTV

`

Ex„µ

“

Qbn
x

‰

,Ey„ν

“

Qbn
y

‰˘2
ď

1

4

n
ÿ

ℓ“0

ˆ

n

ℓ

˙

¨
1

dℓ
}∆ℓ}

2
2 ,

where we denote

∆ℓ :“ Ex„µ

”

xbℓ
ı

´ Ey„ν

”

ybℓ
ı

P Rdℓ .

Proof. We utilize the idea of the orthogonal polynomials (see e.g. Han (2019)) to simplify our
calculation. For simplicity, we denote O “ r2ds. By definition, for any o “ po1, ¨ ¨ ¨ , onq P On, we
have

Qbn
x poq

Qbn
0 poq

“

n
ź

j“1

Qxpojq

Q0pojq
“

ÿ

kPNd

cn,kpoqx
k,

where for k “ pk1, ¨ ¨ ¨ , kdq P Nd we denote |k| “ k1 ` ¨ ¨ ¨ ` kd, xk “ xr1sk1 ¨ ¨ ¨xrdskd , and
cn,k : On Ñ R are coefficients satisfying cn,kpoq “ 0 for all |k| ą n. Notice that for x,y P Rd,

ÿ

oPOn

Qbn
x poqQbn

y poq

Qbn
0 poq

“
ÿ

o1,¨¨¨ ,onPO

n
ź

j“1

QxpojqQypojq

Q0pojq
“

˜

ÿ

oPO

QxpoqQypoq

Q0poq

¸n

“

ˆ

1`
xx, yy

d

˙n

.

On the other hand, it also holds (where the expectation E0 is taken over o „ Q0)

ÿ

oPOn

Qbn
x poqQbn

y poq

Qbn
0 poq

“ E0

„

Qbn
x poq

Qbn
0 poq

¨
Qbn

y poq

Qbn
0 poq

ȷ

“ E0

»

–

ÿ

kPNd

cn,kpoqx
k
ÿ

jPNd

cn,jpoqy
j

fi

fl

“
ÿ

k,jPNd

E0rcn,kpoqcn,jpoqs ¨ x
kyj .

Therefore, by comparing the coefficients between the two sides of
ˆ

1`
xx, yy

d

˙n

“
ÿ

k,jPNd

E0rcn,kpoqcn,jpoqs ¨ x
kyj ,

we have

E0rcn,kpoqcn,jpoqs “

#

0, k ‰ j,
`

n
|k|

˘

Nk

d|k| , k “ j,

40



NEAR-OPTIMAL LEARNING AND PLANNING IN SEPARATED LATENT MDPS

where for k “ pk1, ¨ ¨ ¨ , kdq such that |k| “ ℓ, Nk “
`

ℓ
k1,¨¨¨ ,kd

˘

. Now, we can express

2DTV

`

Ex„µ

“

Qbn
x

‰

,Ey„ν

“

Qbn
y

‰˘

“ E0

ˇ

ˇ

ˇ

ˇ

Ex„µ

„

Qbn
x poq

Qbn
0 poq

ȷ

´ Ey„µ

„Qbn
y poq

Qbn
0 poq

ȷˇ

ˇ

ˇ

ˇ

“ E0

ˇ

ˇ

ˇ

ˇ

ˇ

Ex„µ

«

ÿ

kPNd

cn,kpoqx
k

ff

´ Ey„ν

«

ÿ

kPNd

cn,kpoqy
k

ffˇ

ˇ

ˇ

ˇ

ˇ

“ E0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

cn,kpoq∆k

ˇ

ˇ

ˇ

ˇ

ˇ

,

where in the last line we abbreviate ∆k “ Ex„µ

“

xk
‰

´Ey„ν

“

yk
‰

for k P Nd. By Jensen inequality,

4DTV

`

Ex„µ

“

Qbn
x

‰

,Ey„ν

“

Qbn
y

‰˘2
ď E0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

cn,kpoq∆k

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ E0

»

–

ÿ

kPNd

cn,kpoq∆k

ÿ

jPNd

cn,jpoq∆j

fi

fl

“
ÿ

k,jPNd

E0rcn,kpoqcn,jpoqs ¨∆k∆j

“
ÿ

kPNd

ˆ

n

|k|

˙

Nk

d|k|
∆2

k

“

n
ÿ

ℓ“0

ˆ

n

ℓ

˙

1

dℓ

ÿ

kPNd:|k|“ℓ

Nk∆
2
k

“

n
ÿ

ℓ“0

ˆ

n

ℓ

˙

1

dℓ
}∆ℓ}

2
2 ,

where the last equality follows directly from definition:

ÿ

kPNd:|k|“ℓ

Nk∆
2
k “

ÿ

kPNd:|k|“ℓ

Nk

ˇ

ˇ

ˇ
Ex„µ

”

xk
ı

´ Ey„ν

”

yk
ıˇ

ˇ

ˇ

2

“
ÿ

i1,¨¨¨ ,iℓPrdsℓ

|Ex„µrxri1s ¨ ¨ ¨xriℓss ´ Ey„νryri1s ¨ ¨ ¨yriℓss|
2

“

›

›

›
Ex„µ

”

xbℓ
ı

´ Ey„ν

”

ybℓ
ı›

›

›

2

2
.

l

Corollary D.16 Let d,N,K,H P N and δ P p0, 1s be given so that N ě
`

K`d´1
d

˘

` 1. Suppose
x1, ¨ ¨ ¨ ,xN P r´δ, δsd. Then there exist two distributions ξ0, ξ1 P ∆prN sq, such that supppξ0q X
supppξ1q “ H and

D2
TV

`

Ei„ξ0

“

QbH
xi

‰

,Ei„ξ1

“

QbH
xi

‰˘

ď

H
ÿ

k“K

ˆ

eHδ2

K

˙k

.
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Proof. Consider the following system of equations:

N
ÿ

i“1

vixir1s
k1 ¨ ¨ ¨xirds

kd “ 0, @kj ě 0, k1 ` ¨ ¨ ¨ ` kd ď K ´ 1.

There are exactly
`

K`d´1
d

˘

equations, and hence such a system must have a non-zero solution
v‹ P RN . Notice that

řN
i“1 v

‹
i “ 0, and we then take ξ0 “ rv

‹s`{V , ξ1 “ r´v‹s`{V P ∆prN sq,
where V “ }rv‹s`}1 “ }r´v

‹s`}1 is the normalizing factor. Clearly, supppξ0q X supppξ1q “ H,
and we also have

Ei„ξ0x
bℓ
i “ Ei„ξ1x

bℓ
i , @ℓ “ 0, ¨ ¨ ¨K ´ 1.

Consider ∆ℓ :“ Ei„ξ0x
bℓ
i ´ Ei„ξ1x

bℓ
i ; then we have ∆ℓ “ 0 for ℓ ă K, and we also have

}∆ℓ}2 ď 2max
i

›

›

›
xbℓ
i

›

›

›

2
ď 2 }xi}

ℓ
2 ď 2p

?
dδqℓ, @ℓ ě 0.

This implies that 1
dℓ
}∆ℓ}

2
2 ď 4δ2ℓ always holds. Therefore, applying Proposition D.15 with n “ H

and using the fact that
`

H
k

˘

ď
`

eH
k

˘k
, we obtain

D2
TV

`

Ei„ξ0

“

QbH
xi

‰

,Ei„ξ1

“

QbH
xi

‰˘

ď

H
ÿ

k“K

ˆ

eH

k

˙k

¨ pδq2k ď
H
ÿ

k“K

ˆ

eHδ2

K

˙k

.

l

Proof of Proposition D.8 Choose δ8 ą 0, d ě 1, and an integer K ď
`

δ8

2e2δ
´ 1

˘

d ` 1 (to be
specified later in the proof). For the ℓ8-ball B :“ r´δ8, δ8s

d, we consider its packing number
under the ℓ1-norm, denoted Mp¨;B, }¨}1q. Using Wainwright (2019, Lemma 5.5 & 5.7), we have

Mpδ1;B, }¨}1q ě

ˆ

1

δ1

˙d volpBq

volpB1q
, @δ1 ą 0,

where B1 “
␣

x P Rd : }x}1 ď 1
(

is the ℓ1 unit ball. Notice that volpBq “ p2δ8q
d, volpB1q “ 2d

d! .
Thus, using the fact d! ą pd{eqd, we have

Mpδ1;B, }¨}1q ě d!

ˆ

δ8

δ1

˙d

ą

ˆ

dδ8

eδ1

˙d

In particular, M :“ Mp2dδ;B, }¨}1q ą
`

δ8

2eδ

˘d
. Notice that our choice of K ensures that for

N “
`

K`d´1
d

˘

` 1, it holds that N ďM . Therefore, we can pick N vectors x1, ¨ ¨ ¨ ,xN P B such
that }xi ´ xj}1 ě 2dδ.

Consider the distributions µi “ Qxi P ∆pr2dsq for each i P rN s. Clearly, we have DTV pµi, µjq ě

δ for i ‰ j. Also, by Corollary D.16, there exists ξ0, ξ1 P ∆prN sq such that supppξ0qX supppξ1q “
H,

D2
TV

´

Ei„ξ0

”

µbH
i

ı

,Ei„ξ0

”

µbH
i

ı¯

ď

H
ÿ

k“K

ˆ

eHδ28
K

˙k

.
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Consider Q “ tpµ1, ¨ ¨ ¨ , µN q, pξ0, ξ1qu.

Proof of Proposition D.8 (a). In this case, we pick δ8 “ 1, K “ H ` 1, d “ r4e2δHs. Then Q is
a p2, H, δ, 0, Nq-family over r2ds, with N ď min

`

1
2eδ , 2H

˘d.

Proof of Proposition D.8 (b). In this case, we take K “ rλds, δ8 “ 2e2δpλ` 1q, so eHδ28
K ď e´2

and hence Q is a p2, H, δ, γ,Nq-family over r2ds with γ ď 2e´λd and N ď p2epλ` 1qqd. l

D.7. Proof of Lemma D.9

Suppose that Q “ tpµ1, ¨ ¨ ¨ , µN q, pξ0, ξ1qu is a p2, H, δ, γ,Nq-family over O. Then, for each
integer m P t0, 1, ¨ ¨ ¨ , 2r ´ 1u, we consider its binary representation m “ pmr ¨ ¨ ¨m1q2, and
define

ξ̃m “ ξmr b ¨ ¨ ¨ b ξm1 P rN s
r.

Further, for each k “ pk1, ¨ ¨ ¨ , krq P rN s
r, we define

µ̃k “ µk1 b ¨ ¨ ¨ b µkr P Or.

Under the definitions above, we know

Ek„ξ̃m

”

µ̃bH
k

ı

“ Ek1„ξm1

”

µbH
k1

ı

b ¨ ¨ ¨ b Ekr„ξmr

”

µbH
kr

ı

,

and hence for 0 ď m, l ď 2r ´ 1, it holds that

DTV

´

Ek„ξ̃m

”

µ̃bH
k

ı

,Ek„ξ̃l

”

µ̃bH
k

ı¯

ď

r
ÿ

i“1

DTV

´

Ek„ξmi

”

µbH
k

ı

,Ek„ξli

”

µbH
k

ı¯

ď rγ.

We also know that supppξ̃mqX supppξ̃lq “ H as long as m ‰ l. For k, j P Ymsupppξ̃mq such that
k ‰ j, it also holds that

DTV pµ̃k, µ̃jq ě max
1ďiďr

DTV pµki , µjiq ě δ.

Therefore, Q1 “

!

pµ̃kqkPrNsr , pξ̃0, ¨ ¨ ¨ , ξ̃2r´1q

)

is indeed a p2r, H, δ, rγ,N rq-family over Or. l

D.8. Proof of Theorem 3.4

In this section, we modify the constructions in Appendix D.1 to obtain a class of hard instances of
N -step decodable LMDPs

M` “
␣

M`
θ : θ P An´1

(

Y

!

M`
H

)

, (28)

and then sketch the proof of Theorem 3.4 (as most parts of the proof follow immediately from
Appendix D.1 and Proposition D.12).

For any given integer N,n,A, we set k “ N ´ n so that H “ n ` 2k, and we take A “ rAs.
We specify the state space, action space and reward function (which are shared across all LMDP
instances) as follows.
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• The state space is

S “ ts‘,i : ´k ` 1 ď i ď n` ku
ğ

tsa,i : 2 ď i ď n` ku
ğ

tterminal1, ¨ ¨ ¨ , terminalnu.

• The action space is A.

• The reward function is given by Rhps, aq “ 1 ts “ s‘,n, h “ n` k ` 1u.

We remark that, our below construction has (essentially) the same LMDP dynamics at the state s P
S` :“ ts‘,1, ¨ ¨ ¨ , s‘,nu, as the construction in Appendix D.1. The auxiliary states sa,2, ¨ ¨ ¨ , sa,n`k, terminal1, ¨ ¨ ¨ , terminaln
are introduced so that we can ensure N -step decodability, while the auxiliary states s‘,´k`1, ¨ ¨ ¨ , s‘,0

are introduced to so that we can take the horizon H to equal N ` k.

