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Abstract
This paper initiates the study of scale-free learning in Markov Decision Processes (MDPs), where
the scale of rewards/losses is unknown to the learner. We design a generic algorithmic framework,
Scale Clipping Bound (SCB), and instantiate this framework in both the adversarial Multi-armed
Bandit (MAB) setting and the adversarial MDP setting. Through this framework, we achieve the
first minimax optimal expected regret bound and the first high-probability regret bound in scale-free
adversarial MABs, resolving an open problem raised in Hadiji and Stoltz (2023). On adversarial
MDPs, our framework also give birth to the first scale-free RL algorithm with a Õ(

√
T ) high-

probability regret guarantee.
Keywords: bandit, MDP, scale-free learning, high-probability regret.

1. Introduction

Reinforcement learning (RL) refers to the problem of an agent interacting with an unknown envi-
ronment with the goal of improving its policy and minimizing cumulative loss through time. The
environment is commonly modeled as a Markov Decision Process (MDP) with an unknown transi-
tion function. In this paper we focus on the adversarial MDP setting, where the losses are allowed
to be generated adversarially (Even-Dar et al., 2009). Curiously, virtually all prior works on RL as-
sume that the rewards/losses are uniformly bounded, e.g. the mean reward for any state-action pair
is within [0, 1]. This regularity condition is crucial in allowing existing algorithms to set their hyper-
parameters such as learning rate properly to achieve low regrets. In many real-world applications,
however, such natural loss bound does not always exist. For instance, in quantitative trading, stock
prices can vary significantly over time and across different stocks. More importantly, the scale of
such variance is often not known to the algorithm a priori. In such settings, most existing algorithms
no longer work.

Motivated by the above limitations, in this paper, we initiate the study of scale-free RL algo-
rithms in MDPs, i.e. algorithms that require no prior knowledge on the scale of the losses. Scale-free
algorithm have previously been studied in the online learning literature (Freund and Schapire, 1997;
De Rooij et al., 2014; Cesa-Bianchi et al., 2007; Mayo et al., 2022; Jacobsen and Cutkosky, 2023;
Cutkosky, 2019). However, for decision-making under uncertainty, the only relevant studies are lim-
ited to Multi-armed Bandits (MAB) (Hadiji and Stoltz, 2023; Putta and Agrawal, 2022; Chen and
Zhang, 2023; Huang et al., 2023), which can be considered as a 1-layer MDP with a single state.
Existing algorithms for scale-free MAB essentially adapts algorithms designed for online learning
to the bandit feedback setting. This leads to some fundamental problems. For example, due to the
limitations of regularizers, no existing scale-free adversarial MAB algorithms can achieve minimax
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Setting Loss Algorithm Regret Type

Adversarial MABs

Bound
Audibert et al. (2009) Θ(ℓ∞

√
nT ) Exp.

Neu (2015) Θ(ℓ∞
√

nT log(n/δ)) High prop.

Unbound

Hadiji and Stoltz (2023) Θ(ℓ∞
√
nT log n) Exp.

Chen and Zhang (2023) Θ(ℓ∞
√
nT log T ) Exp.

SCB (Theorem 1) Θ(ℓ∞
√
nT ) Exp.

SCB-IX (Theorem 4) Θ(ℓ∞
√

nT log(n/δ)) High prop.

Adversarial MDPs
Bound Jin et al. (2019) Õ(

∑
h∈[H] ℓ∞,hS

√
AT ) High prop.

Unbound SCB-RL (Theorem 5) Õ(
∑

h∈[H] ℓ∞,hS
3/2
√
AT ) High prop.

Table 1: An overview of the proposed algorithms/results and comparisons with related works.

optimality (i.e., optimal to logarithm terms). Secondly, existing works only bound the regret in-
curred by the important weighted estimators. As a result, they can only bound the expected regret
and cannot be generalized to high probability regret. Third, considering the existing algorithms’
dependence on important weighted estimators, their results cannot be generalized to the setting of
adversarial MDP with unknown transition function.

In this paper, we propose the first scale-free algorithm for adversarial MDPs with unknown tran-
sition function. We design a unified framework called Scale Clipping Bound (SCB). This framework
can be applied to both MAB and MDP and significantly improves previous results across the board.
Our technical contributions can be summarized below, and an overview that compare our results
with those in prior works can be found in Table 1.

1. We propose SCB, a scale-free adversarial MAB algorithm that achieves minimax optimal
expected regret bounds without the knowledge of the loss magnitude. Our result eliminates
the log(n) and log(T ) factors in prior works, and matches the minimax lower-bound Auer
et al. (2002a) upto constant factors. This result gives a positive answer to the open problem
raised in Hadiji and Stoltz (2023).

2. Based on the idea of SCB, we build SCB-IX, the first scale-free adversarial MAB algorithm
that achieves a high probability regret bound.

3. Finally, we extend the above ideas to the setting of adversarial MDPs and present SCB-RL,
the first scale-free algorithm that achieve Õ(

√
T ) high probability regret bound for adversar-

ial MDP with unknown transition function, unbounded losses and bandit feedback.

2. Related Works

Scale-free learning: Scale-free algorithms refer to the algorithms that do not need to know any
upper or lower bounds on the loss functions. Scale-free regret bounds were first studied in the
full information setting, such as experts problems (Freund and Schapire, 1997; De Rooij et al.,
2014; Cesa-Bianchi et al., 2007) and online convex optimization (Mayo et al., 2022; Jacobsen and
Cutkosky, 2023; Cutkosky, 2019). For experts problems, the AdaHedge algorithm from De Rooij
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et al. (2014) achieves the first scale-free regret bound. For online convex optimization, past al-
gorithms can be categorized into two generic algorithmic frameworks: Mirror Descent (MD) and
Follow The Regularizer Leader (FTRL). The scale-free regret from the MD family is achieved by
AdaGrad proposed by Duchi et al. (2011). However, the regret bound of Duchi et al. (2011) is
only non-trivial when the Bregman divergence associated with the regularizer can be well bounded.
Later, the Orabona and Pál (2018) proposed the AdaFTRL algorithm which achieves the first scale-
free regret bound in the FTRL family and generalizes Duchi et al. (2011)’s results to cases where
the Bregman divergence associated with the regularizer is unbounded. For the adversarial MAB
problem, Hadiji and Stoltz (2023) extends the method of Duchi et al. (2011) and provides a scale-
free regret bound of Õ

(
ℓ∞
√
nT
)

, which is optimal (up to log terms) in the worst case. Putta and
Agrawal (2022) design a bandit FTRL algorithm and presents scale-free bounds that adapt to the
individual size of losses across time. Unfortunately, the worst-case guarantee of Putta and Agrawal
(2022) is Õ

(
ℓ∞n
√
T
)

, which scales linearly to the number of actions. To close the gap, Chen and
Zhang (2023) proposes algorithms that achieves an adaptive regret better than Putta and Agrawal
(2022), as well as an optimal worst-case regret that matches with Hadiji and Stoltz (2023).

Notice that all previous studies are unable to attain logarithmic optimality, e.g., the regret bound
of Putta and Agrawal (2022); Chen and Zhang (2023); Huang et al. (2023) is Θ(ℓ∞

√
nT log T ),

and the regret bound of Hadiji and Stoltz (2023) is Θ(ℓ∞
√
nT log n). This is due to some inherent

limitations of their algorithms. To be more specific, Hadiji and Stoltz (2023) is an extension of
AdaHedgeDe Rooij et al. (2014), with a structure similar to EXP3, leading to an additional

√
log n

regret. On the other hand, the analysis of Putta and Agrawal (2022); Chen and Zhang (2023); Huang
et al. (2023) is only applicable to algorithms with a log-barrier regularizer, which also results in an
additional

√
log T regret. To achieve logarithmic optimality, a promising approach would be to

use algorithms with Tsallis-INF regularizer (Audibert et al., 2009), which can achieve Θ(ℓ∞
√
nT )

regret bound when ℓ∞ is known. However, when ℓ∞ is unknown, it is unclear whether this bound
can be achieved. This has been posed as an open problem in Hadiji and Stoltz (2023) (Remark 8),
which we answer in the positive.

High probability regrets: High-probability regrets for adversarial MAB were first provided by
Auer et al. (2002b) and explored in a more generic way by Abernethy and Rakhlin (2009). The
idea is to reduce the variance of importance weighted estimators by adding explicit exploration on
the action distribution. Later, Kocák et al. (2014) and Neu (2015) improve the explicit exploration
method to implicit exploration, and design algorithms for more complex models with potentially
large action sets and side information. Notably, all the above algorithms require carefully construct-
ing biased loss estimators. In contrast, Lee et al. (2020) develops algorithms based on unbiased loss
estimators, and enjoy data-dependent high probability regret bounds, which could be much smaller
than the bounds in the form of Õ(

√
T ) when the data is “good”. For the adversarial MDP problem,

a rencent line of works develop algorithms with high-probability regret bounds (Jin et al., 2019; Lee
et al., 2020; Luo et al., 2021; Dai et al., 2022; Jin et al., 2022). Most of them are based on the idea of
reducing an adversarial MDP problem to an adversarial MAB problem through occupancy measure
and then solve it using bandit algorithms, and achieve the same regret guarantee. To the best of our
knowledge, there are no studies on the high probability regret for either adversarial MAB or MDP
with considering unbounded losses, a gap that we fill in this work.
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Variance dependent regrets: Variance dependent regrets have been studied in both adversarial
MAB (Hazan and Kale, 2011; Bubeck et al., 2018; Wei and Luo, 2018; Ito, 2021) and MDP (Talebi
and Maillard, 2018; Simchowitz and Jamieson, 2019; Zhang et al., 2023; Zanette and Brunskill,
2019). At first glance, it seems that a variance-dependent regret can automatically adapt to the scale
of the losses, thereby directly implying scale-adaptive regret. However, in fact, there is a funda-
mental gap between the concept of scale-free and scale-adaptive. Firstly, scale-adaptive algorithms
require a strict assumption that the scale of losses can be bounded by a known constant L. This
applies to all the above-mentioned work. If the assumption is violated, their analyses will not hold.
Secondly, the above results on variance-dependent regret all include a burn-in term that scales poly-
nomial to L. This leads to the optimality of these results being guaranteed only in a “large-sample”
regime. As L goes towards infinity, the burn-in term eventually dominates.

3. Adversarial Multi-armed Bandit

Let us start our discussion with adversarial MAB. The scale-free MAB problem proceeds in rounds
between a player and an adversary. In each round t = 1, . . . , T , the player selects one of the n
available actions kt ∈ [n], while the adversary at the same time picks a loss vector ℓt ∈ Rn with
ℓt,k being the loss for action k. We assume the adversary is adaptive: the adversary can choose
ℓt base on the player’s previous actions in an arbitrary way. At the end of round t, the learner
observes the loss of the chosen action ℓt,kt and nothing else. We measure the scale of the losses by
ℓ∞ = maxt∈[T ],k∈[n]|ℓt,k|. We measure the performance of the learner in terms of its regret:

R(T ) =
T∑
t=1

ℓt,kt − min
k∈[n]

T∑
t=1

ℓt,k.

