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Abstract

We study computational and statistical aspects of learning Latent Markov Decision Processes
(LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch
from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several
notions of J-separation of the constituent MDPs. The main thrust of this paper is in establishing
a nearly-sharp statistical threshold for the horizon length necessary for efficient learning. On the
computational side, we show that under a weaker assumption of separability under the optimal pol-
icy, there is a quasi-polynomial algorithm with time complexity scaling in terms of the statistical
threshold. We further show a near-matching time complexity lower bound under the exponential
time hypothesis.

Keywords: Partially observable reinforcement learning

1. Introduction

Reinforcement Learning (Kaelbling et al., 1996; Sutton and Barto, 2018) captures the common
challenge of learning a good policy for an agent taking a sequence of actions in an unknown, dy-
namic environment, whose state transitions and reward emissions are influenced by the actions
taken by the agent. Reinforcement learning has recently contributed to several headline results in
Deep Learning, including Atari (Mnih et al., 2013), Go (Silver et al., 2016), and the development of
Large Language Models (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022). This
practical success has also sparked a burst of recent work on expanding its algorithmic, statistical
and learning-theoretic foundations, towards bridging the gap between theoretical understanding and
practical success.

In general, the agent might not fully observe the state of the environment, instead having imperfect
observations of its state. Such a setting is captured by the general framework of Partially Observ-
able Markov Decision Processes (POMDPs) (Smallwood and Sondik, 1973). In contrast to the
fully-observable special case of Markov Decision Processes (MDPs) (Bellman, 1957), the setting
of POMDPs is rife with statistical and computational barriers. In particular, there are exponential
sample lower bounds for learning an approximately optimal policy (Krishnamurthy et al., 2016;
Jin et al., 2020), and it is PSPACE-hard to compute an approximately optimal policy even when the
transition dynamics and reward function are known to the agent (Papadimitriou and Tsitsiklis, 1987;
Littman, 1994; Burago et al., 1996; Lusena et al., 2001). In view of these intractability results, a
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fruitful research avenue has been to identify conditions under which statistical and/or computational
tractability can be resurrected. This is the avenue taken in this paper.

In particular, we study Latent Markov Decision Processes (LMDPs), a learning setting wherein,
as its name suggests, prior to the agent’s interaction with the environment over an episode of H
steps, nature samples an MDP, i.e. the state transition dynamics and the reward function, from a
distribution p over MDPs, which share the same state and action sets. The learner can fully observe
the state, but cannot observe which MDP was sampled, and she also does not know the distribution p.
However, she can interact with the environment over several episodes for which, at the beginning
of each episode, a fresh MDP is independently sampled from p. The learner’s goal is to learn a
policy that optimizes her reward in expectation when this policy is used on a random MDP sampled
from p.

LMDPs are a special case of (overcomplete) POMDPs,! which capture many natural scenarios. For
example, learning in an LMDP can model the task facing a robot that is moving around in a city
but has no sensors to observe the weather conditions each day, which affect the pavement condi-
tions and therefore the dynamics. Other examples include optimizing the experience of users drawn
from some population in a web platform (Hallak et al., 2015), optimizing the outcomes of patients
drawn from some population in healthcare provision (Steimle et al., 2021), and developing an opti-
mal strategy against a population of possible opponents in a dynamic strategic interaction (Wurman
et al., 2022). More broadly, LMDPs and the challenge of learning in LMDPs have been stud-
ied in a variety of settings under various names, including hidden-model MDPs (Chades et al.,
2012), multi-task RL (Brunskill and Li, 2013; Liu et al., 2016), contextual MDPs (Hallak et al.,
2015), hidden-parameter MDPs (Doshi-Velez and Konidaris, 2016), concurrent MDPs (Buchholz
and Scheftelowitsch, 2019), multi-model MDPs (Steimle et al., 2021), and latent MDPs (Kwon
et al., 2021b; Zhan et al., 2022; Chen et al., 2022a; Zhou et al., 2023).

Despite this work, we lack a complete understanding of what conditions enable computationally
and/or sample efficient learning of optimal policies in LMDPs. We do know that some conditions
must be placed, as in general, the problem is both computationally and statistically intractable.
Indeed, it is known that an exponential number of episodes in the size L of the support of p, is
necessary to learn an approximately optimal policy (Kwon et al., 2021b), and even when the LMDP
is known, computing an optimal policy is PSPACE-hard (Steimle et al., 2021).

A commonly studied and intuitively simpler setting, which is a main focus of this paper, is that of
0-strongly separated LMDPs, where every pair of MDPs in the support of p are d-separated in the
sense that for every state-action pair their transition distributions differ by at least ¢ in total varia-
tion distance. Even in this setting, however, we lack a sharp characterization of the horizon length
that is necessary and sufficient for sample-efficient learning. Previous works either require a very
long horizon” (i.e. H » SA, Brunskill and Li (2013); Hallak et al. (2015); Liu et al. (2016)) or

1. Indeed, if S is the state space shared by all MDPs in the support M of the distribution p over MDPs, we may view
this LMDP as a POMDP with state space S x M. The state transition dynamics of this POMDP only allow transitions
from state (s,m) to state (s, m') when m = m/, and the transition probability from (s, m) to (s’,m) on action a is
determined by the transition probability from s to s’ on action @ in MDP m. The observation model of this POMPD
drops m when observing the state (s, m), and the initial state (so,m) is sampled by first sampling m ~ p, and then
sampling so from the initialization distribution of MDP m.

2. Even under such a long horizon, Brunskill and Li (2013); Hallak et al. (2015); Liu et al. (2016) have to require
additional restrictive assumptions, e.g. the diameter of each MDP instance is bounded.
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impose extra assumptions on the predictive state representation of the underlying LMDP (Kwon
et al., 2021b).Other simplifying assumptions that have been studied include hindsight observability,
i.e. observability of the index of the sampled MDP at the end of each episode, under which near-
optimal regret guarantees have been obtained in certain parameter regimes (Kwon et al., 2021b;
Zhou et al., 2023), as well as test-sufficiency (Zhan et al., 2022; Chen et al., 2022a) and decodabil-
ity (Efroni et al., 2022), but here the known sample complexity bounds scale exponentially with the
test-sufficiency/decodability window.

Our Contributions. In this paper, we nearly settle the challenge of learning in J-strongly sepa-
rated LMDPs, by providing a near-sharp characterization of the horizon length necessary for effi-
cient learnability.

Our lower bound (Theorem 3.1) shows that, for there to be an algorithm that learns an e-optimal

policy in a J-strongly separated LMDP from a polynomial number of samples, it must be that the
horizon scales as

log(L/¢)

Hz =%~

9

where L is the number of MDPs in the mixture. The threshold H, = logg% has a fairly intuitive
interpretation: when H > H,, we can use the history up to step H, to recover the unobservable
index of the underlying MDP instance with error probability at most € (Proposition 4.1).

We complement our lower bound by proposing a sample-efficient algorithm (Algorithm 1) for learn-
ing an e-optimal policy in a §-strongly separated LMDP when

> log(LS/eé)'

02

Our sample complexity guarantees also hold beyond the strong separation condition. We study
the setting where the MDP instances are separated under every policy (Section 4), a condition that
is comparably less restrictive than the strong separation condition. We relax this separation as-
sumption even further to separation under an optimal policy, although we need to make some extra
assumptions in this case to preserve sample-efficiency (Section 4.1).

As a further application, we consider learning N-step decodable LMDPs, which is a natural class of
structured LMDPs where strong separation does not hold. For such a class of LMDPs, we provide
a sample-efficiency guarantee when H > 2N, and we also provide a lower bound which shows that
this threshold is sharp.

Finally, we study the computational complexity of computing an optimal policy in a known sepa-
rated LMDP, i.e. the problem of planning. We show that the threshold H, tightly captures the time
complexity of planning: it gives rise to a natural planning algorithm (Algorithm 2) with near-optimal
time complexity under the exponential time hypothesis (ETH).

1.1. Related works

Planning in partially observable environment. Planning in a known POMDP has long been
known to be PSPACE-compete (Papadimitriou and Tsitsiklis, 1987; Littman, 1994; Burago et al.,
1996; Lusena et al., 2001), and planning in LMDP inherits such hardness (Chades et al., 2012;
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Steimle et al., 2021). The recent work of Golowich et al. (2022b,a) established a property called
“belief contraction” in POMDPs under an observability condition (Even-Dar et al., 2007), which
leads to algorithms with quasi-polynomial statistical and computational efficiency.

Learning in partially observable environment. It is well-known that learning a near-optimal
policy in an unknown POMDP is statistically hard in the worst-case: in particular, the sample
complexity must scale at least exponentially in the horizon (Liu et al., 2022a; Krishnamurthy et al.,
2016). Algorithms achieving such upper bounds are developed in (Kearns et al., 1999; Even-Dar
et al., 2005). Under strong assumptions, such as full-rankness of the transition and observation
matrices or availability of exploratory data, several algorithms based on spectral methods (Hsu et al.,
2012; Azizzadenesheli et al., 2016; Guo et al., 2016; Xiong et al., 2021) and posterior sampling
(Jahromi et al., 2022) have also been proven to be sample-efficient. However, due to the nature
of their strong assumptions, these works fall short of addressing the challenge of exploration in an
unknown partially observable environment.

Towards addressing this challenge, a line of recent works proposed various structural problem
classes that can be learned sample-efficiently, including reactive POMDPs (Jiang et al., 2017), re-
vealing POMDPs (Jin et al., 2020; Liu et al., 2022a,c), low-rank POMDPs with invertible emis-
sion operators (Cai et al., 2022; Wang et al., 2022), decodable POMDPs (Efroni et al., 2022),
regular PSRs (Zhan et al., 2022), reward-mixing MDPs (Kwon et al., 2021a, 2023), PO-bilinear
classes (Uehara et al., 2022b), POMDPs with deterministic latent transition (Uehara et al., 2022a),
and POMDPs with hindsight observability (Lee et al., 2023). Based on the formulation of predictive
state representation (PSR), Chen et al. (2022a); Liu et al. (2022b) proposed (similar) unified struc-
tural conditions which encompass most of these conditions, with a unified sample-efficient algo-
rithm Optimistic Maximum Likelihood Estimation (OMLE). As LMDPs are a subclass of POMDPs,
all of these results can be applied to LMDPs to provide structural conditions that enable learnability.
However, when instantiated to LMDPs, these structural conditions are less intuitive, and in general
they are incomparable to our separability assumptions and do not capture the full generality of the
latter.

RL with function approximation. RL with general function approximation in fully observable
environment has been extensively investigated in a recent line of work (Jiang et al., 2017; Sun et al.,
2019; Du et al., 2021; Jin et al., 2021; Foster et al., 2021; Agarwal and Zhang, 2022; Chen et al.,
2022b; Xie et al., 2022; Liu et al., 2023, etc.), and some of the proposed complexity measures
and algorithms (e.g. Model-based Optimistic Posterior Sampling (Agarwal and Zhang, 2022; Chen
et al., 2022b), and Estimation-to-Decision (Foster et al., 2021)) also apply to partially observable
RL. In this work, our analysis of OMLE utilizes several tools developed in Liu et al. (2022a); Chen
et al. (2022b,a); Xie et al. (2022).

2. Preliminaries

Latent Markov Decision Process. AnLMDP M is specified by a tuple {S, A, (My,)5_,, H, p, R},
where My, --- , My, are L MDP instances with joint state space S, joint action space A, horizon H,
and p € A([L]) is the mixing distribution over My, - , My, and R = (Rj, : S x A — [0,1])iL
is the reward function. For m € [L], the MDP M,, is specified by T, : S x A — A(S) along

with the initial state distribution v, € A(S). In what follows, we will parametrize each LMDP by
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a parameter 6 (Section 2.2), but for now we provide a few definitions without overburdening the
notation.

In an LMDP, the latent index of the current MDP is hidden from the agent: the agent can only see
the resulting transition trajectory. Formally speaking, at the start of each episode, the environment
randomly draws a latent index m* ~ p (which is unobservable) and an initial state s; ~ vp,»,
and then at each step h, after the agent takes action ay, the environment generates the next state
Sh+1 ~ Tox(+|Sh, ap) following the dynamics of MDP M,,,«. The episode terminates immediately
after ay is taken.

Policies. A policy 7 = {m; : (S x A)"™' x & — A(A)}pep is a collection of H functions.
At step h € [H], an agent running policy 7 observes the current state s; and takes action a ~
mh(+|Th) € A(A) based on the whole history 7, = (7,-1,Sx) = (S1,61,...,S4—1,ap—1,5p). (In
particular, we have written 7,1 = (81,a1,...,8,-1,axr—1).) The policy class ITgnp is the set of
all such history-dependent policies, and IIpyy is the set of all deterministic Markov policies, namely
tuples 7 = {7, : S — A}pe[m

For any policy 7 € IIgrnp, the interaction between 7 and the LMDP M induces a distribution P™ of
the whole trajectory 77 = (s1,a1, -, Sg, ap). The value of 7 is defined as

H
|3 Raton, )

We also use P™ to denote the joint probability distribution of the latent index m* and trajectory 77
under policy 7.

Miscellaneous notations For probability distributions p, g on a discrete measure space X', the
Hellinger distance and Bhattacharyya divergence are defined as

D (p,9) = 3 aen (v/P(2) = /4 Dy(p,q) = —1og X sex V/P(2)a ().

For expression f, g, we write f < g if there is an absolute constant C' such that f < C'g. We also
use [ = O(g) to signify the same thing.

2.1. Strong separation and separation under policies
In this section we introduce the various notions of separability we consider in this paper.

Definition 2.1 (Strong separation, Kwon et al. (2021b)) An LMDP is §-strongly separated if for
all m, 1 € supp(p) such that m # I,

Dty (T’m('|57a)7Tl('|87a)) =9, VseS,ae A

Definition 2.2 (Decodability, Efroni et al. (2022)) An LMDP M is N-step decodable if for any
trajectory Ty = (81,a1,- - ,SN), there is at most one latent index m € supp(p) such that T is
reachable starting from sy in the MDP instance My, (i.e., the probability of observing sa,--- , SN
in M,, starting at s and taking actions ay, - -- ,an—1 is non-zero). In other words, there exists a
decoding function ¢y that maps any reachable trajectory T to the latent index m.
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More generally, we can consider separability under the induced distributions over a trajectory. For
any policy m, we define

My, n(m, s) := [T}, ((a1, 82, - ,ap—1,8n) = -|s1 = 5)] € A((A x S)hil), (D)

where T7, is the probability distribution of the trajectory in the MDP instance M,,, and under policy
.

For any increasing function @ : N — R, we can define tw-separation as follows, which requires that
the separation between any two MDP instances grow as .

Definition 2.3 (Separation with respect to a policy) An LMDP is w-separated under 7 if for all
m, [ € supp(p) such that m # I,

DB<Mm7h<7T,S),Ml,h(7T, S)) = w(h), Vh>1,s€S8.

We also define ™! (x) := min {h > 1 : w(h) > z}. In Section 4, we show that if the LMDP is -
separated under all policies and H = w~!(log(problem parameters)), then a near-optimal policy
can be learned sample-efficiently.

In particular, strong separation indeed implies separation under all policies.

Proposition 2.4 If the LMDP M is d-strongly separated, then it is ws-separated under any policy
2
7 € IIgnp, where ws(h) = %(h —1).

Proposition 2.5 The LMDP M is N-step decodable if and only if it is wy-separated under all
0, h<N,

olicy m e 11 , where won(h) =
policy RND ~N(h) w h>N.

The proof of Proposition 2.5 is provided in Appendix C.1. More generally, the following lemma
gives a simple criteria for all-policy separation.

Lemma 2.6 If an LMDP is w-separated under any Markov policy w € llpy, then it is w-separated
under any general policy m € IIgnD.

2.2. Model-based function approximation

In this paper, we consider the standard model-based learning setting, where we are given an LMDP
model class © and a policy class II < Ilgnp. Each § € © parameterizes an LMDP My =
{S A, (Mé,m)#:lu H, py, R}, where the state space S, action space .4, horizon H, integer L rep-
resenting the number of MDPs, and reward function R are shared across all models, py specifies
the mixing weights for the L. MDP instances under 6, and the MDP instance M ,, is specified by
(T, m, vo,m) for each m e [L]. For each model § € © and policy 7 € IIgnp, we denote Pj to be

the distribution of 777 in My under policy 7, and let Vy(7) be the value of 7 under Mjy.

We further assume that (a) the ground truth LMDP is parameterized by a model 6* € © (realizabil-
ity); (b) the model class © admits a bounded log covering number log Ng(+) (Definition A.1); (c)
the reward function R is known and bounded, Zf;l sup, , Rp(s,a) < 1.2

3. For simplicity, we only consider deterministic known reward in this paper. For random reward r, € {0,1} that
possibly depends on the latent index m, we can consider the “augmented” LMDP with the augmented state 5,41 =
(Sh+1, 7n) similar to Kwon et al. (2021D).



NEAR-OPTIMAL LEARNING AND PLANNING IN SEPARATED LATENT MDPS

In addition to the assumptions stated above, we also introduce the following assumption that the
ground truth LMDP admits certain low-rank structure, which is a common assumption for sample-
efficient partially observable RL (Wang et al., 2022; Chen et al., 2022a; Liu et al., 2022b).

Assumption 2.7 (Rank) The rank of an LMDP My is defined as dy := max,e[) rank(Tg,). We
assume that the ground truth model 0* has rank d < oo.

Learning goal. The learner’s goal is to output an e-optimal policy 7, i.e. a policy with sub-
optimality Vi, — Vg« (7) < &, where V,, = maxg ey V() is the optimal value of the ground truth
LMDP.

3. Intractability of separated LMDP with horizon below threshold

Given the exponential hardness of learning general LMDPs, Kwon et al. (2021b) explore several
structural conditions under which a near-optimal policy can be learned sample-efficiently. The core
assumptions there include a strong separation condition (Definition 2.1) together with the bound

H > 6 *log?(5/6) log(LSAs~1671). ()

A natural question is whether such an assumption on the horizon is necessary. The main result
of this section demonstrates the necessity of a moderately long horizon, i.e. in order to learn a
d-strongly separated LMDP in polynomial samples, it is necessary to have a horizon length that

(asymptotically) exceeds logg#.

Theorem 3.1 (Corollary of Theorems D.1 and D.2) Suppose that there exists an integer d > 1
and an algorithm 2 with sample complexity max{S, A, H, L, 6=1}9 that learns an e-optimal
policy with probability at least 3/4 in any §-strongly separated LMDP with H > Hipo(L,€,0),
for some function Hyne(L,€,0). Then there exists constants cq,24, Ly (depending on d) and an
absolute constant dg such that

cqlog(L/e)

chre(L7€75) = 52 )

V8 < 8o, e < eq, L = max(Lg, 0 1).
The proof of Theorem 3.1 is presented in Appendix D, where we also provide a more precise
characterization of the sample complexity lower bounds in terms of H (Theorems D.1 and D.2).

The lower bound of the threshold Hyy,, is nearly optimal, in the sense that it almost matches the
learnable range (as per Corollary 4.4 below).

The following theorem provides a simpler lower bound for horizon length H = © (6‘1 log L). For
such a short horizon, we show that we can recover the exponential lower bound developed in Kwon
et al. (2021Db) for learning non-separated LMDPs.

Theorem 3.2 Suppose that 0 € (0, ﬁ], H>3A>21L> 9C108%(1/9) e given such that
log L

5
Then there exists a class of d-strongly separated LMDPs, each LMDP has L MDP instances,

S = (log L)O(log H) states, A actions, and horizon H, such that any algorithm requires (AH *2)
samples to learn an ﬁ—optimal policy with probability at least %.