Construction of the LMDP M`
θ For any θ “ a P An´1, we construct a LMDP M`

θ as follows.

• L “ n, the MDP instances of M`
θ is given by M`

θ,1, ¨ ¨ ¨ ,M
`
θ,n with mixing weight ρ “

Unifprnsq.

• For each m P rns, in the MDP M`
θ,m, the initial state is s‘,´k`1, and the transition dynamics

at state s R S` “ ts‘,1, ¨ ¨ ¨ , s‘,nu is specified as follows and does not depend on θ:

– At state s‘,h with h ď 0, taking any action leads to s‘,h`1.

– At state sa,h with h ă n` k, taking any action leads to sa,h`1.

– At state s P tsa,n`k, terminal1, ¨ ¨ ¨ , terminalnu, taking any action leads to terminalm.

For m ą 1, the transition dynamics of M`
θ,m at state s P S` is given as follows (similar to

Appendix D.1).

– At state s‘,h with h ă m, taking any action leads to s‘,h`1.

– At state s‘,m´1, taking action a ‰ am´1 leads to s‘,m, and taking action am´1 leads
to sa,m.

– At state s‘,h with m ď h ă n, taking action a ‰ ah leads to sa, and taking action ah
leads to s‘,h`1.

– At state s‘,n, taking any action leads to sa,n`1.

The transition dynamics of M`
θ,1 at state s P S` is given as follows.

– At state s‘,h with h ă n, taking action a ‰ ah leads to sa, and taking action ah leads
to s‘,h`1.

– The state s‘,n is an absorbing state.

Construction of the reference LMDP For θ̄ “ H, we construct the LMDP Mθ̄ with state space
S, MDP instances Mθ̄,1, ¨ ¨ ¨ ,Mθ̄,n, mixing weights ρ “ Unifprnsq, where for each m P rns, the
transition dynamics of Mθ̄,m is specified as follows: (1) the initial state is always s‘,´k`1, (2) the
transition dynamics at state s R S` agrees with the transition dynamics of Mθ,m described as above,
(3) at state s‘,h with h ă m, taking any action leads to s‘,h`1, and (4) at state s‘,h with h ě m,
taking any action leads to sa,h`1.
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Sketch of proof The following are several key observations for the LMDP Mθ (θ P An´1\
␣

θ̄
(

).

(1) At state s P S`, the transition dynamics of M`
θ,m agrees with the transition dynamics of

Mθ,m (defined in Appendix D.1), in the sense that we identify the state sa there as the set of
tsa,2, ¨ ¨ ¨ , sa,n`ku.

(2) With horizon H “ n`2k, we always have sH P ts‘,n, sa,n`ku, and all the states in tterminal1, ¨ ¨ ¨ , terminalnu
are not reachable. In other words, the auxiliary states terminal1, ¨ ¨ ¨ , terminaln (introduced for en-
suring N -step decodability) do not reveal information of the latent index because they are never
reached.

(3) Mθ is N -step decodable, because:

(3a) Mθ is N -step decodable when we start at s P tsa,2, ¨ ¨ ¨ , sa,n`k, terminal1, ¨ ¨ ¨ , terminalnu.
This follows immediately from definition, because in Mθ, any reachable trajectory τN starting at
such state s must end with sN “ terminalm, where m is the index of the MDP instance Mθ,m.
Similar argument also shows that Mθ is N -step decodable when we start at s P ts‘,2, ¨ ¨ ¨ , s‘,nu.

(3b) Mθ is n-step decodable when we start at s‘,1. This follows immediately from our proof of
Lemma D.5 (a), which shows that for any reachable trajectory τn, there is a unique latent index m
such that τn is reachable under Mθ,n. Therefore, we also know that Mθ is N -step decodable when
we start at s P ts‘,´k`1, ¨ ¨ ¨ , s‘,0u.

Given the above observations, we also know that our argument in the proof of Proposition D.12
indeed applies to M`, which concludes that the class M` of N -step decodable LMDPs requires
Ω
`

An´1
˘

samples to learn. l

Appendix E. Proofs for Section 4

Miscellaneous notations We identify ΠRND “ ∆pΠRNDq as both the set of all policies and all
distributions over policies interchangeably.

Also, recall that for any step h, we write τh “ ps1, a1, ¨ ¨ ¨ , sh, ahq, and τh:h1 “ psh, ah, ¨ ¨ ¨ , sh1 , ah1q

compactly. Also recall that

Pθpτhq “ Pθps1:h|dopa1:h´1qq,

i.e., Pθpτhq is the probability of observing s1:h if the agent deterministically executes actions a1:h´1

in the LMDP Mθ. Also denote πpτhq :“
ś

h1ďh πh1pah1 |τh1´1, sh1q, and then Pπ
θ pτhq “ Pθpτhq ˆ

πpτhq gives the probability of observing τh for the first h steps when executing π in LMDP Mθ.

For any policy π, π1 P Π and step h P rHs, we define π ˝h π1 to be the policy that executes π for the
first h´ 1 steps, and then starts executing πsep at step h (i.e. discarding the history τh´1).

To avoid confusion, we define Pθpτh:H |τh´1, πq to be the probability of observing τh:H conditional
on the history τh´1 if we start executing π at the step h (i.e. π does not use the history data τh´1).
By contrast, consistently with the standard notation of conditional probability, Pπ

θ pτh:H |τh´1q is the
conditional probability of the model Pπ

θ , i.e. the probability of observing τh:H conditional on the
history τh´1 under policy π. Therefore, we have

Pπ
θ pτh:H |τh´1q “ Pθpτh:H |τh´1, πp¨|τh´1qq. (29)
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E.1. Details of Algorithm OMLE

Given a separating policy πsep, we can construct a corresponding map pp¨q : ΠRND Ñ ΠRND, that
transforms any policy π to an explorative version of it. The definition of pp¨q below is similar to the
choice of the explorative policies for learning PSRs in Zhan et al. (2022); Chen et al. (2022a); Liu
et al. (2022b).

Definition E.1 Suppose that πsep P ΠRND is a given policy and 1 ď W ď H . For any step
1 ď h ď H , we define φh : ΠRND Ñ ΠRND to be a policy modification given by

φhpπq “ π ˝h UnifpAq ˝h`1 πsep, π P ΠRND,

i.e. φhpπq means that we follow π for the first h ´ 1 steps, take UnifpAq at step h, and start
executing πsep afterwards.

Further, we define ϕp¨q, pp¨q as follows:

ϕpπq “ π ˝W πsep, ppπq “
1

2
ϕpπq `

1

2H

H´1
ÿ

h“0

φhpπq.

The following guarantee pertaining to the confidence set maintained in OMLE is taken from Chen
et al. (2022a, Proposition E.2). There is a slight difference in the policy modification applied to πt,
which does not affect the argument in Chen et al. (2022a, Appendix E.1).

Proposition E.2 (Confidence set guarantee) Suppose that we choose β ě 2 logNΘp1{T q`2 logp1{pq`
2 in Algorithm 1. Then with probability at least 1´ p, the following holds:

(a) For all k P rKs, θ‹ P Θk;

(b) For all k P rKs and any θ P Θk, it holds that

k´1
ÿ

t“1

D2
H

´

Pppπtq

θ ,Pppπtq

θ‹

¯

ď 2β. (30)

Let E0 be the event that both (a) and (b) of Proposition E.2 above hold true. In the following, we
will analyze the performance of Algorithm 1 conditional on the suceess event E0.

The following proposition relates the sub-optimality of the output policy pπ of Algorithm 1 to the
error of estimation.

Proposition E.3 Suppose that Assumption 4.6 holds, and W ě ϖ´1plogpL{εsqq. Conditional on
the success event E0, we have

V‹ ´ Vθ‹ppπq ď
1

K

K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

.

Proof. Under the given condition on W , it holds eθ‹,W pπ‹q ď εs (Proposition 4.1). By Propo-
sition E.2 (a), we also have θ‹ P Θk for each k P rKs. Therefore, by the choice of pθk, πkq in
Algorithm 1, it holds that V‹ “ Vθ‹pπ‹q ď Vθkpπ

kq. Hence,

V‹ ´ Vθ‹pπkq ď Vθkpπ
kq ´ Vθ‹pπkq ď DTV

´

Pπk

θk ,P
πk

θ‹

¯

,
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where the last inequality follows from the definition of TV distance and the fact that
řH

h“1Rhpsh, ahq P
r0, 1s for any trajectory. Taking average over k P rKs completes the proof. l

E.2. Proof overview

Given Proposition E.2 and Proposition E.3, upper bounding the sub-optimality of the output pπ
reduces to the following task.

Task: upper bound
K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

, given that @k P rKs,
k´1
ÿ

t“1

D2
H

´

Pppπtq

θk
,Pppπtq

θ‹

¯

ď 2β.

A typical strategy, used in Liu et al. (2022a); Chen et al. (2022b,a); Liu et al. (2023), of relating
these two terms is three-fold: (1) find a decomposition of the TV distance, i.e. an upper bound of
DTV pPπ

θ ,Pπ
θ‹q; (2) show that the decomposition can be upper bounded by the squared Hellinger

distance D2
H pPπ

θ ,Pπ
θ‹q; (3) apply an eluder argument on the decomposition to complete the proof.

For example, we describe this strategy for the special case of MDPs.

Example E.4 Suppose that Θ is instead a class of MDPs and ppπq “ π, then we can decompose

DTV pPπ
θ ,Pπ

θ‹q ď

H´1
ÿ

h“1

Eπ
θ‹DTV pTθp¨|sh, ahq,Tθ‹p¨|sh, ahqq

looooooooooooooooooooooooomooooooooooooooooooooooooon

“:Gθ‹ pπ,θq

ď 2HDTV pPπ
θ ,Pπ

θ‹q . (31)

In tabular case, the decomposition Gθ‹p¨, ¨q can be written as an inner product over RSˆA, i.e.
Gθ‹pπ, θq “ xXpθq,W pπqy for appropriate embeddings Xpθq,W pπq P RSˆA. Then, using
the eluder argument for linear functionals (i.e. the “elliptical potential lemma”, Lattimore and
Szepesvári (2020)), we can prove that under (30), it holds that

ř

k DTV

´

Pπk

θk
,Pπk

θ‹

¯

ď rOp
a

SA ¨KH2βq.

More generally, beyond the tabular case, we can also apply a coverability argument (see e.g. Xie
et al. (2022) and also Proposition A.9) as follows. Suppose that rankpTθ‹q ď d. We can then invoke
Proposition A.10 to show that Gθ‹ admits the following representation:

Gθ‹pπ, θq “ Ex„ppπqfθpxq,

where p : Π Ñ ∆pS ˆ Aq is such that there exists µ P ∆pS ˆ Aq, }ppπq{µ}8 ď d ¨ A for all π.

Hence, Proposition A.9 implies that
ř

k DTV

´

Pπk

θk
,Pπk

θ‹

¯

ď rOp
a

dA ¨KH2βq. ♢

Analyzing the separated LMDPs In our analysis, we first decompose the TV distance between
LMDPs into two parts:

DTV pPπ
θ ,Pπ

θ‹q ď DTV pPπ
θ pτW “ ¨q,Pπ

θ‹pτW “ ¨qq

` Eπ
θ‹rDTV pPπ

θ pτW :H “ ¨|τW q,Pπ
θ‹pτW :H “ ¨|τW qqs

(32)

where the part (a) is the TV distance between the distribution of trajectory up to step W , and part
(b) is the TV distance between the conditional distribution of the last H ´W ` 1 steps trajectory.
We analyze part (a) and part (b) separately.
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Part (a) Under the assumption of ϖ-separation under πsep and H ´ W ě ϖ´1plogp2Lqq, we
can show that a variant of the revealing condition (Liu et al., 2022a; Chen et al., 2022a; Liu et al.,
2023) holds (Lemma A.7). Therefore, restricting to dynamics of the first W steps, we can regard
Θ as a class of revealing POMDPs, and then apply the eluder argument developed in Chen et al.
(2022a). More specifically, our analysis of part (a) relies on the following result, which is almost an
immediately corollary of the analysis in Chen et al. (2022a, Appendix D & E).

Theorem E.5 Suppose that for all θ P Θ, θ is ϖ-separated under πsep, and H´W ě ϖ´1plogp2Lqq.
Then conditional on the success event E0,

K
ÿ

k“1

DTV

´

Pϕpπkq

θk
,Pϕpπkq

θ‹

¯

À
a

LdAH2ιK ¨Kβ,

where ιK “ logpLdH ¨K{pAβqq is a logarithmic factor.