3.1. Minimax Optimal Expected Regret

In this subsection we focus on bounding the expected regret, i.e., E[R(T )]. Compared to exist-
ing works, there are several important advantages of our approach: 1). Our algorithm archives
the first minimax optimal expected regret Θ(ℓ∞

√
nT ), which significantly improves upon the

Θ(ℓ∞
√
nT log T ) results in Putta and Agrawal (2022); Chen and Zhang (2023); Huang et al. (2023)

and Θ(ℓ∞
√
nT log n) in Hadiji and Stoltz (2023), and matches the lower bound Ω(ℓ∞

√
nT ) pro-

posed in Auer et al. (2002b). 2). Our algorithm is strongly scale-free (Orabona and Pál, 2018), that
is, with the same parameters, the sequence of action distributions of the algorithm does not change
if the sequence of loss is multiplied by a positive constant. Such property is previously implemented
only in Hadiji and Stoltz (2023).

Our design is illustrated in Algorithm 1. The algorithm follows a standard Follow-the-regularized-
Leader (FTRL) framework. At the beginning of round t, the algorithm computes an action distribu-
tion pt ∈ ∆n such that

pt = arg min
p∈∆n

(
t−1∑
s=1

⟨ℓ̂s,p⟩+
1

ηt
Ψ(p)

)
, (1)

where ℓ̂s is an estimator of ℓs and Ψ is the regularizer. Then, the algorithm derives qt by mixing pt

with a uniform distribution, samples and plays action kt ∼ qt, and obtains loss ℓt,kt . The key of our
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Algorithm 1: SCB: Scale Clipping Bound
Input: 1/2-Tsallis Entropy Ψ, η1 =∞, β1 = n/(2n+

√
n), C1 = 0

for t = 1, . . . , T do
Compute the action distribution pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂s,p⟩+

1
ηt
Ψ(p)

)
Add extra exploration qt = (1− βt)pt + βt

1n
n

Sample and play action kt ∼ qt. Receive loss ℓt,kt
Clip received loss by [−Ct, Ct]: ℓct,k = max(−Ct,min(Ct, ℓt,k))

Construct estimator ℓ̂t such that ℓ̂t,k =
ℓct,k+Ct

qt,k
1{k = kt}, ∀k ∈ [n]

If |ℓt,kt |> Ct, set Ct+1 = 2|ℓt,kt |, otherwise Ct+1 = Ct

Update learning rate ηt+1 =
1

2Ct+1
√
t+1

. Update exploration rate βt+1 =
n

2n+
√

n(t+1)

end

design lies in the construction of the loss estimator. In round t, the algorithm holds a “scale clipping
bound” (i.e., clipping threshold) Ct, which is twice the largest scale among the previously observed
losses. After receiving the loss ℓt,kt , the algorithm clips the loss within the interval [−Ct, Ct],
incorporates an offset Ct to make the loss non-negative, and construct the importance-weighted loss
estimator, i.e., ℓ̂t,k = (max(−Ct,min(Ct, ℓt,k)) + Ct)1{k = kt}/qt,k. Specifically, notice that Ct

is independent to pt, thereby ℓ̂t,k is an unbiased estimator of max(−Ct,min(Ct, ℓt,k))+Ct. At the
end of round t, the algorithm updates parameters Ct+1, ηt+1, βt+1, and then move to the next round.
The regret guarantee of Algorithm 1 can be summarized below.

Theorem 1 Algorithm 1 achieves

E[R(T )] ≤ Θ
(
ℓ∞(n+

√
nT )

)
.

Remark 2 We emphasize that SCB is strongly scale-free. When the sequence of losses is multiplied
by a positive constant, the clipping threshold will also be rescaled accordingly, resulting in the
distributions of actions not changing. This property is also inherited by the derived algorithms
SCB-IX and SCB-RL. More details about this property are provided in Appendix A.2.

Proof Sketch: Denoted by ℓct,k = max(−Ct,min(Ct, ℓt,k))+Ct), we start with the following regret
decomposition.

E [R(T )] = E

[
T∑
t=1

⟨ℓt,qt − p∗⟩

]

= E

[
T∑
t=1

⟨ℓct ,pt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt,qt − pt⟩

]
+ E

[
T∑
t=1

⟨ℓt − ℓct ,pt − p∗⟩

]

= E

[
T∑
t=1

⟨ℓct + Ct1n,pt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt,qt − pt⟩

]
+ E

[
T∑
t=1

⟨ℓt − ℓct ,pt − p∗⟩

]

5



CHEN ZHANG

= E

[
T∑
t=1

⟨ℓ̂t,pt − p∗⟩

]
︸ ︷︷ ︸

1

+E

[
T∑
t=1

⟨ℓt,qt − pt⟩

]
︸ ︷︷ ︸

2

+E

[
T∑
t=1

⟨ℓt − ℓct ,pt − p∗⟩

]
︸ ︷︷ ︸

3

Here, p∗ denotes the optimal comparator, which can be dependent on the algorithm’s actions
k1, . . . , kT . The third equality is due to ⟨1n,qt − p∗⟩ = 0, and the last equality is because ℓ̂t
is an unbiased estimator of ℓct + Ct1n. Here, term 1 is the regret of the corresponding FTRL
algorithm; term 2 corresponds to the error incurred by mixing with uniform distribution; term 3
measures the error of the clipping.
Bounding 1 : We first bound the FTRL regret. The proof is founded on an observation that
0 ≤ ℓct,kt +Ct ≤ 2Ct for every t ∈ [T ], where Ct is a value known to the algorithm at the beginning
of round t. In this case, we can tune the learning rate to fit the scale of the loss before observing it,
thereby reducing the analysis to the bounded case. The main result is as follows. The detailed proof
is delayed to Appendix A.1.

Lemma 3 Algorithm 1 ensures

E

[
T∑
t=1

⟨ℓ̂t,pt − p⋆⟩

]
≤ Θ

(
ℓ∞
√
nT
)
,

where ℓ∞ = maxt∈[T ],k∈[n]|ℓt,k|.

Bounding 2 : The proof is trivial since

E

[
T∑
t=1

⟨ℓt,qt − pt⟩

]
= E

[
T∑
t=1

βt⟨ℓt,
1n
n
− pt⟩

]
≤ 2ℓ∞

T∑
t=1

n

2n+
√
nt
≤ 4ℓ∞

√
nT .

Bounding 3 : Bounding the clipping error is the key to the entire proof. Define K := argminj∈N
{
ℓ∞ ≤ 2j

}
.

Define ℓit ∈ Rn such that ℓit,k = ℓt,k1{2i−1 < |ℓt,k|≤ 2i} for k ∈ [n]. Notice that ℓt =
∑K

i=−∞ ℓit.
In this case, there is

E[
T∑
t=1

⟨ℓt − ℓct ,pt − p⋆⟩] ≤ 2E

[
T∑
t=1

∥ℓt − ℓct∥∞

]
≤ 2E

[
K∑

i=−∞
E

[
T∑
t=1

∥ℓit − ℓct
i∥∞

]]
.

We focus on the inner terms. We first note

E

[
T∑
t=1

∥ℓit − ℓct
i∥∞

]
≤ E

[
2i

T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i}

]

since the clipping threshold is non-decreasing and all non-zero entries in ℓit are within [2i−1, 2i].
Now it suffices to bound E[

∑T
t=1 1{ℓit ̸= 0n}1{Ct < 2i}]. To this end, an important observation is

that for every integer m ≥ 1, there is

P

{
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i} ≥ m

}
≤
(
1− βT

n

)m−1

. (2)
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This is because
∑T

t=1 1{ℓit ̸= 0n}1{Ct < 2i} ≥ m implies that the algorithm does not play the
non-zero entries of the first m−1 non-zeros losses ℓit. Otherwise, in the m-th round where ℓit is non-
zero, the clipping threshold should be no less than 2i, which implies that no clipping can happen.
Since each action has probability at least βt/n ≥ βT /n to be played every round, (2) immediately
follows. Thus, there is

E

[
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i}

]
=

∞∑
m=1

P

{
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i} ≥ m

}
≤ n

βT
= 2n+

√
nT .

Now we take the sum of all i ≤ K.

E

[
T∑
t=1

⟨ℓt − ℓ′t,pt − p⋆⟩

]
≤ 2E

[
K∑

i=−∞
E

[
T∑
t=1

∥ℓit − ℓct
i∥∞

]]

≤ 2E

[
K∑

i=−∞
2i(2n+

√
nT )

]
≤ 2K+2(2n+

√
nT ) ≤ 8ℓ∞(2n+

√
nT ).

The last inequality is due to 2K−1 ≤ ℓ∞. Combining 1 , 2 and 3 , we have

E [R(T )] ≤ Θ
(
ℓ∞(n+

√
nT )

)
,

which is optimal upto constant factors.

3.2. High probability regret

Next, we study the more challenging problem of high-probability regret. The goal is to design
algorithms for which R(T ) can be bounded with high probability. We propose the first scale-free
adversarial MAB algorithm with a high-probability regret guarantee.

The algorithm SCB-IX is provided in Algorithm 2. Conceptually, the algorithm is a variant
of EXP3-IX in Neu (2015) combined with the clipping idea in Algorithm 1. By Hoeffding’s
inequality, it suffices to focus on bounding

∑T
t=1⟨ℓt,qt − p⋆⟩. Similar to the proof of Theorem 1,

we can decompose the regret into
∑T

t=1⟨ℓct+Ct1n,qt−p⋆⟩ and
∑T

t=1⟨ℓt−ℓct ,qt−p⋆⟩. For the first
term, due to 0 ≤ ℓct,k+Ct ≤ 2Ct, where Ct is known at the beginning of round t, it suffices to show
that the regret can be well bounded with high probability based on the proof of EXP3-IX. For the
second term, as shown in inequality (2), we have

∑T
t=1 1{ℓit ̸= 0n}1{Ct < 2i} ≥ log(1/δ)n/βT

with probability at least 1 − δ, which immediately imply a high probability bound for the clipping
error. Our results can be summarized in the following theorem.