CH log Hlog(1/5) < (3)
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Proof idea for Theorem 3.1. Theorem 3.1 is proved by transforming the known hard instances
of general LMDPs (Appendix D.1) to hard instances of §-strong separated LMDPs. In particular,
given a LMDP M, we transform it to a d-strongly separated LMDP M, so that each MDP instance
M, of M is transformed to a mixture of MDPs { M, ;}, where each M,,, ; = M;® iy, j is an MDP
obtained by augmenting M; with a distribution i, ; of the auxiliary observation (this operation ®
is formally defined in Definition D.6). The §-strongly separated property of M’ is ensured as long
as D1y (fm,j, oy j7) = 0 for different pairs of (m, j) # (m/, j'), and intuitively, M" is still a hard
instance if the auxiliary observation does not reveal much information of the latent index.

Such a transformation is possible as long as H = 0(1(;% L) Here, we briefly illustrate how the

transformation works for LMDP M consisted of only 2 MDP instances M, M5. Using Proposi-
tion 3.3, we define the augmented MDPs M j = M ® p; for j € supp(v1) and My j = Mo ® p;
for j € supp(r2), and assigning the mixing weights based on vy, v2. Then, result (1) ensures the
transformed LMDP is -strongly separated, and result (2) ensures the auxiliary observation does not
reveal much information of the latent index. The details of our transformation for general LMDPs
is presented in Appendix D.2.

Proposition 3.3 (Simplified version of Proposition D.8) Suppose that parameter §,c > 0 and in-
tegern = 2 satisfy Cnlog? n < min {cfl, 5*1}. Then for L = n? H < Cl‘gi%L, there exists L' < L
distributions i1, - - , jur over a set O satisfying |O| < O(log L), such that:

(1) Drv (pi, p1j) = 6 fori # j.

(2) There exists vy, v € A([L']) such that supp(v1) and supp(v2) are disjoint, and
DTV (EiN«Vl,u?Han'wl/Q,uj@H) < L_n7

where for any distribution i, n® is the distribution of (o1, --- , o) where o}, ~ i independently.

Tighter threshold for decodable LMDPs For §-strongly separated LMDP, Theorem 3.1 gives a
lower bound of Hyy,. that scales as log;g# and nearly matches the upper bounds (Corollary 4.4).
The following result shows that, for N-step decodable LMDPs, we can identify the even tighter

threshold of H: when H < 2N — w(1), there is no sample-efficient algorithm; by contrast, when
H > 2N, OMLE is sample-efficient (Corollary 4.5).

Theorem 3.4 Suppose that integers N = n = 2, A = 2 are given. Then for H = 2N — n,
there exists a class of N-step decodable LMDPs with L = n, S = 3N — 1 states, A actions, and
horizon H, such that any algorithm requires ) (A"_l) samples to learn an ﬁ—optimal policy with
probability at least %.

4. Learning separated LMDPs with horizon above threshold

In this section, we show that §-strongly separated LMDP, or more generally, any LMDP under
suitable policy separation assumptions, can be learned sample-efficiently, as long as the horizon H
exceeds a threshold that depends on the separation condition and the logarithm of other problem
parameters.
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Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

Input: Model class ©, policy class II, exploration strategy p(-) : I — IIgnp, parameter 5 >
0,es € (0,1], W > 1.

Initialize: ©' = ©, D = {}.

fork=1,..., K do

Set // See (5) for definition of eo,w .

(0%, 7%) = arg max Vp(n), st. 0e OF eqy(m) < &
(0,7)

Execute 7%, = p(7¥) to collect a trajectory 7}, and add (7%, 7f;) into D.
Update confidence set

ekl = {56 ©: 2 (rr)ep log Pg(T) > Maxge X, (x,)ep 108 PG (T) — 5}.

end
Output: 7 := Unif({n!,--- ,75}).

A crucial observation is that if that an LMDP Mj is w-separated under policy 7, then the agent can
“decode” the latent index from the trajectory 7, with error probability decaying exponentially in

w(h).

Proposition 4.1 Given an LMDP My and parameter W > 1, for any trajectory Ty = (s1,a1,--+ , Sw),
we consider the latent index with maximum likelihood under Ty :

W1
mg(Tw) := argmax logpg(m) + logvg m(s1) + 2 log T m (Sh+1|5n, an). )
mesupp(pg) h=1

Then as long as My is w-separated under T, the decoding error can be bounded as
eo.w () := PG (mo(Fw) # m*) < Lexp (—w(W)), Q)

where we recall that IF’g is the joint probability distribution of the latent index m™ and trajectory Ty
in the LMDP My under policy .

The OMLE algorithm was originally proposed by Liu et al. (2022a) for learning revealing POMDPs,
and it was later adapted for a broad class of model-based RL problems (Zhan et al., 2022; Chen
et al., 2022b,a; Liu et al., 2023). Based on the observation above, we propose a variant of the
OMLE algorithm for learning separated LMDPs.

Algorithm. On a given class © of LMDPs, the OMLE algorithm (Algorithm 1) iteratively per-
forms the following steps while building up a dataset D consisting of trajectories drawn from the
unknown LMDP:

1. (Optimism) Construct a confidence set ©% < © based on the log-likelihood of all trajectories
within dataset D. The optimistic (model, policy) pair (%, 7%) is then chosen greedily while
ensuring that the decoding error eek,W(ﬂ'k) is small.
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2. (Data collection) For an appropriate choice of exploration strategy p(-) (described in Defini-

tion E.1), execute the explorative policy 7%, = p(7*), and then collect the trajectory into

sep
D.

Guarantees. Under the following assumption on all-policy separation with a specific growth func-
tion ww, the OMLE algorithm can learn a near-optimal policy sample efficiently. In particular, when
O is the class of all §-strongly separated LMDPs, then Assumption 4.2 is fulfilled automatically

with IT = TIgnp and w(h) = %(h — 1) (Proposition 2.4).

Assumption 4.2 (Separation under all policies) For any 6 € © and any = € 11, 0 is w-separated
under .

Theorem 4.3 Suppose that Assumption 2.7 and Assumption 4.2 hold. We fix any mgep, € 11, set p(-)
as in Definition E. 1, and choose the parameters of Algorithm 1 so that

Ld>AH?. e2

B> 2logNe(1/T) +2log(1/p) +2,  K=Co——(3—, &= CoLd2H?,'

where v = log(LdH /¢) is a log factor, Cy is a large absolute constant. Then, as long as W is
suitably chosen so that

W= w t(log(L/es)),  H—W =w *(log(2L)), (6)

Algorithm 1 outputs an e-optimal policy 7 with probability at least 1 — p after observing K trajec-
fories.

Note that the parameter W can always be found satisfying the conditions of Theorem 4.3 as long
as H > w 1(log(2L)) + w ' (log(L/ss)). In particular, OMLE is sample-efficient for learning
0-strongly separated LMDPs with a moderate requirement on the horizon H (which nearly matches
the lower bound of Theorem 3.1).

Corollary 4.4 Suppose that |S| = S and © is the class of all d-strongly separated LMDPs. Then
as long as

- 10log(LSe™1671) + C

for some absolute constant C, we can suitably instantiate Algorithm [ so that it outputs an c-optimal
~ . . .- . ~7 1204 A2 174 .

policy T with high probability using K = (9(%) episodes.

H

(N

Compared to the results of Kwon et al. (2021b), Corollary 4.4 requires neither a good initializa-
tion that is close to the ground truth model, nor does it require additional assumptions, e.g. test-
sufficiency, which is also needed in Zhan et al. (2022); Chen et al. (2022a). Furthermore, Kwon
et al. (2021b) also requires (2), while the range of tractable horizon (7) here is wider, and it nearly
matches the threshold in Theorem 3.1. A more detailed discussion is deferred to Appendix B.

Furthermore, OMLE is also sample-efficient for learning /N-step decodable LMDPs, as long as
H>2N.

Corollary 4.5 (Learning decodable LMDPSs) Suppose that © is a class of N -step decodable LMDPs

with horizon length H = 2N. Then we can suitably instantiate Algorithm 1 so that it outputs an

Ld?>AH?log Ng
e2 )

e-optimal policy T with high probability using K = (5( episodes.

10
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In Efroni et al. (2022), a sample complexity that scales with A" is established for learning general
N-step decodable POMDPs. By contrast, Corollary 4.5 demonstrates that for N-step decodable
LMDPs, a horizon length of H > 2N suffices to ensure polynomial learnability. As Theorem 3.4
indicates, requiring H > 2N —O(1) is also necessary for polynomial sample complexity, and hence
the threshold H > 2N is nearly sharp for N-step decodable LMDPs. This result also demonstrates
that the condition (6) (and our two-phase analysis; see Appendix E.2) is generally necessary for
Theorem 4.3.

4.1. Sample-efficient learning with two-policy separation

In general, requiring separation under all policies is a relatively restrictive assumption, because it
is possible that the LMDP is well-behaved under only a small subset of policies that contains the
optimal policy. In this section, we discuss the sample-efficiency of OMLE under the following
assumption of separation under an optimal policy.

Assumption 4.6 (Separation under an optimal policy) There exists an optimal policy . of the
LMDP Mg+, such that My~ is w-separated under ..

In order to obtain sample-efficiency guarantee, we also need the following technical assumption on
a prior-known separating policy sep,. Basically, we assume that in each LMDP, the MDP instances
are sufficient “diverse” under 7gep, so that any mixture of them is qualitatively different from any
MDP model.

Assumption 4.7 (Prior knowledge of a suitable policy for exploration) There exists a known pol-
icy Tsep and parameters (Wexp, &) such that for any model 6 € ©, the following holds:

(a) My is w-separated under ey,

(b) For any MDP model Tyo and state s € S, it holds that for any A € A(supp(py)),

D1y (B | MG, 111, (Tecps 8) | Mt oy (o)) = (1 = max A), ®)
where

Mot h (sep 8) = [T (a1, 82, sn) = |51 = )] € A((S x AP

ref
is the distribution of trajectory induced by running e, on the MDP with transition Tt

Theorem 4.8 Suppose that Assumption 2.7, Assumption 4.6, and Assumption 4.7 hold. We set p(-)
based on mse, as in Definition E.1, and choose the parameters of Algorithm 1 so that

L3d°AHS 2B aeg?
52210gN@(1/T)+210g(1/p)+2, K:CO27, Eg = m,

a2et

where 1 = log(LdHa 'e™') is a log factor, Cy is a large absolute constant. Then, as long as W is
suitably chosen so that

W = w '(log(L/ss)), H—W = Wexp,
Algorithm 1 outputs an e-optimal policy 7 with probability at least 1 — p.

In Appendix E.7, we also provide a sufficient condition of Assumption 4.7, which is more intuitive.

11
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5. Computation complexity of separated LMDPs

In this section, we investigate the computational complexity of planning in a given LMDP, i.e. a
description of the ground truth model #* is provided to the learner.* For planning, a longer horizon
does not reduce the time complexity (in contrast to learning, where a longer horizon does help).

In general, we cannot expect a polynomial time planning algorithm for §-strongly separated LMDP,
because even the problem of computing an approximate optimal value in any given §-strongly sep-
arated LMDP is NP-hard.

Proposition 5.1 If there is an algorithm that computes the e-approximate optimal value of any
given §-strongly separated LMDP in poly(L, S, A, H,e=*,6~1) time, then P=NP.

On the other hand, utilizing the Proposition 4.1, we propose a simple planning algorithm (Algo-
rithm 2) for any LMDP that is separated under its optimal policy. The algorithm design is inspired
by the Short Memory Planning algorithm proposed by Golowich et al. (2022b).

Theorem 5.2 Suppose that in the LMDP M, there exists an optimal policy w, such that M is w-
separated under 7,. Then Algorithm 2 with W > w~!(log(L/¢)) outputs an e-optimal policy 7 in
time

(SAW x poly(S, A, H, L).

As a corollary, Algorithm 2 can output an e-optimal policy (along with an e-approximate optimal
value) of any given d-strongly separated LMDP in time

(SA)26*2108;(L/5) x poly(L,S, A, H).

In the following, we demonstrate such a time complexity is nearly optimal for planning in J-strongly
separated LMDP, under the Exponential Time Hypothesis (ETH):

Conjecture 5.3 (ETH, Impagliazzo and Paturi (2001)) There is no 20(") _time algorithm which
can determine whether a given 3SAT formula on n variables is satisfiable.

In the following theorems, we provide quasi-polynomial time lower bounds for planning in J-
strongly separated LMDP, assuming ETH. In order to provide a more precise characterization of
the time complexity lower bound in terms of all the parameters (L, ¢, d, A), we state our hardness
results in with varying (L, &,0, A) pair, with mild assumptions of their growth. To this end, we
consider F = {(b;)¢=>1, bt < bry1 < 20}, the set of all increasing sequences with moderate growth.

Theorem 5.4 Suppose that we are given a sequence of parameters C = {(g¢, A, 0t) }1>1, such that
the sequences (loge; V)i=1, (6; 1)i=1, (log Ap)¢=1 € F, and
510 1

<—t <, vt > 1. 9
€t (log A, )5 ey )

Then, under Exponential Time Hypothesis (Conjecture 5.3), no ACT?108(1/9)) i algorithm can

determine the e-optimal value of any given §-strongly separated LMDP with (¢,6, A) € C whose

parameters H, L, S satisfy H < log(g# and max {L, S} = poly(log(1/¢),log A,571).

4. In this section, we omit the subscript of 6* for notational simplicity, because the LMDP M = My« is given and
fixed.

12
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Algorithm 2 Short Memory Planning with Context Inference
Data: W > 1, LMDP model M = My«
Set Vi +1() = 0 for all m € [L]
forh=H,H—-1,--- ,Wdo
For each pair (sp,an,m) € S x A x [L], update

~

Qu (5, an) = By, i ~Tom(lsnsan) [Vm,h+1(3h+1)] + Ry (sn, an).

Set Vi, n(sn) = maxa, Qum n(sh, an) and store m,, p(sn) = argmax,, Qm n(sk,an).
end
for each Ty = (s1,a1, - ,sw) do
Compute m = m(7Ty ) and set

~

V(Ew) = P(m|7w) - Vimw (sw).

end
forh=W —-1,--- ,1do
For each (74, ap,) € (S x A)", update

Q(Th,an) = Eq, 1700 [V(ﬂu ap, 5h+1)] + Rp(snh, an), VTh, ap

~

Set ‘A/(?h) = maxg,, @(?h, ap,) and store 7y, (71,) = argmax,, Q(Tn, ax).

end
Result: description of the determinstic policy 7 given by

Thm(rw)(Sh), h=W.

Theorem 5.5 Suppose that we are given a sequence of parameters C = {(L¢, A, 6¢) }4>1, such that
the sequences (1og Lt)i=1, (6; )i=1, (log A)i=1 € F, (Lt)¢1 is strictly increasing, and

log At
67

loglog Ly « < polylog Ly, vVt = 1. (10)

—2 loglL
Then, under Exponential Time Hypothesis (Conjecture 5.3), no AO(6 log logL) -time algorithm can
determine the c-optimal value of any given §-strongly separated LMDP with (L, A, ) € C whose

parameters H, L, S satisfy H < 105#, and e = S =exp ((’)(log2 log L))

1
poly(log L)’

In particular, the results above show that under ETH, a time complexity that scales with A% ~?log(L/e)
is hard to avoid for planning in §-strongly separated LMDP, in the sense that our iteration complex-
ity lower bounds apply to any planning algorithm that works for general parameters (L, A, d, €).
Therefore, the threshold H, = bgg# indeed also captures the computational complexity of plan-
ning.

13
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Appendix A. Technical tools
A.1. Covering number

Definition A.1 (Covering) A p-cover of the LMDP model class © is a tuple (]@, ©Oy), where ©y < ©
is a finite set, and for each 0y € ©g, 7 € lgrnp, P§, (1) € RZ, specifies an optimistic likelihood
function such that the following holds:

(1) For € ©, there exists a 0y € ©Oq satisfying: for all T € TH and 7 € g, it holds that
Pg, (1) = Pg(7).

(2) For 0 € ©q, 7 € Mg, it holds ‘

B =)~ Bj(ru = )| <"

The optimistic covering number Ng(p) is defined as the minimal cardinality of ©¢ such that there
exists P such that (P, ©g) is an optimistic p-cover of ©.

The above definition of covering is taken from Chen et al. (2022b). It is known that the covering
number defined above can be upper bounded by the bracket number adopted in Zhan et al. (2022);
Liu et al. (2022b). In particular, when © is a class of LMDPs with |S| = S, |A| = A, horizon H,
and with L latent contexts, we have

log No(p) < CLS?Alog(CLSAH /p),

where C' is an absolute constant (see e.g. Chen et al. (2022a); Liu et al. (2022a)).

A.2. Information theory

In this section, we summarize several basic inequalities related to TV distance, Hellinger distance
and Bhattacharyya divergence.

Lemma A.2 For any two distribution P, Q over X, it holds that Dv (P, Q) < /2Dy (P, Q), and

Drv (P,Q) > D§ (P,Q) = 1 — exp (~Dg(P,Q)). (11
Conversely, we also have (Pinsker inequality)
_4
2

Lemma A.3 (Foster et al. (2021, Lemma A.11)) For distributions P, Q defined on X and function
h: X — [0, R], we have

D(E,Q) > — log(1 ~ Diy(F,Q) > - Dy (F,Q). (12

Ep[h(X)] < 3Eq[h(X)] + 2RDf (P, Q).
Lemma A.4 For any pair of random variable (X,Y"), it holds that

Ex~px[Drv (Py|x,Qyix)] < 2Drv (Pxy,Qxy).

Conversely, it holds that
Drv (Pxy,Qxy) < Drv (Px,Qx) + Ex~px [Drv (Py)x, Qyix)]-

19



CHEN DASKALAKIS GOLOWICH RAKHLIN

Lemma A.5 (Chen et al. (2022b, Lemma A.4)) For any pair of random variable (X,Y), it holds
that

Ex~rx [Dii (Pyix,Qyvix)] < 2D% (Px,y.Qxy)-

Conversely, it holds that

Di (Pxy,Qxy) < 3Df (Px,Qx) + 2Ex~py [ Dfi (Py|x, Qvix)]-

A.3. Technical inequalities

Lemma A.6 For distributions Py, --- ,Pr, € A(O) and p, v € A([L]) so that supp(p)nsupp(v) =
o, we have

Dy (Eivpu[Pi], Ejnn[Ps]) = min Dg(P;, P;) —log(L/2).
As a corollary, if Dg(P;,IP;) = log L for all i # j, then for any p,v € A([L]), we have
1
Drv (Ei~ul[Pi], Bjnv[B5]) = 5 Drv (1 v).

Proof. By definition,

exp (~ D (Eieu[Pi) By s [Pi]) = 3o/ Ba[Pi) | o [P (2)]

< DY iR @B (@)

T 1,

= Z w(i)v(j) exp (—Dg(P;, P;))
Y]

< (Z m) (Z m> ?zxexp (—Dg(P;,P;))

L
< —exp <— min Dg(P;, IP’]-)),
2 i#]

where the last inequality follows from the fact that >, 1/u(i) < +/#supp(u) and > V() <
v/ #supp(v). Taking — log on both sides completes the proof. O

Lemma A.7 Suppose that for distributions Py, --- ,Pr, € A(O), we have Dg(P;,P;) > log(2L)
forall i # j. Then for the matrix M = [Py, --- ,Pr] € RO*L, there exists M € RY*O such that
IM*|, <2and M™™ = I .

Proof. We construct M™ explicitly. Consider the matrix Z € RL*© given by

Py (0)

Ao = 52 Bilo)
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Then clearly | Z||; <1, and the matrix Y = ZM is given by

Z Zze

0O

For | # m, we know

0% [Vl < 3, ;AR 5 3 B0 (o) = g esp (~Do(BuBu)) < o1

0e0 0e0

Furthermore,

NG

0<1- 0= 3 51 5 S = Sl <

0eO l#£m Py I#m

Combining these two inequalities, we know [ I, — Y[, < 3, and hence |Y ~!|, < 2. Therefore,

2
we can take M" = Y~ <|v7Y,1Z]; <2and M™M = I. m

A.4. Eluder arguments

In this section, we present the eluder arguments that are necessary for our analysis in Appendix E.
The following proposition is from Chen et al. (2022a, Corollary E.2) (with suitable rescaling).