We provide a more detailed discussion of Theorem E.5 and a simplified proof in Appendix E.6.
Notice that, although the statement of Theorem E.5 bounds the total variation distance between the
entire (H-step) trajectories Pϕpπkq

θk
and Pϕpπkq

θ‹ , the policies ϕpπkq act according to the fixed policy
πsep on steps h ě W . Thus, Theorem E.5 is not establishing that the model θ‹ is being learned in
any meaningful way after step W (indeed, it cannot since we may not have H´h ě ϖ´1plogp2Lqq
for h ąW ). To learn the true model θ‹ at steps h ěW , we need to analyze part (b) of (32).

Part (b) The main idea for analyzing the steps h ěW is that, given eθpπq is small, we can regard

Pπ
θ pτW :H “ ¨|τW q «Mθ

mθpτW q,H´W`1pπp¨|τW´1q, sW q. (33)

In other words, conditional on the first W steps, the dynamics of the trajectory τW :H is close to
the dynamics of the MDP Mθ,mθpτW q. Therefore, we can decompose part (b) in a fashion simi-
lar to the decomposition (31) for MDP (Proposition E.7), and then apply the eluder argument of
Proposition A.9 (see Corollary E.9).

E.3. Structural properties of separated LMDP

In this section, we formalize the idea described in the part (b) of our proof overview.

For each h P rHs and trajectory τh, we define the belief state of the trajectory τh under model θ as

bθpτhq “
”

rPθpm|τhq
ı

mPrLs
P ∆prLsq. (34)

Recall the definition of Mm,hp¨q P ∆ppA ˆ Sqh´1q in (1). Then, conditional on the trajectory τW ,
the distribution of τW :H “ paW , ¨ ¨ ¨ , aH´1, sHq under policy π can be written as

Pπ
θ pτW :H “ ¨|τW q “ Em„bθpτW q

“

Tπ
θ,mpτW :H “ ¨|τW q

‰

“ Em„bθpτW q

”

Mθ
m,H´W`1pπ|τW´1 , sW q

ı (35)

where π|τW´1 “ πp¨|τW´1q is the policy obtained from π by conditional on τW . In particular,

DTV

´

Pπ
θ pτW :H “ ¨|τW q,Mθ

mθpτW q,H´W`1pπ|τW´1 , sW q
¯

ď
ÿ

m‰mθpτW q

bθpτW qrms. (36)

48



NEAR-OPTIMAL LEARNING AND PLANNING IN SEPARATED LATENT MDPS

We denote

eθpτW q :“
ÿ

m‰mθpτW q

bθpτW qrms. (37)

Notice that by the definition of bθpτW q,

eθpτW q “
ÿ

m‰mθpτW q

bθpτW qrms “ 1´max
m

bθpτW qrms “ rPθpm ‰ mθpτW q|τW q, (38)

and hence eθ,W pπq “ Eπ
θ reθpτW qs.

In the following, we denote W̄ :“ H ´W ` 1, and we will use the inequality

DTV

´

Pπ
θ pτW :H “ ¨|τW q,Mθ

mθpτW q,W̄ pπ|τW´1 , sW q
¯

ď eθpτW q, (39)

(which follows from Eqs. (36) and (38)) and the fact that eθ,W pπq “ Eπ
θ reθpτW qs repeatedly. This

formalizes the idea of (33). Also notice that ϕpπq “ π ˝W πsep, and hence we also have

DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,Mθ
mθpτW q,W̄ pπsep, sW q

¯

ď eθpτW q. (40)

The following proposition shows that, as long as the model θ is close to θ̄, there is a correspondence
between the maps mθ and mθ̄.

Proposition E.6 Suppose that θ and θ̄ are ϖ-separated under πsep and W̄ “ H´W`1 ě ϖ´1p1q.
Then there exists a map σ “ σθ;θ̄ : rLs ˆ S Ñ rLs such that for any pW ´ 1q-step policy π,

Pπ
θ̄ pmθpτW q ‰ σpmθ̄pτW q, sW qq ď 288D2

H

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

` 144eθ,W pπq ` 144eθ̄,W pπq, (41)

where ϕpπq “ π ˝W πsep is defined in Definition E.1.

Proof. In the following proof, we abbreviate ε “ D2
H

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

. By Lemma A.5,

Eπ
θ̄

”

D2
TV

´

Pϕpπq

θ pτW :H “ ¨|τW q,P
ϕpπq

θ̄
pτW :H “ ¨|τW q

¯ı

ď 4ε. (42)

Using (40) and the triangle inequality of TV distance, we have

DTV

´

Mθ
mθpτW q,W̄ pπsep, sW q,M

θ̄
mθ̄pτW q,W̄ pπsep, sW q

¯

ď DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,P
ϕpπq

θ̄
pτW :H “ ¨|τW q

¯

` eθpτW q ` eθ̄pτW q,

and hence

Eπ
θ̄

”

D2
TV

´

Mθ
mθpτW q,W̄ pπsep, sW q,M

θ̄
mθ̄pτW q,W̄ pπsep, sW q

¯ı

ď 3Eπ
θ̄

”

D2
TV

´

Pϕpπq

θ pτW :H “ ¨|τW q,P
ϕpπq

θ̄
pτW :H “ ¨|τW q

¯ı

` 3Eπ
θ̄ reθpτW qs ` 3Eπ

θ̄ reθ̄pτW qs.

(43)

49



CHEN DASKALAKIS GOLOWICH RAKHLIN

By definition, we know Eπ
θ̄
reθ̄pτW qs “ eθ̄,W pπq, and by Lemma A.3, we also have

Eπ
θ̄ reθpτW qs ď 3Eπ

θ reθpτW qs ` 2D2
H

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

“ 3eθ,W pπq ` 2D2
H

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

.
(44)

Plugging the inequalities (42) and (44) into (43), we have

Eπ
θ̄

”

D2
TV

´

Mθ
mθpτW q,W̄ pπsep, sW q,M

θ̄
mθ̄pτW q,W̄ pπsep, sW q

¯ı

ď 18ε` 9eθ,W pπq ` 9eθ̄,W pπq “: ε
1.

In other words, it holds that
ÿ

l,l̄,s

Pπ
θ̄

`

sW “ s,mθpτW q “ l,mθ̄pτW q “ l̄
˘

¨D2
TV

´

Mθ
l,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

ď ε1. (45)

Notice that W̄ ě ϖ´1p1q. Thus, using (11), for any m, l P supppρθq such that m ‰ l, we have

DTV

´

Mθ
l,W̄ pπsep, sq,M

θ
m,W̄ pπsep, sq

¯

ě
1

2
.

Hence, we choose σ “ σθ;θ̄ as

σθ;θ̄pl̄, sq P argmin
lPsupppρθq

DTV

´

Mθ
l,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

. (46)

Then for any l P supppρθq such that l ‰ σpl̄, sq, it holds that

2DTV

´

Mθ
l,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

ě DTV

´

Mθ
l,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

`DTV

´

Mθ
σpl̄,sq,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

ě DTV

´

Mθ
l,W̄ pπsep, sq,M

θ
σpl̄,sq,W̄ pπsep, sq

¯

ě
1

2
,

and hence DTV

´

Mθ
l,W̄
pπsep, sq,Mθ̄

l̄,W̄
pπsep, sq

¯

ě 1
4 . Therefore,

ε1 ě
ÿ

l,l̄,s

Pπ
θ̄

`

sW “ s,mθpτW q “ l,mθ̄pτW q “ l̄
˘

¨D2
TV

´

Mθ
l,W̄ pπsep, sq,M

θ̄
l̄,W̄ pπsep, sq

¯

ě
ÿ

l̄,s

ÿ

l‰σpl̄,sq

Pπ
θ̄

`

sW “ s,mθpτW q “ l,mθ̄pτW q “ l̄
˘

¨
1

16

“
1

16
¨ Pπ

θ̄ pmθpτW q ‰ σpmθ̄pτW q, sW qq.

The proof is hence completed. l

Proposition E.7 (Performance decomposition) Given LMDP model θ and reference LMDP θ̄, for
any trajectory τh with step W ď h ă H , we define

Eθ;θ̄pτhq “ max
aPA

DTV

´

Tθ
σpmθ̄pτW q,sW qp¨|sh, aq,T

θ̄
mθ̄pτW qp¨|sh, aq

¯

, (47)
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where σ “ σθ;θ̄ : rLs ˆ S Ñ rLs is the function defined in (46). Then it holds that

DTV

`

Pπ
θ ,Pπ

θ̄

˘

ď 300DTV

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

` 150eθ,W pπq ` 150eθ̄,W pπq `
H´1
ÿ

h“W

Eπ
θ̄E

θ;θ̄pτhq. (48)

Conversely, for any step W ď h ă H ,

Eπ
θ̄E

θ;θ̄pτhq
2 ď 18AD2

H

´

Pφhpπq

θ ,Pφhpπq

θ̄

¯

` 300D2
H

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

` 200eθ,W pπq ` 200eθ̄,W pπq.
(49)

Proof. We first prove (48). Notice that, by Lemma A.4,

DTV

`

Pπ
θ ,Pπ

θ̄

˘

ď DTV

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

` Eπ
θ̄

“

DTV

`

Pπ
θ pτW :H “ ¨|τW q,Pπ

θ̄ pτW :H “ ¨|τW q
˘‰

.
(50)

Using (39) and the triangle inequality of TV distance, we have

DTV

`

Pπ
θ pτW :H “ ¨|τW q,Pπ

θ̄ pτW :H “ ¨|τW q
˘

ď DTV

´

Mθ
mθpτW q,W̄ pπ|τW´1 , sW q,M

θ̄
mθ̄pτW q,W̄ pπ|τW´1 , sW q

¯

` eθpτW q ` eθ̄pτW q,

and taking expectation over τW „ Pπ
θ̄

, we obtain

Eπ
θ̄

“

DTV

`

Pπ
θ pτW :H “ ¨|τW q,Pπ

θ̄ pτW :H “ ¨|τW q
˘‰

ď Eπ
θ̄

”

DTV

´

Mθ
mθpτW q,W̄ pπ|τW´1 , sW q,M

θ̄
mθ̄pτW q,W̄ pπ|τW´1 , sW q

¯ı

` Eπ
θ̄ reθpτW qs ` Eπ

θ̄ reθ̄pτW qs.

(51)

For the last two term in the RHS of (51), we have Eπ
θ̄
reθ̄pτW qs “ eθ̄,W pπq and

Eπ
θ̄ reθpτW qs ď Eπ

θ reθpτW qs `DTV

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

. (52)

To bound the first term in the RHS of (51), we consider the event Eθ;θ̄ :“ tmθpτW q “ σpmθ̄pτW q, sW qu.
Under event Eθ;θ̄, by Lemma A.4 we have

DTV

´

Mθ
mθpτW q,W̄ pπ|τW´1 , sW q,M

θ̄
mθ̄pτW q,W̄ pπ|τW´1 , sW q

¯

ď

H´1
ÿ

h“W

E
”

DTV

´

Tθ
mθpτW qp¨|sh, ahq,T

θ̄
mθ̄pτW qp¨|sh, ahq

¯
ˇ

ˇ

ˇ
τh „ Pπ

θ̄ p¨|τW q
ı

ď

H´1
ÿ

h“W

E
”

max
a

DTV

´

Tθ
mθpτW qp¨|sh, aq,T

θ̄
mθ̄pτW qp¨|sh, aq

¯ˇ

ˇ

ˇ
τh „ Pπ

θ̄ p¨|τW q
ı

Eθ;θ̄
“

H´1
ÿ

h“W

E
”

Eθ;θ̄pτhq
ˇ

ˇ

ˇ
τh „ Pπ

θ̄ p¨|τW q
ı

“

H´1
ÿ

h“W

Eπ
θ̄

”

Eθ;θ̄pτhq
ˇ

ˇ

ˇ
τW

ı

.

51



CHEN DASKALAKIS GOLOWICH RAKHLIN

Taking expectation over τW „ Pπ
θ̄

, it holds

Eπ
θ̄

”

DTV

´

Mθ
mθpτW q,W̄ pπ|τW´1 , sW q,M

θ̄
mθ̄pτW q,W̄ pπ|τW´1 , sW q

¯ı

ď PpEc
θ;θ̄q `

H´1
ÿ

h“W

Eπ
θ̄E

θ;θ̄pτhq.

(53)

Combining (51) with (52), (53) and (41) (Proposition E.6), the proof of (48) is completed.

We proceed similarly to prove (49). Notice that for any trajectory τh,

Pθpsh`1 “ ¨|τhq “ Em„bθpτhqrTθ,mp¨|sh, ahqs.

Therefore,

DTV

´

Pθpsh`1 “ ¨|τhq,Tθ
mθpτW qp¨|sh, ahq

¯

ď
ÿ

m‰mθpτhq

bθpτhqrms “ eθpτhq,

and hence

DTV

´

Tθ
mθpτW qp¨|sh, ahq,T

θ̄
mθ̄pτW qp¨|sh, ahq

¯

ď DTV pPθpsh`1 “ ¨|τhq,Pθ̄psh`1 “ ¨|τhqq

` eθpτhq ` eθ̄pτhq.

