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Abstract
We develop a new technique for proving distribution testing lower bounds for properties defined
by inequalities on the individual bin probabilities (such as monotonicity and log-concavity). The
basic idea is to find a base distribution Q where these inequalities barely hold in many places. We
then find two different ensembles of distributions that modify Q in slightly different ways. We use
a moment matching construction so that each ensemble has the same bin moments (in particular
the expectation over the choice of distribution p of pti is the same for the two ensembles for small
integers t). We show that this makes it impossible to distinguish between the two ensembles with
a small number of samples. On the other hand, we construct them so that one ensemble will tweak
Q in such a way that it may violate the defining inequalities of the property in question in many
places, while the second ensembles does not. Since any valid tester for this property must be able
to reliably distinguish these ensembles, we obtain a lower bound of testing the property.

Roughly speaking, if we can construct Q which nearly violates the defining inequalities in n
places and if the desired error ε is small enough relative to n, we hope to obtain a lower bound of
roughly n

ε2 up to log factors. In particular, we obtain a lower bound of Ω(min(n, (1/ε)/ log3(1/ε))

/(ε2 log7(1/ε))) for monotonicity testing on [n] and Ω(log−7(1/ε)ε−2 min(n, ε−1/2 log−3/2(1/ε)))
for log-concavity testing on [n], the latter of which matches known upper bounds to within loga-
rithmic factors. More generally, for monotonicity testing on [n]d, we have the lower bound of
2−O(d)d−dε−2 log−7(1/ε) min(n, dε−1 log−3(1/ε))d.
Keywords: Distribution Testing Lower Bound, Monotonicity, Log Concavity

1. Introduction

1.1. Background

Given data from an unknown distribution, can one determine whether the underlying distribution
has certain properties or not? In order to make this determination, how much data would be needed?
These are the critical questions in the field of statistical hypothesis testing (see (7)). Some of these
questions, particularly when dealing with discrete distributions, have over the past few decades
drawn the interest of computer scientists under the heading of distribution testing (see (8)).
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ship, and a grant from CasperLabs.
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In order to make such a determination possible, distribution testing algorithms are usually asked
to distinguish between the cases where the unknown distribution p either has the property P or is far
from (usually in L1 distance) any distribution with this property. The goal is usually to do this with
as few samples as possible (ideally to within a constant factor of the information-theoretic limits)
and in a computationally efficient manner. While many of the most basic questions such as testing
for uniformity, identity, closeness and independence have all been resolved, many more complicated
properties still have wide gaps between the best known algorithms and the best lower bounds. For a
survey of progress in this field see (4) for a recent survey of the area.

In this paper, we develop a new lower bound technique for testing properties that are defined
by inequalities between the probability masses of individual bins. In particular, this technique is
used to produce new lower bounds for testing monotonicity and log-concavity, the latter of which
matches known upper bounds to within polylog factors.

1.2. Notation

We use [n] to denote the set {1, 2, . . . , n}. As we will usually be dealing in this paper with discrete
distributions, for a distribution p on a discrete set S and an element i ∈ S, we let pi denote the
probability that p assigns to the element i. The distance considered in this paper will usually be the
total variational distance denoted by dTV , defined as dTV (p, q) := 1

2 ||p − q||1. In particular, if p
and q are distributions defined over the same discrete set S, dTV (p, q) = 1

2

∑
i∈S |pi − qi|.

By an ensemble we will typically mean a probability distribution over probability distributions
on some fixed set S.

1.3. Our Results

Our main applications have to do with the monotonicity test and log-concavity testing problems, so
we begin by defining our terms.

Definition 1 We say that a distribution p on [n] is monotone (decreasing) if pi ≥ pj for all i < j.

In fact, we will also deal with monotone distributions defined over higher dimensional cubes. To
make sense of this, we first need to define a partial order on [n]d:

Definition 2 For i, j ∈ [n]d, we say that i < j if ia < ja for all 1 ≤ a ≤ d.
We say that a distribution p on [n]d is monotone if pi ≥ pj whenever i < j.

We also define log-concavity as follows:

Definition 3 A distribution p on [n] is log-concave if its support is a contiguous interval and its
density function, pi, satisfies that p2i ≥ pi+1pi−1 for all 2 ≤ i ≤ n− 1.

Our main results are to prove new lower bounds for multidimensional monotonicity testing and
log concavity testing. In particular, we show that algorithms that can reliably distinguish between
a distribution having the desired property (monotonicity or log-concavity) and being ε-far in total
variation distance from any such distribution, must make use of a relatively large number of samples.

The result for multidimensional monotonicity testing is stated as below.
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Theorem 4 For ε > 0 sufficiently small, any algorithm that can distinguish whether the dis-
tribution over [n]d is monotone (for some n at least a sufficiently large multiple of d log(1/ε)
or ε far from monotone with probability over 2

3 requires at least N = 2−O(d)d−dε−2 log−7(1/ε)
min(n, dε−1 log−3(1/ε))d samples.

We get the following lower bound of log concavity testing of distribution over [n].

Theorem 5 For ε > 0 sufficiently small, let p be distribution over [n] where n is at least a
sufficiently large multiple of log(1/ε). Any algorithm that can distinguish whether the distribu-
tion is log concave or ε far from log concave with probability over 2

3 requires at least N =

Ω(log−7(1/ε)ε−2 min(n, ε−1/2 log−3/2(1/ε))) samples.

1.4. Prior and Related Works

The problem of monotonicity distribution testing was first considered by (2) who developed a tester
with sample complexity O(

√
n logn
ε4

) for distributions over [n]. Then the result was generalized to

give a tester with sample complexity Õ(nd−
1
2 poly(1ε )) for distributions over [n]d by (3). The best

currently known result is by (1), O(n
d
2

ε2
+ (d logn

ε2
)d 1
ε2

) for testing monotonicity of a distribution
over [n]d. On the other hand, the best lower bounds to date for this problem come from the lower
bounds for uniformity testing giving a sample complexity of Ω(

√
nd/ε2). While this shows that the

algorithm of (1) is asymptotically optimal for n much larger than 1/ε, it leaves a pretty substantial
gap when ε is small.

For testing log concavity of a distribution over [n], (1) provides the first known tester for the
low sample regime of testing log concavity, which requires O(

√
n
ε2

+ 1
ε5

) samples. Then (5) gives

an improved algorithm with sample complexity O(
√
n

ε
7
2

). The latest result for sample complexity of

log concavity testing lies in (6), O(
√
n
ε2

) + Õ( 1

ε
5
2

) for testing a distribution over [n]. Once again,
previously known lower bounds for this problem were somewhat lacking, consisting only of the
Ω(
√
n/ε2) lower bound for uniformity testing. However, importantly, if one combines this with our

lower bound, it nearly matches the best of the upper bound of (6) and the trivial O(n/ε2) bound
from learning p to error ε. Together these show that the optimal sample complexity for testing
log-concavity is

(√
n
ε2

+ min(n,ε−1/2)
ε2

)
up to polylogarithmic factors.

1.5. Our Techniques

Our techniques come from a general framework for obtaining lower bounds for testing properties
defined by imposing inequalities on the individual bin probabilities. Our starting point is fairly stan-
dard for such lower bounds: we want to construct two ensembles of distributions over some support
set S,Dyes andDno where the distributions inDyes have the property with high probability and dis-
tributions in Dno far from having the property with high probability. Therefore, if an algorithm can
distinguish a distribution having the property or ε far from having the property through N samples
with probability at least 2

3 , then it should be able to distinguish N samples from a distribution in
Dyes and N samples from a distribution in Dno with probability at least 3

5 . However, we show that
if a distribution p is randomly taken from either Dyes or Dno, then a small number N of samples
from p will be insufficient to reliably determine which of the two ensembles it was sampled from.
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In particular, our goal will be to show that the two resulting distributions on SN will be close in
total variational distance, making such a determination information-theoretically impossible.