Theorem 4 With probability at least 1− δ, Algorithm 2 ensures

R(T ) ≤ Θ

(
ℓ∞

√
n2 + nT

log n
log(1/δ) + ℓ∞

√
nT log(n)

)
,
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Algorithm 2: SCB-IX: Scale Clipping Bound with Implicit Exploration

Input: Shannon Entropy Ψ, η1 =∞, γ1 = 0, β1 =
√
n log(n)/(n log(n) + 1), C1 = 0

for t = 1, . . . , T do
Compute the action distribution pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂s,p⟩+

1
ηt
Ψ(p)

)
Add extra exploration qt = (1− βt)pt + βt

1n
n

Sample and play action kt ∼ qt. Receive loss ℓt,kt
Clip received loss by [−Ct, Ct]: ℓct,k = max(−Ct,min(Ct, ℓt,k))

Construct estimator ℓ̂t such that ℓ̂t,k =
ℓct,k+Ct

qt,k+γt
1{k = kt}, ∀k ∈ [n]

If |ℓt,kt |> Ct, set Ct+1 = 2|ℓt,kt |, otherwise Ct+1 = Ct

Update learning rate ηt+1 =
1

Ct+1

√
logn

n(t+1) . Update exploration rate βt+1 =
√

n logn
n logn+t+1 ,

γt+1 = ηt+1Ct+1/2

end

Due to the space limit, the detailed proof is delayed to Appendix A.3. Specifically, when T ≥ n,
the regret reduces to Θ(ℓ∞

√
nT/log n log(1/δ) + ℓ∞

√
nT log(n))1. This matches the results in

Neu (2015) for the bounded loss setting.

4. Adversarial Markov Decision Process

With our preparation in the MAB setting, we now turn our attention to adversarial MDPs. We
consider the episodic MDP setting with finite horizon, unknown transition matrix, bandit feedback,
and adversarial losses, same as the setting in Jin et al. (2019). However, unlike Jin et al. (2019),
where the losses are assumed to be in [0, 1], we allow the losses to be unbounded. To the best of our
knowledge, this is the first study of RL with unbounded losses.

An adversarial MDP is defined by a tuple (S,A, P, {ℓt}Tt=1). S is the finite state space and A is
the finite action space. P : S×A×S → [0, 1] is an unknown transition function where P (s′|s, a) is
the probability of reaching state s′ after taking action a at state s. ℓt : S ×A→ R is a loss function
determined by the adversary, which can depend on the player’s actions before t. Learning proceeds
in T episodes. In each episode t, the learner starts from state x1 and deploys a stochastic policy πt ∈
Π : S × A→ [0, 1] with πt(a|s) being the probability of taking action a at state s. The learner ob-
serves a state-action-loss trajectory (s1, a1, ℓt(s1, a1), . . . , sH , aH , ℓt(sH , aH)) before reaching the
ending state sH+1. With a slight abuse of notation, we assume ℓt(π) = E[

∑
h∈[H] ℓt(sh, ah)|P, π].

The performance is measured by the regret, which is defined by

R(T ) =
T∑
t=1

ℓt(πt)−min
π∈Π

T∑
t=1

ℓt(π).

Without loss of generality, we consider a layered structure MDP: the state space is partitioned into
H + 2 horizons S0, . . . , SH+1 such that S = ∪Hh=1Sh, ∅ = Si ∩ Sj for every i ̸= j, S0 = {s0}
and SH+1 = {sH+1}. We further assume that the number of states in each horizon is the same,

1. Note that the bound scales linearly with log(1/δ) for all levels δ. The dependence can be improved to
√

log(1/δ) if
the algorithm use δ to tune its parameter (Neu, 2015). This is the way to derive the results presented in Table 1.
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i.e., Sh = S/H for all h = [H]. Given the structure, with the help of “occupancy meansure”
concept, this problem can be restructured in a way that makes it highly similar to adversarial MAB:
denoted the probability that policy π visits the state-action pair (s, a) with transition function P by
qP,π(s, a), the loss can be expressed as ℓt(π) =

∑
s∈[S]

∑
a∈[A] q

P,π(s, a)ℓt(s, a) = ⟨qP,π, ℓt⟩.
While we have formulated the loss function in a form similar to the ones in adversarial MAB

with the help of occupancy measure, a significant distinction still exists, which also constitutes the
main challenge: for adversarial MDP, there is no explicit “exploration policy” guaranteeing that
every state can be visited. In particular, some states may be hardly accessible by any policy. In such
cases, directly implementing the proposed scale-free MAB algorithms would result in unbounded
clipping errors, as the algorithm is unable to detect the scale changes in states that are not accessible.
In order to design scale-free algorithms for adversarial MDP, two critical questions need to be
addressed: 1). How to find a good exploration policy for every state within o(T ) episodes? 2).
How to handle the states that are hardly accessible for all policies?

To address these two questions, we design an exploration algorithm RF-ELP, as shown in Algo-
rithm 3. Conceptually, for each state s that is accessible by some policy with a probability exceeding
Õ(H

√
SA/T ), i.e., maxπ∈Π qP,π(s) ≥ Õ(H

√
SA/T ), RF-ELP is capable of producing a policy

πs,N that successfully visit the state s at least once every O(
√
ST/Amaxπ∈Π qP,π(s)) episodes.

Additionally, for those states that are inaccessible by RF-ELP, we demonstrate that the maximum
regret incurred by such a state can be bounded by Õ(

∑
h∈[H] ℓ∞,h

√
SAT ). More details are pro-

vided in the next paragraph and the appendix. RF-ELP allows us to effectively reduces the problem
of scale-free adversarial MDP to that of scale-free adversarial bandits. Building upon RF-ELP
and UOB-REPS in Jin et al. (2019), we develop the main algorithm SCB-RL and subalgorithm
UOB-REPS-EX. The pseudocode of SCB-RL is presented in Algorithm 4, and the pseudocode of
UOB-REPS-EX is delayed to Appendix B.2.

Specifically, SCB-RL starts by calling RF-ELP for ξST episodes and obtains an exploration
policy for each of the states. Then, in every episode t, it calls the subalgorithm UOB-REPS-EX to
learn policy πt, plays πt and receives a trajectory, clips and adds offset on the loss, updates the clip-
ping threshold, and sends the information back to UOB-REPS-EX. The subroutine UOB-REPS-EX
is a variant of UOB-REPS, incorporating multiple designs for dealing with the unbounded losses,
such as mixing with exploration policies and tuning the learning rate with the clipping threshold.
More details about UOB-REPS-EX are provided in Appendix B.2. The main theorem for SCB-RL
is below.

Theorem 5 With probability at least 1− δ, SCB-RL guarantees

R(T ) ≤ Õ

∑
h∈[H]

ℓ∞,hS
3/2
√
AT

 .

where we denote ℓ∞,h = maxt∈[T ],s∈[Sh],a∈[A] ℓt(s, a).

Remark 6 Compared to the best existing results with bounded losses Õ(
∑

h∈[H] ℓ∞,hS
√
AT ),

Theorem 5 achieves the same optimality in terms A, T but worse by a factor of
√
S. Nevertheless,

this result is quite surprising, considering that we spend additional episodes to learn the exploration
policy for every state in RF-ELP. Furthermore, if all states are visitable, for sufficiently large T ,
we can further reduce the regret of SCB-RL to Õ(

∑
h∈[H] ℓ∞,hS

√
AT ) by designing an early

9
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Algorithm 3: Reward free exploration in RL (RF-ELP)
Input: State s; Exploration episodes number N
Output: Policy π ∈ Π
Initialize reward: rs(s′, a′)← 1{s′ = s} for all (s′, a′) ∈ [S]×A
Run MVP (Zhang et al., 2023) N episodes, get policies: {πs

1, . . . , π
s
N} ← MVP(rs, N), set

πs,N ← Uniform(πs
1, . . . , π

s
N )

Set policy πs,N (·|s)← Uniform(A)
Return πs,N

Algorithm 4: SCB-RL: Scale Clipping Bound for RL
Input: state space S, action space A, episode number T , state exploration parameter ξ
Initialize: Clipping threshold C1,h = 0 for h ∈ [H]
for s ∈ [S] do

Run RF-ELP and update exploration policy: πs ← RL-ELP(s, ξT )
end
Send extra exploration policies {πs}s∈[S] to UOB-REPS-EX
for t = ξST + 1 to T do

Receive policy πt ← UOB-REPS-EX
Execute policy πt for H horizons and obtain trajectory {sh, ah, ℓt(sh, ah)}h∈[H]

Clip received loss: ℓct(sh, ah) = max (−Ct,h,min(Ct,h, ℓt(sh, ah))) , ∀h ∈ [H]
Send trajectory {sh, ah, ℓct(sh, ah) + Ct,h}h∈[H] and clipping threshold {Ct,h}h∈[H] to
UOB-REPS-EX.

If |ℓt(sh, ah)|> Ct,h, set Ct+1,h = 2|ℓt(sh, ah)|, otherwise Ct+1,h = Ct,h, ∀h ∈ [H]

end

stopping strategy on RF-ELP, matching the best known regret in the bounded loss setting. We delay
the details of this extension to Appendix B.11.

Proof Sketch: We start with the exploration algorithm RF-ELP. As illustrated in Algorithm 3,
the goal of RF-ELP is to find a set of policies each capable of visiting a particular state s within
N episodes. RF-ELP is essentially a reward-free exploration algorithm with a similar structure
to that in Jin et al. (2020), while we replace the RL algorithm used for exploration from EULER
(Zanette and Brunskill, 2019) to MVP (Zhang et al., 2023). Specifically, RF-ELP starts by defining
the reward rs as rs(s′, a′) = 1 if and only if s′ = s, and then run MVP for N episodes and get policy
πs,N . Following this, RF-ELP resets the action distribution for state s to ensure accessibility for
every action. We first present the theoretical guarantee of MVP as follows.

Lemma 7 (Theorem 3 of Zhang et al. (2023)) 2 For any N ≥ 1 and s ∈ [S], with probability at
least 1− δ, MVP obeys

max
π∈Π

E

 ∑
h∈[H]

rs(sh, ah)|P, π

− E

 ∑
h∈[H]

rs(sh, ah)|P, πs,N

 ≤ Õ(√SAVars

N
+

SAH

N

)

2. Notice that in this work S represents the collection of states in all horizons, corresponding to SH in Zhang et al.
(2023).

10



SCALE-FREE ADVERSARIAL REINFORCEMENT LEARNING

where Vars = maxπ∈Π Var
[∑

h∈[H] r
s(sh, ah)|P, π

]
.

Based on Lemma 7, we can derive the theoretical guarantee of RF-ELP. The key observation is
that Vars can be bounded by maxπ∈Π E[

∑
h∈[H] r

s(sh, ah)|P, π] due to
∑

h∈[H] r
s(sh, ah) ≤ 1. By

the setting of rs, it suffices to note that E[
∑

h∈[H] r
s(sh, ah)|P, π] = qP,π(s) for every π ∈ Π. In

this case, when maxπ∈Π qP,π(s) ≥ Õ(SAH/N), maxπ∈Π qP,π(s) and qP,π
s,N

(s) should be on the
same order. We summarize the result in the following lemma.