In particular, given h ěW , for any trajectory τh whose prefix τW satisfies τW P Eθ;θ̄, we have

Eθ;θ̄pτhq ď max
a

DTV pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq ` eθpτhq ` eθ̄pτhq.

Thus,

1
␣

Eθ;θ̄

(

Eθ;θ̄pτhq
2 ď 3max

a
D2

TV pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq ` 3eθpτhq ` 3eθ̄pτhq.

Taking expectation over τh „ Pπ
θ̄

, we have

Eπ
θ̄E

θ;θ̄pτhq
2 ď Pπ

θ̄

´

Ec
θ;θ̄

¯

` 3Eπ
θ̄

”

max
a

D2
TV pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq

ı

` 3Eπ
θ̄ reθpτhqs ` 3Eπ

θ̄ reθ̄pτhqs.

Notice that

Eπ
θ̄

”

max
a

D2
TV pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq

ı

ď Eπ
θ̄

«

ÿ

a

D2
TV pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq

ff

ď 2Eπ
θ̄

«

ÿ

a

D2
H pPθpsh`1 “ ¨|τh, aq,Pθ̄psh`1 “ ¨|τh, aqq

ff

“ 2Eπ
θ̄

“

A ¨D2
H pPθpsh`1 “ ¨|τh, ah „ UnifpAqq,Pθ̄psh`1 “ ¨|τh, ah „ UnifpAqqq

‰

ď 4AD2
H

´

Pπ˝hUnifpAq

θ pτh`1 “ ¨q,P
π˝hUnifpAq

θ̄
pτh`1 “ ¨q

¯
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ď 4AD2
H

´

Pφhpπq

θ ,Pφhpπq

θ̄

¯

,

where the third inequality follows from Lemma A.5. By definition, we know Eπ
θ̄
reθ̄pτhqs “

eθ̄,hpπq ď eθ,W pπq (Lemma E.8), and using Lemma A.3, we also have

Eπ
θ̄ reθpτhqs ď 3Eπ

θ reθpτhqs ` 2D2
H

`

Pπ
θ pτh “ ¨q,Pπ

θ̄ pτh “ ¨q
˘

ď 3eθ,W pπq ` 2D2
H

´

Pφhpπq

θ ,Pφhpπq

θ̄

¯

.

Combining the inequalities above with (41) completes the proof. l

Lemma E.8 For h ěW , it holds that eθ,hpπq ď eθ,W pπq.

Proof. By definition,

eθ,hpπq “ Eπ
θ

”

1´max
m

rPθpm
‹ “ m|τhq

ı

ď Eπ
θ

”

1´ rPθpm
‹ “ mθpτW q|τhq

ı

“ 1´ rPpm‹ “ mθpτW qq

“ eθ,W pτW q.

l

E.4. Proof of Theorem 4.3

We first present and prove a more general result as follows; Theorem 4.3 is then a direct corollary.

Corollary E.9 Under the success event E0 of Proposition E.2, it holds that

V‹ ´ Vθ‹ppπq À

d

Ld2ιK

ˆ

AH2β

K
`

W̄ 2pU` `KU‹q

K2

˙

` εs,

where we denote ιK “ logpLdH ¨K{pAβqq, and

U‹ “

K
ÿ

k“1

eθ‹,W pπ
kq, U` “

ÿ

1ďtăkďK

eθk,W pπ
tq.

Proof. Recall that by Proposition E.3, we have that under E0

V‹ ´ Vθ‹ppπq ď
1

K

K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

.

Taking summation of (48) over pθ1, π1q, ¨ ¨ ¨ , pθK , πKq, we have

K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

À

K
ÿ

k“1

DTV

´

Pϕpπkq

θk
,Pϕpπkq

θ‹

¯

`

K
ÿ

k“1

´

eθk,W pπ
kq ` eθ‹,W pπ

kq

¯
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`

K
ÿ

k“1

H´1
ÿ

h“W

Eπk

θ‹ Eθk;θ‹

pτhq.

By Theorem E.5, we can bound the first term in the RHS above as

K
ÿ

k“1

DTV

´

Pϕpπkq

θk
,Pϕpπkq

θ‹

¯

À
a

LdAH2ιKKβ.

Combining with the fact that eθk,W pπ
kq ď εs, we obtain

K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

À
a

LdAH2ιKKβ `Kεs ` U‹ `

H´1
ÿ

h“W

K
ÿ

k“1

Eπk

θ‹ Eθk;θ‹

pτhq. (54)

Using (49) and the definition of pp¨q, we also know that for all t, k P rKs,

H´1
ÿ

h“W

Eπt

θ‹Eθk;θ‹

pτhq
2 À AHD2

H

´

Pppπtq

θk
,Pppπtq

θ‹

¯

` W̄eθk,W pπ
tq ` W̄eθ‹,W pπ

tq. (55)

Therefore, using (30) and the fact that E0 holds, we have

ÿ

tăk

H´1
ÿ

h“W

Eπt

θ‹Eθk;θ‹

pτhq
2 À AHβ ` W̄Uk, (56)

where we denote Uk :“
ř

tăk

`

eθk,W pπ
tq ` eθ‹,W pπ

tq
˘

. Therefore, it remains to bridge between
the inequalities in Eqs. (54) and (56) above using Proposition A.9.

Fix a W ď h ď H ´ 1. Notice that Eθk;θ‹

pτhq only depends on τh through the tuple

xh “ pmθ‹pτW q, sW , shq P X :“ rLs ˆ S ˆ S,

and hence we can consider the distribution pt,h “ Pπt

θ‹pxh “ ¨q P ∆pX q. It remains to shows that
there exists a distribution µh P ∆pX q such that pt,hpxq{µhpxq ď Ccov@x P X for some parameter
Ccov.

Under Assumption 2.7, by Proposition A.10, there exist distributions µ̃m P ∆pSq for each m P rLs
such that

Tθ‹,mps
1|s, aq ď d ¨ µ̃mps

1q, @m P rLs, ps, a, s1q P S ˆAˆ S.

Therefore, in the case h ąW , for any x “ pm, s, s1q P X , we have

pt,hpxq “ Pπt

θ‹pxh “ xq ď Pπt

θ‹psW “ s, sh “ s1q

“ Epm‹,τh´1,shq

“

1
␣

sW “ s, sh “ s1
(‰

“ Epm‹,τh´1q

”

1 tsW “ suE
”

1
␣

sh “ s1
(ˇ

ˇ sh „ rPθ‹p¨|τh´1,m
‹q

ıı

“ Epm‹,τh´1q

”

1 tsW “ suTθ‹

m‹ps1|sh´1, ah´1q

ı
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ď Epm‹,τh´1q

“

1 tsW “ su ¨ d ¨ µ̃m‹ps1q
‰

“ Epm‹,τW´1q

”

E
”

1 tsW “ su| sW „ rPθ‹p¨|τW´1,m
‹q

ı

¨ d ¨ µ̃m‹ps1q

ı

“ Epm‹,τW´1q

”

Tθ‹

m‹ps|sW´1, aW´1q ¨ d ¨ µ̃m‹ps1q

ı

ď Em‹

“

d ¨ µ̃m‹psq ¨ d ¨ µ̃m‹ps1q
‰

“ d2
ÿ

m‹PrLs

ρθ‹pm‹qµ̃m‹psqµ̃m‹ps1q,

where the expectation is taken over pm‹, τHq „ rPπt

θ‹ . Thus, we can choose µh P ∆pX q as

µhpm, s, s1q “
1

L

ÿ

m‹PrLs

ρθ‹pm‹qµ̃m‹psqµ̃m‹ps1q, @pm, s, s1q P X .

Then, for h ą W , t P rT s and any x P X , we know pt,hpxq ď Ld2 ¨ µhpxq. For the case h “ W ,
an argument essentially the same as above also yields that there exists a µW P ∆pX q such that
pt,W pxq ď Ld ¨ µW pxq for all t P rT s, x P X .

We can now apply Proposition A.9 with M “ Aβ to obtain that for all W ď h ď H ´ 1,

K
ÿ

k“1

Eπk

θ‹ Eθk;θ‹

pτhq À

g

f

f

eLd2 log

ˆ

1`
Ld2K

Aβ

˙

«

KAβ `
K
ÿ

k“1

ÿ

tăk

Eπt

θ‹Eθk;θ̄pτhq2

ff

. (57)

Taking summation over W ď h ď H ´ 1 and using (56), we have

H´1
ÿ

h“W

K
ÿ

k“1

Eπk

θ‹ Eθk;θ‹

pτhq À

g

f

f

eLd2ιK

«

KAH2β ` W̄ 2
K
ÿ

k“1

Uk

ff

. (58)

Combining (58) above with (54), we can conclude that

K
ÿ

k“1

DTV

´

Pπk

θk ,P
πk

θ‹

¯

À
a

LdAH2ιKKβ `Kεs ` U‹ `H

g

f

f

eLd2ιK

«

KAH2β ` W̄ 2
K
ÿ

k“1

Uk

ff

À

b

Ld2ιK
`

KAH2β ` W̄ 2pKU‹ ` U`q
˘

`Kεs ` U‹

À

b

Ld2ιK
`

KAH2β ` W̄ 2pKU‹ ` U`q
˘

`Kεs,

where the last inequality follows from U‹ ď K and hence U‹ ď
?
KU‹. Applying Proposition E.3

completes the proof. l

Proof of Theorem 4.3 Under Assumption 4.2, it holds that eθ,W pπq ď εs for all θ P Θ and π P Π
(Proposition 4.1). Therefore, U‹ ď Kεs, U` ď K2εs, and Corollary E.9 implies that as long as

K Á
Ld2AH2ιK

ε2
¨ β, εs À

ε2

Ld2W̄ 2ιK
,

we have V‹ ´ Vθ‹ppπq ď ε, which is fulfilled by the choice of parameters in Theorem 4.3. l
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E.5. Proof of Theorem 4.8

According to Corollary E.9, we only need to upper bound the term U‹ and U` under Assumption
4.7. The following proposition links these two quantities with the condition eθk,W pπ

kq ď εs@k P
rKs.

Proposition E.10 Suppose that Assumption 4.7 holds. Then for any policy π, LMDP model θ and
reference LMDP model θ̄, it holds that

eθ,W pπq ď
1

α

”

3DTV

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

` eθ̄,W pπq
ı

Proof. Using (40) and the triangle inequality, we have

DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,Mθ̄
mθ̄pτW q,W̄ pπsep, sW q

¯

ď DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,P
ϕpπq

θ̄
pτW :H “ ¨|τW q

¯

` eθ̄pτW q.

On the other hand,

Pϕpπq

θ pτW :H “ ¨|τW q “ Em„bθpτW q

”

Mθ
m,W̄ pπsep, sW q

ı

,

and hence by (8), it holds that

DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,Mθ̄
mθ̄pτW q,W̄ pπsep, sW q

¯

ě α
´

1´max
m

bθpτW qrms
¯

“ αeθpτW q.

Taking expectation over τW „ Pπ
θ̄

, we obtain

αEπ
θ̄ reθpτW qs ď Eπ

θ̄

”

DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,Mθ̄
mθ̄pτW q,W̄ pπsep, sW q

¯ı

ď Eπ
θ̄

”

DTV

´

Pϕpπq

θ pτW :H “ ¨|τW q,P
ϕpπq

θ̄
pτW :H “ ¨|τW q

¯ı

` Eπ
θ̄ reθ̄pτW qs

ď 2DTV

´

Pϕpπq

θ ,Pϕpπq

θ̄

¯

` eθ̄,W pπq,

where the last inequality follows from Lemma A.4 and the fact that Eπ
θ̄
reθ̄pτW qs “ eθ̄,W pπq. Notice

that we also have

Eπ
θ̄ reθpτW qs ě Eπ

θ reθpτW qs ´DTV

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

“ eθ,W pπq ´DTV

`

Pπ
θ pτW “ ¨q,Pπ

θ̄ pτW “ ¨q
˘

.

Combining the inequalities above completes the proof. l

Proof of Theorem 4.8 According to our choice of pθk, πkq, we know that eθk,W pπ
kq ď εs always

holds for k P rKs. Hence, by Proposition E.10,

eθ‹,W pπ
kq ď

1

α

”

3DTV

´

Pϕpπkq

θk
,Pϕpπkq

θ‹

¯

` εs

ı

.

Summing over k P rKs, we obtain that

U‹ “

K
ÿ

k“1

eθ‹,W pπ
kq ď

1

α

«

3
K
ÿ

k“1

DTV

´

Pϕpπkq

θk
,Pϕpπkq

θk

¯

`Kεs

ff
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À
1

α

a

LdAH2ιKKβ `
Kεs
α

,

where the last inequality follows from Theorem E.5.