In order to construct these ensembles, a key insight is that we will need them to match moments.
In particular, if ni is the number of samples drawn from the ith bin then the expectation of

(
ni
k

)
will

be
(
N
k

)
E[pki ]. If we want our ensembles to be nearly indistinguishable, it is thus a good idea to

ensure that these moments- Ep∼D[pki ]- are the same for Dyes and Dno for all small (in our case at
most logarithmic) values of k. This will typically ensure that Dyes and Dno are hard to distinguish.

On the other hand, if the property in question is defined by inequalities among the pi (like
pi ≥ pi+1 for monotonicity or p2i ≥ pi−1pi+1 for log-concavity), then these kinds of inequalities
are not defined by moments. In particular, our goal will be to find a moment matching pair of
ensembles Dyes and Dno so that distributions from Dyes satisfy these inequalities, but distributions
from Dno do not.

For the mechanics of this construction, we begin by constructing a pair of moment distributions
over real numbers Fyes and Fno with E[F kyes] = E[F kno] for all small natural numbers k. These will
be used to modify the bin probabilities of a carefully constructed base distribution Q. In particular,
in a sample from Dyes/no the bin probability of a bin pi will be Qi + AiFyes/no for some carefully
chosen constants Ai and with the samples from Fyes/no coupled in such a way to ensure that p
remains properly normalized. On the other hand, we can construct our distributions Fyes/no so that
while Fyes is positive almost surely, Fno has a reasonable probability of being reasonably negative,
which will break the inequalities defining the property in question.

In Section 2, we will explain the generic version of the construction of these ensembles Dyes

and Dno and in particular prove Proposition 9 to show that they are indistinguishable with a small
number of samples. The next three sections will be applications. In particular, in Section 3, as a
warmup we will prove a lower bound for one-dimensional monotonicity testing. In Section G, we
will generalize this to a lower bound for multidimensional monotonicity testing. Finally, in Section
H we will prove our lower bound for testing log-concavity. Due to the length of this article, we
leave Section G and Section H to the Appendices as the techniques of these sections share similar
spirit with Section 3.

2. Generic Lower Bound Construction

This section contains the key construction for our lower bound technique. In particular, we provide a
general framework for producing two ensembles of distributions Dyes and Dno over some finite set
S that are hard to distinguish using few samples. In particular, for a positive integer N , we consider
the two distributions over SN which we call DN

yes and DN
no given by taking a random distribution

p from the ensemble Dyes/no and then returning N i.i.d. samples from p. The key result here is
Proposition 9, where we show that as long as N is not too large relative to the other parameters
of the construction that dTV (DN

yes, D
N
no) is small, thus implying that one cannot reliably determine

whether p was taken from Dyes or Dno with only N samples.

2.1. Construction of Dyes and Dno

In this section, we describe the general procedure for construction ensembles Dyes and Dno. The
basic idea is to start with a fixed distribution Q over S and to tweak it slightly. In order to ensure
that these tweaks match moments and preserve indistinguishability, we will first need to find a pair
of real-valued distributions Fyes and Fno that match their low order moments, and we will use the
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outputs of these distributions to tweak the bin probabilities ofQ. In order to ensure that the resulting
distribution remains properly normalized, we will pair up a number of the bins in S getting pairs
(j1, k1), (j2, k2), . . . , (js, ks) and ensure that any probability mass taken from ji is added to ki and
visa versa. Finally, to decide the amount of mass to move we will sample δi proportional to Fyes/no
and our final distribution will have pji = Qji + δi and pki = Qki − δi.

We begin by defining our distributions Fyes and Fno, for which we will need to have a few free
parameters:

Definition 6 Let m be an integer, A and g be real numbers and a be a uniformly random integer
mod m, we define the probability distributions FA,g,myes and FA,g,mno to be the distribution of

A(cos(2πam ) + g) and A(cos(
2π(a+ 1

2
)

m ) + g).

The first critical property of these distributions is that they match their first m− 1 moments, which
we can prove by making use of the Chebyshev polynomials Tm(cos θ) := cos(mθ) for θ ∈ [0, π].

Lemma 7 For any positive integer k less than m,

E
δ∈FA,g,myes

[δk] = E
δ∈FA,g,mno

[δk].

We defer the proof of Lemma 7 to Appendix A. We are now ready to define Dyes and Dno below:

Definition 8 Suppose that we have:

• A distribution Q over a finite set S.

• A set of disjoint pairs of elements of S: (j1, k1), (j2, k2), . . . , (js, ks).

• A positive integer m.

• Two sequences of real numbers (Ai)1≤i≤s and (gi)1≤i≤s so that |Ai| ≤ min(
Qji

1+|gi| ,
Qki

1+|gi|)
for all i.

Given this, we define a pair of ensembles of distributions over S, Dyes and Dno as follows:
To select a distribution p from Dyes/no, we first select δi independently from FAi,gi,myes/no for each

1 ≤ i ≤ s. For a ∈ S with a not equal to any ji or ki, we let pa = Qa. Otherwise, we let
pji = Qji + δi and pki = Qki − δi.

Note that as |Ai| ≤ min(
Qji

1+|gi| ,
Qki

1+|gi|), pa is non-negative for all a ∈ S. In addition, for each i,
pji+pki = Qji+Qki , from which it is not hard to see that

∑
a∈S pa is always 1. These observations

confirm that p is in fact a probability distribution over S.
Another important remark is that conditioned on a sample from p landing in the ith pair of bins,

(ji, ki), the probability of it landing in the jith bin depends only on the value of δi, and δis are
independently sampled from FAi,gi,myes/no . This is a crucial condition our key proposition needs.

For this construction, we are hoping to prove the following proposition,

Proposition 9 Given Q, (Ai)1≤i≤s, (gi)1≤i≤s,m, (ji, ki)1≤i≤s be as above and let Dyes and Dno

be as in Definition 8. Assume furthermore, that m is at least C log(s) for some sufficiently large
constant C.
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For integers N > 6 log s
mini(Qji+Qki )

, we define DN
yes to be the distribution on SN obtained by first

taking a random distribution p fromDyes and then takingN independent samples from p, and define

DN
no similarly. Then letting xmax = max1≤i≤s

(
|Ai|(1+|gi|)
min(Qki ,Qji )

)
andB = 2 max1≤i≤s(Qji +Qki)N ,

then if xmax < 1/10, we have that dTV (DN
yes, D

N
no) is at most

O(1/s)+m4sO(
√
B log(s)+xmaxB)(1+xmax)O(

√
B log(s)+xmaxB)O(

√
x2maxB log(s)+x2maxB)m.

In our applications, we will take s on the order of |S| and will use Q’s which are not too far from
uniform (and thus mina∈S Qa will be on the order of 1/s). In order to ensure that Dyes and Dno

perturb Q by at least ε in total variational distance, we will want xmax (which is essentially the
largest relative perturbation of any bin probability) to be on the order of ε. Taking N on the order
of s/ε2 up to some polylog factors gives us B on the order of 1/ε2.

From here we note that the (1+xmax)O(xmaxB+
√
B log(s)) term is exp(O(Bx2max+

√
Bx2max log(s))),

which is not too large. On the other hand, so long as we ensure that

(xmax
√
B log(s) +Bx2max)

is less than a sufficiently small constant and keep m to be a large enough multiple of log(s), this
term will dominate the things it is multiplied by, thus leaving us with a final bound that is quite
small.

In particular, we have

Corollary 10 In the notation of Proposition 9, if we have additionally that Bx2max is at most a
sufficiently small multiple of 1/ log(s), m is at least a sufficiently large multiple of log(s/(xmaxε))
and s is at least a sufficiently large constant, then

dTV (DN
yes, D

N
no) <

1

100
.