Lemma 8 (RF-ELP guarantee) For any N ≥ 1 and s ∈ [S], with probability at least 1 − δ,
if maxπ∈Π qP,π(s) > 9C2

(
SAH
N

)
, then we have qP,π

s,N
(s) ≥ 1

2 maxπ∈Π qP,π(s), where C =

O(log3(T ) log(SA) log(SAHT
δ )) is a poly-log factor w.r.t. S,A,H,N and 1/δ.

The proof of Lemma 8 is proposed in Appendix B.3. Now we begin to prove Theorem 5.
As illustrated in Algorithm 4, SCB-RL calls the exploration algorithm RF-ELP in the first ξST
episodes. For simplicity of the proof, we let t start from −ξST + 1 instead of 1. Denoted by
qt = qP,πt , as in Jin et al. (2019), the total regret can be written as

∑T
t=−ξST+1⟨ℓt, qt − q∗⟩. We

first decompose the regret into

T∑
t=−ξST+1

⟨ℓt, qt − q∗⟩ =
0∑

t=−ξST+1

⟨ℓt, qt − q∗⟩+
T∑
t=1

⟨ℓct , qt − q∗⟩+
T∑
t=1

⟨ℓt − ℓct , qt − q∗⟩

≤
∑
h∈[H]

ℓ∞,hξST +
T∑
t=1

⟨ℓ+t , qt − q∗⟩︸ ︷︷ ︸
1

+

T∑
t=1

⟨ℓt − ℓct , qt − q∗⟩︸ ︷︷ ︸
2

,

where ℓct(s, a) ∈ RSA and ℓ+t (s, a) ∈ RSA
+ satisfy ∀(s, a) ∈ [S]× [A] 3,

ℓct(s, a) = max
(
−Ct,h(s),min(Ct,h(s), ℓt(s, a))

)
,

ℓ+t (s, a) = ℓct(s, a) + Ct,h(s).

Bounding 1 : The regret of 1 is incurred by UOB-REPS-EX. Similarly to SCB-IX, our algo-
rithm differs to UOB-REPS in two key aspects: the mixing of explicit exploration and the presence
of loss within the range of [0, 2Ct] rather than [0, 1]. The result is stated below and the detailed
proof is delayed to Appendix B.4.

Lemma 9 With probability at least 1− δ, there is ·

T∑
t=1

⟨ℓ+t , qt − q∗⟩ ≤ O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
SAT

δ

)
+ βT

∑
h∈[H]

ℓ∞,h

 .

3. h(s) is the index of the layer to which s belongs.
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Bounding 2 : For simplicity, we denote by qs = maxπ∈Π qP,π(s) and ℓ′t = |ℓt − ℓct |. Notice that

T∑
t=1

⟨ℓt − ℓct , qt − q∗⟩ ≤
∑

s∈[S],a∈[A]

T∑
t=1

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|

=
∑

s∈[S],a∈[A]

T∑
t=1

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|1
{
qs ≤ Õ(SAH/ξT )

}

+
∑

s∈[S],a∈[A]

T∑
t=1

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|1
{
qs > Õ(SAH/ξT )

}
For the first term, we can bound it directly by∑

s∈[S],a∈[A]

T∑
t=1

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|1
{
qs ≤ Õ(SAH/ξT )

}

≤
∑
h∈[H]

ℓ∞,h

∑
s∈[Sh]

2qsT = Õ

(∑
h∈[H] ℓ∞,hShSAH

ξ

)
.

This first inequality is due to
∑

a∈[A] ℓ
′
t(s, a)|qt(s, a)− q∗(s, a)|≤ 2ℓ∞,h(s)q

s for all s ∈ [S].
It suffices to focus on the second term. By Lemma 8, for every s ∈ [S], if qs > Õ(SAH/ξT ),

qs and qP,π
s,ξT

will be on the same order. Thus, when∑
a∈[A]

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|1
{
qs > Õ(SAH/ξT )

}
̸= 0,

the extra exploration policy ensures the outlier loss of (s, a) has probability at least Õ(βqs/SA) to
be visited. Moreover, we can note that

∑
a∈[A] ℓ

′
t(s, a)|qt(s, a)− q∗(s, a)|≤ O(qsℓ∞,h(s)), and thus

the terms dependent on qs can be eliminated. The result is presented below.

Lemma 10 With probability at least 1− δ,∑
s∈[S],a∈[A]

T∑
t=1

ℓ′t(s, a)|qt(s, a)− q∗(s, a)|1
{
qs > Õ(SAH/ξT )

}
≤ Õ

(∑
h∈[H] ℓ∞,hSA

β

)
,

where the proof is in Appendix B.5. Summing up all the terms lead to regret

R(T ) ≤ Õ
( ∑

h∈[H]

ℓ∞,h

[
S
√
AT + βT +

ShSHA

ξ
+

SA

β
+ ξST

])
Setting ξ = O(

√
SA/T ), β = O(

√
SA/T ) and Sh = S/H concludes the proof.

5. Conclusion

This paper initiates the study of scale-free learning in adversarial MDPs. Our framework SCB
allows us to achieve the minimax optimal expected regret for scale-free adversarial MABs and the
first known high-probability regret in both scale-free adversarial MAB and scale-free adversarial
MDPs. Future work includes closing the gap in the S-dependency in the adversarial MDPs regret.
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Appendix A. Omitted details for Section 3

A.1. Proof of Lemma 3

We start by a technical lemma inspired by Chen and Zhang (2023).

Lemma 11 For any ℓ̂1, . . . , ℓ̂T ≥ 0, using the update rule of (1), consider any convex regularizer
Ψ ≥ 0 that satisfies ∇k,kΨ(p) ≤ ∇k,kΨ(q) iff. pk ≥ qk and p,q ∈ ∆n. With non-increasing
sequence of learning rates η1, . . . , ηT+1, there is

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

1

2

T∑
t=1

ηt∥ℓ̂t∥2(∇2Ψ(pt))−1

for every comparator p† ∈ ∆n.

Recall the definition of 1/2-Tsallis Entropy

Ψ(pt) = 4
√
n− 4

n∑
k=1

√
pt,k.

Notice that Ψ(p) ≥ 0 for every p ∈ ∆n and ∇k,kΨ(p) = p
−3/2
k ≤ q

−3/2
k = ∇k,kΨ(q) when

pk ≥ qk. Using Lemma 11, there is

T∑
t=1

⟨ℓ̂t,pt − p⋆⟩ ≤ Ψ(p⋆)

ηT+1
+

1

2

T∑
t=1

ηt∥ℓ̂t∥2(∇2Ψ(pt))−1

≤ Ψ(p⋆)

ηT+1
+

1

2

T∑
t=1

ηt
(ℓct,kt + Ct)

2

q2t,kt
p
3/2
t,kt

≤ Ψ(p⋆)

ηT+1
+ 8

T∑
t=1

ηt
(ℓct,kt + Ct)

2

√
qt,kt

The last inequality is due to pt,kt ≤ qt,kt/(1 − βt) ≤ qt,kt/(1 − n/(2n +
√
nt)) ≤ 2qt,kt . We

further note that, by the clipping rule, there is |ℓct,kt + Ct|≤ 2Ct. Moreover, it suffices to say that
Ct+1 ≤ 2ℓ∞ for all t ∈ [T ]. Remind Ψ(p) ≤

√
n for every p ∈ ∆n. Thus, by choosing learning

rate ηt = 1/2Ct

√
t, we have

E

[
T∑
t=1

⟨ℓ̂t,pt − p⋆⟩

]
≤ Ψ(p⋆)

ηT+1
+ 8

T∑
t=1

E

[
ηt
(ℓct,kt + Ct)

2

√
qt,kt

]

≤ Ψ(p⋆)

ηT+1
+ 8

T∑
t=1

1√
t
E

[
|ℓct,kt + Ct|
√
qt,kt

]
≤ 4ℓ∞

√
n(T + 1) + 16ℓ∞

√
n(2
√
T + 1)

= Θ(ℓ∞
√
nT ),

where the third inequality is due to E[1/√qt,kt ] =
∑n

k=1
√
qt,kt ≤

√
n.
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A.2. Omitted details of Remark 2

Here we prove that SCB is invariant to rescaling of losses. Notice that the proof also applies to
SCB-IX and SCB-RL. Starting with losses ℓ1, . . . , ℓT , the rescaled losses are defined by ℓ′1, . . . , ℓ

′
T

such that ℓt = cℓ′t for all t ∈ [T ] and c > 0. With the use of SCB, the action distributions
corresponding to these two sequences of losses are represented by p1, . . . ,pT and p′

1, . . . ,p
′
T ,

respectively. Notice that pt can be considered as a random vector w.r.t. SCB, losses ℓ1, . . . , ℓt−1

and past actions k1, . . . , kt. Our goal is to prove that the distributions of p1, . . . ,pT and p′
1, . . . ,p

′
T

are the same. We prove by induction. For t = 1, both p1 and p′
1 are uniform distribution over [n].

Assuming at time t, the distributions of p1, . . . ,pt and p′
1, . . . ,p

′
t are the same. Conditioned on

p1, . . . ,pt = p′
1, . . . ,p

′
t, since β1, . . . , βt are independent to the losses, for SCB with these two

loss sequences, the probability of taking actions {k1, . . . , kt} is the same. Conditioned on actions
{k1, . . . , kt}, we have ℓ̂s = cℓ̂′s for all s ≤ t. Then, since the clipping threshold is twice the largest
scale among the previously observed losses, we further have Ct+1 = cC ′

t+1. Thus, by the update
rule, it suffices to show that pt+1 = p′

t+1. This implies that the distributions of p1, . . . ,pt+1 and
p′
1, . . . ,p

′
t+1 are the same, which completes the proof.

We emphasize that the use of clipping (or skipping) to deal with unbounded losses has been stud-
ied before (Chen and Zhang, 2023; Huang et al., 2023). However, our algorithms fundamentally dif-
fer from the previous ones. In previous works, the update of the clipping threshold is accomplished
through a double trick, i.e., Ct+1 = 2Ct. This leads to an inevitable logarithm sub-optimality. More
importantly, their algorithms must start from a positive clipping threshold C1 > 0, resulting in a
failure to achieve strongly scale-free. Relatively, our algorithm starts from C1 = 0. This allows
the clipping threshold to be linearly related to the scale of the losses, thereby achieving strongly
scale-free.