Similarly, by Proposition E.10, we can bound

eθk,W pπ
tq ď

1

α

”

3DTV

´

Pϕpπtq

θk
,Pϕpπtq

θt

¯

` eθtpπ
tq

ı

ď
1

α

”

3DTV

´

Pϕpπtq

θk
,Pϕpπtq

θ‹

¯

` 3DTV

´

Pϕpπtq

θt ,Pϕpπtq

θ‹

¯

` eθtpπ
tq

ı

.

Therefore, taking summation over 1 ď t ă k ď K, we have

U` “
ÿ

1ďtăkďK

eθk,W pπ
tq À

1

α

«

ÿ

1ďtăkďK

DTV

´

Pϕpπtq

θk
,Pϕpπtq

θ‹

¯

`K
K
ÿ

t“1

DTV

´

Pϕpπtq

θt ,Pϕpπtq

θ‹

¯

`K2εs

ff

.

By Cauchy inequality, it holds
ÿ

1ďtăkďK

DTV

´

Pϕpπtq

θk
,Pϕpπtq

θ‹

¯

ď

d

K2 ¨
ÿ

1ďtăkďK

D2
TV

´

Pϕpπtq

θk
,Pϕpπtq

θ‹

¯

À K
a

Kβ,

where we use the fact that DTV ď
?
2DH and Proposition E.2. Combining Theorem E.5 with the

above two inequalities, we can conclude that

U` “
ÿ

1ďtăkďK

eθk,W pπ
tq À

1

α
K
a

LdAH2ιKβ `
K2εs
α

.

Hence, Corollary E.9 implies that

V‹ ´ Vθ‹ppπq À

g

f

f

eLd2ιK

˜

AH2β

αK
`

εs
α
`

1

α

c

LdAH2ιKβ

K

¸

.

Therefore, to ensure that V‹ ´ Vθ‹ppπq ď ε, we only need to ensure

K Á
L3d5AH6ι3K

α2ε4
¨ β, εs À

αε2

Ld2W̄ 2ιK
.

In particular, the choice of parameters in Theorem 4.8 suffices. l

E.6. Proof of Theorem E.5

The proof of Theorem E.5 is (almost) a direct analog of the analysis in Chen et al. (2022a, Appendix
D & G). However, we may not directly invoke the guarantees there for general PSR to obtain The-
orem E.5 because PSR is formalized in terms of a set of core action sequences, so that the system
dynamics is uniquely determined by the dynamics under these action sequences. However, for our
setting, we are instead given an explorative policy πsep, which is not necessary a mixture of action
sequences.

Therefore, in the following, we present a minimal self-contained proof of Theorem E.5, which is
in essence a slight modification of the original proof in Chen et al. (2022a). We refer the reader to
Chen et al. (2022a) for more detailed analysis and proofs.

In the following, we first introduce the notations for POMDPs, which generalize LMDPs.
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POMDPs A Partially Observable Markov Decision Process (POMDP) is a sequential decision
process whose transition dynamics are governed by latent states. A POMDP is specified by a
tuple tZ,O,A,T,O, H, µ1u, where Z is the latent state space, Op¨|¨q : Z Ñ ∆pOq is the emission
dynamics, Tp¨|¨, ¨q : ZˆAÑ ∆pZq is the transition dynamics over the latent states, and µ1 P ∆pZq
specifies the distribution of initial state z1. At each step h, given the latent state zh (which the agent
cannot observe), the system emits observation oh „ Op¨|zhq, receives action ah P A from the agent,
and then transits to the next latent state zh`1 „ Tp¨|zh, ahq in a Markov fashion. The episode
terminates immediately after aH is taken.

In a POMDP with observation space O and action space A, a policy π “ tπh : pO ˆ Aqh´1 ˆ

O Ñ ∆pAquHh“1 is a collection of H functions. At step h P rHs, an agent running policy π
observes the observation oh and takes action ah „ πhp¨|τh´1, ohq P ∆pAq based on the history
pτh´1, ohq “ po1, a1, . . . , oh´1, ah´1, ohq. The environment then generates the next observation
oh`1 based on τh “ po1, a1, ¨ ¨ ¨ , oh, ahq (according to the dynamics of the underlying POMDP).

Suppose that rΘ is a set of POMDP models with common action space A and observation space O,
such that each θ P rΘ specifies the tuple pTθ,Oθ, µθq and hence the POMDP dynamics. 7

Suppose that a step parameter 1 ďW ă H is given, along with a policy πsep. Then, for each policy
π, we define

φpπq :“
1

W

W´1
ÿ

h“0

π ˝h UnifpAq ˝h`1 πsep (59)

analogously to Definition E.1. We also consider the emission matrix induced by πsep:

Kθ “
“

Pπsep

θ ppo1, a1, ¨ ¨ ¨ , oW̄ q “ τ |s1 “ sq
‰

pτ ,sq
P RT ˆZ , (60)

where W̄ “ H ´ W ` 1, T “ pO ˆ AqW̄´1 ˆ O. Suppose that for each θ P Θ, there exists
K`

θ P R
ZˆT such that K`

θ Kθ “ IZ , and we write Λexp :“ maxθPΘ

›

›K`
θ

›

›

1
.

Operator representation of POMDP dynamics Define

Bθpo, aq “ KθTθ,a diagpOθpo|¨qqK`
θ , qθ,0 “ Kθµθ. (61)

where we denote Tθ,a :“ Tθp¨|¨, aq P RZˆZ for each a P A, and diagpOθpo|¨qqRZˆZ is the
diagonal matrix with the pz, zq-entry being Opo|zq for each z P Z .

An important property of the definition (61) is that, for any trajectory τh`W̄ “ pτh, oh`1, ah`1, ¨ ¨ ¨ , oh`W̄ q,
it holds that

eJ
poh`1,ah`1,¨¨¨ ,oh`W̄ qBθpoh, ahq ¨ ¨ ¨Bθpo1, a1qqθ,0 “ Pθpoh`1, ah`1, ¨ ¨ ¨ , oh`W̄ |τh, πsepq ˆ Pθpo1:h|dopa1:hqq,

where we recall that Pθpoh`1, ah`1, ¨ ¨ ¨ , oh`W̄ |τh, πsepq is the probability of observing oh`1, ah`1, ¨ ¨ ¨ , oh`W̄

when executing policy πsep starting at step h ` 1 in POMDP θ, conditional on the history τh (see
also (29)). Therefore, for any policy π, it holds that

Pπ˝h`1πsep

θ pτh`W̄ q “ eJ
poh`1,ah`1,¨¨¨ ,oh`W̄ qBθpoh, ahq ¨ ¨ ¨Bθpo1, a1qqθ,0 ˆ πpτhq. (62)

7. Strictly speaking, θ also specifies Zθ , its own latent state space. For notational simplicity, we always omit the
subscript θ of the state space Z in the following analysis.

58



NEAR-OPTIMAL LEARNING AND PLANNING IN SEPARATED LATENT MDPS

In particular, we can now express TV distance between model as difference between operators:

DTV

´

Pπ˝h`1πsep

θ ,Pπ˝h`1πsep

θ̄

¯

“
1

2

ÿ

τh

πpτhq ˆ
›

›Bθpoh, ahq ¨ ¨ ¨Bθpo1, a1qqθ,0 ´Bθ̄poh, ahq ¨ ¨ ¨Bθ̄po1, a1qqθ̄,0

›

›

1
.

(63)

Also, we denote qθpτhq “
“

Pθppoh`1, ah`1, ¨ ¨ ¨ , oh`W̄ q “ ¨|τh, πsepq
‰

P ∆pT q, then we also have

Bθpoh, ahq ¨ ¨ ¨Bθpo1, a1qqθ,0 “ qθpτhq ˆ Pθpτhq, (64)

where we recall the notation Pθpτhq “ Pθpo1:h|dopa1:hqq.

Another important fact is that, for any 1-step policy π : O Ñ ∆pAq and q P RT ,
ÿ

o,a

πpa|oq ˆ }Bθpo, aqq}1 ď
›

›K`
θ q

›

›

1
, (65)

ÿ

o,a

πpa|oq ˆ
›

›K`
θ Bθpo, aqq

›

›

1
ď

›

›K`
θ q

›

›

1
. (66)

This is because }Kθ}1 ď 1, }Tθ,a}1 ď 1, and
ř

o,a πpa|oqOθpo|zq “ 1 for any z P Z . Hence, we
can apply (66) recursively to show that, for any h-step policy π,

ÿ

τh

πpτhq ˆ }Bθpoh, ahq ¨ ¨ ¨Bθpo1, a1qq}1 ď
›

›K`
θ q

›

›

1
. (67)

Proposition E.11 For each pair of models θ, θ̄ P Θ, we define Ēθ;θ̄ : RT Ñ R as follows:

Ēθ;θ̄pqq :“
1

2
max

π1:OÑ∆pAq

ÿ

o,a

π1pa|oq ˆ
›

›K`
θ pBθpo, aq ´Bθ̄po, aqqq

›

›

1
(68)

For each step h, define8

Eθ;θ̄pτhq :“ Ēθ;θ̄pqθ̄pτhqq, Eθ;θ̄
0 :“

1

2

›

›K`
θ pqθ,0 ´ qθ̄,0q

›

›

1
.

Then it holds that

DTV

´

Pπ˝W πsep

θ ,Pπ˝W πsep

θ̄

¯

ď Eθ;θ̄
0 `

W´1
ÿ

h“1

Eπ
θ̄E

θ;θ̄pτh´1q. (69)

Conversely, it holds

pEθ;θ̄
0 q2 `

W´1
ÿ

h“1

Eπ
θ̄E

θ;θ̄pτh´1q
2 ď 8AWΛ2

expD
2
H

´

Pφpπq

θ ,Pφpπq

θ̄

¯

. (70)

8. The error functional might seem strange at first glance, but it can be regarded as a counterpart of the decomposition
(31) for MDP. Indeed, when rΘ is a class of MDP models (i.e. Z “ O “ S and K “ O “ IS ), then

Eθ;θ̄
pτh´1q “ Esh|τh´1,θ̄

max
a

DTV pTθp¨|sh, aq,Tθ̄p¨|sh, aqq .
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Proof. Before presenting the proof, we first introduce some notations. We abbreviate Bθpo1, a1, ¨ ¨ ¨ , ol, alq “
Bθpol, alq ¨ ¨ ¨Bθpo1, a1q. For a trajectory τH “ po1, a1, ¨ ¨ ¨ , oH , aHq, we write τh1:h “ poh1 , ah1 , ¨ ¨ ¨ , oh, ahq
and τh1:h “ poh1 , ah1 , ¨ ¨ ¨ , ohq.

Using (63), we have

2DTV

´

Pπ˝W πsep

θ ,Pπ˝W πsep

θ̄

¯

(63)
“

ÿ

τW´1

πpτW´1q ˆ
›

›BθpoW´1, aW´1q ¨ ¨ ¨Bθpo1, a1qqθ,0 ´Bθ̄poW´1, aW´1q ¨ ¨ ¨Bθ̄po1, a1qqθ̄,0

›

›

1

ď
ÿ

τW´1

πpτW´1q
›

›Bθpτ1:W´1q
`

qθ,0 ´ qθ̄,0

˘›

›

1

`
ÿ

τW´1

πpτW´1q ˆ

W´1
ÿ

h“1

›

›Bθpτh`1:W´1qpBθpoh, ahq ´Bθ̄poh, ahqqBθ̄pτ1:h´1qqθ̄,0

›

›

1

(67)
ď

1

2

›

›K`
θ

`

qθ,0 ´ qθ̄,0

˘
›

›

1
`

1

2

W´1
ÿ

h“1

ÿ

τh

πpτhq ˆ
›

›K`
θ pBθpoh, ahq ´Bθ̄poh, ahqqBθ̄pτ1:h´1qqθ̄,0

›

›

1

(64)
“

1

2

›

›K`
θ

`

qθ,0 ´ qθ̄,0

˘
›

›

1
`

1

2

W´1
ÿ

h“1

ÿ

τh

πpτhq ˆ
›

›K`
θ pBθpoh, ahq ´Bθ̄poh, ahqqqθ̄pτh´1q

›

›

1
ˆ Pθpτh´1q

“ Eθ;θ̄
0 `

1

2

W´1
ÿ

h“1

ÿ

τh´1

ÿ

oh,ah

Pπ
θ pτh´1q ˆ πpah|τh´1, ohq ˆ

›

›K`
θ pBθpoh, ahq ´Bθ̄poh, ahqqqθ̄pτh´1q

›

›

1

ď Eθ;θ̄
0 `

W´1
ÿ

h“1

ÿ

τh´1

Pπ
θ pτh´1q ˆ Eθ;θ̄pqθ̄pτh´1qq,

where the last two lines follow from the definition (68). This completes the proof of (69).