Proof Assume that for someA sufficiently large thatBx2max log(s) < 1/A and thatm ≥ A log(s/(xmaxε)).
Then the bound in Proposition 9 reduces to

O(1/s) +O(m4s/xmax)(
√
Bx2max log(s) + x2maxB) exp(O(

√
Bx2max log(s) + x2maxB))·

O(
√
Bx2max log(s) + x2maxB)m.

Noting that (
√
Bx2max log(s) + x2maxB) = O(1/A), this reduces to

O(1/s) +O(m4s/(Axmax)) exp(O(1/A))O(1/A)m.

In particular, if A is large enough the O(1/A)m term is at most (1/2)m, which if m is a suf-
ficiently large multiple of log(s/(xmaxε)) is at most m−4xmax/s2, which would make our final
bound O(1/s). If s is sufficiently large, this is less than 1/100.
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2.2. Comparison of Distributions of Number of Samples in Bins ji and ki
In our construction of Dyes and Dno we refer to the ith pair of bins as the pair {ji, ki}. As Dyes and
Dno are essentially identical except in how they distribute probability mass between the ith pair of
bins for various values of i, in order to show that they are hard to distinguish, it will be important
for us to show that the distribution on the number of samples in these bins is close for Dyes and
Dno. In particular, if we condition on the number of samples Bi that land in the ith pair of bins, and
consider the probability that exactly `i samples lie in the first of this pair (i.e. ji), we would like to
show that this probability is similar for a random distribution from Dyes and a random distribution
from Dno. In particular, we prove:

Lemma 11 Let Ai, gi,m,Q, (ji, ki) be as in Proposition 9, and let 1 ≤ i ≤ s, and let Bi and
N be non-negative integers. Then we have that if N i.i.d. samples are taken from a probability
distribution p taken from either Dyes or Dno, and consider this distribution conditioned on exactly
Bi samples lying in the ith pair of bins. Let Xyes

i and Xno
i be the distributions on the number of

samples drawn from the bin ji in the case where p is taken from Dyes or Dno respectively. Then

dTV (Xyes
i , Xno

i ) ≤ O(1/s2) +m4O(
√
Bi log(s) + xmaxBi)(1 + xmax)O(

√
Bi log(s)+xmaxBi)·

O(
√
x2maxBi log(s) + x2maxBi)

m.

Proof We begin by proving this in the case where Qji = Qki and will reduce to this case later.
The key observation here is that if we let x = δi

Qji
then a sample landing in the ith pair of bins

will have a probability of
pji

pji + pki
=

Qji + δi
Qji +Qki

=
1 + x

2

of landing in bin ji. Thus, conditioned on δi, X
yes/no
i is distributed as the binomial distribution

Bin(Bi, (1 + x)/2). Therefore, the probabilities of Xyes
i and Xno

i being equal to ` are just

E
x∼FAi,gi,myes /Qji

[Pr(Bin(Bi, (1+x)/2) = `)] = 2−Bi
(
Bi
`

)
E
x∼FAi,gi,myes /Qji

[
(1 + x)`(1− x)Bi−`

]
and

2−Bi
(
Bi
`

)
E
x∼FAi,gi,mno /Qji

[
(1 + x)`(1− x)Bi−`

]
,

respectively.
Our goal will be to show that (at least for ` close toBi/2, which it will be with high probability)

these are close. The basic plan here is to approximate the term (1+x)`(1−x)Bi−` by its Taylor series
about x = 0. We note that since the low order moments of x ∼ FAi,gi,myes /Qji and x ∼ FAi,gi,mno /Qji
are identical, these terms will cancel exactly, leaving only the Taylor error terms to contend with,
which we will prove are small.

However, before we do this, we first want to deal with the outer term 2−Bi
(
Bi
`

)
. In particular,

we show that it is at most 1. In fact,(
Bi
`

)
2−Bi < 2−Bi

∑
`

(
Bi
`

)
1`1Bi−` = 1
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by the Binomial Theorem.
We next let f(x) := (1 + x)`(1− x)Bi−`. By Taylor expanding about x = 0, we find that

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 · · ·+ f (m−1)(0)

(m− 1)!
xm−1 +Rm(x) (1)

where Rm(x) = fm(ζ)
m! xm for some ζ between 0 and x.

As Eδi∈Fyes [δ
k
i ] = Eδi∈Fno [δ

k
i ] for k < m by Lemma 7, we have E

x∼FAi,gi,myes /Qji
[f(xi)] =

E
x∼FAi,gi,mno /Qji

[f(xi)] if Bi < m. On the other hand, if Bi ≥ m, the expectations of the non-

remainder terms over x ∼ FAi,gi,myes /Qji and x ∼ FAi,gi,mno /Qji will be the same. Thus, in that case
we have that

E
x∼FAi,gi,myes /Qji

[f(x)]− E
x∼FAi,gi,mno /Qji

[f(x)] = E
x∼FAi,gi,myes /Qji

Rm(x)− E
x∼FAi,gi,myes /Qji

Rm(x).

We will try to bound this by showing that |Rm(x)| is small at least when ` is close to Bi/2.

Lemma 12 Take x to be a real number with |x| < 1
10 , if m ≥ Bi and

∣∣∣`− Bi
2

∣∣∣ ≤ Bi
5 , then

|Rm(x)| ≤ (1 + |x|)|Bi−2`|m4(2(|x|
√
Bi + |x||Bi − 2`|+ |x|2Bi))m

where Rm(x) is given in equation (1).

Proof By definition Rm(x) = xm/m!f (m)(y) for some y between 0 and x. In particular, note that
this implies |y| < 1/10. We can compute themth derivative of f(y) using Leibnitz rule. With a use-
ful lemma regarding Stiring numbers of the first kind, we are able to find an upper bound of f (m)(y)
by rewriting the falling factorials that show up in terms of powers and then collect terms using the bi-
nomial theorem. Finally, through further analysis of the main term max

(∣∣∣ `
1+y −

Bi−`
1−y

∣∣∣ , √`1+y ,
√
Bi−`
1−y

)m
,

we get the above upper bound of |Rm(x)|. Details of this proof can be found in Appendix B.

So for any value of ` we have that

|Pr(Xyes
i = `)− Pr(Xno

i = `)|

≤
∣∣∣E
x∼FAi,gi,myes /Qji

[f(x)]− E
x∼FAi,gi,mno /Qji

[f(x)]
∣∣∣

=
∣∣∣E
x∼FAi,gi,myes /Qji

[a0 + . . .+ am−1x
m−1 +Rm(x)]− E

x∼FAi,gi,mno /Qji
[a0 + . . .+ am−1x

m−1 +Rm(x)]
∣∣∣

=

∣∣∣∣∣
m−1∑
k=0

(
E
x∼FAi,gi,myes /Qji

[akx
k]− E

x∼FAi,gi,mno /Qji
[akx

k]
)

+ E
x∼FAi,gi,myes /Qji

[Rm(x)]− E
x∼FAi,gi,mno /Qji

[Rm(x)]

∣∣∣∣∣
=
∣∣∣E
x∼FAi,gi,myes /Qji

[Rm(x)]− E
x∼FAi,gi,mno /Qji

[Rm(x)]
∣∣∣ .

Since for all x in either distribution, we have |x| < 1/10. By Lemma 12, this is at most

2(1 + |x|)|Bi−2`|m4(2(|x|
√
Bi + |x||Bi − 2`|+ |x|2Bi))m

8
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.
While this bound is fairly good when ` is close to Bi/2, it is less useful when they are far apart.