A.3. Proof of Theorem 4

By Hoeffding’s inequality, there is

T∑
t=1

ℓt,kt −
T∑
t=1

ℓt,k⋆ ≤ ℓ∞
√
2T log(1/δ) +

T∑
t=1

⟨ℓt,qt − p⋆⟩

with probability at least 1 − δ. It suffices to focus on bounding
∑T

t=1⟨ℓt,qt − p⋆⟩. Similar to the
proof of Theorem 1, we decompose the regret into

T∑
t=1

⟨ℓt,qt − p⋆⟩ =
T∑
t=1

⟨ℓct + Ct1n,qt − p⋆⟩︸ ︷︷ ︸
1

+
T∑
t=1

⟨ℓt − ℓct ,qt − p⋆⟩︸ ︷︷ ︸
2

and bound these two terms respectively.
Bounding 1 : The high level idea of bounding 1 is inspired by the proof of Theorem 1 in Neu
(2015). Compared to EXP3-IX, our algorithm adds an additional explicit exploration, i.e., mixes
pt with uniform distribution, and ℓct,k + Ct is within [0, 2Ct] instead of [0, 1]. Using a similar idea

proposed in the previous section, we can show that 1 can be well bounded with high probability.
The detailed proof is provided in the appendix.
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Lemma 12 With probability at least 1− δ, there is

T∑
t=1

⟨ℓct + Ct1n,qt − p⋆⟩ ≤ Θ

(
ℓ∞

√
nT

log n
log(1/δ) + ℓ∞

√
nT log(n)

)
.

Bounding 2 : Define K := argminj∈N
{
ℓ∞ ≤ 2j

}
. Define ℓit ∈ Rn such that ℓit,k = ℓt,k1{2i−1 <

ℓt,k ≤ 2i} for k ∈ [n]. Inspired by the results of the above section, we note that the clipping error
can be reduced to the sum of the error incurred by losses within [2i−1, 2i], i.e.,

T∑
t=1

⟨ℓt − ℓct ,pt − p†⟩ ≤ 2
K∑

i=−∞

T∑
t=1

∥ℓit − ℓct
i∥∞≤ 2

K∑
i=−∞

2i

(
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i}

)

Apparently, bounding
∑T

t=1 1{ℓit ̸= 0n}1{Ct < 2i} individually is not difficult due to

P

{
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i} > n

βt
log(1/δ)

}
≤
(
1− βt

n

) n
βt

log(1/δ)

≤ δ.

The challenge is how to achieve a union bound on all i ≤ K without losing any optimality of the
logarithmic terms. This is shown in the following lemma.

Lemma 13 With probability at least 1− δ,

T∑
t=1

⟨ℓt − ℓct ,pt − p⋆⟩ ≤ Θ

(
ℓ∞

√
n2 + nT

log n
log(1/δ)

)
Given Lemma 12 and Lemma 13, we can obtain the results of Theorem 4.

A.4. Proof of Lemma 11

The proof refers to Lemma 1 and 2 in Chen and Zhang (2023). Define

Ft(p) =
t−1∑
s=1

⟨ℓ̂s,p⟩+
1

ηt
Ψ(p),

we first note that
T∑
t=1

⟨ℓ̂t,pt − p†⟩ = −FT+1(p
†) +

1

ηT+1
Ψ(p†) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) +

1

ηT+1
Ψ(p†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(Ft(pt)− Ft+1(pt+1)) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) +

1

ηT+1
Ψ(p†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
.

18



SCALE-FREE ADVERSARIAL REINFORCEMENT LEARNING

By definition, there is

FT+1(pT+1)− FT+1(p
†) = min

p∈∆n

FT+1(p)− FT+1(p
†) ≤ 0

1

ηT+1
Ψ(p†)− F1(p1) =

1

ηT+1
Ψ(p†)− min

p∈∆n

Ψ1(p) ≤
1

ηT+1
Ψ(p†).

Thus, we obtain

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ 1

ηT+1
Ψ(p†) +

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
Furthermore, we note that

Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1) =

t∑
s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt+1
Ψ(pt)

≤
t∑

s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt
Ψ(pt)

= ⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1),

where the first inequality is due to the assumption ηt+1 ≤ ηt. By Taylor’s expansion, we have

Ft(pt+1)− Ft(pt) = ⟨∇Ft(pt),pt+1 − pt⟩+
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.

where ξt = αpt + (1− α)pt+1 for some α ∈ [0, 1]. By definition,

pt = arg min
p∈∆n

Ft(p).

By KKT conditions, there exists some λt ∈ R such that

pt = argmin
p∈R

(
Ft(p) + λt(1−

n∑
k=1

pt,k)
)
.

By the optimality of pt, we have

∇Ft(pt) + λt1n = 0,

which implies

⟨∇Ft(p),pt+1 − pt⟩ = ⟨−λt1n,pt+1 − pt⟩ = 0.

Thus, there is

Ft(pt+1)− Ft(pt) =
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.
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Using the above,

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) = ⟨ℓ̂t,pt − pt+1⟩ −
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

≤ max
p∈R

(
⟨ℓ̂t,p⟩ −

1

2
∥p∥2∇2Ft(ξt)

)
≤ 1

2
∥ℓ̂t∥2(∇2Ft(ξt))−1=

1

2
ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1 ,

where the second inequality is because∇2Ψ(ξt) is a diagonal matrix and the second equality is due
to∇2Ft(ξt) = ∇2Ψ(ξt)/ηt. Now we prove

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂t∥2(∇2Ψ(pt))−1

if ℓ̂t ∈ Rn
+. Recall

∥ℓ̂t∥2(∇2Ψ(ξt))−1=
n∑

k=1

ℓ̂2t,k
∇2

k,kΨ(ξt)
=

ℓ̂2t,kt
∇2

kt,kt
Ψ(ξt)

and ξt is between pt and pt+1, we prove case by case.

1. (pt,kt − pt+1,kt < 0): In this case, we have

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂t,pt − pt+1⟩
= ℓ̂t,kt(pt,kt − pt+1,kt)

≤ 0 ≤ 1

2
∥ℓ̂t∥2(∇2Ψ(pt))−1 .

The first inequality is due to pt minimizing Ft. The second inequality is due to ℓ̂t,kt ≥ 0.

2. (pt,kt−pt+1,kt ≥ 0): In this case, we have pt,kt ≥ ξt,kt . By assumption, there is∇2
kt,kt

Ψ(pt) ≤
∇2

kt,kt
Ψ(ξt). Thus

∥ℓ̂t∥2(∇2Ψ(ξt))−1=
ℓ̂2t,kt

∇2
kt,kt

Ψ(ξt)
≤

ℓ̂2t,kt
∇2

kt,kt
Ψ(pt)

= ∥ℓ̂t∥2(∇2Ψ(pt))−1

completes the proof.

A.5. Proof of Lemma 12

We start by introducing a concentration result of the implicit exploration estimator based on Lemma
1 in Neu (2015).

Lemma 14 Let γ1, . . . , γT be a fixed non-increasing sequence with γt ≥ 0, ∀t ∈ [T ] and αt,k be
non-negative Ft−1 measurable random variables satisfying αt,k ≤ 2γt, ∀t ∈ [T ], k ∈ [n]. Then,
with probability at least 1− δ,

T∑
t=1

n∑
k=1

αt,k

(
ℓ̂t,k − (ℓct,k + Ct)

)
≤ 3ℓ∞ log(1/δ).
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Given Lemma 14, we decompose the 1 into 4 terms.

T∑
t=1

⟨ℓct + Ct1n,qt − p†⟩ =
T∑
t=1

⟨ℓ̂t,pt − p†⟩+
T∑
t=1

⟨ℓ̂t,qt − pt⟩+
T∑
t=1

⟨ℓct + Ct1n − ℓ̂t,qt − p†⟩

=
T∑
t=1

⟨ℓ̂t,pt − p†⟩+
T∑
t=1

⟨ℓ̂t,qt − pt⟩+
T∑
t=1

⟨ℓct + Ct1n − ℓ̂t,qt⟩+
T∑
t=1

⟨ℓ̂t − (ℓct + Ct1n),p
†⟩.

For the first term, recall the definition of (negative) Shannon Entropy

Ψ(pt) = log n+
n∑

k=1

pt,k log(pt,k).

Notice that 0 ≤ Ψ(p) ≤ log n for every p ∈ ∆n and ∇k,kΨ(p) = p−1
k ≤ q−1

k = ∇k,kΨ(q) when
pk ≥ qk. Using Lemma 11, there is

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ log n

ηT+1
+

1

2

T∑
t=1

ηtpt,kt(ℓ̂t,kt)
2

≤ log n

ηT+1
+ 2

T∑
t=1

ηtCtℓ̂t,kt

≤ 3ℓ∞
√

n(T + 1) log(n) + 4
T∑
t=1

γtℓ̂t,kt .

The second inequality is due to pt,kt ℓ̂t,kt = pt,kt(ℓ
c
t,kt

+Ct)/(qt,kt + γt) ≤ 4Ct. Since ηtCt ≤ 2γt,
using Lemma 14 and setting αt,k = γt for every k ∈ [n], we have

T∑
t=1

γtℓ̂t,kt ≤
T∑
t=1

γt

n∑
k=1

(ℓct,k + Ct) + 3ℓ∞log(1/δ)

≤ 3ℓ∞
√
log(n)

T∑
t=1

√
n

t
+ 3ℓ∞log(1/δ)

≤ 6ℓ∞
√
nT log(n) + 3ℓ∞log(1/δ).

The second inequality is due to ℓct,k + Ct ≤ 3ℓ∞ for all t ∈ [T ]. Combining the above, there is

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Θ
(
ℓ∞
√
nT log(n) + ℓ∞ log(1/δ)

)
with probability at least 1− δ.
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For the second term, we note that

T∑
t=1

⟨ℓ̂t,qt − pt⟩ ≤
T∑
t=1

βt

〈
ℓ̂t,

1n
n

〉

≤
T∑
t=1

βt

〈
ℓ̂t − (ℓct + Ct1n),

1n
n

〉
+

T∑
t=1

βt

〈
ℓct + Ct1n,

1n
n

〉

≤
T∑
t=1

βt

〈
ℓ̂t − (ℓct + Ct1n),

1n
n

〉
+ 6ℓ∞

√
nT log(n).

Since βt/n ≤ 2γt, using Lemma 14 and setting αt,k = βt/n for every k ∈ [n], we have

T∑
t=1

βt

〈
ℓ̂t − (ℓct + Ct1n),

1n
n

〉
≤

T∑
t=1

2γt

n∑
k=1

(
ℓ̂t,k − (ℓct,k + Ct)

)
≤ 3ℓ∞ log(1/δ).

Thus we have

T∑
t=1

⟨ℓ̂t,qt − pt⟩ ≤ Θ
(
ℓ∞
√
nT log(n) + ℓ∞ log(1/δ)

)
with probability at least 1− δ.