Next, we proceed to prove (70). By definition,

2Eθ;θ̄pτhq “ max
π1

ÿ

o,a

π1pa|oq ˆ
›

›K`
θ pBθpo, aq ´Bθ̄po, aqqqθ̄pτh´1q

›

›

1

ď max
π1

ÿ

o,a

π1pa|oq ˆ
›

›K`
θ pBθpo, aqqθpτh´1q ´Bθ̄po, aqqθ̄pτh´1qq

›

›

1

`max
π1

ÿ

o,a

π1pa|oq ˆ
›

›K`
θ Bθpo, aqpqθpτh´1q ´ qθ̄pτh´1qq

›

›

1
.

For the first term, notice that for any o P O, a P A,

Bθpo, aqqθpτh´1q “
“

Pθpoh “ o, τh`1:h`W̄ “ ¨|τh´1, ah “ a, ah`1:h`W̄ „ πsepq
‰

P RT .

Therefore, for any step 1 ď h ďW ´ 1 and any 1-step policy π1 : O Ñ ∆pAq, we have
ÿ

o,a

π1pa|oq ˆ
›

›K`
θ pBθpo, aqqθpτh´1q ´Bθ̄po, aqqθ̄pτh´1qq

›

›

1

ď Λexp

ÿ

o,a

π1pa|oq ˆ }Bθpo, aqqθpτh´1q ´Bθ̄po, aqqθ̄pτh´1q}1
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“ 2ΛexpDTV

`

Pθpτh:h`W̄ “ ¨|τh´1, π
1 ˝ πsepq,Pθ̄pτh:h`W̄ “ ¨|τh´1, π

1 ˝ πsepq
˘

,

where the inequality uses the fact that }K`
θ }1 ď Λexp for all θ P Θ. Furthermore,

1

2
D2

TV

`

Pθpτh:h`W̄ “ ¨|τh´1, π
1 ˝ πsepq,Pθ̄pτh:h`W̄ “ ¨|τh´1, π

1 ˝ πsepq
˘

ď D2
H

`

Pθpτh:h`W̄ “ ¨|τh´1, π
1 ˝ πsepq,Pθ̄pτh:h`W̄ “ ¨|τh´1, π

1 ˝ πsepq
˘

ď
ÿ

aPA
D2

H

`

Pθpτh:h`W̄ “ ¨|τh´1, a ˝ πsepq,Pθ̄pτh:h`W̄ “ ¨|τh´1, a ˝ πsepq
˘

“ AD2
H

`

Pθpτh:h`W̄ “ ¨|τh´1,UnifpAq ˝ πsepq,Pθ̄pτh:h`W̄ “ ¨|τh´1,UnifpAq ˝ πsepq
˘

,

where the second inequality uses the fact that squared Hellinger distance is an f -divergence. For
the second term, by the definition of Bθ, we have

ÿ

o,a

π1pa|oq ˆ
›

›K`
θ Bθpo, aqpqθpτh´1q ´ qθ̄pτh´1qq

›

›

1

(66)
ď

›

›K`
θ pqθpτh´1q ´ qθ̄pτh´1qq

›

›

1

ď Λexp }qθpτh´1q ´ qθ̄pτh´1q}1

“ Λexp ¨ 2DTV

`

Pθpτh:h`W̄´1 “ ¨|τh´1, πsepq,Pθ̄pτh:h`W̄´1 “ ¨|τh´1, πsepq
˘

Combining the inequalities above and applying Lemma A.5, we obtain

Eπ
θ̄E

θ;θ̄pτh´1q
2 ď 4AΛ2

expD
2
H

´

Pπ˝hUnifpAq˝h`1πsep

θ ,Pπ˝hUnifpAq˝h`1πsep

θ̄

¯

` 4Λ2
expD

2
H

´

Pπ˝hπsep

θ ,Pπ˝hπsep

θ̄

¯

.
(71)

Notice that for step h ě 2, we have

D2
H

´

Pπ˝hπsep

θ ,Pπ˝hπsep

θ̄

¯

ď AD2
H

´

Pπ˝h´1UnifpAq˝hπsep

θ ,Pπ˝h´1UnifpAq˝hπsep

θ̄

¯

,

and we also have

Eθ;θ̄
0 “

1

2

›

›K`
θ

`

qθ,0 ´ qθ̄,0

˘›

›

1
ď ΛexpDTV

´

Pπsep

θ pτ1:W̄ “ ¨q,Pπsep

θ̄
pτ1:W̄ “ ¨q

¯

ď
?
2ΛexpDH

´

Pπsep

θ ,Pπsep

θ̄

¯

.
(72)

Combining the inequalities above completes the proof of (70). l

Proposition E.12 Suppose that D “ rankpTθ‹q, β ě 1, and pθ1, π1q, ¨ ¨ ¨ , pθK , πKq is a sequence
of (POMDP, policy) pairs such that for all k P rKs,

ÿ

tăk

D2
H

´

Pφpπtq

θk
,Pφpπtq

θ‹

¯

ďM.

Then it holds that

K
ÿ

k“1

DTV

´

Pπk˝W πsep

θk
,Pπk˝W πsep

θ‹

¯

À

b

Λ2
expADW 2ι̃ ¨KM,

where ι̃ “ log
´

1`
2Λ2

expKD

AM

¯

.
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Proof. Using Proposition E.11, we have

K
ÿ

k“1

DTV

´

Pπk˝W πsep

θk
,Pπk˝W πsep

θ‹

¯

ď

K
ÿ

k“1

1^ Eθk;θ‹

0 `

W´1
ÿ

h“1

K
ÿ

k“1

1^ Eπk

θ‹ Eθk;θ‹

pτh´1q, (73)

and for any pair of pt, kq,

pEθk;θ‹

0 q2 `

W´1
ÿ

h“1

Eπt

θ‹Eθk;θ‹

pτh´1q
2 ď 8AWΛ2

expD
2
H

´

Pφpπtq

θk
,Pφpπtq

θ‹

¯

.

In particular, for any k P rKs,

ÿ

tăk

pEθk;θ‹

0 q2 `

W´1
ÿ

h“1

ÿ

tăk

Eπt

θ‹Eθk;θ‹

pτh´1q
2 ď 8AWΛ2

expM. (74)

It remains to apply Proposition A.8 to bridge between (73) and (74).

For each k P rKs, define fk “ Ēθk;θ‹

: RT Ñ R. By definition, fk takes the form

fkpxq “ max
π

ÿ

o,a,s

ˇ

ˇ

@

x, yk,po,aq,π

Dˇ

ˇ

where yJ
k,po,aq,π “ πpa|oq ˆ eJ

s K`

θk
pBθkpo, aq ´Bθ‹po, aqq. It is also easy to verify that fkpxq ď

2Λ2
exp }x}1 using

›

›K`
θ

›

›

1
ď Λexp and

›

›K`
θ‹

›

›

1
ď Λexp. Furthermore, for each step 1 ď h ď W ´ 1,

the set

Xh :“
!

qθ‹pτh´1q : τh´1 P pO ˆAqh´1
)

spans a subspace of dimension at most D.

Therefore, applying Proposition A.8 yields that for each 1 ď h ďW ´ 1

K
ÿ

k“1

1^ Eπk

θ‹ Eθk;θ‹

pτh´1q À

g

f

f

eDι̃

«

K ¨AM `

K
ÿ

k“1

ÿ

tăk

Eπt

θ‹Eθk;θ‹
pτh´1q

2

ff

, (75)

where ι̃ “ logp1` 2Λ2
expDK{AMq. Similarly, treating Eθk;θ‹

0 as a function over the singleton set,
we also have

K
ÿ

k“1

1^ Eθk;θ‹

0 À

g

f

f

eι̃

«

KAM `

K
ÿ

k“1

ÿ

tăk

pEθk;θ‹

0 q2

ff

Combining the two inequalities above with (73) and (74), we obtain

K
ÿ

k“1

DTV

´

Pπk˝W πsep

θk
,Pπk˝W πsep

θ‹

¯

ď

K
ÿ

k“1

1^ Eθk;θ‹

0 `

W´1
ÿ

h“1

K
ÿ

k“1

1^ Eπk

θ‹ Eθk;θ‹

pτh´1q
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À

g

f

f

eDWι̃

«

KAM `

K
ÿ

k“1

ÿ

tăk

˜

pEθk;θ‹

0 q2 `

W´1
ÿ

h“1

Eπt

θ‹Eθk;θ‹
pτh´1q

2

¸ff

À

b

DWι ¨K ¨ Λ2
expAWM,

where the first inequality is (73), the second inequality follows from Cauchy-Schwarz, and the last
inequality follows from (74) and the given condition. l

Proof of Theorem E.5 Recall that Θ is a class of LMDP with common state space S. For each
LMDP θ P Θ, we construct a POMDP pomdppθq with latent state space Z “ S ˆ supppρθq and
observation space O “ S as follows:

• The initial state is s̃1 “ ps1,mq, where m „ ρθ, s1 „ µθ,m.

• The state s̃ “ ps,mq always emits o “ s as the observation. After an action a is taken, the
next state is generated as s̃1 “ ps1,mq where s1 „ Tθ,mp¨|s, aq.

The transition matrix of pomdppθq specified above can also be written as

Tpomdppθq “ diag pTθ,mqmPsupppρθq
,

up to reorganization of coordinates. Therefore, we have rankpTpomdppθ‹qq ď Ld.

Because O “ S , any policy for the LMDP θ is a policy for the POMDP pomdppθq, and vice versa.
Furthermore, it is easy to verify that for any policy π, the trajectory distribution Pπ

pomdppθq
pτH “ ¨q

agrees with the distribution Pπ
θ pτH “ ¨q. Hence, for each θ P Θ,

Kpomdppθq “ diag
´

Mθ
˚,W̄ pπsep, sq

¯

sPS
,

where we denote

Mθ
˚,W̄ pπsep, sq :“ rM

θ
m,W̄ pπsep, sqsmPsupppρθq P RpAˆSqW̄´1ˆsupppρθq.

By Lemma A.7, as long as ϖpW̄ q ě logp2Lq, for each ps,mq P Z , there exists a left inverse of
Mθ

˚,W̄
pπsep, sq with ℓ1 norm bounded by 2. In particular, we apply Lemma A.7 to conclude the

existence of a left inverse with the desired norm bound for each block of the block diagonal matrix
Kpomdppθq. Therefore, there exists a left inverse of Kpomdppθq with ℓ1 norm bounded by 2, and hence
Λexp ď 2.

Therefore, we can now apply Proposition E.12 to complete the proof of Theorem E.5. l

E.7. A sufficient condition for Assumption 4.7

The following proposition indicates that Assumption 4.7 is not that strong as it may seem: it holds
for a broad class of LMDPs under relatively mild assumptions on the support of each MDP instance.

Proposition E.13 Suppose that there is a policy π0 and parameter W0 ě ϖ´1p3 logpL{α0qq, such
that for each θ P Θ, the LMDP Mθ is ϖ-separated under π0, and there exists µθ : S Ñ ∆pSq so
that

Tπ0
θ,mpsW0 “ s1|s1 “ sq ě α0µθps

1|sq, @m P supppρθq, s, s
1 P S.

Let πsep “ π0 ˝W0 π0. Then Assumption 4.7 holds with Wexp “ 2W0 and α “ α0
32 .
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For the sake of notational simplicity, we first prove a more abstract version of Proposition E.13.

Proposition E.14 For measurable spaces X ,Y and Z :“ Y ˆ X , consider the class of transition
kernels from X to Z:

Q “ tQ : X Ñ ∆pZqu.

For any Q P Q, we define Qb2 : X Ñ ∆pZ ˆ Zq as follows: for any x0 P X , Qb2p¨|x0q is the
probability distribution of pz, z1q, where z “ pY, xq „ Qp¨|xq, z1 “ pY 1, x1q „ Qp¨|xq.

Suppose that Qm P Q are transition kernels such that for all m ‰ l,

DBpQmp¨|xq,Qlp¨|xqq ě 3 logpL{αq, @x P X .

Further assume that there exists µ : X Ñ ∆pX q such that

Qmpx|x0q ě αµpx|x0q, @m P rLs. (76)

Then for any Q P Q, x0 P X , and p P ∆prLsq, we have

DTV

`

Em„pQb2
m p¨|x0q,Qb2p¨|x0q

˘

ě
α

32
p1´max

m
pmq.

Proof. In the following, we fix any given Q P Q, x0 P X , and p P ∆prLsq. Let rP be the probability
distribution of pm, z, z1q, where m „ p, z “ pY, xq „ Qmp¨|x0q, and z1 “ pY 1, x1q „ Qmp¨|x0q (i.e.
pz, z1q „ Qb2

m p¨|x0q). Also, let P “ Em„pQb2
m p¨|x0q be the marginal distribution of pz, z1q „ rP.