Proposition A.8 (Chen et al. (2022a)) Suppose we have a sequence of functions {f; : R" —
R} pex]

J
fule) 1= mage 3, Ko
‘7:

which is given by the family of vectors {yy ;. } (ke[ K]x[J]xR © R"™. Further assume that there
exists Ly > 0 such that fi,(xz) < Ly |z|;.

Consider further a sequence of vectors (x;)iex < R™ such that the subspace spanned by (x;) ez has
dimension at most d. Then for any sequence of p1,--- ,px € A(Z) and constant M > 0, it holds
that

K
KM + Z Z Einp, [fe(zi)?] |-

K
DM A Eivp,[fo(xi)] < | 4dlog (1 +
k=1t<k

k=1

KdLl max; Hﬂ?z H 1
M

The following proposition is an generalized version of the results in Xie et al. (2022, Appendix D).
We provide a proof for the sake of completeness.

Proposition A.9 (Xie et al. (2022)) Suppose that p1,--- , px is a sequence of distributions over X,
and there exists i € A(X) such that pi(x)/u(z) < Ceoy for all x € X, k € [K]. Then for any

sequence f1,--- , [k of functions X — [0, 1] and constant M > 1, it holds that
K O K K
Z x~pkfk < 2C’cov log (1 + v > 2K M + Z 2 Em~ptfk(x)2
k=1 M k=1t<k

21



CHEN DASKALAKIS GOLOWICH RAKHLIN

Proof. For any x € X, define

Then by Cauchy inequality,

Eoup fi(@) = ) pila \/ B l‘)f 3 ) fulx)?.

reX

Applying Cauchy inequality again, we obtain

3 & 5 pelo)?
Z x~pkfk: Z D : Z Zﬁk(x)fk(x)z

k=1 k=12eX P () k—1zeX

Notice that

xeX t<k
and hence it remains to bound

2

<3 () 5 pi(x)
ST PR < N Gl - ) P,
k=1zeX k(x) )

p
Using the fact that u < 2log(1 + u)Vu € [0, 1], we have

o Pe(T) % pi(z)
= <2210g<1+ﬁk(x)>

o)

ud pi(z)
<2l (1 M) + Zt<kpt(33)>

k=1
Mpu(2) + Syege po(a)
:zlog( M) )

Coor K
<210g<1+ CJ‘\} >

Combining the inequalities above completes the proof.

Proposition A.10 Suppose that T € RS*(SxA)

Proof. Consider the set

P ={T(|s,a):s€S,ae A} c R®.

U

is a transition matrix such that rank(T) = d. Then

there exists a distribution v € A(S) such that T(s'|s,a) < d-v(s') Y(s,a,8') e S x A% S.

Then rank(T) = d implies that P spans a d-dimensional subspace of R®. Clearly, P is compact, and

hence it has a barycentric spanner (Awerbuch and Kleinberg, 2008), i.e. there exists {v1, - - -

P, such that for any p € P, there are Ay, -+ , \g € [—1, 1] such that
W= Avy+ -+ Agvg.

—1lyd
Therefore, we can take v = 3 >0 v;.
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Appendix B. Further comparison with related work

In Kwon et al. (2021b), to learn a J-strongly separated LMDP, the proposed algorithms require a
horizon H = 6~*10og?(S/6) log(LSAs~1§~1), and also one of the following assumptions:

* a good initialization, i.e. an initial approximation of the latent dynamics of the ground truth
model, with error bounded by o(6?) (Kwon et al., 2021b, Theorem 3.4).

* The so-called sufficient-test condition and sufficient-history condition, along with the reach-
ability of states (Kwon et al., 2021b, Theorem 3.5).

Chen et al. (2022a) further show that, for general LMDPs (not necessarily d-strongly separated),
the sufficient-test condition itself implies that the OMLE algorithm is sample-efficient. More con-
cretely, their result applies to any W -step revealing LMDP. A LMDP is W-step a-revealing if the
W -step emission matrix

K(s) := [Tyn(so.w = s|s1 = s,a1.w—1 = a)](sya%m e RAxS)WIx[L]

admits a left inverse K™ (s) for all s € S such that [K*(s)||; < a~!. This condition implies the
standard W -step revealing condition of POMDPs (Liu et al., 2022a; Chen et al., 2022a) because the
state s is observable in LMDPs?. In particular, the following theorem now follows from Chen et al.
(2022a, Theorem 9).

Theorem B.1 The class of W -step a-revealing LMDPs can be learning using poly (AW o=, L, S, H,e™!)
samples.

Without additional assumption, it is only known that a J-strongly separated LMDP is W -step a-

[2 log(2L)

revealing with W = 2| and a = 2. ® Therefore, when applied to J-strongly sepa-

rated LMDPs, Theorem B.1 gives a sample complexity bound that scales with A9 ?log L which
is quasi-polynomial in (A, L). Further, as Theorem 3.2 indicates, such a quasi-polynomial sample
complexity is also unavoidable if the analysis only relies on the revealing structure of J-strongly
separated LMDP and does not take the horizon length H into account.

On the other hand, our analysis in Appendix E is indeed built upon the revealing structure of -
strongly separated LMDP. However, we also leverage the special structure of separated LMDP, so
that we can avoid using the brute-force exploration strategy that essentially samples ey +1.7—-1 ~
Unif(A"~1) in the course of the algorithm. Such a uniform-sampling exploration approach for
learning the system dynamics of the last W steps is generally necessary in learning revealing
POMDPs, as the lower bounds of Chen et al. (2023) indicate. It turns out to be unnecessary for
separated LMDP. Appendix E.2 provides a technical overview with more details.

Appendix C. Proofs for Section 2

C.1. Proof of Proposition 2.4

Fix m, [ € supp(p), m # [. By definition,
Dp(Mm,h+1(m, 8), My pia(m, 5))

5. see, e.g. Chen et al. (2022a, Proposition B.10) or the proof of Theorem E.5 in Appendix E.6.
6. This result can be obtained by applying Lemma A.7 to the distributions of trajectories induced by policy
Unif (A" 1.
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= —log Z \/T%(a1,32,~--

A1:h,S2:h+41

s Sht1ls1 = 8)TT (a1, 82, -

,Sht1]51 = 8)

= —log Z \/T;%(al,sQ,-”

a1:h,S2:h

7Sh7ah‘81 = S)T?(al,SQ, e

ssnsanlsy = 8) - D/ Ton(snralsn, an)Ti(snra|sn, an)

Sh

= —log Z \/M(al,szw-

A1:h,52:h

sSnsanlst = s)TT (ar, sz, -

s 8hyan|s1 = 8) - exp (= Dp (T (-|sn, an), Ti(-[sh, an)))-

Because M is a d-strongly separated LMDP, using (12), we know

Dy(Tn([3,a), il 3, ) £ Dy (T(Cls,0), TuC|3,0)) >

Therefore, we can proceed to bound

DMy pt1(m, 8), My py1(m, 5))

2
5 V(s,a) e S x A.

52
>3 — log Z \/T%(ahsza“' ,Shyap|s1 = 8)TT (a1, 82, ,sp,ap|s1 = s)

,suls1 = 8)- > w(an]s, a1, 52, -
ap

A1:h,S2:h
52
=5 — log Z \/T;rn(a17327"' ,sp)s1 = 8)TT (a1, s2,- - -
a1:h—1,52:h
52
=5 - log Z \/']I‘;rn(al,SQ, o, spls1 = 8)TT (a1, 82, -+, spls1 = s)
A1:h—1,52:h
2
= B} + DB(Mm’h(ﬂ',S),Ml’h(?T, 8))

Applying the inequality above recursively, we obtain Dg (M, p+1(7, s), My p41(7,s)) = %h, the

desired result.

C.2. Proof of Proposition 2.5

O

Suppose that M is a N-step decodable LMDP. By definition of wy-separation, we only need to
show that for any m, [ € supp(p), m # [ and policy 7 € IIgnp, it holds that

supp (M, (7, 5)) 0 supp(My (7, 5)) = &,

or equivalently,

Tzrn(a17527 e ,Sh|81 = S)TlTr(ala‘SQa e ,Sh|81 = S) = 07

This is because the N-step decoability of M implies that for any 7, = (s1, a1, - -

at most one m* € supp(p) such that

Tyx(s2]s1,a1) -+ - Ty (Sh|Sh—1, an—1)

The desired result follows immediately.

24
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C.3. Proof of Lemma 2.6

For notational simplicity, we denote

BC(P7 Q) = eXp(_DB(P7 Q))

Fix h > 1 and m, [ € supp(p), m # [. We only need to show that the following policy optimization
problem

max BC(Mmﬁ_A,_l(W, S)aMl,h—i-l(Trvs)) (13)

WEHRND

is attained at a deterministic Markov policy. Recall that

BC(Mm,h+1(7T7 S)a Ml,h+1(7T7 S))
Z \/T”m(ahszy“' ,Shyap|s1 = 8)TT (a1, 82, , sp,ap|sy = s) - BC(Tp(-|sn, an), Ti(-|sn, an)).

A1:h,52:h

Therefore, (13) is attained at a policy 7 with

7 (sp) = argmax BC(T,,(-|sp, a)Ti(:|sn,a)).

acA
Inductively repeating the argument above for b’ = h,h — 1,--- , 1 completes the proof. O
C.4. Proof of Proposition 4.1
Notice that mg(Tw) = arg max,,csupp(p) Py(m|7w ). Therefore,

~

Py (m* # mo(Tw)) = 21?»9 (m* # me(Tw)|7w) - P§ (Fw)

=Z S Bo(mlTw) - By (7w)

Tw me#me(Tw)

= > > PomFw) - Py(m*, 7w)

m* T m#Eme(Tw)

< DY Pomlrw) - By (m*7w)

m* T m#Em*

. mTW (l Tw)
- ZZ P“TW)

m;élTW
(m, Tw|s L, Twls
= Z m;l P (L, 7w 1)1%(51)'
m#l Tw P (TW|81)

For any s € S and m € [L], we denote p,,|s = Py(m|s; = s), and then

Pg(mv?WBl = 8) = pm|sTg,m(?W|81 = S)a Pg(?Wbl = S) = me|sTg,m(?W|81 = 5)7
m
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Therefore, using the fact that

Py (Tw sy = s) = 2 PmlsPls ° \/Tg,m(7w|81 = s)Tg,(Twls1 = ),

we have

m(Twls) TG, (Twls1)

Z]}Dg(my?Wbl)Pg(L?Wﬁl)g Pm|sPi|s Z\/Tg
2 =~

= Pg (Tw|s1)
/PPl
= mfbls exp (—DB (M%W(ﬂ', s1), MZW(T(, 31)> ) .

Thus, taking summation over m # [ and using Em# PmlsPils < L — 1 gives

~

By (mo(7w) # m*) < Lexp(~w(W)).

Appendix D. Proofs for Section 3

We first present two theorems that provide a more precise statement of our sample complexity lower
bounds.

1

Theorem D.1 There are constants c,C' so that for any H > 1, § € (0, ;2

2 < n < H — 1 satisfying

|, L = 2 and integer

log L
Cnlogn < min{ ngﬁ ,(5—1,2“10gL}, (14)

there exists a class of §-strongly separated LMDPs with L hidden MDPs, S = (log L)O(log ") states,
A actions, and horizon H, so that any algorithm requires 2 (min {A, L}”_1> samples to learn an
ﬁ-optimal policy.

Theorem D.2 For any 6 € (0, ﬁ] and integer n = 2, there is Ny 5 < 90((1+én)log? n) that for
any € > 0, integer H, A > 2 satisfying

log(1/e) 1
O\ =T < ,
1002 " SN,

n<H< (15)

there exists a class of d-strongly separated LMDPs with parameters (L, S, A, H), where
L < Nn67 S < HO((1+5n) log2 n)7
such that any algorithm requires () (A”_l) samples to learn an e-optimal policy.

We also present a slightly more general version of Theorem 3.2, as follows.

Theorem D.3 Suppose that § € (0, ﬁ] H>n+1>3 A>2 L>2Clenloe(l/d) gre given

such that

log L
5

CHlognlog(1/6) < . (16)
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Then there exists a class of 6-strongly separated LMDP with L hidden MDPs, S = (log L)O(log n)
states, A actions, horizon H, such that any algorithm requires ) (A"_l) samples to learn an ﬁ-
optimal policy with probability at least %.

Based on the results above, we can now provide a direct proof of Theorem 3.1. In our proof, it turns
D

out that we can take cq = 5@

Proof of Theorem 3.1. Fixn = 3d + 1, §y = ﬁ. We proceed to prove Theorem 3.1 by

decomposing

log(L/e) = log(L) + log(1/e) < %max{log L,log(1/e)},

and then show that Hiy,e (L, €, §) must be greater than each of the terms in the maximum above, by
applying Theorem D.1, Theorem D.3, and Theorem D.2 separately.

Letn; = O(nlog*n) be the LHS of (14), and N = N,, 5, < 20(nlog”n) e given by Theorem D.2.
We choose Ly := 2611 10”11 for some large absolute constant C'y so that Ly > N, andseteq = %,

1 . ~ —1
Cd = GrnrleZn’ In the following, we work with L > max(Lg,d™ "), € < &g4.

Part 1. In this part, we prove the lower bound involving the term log L. We separately consider the
case § < n% (Theorem D.1) and § > 7% (using Theorem D.3).

Case 1: § < n% In this case, we take H;, = max <[17‘;1g5§J,n1>. For H = Hy, and any A > 2,

applying Theorem D.1 gives a class of §-strongly separated LMDPs with parameters (L, S1, A, H)
where S < (log L)©°8™) 5o that any algorithm requires Q ((A A L)”*l) samples for learning
e4-optimal policy (because €4 < ﬁ). However, for A = L, we have assumed that 2 succeeds with

max {S1, L, Hp,,e;', 671 }d < L™ ! samples. Therefore, since we have assumed that { outputs an
g-optimal policy if H > Hipe(L, €, ), we must have Hy, < Hypo(L, €, 0).

Case 2: 0 > ni In this case, we take H;, = [10#

1 C1log”(n)d
H = Hp and any A > 2, applying Theorem D.3 gives a class of d-strongly separated LMDPs with
parameters (L, So, A, H) where Sy < (log L)®(°8™) 50 that any algorithm requires (A1) =
Q (Ad+1) samples for learning e-optimal policy. However, for A > max {L, So, H,e71, 6 _1}, we
have assumed that 2 succeeds with A samples, as long as H > Hyy.o(L, €, 0). Therefore, we must

have Hy, < Hype(L, €, 0).

|. By definition, H;, > n. Hence, for

Therefore, in both cases, we have H;, < Hne(L, €,0). By definition, it always holds that H;, >

m . 105#, and the desired result of this part follows.

Part 2. We take H, = [lo%%lz/a)J +n. Forany H < H.,A > 2, Theorem D.2 provides a
class of J-strongly separated LMDPs with parameters (L3, S3, A, H) with Ly = N and S3 <
HO(+n)log” n) g6 that any algorithm requires 2 (A"_l) = (Ad“) samples for learning e-
optimal policy. However, for values A > max{N,S3, H,e~', 61}, we have assumed that 2
succeeds with A9 samples. Therefore, since we have assumed that 2( outputs an -optimal policy if

H > Hine(L,,9), we must have H, < Hypo(L, €, ).

Combining the two parts above completes the proof of Theorem 3.1. O
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In the remaining part of this section, we present the proof of Theorem D.1, Theorem D.2 and
Theorem D.3.

Organization In Appendix D.1, we present the hard instances of general (non-separated) LMDP
(Kwon et al., 2021b). Then we present our tools of transforming LMDP into separated LMDP in
Appendix D.2. The proofs of Theorem 3.2, Theorem D.1 and Theorem D.2 then follow.

Additional notations For any step h, we write 7, = (81, a1, , Sp,ap) and Tp.pr = (Sp, Ap, -+, Spry apr).
Denote

Py(1h) = Po(s1:n|do(ar:n—1)), (17)

i.e., the probability of observing si.; if the agent deterministically executes actions aj.,—1 in the
LMDP Mjy. Also denote 7(73,) := [ ],<p, ™ (an|Th—1, sp), and then Pg (1) = Po(7,) x 7(73)
gives the probability of observing 7y, for the first i steps when executing m in LMDP Mj.

D.1. Lower bound constructions for non-separated LMDPs

In this section, we review a lower bound of Kwon et al. (2021b) on the sample complexity of
learning latent MDPs without separation constraints; we state and prove some intermediate lemmas
regarding this lower bound which are useful later on in our proofs.

Theorem D.4 (Kwon et al. (2021b)) For n > 1, there exists a class of LMDP with L = n, S =
1 -

n+ 1, H = n + 1, such that any algorithm requires 2 (A"_l) samples to learn an 5--optimal

policy.

In the following, we present the construction in Kwon et al. (2021b) of a family of LMDPs
M={My:0e A"} U {Mg}. (18)

For any § = a € A""!, we construct a LMDP Mjy as follows.

* The state space is
So = {397 S@,15 " S@,n}'

* The action space is A and the horizon is H > n + 1.
* L = n, and for each m € [n], the MDP My, has mixing weight .
¢ In the MDP My ,,,, the initial state is sg 1, and the state sg is an absorbing state.

For m > 1, the transition dynamics of Mj ,, is given as follows.

At state s, with h < m — 1, taking any action leads to sg ;+1.

At state sg ,—1, taking action a # a,,—1 leads to sg ,,, and taking action a,,_1 leads
to so.

At state sg ;, with m < h < n, taking action a # ay, leads to sg, and taking action ay,
leads to sg p41-

At state sg p,, taking any action leads to sg.
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The transition dynamics of My ; is given as follows.

- At state sq j, with h < n, taking action a # ay, leads to sg, and taking action ay, leads
to S h+1-

— The state sg , is an absorbing state.
* The reward function is given by Ry,(s,a) = 1{s = sgn,h =n + 1}.

Construction of the reference LMDP For § = ¢, we construct a LMDP with state space Sp and

MDP instances My, = --- = Mg, with mixing weights p = Unif([n]), where the initial state is
always sg 1 and the transition is given by
n—h 1

Tg . (s@,h+150,h, @) = Tp . (sols@ns a) = Vh e [n],

n—h+1’ n—h+1’

and sg is an absorbing state.

Define © = A" 1 {0_ } An important observation is that for any € ©, in the LMDP Mj, any
reachable trajectory 77 must have s;. belonged to one of the following sequences

Sp = (S@’l,"' y S@,hy SQy " " ,8@), for some h € [n],
—_—
H-h
or Sp4 = (S@,1," ", S@m, S@ns " » S@m)-
—_—
H—n

In particular, for any action sequence a1.r7, we have
1
Pé(Sle = sh\ale) = E, VYh e [n] (19)

We summarize the crucial property of the LMDP class {Mp},_q in the following lemma.
Lemma D.5 For each = a€ A", the following holds.

(a) For any action sequence a1.pr such that ai.,—1 # a, it holds

Po(s1.q4 = splar.mg) = %, Vh € [n]. (20)
On the other hand, for the action sequence ay.p such that ay.,—1 = a,
Po(s1:q = sn,+|a1a) = %, Py(s1.q = splar.g) = %, Vh e [n—1]. 20
(b) For any policy , define
wy(m) = ﬁ m(an = apls@1,a1, -, Son)- (22)
h=1

Then )y 4n—1 wo(m) = 1, and it also holds that

Vilw) = wglr),  Drv (BF.BF) = ~up(r).

In particular, the optimal value in 0 is Vi = %, attained by taking a in the first n — 1 steps.
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Proof. We first prove (a). We inductively prove the following fact.

Fact: For 1 < h < n and any action sequence aj.j, there is a unique index m € [h] such that in the
MDP My ,,, taking action sequence ay.p leads to the trajectory sg 1 — - -+ — Sg.n — So.