Fortunately, sinceBi ≥ m > C log(s) we have by a Chernoff bound that except for with probability
1/s2 that Bin(Bi, (1+x)/2) is within O(

√
Bi log(s)) of Bi(1+x)/2. Therefore, for a sufficiently

large constant A,

Pr
(
|2Xyes

i −Bi| > xmaxBi +A
√
Bi log(s)

)
< 1/s2

and similarly for Xno
i . Therefore, we have that dTV (Xyes

i , Xno
i ) is at most

O(1/s2) +
∑

`:|Bi−2`|<xmaxBi+A
√
Bi log(s)

|Pr(Xyes
i = `)− Pr(Xno

i = `)| .

Using the above to bound the differences in probabilities, we get a final bound of:

O(1/s2)+m4O(
√
Bi log(s)+xmaxBi)(1+xmax)O(

√
Bi log(s)+xmaxBi)O(

√
x2maxBi log(s)+x2maxBi)

m.

This completes our proof whenQji = Qki . In general, we can assume without loss of generality
that Qki ≥ Qji . We will then sub-divide the bin ki into two sub-bins with probability masses
Qki − Qji and Qji − δi. We can think of taking a sample from p conditioned on lying in {ji, ki}
as first with probability (Qki − Qji)/(Qki + Qji) taking a sample from the first sub-bin (and thus
landing in bin ki), and otherwise taking a sample from ji or ki with probabilities (Qji± δi)/(2Qji).
If we are taking Bi samples from this pair, we can imagine this as first taking X ∼ Bin(Bi, (Qki −
Qji)/(Qki +Qji)) samples from this extra sub-bin and then taking B′i = Bi−X samples from the
remaining pair. However, we note that the distribution of samples obtained in the first bin of this
pair is distributed exactly as it would have been if B′i samples were originally taken conditioned on
lying in a pair of bins with probabilities Qji ± δ. As this situation has already been analyzed (in the
case where Qji = Qki), we know that the resulting total variational distance is at most

O(1/s2)+m4O(
√
B′i log(s)+xmaxB

′
i)(1+xmax)O(

√
B′i log(s)+xmaxB

′
i)O(

√
x2maxB

′
i log(s)+x2maxB

′
i)
m.

Taking the expectation of this over B′i (which is always less than Bi) yields our full result.

Lemma 11 provides fairly good bounds so long asBi is not too large. However, the total number
of samplesN that we are taking might be substantially larger. Fortunately, we can say that with high
probability that no pair of bins contains too many samples. In particular we show:

Lemma 13 If N > 6 log s
mini(Qji+Qki )

and B = 2 maxi(Qji + Qki)N , then if N i.i.d. samples are

drawn from a distribution p taken from either Dyes or Dno, then with probability at least 1 − 1/s
there is no pair of bins (ji, ki) receiving a total of more than B of these samples.

Proof The proof is simple using Chernoff bound. Details are in Appendix C.

9
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2.3. Proof of Proposition 9

We are now ready to prove the full Proposition 9.
Proof LetBi be the number of samples from the ith pair of bins, ji and ki. Define U to be the vector
of values (B1, · · · , Bs) as well as the number of samples in each unpaired bin. By our construction,
the distribution of U is the same for any p taken fromDyes orDno, independently of δis, as pji +pki
is always Qji +Qki . So

dTV (DN
yes, D

N
no) = EU [dTV (DN

yes|U,DN
no|U)] ≤ PrU (∃i : Bi ≥ B)+ max

U :Bi<B for all i
dTV (DN

yes|U,DN
no|U).

(2)
For the first term, we note that Lemma 13 implies that the probability that some Bi is more than
B is at most 1/s. To deal with the second term, we note that after conditioning on U , either DN

yes

or DN
no, we observe that the choice of δis are independent for each pair of bins. This implied that

conditioned on U , the number of samples drawn from each of ji and ki are independent for each i.
As the distributions DN

yes and DN
no are symmetric in the sense that seeing a collection of samples

in some order is as likely as seeing those samples in any other order, the total variational distance
between these distributions conditioned on U is the same as the variational distance between their
distributions over the counts of numbers of samples from each bin. These distributions in turn are
product distributions over pairs of bins, and thus we can bound (2) by

max
U :Bi≤B

s∑
i=1

dTV (XBi
i,yes, X

Bi
i,no) +

1

s
, (3)

where XBi
i,yes is the distribution over the number of samples a random p from Dyes draws from ji

conditioned on the fact that it drew a total ofBi samples from {ji, ki}, andXBi
i,no is defined similarly.

However, by Lemma 11 and the fact that Bi ≤ B, the ith term in this sum is at most

O(1/s2)+m4O(
√
B log(s)+xmaxB)(1+xmax)O(

√
B log(s)+xmaxB)O(

√
x2maxB log(s)+x2maxB)m.

Summing over all i from 1 to s and adding in the extra 1/s term gives our final bound of

O(1/s)+m4sO(
√
B log(s)+xmaxB)(1+xmax)O(

√
B log(s)+xmaxB)O(

√
x2maxB log(s)+x2maxB)m.

3. One-Dimensional Monotonicity Testing

As a warmup we will prove the d = 1 version of Theorem 4.

3.1. Construction

In this section, we focus on getting a new lower bound of testing monotone distribution over [n].
We will do this by producing a version of the construction in Section 2 so that a distribution from
Dyes is always monotone and a distribution from Dno is far from monotone with high probability.
We begin by proving it for n not too large.

10



DISTRIBUTION TESTING LOWER BOUNDS

In particular, assume that n is an even number with C2 log(1/ε) < n < 1
C4(log 1

ε
)3ε

for some

sufficiently large constant C and assume that ε is sufficiently small. We begin with defining a base
distribution Q over S = [n] by

Q2i−1 = Q2i =
5

4n
+

1

2n2
− i

n2
, 1 ≤ i ≤ n

2
.

Note that Qi ≥ Qj for any i ≤ j and
∑n

i=1Qi = 1. We define the sequence of pairs
(ji, ki)1≤i≤n

2
by ji = 2i− 1, ki = 2i. Note that these cover all bins in S exactly once.

To complete the construction, we need to define values of Ai, gi, and m. In particular, we let m
be the smallest odd integer that is more than C log(1/ε).

Note that we have nm3 < 1/(Cε), and thus 1
4n2 >

8m3ε
n . Therefore, taking Ai = A = 8m3ε

n
for all i, we have 1

4n2 > A. We also let gi = cos( πm) for all i. Since Ai and gi are both constants,
the distributions of F iyes/no are identical for all i. For convenience of notation, we denote this
distribution to be Fyes/no. Given ε > 0 sufficiently small, we can assume that n and m are larger
than sufficiently large constants. It’s easy to check that this construction satisfies A < miniQi

2+2|g| .
In order to prove the monotonicity/non-monotonicity ofDyes/Dno we will need some properties

of the Fyes/no with these particular parameters. In fact, we will prove a slightly more general form:

Lemma 14 For m a sufficiently large positive odd integer, g = cos( πm), and A > 0, FA,g,myes and
FA,g,mno have the following properties:

1. If δ is taken from either distribution |δ| < 2A almost surely.

2. If δ is taken from FA,g,myes , then δ ≥ 0 almost surely.

3. If δ is taken from FA,g,mno , then there is a probability of 1/m that δ is negative, in which case
we have δ < −A/m2.

Proof All 3 properties inherit from the construction of FA,g,myes and FA,g,mno and are easy to prove.
We leave the proof to Appendix D.

Lemma 14 ensures that δs drawn from either distribution are small. In addition, it guarantees
that δs drawn from Fyes are positive with probability 1 and δs drawn from Fno are negative with
probability 1

m . This makes sure that the distributions in Dyes and the distributions in Dno are
different in terms of being monotone or not, as we can see in the later analysis.

We want to show that a random distribution drawn from Dyes is monotone, and a random dis-
tribution drawn from Dno is some distance from monotone with high probability. This will mean
that any monotonicity tester will be able to distinguish between a distribution from Dyes and a
distribution from Dno, which is impossible without many samples by Proposition 9.