For the third term, there is

T∑
t=1

⟨ℓct + Ct1n − ℓ̂t,qt⟩ =
T∑
t=1

n∑
k=1

qt,k(ℓ
c
t,k + Ct − ℓ̂t,k)

=

T∑
t=1

n∑
k=1

qt,k

(
ℓct,k + Ct −

1{k = kt}
qt,k + γt

(ℓct,k + Ct)

)

=
T∑
t=1

n∑
k=1

qt,k

(
ℓct,k + Ct −

qt,k
qt,k + γt

(ℓct,k + Ct)

)

+

T∑
t=1

n∑
k=1

qt,k

(
qt,k

qt,k + γt
(ℓct,k + Ct)−

1{k = kt}
qt,k + γt

(ℓct,k + Ct)

)

≤
T∑
t=1

n∑
k=1

γt(ℓ
c
t,k + Ct) +

T∑
t=1

⟨ℓ̃t,qt − ekt⟩,

where ℓ̃t denotes the implicit loss vector such that ℓ̃t,k =
qt,k

qt,k+γt
(ℓct,k+Ct) for every k ∈ [n]. Notice

that ∥ℓ̃t∥∞≤ 3ℓ∞. Thus with probability at least 1− δ,

T∑
t=1

n∑
k=1

γt(ℓ
c
t,k + Ct) +

T∑
t=1

⟨ℓ̃t,qt − ekt⟩ ≤ 6ℓ∞
√
nT log(n) + 3ℓ∞

√
2T log(2/δ)

≤ Θ
(
ℓ∞
√
nT log(n) + ℓ∞

√
T log(1/δ)

)
.
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For the last term,

T∑
t=1

⟨ℓ̂t − (ℓct + Ct1n),p
†⟩ ≤ 1

2γT

T∑
t=1

2γt⟨ℓ̂t − (ℓct + Ct1n),p
†⟩

≤ 3

2γT
ℓ∞ log(1/δ)

≤ Θ

(
ℓ∞

√
nT

log n
log(1/δ)

)
.

Summing up the above we can bound 1 by Θ
(
ℓ∞

√
nT
logn log(1/δ) + ℓ∞

√
nT log(n)

)
.

A.6. Proof of Lemma 13

Remind

P

{
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i} > n

βt
log(1/δ)

}
≤ δ

for every i ≤ K. We first note that

K∑
i=−∞

2i

(
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i}

)
≤

K∑
i=−∞

2i

(√
n2 + nT

log n
log(2K−i+2/δ)

)

with probability at least 1− δ. This is because
∑K

i=−∞ δ/2K−i+2 ≤ δ. Denote by

Si = 2i

(√
n2 + nT

log n
log(2K−i+2/δ)

)
,

we then prove Si−1/Si ≤ 3/4 for every i ≤ K.

Si−1

Si
≤ 1

2

log(2K−i+2/δ) + log 2

log(2K−i+2/δ)
≤ 3

4
.

Thus,

K∑
i=−∞

2i

(
T∑
t=1

1{ℓit ̸= 0n}1{Ct < 2i}

)
≤

K∑
i=−∞

Si ≤ SK

K∑
i=−∞

(
3

4
)K−i = 4SK

≤ 2K+2

(√
n2 + nT

log n
log(4/δ)

)

≤ 8ℓ∞

√
n2 + nT

log n
log(4/δ)

= Θ

(
ℓ∞

√
n2 + nT

log n
log(1/δ)

)
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A.7. Proof of Lemma 14

Notice that

T∑
t=1

n∑
k=1

αt,k

(
ℓ̂t,k − (ℓct,k + Ct)

)
= 3ℓ∞

T∑
t=1

n∑
k=1

αt,k

(
ℓ̂t,k
3ℓ∞

−
ℓct,k + Ct

3ℓ∞

)
.

Since 0 ≤ ℓct,k + Ct ≤ 3ℓ∞ for all t ∈ [T ], by Lemma 1 in Neu (2015), we complete the proof.

Appendix B. Omitted details for Section 4

B.1. Omitted details of Occupancy measure

In this subsection, we briefly explain the concept of “occupancy measure” and show how to re-
formulate adversarial MDP problems to adversarial MAB problems (for more details see Jin et al.
(2019) and Lee et al. (2020)). For any (s, a) ∈ [S] × [A], the probability that policy π visits the
state-action pair (s, a) with transition function P can be denoted by

qP,π(s, a) = P
{
sh(s) = s, ah(s) = a|P, π

}
,

where h(s) denotes the index of the layer to which state s belongs. Here, qP,π ∈ RS×A is a valid
occupancy measure. Following Jin et al. (2019), we denote ∆(P ) by the set of occupancy measures
whose induced transition function is P , i.e., the set of qP,π for all policy π with transition function
P , and ∆(P) by the set of occupancy measures whose induced transition function belongs to the
set of transition functions P , i.e., the set of qP,π for all policy π with transition function P ∈ P .
Assuming P is the underlying transition function, the total expected regret (w.r.t. randomness of the
transition function) can be written as

R(T ) =
T∑
t=1

ℓt(πt)−
T∑
t=1

ℓt(π
⋆)

=
T∑
t=1

∑
s∈[S],a∈[A]

(qP,πt(s, a)− qP,π
⋆
(s, a))ℓt(s, a)

=

T∑
t=1

⟨qP,πt − qP,π
⋆
, ℓt⟩.

When the regret is written in this way, it is clear that the adversarial MDP problems can be reduced
to the adversarial MAB problems.

B.2. Omitted details of UOB-REPS-EX

In this section, we introduce the algorithm UOB-REPS-EX, as illustrated in Algorithm 5. The
algorithm is mainly the same to UOB-REPS in Jin et al. (2019), except for the following three dif-
ferences. First, UOB-REPS-EX uses the clipping loss with offset {ℓct(sh, ah) + Ct,h}h∈[H] instead
of {ℓt(sh, ah)}h∈[H] as the input. Secondly, in each episode, Algorithm 5 applies FTRL with an

24



SCALE-FREE ADVERSARIAL REINFORCEMENT LEARNING

Algorithm 5: UOB-REPS-EX: Upper Occupancy Bound Relative Entropy Policy Search with
Explicit Exploration

Initialize: state space S, action space A, episode number T , learning rate η, implicit
exploration rate γ, explicit exploration rate β, confidence parameter δ, Shannon
Entropy {Ψh}h∈[H], and Comp-UOB as Algorithm 3 in Jin et al. (2019)

Initialize: epoch index i = 1, confidence set P1 as the set of all transition functions, counters
N0(s, a) = N1(s, a) = M0(s

′|s, a) = M1(s
′|s, a) = 0, ∀(s, a), occupancy

measure q̂1(s, a, s
′) = 1

|Sh|A||Sh+1| , ∀(s, a, s
′) and corresponding policy π1 = πq̂1

Input: State exploration policies πs, ∀s, (streaming) trajectories {sh, ah, ℓ+t (sh, ah)}h∈[H]

and clipping threshold {Ct,h}h∈[H] for t ∈ [T ]
Output: (Streaming) policies πt for t ∈ [T ]
for t = 1 to T do

Send policy πt to SCB-RL. Receive trajectory {sh, ah, ℓct(sh, ah) + Ct,h}h∈[H] and
clipping threshold {Ct,h}h∈[H]

Compute upper occupancy bound: ut(sh, ah) = Comp-UOB(πt, sh, ah,Pi), ∀h ∈ [H]
Construct loss estimators:

ℓ̂t(s, a) =
ℓct(s, a) + Ct,h(s)

ut(s, a) + γ
1{sh(s) = s, ah(s) = a}, ∀(s, a) ∈ [S]× [A]

Update counters:
Ni(sh, ah)← Ni(sh, ah) + 1, Mi(sh+1|sh, ah)←Mi(sh+1|sh, ah) + 1, ∀h ∈ [H]

if ∃h ∈ [H], Ni(sh, ah) ≥ max{1, 2Ni−1(sh, ah)} then
Increase epoch index i← i+ 1
Initialize new counters: Ni ← Ni−1, Mi ←Mi−1

Update confidence set Pi

Pi =
{
P̂ : |P̂ (s′|s, a)− P̄i(s

′|s, a)|≤ ϵi(s
′|s, a),

∀(s, a, s′) ∈ [Sh]× [A]× [Sh+1], h = 0, . . . ,H − 1

}
,

where P̄i(s
′|s, a) = Mi(s

′|s,a)
max{1,Ni(s,a)} and

ϵi(s
′|s, a) = 4

√
P̄ (s′|s, a) ln

(
TSA
δ

)
max{1, Ni(s, a)− 1}

+
28 ln

(
TSA
δ

)
3max{1, Ni(s, a)− 1}

end
Update occupancy measure and policy, get q̃t+1 and set π̃t+1 ← πq̃t+1

q̃t+1 = arg min
q∈∆(Pi)

(∑
t

⟨q, ℓ̂t⟩+
∑
h

Ct,h

η
Ψh(q)

)

Add extra exploration: πt+1 = (1− β)π̃t+1 + βUniform(π1, . . . , πS)
end

25



CHEN ZHANG

adaptive learning rate to update the occupancy measure q̃t+1, instead of using OMD with a fixed
learning rate. Recall the definition of (negative) Shannon Entropy on an occupancy measure q is

Ψh(q) =
∑

s∈[Sh],a∈[A]

q(s, a) ln
1

q(s, a)
, ∀h ∈ [H].

Lastly, the policy output by UOB-REPS-EX is a mixture of its FTRL output policy π̃t+1 and the
exploration policies from RF-ELP. This step is to allow every state-action pair to have a probability
of being visited, so that SCB-RL can perceive the change of loss scale and update the clipping
threshold on time.

B.3. Proof of Lemma 8

We first note that

E

[∑
h

r(sh, ah)|P, π

]
= E

[∑
h

1{sh = s}|P, π

]
= qP,π(s).

Denoted by qs = maxπ∈Π qP,π(s), using the above, Lemma 7 implies that

qs − qP,π
s,N

(s) ≤ Õ

(√
SAVars

N
+

SAH

N

)
≤ Õ

(√
SAqs

N
+

SAH

N

)

holds with probability at least 1 − δ, where the last inequality is due to Vars ≤ qs. By the ap-
pendix F.3.4 in Zhang et al. (2023), we can set C = O

(
log4(T ) log2(SAH) log(1δ )

)
such that

qs − qP,π
s,N

(s) ≤ C

(√
SAqs

N + SAH
N

)
. When qs > 9C2 SAH

N , we note that

qs > 2C

(√
SAqs

N
+

SAH

N

)

and thus

qP,π
s,N

(s) ≥ qs − C

(√
SAqs

N
+

SAH

N

)
≥ qs

2
.

This completes the proof.

B.4. Proof of Lemma 9

We start by stating two key technical lemmas from Jin et al. (2019). The first outlines the reliability
of the confidence sets. The second essentially describes how the confidence set shrinks over time.