The base case h = 1 is obvious. Suppose that the statement holds for all A’ < h. Then in the MDP
Myy,---, My, there are h — 1 many MDPs such that taking a1.;,—1 leads to sg at some step < h,
and hence there is exactly one index m’ such that in My 1y, taking aq.,—1 leads to the state sg p,.
Therefore, if a;, # aj, then taking ay.j, in Mg ;v leads to sg 1 — -+ - — sg 5 — So. Otherwise, we
have aj, = aj, and ay.;, in My, leads to sg1 — -+ — sgn — So. The uniqueness is also clear,
because for [ > h, taking a;.;, always lead to sg j,+1. This completes the proof of the case h.

Now, we consider any given action sequence ai.;;. For any step h < n, there exists a unique
index m(h) such that in the MDP Mg (1), taking action sequence ay., leads to the trajectory
s@1 — -+ — Sphn — So — ---. Thus, there is also a unique index m(n) such that in the
MDP My ;,,(n), taking action sequence ai.,—1 leads to the trajectory sg1 — -+ — S@n. Then
there are two cases: (1) aj.,—1 # a, then m(n) # 1, and hence taking aq.z leads to the trajectory
S@1 = = S@n — Sg — -+ in My ). (2) a1.n—1 = &, which implies m(n) = 1, and hence
taking ay.zr in Mg’m(n) leads to the trajectory sg1 — - -+ — S@n — S@n — *--. This completes
the proof of (a).

We next prove (b) using (a). Notice that Vy(m) = Pj(sp+1 = S@n). By definition, sp11 = sgn
can only happen when the agent is in the MDP Mp ; and takes actions a;., = a, and hence

Pg(SnJrl = S@m) = Pg(sl = 8@,1,a1 =ai, " ,8, = s@m,an = an)
1
= ﬁTg,l(Sl =59,1,01 = a1, ", = S@n,0n = an)
1
= = [ [ =(an = anlsea,a1, -, s@n) = ~we(m).
=1 n

More generally, we have

2Dy (P§,P5) = Y \w(rh) x [Po(th) — Py(rh)|

TH

= Z () X

TH:S1:H=5n,+,01:n—1=a

2
= EW(S@J, at, " 5, SPn—1, anfl)a

% - 0‘ + > T (TH) X

TH'S1:H=Sn,01:n—1=a

1
0— =
n

where the second equality is because Py(75) # Pg(7x) only when s1.4 € {Sp,Sp 4} and a1.p—1 =
a, and the last line follows from recursively applying >, (an|7h—1,s,) = 1. This completes the
proof of (b). ]

D.2. Tools

Definition D.6 Suppose that M = (S, A, T, u, H) is a MDP instance, O is a finite set, and p €
A(O) is a distribution. Then we define M ® p to be the MDP instance given by (S x O, A, T ®
w, p ® p, H), where we define

[T®/~L]((S/70/)|(S7 0),(1) = T(3/|87 CL) ) :“(0/)'
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Given a finite set O, Definition D.7 introduces a property of a collection of distributions p1, . .., t/ €
A(O) which, roughly speaking, states that the distributions p; are separated in total variation dis-

tance but that certain mixtures of H-wise tensorizations of the distributions u; are close in total

variation distance. Given that such collections of distributions exist, we will “augment” the hard

instance of (non-separated) LMDPs from Appendix D.1 with the u; (per Definition D.6) to create

hard instances of separated LMDPs.

Definition D.7 A (L, H, 4, ~, L')-family over a space O is a collection of distributions {,ui}ie[L,] c

A(O)and &, -+ & € A([L']) such that the following holds:

(1) supp(&x) N supp(§) = I forall k,l € [L] with k # L.
(2) The distribution Qj, := E;¢, [M?H] e A(O) satisfies Drv (Qr, Q1) < v forall k € [L].

(3) Dy (i, pj) = 6 forall i # j, i, j € Upsupp(&).

Proposition D.8 and Lemma D.9 state that (L, H, , 7, L')-families exist, for appropriate settings of
the parameters.

Proposition D.8 Suppose that H > 1, 6 € (0, ﬁ] Then the following holds:

(a) Letd = [4e20 H). Then there exists a (2, H, 8,0, N)-family over [2d] with N < min (2 5,2H)

(b) Suppose X € [1, - 25] is a real number and d > \-4¢” 6> H. Then there exists is a (2, H, 8,7, N)-
family over [2d] with v < 4e™* and N < (2e(\ + 1))%

Lemma D.9 Suppose that Q isa (2, H, 0,, L)-family over a space O. Then there exists a (2", H,d,rv, L")
Sfamily over space O'.

Proofs of the two results above are deferred to Appendices D.6 and D.7.

Definition D.10 (Augmenting an MDP with a family) Suppose that M = (S, A, (M,,)% _,, H, p, R)
is a LMDP instance and Q = ({1ti};e[1): {&m}merry) is @ (L, H, 6,7, L")family over O. Then
M®Q=(Sx0,A, (MZ’)ZLI LH. P, R) is defined to be the following 8-strongly separated LMDP
instance:

* For each i € Uye(r)supp(&m) < [L'], there is a unique index m(i) € [L] such that i €
supp(&m(s)); we define M := M,y ® pi, with mixing weight p'(i) := py, ) - &) (0)-
« The reward function R is given by Ry((s,0),a) = Ry (s, a).
Proposition D.11 Suppose that My = (S, A, (Mg )% _1, H,p, R) is a LMDP instance, Q is a
(L, H,6,~, L')-family over O, so that My ® Q is a LMDP with state space S = S x O. Let g be

the set of all H-step policies operating over S, and 11 g be the set of all H-step policies operating
over S.

For any policy m € Ilg, we let IP’“ denote the distribution of trajectory under w in the LMDP
My ® Q, and we let Vy o() denote the value function of w. Then the following statements hold:

(a) We can regard 11s as a subset of 11 naturally, because any policy 7 € Ils can operate over
state space S = S x O by ignoring the second component of the state s € S. Then, for any
policy m € Ils, Vp(m) = Vy o(7). In particular, Vi < V5.
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(b) For any policy m € Ilg, we define ng = E,, ,,~q,[7(-|o1.1)] € Ils, i.e. g is the policy that
executes T over state space S by randomly drawing a sequence o1.; ~ Q1 at the beginning
of each episode. Then we have |V o(m) — Vp(mg)| < .

(c) For LMDPs with parameters 0,0 and any policy T € Ilg, it holds
Dy (ngg,Pg’ Q) <2y + Dry (PgQ,PgQ) .

Proof. For any § = (s,0) € S = S x O, we denote 5[1] = s. Fact (a) follows directly from the
definition: for any policy 7 € 11,

H
Voo(m) =Ef o| D, Bu(3n, an)
h=1

H
= Eg,g [Z Rh(gh[l],ah)] = Eg[Rh(Shv ah)]7
h=1

where the last equality is because the marginal distribution P’g 5 over (S x A)H agrees with Py by
our construction. This completes the proof of (a).

We next prove (b) and (c). In the following, we fix any policy 7 € 1.

By definition, for any 77 = (31, a1,--- , 81, ap) € (S x A)H, we have 5, = (sp,0p) € S x O,
and

Pio(m) = Y, #0) x Yy, ()
ie[L']
) pm) Y m PR, (1)

me([L]

D p(m) D Em(i) x w(rr) x Pom(stalarn) x pi(o1) - pi(om)
me|[L] i

= Z p(m) x w(tH) % Pom(stmlarm) X Qm(onx).
me[L]

Consider the distribution I@g o€ A((S x A)H) given as follows:

@3,9(71{) =m(tg) x Qi(o1.1) x Po(s1.m|a1.1)

=m(ty) x Q1(o1.x) x Z p(m) Py, (s1:1]01:1).
me[L]

Then, by definition,

P§ o(t1) — P§ o(tr) = m(7h) X D1 pm)Pr(s1:mlara) - (Qmorn) — Qi(o1:x)),
me[L]

and hence
Dy (Pg,ga @g,g)

1 ~
= 5 2 [Fr.o(r) — B o(a)|
TH
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< %ZW(TH) x Z p(m)Pm(Sle|a1:H) : |Qm(01;H) — Ql(olsH)|
H melL]

:% Z p(m) Z |Qm(01.1) — Q1(o1.7)]| Z w((s,0)1:1, a1:1) X P (s1:m|a1:1)
me[L] 01.H S1.H.01.H

- ;me[L] p(m) g{ |Qm(01:H) - Ql(Ole)’ <7,

where the last line follows from the fact that for any fixed 01.57, 7((S, 0)1.51, a1.57) X Py (S1:57]01:17)
gives a probability distribution over (s1.77, a1.57).

Let I’Eg o be the expectation taken over I@g o- Then it holds that

o)

= > 7(ri) x Qu(o1.a) x Py(s1.mlar.ar) (2 Ry, Shﬂh))

TH h=1
H
= Z (Z Qi(o1:m) - 7T(a1:H|51:H,01;H)> x Py(s1.mlaim) x (Z Rh(Shﬂh))
S1:H,A1:H \O1:H h=1
H
= Z mo(armls1m) x Po(si:nlar.m) (Z n(Sh,an ) = Vy(mo),
$1:H,01:H h=1

where the last line follows from our definition of 7o, which is a policy given by

WQ(‘) = EOl;H~Q1 [ﬂ-( ’01¢H)]‘

Therefore, we can bound

Vo.o(m) — Va(mo)| = [Bf < D1v (Pro.Pro) <7,

an

M=

3h7 ap, ]

Similarly, using the fact that Dy <}P’g 0 I@g Q) < v and Dry <IP> 5o [Pﬂf ) < 7, we have

Rh(§h,ah ] EQQ[

and hence complete the proof of (b).

b (aFio) <20+ v (Fro Fio)

Further, by definition,

LS (rmr) x Quon) x [Po(slarer) — Py(sroprlar)|

Drv (Bo.B50) = 5

TH

1
=5 Z (Z Qi(o1.x) - m(a1.m|51:1, 01: H)) X |Pg(s1:m|a1:q) — Pg(si:ulai:m)|

S1:H,01:H O1:H
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> molarmlsiu) x [Po(stalarm) — Pg(sialarm)|
S1:H,01:H

— Dpvy (PgQ,PgQ>.

1
2

Combining the above two equations completes the proof of (c). O

Fix an action set A and n € N. Recall the MDPs Mjy, indexed by 6 € A"~ U {(F}, introduced in
(18). Proposition D.12 below uses Lemma D.5 to show that when these MDPs are augmented with
a (n,H,d,~, L)-family per Definition D.6, then the resulting family of LMDPs also requires many
samples to learn.

Proposition D.12 Suppose thatn > 2, A > 2, H >n+ 1, v € [0, ﬁ) and Qisa (n,H,d,~,L)-
Sfamily over O. Consider

M={My®Q:0e A"} U{My®Q},

which is a class of 0-strongly separated LMDPs with parameters (L, S, A, H), where S = (n +
1) |O|. Suppose U is an algorithm such that for any M € M, 2 interacts with M for T episodes
and outputs an ﬁ—optimal policy T for M with probability at least %. Then it holds that

1 1
T > -min{ —, A" ' -2},
8 2y

Proof. In the following, we denote § = (¥, consistently with the notations in Appendix D.1.
Notice that by Proposition D.11 (a), for any # € A"~!, we have Vig = % Furthermore, for any
mells

Sa

1
Voo(m) < Vyg(mg) +7v = Ewe(ﬂg) + 7.

In the following, for each § € A"~!, we denote My := My ® Q and wy(m) = wy(mg) for any

policy m € Il (recall the definition of wg(+) in (22)). Therefore, using item (b) of Lemma D.5, if 7

is ﬁ-optimal in Moy, then we have we(m) = % —ny > % Also notice that by Proposition D.11 (c)

and Lemma D.5 (b),

Drv (ngg, Py Q) <2y + Dy (PgQ,PgQ) — 2y + wp(n). (23)

Consider the following set of near-optimal policies in ]\79:
* * 1 ~ 1
I = {7r ellg: Vig—Vyolm) < 4n} c {77 € Ilg : wg(m) > 2}. (24)

We know Pg{Q(?r ell}) > %, where we use IP’%E o to denote the probability distribution induced by

executing 2 in the LMDP Mj. Using the fact (from Lemma D.5) that D gesn—1 Wo(m) = 1, we also
know that ITj N T}, = (& forany 6 # 0’ € A"~ Therefore,

A A~ *
feAn—1
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Hence, there is a set O = A" ! such that |©¢| > A"~ — 2, and for each § € O, P

%, which implies that

%[,Q(% ell}) <

Vo € O.

1
DTV (]P%EQ’P%EQ> = Z?

Now we proceed to upper bound the quantity Dty (P%,Q’IP%, Q). Notice that the algorithm A
can be described by interaction rules {77(”} 1e[T]’ where 7(* is a function that maps the history

(7, ... 7(=1) to a policy in IIgnp to be executed in the ¢-th episode. Then, by Lemma A 4, it
holds that

T
(t) (t)
Drv (Blo o) < B3 [Drv (PF0.#10) ] = T Enws [Drv (PFo B o) |
t=1

where gy € A(IIgnp) is the distribution of 7 = () with t € Unif ([77]) and (x (), .- #(™)) ~ P2
Therefore, using (23), we know

Drv (PRo,Pg) < 277 + T - By (),
where the last equality follows from Lemma D.5 (b). Taking summation over 6 € ©¢, we obtain
- 1
Q0] - 2Ty + T = > (217 + T - Ergqiip(m)) > 7 160l
06@0

The desired result follows immediately. ]

D.3. Proof of Theorem 3.2 and Theorem D.3

Proof of Theorem D.3 Fix a given n < H — 1, we set r = [logyn|. By Proposition D.8
(a) and Lemma D.9, there exists a (n, H, 6,0, Lo)-family over [2d]", where d = [4e25H| and
Ly < (2175)dr. Notice that (3) and log L = lognlog(1/d) together ensure that Ly < L. Hence,
applying Proposition D.12 completes the proof. O

Proof of Theorem 3.2 Notice that for sufficiently large constant C, the presumptions of The-
orem 3.2 that log L > Clog®(1/6) and (3) together ensure we can apply Theorem D.3 with
n = H — 1, and hence the proof is completed. O

D.4. Proof of Theorem D.1
Set A = 2nlog? n. Also set
d = max {[2A"'nlog L], [ - 4" H5?}. (25)

Notice that we have 1 < A < ﬁ as long as we choose the absolute constant C' > 8e? in (14).
Then, applying Proposition D.8 (b), there exists a (2, H, 9, «y, IV )-family over [2d] with

N<(eA+1)% y<dem
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Denote 7 = [logy n]. By our assumption (14), we have log L = (¢! logn)?, and hence choosing ¢
sufficiently small and C sufficiently large ensures that we have N” < L. Further, by our choice of
din (25), we have ry < L™"™.

Hence, by Lemma D.9, there exists a (n, H,d, L~", L)-family over [2d]", and we denote it as Q.
Applying Proposition D.12 to Q, we obtain a family M of d-strongly separated LMDPs, with state
space S = S x [2d]", and any algorithm requires €2 (A™ A L™) samples to learn M. Noticing that
IS| < (n+1)(2d)" = (log L)°U°2™ completes the proof. O

D.5. Proof of Theorem D.2

Let dy = [4€?6(n + 1)], r = [logyn], and H = H — n — 1. By Proposition D.8 and Lemma D.9,
there exists a (n,n + 1,0,0, N)-family over [2dp]” with N < min (2 55 2n) dor
choose N, s = (4nN)?, and then it holds that IV, 5 = 20((1+9n) log?n)

. In particular, we

Applying Proposition D.12 to this family, we obtain M a class of d-strongly separated LMDP with
state space S = Sy x [2d]", action space A, horizon n+ 1. Recall that by our construction in Propo-
sition D.12 (and Appendix D.1), for each § € A"~ U {6}, M@ is given by (S A, (M@ )N _n+

1, pg, R), and the mixing weight pg € A([N]) of the MDPs M9 1, M97N does not depend on
0.1e. py = p forafixed p € A([N]). Furthermore, for each m € [N ], the initial distribution
Vo,m of Mg m is also independent of 0, i.e. vy, = vy, for a fixed v, € A(S ). We also know that
R=(Ry:S x A—[0,1])7*1 is the reward function.

For each 6, we construct an augmented -strongly separated LMDP M 9+ with horizon H, as follows.

Fix d = 2[C} log N for a large absolute constant C so that there exists p1,- -, BN € {—1, 1}d
such that (pi, 1) = 0Vi € [N] and |p; — pjf; = d/2 (see e.g. Lemma F.4). Denote = 46 and set

"7—*

« The state space is ST = S LU ST L {terminaly, - - - , terminal '}, where
5+={(k1,.--,kd)eNd;k1+ kg < 1}

We will construct the transition so that at the state outside S, the transition does not depend
on f. We also write 0S™ = {(kl,-~ k) eN kg 4+ 4+ kg =H — 1}.

* The initial state is always (0,--- ,0) € ST.

» For s € ST\0S™, we set

1+ O pam|i]

T (s + €ils,a) = y

» For s € ST, we define
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and we set p(s) = minge ) pi(s),

Ton(s'|s,a) =n p(s) Um(s'), ses,

Pm(s)
and T,, (terminal,,|s,a) = 1 — npfi‘zi).
* For state s € {terminaly, - -- , terminaly}, we set Ty, (terminal,,|s,a) = 1.

* The reward function is given by fi; = (O forall h € [H], and RE h = Ry, for h e [n +1].

By our construction, it is clear that ]\7[;;F is d-strongly separated, and |5‘ Hl<n+N+2+HL

Furthermore, we can also notice that for any trajectory 7 = (S1.4,a1.1) such that sz 1 ¢ S,
the probability Py 4 (1) = P4 (7)) does not depend on 6. Furthermore, for any trajectory 7z, the
probability Py ; (7r7) = P (7) is also independent of 6.

Now, we consider the event ' = {s a1 € S } Notice that the probability Py 4 (E) = p also does

not depend on 6.

Lemma D.13 For any trajectory 75 = (S1.57, 0q.7), we have
Po(Tgsrn = |E,7q) = PG,Q(len+1 =),

which does not depend on .

Proof. For any reachable trajectory 7 = (1.7, ay.57), We have sp1 = s, + €;, forall h < H.
Hence, form € [N] and s € S,

H
Por (T80 =5) = [ ] To(snrilsn, an)
" h=1

which is independent of 6. Hence, for any 6 € ©, we have

p(m)PM+ (TH,8H+1 = 5)

6,m

= Zle[N] Zseg p(m)PMIl (Tflv SHi1 = s) = p(m)vpm(s).

]P)O;‘r(m* =M, S = S|Ea TI:I)
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In other words, conditional on the event E and any reachable trajectory 77, the posterior distri-
butions of (m*, sz, ) in ]_\45r is the same as the distribution of (m*, s1) in My. Hence, for any
trajectory 7 € (S x A)¥~H that starts with s € S, we have

PGHr(TI:]—&-l:H = T‘E7 TH)

D Pos(Targ =7Im" =m,sgy =s) Py (m* =m,sg,, = s|E,7z)
me[N]|

Z p(m)ym(S)PMGm(Tﬁ—i-l:H = T’m* =M,Sg41 = 8)
me[N] ’

= IP>6)7Q(7—1:n-‘r1 = 7_)7

where in the second equality we also use the fact that in the MDP M; ., and starting at state s € S,

- over S agrees with Mg}m. This
completes the proof of Lemma D.13. O

the agent will stay in S, and the transition dynamics of ]\79

Using the observations above and Lemma D.13, we know that for any policy 7 € Ils,, we have

Vo (m)=p-Br. 6[Voo(m(lmg_1))],

where Py ;. (E) = p, the expectation is taken over distribution of 77 _; conditional on the event E,
and 7(-|T;7_4) is regarded as a policy for the LMDP My by conditional on the trajectory 7;7_; and

restricting to S.
Therefore, for each m € Ilg,, there is a corresponding policy 7, = ETH71|E[7T(-|TH71)] € Mg,
such that Vy 4 (1) = p- Vg o(m4) = pwy(m). Similarly, we can also show that (using (23))

Drv <P§,+7 P§7+> = pDrv <P5757 ngg) < pwp(ms).
The following lemma provides a lower bound of p (the proof of Lemma D.14 is deferred to the end
of this section).
Lemma D.14 It holds that

Py (E) =p> 1 (1-6)7",
’ N

In particular, p > 2ne.