Lemma 15 A distribution p drawn from Dyes is monotone with probability 1.

Proof This result can be easily obtained by using the fact that δs are small. It is left in Appendix E.

In contrast to distributions in Dyes, the distributions in Dno is at least ε far from monotone
with high probability. In order to show this, we first need a lemma allowing us to show that some
distributions p are far from any monotone distribution.

11
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Lemma 16 For a distribution p, and q an arbitrary monotone distribution, then dTV (p, q) ≥∑n
2
i=1 γi, where

γi =

{
|p2i−1 − p2i|/2 if p2i−1 − p2i < 0

0 if p2i−1 − p2i ≥ 0.

Proof We will show that (|q2i−1 − p2i−1| + |q2i − p2i|)/2 ≥ γi for all i in a straightforward way.
The proof is left in Appendix F.

We can now use Lemma 16 to show that a distribution from Dno is far from monotone with high
probability.

Lemma 17 With 99% probability, a random distribution drawn from Dno is ε far from monotone.

Proof Let γi be as in Lemma 16, we have that

γi =

{
|p2i−1 − p2i|/2 if p2i−1 − p2i < 0

0 if p2i−1 − p2i ≥ 0.

Note that p2i−1 − p2i = (Q2i−1 + δi)− (Q2i − δi) = 2δi. Thus we have that

γi =

{
−δi if δi < 0

0 if δi ≥ 0.

By Lemma 14, we have that each γi is positive (with absolute value at least 8εm/n) inde-
pendently with probability 1/m. Let X be the number of these positive terms. We have that
X ∼ Bin(n/2, 1/m). As n/m is at least a large constant, we have with 99% probability that
X > n/(4m). If this holds then by Lemma 16 the distance of p from the nearest monotone distri-
bution is at least

n/2∑
i=1

γi ≥ (n/(4m))(8εm/n) > ε.

This completes our proof.

We are now prepared to prove Theorem 4 when d = 1 and n < 1
C4(log 1

ε
)3ε

is even. Let N be

a sufficiently small multiple of n/(m6 log(n)ε2) and suppose for sake of contradiction that there is
a monotonicity algorithm with a probability 2/3 of success using only N samples. Running this
algorithm should be able to distinguish N samples taken from a random distribution from Dyes and
a random distribution from Dno with probability of success at least 3/5 since the distribution in the
former case will be monotone, and the distribution in the latter will be at least ε-far from monotone
with probability at least 99%.

On the other hand, we can apply Corollary 10 here as B = Θ(N/n) and xmax = O(An) =
O(m3ε). Thus, Bx2max = O(Nm6ε2/n), which is at most a small multiple of 1/ log(s). This
implies that dTV (DN

yes, D
N
no) < 1/100, and thus the difference in the probability that our tester

accepts a distribution from Dyes given N samples can differ from the probability of accepting a
distribution from Dno given N samples by at most 1/100.

12
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This completes the proof when n is even and at most 1
C4(log 1

ε
)3ε

. For other n, we let n0 be the

largest even number less than both n and 1
C4(log 1

ε
)3ε

. We note that a monotonicity tester on [n] can be

used to obtain a monotonicity tester on [n0] simply by ignoring the extra bins in the domain. Thus,
we get a lower bound of Ω(n0/(log7(1/ε)ε2)) = Ω(min(n, (1/ε)/ log3(1/ε))/(ε2 log7(1/ε))).
This completes our proof.

4. Conclusion

In this paper we have produced a general framework for proving distribution testing lower bounds
for properties defined by local inequalities between the individual bin probabilities. Applying it
requires finding an instantiation of our construction so that many bins satisfy these inequalities
tightly and changing their values slightly will break the property in question. Usually, this technique
should give lower bounds comparable to the testing-by-learning algorithm of O(n/ε2) samples up
to logarithmic factors so long as n is not too big, while for larger values of n it will often fail to find
further improvements.

As applications of this new technique we have proved new lower bounds for monotonicity test-
ing, and nearly optimal lower bounds for log-concavity testing.
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Appendix A. Matching Moments Property

In this appendix, we give a proof of Lemma 7, which states that for any positive integer k
less than m,

E
δ∈FA,g,myes

[δk] = E
δ∈FA,g,mno

[δk].

Note that the roots of Tm(x)+1 and Tm(x)−1 are cos(
2π(a+ 1

2
)

m )
0≤a<m and cos(2πam )

0≤a<m
respectively. Since Tm(x) + 1 and Tm(x)− 1 only differ by a constant, all elementary sym-
metric polynomials of degree less than m of roots of one agree with the corresponding poly-
nomials of roots of the other. By the fundamental theorem on symmetric polynomials, for
roots of a polynomial r,

∑
r r

k can be written in terms of elementary symmetric polyno-
mials, where

∑
r r

k is proportional to the kth moment of roots. Since the roots have m − 1
identical elementary symmetric polynomials, we can conclude that they havem−1 matching
moments. In particular, this means that

E

[
cos(

2π(a+ 1
2)

m
)

]
= E

[
cos(

2πa

m
)

]
.

Applying the linear transformation x → A(x + g), we note that the distributions

A(cos(2πam ) + g) and A(cos(
2π(a+ 1

2
)

m ) + g) must also have m− 1 matching moments as

E[(A(x+ g))k] =

k∑
k′=0

Ak
(
k

k′

)
gk−k

′
E[xk

′
].

Appendix B. Upper Bound of |Rm(x)|

We prove Lemma 12 in this Appendix. It states that for |x| < 1
10 , if m ≥ Bi and

∣∣∣`− Bi
2

∣∣∣ ≤
Bi
5 , then

|Rm(x)| ≤ (1 + |x|)|Bi−2`|m4(2(|x|
√
Bi + |x||Bi − 2`|+ |x|2Bi))m

where Rm(x) is the remainder term of Taylor expansion about x = 0.
As Rm(x) = xm/m!f (m)(y) for some y between 0 and x, we first focus on obtaining an
upper bound for |f (m)(y)|. Using Leibnitz Rule, them-th derivative of f(y) can be expressed
as

f (m)(y) =
m∑
t=0

(
m

t

)
(Bi − `)m−t(`)t(1 + y)`−t(1− y)Bi−`−m+t(−1)m−t

= (1 + y)`(1− y)Bi−`

(
m∑
t=0

(
m

t

)
(Bi − `)m−t(`)t(

1

1 + y
)t(

1

1− y
)m−t(−1)m−t

)
.

(4)

Note that the summand in (4) is roughly(
m

t

)
(Bi − `)m−t`t(`)t(

1

1 + y
)t(

1

1− y
)m−t(−1)m−t.

14
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If this were exactly true, we could use the binomial theorem to rewrite it as(
`

1 + y
− Bi − `

1− y

)m
,

allowing us to take advantage of significant cancellation of terms. Unfortunately, the falling
factorials (Bi − `)m−t and (`)t are not exactly equal to the relevant exponentials. However,
we can make use of Stirling numbers to write them in terms of similar exponentials.

Definition 18 The unsigned Stirling number of the first kind, usually written as c(n, k) or[
n
k

]
, is defined to be the number of permutations of [n] with exactly k cycles. The signed

Stirling number of the first kind is defined by s(n, k) = (−1)n−kc(n, k).

In particular, we make use of the fact:

Fact 19 For any non-negative integer n and real number z we have that

(z)n =
∑
k

s(n, k)zk.

Using this, we may rewrite (4) as

(1 + y)`(1− y)Bi−`·
m∑
t=0

(
m

t

)(∑
h′

(Bi − `)m−t−h
′
(−1)h

′
[

m− t
m− t− h′

])
·(∑

h

(`)h−s(−1)h
[

t

t− h

])(
1

1 + y

)t( −1

1− y

)m−t
Interchanging the order of summations yields

(1 + y)`(1− y)Bi−` (5)∑
h,h′

(
m∑
t=0

(
m

t

)[
t

t− h

][
m− t

m− t− h′

]
(−1)h+h

′
(`)t−h(Bi − `)m−t−h

′
(

1

1 + y

)t( −1

1− y

)m−t)
.