Lemma 15 (Lemma 2 in Jin et al. (2019)) With probability at least 1− 4δ, there is P ∈ Pi for all
i.
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Lemma 16 (Lemma 4 in Jin et al. (2019)) With probability at least 1− δ, for any h ∈ [H] and any
collection of transition functions {P s

t }s∈[S] such that P s
t ∈ Pit for all s ∈ [S], there is

T∑
t=1

∑
s∈[Sh],a∈[A]

|qP s
t ,πt(s, a)− qP,πt(s, a)|≤ O

(
S

√
AT ln

(
TSA

δ

))

Recall qt = qP,πt and q̂t = qP̂t,πt . Given the above lemma, we decompose the regret into

T∑
t=1

⟨ℓ+t , qt − q∗⟩ =

ERROR︷ ︸︸ ︷
T∑
t=1

⟨ℓ+t , qt − q̂t⟩+

BIAS1︷ ︸︸ ︷
T∑
t=1

⟨ℓ+t − ℓ̂t, q̂t⟩+

REG︷ ︸︸ ︷
T∑
t=1

⟨ℓ̂t, q̂t − q⋆⟩+

BIAS2︷ ︸︸ ︷
T∑
t=1

⟨ℓ̂t − ℓ+t , q
∗⟩

Bounding ERROR : By Lemma 16, we immediately obtain the following bound.

Lemma 17 With probability at least 1− δ, there is

ERROR ≤ O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
TSA

δ

)
Bounding BIAS1 : The high level idea of bounding BIAS1 is to show that ℓ̂t is not underestimating
ℓ+t by too much, which is ensured due to the fact that the confidence set becomes more and more
accurate for frequently visited state-action pairs.

Lemma 18 With probability at least 1− δ, there is

BIAS1 ≤ O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
SAT

δ

)
+
∑
h∈[H]

γℓ∞,hShAT


Bounding REG : In this part, we build the proof based on the ideas of Neu (2015) and Jin et al.
(2019). The main challenge is that our loss estimator ℓ̂t corresponds to the policy πt rather than the
FTRL output π̃t, which makes some regular proof tricks no longer applicable.

Lemma 19 With probability at least 1− δ, there is

REG ≤ O

 ln(SA)

η

∑
h∈[H]

ℓ∞,h +
η

1− β
AT

∑
h∈[H]

ℓ∞,hSh +
ln
(
H
δ

)
γ

∑
h∈[H]

ℓ∞,h + βT
∑
h∈[H]

ℓ∞,h

 .

Bounding BIAS2 : BIAS2 can be bounded via a direct application of Lemma 21.

Lemma 20 With probability at least 1− δ, there is

BIAS2 ≤ O

1

γ

∑
h∈[H]

ℓ∞,h ln

(
H

δ

)
Summing up the above and setting η = γ = O

(√
H ln(SAT/δ)

SAT

)
and β ≥ 1/2, we get

T∑
t=1

⟨ℓ+t , qt − q∗⟩ ≤ O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
SAT

δ

)
+ βT

∑
h∈[H]

ℓ∞,h


with probability 1− δ.
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B.5. Proof of Lemma 10

Recall qs = maxπ∈Π qP,π(s) and ℓ′t = |ℓt−ℓct |. By the clipping rule, there is ℓ′(s, a) ≤ |ℓt(s, a)|1{Ct,h <
2i} for every (s, a) pair. Fix h ∈ [H], it suffices to prove

∑
s∈[Sh],a∈[A]

T∑
t=1

|ℓt(s, a)||qt(s, a)− q∗(s, a)|1
{
qs > Õ(SAH/ξT )

}
1
{
Ct,h < 2i

}
≤ Õ

(
ℓ∞,hSA

β

)

Define K := argminj∈N
{
ℓ∞,h ≤ 2j

}
. Define ℓit(s, a) = ℓt(s, a)1{2i−1 < |ℓt(s, a)|≤ 2i}1{qs >

Õ(SAH/ξT )}. We note that

∑
s∈[Sh],a∈[A]

T∑
t=1

|ℓt(s, a)||qt(s, a)− q∗(s, a)|1
{
qs > Õ(SAH/ξT )

}
1
{
Ct,h < 2i

}
≤

K∑
i=−∞

∑
s∈[Sh],a∈[A]

T∑
t=1

|ℓit(s, a)||qt(s, a)− q∗(s, a)|1
{
Ct,h < 2i

}
≤

K∑
i=−∞

∑
s∈[Sh],a∈[A]

T∑
t=1

|ℓit(s, a)|qs1
{
Ct,h < 2i

}
≤

K∑
i=−∞

2i
T∑
t=1

1
{
Ct,h < 2i

} ∑
s∈[Sh],a∈[A]

qs1
{
ℓit(s, a) ̸= 0

}
.

For brevity, we denote by Xi
t =

∑
s∈[Sh],a∈[A] qs1{ℓit(s, a) ̸= 0}. By Lemma 8, for any s ∈ [Sh], if

qs1
{
ℓit(s, a) ̸= 0

}
̸= 0, state s can be well explored by RF-ELP with high probability. As shown

in Algorithm 5, the exploration policy has probability at least Õ(β/SA) to be played in episode
t for every state. Thus, the algorithm is able to observe the outlier and update Ct+1,h to 2i with
probability at least Õ(βXi

t/SA). Thus, for every integer m ≥ 1, we have

P

{
T∑
t=1

1
{
Ct,h < 2i

}
Xi

t ≥
m∑
t=1

Xi
t

}
≤

m∏
t=1

(
1− Õ(βXi

t/SA)
)

≤ Õ

((
1− β

SA

)∑m
t=1 X

i
t

)
.

This implies that with probability at least 1− δ, there is

T∑
t=1

1
{
Ct,h < 2i

} ∑
s∈[Sh],a∈[A]

qs1
{
ℓit(s, a) ̸= 0

}
≤ Õ

(
SA

β

)
.
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Then, using the same idea of Lemma 13, we can achieve a high probability union bound on all
i ≤ K, i.e., with probability at least 1− δ

K∑
i=−∞

2i
T∑
t=1

1
{
Ct,h < 2i

} ∑
s∈[Sh],a∈[A]

qs1
{
ℓit(s, a) ̸= 0

}
≤

K∑
i=−∞

2iÕ
(
SA

β

)
≤ 2K+1Õ

(
SA

β

)
= Õ

(
ℓ∞,hSA

β

)
,

which completes the proof.

B.6. Proof of Lemma 17

T∑
t=1

⟨ℓ+t , qt − q̂t⟩ ≤
∑
h∈[H]

 max
s∈[Sh],a∈[A]

ℓ+t (s, a)

 T∑
t=1

∑
s∈[Sh],a∈[A]

|qP̂t,πt(s, a)− qt(s, a)|


≤
∑
h∈[H]

 max
s∈[Sh],a∈[A]

ℓ+t (s, a)

 T∑
t=1

∑
s∈[Sh],a∈[A]

|qP s
t ,πt(s, a)− qt(s, a)|


≤ O

∑
h∈[H]

CT,hS

√
AT ln

(
TSA

δ

)
≤ O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
TSA

δ

)
The second inequality is by setting P̂t = P s

t ∈ Pit as in Lemma 16. The third and last inequalities
are due to ℓ+t (s, a) ≤ 2Ct,h(s) ≤ 2CT,h(s) and CT,h ≤ 2maxs∈[Sh],a∈[A] ℓ

+
t (s, a) = 4ℓ∞,h for all

h ∈ [H].

B.7. Proof of Lemma 18

We first note that

E
[
ℓ̂t(s, a)

]
=

ℓct(s, a) + Ct,h(s)

ut(s, a) + γ
qt(s, a) =

qt(s, a)

ut(s, a) + γ
ℓ+t (s, a).

Then
T∑
t=1

⟨ℓ+t − ℓ̂t, q̂t⟩ =
T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
ℓ+t (s, a)− ℓ̂t(s, a)

)

=

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
ℓ+t (s, a)− E

[
ℓ̂t(s, a)

])

+

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
E
[
ℓ̂t(s, a)

]
− ℓ̂t(s, a)

)
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For the first term, there is
T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
ℓ+t (s, a)− E

[
ℓ̂t(s, a)

])

=

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)ℓ
+
t (s, a)

(
1− qt(s, a)

ut(s, a) + γ

)

≤3
∑
h∈[H]

ℓ∞,h

T∑
t=1

∑
s∈[Sh],a∈[A]

q̂t(s, a)

ut(s, a) + γ
(ut(s, a) + γ − qt(s, a))

≤3
∑
h∈[H]

ℓ∞,h

T∑
t=1

∑
s∈[Sh],a∈[A]

|ut(s, a)− qt(s, a)|+3
∑
h∈[H]

γℓ∞,hShAT.

Recall

ut(s, a) = πt(a|s) max
P̂∈Pit

qP̂ ,πt(s),

the last inequality is due to q̂t(s, a) ≤ ut(s, a). Moreover, since qP
x
t ,πt(s, a) = πt(a|s)qP

x
t ,πt(s) ≤

ut(s, a) for all (s, a) ∈ [S] × [A], it suffices to bound
∑T

t=1

∑
s∈[Sh],a∈[A]|ut(s, a) − qt(s, a)| by

Lemma 16. Thus we can conclude
T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
ℓ+t (s, a)− E

[
ℓ̂t(s, a)

])

≤O

∑
h∈[H]

ℓ∞,hS

√
AT ln

(
SAT

δ

)
+
∑
h∈[H]

γℓ∞,hShAT

 .

For the second term, notice that |
∑

h∈[H]

∑
s∈[Sh],a∈[A] q̂t(s, a)ℓ̂t(s, a)|≤ 3

∑
h∈[H] ℓ∞,h for all

t ∈ [T ]. Using Azuma’s inequality, with probability at least 1− δ, we have

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

q̂t(s, a)
(
E
[
ℓ̂t(s, a)

]
− ℓ̂t(s, a)

)
≤ O

∑
h∈[H]

ℓ∞,h

√
T ln

1

δ

 .

Summing up the two terms and resize δ completes the proof.

B.8. Proof of Lemma 19

We start by decomposing REG into

REG = (1− β)

T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩+ β

T∑
t=1

⟨ℓ̂t, qP̂t,Uniform(π1,...,πS) − q⋆⟩

≤ (1− β)
T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩+ β
T∑
t=1

⟨ℓ̂t − ℓ+t , q
P̂t,Uniform(π1,...,πS)⟩+ β

T∑
t=1

⟨ℓ+t , qP̂t,Uniform(π1,...,πS)⟩

≤ (1− β)
T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩+ β
T∑
t=1

⟨ℓ̂t − ℓ+t , q
P̂t,Uniform(π1,...,πS)⟩+ 3βT

∑
h∈[H]

ℓ∞,h
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To bound the first and second term, we propose a variant of Lemma 11 in Jin et al. (2019).

Lemma 21 For any sequence of functions α1, . . . , αT such that αt ∈ [0, 2γ]S×A andFt-measurable
for all t ∈ [T ], with probability at least 1− δ, there is

T∑
t=1

∑
s∈[S],a∈[A]

αt(s, a)

(
ℓ̂t(s, a)−

qt(s, a)

ut(s, a)
ℓ+t (s, a)

)
≤ O

∑
h∈[H]

ℓ∞,h ln

(
H

δ

) .