With the preparations above, we now provide the proof of Theorem D.2, whose argument is analo-
gous to the proof of Proposition D.12.

Proof of Theorem D.2  Suppose that 2 is an algorithm such that for any M e M, 2 interacts with
M for T episodes and outputs an ﬁ-optimal policy 7 for M with probability at least %.

Notice that Ve*,Q = P ande < 4. Thus, if 7 is {--optimal in S, then wy (1) > % Now, consider

the following set of near-optimal policies in ]\7; :
I, = {w eTlg, : 7 is c-optimal in M;}. (26)
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Then ITj; , are mutually disjoint for § € A"~". We then have

Py, (Rellj,) =", >, By (Rellp) <1.

fe An—1

=~

Repeating the argument as in the proof of Proposition D.12 gives T' > i(z‘l”f1 — 2), and the
desired result follows. ]

Proof of Lemma D.14. We next lower bound the probability p. By definition,

Po(sgy1 € S) = Z Po,+(Ta,5a41)

ThH reachable,sH+leg

S D W) S CPR

TH reachable,sHJrleS me[N]

D -

T reachable

n _
- Z dH—1 'p(eil +“'+eiﬁf1)

ily"' 7iH—1€[d]

-1

n 1
> dH—1 Z _ ’

i1, ig 1 €ld] p<ei1 +oeee ez‘g,l)

where in the last line we apply Cauchy inequality. Notice that for any s € 0S™,

1 e 1 - Z 1
— = max < .
p(s)  ie[N] pu(s) 1e[N] pi(s)

and we also have

H-1
1 1 1
> D = - (Sem)

i1y sig g €[d] Pm (eil Tt eiH—1> iy sig g €ld] L lr=1 (1+ S'u’m[ih]) g

d 1 4 1 \7! di-1
- - X — + — X — = =T
27116 " 271-5 (1— §2)H-1

where the second line follows from the fact that i, € {—1, 1}% and (pty,, 1) = 0. Combining the
inequalities above gives p > (1 — 6%)H 1,

In particular, to prove p > 2ne, we only need to prove (H — 1) log ﬁ < log(1/(4Nne)). Notice
that log ﬁ < %, 6 = 46, and we also have ﬁ > % using € < ﬁ = W. Combining

these completes the proof. ]

D.6. Proof of Proposition D.8

Towards proving Proposition D.8, we first prove the following proposition, which provides a simple
approach of bounding TV distance between mixtures of distributions of a special form.
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Proposition D.15 Let n,d € N be given. For x € [—1,1]% we consider the distribution

@x:

Then, for distributions i, v over [—1,1]%, it holds that
mn mn S 1
Dry (Buenl 0] By [07)° < 1 23 () - 10012,
13

where we denote
Ay i= By | x|~ By [y2| e RY.
Proof. We utilize the idea of the orthogonal polynomials (see e.g. Han (2019)) to simplify our

calculation. For simplicity, we denote O = [2d]. By definition, for any o = (01, -+ ,0,) € O™, we
have

Q2"(0) _ 17 0) _ 5 . ot
o)~ L Qu(a) = & elon

keNd

where for k = (k1,--- ,kq) € N? we denote |k| = ki + - + kg, x*¥ = x[1]% ... x[d]*, and
Cn,k - O™ — R are coefficients satisfying ¢, (o) = 0 for all |k| > n. Notice that for x,y € R4,

Q¥"(0)QF"(0) Qx( o] Qy 0j) Qx(0)Qy (0) (o, y\"
o;;n Q§"e) . 2 H (;9 Qo(o) _<1+ d )

-,0n€0 j=1

On the other hand, it also holds (where the expectation [Eg is taken over o ~ Qg)

QR"(0)Q7"(0) _ p [Q2"(0) QF"(0)
Z@ e leFe) @%?“(o)}

—Eo| Y curlo)x® 3 e (0)y?

| keNd jeNd

- Z Eo[cnk(0)cn j(0)] - xFy7.

k,jeNd

Therefore, by comparing the coefficients between the two sides of
<JJ, y> " k_.J
1+ T = Z EO[Cn,k(O)Cn,j (0)] "X y37
k,jeNd

we have
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where for k = (kq,- - , kq) such that |k| = ¢, Ny, = (kl N kd)‘ Now, we can express
Q%" (o) Q%" (o)
2DTV EXNL @%n 7E ~V Q®n :EO Ex~ [ﬁ —E ~ PSR
( l[ ]Y[y]) HQ%@(O) y“@%@(o)
=Eg Exwu[ Z cn,k(o)xk] — EyNV[ Z cnyk(o)yk]
keNd keNd
=Eo Z cn k(0)Ak|
keNd

where in the last line we abbreviate Ay, = Ex, [xk] —Eyv [yk] for k € N?. By Jensen inequality,

2

4EDTV( x~u[@®n] y~u[Q®n]) gEO Z Cn,k(O)Ak
keNd

=Eo| Y can(0)Ar D) cnj(0)A;

| keNd jeNd

= Z Cn k: Cn,j(O)] : AkAJ
k,jeNd

B ZN] <k\>dlkl
£()s 3 e
-3

keNd:|k|=¢

(7) 188,

where the last equality follows directly from definition:
2
SoNAL= Y Ni|Exes [xk] —Ey., [yk] ’
keNd:|k|=¢ keNd:|k|=¢

= 2 Exwulx[ia] - x[ie]] - By~o[y[ia] - yliel])”

i1, ig€[d]

2

B[] = B[y

O
Corollary D.16 Let d,N,K,H € Nand § € (0, 1] be given so that N > (K+§l_1) + 1. Suppose
X1, ,XN € [—0,8]% Then there exist two distributions &y, &, € A([N]), such that supp(&y) N

supp(é1) = J and

52\ "
Dy (Eing [QR], Eine, [QR1]) < Z (eil( ) |

k=K
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Proof. Consider the following system of equations:

Dokl x[d]f =0, Wk >0k 4+ kg <K -1

There are exactly (K +C‘li_1) equations, and hence such a system must have a non-zero solution

v* € R, Notice that Zfil v¥ = 0, and we then take {y = [v*]|/V, & = [-v*]+/V € A([N]),
where V' = |[v*]+|; = [[—v*]+|; is the normalizing factor. Clearly, supp(&o) N supp(&1) = &,
and we also have

Eivg,x® = Eiog, x® V=0, K —1.

V)
Consider Ay := EZ'N&)XZ@Z — E%& b ‘. then we have Ay = 0for ¢ < K, and we also have

8], < 2max x®*

| <2lxilf <2V, vezo.

2
7 1A

This implies that 5
and using the fact that (I,;I )

462 always holds. Therefore, applying Proposition D.15 withn = H
( ) we obtain

Dy (Eingo [QR], Eine, [QE i ( )k i (6H52)

k=K k=K

<
<

O

Proof of Proposition D.§ Choose d,, > 0, d > 1, and an integer K < (m — 1)d + 1 (to be
specified later in the proof). For the {y-ball B := [—d, 65]% we consider its packing number
under the ¢1-norm, denoted M (-; B, ||-||;). Using Wainwright (2019, Lemma 5.5 & 5.7), we have

1\%vol(B)
MSy:B. )= (=
aiB )= (5) S Yo

where B = {z € R?: |z|; < 1} is the ¢; unit ball. Notice that vol(B) = (26)%, vol(B’) = %.
Thus, using the fact d! > (d/e)?, we have

wsom (i) - (4

In particular, M := M(2d§;B, |-|;) > (%)d. Notice that our choice of K ensures that for
N = (Kt‘f*l) + 1, it holds that N < M. Therefore, we can pick N vectors X1, - -- ,Xy € B such

that |x; — x;||, > 2d6.

Consider the distributions ;; = Qx, € A([2d]) for each i € [N]. Clearly, we have Dy (p4, pt5) =
d for i # j. Also, by Corollary D.16, there exists &y, &1 € A([IV]) such that supp(&p) N supp(§1) =

<,
eH62, b
e :

e
L=

D3y (Biveo |17 | Eivg, [ 187 ]) <
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Consider Q = {(p1,- -, un), (&0,&1)}-

Proof of Proposition D.8 (a). In this case, we pick oo = 1, K = H + 1, d = [4e26H. Then Q is
a (2, H,6,0, N)-family over [2d], with N' < min (54, 2H)“.

Proof of Proposition D.8 (b). In this case, we take K = [\d], 6 = 2€26(\ + 1), so elggo <e?
and hence Qis a (2, H, 6, y, N)-family over [2d] with v < 2¢7*? and N < (2e(\ + 1)) ]

D.7. Proof of Lemma D.9

Suppose that @ = {(u1, -, un), (§0,&1)} is a (2, H,d,~, N)-family over O. Then, for each
integer m € {0,1,---,2" — 1}, we consider its binary representation m = (m, ---mj)a, and
define

gm = gmr®"'®§m1 € [N]T
Further, for each k = (ky1,--- , k) € [N]", we define
fik = ik, @ @ pg, € O
Under the definitions above, we know
Byt [197] = Bmen [187] & 01 2],
and hence for 0 < m, [l < 2" — 1, it holds that
T
Drvy (Ekwgm [ﬂ%H]7Ek~gl [ﬂ(,?H]) < Z Drv (Ek~§mi [M%H],Emgli [M%}H]) < T7.
i=1
We also know that supp(&,,) M supp(&;) = & as long as m # 1. For k, j € Upsupp (&) such that
k # j, it also holds that

Drv (fu, fij) = max Doy (g, ;) = 0.
1<isr
Therefore, Q' = {(/]k)ke[N]r, (€0, - - ,527"_1)} isindeed a (2", H, 0, r~y, N")-family over O". []

D.8. Proof of Theorem 3.4
In this section, we modify the constructions in Appendix D.1 to obtain a class of hard instances of
N-step decodable LMDPs
) -1
MY = {Mj :0e A }U{Mé}, (28)
and then sketch the proof of Theorem 3.4 (as most parts of the proof follow immediately from
Appendix D.1 and Proposition D.12).

For any given integer N,n, A, we set k = N — n so that H = n + 2k, and we take A = [A].
We specify the state space, action space and reward function (which are shared across all LMDP
instances) as follows.
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* The state space is

S={sgi:—k+1<i<n+k} |_| {sei:2<i<n+k} |_| {terminaly, - - - , terminal,, }.

* The action space is A.
* The reward function is given by Ry,(s,a) = 1{s = sgn,h =n + k + 1}.

We remark that, our below construction has (essentially) the same LMDP dynamics at the state s €

St = {s@,1," ", 5@n}, as the construction in Appendix D.1. The auxiliary states sg 2, - - - , Sg n+k, terminaly, - - - terr
are introduced so that we can ensure N -step decodability, while the auxiliary states sg _+1, ", 5@,0

are introduced to so that we can take the horizon H to equal N + k.

Construction of the LMDP M 9+ For any § = a € A" !, we construct a LMDP M/, 9+ as follows.

* L. = n, the MDP instances of ]\4[9+ is given by M;I, ‘e ,Mgn with mixing weight p =
Unif([n]).

* For each m € [n], in the MDP M, | the initial state is sg, 1, and the transition dynamics
atstate s ¢ Sy = {s@1, -, S@n} is specified as follows and does not depend on 6:

— Atstate sg j, with b < 0, taking any action leads to sg j,41.
- Atstate sg j, with h < n + k, taking any action leads to sg 441.
- Atstate s € {Sg n4, terminaly, - - -, terminal,, }, taking any action leads to terminal,,.

For m > 1, the transition dynamics of M(j ., at state s € Sy is given as follows (similar to
Appendix D.1).

At state sg ;, with h < m, taking any action leads to sg ;1.

At state sg 1, taking action a # a,,_1 leads to sg ,, and taking action a,,_1 leads
to sgm-

At state sg ;, with m < h < n, taking action a # ay, leads to sg, and taking action ay,
leads to sg p41-

At state sg ,,, taking any action leads to sg p,41.
The transition dynamics of M, 9+ | at state s € S, is given as follows.

— At state sq ,, with A < n, taking action a # ay, leads to sg, and taking action ay, leads
to S@.n+1-

— The state sg j, is an absorbing state.

Construction of the reference LMDP For § = ¢, we construct the LMDP Mj with state space
S, MDP instances Mp ,, - , M ,,, mixing weights p = Unif([n]), where for each m € [n], the
transition dynamics of Mg ,,, is specified as follows: (1) the initial state is always sg _j+1, (2) the
transition dynamics at state s ¢ S agrees with the transition dynamics of Mj ,, described as above,
(3) at state sg j, with h < m, taking any action leads to sg 41, and (4) at state sq ;, with h > m,
taking any action leads to sg p41.
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Sketch of proof ~The following are several key observations for the LMDP Mj (6 € A"~ i {6}).

(1) At state s € Sy, the transition dynamics of M, agrees with the transition dynamics of
My, (defined in Appendix D.1), in the sense that we identify the state sg there as the set of

{S@,Q) o 7S@,n+k}'

(2) With horizon H = n+2k, we always have sy € {s@ n, So n+k}» and all the states in {terminaly, -
are not reachable. In other words, the auxiliary states terminaly, - - - , terminal,, (introduced for en-
suring N-step decodability) do not reveal information of the latent index because they are never
reached.

(3) My is N-step decodable, because:

(3a) My is N-step decodable when we start at s € {sg 2, -, So n1k, terminaly, - - -, terminal, }.
This follows immediately from definition, because in My, any reachable trajectory 7 starting at
such state s must end with sy = terminal,,, where m is the index of the MDP instance Mg ,,.
Similar argument also shows that M is /N-step decodable when we start at s € {sg 2, - , S@n}-

(3b) My is n-step decodable when we start at sg 1. This follows immediately from our proof of
Lemma D.5 (a), which shows that for any reachable trajectory 7, there is a unique latent index m
such that 7, is reachable under Mjy ,,. Therefore, we also know that My is N-step decodable when
we start at s € {Sg k41, S@,0}-

Given the above observations, we also know that our argument in the proof of Proposition D.12
indeed applies to M ™, which concludes that the class M™ of N-step decodable LMDPs requires
Q (A"1) samples to learn. O

Appendix E. Proofs for Section 4

Miscellaneous notations We identify IIgxnp = A(IIrnp) as both the set of all policies and all
distributions over policies interchangeably.

Also, recall that for any step h, we write 75, = (s1,a1, -+, Sp, ap), and Th.pr = (Sp, ap, -+, Spr, apr)
compactly. Also recall that

Po(7n) = Py(s1.n]do(ar:n—1)),

i.e., Py(3,) is the probability of observing s;.j, if the agent deterministically executes actions ay.,_1
in the LMDP Mjy. Also denote 7(73,) := [ [;/<p, Tn(ap|Th—1, s1v), and then P (15,) = Py(7p,) %
m(1y) gives the probability of observing 73, for the first & steps when executing 7w in LMDP Mj.

For any policy 7, 7" € IT and step h € [ H], we define 7 oj, 7’ to be the policy that executes 7 for the
first h — 1 steps, and then starts executing meep, at step h (i.e. discarding the history 73,_1).

To avoid confusion, we define Py (7p,.7|7h—1, ) to be the probability of observing 7.7 conditional
on the history 7,1 if we start executing 7 at the step h (i.e. m does not use the history data 7,_1).
By contrast, consistently with the standard notation of conditional probability, Pj (Th.p |Th—1) is the
conditional probability of the model P}, i.e. the probability of observing 7.y conditional on the
history 741 under policy 7. Therefore, we have

PG (Th:r|mh—1) = Po(Th.mr|Th—1, 7(-|Th=1))- (29)
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E.1. Details of Algorithm OMLE

Given a separating policy Tgep, We can construct a corresponding map p(-) : IIrxp — IHgrnp, that
transforms any policy 7 to an explorative version of it. The definition of p(-) below is similar to the
choice of the explorative policies for learning PSRs in Zhan et al. (2022); Chen et al. (2022a); Liu
et al. (2022b).

Definition E.1 Suppose that s, € IIrND is a given policy and 1 < W < H. For any step
1 < h < H, we define ¢y, : lIxnp — HRND to be a policy modification given by

@n(m) = mop, Unif (A) opqq Tsep 7 € IIrND,

i.e. @p(m) means that we follow  for the first h — 1 steps, take Unif(A) at step h, and start
executing Tsep afterwards.

Further, we define ¢(-), p(-) as follows:

1

1 H-1
P(m) = T oW Tsep, p(m) = 5@5(77) + °H };0 on(m).

The following guarantee pertaining to the confidence set maintained in OMLE is taken from Chen
et al. (2022a, Proposition E.2). There is a slight difference in the policy modification applied to 7,
which does not affect the argument in Chen et al. (2022a, Appendix E.1).

Proposition E.2 (Confidence set guarantee) Suppose that we choose 3 = 2log No(1/T)+2log(1/p)+
2 in Algorithm 1. Then with probability at least 1 — p, the following holds:

(a) Forallk e [K], 0% € ©F;
(b) Forall k € [K] and any 0 € ©F, it holds that

k—1
> D (BB < 2. (30)
t=1

Let Ey be the event that both (a) and (b) of Proposition E.2 above hold true. In the following, we
will analyze the performance of Algorithm 1 conditional on the suceess event Ej.

The following proposition relates the sub-optimality of the output policy 7 of Algorithm 1 to the
error of estimation.

Proposition E.3 Suppose that Assumption 4.6 holds, and W > @~ '(log(L/es)). Conditional on
the success event E, we have

K
N 1 ko k
V., — VQ*(TF) < E ];1 DTV (P9k7 6*) .

Proof. Under the given condition on W, it holds ey~ v (7.) < &5 (Proposition 4.1). By Propo-
sition E.2 (a), we also have §* € ©F for each k € [K]. Therefore, by the choice of (0¥, 7%) in
Algorithm 1, it holds that V, = Vj«(m,) < Vi (7*). Hence,

Vi = Ve (%) < Vou () = Ve (%) < Drv (P52 B ),
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where the last inequality follows from the definition of TV distance and the fact that ZhH:1 Ry (sn,an) €
[0, 1] for any trajectory. Taking average over k € [ K| completes the proof. O

E.2. Proof overview

Given Proposition E.2 and Proposition E.3, upper bounding the sub-optimality of the output 7
reduces to the following task.

K

Task: upper bound Z Drv (Pg: , ng ) , given that Vk € [ Z D3 ( IP’ZS )) < 28.
k=1

A typical strategy, used in Liu et al. (2022a); Chen et al. (2022b,a); Liu et al. (2023), of relating
these two terms is three-fold: (1) find a decomposition of the TV distance, i.e. an upper bound of
Dy (Py,Pg.); (2) show that the decomposition can be upper bounded by the squared Hellinger
distance DIQ{ (P57, P5.); (3) apply an eluder argument on the decomposition to complete the proof.

For example, we describe this strategy for the special case of MDPs.
Example E.4 Suppose that © is instead a class of MDPs and p(7) = 7, then we can decompose

H-1
Dy (Pg,Pg.) < Z Ef«D1v (To(-|sn, an), Tox (-|sn, an)) < 2H Dy (Pg, Pg.) . (€2))

=:Gogx (m,0)

In tabular case, the decomposition Gy« (-,-) can be written as an inner product over RSXA, ie.
Gy« (m,0) = (X(0),W(n)) for appropriate embeddings X (0), W (r) € RS*A. Then, using
the eluder argument for linear functionals (i.e. the “elliptical potential lemma”, Lattimore and

Szepesvdri (2020)), we can prove that under (30), it holds that ) ;. Dy (Pak , Pg. ) (’)(« /SA-KH?2j).