To make further progress, we would like to simplify
(
m
t

)[
t

t−h
][

m−t
m−t−h′

]
. Specifically, we use

a lemma about Stirling numbers to find an alternative expression of
[
t

t−h
]

and
[

m−t
m−t−h′

]
and

get cancellation of the binomial coefficients.

Lemma 20 There exist some constants 0 ≤ cf,h ≤ 1 such that for all t, h,
[
t

t−h
]

=∑2h
f=h+1(t)fcf,h

Proof We analyze these Stirling numbers using a combinatorial approach.
[
t

t−h
]

is the num-
ber of permutations of [t] with exactly t− h cycles. Such permutations should have between
h+ 1 and 2h non fixed points. Let f be the number of non-fixed points in this permutation.
Then

[
t

t−h
]

can be represented as
∑2h

f=h+1

(
t
f

)
Tf,f−h where Tf,f−h represents the number

of permutations of f elements with no fixed points that have exactly f − h cycles. Note that
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Tf,f−h ≤ f !. We have
[
t

t−h
]

=
∑2h

f=h+1
t!

f !(t−f)!Tf,f−h =
∑2h

f=h+1(t)f
Tf,f−h
f ! . So taking

cf,h =
Tf,f−h
f ! , we are done.

Substituting the result of Lemma 20 into Stirling numbers showing up in (5), we get that(
m

t

)[
t

t− h

][
m− t

m− t− h′

]
=

m!

t!(m− t)!

2h∑
f=h+1

t!

(t− f)!
cf,h

2h′∑
g=h′+1

(m− t)!
(m− t− g)!

cg,h′

=
2h∑

f=h+1

2h′∑
g=h′+1

(m− g − f)!

(t− f)!(m− t− g)!
(m)f+gcf,hcg,h′ =

2h∑
f=h+1

2h′∑
g=h′+1

(
m− g − f
t− f

)
(m)f+gcf,hcg,h′ .

Substituting this result into equation (5), we have f (m)(y) equals

(1 + y)`(1− y)Bi−`·
m∑
t=0

∑
h,h′

2h∑
f=h+1

2h′∑
g=h′+1

(
m− g − f
t− f

)
(−1)h+h

′+g

(
`

1 + y

)t−f (
−Bi − `

1− y

)m−t−g `f−h(Bi − `)g−h
′

(1 + y)f (1− y)g
·

(m)f+gcf,hcg,h′ .

Applying the binomial theorem to the sum
∑m

t=0

(
m−g−f
t−f

) (
`

1+y

)t−f (
−Bi−`

1−y

)m−t−g
, we

can get that the above is equal to

(1 + y)`(1− y)Bi−`·∑
h,h′

2h∑
f=h+1

2h′∑
g=h′+1

(−1)h+h
′+g

(
`

1 + y
− Bi − `

1− y

)m−g−f `f−h(Bi − `)g−h
′

(1 + y)f (1− y)g
(m)f+gcf,hcg,h′ .

Given 0 < cf,h, cg,h′ < 1, we have that |f (m)(y)| is at most

(1 + y)`(1− y)Bi−`
∑
h,h′

2h∑
f=h+1

2h′∑
g=h′+1

∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣m−g−f `f−h(Bi − `)g−h
′

(1 + y)f (1− y)g
(m)f+g.

Note that (m)f+g is at most m!, but vanishes if f + g > m. In order for this not to happen, it
must be the case that h+h′ < m. This means that there are at most m4 non-vanishing terms
in the above sum as each of h and h′ can take at most m values and for each pair of values,
there are at most m possibilities for each of f and g. Therefore, we have that the above is at
most

[(1+y)`(1−y)Bi−`]m4m! max
2h≥f>h≥0
2h′≥g>h′≥0
f+g≤m

[∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣m−g−f `f−h(Bi − `)g−h
′

(1 + y)f (1− y)g

]
. (6)

In order to bound (6), we want to find the largest summands. For this we note that increasing
f or g decreases the exponent of

∣∣∣ `
1+y −

Bi−`
1−y

∣∣∣ while increasing f increases the exponent of(
`

1+y

)
and increasing g increases the exponent of

(
Bi−`
1−y

)
. To make progress, we need to

understand the relative sizes of these terms:
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Claim We have that | `
1+y −

Bi−`
1−y | ≤

`
1+y and | `

1+y −
Bi−`
1−y | ≤

Bi−`
1−y .

Proof It suffices to show that `
1+y and Bi−`

1−y are within a factor of two of each other. For
this, we note that as |y| < 1/10 that the ratio of 1 + y to 1 − y is between 9/11 and 11/9.
Furthermore, as |Bi − 2`| < Bi/5, we have that the ratio of Bi − ` to ` is the same as the
ratio of (`/Bi) + (Bi − 2`)/Bi to (`/Bi), which is between 4/5 and 6/5. Multiplying these
together yields our result.

Applying this, we find that the maximum in (6) is attained either when f + g = m or when
f = 2h and g = 2h′. In the former case we have

max
2h≥f>h≥0
2h′≥g>h′≥0
f+g=m

`f−h(Bi − `)g−h
′

(1 + y)f (1− y)g

= max
2h≥f>h≥0
2h′≥g>h′≥0
f+g=m

(
`f−h

(1 + y)f

)(
(Bi − `)g−h

′

(1− y)g

)

≤ max
f+g=m

(
`f/2

(1 + y)f

)(
(Bi − `)g/2

(1− y)g

)

= max

( √
`

1 + y
,

√
Bi − `
1− y

)m
.

In the latter case, it gives

max
2h+2h′≤m

∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣m−2h−2h′ `h(Bi − `)h
′

(1 + y)2h(1− y)2h′

≤max

(∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣ ,
√
`

1 + y
,

√
Bi − `
1− y

)m
.

Thus, in either case we have that |f (m)(x)| is at most

[(1 + y)`(1− y)Bi−`]m4m! max

(∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣ ,
√
`

1 + y
,

√
Bi − `
1− y

)m
.

To bound the maximum, we note that
√
`

1 + y
,

√
Bi − `
1− y

≤
√
Bi

9/10
≤ 2
√
Bi.

On the other hand, ∣∣∣∣ `

1 + y
− Bi − `

1− y

∣∣∣∣ =
1

1− y2
|(Bi − 2`)− yBi|

≤ 2(|Bi − 2`|+ |x|Bi).
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Finally, note that (1 + y)(1− y) = 1− y2 < 1. Therefore, we have that

[(1 + y)`(1− y)Bi−`] ≤ max((1 + y), (1− y))|(Bi−`)−`| = (1 + |x|)|Bi−2`|.

Putting this together we have that for |x| < 1/10 that

Rm(x) = |xmf (m)(y)/m!| ≤ (1 + |x|)|Bi−2`|m4(2(|x|
√
Bi + |x||Bi − 2`|+ |x|2Bi))m.

As desired.

Appendix C. High Probability Bound of the number of samples in each pair

This section gives a high probability bound B = 2 maxi(Qji + Qki)N where Bi ≤ B
for all i with high probability (Bi is the number of samples in pair (ji, ki)), which proves
Lemma 13. By construction, forDN

yes/no, µi := E [Bi] = (Qji +Qki)N > 6 log s. Note that
Bi is a sum of independent and identically distributed indicator random variables. Applying

the Chernoff Bounds, Pr(Bi ≥ (1 + δ)µi) ≤ e−
δ2µi
3 . Letting δ = 1, then we have that

Pr(Bi ≥ 2µi) ≤ 1
s2

. As B ≥ 2µi, this says that with probability at least 1 − 1/s2 that the
ith pair of bins does not contain more than B samples. Our result now follows by taking a
union bound over i.