We also omit x0 from the conditional probabilities when it is clear from the context.

By Lemma A.4, it holds that

EpY,xq„P
“

DTV

`

Ppz1 “ ¨|Y, xq,Qb2pz1 “ ¨|Y, xq
˘‰

ď 2DTV

`

P,Qb2
˘

.

We also have

Ex1„P
“

DTV

`

Ppz1 “ ¨|xq,Qb2pz1 “ ¨|xq
˘‰

ď 2DTV

`

P,Qb2
˘

.

Notice that the conditional distribution Qb2pz1 “ ¨|Y, xq “ Qpz1 “ ¨|xq only depends on x, and
hence by triangle inequality,

EpY,xq„P
“

DTV

`

Ppz1 “ ¨|Y, xq,Ppz1 “ ¨|xq
˘‰

ď 4DTV

`

P,Qb2
˘

Further notice that

Ppz1 “ ¨|Y, xq “ Em|Y,x

“

Qmpz
1 “ ¨|xq

‰

, Ppz1 “ ¨|xq “ Em|x

“

Qmpz
1 “ ¨|xq

‰

.

Hence, by Lemma A.6, we have

DTV

`

Ppz1 “ ¨|Y, xq,Ppz1 “ ¨|xq
˘

ě
1

2
DTV

´

rPpm “ ¨|Y, xq, rPpm “ ¨|xq
¯

.
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Next, using the definition of TV distance (which is a f -divergence, see e.g. Polyanskiy and Wu
(2014)), we can show that

E
pY,xq„rP

”

DTV

´

rPpm “ ¨|Y, xq, rPpm “ ¨|xq
¯ı

“ E
pm,xq„rP

”

DTV

´

rPpY “ ¨|m,xq, rPpY “ ¨|xq
¯ı

.

We know

PpY “ ¨|m,xq “ QmpY “ ¨|x0, xq, PpY “ ¨|xq “ Em|xrQmpzy “ ¨|x0, xqs,

and hence combining the inequalities above gives

4DTV

`

P,Qb2
˘

ě Epm,xq„P
“

DTV

`

QmpY “ ¨|x0, xq,Em1|xrQm1pY “ ¨|x0, xqs
˘‰

. (77)

Consider the set

X` “ tx P X : DBpQmpY “ ¨|x0, xq,QlpY “ ¨|x0, xqq ě logL, @m ‰ lu.

For any x P X`, by Lemma A.6, we have

DTV

`

QmpY “ ¨|x0, xq,Em1|xrQm1pY “ ¨|x0, xqs
˘

ě
1

2

´

1´ rPpm|xq
¯

.

Therefore, combining the above inequality with (77) gives

4DTV

`

P,Qb2
˘

ě E
pm,xq„rP

“

DTV

`

QmpY “ ¨|x0, xq,Em1|xrQm1pY “ ¨|x0, xqs
˘‰

ě
1

2
E

pm,xq„rP

”

1 tx P X`u

´

1´ rPpm|xq
¯ı

ě
1

2
Ex

”

1 tx P X`umin
m

´

1´ rPpm|xq
¯ı

By definition,

1´ rPpm|xq “
ÿ

l‰m

rPpl|xq “
ř

l‰m plQlpx|x0q

Ppxq
.

Therefore,

Ex

”

1 tx P X`umin
m

´

1´ rPpm|xq
¯ı

“
ÿ

xPX`

min
m

ÿ

l‰m

plQlpx|x0q

(76)
ě

ÿ

xPX`

min
m

ÿ

l‰m

pl ¨ αµpxq

“ αµpX`qp1´max
m

pmq.

It remains to prove that µpX`q ě
1
2 . For each pair of m ‰ l, consider the set

Xm,l :“ tx P X : DBpQmpY “ ¨|x0, xq,QlpY “ ¨|x0, xqq ă logLu.

By definition,

exp p´DBpQmpz “ ¨|x0q,Qlpz “ ¨|x0qqq
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“
ÿ

xPX

a

Qmpx|x0qQlpx|x0q exp p´DBpQmpY “ ¨|x0, xq,QlpY “ ¨|x0, xqqq

ą
ÿ

xPXm,l

a

Qmpx|x0qQlpx|x0q ¨
1

L

ě αµpXm,lq ¨
1

L
.

Therefore, by the fact that DBpQmpz “ ¨|x0q,Qlpz “ ¨|x0qq ě 3 logpL{αq, we know that µpXm,lq ď
1
L for all m ‰ l, and hence

1´ µpX`q ď
ÿ

măl

µpXm,lq ď
1

2
.

The proof is completed by combining the inequalities above. l

Proof of Proposition E.13. We only need to demonstrate how to apply Proposition E.14. We
abbreviate W “ W0 in the following proof. Take X “ S, Y “ A ˆ pS ˆ AqW´2, with variable
x0 “ s1, Y “ pa1, s2, ¨ ¨ ¨ , aW´1q, x “ sW . Let

Qm “ Tπsep

θ,m ppa1, s2, ¨ ¨ ¨ , sW q “ ¨|s1 “ ¨q P Q, m P rLs.

Then, we can identify Qb2
m as

Qb2
m “ Tπsep

θ,m ppa1, s2, ¨ ¨ ¨ , s2W´1q “ ¨|s1 “ ¨q.

We also have Qmpx|x0q “ Tπsep

θ,m psW “ s1|s0 “ sq. Therefore, we can indeed apply Proposi-
tion E.14 and the proof is hence completed. l

Appendix F. Proofs for Section 5

F.1. Proof of Theorem 5.2

We first prove the following lemma.

Lemma F.1 Suppose that the policy pπ is returned by Algorithm 2. Then for any policy π, it holds
that

V ppπq ě V pπq ´ Pπpm‹ ‰ mpτW qq.

Proof. For any policy π and trajectory τh, we consider the value π given the trajectory τh:

V πpτhq :“ Eπ

«

H
ÿ

h1“h

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

τh

ff

.

In particular, for trajectory τW “ ps1, a1, ¨ ¨ ¨ , sW q, we have

V πpτW q “ Eπ

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

τW

ff
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“
ÿ

mPrLs

rPpm|τW q ¨ Eπp¨|τW q
m

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sW

ff

,

where the expectation Eπp¨|τW q
m is taken over the probability distribution of psW`1:H , aW :Hq induced

by executing the policy πp¨|τW q in MDP Mm with starting state sW . Therefore, because pVm,W is
exactly the optimal value function in MDP Mm (at step W ), we know that

Eπp¨|τW q
m

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sW

ff

ď pVm,W psW q.

Hence, we have

V πpτW q ď
ÿ

mPrLs

rPpm|τW qpVm,W psW q

ď rPpmpτW q|τW q ¨ pVmpτW q,W psW q `
ÿ

m‰mpτW q

rPpm|τW q

“ pV pτW q ` rPpm‹ ‰ mpτW q|τW q,

where the last line follows from the definition of pV in Algorithm 2. On the other hand, we also have

V pπpτW q “
ÿ

mPrLs

rPpm|τW q ¨ Epπp¨|τW q
m

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sW

ff

ě rPpmpτW q|τW q ¨ E
pπp¨|τW q

mpτW q

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sW

ff

“ rPpmpτW q|τW q ¨ EmpτW q

«

H
ÿ

h“W

Rhpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sW , for each h ěW,ah “ π
pmpτW qq

h pshq

ff

“ rPpmpτW q|τW q ¨ pVmpτW q,W psW q “ pV pτW q,

where the last line is because pVm,W psW q is exactly the expected cumulative reward if the agent
starts at step W and state sW , and executes πm afterwards. Combining the inequalities above, we
obtain

V πpτW q ´ rPpm‹ ‰ mpτW q|τW q ď V pπpτW q.

By recursively using the definition of pπ, we can show that for each step h “W,W ´ 1, ¨ ¨ ¨ , 1,

V πpτhq ´ rPpm‹ ‰ mpτW q|τhq ď V pπpτhq.

The desired result follows as

V pπq ´ rPπpm‹ ‰ mpτW qq “ E
”

V πpτ1q ´ rPpm‹ ‰ mpτW q|τ1q
ı

ď E
”

V pπpτ1q
ı

“ V ppπq.

l
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Proof of Theorem 5.2 Let π‹ be an optimal policy such that M is ϖ-separated under π‹. By
Proposition 4.1, we know that Pπ‹pm‹ ‰ mpτW qq ď L expp´ϖpW qq ď ε. Therefore, Lemma F.1
implies V ppπq ě V pπ‹q´ε “ V ‹´ε. The time complexity follows immediately from the definition
of Algorithm 2. l

F.2. Embedding 3SAT problem to LMDP

Suppose that Φ is a 3SAT formula with n variables x1, ¨ ¨ ¨ , xn and N clauses C1, ¨ ¨ ¨ , CN , and
A “ t0, 1uw. Consider the corresponding LMDP MΦ constructed as follows.

• The horizon length is H “ rn{ws` 1.

• The state space is S “
!

s1a, s
2
a, ¨ ¨ ¨ , s

H´1
a , s‘

)

, and the action space is A.

• L “ N , and the mixing weight is ρ “ UnifprN sq.

• For each m P rN s, the MDP Mm is given as follows.

– The initial state is s1a.

– At state sha, taking action a P Am,h leads to s‘, where

Am,h :“
␣

a P t0, 1uw : Dj P rws such that arjs “ 1 and the clause Cm contains xwph´1q`j

(

ď

␣

a P t0, 1uw : Dj P rws such that arjs “ 0 and the clause Cm contains ␣xwph´1q`j

(

.

For action a R Am,h, taking action a leads to s
min th`1,H´1u

a .

• The reward function is given by Rhps, aq “ 1 ts “ s‘, h “ Hu.

The basic property of MΦ is that, the optimal value of the LMDP MΦ encodes the satisfiability of
the formula Φ. More concretely, if taking an action sequence a1:H´1 leads to s‘ for all m P rN s,
then the first n bits of the sequence pa1, ¨ ¨ ¨ , aH´1q gives a satisfying assignment of Φ. Conversely,
any satisfying assignment of Φ gives a corresponding action sequence such that taking it leads to s‘

always. On the other hand, if Φ is not satisfiable, then for any action sequence a1:H´1, there must
be a latent index m P rN s such that taking a1:H´1 leads to sH´1

a in MDP Mm. To summarize, we
have the following fact.

Claim. The optimal value V ‹ of MΦ equals 1 if and only if Φ is satisfiable. Furthermore, when Φ
is not satisfiable, V ‹ ď 1´ 1

m .

Based on the LMDP MΦ described above, we construct a “perturbed” version ĂMΦ that is δ-strongly
separated.

• Pick d “ r11 logp2Nqs and invoke Lemma F.5 to generates a sequence x1,x2, ¨ ¨ ¨ ,xN P

t´1,`1ud, such that for all i ‰ j, i, j P rN s,

}xi ´ xj}1 ě
d

2
, }xi ` xj}1 ě

d

2
.

We also set δ̄ “ 4δ, and for each m P rN s, we define

µ`
m “

„

1` δ̄xmr1s

2d
;
1´ δ̄xmr1s

2d
; ¨ ¨ ¨ ;

1` δ̄xmrds

2d
;
1´ δ̄xmrds

2d

ȷ

P ∆pr2dsq,
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µ´
m “

„

1´ δ̄xmr1s

2d
;
1` δ̄xmr1s

2d
; ¨ ¨ ¨ ;

1´ δ̄xmrds

2d
;
1` δ̄xmrds

2d

ȷ

P ∆pr2dsq.

• The state space is S̃ “ S ˆ r2ds, the action space is A, and the horizon length is H .

• L1 “ 2N , and the mixing weight is ρ1 “ Unifpr2N sq

• For each m P rN s, we set ĂM2m´1 “Mm b µ`
m and ĂM2m “Mm b µ´

m (recall our definition
in Definition D.6).

• The reward function is given by Rhpps, oq, aq “ 1 ts “ s‘, h “ Hu.

Proposition F.2 In the LMDP ĂMΦ described above, for any policy class Π that contains AH , we
have

max
πPΠ

V pπq “

#

1, Φ is satisifiable,

ď 1´ p1´δ̄2qpH´1q{2

N , otherwise.

Proof. By our construction, regardless of the actions taken, we always have s̃Hr1s “ s‘ or s̃Hr1s “
sH´1

a . Therefore, for any policy π,

V pπq “ Pπps̃Hr1s “ s‘q “ 1´ Pπps̃Hr1s “ sH´1
a q.

By construction, any reachable trajectory that ends with s̃Hr1s “ sH´1
a must take the form

ps1a, o1q, a1, ¨ ¨ ¨ , ps
H´1
a , oH´1q, aH´1, ps

H´1
a , oHq.