More generally, beyond the tabular case, we can also apply a coverability argument (see e.g. Xie
et al. (2022) and also Proposition A.9) as follows. Suppose that rank(Ty«) < d. We can then invoke
Proposition A.10 to show that Gy« admits the following representation:

Go» (777 9) = Ewwp(w)fe(l‘)a
where p : 11 — A(S x A) is such that there exists 1 € A(S x A), ||p(m)/p|,, < d- A forall .
Hence, Proposition A.9 implies that ) ;. Dty (Pek P, ) < O(\/dA-KH?B). ¢

Analyzing the separated LMDPs In our analysis, we first decompose the TV distance between
LMDPs into two parts:

Dry (Pg,Pg.) < Dry (PG (Tw = -), P (Tw = -))

32
B [Drv (B (Fworr = rw) B (oo = w0

where the part (a) is the TV distance between the distribution of trajectory up to step W, and part
(b) is the TV distance between the conditional distribution of the last H — W + 1 steps trajectory.
We analyze part (a) and part (b) separately.
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Part (a) Under the assumption of co-separation under 7se, and H — W > @ (log(2L)), we
can show that a variant of the revealing condition (Liu et al., 2022a; Chen et al., 2022a; Liu et al.,
2023) holds (Lemma A.7). Therefore, restricting to dynamics of the first W steps, we can regard
O as a class of revealing POMDPs, and then apply the eluder argument developed in Chen et al.
(2022a). More specifically, our analysis of part (a) relies on the following result, which is almost an
immediately corollary of the analysis in Chen et al. (2022a, Appendix D & E).

Theorem E.5 Suppose that for all 0 € ©, 0 is ww-separated under msep, and H—W > w1 (log(2L)).
Then conditional on the success event Ey,

K
> Dry (B, BT < VLdAHZ K,
k=1

where 1 = log(LdH - K/(ApB)) is a logarithmic factor.

We provide a more detailed discussion of Theorem E.5 and a simplified proof in Appendix E.6.

Notice that, although the statement of Theorem E.5 bounds the total variation distance between the

k k
entire (H-step) trajectories IP?,SW ) and ng” ), the policies ¢(7*) act according to the fixed policy

Tsep ON steps h > W. Thus, Theorem E.5 is not establishing that the model 6* is being learned in
any meaningful way after step W (indeed, it cannot since we may not have H —h > @~ !(log(2L))
for h > W). To learn the true model §* at steps o > W, we need to analyze part (b) of (32).

Part (b) The main idea for analyzing the steps A = W is that, given eg() is small, we can regard

Py (Fwer = [Tw) ~ My, s i q (T (lrw—1), sw). (33)
In other words, conditional on the first W steps, the dynamics of the trajectory Ty .x is close to
the dynamics of the MDP My ,,, (). Therefore, we can decompose part (b) in a fashion simi-
lar to the decomposition (31) for MDP (Proposition E.7), and then apply the eluder argument of
Proposition A.9 (see Corollary E.9).
E.3. Structural properties of separated LMDP

In this section, we formalize the idea described in the part (b) of our proof overview.

For each h € [H] and trajectory 7, we define the belief state of the trajectory 75, under model 6 as

bo(74) = [Bo(mim)| e AL (34)

Recall the definition of M, ,(-) € A((A x S)"=1)in (1). Then, conditional on the trajectory 7y,
the distribution of Tyy.y = (aw, -+ ,ag—1, sgr) under policy m can be written as
IP)g(?W:H = |?W) = Em~b9(?w)[Tg,m(?W:H = |?W)]
(35)
6
= Eyaby (i) [Mm,H7W+1(7T|TW717 SW)]

where 7|, _, = m(-|Tw—1) is the policy obtained from 7 by conditional on 7y . In particular,

Dy (B5 (Fwetr = 17w) My s (Wl osw) ) < Y, bo(Fw)lml.— (36)

m#£mg(Tw )
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We denote

eo(Tw) = Y, by(Tw)[m]. (37)

m#me(Tw )

Notice that by the definition of by(7Ty ),

co(tw) = D, be(Tw)lm] = 1 —maxby(Tw)[m] = Bo(m # mg(Tw)lTw), ~ (38)

m#mg (Tw )
and hence eg vy (m) = Ej [eq(Tw)].

In the following, we denote W := H — W + 1, and we will use the inequality

DTV (Pg(?WH = "?W)7M29(7W)7W(F|TW717SW)) < 69(?W>7 (39)

(which follows from Eqs. (36) and (38)) and the fact that eq 1 (7) = EJ[eq(Tw )] repeatedly. This
formalizes the idea of (33). Also notice that ¢(7) = 7 oy Tgep, and hence we also have

Dy (Pg(”) (Tw:n = "?W)7M20(7W)7W(Wsepa3W)> < eg(Tw). (40)

The following proposition shows that, as long as the model @ is close to @, there is a correspondence
between the maps mg and my.

Proposition E.6 Suppose that 0 and 0 are w-separated under Tsep and W=H-W+1=>w (1)
Then there exists amap o = 045 : [L] x § — [L] such that for any (W — 1)-step policy m,

PX (mo(Fw) # o(mg(Fw), sw)) < 288D% (]Pj(”),ng(”)) + 14deq gy () + 14deg y (m), (41)

where ¢(T) = T oy Tsep i defined in Definition E. 1.

Proof. In the following proof, we abbreviate ¢ = D (]P’g(ﬂ), Pg(ﬂ)) By Lemma A.5,

£ [D%v (Pg’(rr) (Tw.m = .|FW),]P>§(TF) (Fur = 'IFW)>] < 4e. @2)

Using (40) and the triangle inequality of TV distance, we have

Drv <M210(7W)7V_V(7rsep’ sw), ané(FW)J/_V(ﬂ-Sep’ 3W)>

< Drv (B G = 17w ) By (R = [7w)) + eo(mw) + eg(Tw),

and hence

£ [D%V (aneﬁw),W(wsep’ sw); MZ@@(?w),W(Wsepa SW)>]

<385 D3y (P57 Fwoar = 17w) By ™ (P = -17w) )| + 35 [eo (T )] + 3B [eq(7v )]
43)
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By definition, we know E7 [e5(Tw )] = ey (7), and by Lemma A.3, we also have

Eg[eo(Tw)] < 3EF[eo(Tw)] + 2D (PG (Tw = -), PG (Tw = -))
= 3egw () + 2Df; (Pg(Tw =), P (7w = )) .

Plugging the inequalities (42) and (44) into (43), we have

(44)

Eg | Dy (M2, 5y i (Toeps 51, MO, o (T, 5w) ) | < 182 + 9eq,w () + 9eg () = €'

In other words, it holds that

Z Py (sW s,mg(Tw) = 1, mg(Tw) l_) DTV (I\\/JIZW(wsep,s),MlQ:W(Wsep,SD <ée. 45
Il

Notice that W > w~1(1). Thus, using (11), for any m, [ € supp(py) such that m # [, we have

N | —

Dy (M?,W(Trsepy 3)7 Mfmw(ﬁsepa 5)) =

Hence, we choose o = 0.5 as
R

(l s) € argmin Dy (Mﬁw(ﬂsep, S),M?W(Wsep, s)) : (46)
lesupp(pg) ’

Then for any [ € supp(py) such that [ # o(I, s), it holds that

2l)TV (MZW(Wsepy S), MlQ:V‘V (Wsepa 3))
> Dty <M197W(7Tsepa 3)7 M?W(Wsepv 5)) + Drv (MZ(l,s) W(ﬂ'sepa 3)7 M?W(ﬂ'sepy 3))

1
> DTV (MZW(WSQP73)7M§_(Z7S)7W(7Tsep75)> = 57

and hence Drv (M?W(ﬂ'sep, s), M?W(wsep, s)) > %. Therefore,

ZP Sw =38 mG(TW) =1 m9 TW Z) DTV (M W(Wsepa )7M?’W(7Tsep73))

Ll
Z Z Sw—smg(Tw)—lmeTW Z) 16
Is l£o(l,s)
= < ES(ma(w) # o(ma(mw), sw).
The proof is hence completed. L]

Proposition E.7 (Performance decomposition) Given LMDP model 0 and reference LMDP 0, for
any trajectory T, with step W < h < H, we define

E79(7h) = max Dy (Ti(mﬁw),sw)(-lsh, a)fﬂ“fné(m)«lsh,a)) , (47)
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where 0 = 0y [L] x § — [L] is the function defined in (46). Then it holds that

H-1
Drv (P§,P5) < 300D1y (B)™, Po™) + 15060, (m) + 150¢qy(m) + Y. B5e?¥(7,). 48)
h=W
Conversely, for any step W < h < H,
E;£% ()2 < 184D (7™, P ™) 4 300D% (P, Py ™) )
+ 200eg,w () + 200eg ().
Proof. We first prove (48). Notice that, by Lemma A.4,
Dry (P, P5) < Drv (PG (Tw = ), 5 (Tw = -)) (50)

+EF[Drv (PG (Tw:m = -[7w), P (Fw. = -[Tw)) |-
Using (39) and the triangle inequality of TV distance, we have

Drv (P (Tw.m = -|Tw), P (Tw.zr = -[Tw))
< Drv (Mﬁle(Tw) 7 (7T|TW—17SW)nglé(?W)’W(TdTW—l’SW)) + 69(?W) + 69(?W)v

and taking expectation over Ty ~ 7, we obtain

]Eg [DTV (Pg(FWH = '|FW)5P3(?W:H = ‘FW))]
<5 Drv (M0, i 31 (Tl 5w), MO, o (g sw) ) | + Egleo(7u)] + B leg(7w)].
D
For the last two term in the RHS of (51), we have Ef[es(Tw )] = €5y (7) and
Ef[eo(Tw)] < Eglea(Tw)] + Drv (PG (Tw = ), P§(Tw = -)) - (52)

To bound the first term in the RHS of (51), we consider the event Ey. 5 := {mp(Tw) = o(mg(Tw), sw)}.
Under event Eg;é, by Lemma A.4 we have

0 0
Dy (Mmg(FW),W(W‘TW71 ) Sw), Mmg(FW),W(W‘wal ) Sw)>

H-1 i
< ) E | Drv (Tfn@(?w)('|5haah)anné(?W)('|5h>ah)>‘7'h ~P§('|?W)]
h=W
H-1 )
< D) E|maxDry (Th, ) (L1 0). Thy ) Clsns ) ) | 7 ~ B (7w)
= s meg(Tw) hy @), mg(Tw) hs h 0 w
h=W
B H-1 _ B H-1
59 E 59;9(7;1)‘7']1 ~ ]P) |TW ] E;—r[ 6:60 ‘71/1/] .
h=w = h=W
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Taking expectation over Ty ~ P7, it holds

Bg [ Drv (M2, o) o (Tl 5), MO, (o)) | S P(Bgg) + Y BFEX (7).

Combining (51) with (52), (53) and (41) (Proposition E.6), the proof of (48) is completed.

We proceed similarly to prove (49). Notice that for any trajectory 7,
Po(shi1 = 7)) = Erpeby7) [To.m (51, an)]-

Therefore,

Dry <P0(3h+1 = -\Th),T%(?W)(-\Sh,ah)) < D be(Tn)[m] = eo(7h),

m#me(Th)

and hence
Dty (Tfne(?w)('|shvah)?’]rf;mg(?w)('|sh7ah)> < Drv (Po(sn+1 = “[7n), Pg(sn+1 = -[7a))
+ eg(Th) + eg(Th).
In particular, given h = W, for any trajectory 75 whose prefix Ty satisfies Ty € Ejp.5, we have
E%0(7h) < max Doy (Po(sns1 = [, @), Py(sni1 = [Tn, @) + ea(Fr) + (7).
Thus,
1{Eys} % (m)? < 3max Dy (Po(sn+1 = -[Th, @) Py(sn+1 = [Th,a)) + 3eg(Th) + 3e5(Th)-
Taking expectation over 7, ~ P7, we have
E5E ()2 < Py (Egy) + 3Ej [ max Diy (Po(sns1 = 7, a), Pa(snsr = 174, 0))
+ 3EZ [eo(Tn)] + 3EZ[eg(Th)]-
Notice that

Eg[mSXD%V (Bo(sn+1 = [Th, @), Pg(sn+1 = [T, ))
s 2 =
S Ee_ [Z DTV (]P)G(ShrFl - .’Th7 ) ]P)H(Sh+1 = |Th7

< 2E7| > Dfi (Po(sni1 = [Thr @), Pg(sni1 = -[Th, a) ]

=2E7[A- Dg (Po(spt1 = -[Thy an ~ Unif(A)), Pg(spt1 = [T, an ~ Unif(A)))]

4AD2 < ﬂOhUnlf(.A) (?h—i-l _ .)’PgohUnif(A) (Fh-i-l _ ))
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4AD2 ( @h(”)’Pgh(ﬂ')> :

where the third inequality follows from Lemma A.5. By definition, we know E7[eg(71)] =
egn(m) < egw(m) (Lemma E.8), and using Lemma A.3, we also have

EZ[eo(71)] < 3EF[eq(7n)] + 2DE (P§(Fn = ), P3(7h, = -))
< 360,W(7T) + 2D12-I (]P)‘gh(ﬂ)’lp)gh(ﬂ)) ‘

Combining the inequalities above with (41) completes the proof. O
Lemma E.8 For h > W, it holds that e j,(7) < eg w (7).

Proof. By definition,

egn(m) = Eg[l — mrgxﬁ”g(m* = m[?h)]

< Eg[l — Py(m* = me(?w)ﬁh)]

E.4. Proof of Theorem 4.3
We first present and prove a more general result as follows; Theorem 4.3 is then a direct corollary.
Corollary E.9 Under the success event Ey of Proposition E.2, it holds that

- AH?23  W2(U; + KU,)
— * < 2
Vi — Ve (7) < \/Ld LK< % + 2 + €5,

where we denote 1 = log(LdH - K /(Ap)), and

K
U, = Z 69*7W(7Tk), U+ = Z €9k7w(77't).
k=1

1<t<k<K

Proof. Recall that by Proposition E.3, we have that under Fj

K
Ve — Voe(7 Z (ek, ’“)

Taking summation of (48) over (91, 71),--- , (0%, 7)), we have

ZDTV(%, S ZDT (P By™) + i(eekw ) + eoe (1))
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H—-

K
2 Z gek 9* )

h=W

By Theorem E.5, we can bound the first term in the RHS above as
Z Drv (]P¢ (=) ol '“) < /LIAH? K B.

Combining with the fact that €9k’W(7Tk) < &, we obtain

K H-1 K
3 Dry (Pg,’j,ﬂvgf) < VLAAH2RKB + Keg + U+ Y. DIERENT (7). (54)
k=1 h=W k=1

Using (49) and the definition of p(-), we also know that for all ¢, k € [K],
A t t - -
N Eg e (7,)? < AHDY (ngf ) P )) + Wege (1) + Wege (). (55)
h=W
Therefore, using (30) and the fact that Fy holds, we have

H-1
SN ERE" (7)< AHB + WU, (56)
t<k h=W

where we denote Uy, := Y, ;. (egr (") + eg= w(n")). Therefore, it remains to bridge between
the inequalities in Egs. (54) and (56) above using Proposition A.9.

FixaW < h < H — 1. Notice that £9"¢" (Tr) only depends on 7}, through the tuple

xp = (mg«(Tw), sw,sp) € X :=[L] x S x S,

and hence we can consider the distribution p; , = ng (zp, = +) € A(X). It remains to shows that
there exists a distribution z,, € A(X') such that p; p(x)/pn(x) < CeovVa € X for some parameter
CCOV‘

Under Assumption 2.7, by Proposition A.10, there exist distributions fi,, € A(S) for each m € [L]
such that

Tor m(s'|s,a) < d - fim(s), Vme [L],(s,a,8')eSx AxS.
Therefore, in the case h > W, for any = = (m, s, s’) € X, we have

t t
pen(z) = Phu(zp = ) <Pl (sw = s,s, =)
=B o) [L{sw = 5,50 = 5'}]

= By [ow = ) E[ 1o = Y51 ~ Bar s, )

= E(m*ﬁh—l) [1 {SW = 5} Tg;* (5/|5h—17ah—1)]
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< E(m*ﬂ'h—l) [1 {sw =s}-d- i (3/)]

= E(m*,rwfl)[E [1 {sw = s}lsw ~ @9*(.17W,1,m*)] d- ﬂm*(S')]
= Egmr 1)[T «(slsw-1,aw-1) - d - [Lm*(sl)]

S Eps [d+ finr (8) - d + fie (8]

=d " ppe (Vi (5) i (5)),

m*€e[L]

where the expectation is taken over (m*, 7p7) ~ Iﬁgf . Thus, we can choose i, € A(X) as

1 o~ N
/Lh(m7 S, 5,) = i3 Z Po* (m )Nm* (s)lum* (Sl)a V(m, 5, 5,) eX.
m*e[L]

Then, for h > W, t € [T] and any x € X, we know p; 5 (x) < Ld? - pp(x). For the case h = W,
an argument essentially the same as above also yields that there exists a puy € A(X) such that
pew(z) < Ld - pw(x) forallt e [T], z e X.

We can now apply Proposition A.9 with M = Af to obtain that forall W < h < H — 1,

K

o Li2K
N R e (7h) < | Ld?log 1+

k=1 Aﬁ

K
KAB+ ) ) nggekse(fhvl. (57

k=1t<k

Taking summation over W < h < H — 1 and using (56), we have

H-1 K N B K
> B30 (7)) <\ | Ld2u [KAHQB + W2 Uk]. (58)
h=W k=1 k=1

Combining (58) above with (54), we can conclude that

K
N Drv (B3B3 ) € VEAAR? KB + Ko + Us + Hy | Liug
k=1

K
KAH?8+W?2 ) Uk]
k=1

< AL (KAH26 + W2(KU, +U.)) + Key + Us

< AL (KAH25 + W2(KU, + U,)) + Kes,
where the last inequality follows from U, < K and hence U, < /KU,. Applying Proposition E.3
completes the proof. O

Proof of Theorem 4.3 Under Assumption 4.2, it holds that eg yy(7) < € forall # € © and 7 € II
(Proposition 4.1). Therefore, U, < K¢y, U < K?e, and Corollary E.9 implies that as long as

2 A 772 2
ZLdAHLK-ﬁ, . < €
g2 Ld®W2i’
we have V, — Vi« (T) < ¢, which is fulfilled by the choice of parameters in Theorem 4.3. O
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E.5. Proof of Theorem 4.8

According to Corollary E.9, we only need to upper bound the term U, and U, under Assumption
4.7. The following proposition links these two quantities with the condition €9kvw(7rk ) < &Vk €
[K7.

Proposition E.10 Suppose that Assumption 4.7 holds. Then for any policy w, LMDP model 6 and
reference LMDP model 0, it holds that

egw (m) < é[BDTV (]P’(g(w),ﬂ”g—)(w)> + egyw(ﬂ')]
Proof. Using (40) and the triangle inequality, we have
Dy (PZ(W) (Tw.m = '|7W),Mi§(;w)w(7fsep,SW))
< Drv (B)™ Fwaar = 17w) By Fuver = -[7w)) + ea(Tw).
On the other hand,
Py™ Fworr = 7w) = By (ray) [MZ,W(%@ Sw)]»
and hence by (8), it holds that
Doy (Pg(ﬂ) (Fwn = .|?W)7an§(?w) 77 (Tsep SW)) (1 — max by (Tw )[m ]) = aey(Tw).
Taking expectation over Ty ~ P7, we obtain
o [eq(Tw)] < BF [ Drv (B)™ (P = [7w), MY, o (e sw)) |
<E7 [DTV (P§<”> (Fw.nr = 7w ), Pe™ (T = -|?W))]

<2Drv (B, PS4 gy (m),

+Egleg(Tw)]

where the last inequality follows from Lemma A.4 and the fact that Ef [e5(Tw )] = €5y (7). Notice
that we also have

EZ[eo(Tw)] = Ef[es(Tw)] — Dy (B (Tw = -), P§(Tw = -))
= 697{/[/(7[‘) — Dy (Pg(?w = -),Pg(?w = )) .