Appendix D. Properties of FA,g,m
yes and FA,g,m

no

For m a sufficiently large positive odd integer, g = cos( πm), and A > 0, we prove the
following useful properties of FA,g,myes and FA,g,mno :

1. If δ is taken from either distribution |δ| < 2A almost surely.

2. If δ is taken from FA,g,myes , then δ ≥ 0 almost surely.

3. If δ is taken from FA,g,mno , then there is a probability of 1/m that δ is negative, in which
case we have δ < −A/m2.

Property 1 follows from the fact that the cosine terms all have absolute value at most 1. For
property 2, since m is odd, we have that cos(2πam ) ≥ cos( (m−1)πm ) = − cos( πm), so all δs

drawn from Fyes will be non-negative. For distribution of Fno, we have A(cos(
2π(a+ 1

2
)

m ) +
cos( πm)) < 0 if and only if a = m−1

2 . Since there are m choices of a, we conclude that δ
drawn from Fno will have 1

m chance to be negative, and the negative value isA(cos( πm)−1).
By Taylor expanding cos(x) about 0, we find that it is at most −A( π2

2m2 − π4

24m4 ). Given that
m is sufficiently large this is at most −A/m2. This completes the proof of Lemma 14 in
Section 3.1.

Appendix E. One Dimensional Almost Sure Monotonicity

We prove that a distribution p drawn from Dyes constructed in Section 3 is monotone almost
surely. It’s sufficient to prove that pi ≥ pi+1 for all i. Firstly, we note that for odd i, Qi =
Qi+1. According to construction, pi = Qi + δ i+1

2
and pi+1 = Qi − δ i+1

2
. Applying Lemma

14, for δ ∈ Fyes, δ ≥ 0 gives pi ≥ pi+1.

18
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For even i, pi = 5
4n + 1

2n2 − i
2n2 − δ i

2
and pi+1 = 5

4n + 1
2n2 − i+2

2n2 + δ i+2
2

. Thus,

pi − pi+1 =
1

n2
− (δ i

2
+ δ i+2

2
)

By Lemma 14, |δj | < 2A < 1/(2n2) for each j. Thus

pi − pi+1 ≥
1

n2
− 2

2n2
= 0.

This completes our proof.

Appendix F. Distance From Monotone

We provide a detailed proof of Lemma 16 in this section, which shows that some distributions
are far from any monotone distribution. Lemma 16 claims that for a distribution p, and q an
arbitrary monotone distribution, then dTV (p, q) ≥

∑n
2
i=1 γi, where

γi =

{
|p2i−1 − p2i|/2 if p2i−1 − p2i < 0

0 if p2i−1 − p2i ≥ 0.

It is sufficient to show that (|q2i−1 − p2i−1| + |q2i − p2i|)/2 ≥ γi for all i. In particular,
if p2i−1 − p2i ≥ 0, γi = 0 and we have our desired inequality. If p2i−1 − p2i < 0, then
γi = (p2i − p2i−1)/2 > 0. By definition, q monotone implies q2i−1 ≥ q2i. This means that

|q2i−1 − p2i−1|+ |q2i − p2i| ≥ (q2i−1 − p2i−1) + (p2i − q2i) = q2i−1 − q2i + 2γi ≥ 2γi.

Summing this inequality over all i, we have:

dTV (p, q) =
1

2

n∑
i=1

|qi − pi| =

n
2∑
i=1

((|q2i−1 − p2i−1|+ |q2i − p2i|))/2 ≥

n
2∑
i=1

γi.

This completes our proof.

Appendix G. Multidimensional Monotonicity Testing

In this section, we generalize the results of Section 3 to cover d-dimensional monotonicity
testing.

G.1. Construction

For the one dimensional case we were able to modify our monotone base distribution Q to
make it non-monotone by exchanging bits of probability mass between adjacent bins. In the
high dimensional case however, it is not clear what the appropriate generalization of this
should be, especially given that there are pairs of bins i and j that are incomparable to each
other in the relevant ordering. Thus, in order to construct Dyes/no for the multidimensional
case, we have to find comparable pairs of bins to move. Here we introduce the notion of cubes
and halfcubes for a distribution over [n]d so that most bins in a halfcube are comparable to a
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bin in another halfcube within the same cube. Once again, we start by proving it when n is
not too large.
Suppose Cd log(1/ε) < n < d

(C2 log 1
ε
)3ε

, and d < (C2 log 1
ε )

3 for some sufficiently large

constant C and that 2d|n. We begin by separating a distribution over [n]d into ( n2d)d cubes
with each of them having (2d)d bins, with the idea of using these cubes as a unit to replace
the pairs of bins in the one dimensional construction. More formally,

Definition 21 Let 1 be the d-dimensional vector (1, 1, 1..., 1). For i, j ∈ [n]d, we denote i < j
when ia < ja for all 1 ≤ a ≤ d.
For a distribution over [n]d, we define its ith cube (for some i ∈ [ n2d ]d) to be the set of jth
bins where 2d(i − 1) < j < 2di + 1. Within the ith cube, we define Ji to be the set of bins
{j : j1 ≤ 2di1− d} and Ki = {j : j1 > 2di1− d}. We call Ji the first halfcube of the ith cube
and Ki the second halfcube.

Note that we are separating the ith cube into 2 halfcubes based on the magnitude of its
first coordinate, so |Ji| = |Ki| and the ith cube is Ji ∪ Ki. Our construction will produce
distributions that are uniform over each halfcube, so we can construct our base distribution
over these halfcubes. In particular, we will use an instantiation of the ensembles from Section
2 to produce these distributions over halfcubes.
Let the distribution Q over [ n2d ]d × {F, S} given by

Qi,F = Qi,S :=
5(2d)d

8nd
+

2ddd+1

4nd+1
− (i1 + i2 + ...id)2d−1dd

nd+1
, i = (i1, i2, ...id) ∈ [

n

2d
]d.

Summing over all i1s and multiply by d, we have∑
i∈[ n

2d
]d

(i1 + i2 + ...id) = (1 +
n

2d
)
n

4d
(
n

2d
)d−1d = (

d

2
+
n

4
)(
n

2d
)d.

Therefore, we get∑
i∈[ n

2d
]d

Qi,F +
∑

i∈[ n
2d

]d

Qi,S = 2(
5

8
+

d

4n
− (

d

2
+
n

4
)(
n

2d
)d

2d−1dd

nd+1
) = 1.

This and the fact that

Qi,F = Qi,S ≥
5(2d)d

8nd
− d(n/2d)2d−1dd

nd+1
> (1/4)(2d/n)d

shows that Q is a valid probability distribution.
As in Definition 3, we define the sequence (ji, ki)i∈[ n

2d
]d where ji = (i, F ) and ki = (i, S) to

specify which halfcube of bins we are moving. Then we construct F i
yes and F i

no by choosing
proper Ai, gi,m:
In particular, let m be the smallest odd integer that is larger than C log(1/ε) where C is a
sufficiently large constant. The fact that n < d

(C2 log 1
ε
)3ε

and d < (C2 log 1
ε )

3 imply that

nm3 < d
Cε , and 2d−3dd+1

nd+1 > 2d+2m3ddε
nd

. We take A = 2d+2m3ddε
nd

, noting that 2d−3dd+1

nd+1 > A,
and letAi = A for all i. Assuming ε > 0 is sufficiently small (as otherwise there is nothing to
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prove), we may assume that n andm are at least sufficiently large constants. Let gi = cos( πm)
for all i.
As the Ai and gi are the same for all i, we refer to FAi,gi,m

yes/no simply as Fyes/no and we note
that Lemma 14 applies to them. Noting that A < min(Qi,F , Qi,S)/(1 + |g|), we can invoke
Definition 8 to define ensembles Cyes and Cno over the set of halfcubes. Using these we
construct our actual hard instances over [n]d as follows:

Definition 22 We define ensembles Dyes/no of distributions over [n]d in the following way:
To sample a distribution q from Dyes/no: first get a sample distribution p over halfcubes
from Cyes/no, one then takes a sample from q by first sampling a halfcube using p and then
returning a uniform random sample from that halfcube.