Further, for each m P rN s, in the MDP ĂM2m´1 and ĂM2m, s̃Hr1s “ sH´1
a if and only if a1:H´1 R

Asat,m, where we define

Asat,m “
␣

a1:H´1 P AH´1 : for some h P rH ´ 1s, ah P Am,h

(

Ă AH´1.

Therefore, for any reachable trajectory τH´1 that leads to s̃Hr1s “ sH´1
a , we have

τH´1 “ pps
1
a, o1q, a1, ¨ ¨ ¨ , ps

H´1
a , oH´1q, aH´1q,

PπpτH´1q “
1

2N

2N
ÿ

l“1

Pπ
ĂMl
pτH´1q

“
1

N

N
ÿ

m“1

1 ta1:H´1 P Asat,mu ¨ πpτH´1q ¨

˜

H´1
ź

h“1

µ`
mpohq `

H´1
ź

h“1

µ´
mpohq

¸

where by convention we write

πpτH´1q “

H´1
ź

h“1

πpah|ps
1
a, o1q, a1, ¨ ¨ ¨ , ps

h
a, ohqq,

and we abbreviate this quantity as pπpa1:H |o1:Hq. Then, we have

1´ V pπq “ Pπps̃Hr1s “ sH´1
a q
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“
ÿ

reachable τH´1 that
leads to s̃H r1s“sH´1

a

PπpτH´1q

“
ÿ

po1:H´1,a1:H´1q

1

2m

m
ÿ

i“1

1 ta1:H´1 P Asat,mu ¨ pπpa1:H |o1:Hq ¨

˜

H´1
ź

h“1

µ`
mpohq `

H´1
ź

h“1

µ´
mpohq

¸

.

By Lemma F.3, it holds that

H´1
ź

h“1

µ`
mpohq `

H´1
ź

h“1

µ´
mpohq ě

2p1´ δ̄2qtpH´1q{2u

p2dqH´1
.

Hence, we have

1´ V pπq ě
1

m

m
ÿ

i“1

ÿ

po1:H´1,a1:H´1q

1 ta1:H´1 P Asat,mu ¨ pπpa1:H |o1:Hq ¨
2p1´ δ̄2qtpH´1q{2u

p2dqH´1

“ p1´ δ̄2qtpH´1q{2u
ÿ

a1:H´1

#tm P rN s : a1:H´1 R Asat,mu

N
ˆ

1

p2dqH

ÿ

o1:H´1

pπpa1:H |o1:Hq

ě p1´ δ̄2qtpH´1q{2u ¨ min
a1:H´1

#tm P rN s : a1:H´1 R Asat,mu

N
¨

ÿ

a1:H´1

1

p2dqH

ÿ

o1:H´1

pπpa1:H |o1:Hq

“ p1´ δ̄2qtpH´1q{2u ¨ min
a1:H´1

#tm P rN s : a1:H´1 R Asat,mu

N
,

where the last line is because
ÿ

a1:H´1

ÿ

o1:H´1

pπpa1:H |o1:Hq “ p2dq
H .

Therefore, if Φ is not satisfiable, then for any action sequence a1:H , there must exist m P rN s such
that a1:H R Asat,m. This is because if a1:H P Asat,m for all m P rN s, then the first n bits of the
sequence pa1, ¨ ¨ ¨ , aH´1q gives a satisfying assignment of Φ. Thus, in this case, for any policy π,

1´ V pπq ě
p1´ δ̄2qtpH´1q{2u

m
.

On the other hand, if Φ is satisfiable, then there is an action sequence a1:H´1 P Asat,m for all
m P rN s, and hence V pa1:H´1q “ 1. Combining these complete the proof. l

Lemma F.3 For any reals λ1, ¨ ¨ ¨ , λk P r´1, 1s and δ P r0, 1q, it holds that

k
ź

i“1

p1` δλiq `

k
ź

i“1

p1´ δλiq ě 2p1´ δ2qtk{2u.

Proof. Notice that the LHS is a linear function of λi for each i (fixing other λj’s). Therefore, we
only need to consider the case λi P t´1, 1u. Suppose that λ1, ¨ ¨ ¨ , λk has r many 1’s and s many
´1’s (r ` s “ k), and w.l.o.g r ě s. Then for t “ r ´ s ě 0,

k
ź

i“1

p1` δλiq `

k
ź

i“1

p1´ δλiq “ p1` δqrp1´ δqs ` p1` δqsp1´ δqr
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“ p1´ δ2qs
“

p1` δqt ` p1´ δqt
‰

ě 2p1´ δ2qs ě 2p1´ δ2qtk{2u.

l

F.3. Proof of Proposition 5.1

Suppose that a 3SAT formula Φ with n variables and N clauses are given. Then, we can pick
w “ 1, δ “ 1?

n
, ε “ c

N for some small constant c, and the LMDP ĂMΦ constructed above
has H “ n ` 1, L “ 2N , S “ Hd, A “ 2, and it is δ-strongly separated. Further, we have
max

␣

L, S,A,H, ε´1, δ´1
(

ď Opn ` Nq, and ĂMΦ can be computed in polypn,Nq time. There-
fore, if we can solve any given δ-strong separated LMDP in polynomial time, we can determine the
satisfiability of any given 3SAT formula Φ in polynomial time by solving ĂMΦ, which implies that
NP=P. l

F.4. Proof of Theorem 5.4

Suppose that there is an algorithm A that contradicts the statement of Theorem 5.4.

Fix a given 3-SAT formula Φ with n variables and N clauses is given (we assume N ď n3 without
loss of generality), we proceed to determine the satisfiability of Φ in 2opnq-time using A.

Pick t “ tn P N to be the minimal integer such that

200n ď
logp1{εtq ¨ tlogAtu

δ2t
. (78)

We then consider ε “ εt, w “ tlogAtu, A “ 2w, δ “ 1
δt

, and A “ t0, 1uw.

Now, consider the LMDP ĂMΦ constructed in Appendix F.2 based on pΦ,A, δq. We know that ĂMΦ

is δ-strongly separated, and we also have

L “ 2N ď 2n3, S “ nd ď Opn log nq, H “ r
n

w
s` 1 ď n` 1.

In the following, we show that (9) and (78) (with suitably chosen C) ensures that

ε ă ε1 :“
p1´ δ̄2qpH´1q{2

3N
.

By definition,

logp1{ε1q “
pH ´ 1q log 1

1´δ̄2

2
` logp3Nq ď

2δ̄2

1´ δ̄2
r
n

w
s` logp3Nq ď

128δ2

3

n

w
` 3 logpnq ` 4.

Therefore, by (78), we have logp1{ε1q ă logp1{εq if we have 3
4 logp1{εq ą 3 log n ` 4, or equiva-

lently e6n4 ď ε´1. This is indeed insured by (9).

Next, consider running A on pĂMΦ, εq, and let pV be the value returned by A. By Proposition F.2, we
have the follow facts: (a) If pV ě 1´ε, then Φ is satisfiable. (b) If pV ă 1´ε, then Φ is not satisfiable.
Therefore, we can use A to determine the satisfiability of Φ in time Aopδ´2 logp1{εqq`polypnq. Notice
that our choice of t ensures that logp1{εtqwδ´2

t ď 3200n, and hence we actually determine the
satisfiability of Φ in 2opnq-time, which contradicts Conjecture 5.3. l
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F.5. Proof of Theorem 5.5

Suppose that there is an algorithm A that contradicts the statement of Theorem 5.5.

Fix a given 3-SAT formula Φ with n variables and N clauses is given (we assume N ď n3 without
loss of generality), we proceed to determine the satisfiability of Φ in 2opnq-time using A.

Pick t “ tn P N to be the minimal integer such that

Cnrlog2N s ď
logLt ¨ tlogAtu

δ2t
, (79)

where C is a large absolute constant. We then consider L “ 2logLt , w “ tlogAtu, A “ 2w, δ “ 1
δt

,
and A “ t0, 1uw.

Let MΦ be the LMDP with action set A, horizon H “ rn{ws` 1 constructed in Appendix F.2.

Further, we choose r “ rlog2N s, d “ t
logLt

r u. By our choice (79), we can ensure the presumption
d ě C0Hδ2 of Lemma F.6 holds, which implies that we can construct a pN,H, δ, r2´c0d, 2drq-
family over r2dsr in time polyp2drq ď polypLq. Denote Q be such a family, and we consider
MΦ b Q, which is a δ-strongly separated LMDPs family with S “ p2dqrH and hence logS ď

Oplog logLtq by (10) (because n ď poly logLt using (79)).

Consider running A on MΦ bQ with ε “ 1
3N , and let pV be the value returned by A. Let VΦ be the

optimal value of MΦ, VM,Φ be the optimal value of MΦ b Φ. Then by Proposition D.11, it holds
that

VΦ ď VM,Φ ď r2´c0d ` VΦ.

Hence, as long as r2´c0d ă 1
3N (which is ensured by condition (10)), we have the follow facts: (a)

If VΦ “ 1, then pV ě 1 ´ 1
3N . (b) If VΦ ď 1 ´ 1

N , then pV ă 1 ´ 1
3N . Notice that a special case of

Proposition F.2 is that, when Φ is satisfiable, then VΦ “ 1, and otherwise VΦ ď 1´ 1
N . Therefore,

we can use A to determine the satisfiability of Φ in time A
o
´

δ´2 logL
log logL

¯

` polypLq. Notice that our
choice of t ensures that plogLtqptlogAtuqδ

´2
t ď 16Cnrlog2N s, and hence logL “ opnq, and

logA logL

δ2 log logL
“ Opnq.

Therefore, given A, we can construct a 2opnq-time algorithm for 3SAT, a contradiction. l

F.6. Technical lemmas

Lemma F.4 There is a procedure such that, for any input integer N ě 2 and d ě r11 logN s,
compute a sequence x1, ¨ ¨ ¨ ,xN P t´1,`1u

d such that }xi ´ xj}1 ě
d
2@i ‰ j, with running time

polyp2dq.

Proof. Consider the following procedure: We maintain two set U ,V , and we initialize U “ tu,V “
t´1, 1ud. At each step, we pick a x P V , add x to U , and remove all y P V such that }y ´ x}1 ă

d
2 .

The procedure ends when V is empty or |U | “ N .
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We show that this procedure must end with |U | “ N . Notice that for any x,y P t´1, 1ud, we have
}x´ y}1 ă

d
2 only when x,y differs by at most i ă d

4 coordinates. Therefore, at each step, we
remove at most

M “

rd{4s´1
ÿ

i“0

ˆ

d

i

˙

elements in V . Hence, it remains to show that 2d

M ě N .

Denote k “ rd{4s´ 1. Then we have

M “

d
ÿ

i“0

ˆ

d

i

˙

ď

ˆ

ed

k

˙k

ď

ˆ

ed

d{4

˙d{4

“ exp

ˆ

1` 2 log 2

4
d

˙

,

and hence 2d

M ą exppd{11q ě N as claimed. l

Repeating the argument above, we can also prove the following result.

Lemma F.5 There is a procedure such that, for any input integer N ě 2 and d ě r11 logp2Nqs,
compute a sequence x1, ¨ ¨ ¨ ,xN P t´1,`1u

d such that for any i ‰ j,

}xi ´ xj}1 ě
d

2
, }xi ` xj}1 ě

d

2

with running time polyp2dq.

Lemma F.6 There is a procedure such that, for any input r, d,H ě 2 and δ P p0, 14 s satisfying
d ě C0Hδ2, compute a p2r, H, δ, γ, 2drq-family over r2dsr, with γ ď r2´c0d, with running time
polyp2drq.

Proof. We first invoke the procedure of Lemma F.4 to compute x1, ¨ ¨ ¨ ,xN P t´1, 1ud such that
}xi ´ xj}1 ě

d
2 and N ą exppd{11q. Consider the distribution µi “ Qδ̄xi

P ∆pr2dsq for each
i P rN s, where we set δ̄ “ 4δ. Clearly, we have DTV pµi, µjq ě δ for i ‰ j.

Notice that for K “ rd{60s, we have N ą
`

K`d´1
d

˘

` 1, and hence by Corollary D.16, there exists
ξ0, ξ1 P ∆prN sq such that supppξ0q Y supppξ1q “ H and

D2
TV

`

Ei„ξ0

“

µbn
i

‰

,Ei„ξ1

“

µbn
i

‰˘

ď

H
ÿ

k“K

ˆ

eHδ̄2

K

˙k

.

Therefore, as long as d ě 120eHδ̄2, Q “ tpξ0, ξ1q, pµ1, ¨ ¨ ¨ , µN qu is a p2, H, δ, 2´K´1
2 , Nq-family

over r2ds. Further, invoking Lemma D.9 yields Q1, a p2r, H, δ, r2´K´1
2 , N rq-family over r2dsr.

By the proof of Corollary D.16, ξ0, ξ1 can be computed in polypNq time, and Q1 can also be
computed from Q in time polyp2drq by going through the proof of Lemma D.9. Combining the
results above completes the proof. l
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