Combining the inequalities above completes the proof. O

Proof of Theorem 4.8  According to our choice of (6, 7%), we know that eek’W(ﬂ'k) < g4 always
holds for k € [ K']. Hence, by Proposition E.10,

1 k k
egrw (") < a[?)DTV (PZzgﬂ )JP’ZS*(W )> + Es]-

Summing over k € [K ], we obtain that

K
U* = Z e@*,W(
k=1

Q\*—‘

[3 > Drv (P, By ) + KES]
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1 K
< “N/LdAH? 1 KB + —55.
o o
where the last inequality follows from Theorem E.S.

Similarly, by Proposition E.10, we can bound
1 s s
eqr () < a[3DTV (B2, B5™) + ()]
1 s s s T
< a[sDTV (P By™) + 3Dy (™, PR ) + e .

Therefore, taking summation over 1 < ¢ < k < K, we have

K
[ > D (B ) + K Y Doy (BP0 + K%s] .
1<t<k<K t=1

RIm

U= Y epw()s

1<t<k<K

By Cauchy inequality, it holds

e ) < e 5 oh (R RE) < s

1<t<k<K 1<t<k<K

where we use the fact that Dy < +/2Dy and Proposition E.2. Combining Theorem E.5 with the
above two inequalities, we can conclude that

2
K<eg

1
UJr = Z e@k?W(ﬂ't) S aK LdAHQLKB +

I<t<k<K

Hence, Corollary E.9 implies that

. AH?23 e 1 [LdAH?2ixB
— % < 2 _ .
Vi — Vor(T) < LdLK< e +a+a %

Therefore, to ensure that V, — Vp« () < ¢, we only need to ensure

375 A 176,3 2
KZLdAHLK'ﬂ, e < ag .
a2€4 Ld2 W2 LK
In particular, the choice of parameters in Theorem 4.8 suffices. O

E.6. Proof of Theorem E.5

The proof of Theorem E.5 is (almost) a direct analog of the analysis in Chen et al. (2022a, Appendix
D & G). However, we may not directly invoke the guarantees there for general PSR to obtain The-
orem E.5 because PSR is formalized in terms of a set of core action sequences, so that the system
dynamics is uniquely determined by the dynamics under these action sequences. However, for our
setting, we are instead given an explorative policy 7sep, Which is not necessary a mixture of action
sequences.

Therefore, in the following, we present a minimal self-contained proof of Theorem E.5, which is
in essence a slight modification of the original proof in Chen et al. (2022a). We refer the reader to
Chen et al. (2022a) for more detailed analysis and proofs.

In the following, we first introduce the notations for POMDPs, which generalize LMDPs.
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POMDPs A Partially Observable Markov Decision Process (POMDP) is a sequential decision
process whose transition dynamics are governed by latent states. A POMDP is specified by a
tuple {Z,0, A, T,0, H, u1 }, where Z is the latent state space, O(+|-) : Z — A(O) is the emission
dynamics, T(+|-,-) : Zx.A — A(Z) is the transition dynamics over the latent states, and p; € A(Z)
specifies the distribution of initial state z;. At each step h, given the latent state z; (which the agent
cannot observe), the system emits observation o, ~ O(+|z},), receives action a;, € A from the agent,
and then transits to the next latent state z511 ~ T(-|zp,ap) in a Markov fashion. The episode
terminates immediately after az is taken.

In a POMDP with observation space O and action space A, a policy m = {m; : (O x A)"~1 x
O — A(A)MHL, is a collection of H functions. At step h € [H], an agent running policy 7
observes the observation oy, and takes action ap ~ 7, (-|7,—1,0n) € A(A) based on the history
(Th—1,0n) = (o01,a1,...,0p-1,an—1,0p). The environment then generates the next observation
op+1 based on 7, = (01,a1,- - ,0p,ap) (according to the dynamics of the underlying POMDP).

Suppose that Qis a set of POMDP models with common action space A and observation space O,
such that each 0 € © specifies the tuple (Ty, Qy, 119) and hence the POMDP dynamics. ’

Suppose that a step parameter 1 < W < H is given, along with a policy sep,. Then, for each policy
m, we define

w-1
1
Sp(ﬂ') = W Z T op, Ul’llf(.A) Oh+41 Tsep (59
h=0
analogously to Definition E.1. We also consider the emission matrix induced by 7gep:
Ko = [Py ((01,a1, -+ o) =Tls1 = 5)] 7 ) € RTZ, (60)

where W = H—W + 1, T = (O x A)W~! x O. Suppose that for each § € O, there exists
K; € RZ*T such that K;Ke = Iz, and we write Aeyp 1= MaxXgeq HK;’ H1

Operator representation of POMDP dynamics Define
By(0,a) = KgTg, diag(Qp(o-) Ky,  qgo = Kopus. (61)

where we denote Ty, := Ty(:|,a) € R®*Z for each a € A, and diag(Qy(o|-))RZ*Z is the
diagonal matrix with the (z, z)-entry being Q(o|z) for each z € Z.

An important property of the definition (61) is that, for any trajectory 7, , yir = (Th, Oh41, Aht15" " 5 Opy7i7)>
it holds that
T
(Onstsans o) BO(ORs an) -~ Bo(o1,a1)ao0 = Po(ont1, ant1, - -+ 0y |Thy Tsep) X Po(01:n|do(a1:n)),

where we recall that Pg (0,11, Gh+1, -+, Op 4y | Th, Tsep) is the probability of observing op, 41, aht1, -+, 0y
when executing policy 7sep starting at step 4 + 1 in POMDP 6, conditional on the history 73, (see
also (29)). Therefore, for any policy 7, it holds that

Py " (T ) = e(TohH,ahH,..,O}L+W)Be(0h»ah) ~-Bg(o1,a1)q0,0 x m(1).  (62)

7. Strictly speaking, 6 also specifies Zy, its own latent state space. For notational simplicity, we always omit the
subscript 6 of the state space Z in the following analysis.
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In particular, we can now express TV distance between model as difference between operators:

DTV (]P)Woh+17rsep Pﬂ-oh-i-lﬂ—bep )

(63)
= izﬂ(m) x |Bg(on, an) - --Bg(o1,a1)d00 — Bg(on, an) - - Bg(or,a1)qg ], -
Th
Also, we denote qg(17,) = [P@((O}H_l, Aht1, 2 Opyrir) = *|Ths wsep)] € A(T), then we also have
By (on, an) - - Bg(o1,a1)de,0 = ag(7h) x Po(7h), (64)
where we recall the notation Py(73,) = Py(01.p]|do(a1.p)).
Another important fact is that, for any 1-step policy 7 : @ — A(A) and q € R7,
2, mlalo) x [Bo(o, a)al; < |Kal,, (65)
o,a
Z (alo) x |‘K+B9 0,a q||1 HK q||1 (66)

o,a

This is because |Kyll; < 1 < Land };, ,m(alo)Og(o|z) = 1 for any z € Z. Hence, we
can apply (66) recursively to show that, for any h-step policy 7,

> m(m) % [By(on,an) - - Bo(o1,a1)qly < [Kjal, - (67)

Th

Proposition E.11 For each pair of models 0,0 € ©, we define &% . RT >R as follows:

=00 1
E%0(q) := iﬂ/.énaic 277 (alo) x |Ky (Bg(o,a) — Bj(o, a))q”1 (68)

For each step h, define®

. =0-0 . 1
M0 (m) == E"%(ap(m)), &7 = 5 |Kq (00— a5, -

Then it holds that
I U1 i}
Drv (PgOW”SeP,PgOW”“p) <&+ 3 Exe¥(m). (69)
h=1

Conversely, it holds

I i}

(€572 + Y Epe®(m1)? < BAWAZ D} (Pg(”),lpg(“’). (70)
h=1

8. The error functional might seem strange at first glance, but it can be regarded as a counterpart of the decomposition
(31) for MDP. Indeed, when © is a class of MDP models (i.e. Z = O = Sand K = QO = Is), then

E%mn1) =By ry 10 max Drv (To(-[sn, a), Tg(-[sn, a)) -
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Proof. Before presenting the proof, we first introduce some notations. We abbreviate By (01, a1, , 01, a;) =
By(or,ar) - - - Bg(o1,a1). Foratrajectory 77 = (01, a1, -+ ,0m,am), We Write Tp.p, = (Opr, Gpry -+, Op, ap)
and Th.p, = (Oprs Gnry 5 0n)-

Using (63), we have

2DTV (IEDWOWﬂ'bep PTI’Ole'bep)

(63)
= Z m(tw-1) X |Bglow—1,aw—1) - - Bg(o1,a1)ae0 — Bglow—1,aw—1) - -- Bg(o1,a1)qg |,
TW—1

< ) w(rw-1) [Bo(riw—1) (av0 — qs0) |,
TW—1

W-1
+ > w(rwo1) X Z |Bo(Ths1:w-1) (Bo(on, an) — Bg(on, an))Bg(T.n-1)dg,0

@ 1
5 [Kq (00 —ago) |, + Z Y im(mh) x [Kg (Bo(on, an) — By(on, an))Bg(ria—1)ag,|,
h=1 T3

1
@ |\K+(Q9o a50) [, + Z D) x |Ky (Bo(on, an) — Bglon, an))ag(th-1)|, x Pa(th—1)
h=1 T3

W
=&+ % Z DD Pi(ra-1) x w(an|h-1,08) x |Ky (Bg(on, an) — Bg(on, an))ag(ta-1)|,

h=1 Th—1 0n,ap

W—
ZZ Thlxgg( (Thl))

where the last two lines follow from the definition (68). This completes the proof of (69).

Next, we proceed to prove (70). By definition,

289;§(Th) = rr;z}xz 7’ (alo) x HK;(B(;(O, a) — Byg(o, a))qg(Th,l)Hl
< ngr&}XZ 7' (alo) x [Ky (Bg(o,a)as(mn-1) — Bg(o, a)ag(h-1))|,

+ n;é;xz 7' (alo) x [KgBo(o,a)(ao(Th—1) — dg(7h-1)) ], -

0,a
For the first term, notice that for any o € O, a € A,
By(0,a)a(th-1) = [Po(on = 0, Thi1psw = “|Th1, 00 = @, @y 1y ~ Toep)| € RT.
Therefore, for any step 1 < h < W — 1 and any 1-step policy 7’ : O — A(A), we have

Ew (alo) x |Kg (Bo(o, a)as(th-1) — Bg(o, a)ag(mn-1))|,

AepoW (alo) x [Bg(0, a)ap(th-1) — Bg(o, a)ag(tn-1)l,

0,a
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= 28exp D1y (Po(Th s = 101, © Tsep), Pg(Tpapsry = 1701, 7" © Tep))
where the inequality uses the fact that | KJ |; < Aexp for all § € ©. Furthermore,

1
§D%V (Pe(?h:hﬂ/f/ = | Th—1, 7" © Tsep), Pg(Thpaw = “1Th=1, 7' © Tsep))

< DI2{ (PH(?h:thVV = |1, 7o Wsep)a Pé(?h:hﬂi/ =|Th_1, 7' o 7Tser)))

< Z D (Po(Thapa = +[Th—1,0 0 Tsep)s Pg(Tripary = -|Th-1, @ 0 Tsep))
acA

= ADIQ{ (PG <?h:h+W = |71, Unif(A) o 7rsep)v Pé(?h:thW = |71, Unif(A) o 7rSep)) )

where the second inequality uses the fact that squared Hellinger distance is an f-divergence. For
the second term, by the definition of By, we have

© 6)
ZW/(GIO) x | Ky Bo(0,a)(qg(th-1) — ag(th-1))|, < |Kg (q0(mh-1) — ag(ma-1))|,
< Aexp [a0(Th-1) — qg(mn-1);
= Aexp 2Dy (PH(?h;thW—l = "Thflaﬂsep>vpé(?h:h+ﬁ/—1 = "Thflvﬂsep))
Combining the inequalities above and applying Lemma A.5, we obtain
Egé’g;é(m,l) 4AA2 DH (PﬂohUnlf(A)o;L+17rsep’ PgOhUnif(-A)Oh+17Tsep)

exp
]P)ﬂ-ohﬂ-sep ]P)T('Ohﬂ'sep (71)
0 [} :

+ 42

exp

Notice that for step h > 2, we have
DH (]P)Trohﬂsep PWCthep) ADH< TI'Oh 1 Unif(A)op Tsep P?OhflUnif(A)Ohwsep)
) 9 s
and we also have
0;0 1 y o
50 = 5 HK; (q9,0 - q§,0)|‘1 AexpDTV <P p(Tl = ) IP)@ p(Tl:V—V _ ))

(72)
< V2 Dt (B, P37 ).

Combining the inequalities above completes the proof of (70). O

Proposition E.12 Suppose that D = rank(Ty+), 8 = 1, and (6%, 7'),--- , (0%, 7%) is a sequence
of (POMDRP, policy) pairs such that for all k € [ K],

éDH( ) <

Then it holds that

K
Z ( 71' OW Tsep ]P)ﬂ' OWﬂ'sep> \/AeXpADWZZ‘ KM,

2
where 7 = log (1+ %5352 ).
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Proof. Using Proposition E.11, we have

W-1 K
Z DTV( A A OW”@) Z LA + Y S AERE"  (n), (73)
h=1 k=1
and for any pair of (¢, k),
oF; ") e 050 ( (") me(r?)
(& 2 p €0 (1, 1)? < BAWAZ D3 <IP’f,f’k P! )
In particular, for any k € [ K],
0%;6* \2 S 6%;6* 2
D& )+ Z M ERET T (1,1)? < BAWAR M (74)

t<k h=1 t<k
It remains to apply Proposition A.8 to bridge between (73) and (74).

For each k € [K], define f;, = £ : RT — R. By definition, f;, takes the form

l’) = Hl;}X Z ‘<x)yk,(o,a),7r>’

0,a,s

where y];r(o A = m(alo) x eIK;k(ng (0,a) — By« (0,a)). It is also easy to verify that fj(x) <
202, 2]y using [Kg || < Aexp and [Kg,
the set

1 S Aexp. Furthermore, for eachstep1 < h < W — 1,

Xy, = {qe*(Thfl) $Th-1 € (O x A)hil}

spans a subspace of dimension at most D.

Therefore, applying Proposition A.8 yields that foreach1 < h < W — 1

K K
DA Ej £ (1,_1) < DZ[K CAM + ) Y ER e (Th1)2], (75)

k=1 k=1t<k

where 7 = log(1 + 2A2, DK /AM). Similarly, treating Eg *%" as a function over the singleton set,

exp
we also have

K K
Miagl? < Z[KAM + 3] Z(ES’“‘”P]
k=1

k=1t<k

Combining the two inequalities above with (73) and (74), we obtain

K W-1 K
Z DTV< 7T OW T'sep IP) OWﬂ'scp> < Z 1 A Sgk;a* + Z Z 1 A\ ng(‘:gk,a*(Thfl)
k=1 h=1 k=1
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<A DWi

K w-1
KAM + )7 ((53’“?9*)2 + Y EEe (Th1)2>]
h=1

k=1t<k

exp

< \/DWL~K-A2 AWM,

where the first inequality is (73), the second inequality follows from Cauchy-Schwarz, and the last
inequality follows from (74) and the given condition. O

Proof of Theorem E.5 Recall that O is a class of LMDP with common state space S. For each
LMDP 6 € O, we construct a POMDP pomdp(6) with latent state space Z = S x supp(pyg) and
observation space O = S as follows:

* The initial state is §; = (s1,m), where m ~ pg, $1 ~ [16,m.-

* The state § = (s,m) always emits 0 = s as the observation. After an action « is taken, the
next state is generated as §' = (s’,m) where s’ ~ Ty, (-|s, a).

The transition matrix of pomdp(6) specified above can also be written as

Tpomdp(ﬁ) = diag (Teym)mesupp(pgy
up to reorganization of coordinates. Therefore, we have rank(Tpomdp(g*)) < Ld.

Because O = S, any policy for the LMDP 6 is a policy for the POMDP pomdp(), and vice versa.
Furthermore, it is easy to verify that for any policy m, the trajectory distribution Pg omdp(9) (tg =)
agrees with the distribution P} (7 = -). Hence, for each 6 € ©,

Kpomdp(@) = diag (M:W (ﬂ'sepy 5)) s’
where we denote

W—1
MiW(WSGPv S) = [an’W(TrSGPa S)]mesupp(pg) € R(AXS) Xsupp(pg)‘

By Lemma A.7, as long as w (W) > log(2L), for each (s,m) € Z, there exists a left inverse of
M:W(ﬂsep, s) with ¢; norm bounded by 2. In particular, we apply Lemma A.7 to conclude the
existence of a left inverse with the desired norm bound for each block of the block diagonal matrix
Kpomdp(g)- Therefore, there exists a left inverse of K,omdp(g) With £1 norm bounded by 2, and hence
Aexp < 2.

Therefore, we can now apply Proposition E.12 to complete the proof of Theorem E.5. O

E.7. A sufficient condition for Assumption 4.7

The following proposition indicates that Assumption 4.7 is not that strong as it may seem: it holds
for a broad class of LMDPs under relatively mild assumptions on the support of each MDP instance.

Proposition E.13 Suppose that there is a policy o and parameter Wy = w~*(3log(L/ayp)), such
that for each 0 € ©, the LMDP My is ww-separated under my, and there exists g : S — A(S) so
that

T (swy = ls1 = 5) > aopa(sls),  ¥m € supp(pg),s, 5’ € S.
Let msep, = o oWy, mo. Then Assumption 4.7 holds with Wey, = 2Wq and o = %
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For the sake of notational simplicity, we first prove a more abstract version of Proposition E.13.

Proposition E.14 For measurable spaces X,) and Z := Y x X, consider the class of transition
kernels from X to Z:

Q={Q: X > A(2)}.

For any Q € Q, we define Q%2 : X — A(Z x Z) as follows: for any xo € X, Q®%(-|xg) is the
probability distribution of (z,2'), where z = (Y, z) ~ Q(:|z), 2 = (Y',2") ~ Q(+|x).

Suppose that Q,,, € O are transition kernels such that for all m # I,
Dy(@n(2), Qi 12)) > 3log(Lja),  VaeX.
Further assume that there exists . : X — A(X) such that
Qm(z|zo) = au(z|xo), Vm € [L]. (76)

Then for any Q € Q, xyg € X, and p € A([L]), we have

Drv (EmMPQEQ("xO)vQ®2('\$o)) = ?%(1 — mgxpm)_

Proof. In the following, we fix any given Q € Q, zg € X, and p € A([L]). Let P be the probability
distribution of (m, z, 2’), where m ~ p, z = (Y, z) ~ Qp,(-|xg),and 2’ = (Y, 2") ~ Q. (+|z0) (..
(2,2) ~ Q22(-|x0)). Also, let P = E,,,Q%2(-|zo) be the marginal distribution of (z,2') ~ P.
We also omit zg from the conditional probabilities when it is clear from the context.

By Lemma A.4, it holds that
Ey,z)~p[Drv (P(z' = -|Y,2),Q®¥*(2’ = -|Y,z))] < 2Dqy (P,Q%?).
We also have
Eyp[Drv (P(2' = |z),Q¥*(2’ = -|z))] < 2Dr1v (P,Q%?).