Without loss of generality, in the following, we assume that ut(s, a) ≥ qt(s, a) for all (s, a) ∈
[S]×[A], which holds true with probability at least 1−δ. Using Lemma 21, since qP̂t,Uniform(π1,...,πS)

is independent to ℓt and thus be Ft-measurable, we can immediately bound the second term by

β
T∑
t=1

⟨ℓ̂t − ℓ+t , q
P̂t,Uniform(π1,...,πS)⟩ = β

2γ

T∑
t=1

⟨ℓ̂t − ℓ+t , 2γq
P̂t,Uniform(π1,...,πS)⟩

≤ β

2γ

∑
h∈[H]

ℓ∞,h ln

(
H

δ

)
with probability at least 1 − δ. It suffices to focus on the first term. By standard analysis of FTRL
algorithm, there is

T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩ ≤
∑
h∈[H]

CT,h

η
ln(SA) +

T∑
t=1

∑
h∈[H]

η

Ct,h

∑
s∈[Sh],a∈[A]

q̃t(s, a)ℓ̂
2
t (s, a).

We further note that

q̃t(s, a)ℓ̂
2
t (s, a) ≤ q̃t(s, a)

ℓ+t (s, a)

ut(s, a) + γ
ℓ̂t(s, a) ≤ 2Ct,h

q̃t(s, a)

ut(s, a) + γ
ℓ̂t(s, a).

Different to the proof of Jin et al. (2019), we cannot immediately conclude q̃t(s, a)/(ut(s, a)+γ) ≤
1. This is because ut(s, a) is the upper bound of qP̂t,πt(s, a) rather than qP̂t,π̃t(s, a). Here we prove
by showing

ut(s, a) ≥ qP̂t,πt(s, a) ≥ (1− β)qP̂t,π̃t(s, a),

which implies that q̃t(s, a)/(ut(s, a) + γ) ≤ 1/(1− β). Thus we have

T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩ ≤
∑
h∈[H]

CT,h

η
ln(SA) +

2η

1− β

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

ℓ̂t(s, a).

Applying Lemma 21 obtains
T∑
t=1

⟨ℓ̂t, q̃t − q⋆⟩

≤
∑
h∈[H]

CT,h

η
ln(SA) +

2η

1− β

T∑
t=1

∑
h∈[H]

∑
s∈[Sh],a∈[A]

qt(s, a)

ut(s, a)
ℓt(s, a) +

∑
h∈[H]

ℓ∞,h

2γ
ln

(
H

δ

)

≤
∑
h∈[H]

2ℓ∞,h

η
ln(SA) +

2η

1− β

∑
h∈[H]

ℓ∞,hShAT +
∑
h∈[H]

ℓ∞,h

2γ
ln

(
H

δ

)
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with probability at least 1− δ. Combining with the above and resize δ we finally get

REG ≤ O

 ln(SA)

η

∑
h∈[H]

ℓ∞,h +
η

1− β
AT

∑
h∈[H]

ℓ∞,hSh +
ln
(
H
δ

)
γ

∑
h∈[H]

ℓ∞,h + βT
∑
h∈[H]

ℓ∞,h


completing the proof.

B.9. Proof of Lemma 20

Assuming ut(s, a) ≥ qt(s, a) for all (s, a) ∈ [S]× [A] be true. Using Lemma 21, we have

T∑
t=1

⟨ℓ̂t − ℓ+t , q
∗⟩ ≤

T∑
t=1

∑
s∈[S],a∈[A]

q∗(s, a)

(
qt(s, a)

ut(s, a)
ℓ+t (s, a)− ℓ+t (s, a)

)
+

1

2γ

∑
h∈[H]

ℓ∞,h ln

(
H

δ

)

≤ 1

2γ

∑
h∈[H]

ℓ∞,h ln

(
H

δ

)

with probability at least 1− δ. Resize δ completes the proof.

B.10. Proof of Lemma 21

We note that

T∑
t=1

∑
s∈[S],a∈[A]

αt(s, a)

(
ℓ̂t(s, a)−

qt(s, a)

ut(s, a)
ℓ+t (s, a)

)

=
∑
h∈[H]

3ℓ∞,h

T∑
t=1

∑
s∈[Sh],a∈[A]

αt(s, a)

(
ℓ̂t(s, a)

3ℓ∞,h
− qt(s, a)

ut(s, a)

ℓ+t (s, a)

3ℓ∞,h

)
.

Now ℓ+t (s, a)/3ℓ∞,h is within [0, 1] for all t ∈ [T ] and (s, a) ∈ [S]× [A]. By the results of Lemma
11 in Jin et al. (2019), there is

T∑
t=1

∑
s∈[Sh],a∈[A]

αt(s, a)

(
ℓ̂t(s, a)

3ℓ∞,h
− qt(s, a)

ut(s, a)

ℓ+t (s, a)

3ℓ∞,h

)
≤ ln

(
H

δ

)

for all h ∈ [H] with probability at least 1− δ. Thus we have

T∑
t=1

∑
s∈[S],a∈[A]

αt(s, a)

(
ℓ̂t(s, a)−

qt(s, a)

ut(s, a)
ℓ+t (s, a)

)
≤ O

∑
h∈[H]

ℓ∞,h ln

(
H

δ

) ,

which completes the proof.
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B.11. Omitted details of Remark 6

In this section, we describe how to reduce the regret of SCB-RL to Õ(
∑

h∈[H] ℓ∞,hS
√
AT ). Recall

RF-ELP, we fix the number of episodes used to find an exploration policy for state s asO(
√
SAT ).

This is actually not necessary, that is, if the exploration algorithm has already found a good explo-
ration policy for state s, it should stop searching and take the policy as output. In this case, the
number of episodes used to find an exploration policy will be independent of T . Inspired by this,
we design RF-ELP-ES, as illustrated in Algorithm 6. We will elucidate the details of the algorithm
in the following section.

By Lemma 7 and Lemma F.3.4 in Zhang et al. (2023), there exists C = O(log3(T ) log2(SAH)
log(1δ )) such that

qs − qP,π
s,N

(s) ≤ C

(√
SAqs

N
+

SAH

N

)
for all N ≥ 1 with probability at least 1 − δ. Taking the above as a quadratic function of

√
qs, we

have

√
qs ≤

√
qP,πs,N (s) + 2C

√
SAH

N
,

which immediately implies

qs − qP,π
s,N

(s) ≤ 3C2

√SAqP,πs,N (s)

N
+

SAH

N

 . (3)

Given qP,π
s,N

(s) = E[
∑N

t=1 1t{s|P, πs
t }]/N , by empirical Bernstein’s inequality, there exists C ′ =

O(log(Tδ )) such that with probability at least 1− δ, for all N ≥ 1, there is∣∣∣∣∣qP,πs,N
(s)−

∑N
t=1 1t{s|P, πs

t }
N

∣∣∣∣∣ ≤ C ′


√∑N

t=1 1t{s|P, πs
t }

N
+

1

N

 . (4)

Combining inequalities (3) and (4), it suffices to show that

qs ≤
∑N

t=1 1t{s|P, πs
t }

N
+ C ′′


√
SA

∑N
t=1 1t{s|P, πs

t }
N

+
SAH

N

 (5)

where C ′′ = O(log7(T ) log4(SAH) log3(1δ )). Furthermore, by inequality 4, we further have

qP,π
s,N

(s) ≥
∑N

t=1 1t{s|P, πs
t }

N
− C ′


√∑N

t=1 1t{s|P, πs
t }

N
+

1

N

 .

This means

qs

qP,πs,N (s)
≤

∑N
t=1 1t{s|P, πs

t }+ C ′′
(√

SA
∑N

t=1 1t{s|P, πs
t }+ SAH

)
∑N

t=1 1t{s|P, πs
t } − C ′

(√∑N
t=1 1t{s|P, πs

t }+ 1

) .
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Algorithm 6: Reward free exploration in RL with Early Stopping (RF-ELP-ES)
Input: State s; Upper bound of exploration episodes number N
Output: Policy π ∈ Π; Exploration episodes number N ′

Initialize reward: rs(s′, a′)← 1{s′ = s} for all (s′, a′) ∈ [S]×A
Run MVP (Zhang et al., 2023) N ′ episodes, where
N ′ = min{N, argminM

∑M
t=1 1t{s|P, πs

t } ≥ 9C
′′2
SAH}, get policies

{πs
1, . . . , π

s
N ′} ← MVP(rs, N ′), set πs,N ′

(·|s)← Uniform(πs
1, . . . , π

s
N ′)

Set πs,N ′
(·|s)← Uniform(A)

Return πs,N ′
, N ′

When
∑N

t=1 1t{s|P, πs
t } ≥ 9C

′′2
SAH , it suffices to say that qs/qP,π

s,N
(s) ≤ 4 with probability at

least 1 − 2δ, that is, policy πs,N is good enough to explore state s, thus we can stop RF-ELP-ES
in advance.

The last question is how large does N need to make
∑N

t=1 1t{s|P, πs
t } ≥ 9C

′′2
SAH with

probability at least 1− δ. Taking inequality (5) as a quadratic function of
√∑N

t=1 1t{s|P, πs
t }, we

note that √√√√ N∑
t=1

1t{s|P, πs
t } ≥

−C ′′√
SA+

√
C ′′2SA+ 4Nqs − 4SAH

2
.

RF-ELP-ES will end when

−C ′′√
SA+

√
C ′′2SA+ 4Nqs − 4SAH

2
≥ 3C

′′2√
SAH.

The above holds if N ≥ 16C
′′2
SAH/qs. Therefore, RF-ELP-ES requires at most Õ(SAH/qs)

episodes to find an exploration policy for every state s.

Regret analysis Denote by

qmin = min
s∈[S]
{qs} = min

s∈[S]

{
max
π∈Π

qP,π(s)

}
.

Consider T ≥ Õ
(
SAH2

q2min

)
such that ξT ≥ 16C

′′2
SAH/qs for all s ∈ [S]. In this case, every

state is thoroughly explored, thus the term Õ
(∑

h∈[H] ℓ∞,hShSHA

ξ

)
in the regret can be eliminated.

Moreover, we can reduce the error incurred by the exploration phase from O
(∑

h∈[H] ℓ∞,hξST
)

to Õ
(∑

h∈[H] ℓ∞,h
S2AH
qmin

)
since RF-ELP-ES operates at most Õ

(
S2AH
qmin

)
episodes. Combining

with other terms in the regret, we finally have

.R(T ) ≤ Õ

∑
h∈[H]

ℓ∞,h

[
S
√
AT + βT +

SA

β
+

S2AH

qmin

] .

Setting β = O(
√
SA/T ) concludes the proof.
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