Notice that the conditional distribution Q®2(2’ = -|Y,z) = Q(z’ = |z) only depends on x, and
hence by triangle inequality,

E(Y,J:)'»]P’[DTV (P(Z/ = "Y,.%’),P(Z/ = |$))] < 4Dty (P,@®2)

Further notice that

Pz =Y,x) = Em|y’$[(@m(z' = |x)], Pz =-|z) = ]Em|x[Qm(z' = |z)]

Hence, by Lemma A.6, we have

Dry (B(' = {¥,2), B = |2)) = 3 Drv (Bm = [¥,2), Blm = 2)).
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Next, using the definition of TV distance (which is a f-divergence, see e.g. Polyanskiy and Wu
(2014)), we can show that

E(Y’I)N@[DTV (Iﬁ(m =Y, IE),IF)(m = |$))] = E( N[DTV (I?PJ)(Y = -|m, x),@(y = |:c)>]

m,z)~P
We know
PY =-jm,z) = Qu(Y = -|zo,2),  P(Y =[2) = Epo[Qm(zy = [0, )],
and hence combining the inequalities above gives
AD1y (P,Q%%) = E(p oy~ [ Drv (Qu(Y = |20, ), By o [Qu (Y = +|20, 2)]) - (77
Consider the set
Xy ={zeX: Dp(QunY =-|zo,z), QY = -|zg,2)) = log L, Vm # I}.

For any z € Xy, by Lemma A.6, we have

<1 —]IND(m|m)>

N | =

Drv (Qm(y = '|ZL‘0, l‘), Em’|az[Qm’(Y = '|l’0, l‘)]) =
Therefore, combining the above inequality with (77) gives

4DTV (]P)) @®2) = E(m’x)NN [DTV (Qm(y = '|x05 x)aEm’|x[@m/(Y = |x07$)])]

1 ~
> §1[z(m7u,c)~]1~3,[1 (reX,) (1 - P(m|x)>]
1 . ~
> iEx[l {xe X} min (1 - ]P’(m|x)>]
By definition,
~ ~ Dt PIQu(z]20)
1—P(mlz) = ) P(lx) = P) :
l#m
Therefore,

E.|1{r € X} min (1= B(ma)) | = Y] min ] piQu(alao)

reX | l#m

(76) _

LS win Y - ante)
reXt m l#m

= ap(X.)(1 — maxpy).
It remains to prove that p (X ) = % For each pair of m # [, consider the set

Xy ={x e X : Dg(Qn(Y = |Jzo,z), QY = |zg,2)) <logL}.
By definition,

exp (—D(Qm(z = +|20), Qu(z = -|20)))
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= > VQu(a|z0)Q(x|x0) exp (D (Qu(Y = [0, 2), Qu(Y = -[zo, 7))

zeX

> Z Qi (2|20)Qu(2]20) -

Z‘Emel

SIS

1
I
Therefore, by the fact that Dg(Qy, (2 = |z0), Qi(z = -|z0)) = 3log(L/a), we know that j1( X, ;) <
% for all m # [, and hence

= O‘M(Xm,l) .

1
L= (X)) < D) il Xmg) < 5
m<l
The proof is completed by combining the inequalities above. O

Proof of Proposition E.13. We only need to demonstrate how to apply Proposition E.14. We
abbreviate W = W) in the following proof. Take X = S, = A x (S x A)W*Q, with variable
xo=81,Y = (a1,82, - ,aw—1),r = sy. Let

Q@ = T (01,50, o) = 1 = )€ @ me[L].
Then, we can identify Q% as
Q¥ = T;fffﬁ((al,@, cee L Sow—1) = ¢|s1 = ).

We also have Q,(z|zg) = Ty (sw = s'|sg = s). Therefore, we can indeed apply Proposi-

tion E.14 and the proof is hence completed. Il
Appendix F. Proofs for Section 5

F.1. Proof of Theorem 5.2

We first prove the following lemma.

Lemma F.1 Suppose that the policy 7 is returned by Algorithm 2. Then for any policy 7, it holds
that

V(m) = V(r) —PT"(m* # m(Tw)).

Proof. For any policy 7 and trajectory 73, we consider the value 7 given the trajectory 7p,:

H
Vﬂ-(7h) =FE" Z Rh(sh,ah) Th] .
h'=h
In particular, for trajectory 7y = (s1,a1,- -+, Sw), we have
H
Vﬂ(7w) =E" [ Z Rh(sh,ah) Twl
h=W
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H
= ) Bmlrw) - BRI LN Ry(sn, an) le
me[L] h=W

where the expectation E, (17w is taken over the probability distribution of (sy 1.1, aw.1) induced
by executing the policy 7 (-|7y ) in MDP M,,, with starting state sy. Therefore, because V;,, v is
exactly the optimal value function in MDP M, (at step W), we know that

H

Y, Bulsnran)

h=W

\Tw

SW] < Vi (sw).

Hence, we have

< B(mTw)[Tw) - Ve (sw) + Z B(m[7w)

m#m(Tw )

= V(Tw) + B(m* = m(7w)l7w),

where the last line follows from the definition of V in Algorithm 2. On the other hand, we also have

H
ViTw) = >, Blmlrw) - BN | Ry(sn, an) SW]
me[L] h=W
R H
P(m(7w)[Fw) - Ep 0" | 3 Riu(snan)| s ]
h=W
~ H —
=P(m(Tw)|Tw) - m(TW [ Z Ry (sp,ap)| sw,foreach h = W, ay = ﬁ}(Lm(TW))(Sh)
h=W
= P(m(tw)[7w) - V, wlsw) = V(Ew),

where the last line is because XA/m,W(sW) is exactly the expected cumulative reward if the agent
starts at step W and state sy, and executes 7, afterwards. Combining the inequalities above, we
obtain

V™ (Fw) — B(m* # m@@w)|[7w) < V™ (Fw).
By recursively using the definition of 7, we can show that for each step h = W, W —1,--- |1,
V(Th) — Bm* # m(rw)[7n) < V7 (7).
The desired result follows as

V(r) — BT (m* # m(Tw)) = E[V“(ﬂ) ~B(m* 2 m(m)m)] < E[vﬁm)] — V(7).
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Proof of Theorem 5.2 Let m, be an optimal policy such that M is w-separated under 7,. By
Proposition 4.1, we know that P™ (m* # m(7Tw)) < Lexp(—w(W)) < . Therefore, Lemma F.1
implies V(7) = V(m,) —e = V* —&. The time complexity follows immediately from the definition
of Algorithm 2. ]

F.2. Embedding 3SAT problem to LMDP

Suppose that ® is a 3SAT formula with n variables z1,--- ,z, and N clauses C,--- ,Cy, and
A = {0,1}". Consider the corresponding LMDP Mg constructed as follows.

* The horizon length is H = [n/w]| + 1.
* The state space is S = {81@, sé, cee sg_l, s@}, and the action space is A.
* L = N, and the mixing weight is p = Unif([N]).
* For each m € [N], the MDP M, is given as follows.

— The initial state is s5.

— At state sg, taking action a € A,, j, leads to sg, where

A p = {a €{0,1}" : 35 € [w] such that a[j] = 1 and the clause C,,, contains a:w(h,l)ﬂ}
U {a € {0,1}" : 3j € [w] such that a[j] = 0 and the clause C,, contains =14, |-

For action a ¢ A, , taking action a leads to s&™ ("1~ 1),

* The reward function is given by Ry (s,a) = 1{s = sg,h = H}.

The basic property of Mg is that, the optimal value of the LMDP Mg encodes the satisfiability of
the formula ®. More concretely, if taking an action sequence a;.;7—1 leads to sq for all m € [N],
then the first n bits of the sequence (ay,--- ,ay_1) gives a satisfying assignment of ®. Conversely,
any satisfying assignment of ¢ gives a corresponding action sequence such that taking it leads to sg
always. On the other hand, if ® is not satisfiable, then for any action sequence a1.z—1, there must
be a latent index m € [ N] such that taking aq.;7 1 leads to sg ! in MDP M,,,. To summarize, we
have the following fact.

Claim. The optimal value V* of Mg equals 1 if and only if ® is satisfiable. Furthermore, when ®
is not satisfiable, V* < 1 — %

Based on the LMDP Mg described above, we construct a “perturbed” version ]\749 that is §-strongly
separated.

* Pick d = [11log(2N)] and invoke Lemma E.5 to generates a sequence xi,Xg2, "+ ,XN €
{—1, +1}%, such that for all i # j,4,j € [N],

| QL
| QL

Ixi=xjl, =5, Ixi+xl, =

We also set § = 46, and for each m € [N], we define

b [T oxm[l] 1= xm[l] 1+ 0xp[d] 1 0xp[d]
Him °0d 24 77 24 7 2d

| < .
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[l =0xm[1] 1+ 0xp,[1] 1= 0xp[d] 1+ 6xp[d]
“m:{ 2d 24 T 2a T 24 ]EA([QdD'

* The state space is S=8x [2d], the action space is A, and the horizon length is H.
e I’ = 2N, and the mixing weight is p’ = Unif([2N])

* For each m € [N], we set Mgm_l = M, ® i} and Mgm = M,, ® ., (recall our definition
in Definition D.6).

* The reward function is given by Ry ((s,0),a) = 1{s = sg,h = H}.

Proposition F.2 In the LMDP ]\7@ described above, for any policy class 11 that contains AH, we
have

v =

1, D is satisifiable,
(1_52)(H71)/2

gl_ N 9

otherwise.

Proof. By our construction, regardless of the actions taken, we always have §[1] = sq or §y[1] =

sg ! Therefore, for any policy T,

V(r) =P (5p[1] = sg) = 1 —P"(5u[1] = sZ71).

-1

By construction, any reachable trajectory that ends with 5 [1] = sg must take the form

-1

(s&,01),a1,- , (s& 7 on—1),am—1, (s& 1, o).

Further, for each m € [N], in the MDP Mgm_l and ]\72m, sp(l] = sgfl if and only if aq.p7_1 ¢
Agat,m, where we define

Agatm = {ale,l e A1 for some h € [H—1],ap € Am,h} c AH-L

Therefore, for any reachable trajectory 7771 that leads to Sy [1] = sg ~1 we have

Ti-1 = ((8§,01), a1, , (s87 og_1), am_1),
1 2N
PT (TH 1 QNZ]P) 7'H 1)

N

Z 1{a1:n-1 € Asatgn} - m(TH-1) (H i (0n) + Hﬂm 0h>

where by convention we write

T(TH-1) m(an|(sg, 01), a1, , (s, o)),

w:]m

and we abbreviate this quantity as p,(ay.z7|01.17). Then, we have

1—V(r) =P"(5u[1] = s&~)
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- 3 P (75_1)

reachable 77 _1 that

leads to §H[1]=sg71

= 2 721{G1H 1€ Asatm} - pr(ar:ml|orm) - (H (o) + Hum Oh)

(01:H-1,01:H-1)

By Lemma F.3, it holds that

H-1 H-1 N —

B 2(1 — §2)L(H-1)/2]
[T ssnton) + [T mlon) = 2= 20
h=1 h=1 (2 )

Hence, we have

2(1 — §2)lH-1)/2]|
1-— Z Z 1 {Cll;H_l € Asat,m} : pw(al:H‘Ole) : ( (Qd))H_l
(01:H—1,01:H-1)
_ (1 _ 52\l(H-1)/2] #{me[N]: a1y 1¢ Asat,m} 1 . .
) v & e
- _ . N]:aig—1 ¢ Asatym} 1

S (1 _ g)lE-D2l #Hme [ m} (avlow
> ( 0 ) a?lbllr_ll N a1§1 (2d)H 01§1p (al'Hlol'H)

(1= @)UHE-D2 . iy #{m € [N] : a1.n—1 ¢ Asat,m}
a1:H—1 N ’

where the last line is because
> pelavulonn) = (2d)7
a1:H—101:H—1

Therefore, if ® is not satisfiable, then for any action sequence .77, there must exist m € [N] such
that a1.p7 ¢ Asat,m. This is because if a1.; € Agat,m for all m € [IN], then the first n bits of the

sequence (ag,- - ,ar—1) gives a satisfying assignment of ®. Thus, in this case, for any policy 7,
1 — §2)l(H-1)/2]
1-V(r) > ( ) :
m

On the other hand, if ® is satisfiable, then there is an action sequence ai.pp—1 € Asat, for all
m € [N], and hence V' (aj.;7—1) = 1. Combining these complete the proof. O

Lemma F.3 For any reals \1,--- ,\; € [—1,1] and 6 € [0, 1), it holds that

k

k
[Ja+ax)+ [ —ox) =20 - 622
=1

i=1

Proof. Notice that the LHS is a linear function of \; for each 4 (fixing other \;’s). Therefore, we
only need to consider the case \; € {—1,1}. Suppose that A, - -, A\x has r many 1’s and s many
—1U's(r+s==k),andwlo.gr > s. Thenfort =r—s >0,

k k
[Ta+ox)+ [ =0x) =@ +0)"(1—-0)+1+8)*1—0)
=1 =1
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=(1=8)*[(1+0) + (1-0)]
>2(1—6%)° = 2(1 — 62)1F/2,

F.3. Proof of Proposition 5.1

Suppose that a 3SAT formula ¢ with n variables and NV clauses are given. Then, we can pick
w =10 = ﬁ, € = ﬁ for some small constant ¢, and the LMDP Mg constructed above
has H = n+1, L = 2N, S = Hd, A = 2, and it is d-strongly separated. Further, we have
max {L, S, A H et 5_1} < O(n + N), and Mg can be computed in poly(n, N) time. There-
fore, if we can solve any given d-strong separated LMDP in polynomial time, we can determine the
satisfiability of any given 3SAT formula ¢ in polynomial time by solving Mg, which implies that

NP=P. O
F.4. Proof of Theorem 5.4

Suppose that there is an algorithm 2/ that contradicts the statement of Theorem 5.4.

Fix a given 3-SAT formula ® with n variables and N clauses is given (we assume N < n? without
loss of generality), we proceed to determine the satisfiability of ® in 2°(")-time using 2.

Pick t = t,, € N to be the minimal integer such that

log(1/e¢) - |log A¢]
of

We then consider ¢ = g, w = |log A;], A =2%,§ = J—It, and A = {0,1}".

200n <

. (78)

Now, consider the LMDP Mcp constructed in Appendix F.2 based on (®,.A, §). We know that M@

is -strongly separated, and we also have
L = 2N < 2n3, S =nd < O(nlogn), H:[ﬁ]—i—lgn—i—l.
w

In the following, we show that (9) and (78) (with suitably chosen C') ensures that
(1 _ 52)(H—1)/2

ro_
e<e: IN
By definition,
H —1)log =5 252 12852
log(1/e') = ( )2 1= log(3N) < ﬁ[g] +1og(3N) < L 3log(n) + 4.

Therefore, by (78), we have log(1/<') < log(1/e) if we have 2 log(1/¢) > 3logn + 4, or equiva-
lently e5n* < e~!. This is indeed insured by (9).

Next, consider running 2( on (]\7 »,¢), and let V be the value returned by 2. By Proposition F.2, we
have the follow facts: (a) If V=1 —e&, then @ is satisfiable. (b) If V<1 —e, then ® is not satisfiable.
Therefore, we can use 2 to determine the satisfiability of ® in time A%~ ls(1/2)) +poly(n). Notice
that our choice of ¢ ensures that log(1/¢;)wd; > < 3200n, and hence we actually determine the
satisfiability of ® in 2°(")-time, which contradicts Conjecture 5.3. O
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F.5. Proof of Theorem 5.5

Suppose that there is an algorithm 2l that contradicts the statement of Theorem 5.5.

Fix a given 3-SAT formula ® with n variables and N clauses is given (we assume N < n3 without
loss of generality), we proceed to determine the satisfiability of ® in 2°(")-time using 2.

Pick t = t,, € N to be the minimal integer such that

_ log L - [log Ay

Cnllogy N| < 52 ; (79)
¢

where C is a large absolute constant. We then consider L = 21985t 1) = |log A¢|, A = 2%, = 6%’
and A = {0,1}".

Let Mg be the LMDP with action set .4, horizon H = [n/w]| + 1 constructed in Appendix F.2.

Further, we choose r = [logy N|,d = | . By our choice (79), we can ensure the presumption
d > CyoHé? of Lemma F.6 holds, which implies that we can construct a (N, H, 6, 7270%, 247).
family over [2d]" in time poly(2%") < poly(L). Denote Q be such a family, and we consider
Mg ® Q, which is a J-strongly separated LMDPs family with S = (2d)"H and hence log S <
O(loglog L;) by (10) (because n < poly log L; using (79)).

log L
Og;ltJ

Consider running 2l on Mgp ® Q with € = ﬁ, and let V be the value returned by 2. Let V3 be the
optimal value of Mg, Vs, be the optimal value of Me ® ®. Then by Proposition D.11, it holds
that

Ve < VM@ < T2_Cod + Vo.

Hence, as long as r2—c0d < 3%\, (which is ensured by condition (10)), we have the follow facts: (a)
If Vo = 1, then v =>1- ﬁ O IfVe <1-— %, thenV <1— ﬁ Notice that a special case of
Proposition F.2 is that, when & is satisfiable, then Vg = 1, and otherwise Vp < 1 — % Therefore,

—2 logL
we can use 2 to determine the satisfiability of ® in time A° (6 Tox og L> + poly(L). Notice that our
choice of t ensures that (log L;)(|log A;])d; 2 < 16Cn[logy N1, and hence log L = o(n), and

log Alog L.

Ploglog L~ O

Therefore, given 2, we can construct a 2°(")-time algorithm for 3SAT, a contradiction. O

F.6. Technical lemmas

Lemma F.4 There is a procedure such that, for any input integer N > 2 and d > [11log N],
compute a sequence X1, - ,xy € {—1,+1}? such that |x; — x|, = 2Vi # j, with running time
poly(29).

Proof. Consider the following procedure: We maintain two set{, V), and we initialize = {},V =
{—1,1}". At each step, we pick ax € V, add x to U, and remove all y € V such that |y — x|, < 4
The procedure ends when V is empty or [U/| = N.
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We show that this procedure must end with [1{| = N. Notice that for any x,y € {—1,1}%, we have
Ix -yl < %l only when x, y differs by at most ¢ < % coordinates. Therefore, at each step, we
remove at most

-1
% ()

. . . d
elements in V. Hence, it remains to show that QM > N.

[
M =

Denote k = [d/4] — 1. Then we have

d k d/a
d ed ed 1+ 2log?2
M = E <|l—] < — = —d],
= (Z) ( k ) (d/4> P ( 4 )

and hence % > exp(d/11) = N as claimed. ]
Repeating the argument above, we can also prove the following result.
Lemma F.5 There is a procedure such that, for any input integer N > 2 and d > [111og(2N)],

compute a sequence Xi,--- ,XN € {—1, +1}d such that for any i # j,

Ixi — x|, =

d
S kil

N

with running time poly(2%).

Lemma F.6 There is a procedure such that, for any input r,d, H > 2 and § € (0, %] satisfying
d = CoHd?, compute a (27, H, 5, ~,2%)-family over [2d]", with v < r27°% with running time
poly (2").

Proof. We first invoke the procedure of Lemma F.4 to compute x1,--- ,xy € {—1, 1}d such that

|x; — %], = ¢ and N > exp(d/11). Consider the distribution p; = Qg,, € A([2d]) for each
i € [N], where we set = 46. Clearly, we have Dy (u;, p1j) = 6 fori # j.

Notice that for K = [d/60], we have N > (K +§_1) + 1, and hence by Corollary D.16, there exists

&0, &1 € A([N]) such that supp(§p) v supp(&1) = & and

, A (eHs?\*
Div (Bingo [ ] Einey [15]) < < K ) '
k=K

Therefore, as long as d > 120e H6%, Q = {(&o,&1), (11, -+, un)}isa (2, H, 6, 27%,N)—family
over [2d]. Further, invoking Lemma D.9 yields Q', a (2", H, 4, 7"2_%, N")-family over [2d]".

By the proof of Corollary D.16, &, &; can be computed in poly(NN) time, and Q' can also be
computed from Q in time poly(2%") by going through the proof of Lemma D.9. Combining the
results above completes the proof. |
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