Note that in this construction, any distribution q ∼ Dyes/no is uniform inside each halfcube.

And if we consider a distribution p over [ n2d ]d × {F, S} where pi,F = (2d)d

2 qj where j ∈ Ji

and pi,S = (2d)d

2 qj where j ∈ Ki, we have p ∈ Cyes/no by definition. Since one can pro-
duce a sample from q given a sample from p, the statistical task of distinguishing whether a
distribution q was taken from Dyes or Dno in N samples is equivalent to the task of distin-
guishing whether a distribution p was taken from Cyes or Cno in N samples. We will show
by Corollary 10 that this latter task is hard unless N is large, but first we need to prove that
a distribution in Dyes is monotone with probability 1.

Lemma 23 A distribution q drawn from Dyes is monotone with probability 1.

Proof Firstly, we note that since we are separating halfcubes based on the magnitude of its
first coordinate, for any pair of bins j and k in the ith cube where j < k, j and k are either
in the same halfcube or j is in the first halfcube and k in the second halfcube. If they are in
the same halfcube, qj = qk by construction. For the case that j is in the first halfcube and k
is in the second halfcube, we show that qj ≥ qk by proving that within each cube, any bin
in the first halfcube is always heavier than any bin in the second halfcube. Note that a bin
in the first halfcube in the ith cube has weight Qi,F+δi

2d−1dd
and the one in the second halfcube

in the ith pair has weight Qi,S−δi
2d−1dd

. Since δi ≥ 0 for δi drawn from Fyes (by Lemma 14) and

Qi,S = Qi,F for all i, Qi,F+δi
2d−1dd

≥ Qi,S−δi
2d−1dd

always holds. So for any pair of bins j and k in the
ith cube where j < k, qj ≥ qk.
Secondly, we want to make sure the distribution is monotone across cubes. Note that there
exists bins in the ith cube that are comparable to some bins in the jth cube for j 6= i if and
only if ia ≤ ja for 1 ≤ a ≤ d and there exists a such that ia < ja. As the previous paragraph
implies that bins in the first half of each cube are heavier than bins in the second half, it
suffices to prove that any bin in the second halfcube of the ith cube (with weight Qi,S−δi

2d−1dd
) is

heavier than any bin in the first halfcube in the jth cube (with weight Qj,F+δj
2d−1dd

).
We note that the difference,

Qi,S − δi

2d−1dd
−
Qj,F + δj

2d−1dd
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equals

2

(2d)d

[(
5(2d)d

8nd
+

2ddd+1

4nd+1
− (i1 + i2 + ...id)2d−1dd

nd+1

)

−
(

5(2d)d

8nd
+

2ddd+1

4nd+1
− (j1 + j2 + ...jd)2d−1dd

nd+1

)
− δi − δj

]

≥ 1

2d−1dd

(
2d−1dd+1

nd+1
− δi − δj

)
By Lemma 14, we have δi <

2d−2dd+1

nd+1 for δi ∼ Fyes, so δi + δj <
2d−1dd+1

nd+1 , which completes
the proof that all distributions in Dyes are monotone.

In contrast to distributions in Dyes, the distributions in Dno is at least ε far from monotone
with high probability. To show this, we first need to prove a lemma about how far a distribu-
tion which is uniform over halfcubes is from monotone.

Lemma 24 For a distribution q uniform within each halfcube and p an arbitrary monotone
distribution, dTV (p, q) ≥ 1

2

∑
i∈[ n

2d
]d γi, where γi = (2d−12d )d−1 max(0,

∑
j∈Ki

qj−
∑

j∈Ji
qj)

Proof Define Si,1 = {j : j ∈ Ji and ja 6= 2dia, 2 ≤ a ≤ d} and Si,2 = {j : j ∈ Ki and ja 6=
2dia−2d+1, 2 ≤ a ≤ d}, we can pair a bin j ∈ Si,1 to k ∈ Si,2 where j+(d, 1, 1, . . . , 1) = k,
so that for each such pair j < k. The probability that a random bin in the first halfcube of
the ith cube lies in Si,1 is (2d−12d )d−1. Similarly, the probability that a random bin in the
second halfcube of the ith cube lies in Si,2 is (2d−12d )d−1. Given that q is uniform within each
halfcube, we can get γi = max(0,

∑
j∈Si,2

qj −
∑

j∈Si,1

qj).

Note that since Si,1 ∪ Si,2 ⊂ Ji ∪Ki,

dTV (p, q) =
1

2

∑
i∈[ n

2d
]d

∑
j∈Ji∪Ki

|pj − qj| ≥
1

2

∑
i∈[ n

2d
]d

∑
j∈Si,1∪Si,2

|pj − qj|

≥ 1

2

∑
i∈[ n

2d
]d

∣∣∣∣∣∣
∑

j∈Si,1

pj −
∑

j∈Si,1

qj

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

j∈Si,2

pj −
∑

j∈Si,2

qj

∣∣∣∣∣∣


It suffices to prove that

(∣∣∣∣∣ ∑j∈Si,1

pj −
∑

j∈Si,1

qj

∣∣∣∣∣+

∣∣∣∣∣ ∑j∈Si,2

pj −
∑

j∈Si,2

qj

∣∣∣∣∣
)
≥ γi for all i. Given

that p is monotone and k > j, pj ≥ pk for all pairs of j and k in Si,1 and Si,2 with k =
j + (d, 1, . . . , 1). Therefore, summing over Si,1 and Si,2,

∑
j∈Si,1

pj ≥
∑

j∈Si,2

pj for all i.

If
∑

j∈Si,1
qj −

∑
j∈Si,2

qj ≥ 0, then γi = 0, and we have our desire inequality.

If
∑

j∈Si,1
qj −

∑
j∈Si,2

qj < 0, then γi =
∑

j∈Si,2

qj −
∑

j∈Si,1

qj > 0. In this case,

|
∑

j∈Si,1

pj −
∑

j∈Si,1

qj|+ |
∑

j∈Si,2

pj −
∑

j∈Si,2

qj| ≥ (
∑

j∈Si,1

pj −
∑

j∈Si,1

qj) + (
∑

j∈Si,2

qj −
∑

j∈Si,2

pj)

= (
∑

j∈Si,1

pj −
∑

j∈Si,2

pj) + (
∑

j∈Si,2

qj −
∑

j∈Si,1

qj) ≥ γi.
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Summing this inequality over all i, we have that dTV (p, q) ≥ 1
2

∑
i∈[ n

2d
]d γi.

This lemma is a multidimensional analogue of Lemma 16. It gives a lower bound of distance
from monotone for a distribution uniform within each halfcube, which helps us prove that
a random distribution from Dno is not close to being monotone. We will prove in the next
lemma that it’s at least ε far from monotone with probability at least 99%.

Lemma 25 With 99% probability, a random distribution drawn from Dno is at least ε far
from monotone.

Proof By the definition of Dno, if q is sampled from Dno, we have that∑
j∈Ki

qj −
∑
j∈Ji

qj = pi,S − pi,F =

= (Qi,S − δi)− (Qi,F + δi)

= −2δi.

Where p is the corresponding distribution from Cno. Therefore, in the notation of Lemma 24
we have that

γi =

{
0 if δi ≥ 0

−2
(
2d−1
2d

)d−1
δi if δi < 0.

Note that
(
2d−1
2d

)d−1
= 1

(1+1/(2d−1))d−1 > e−1/2. Thus, by Lemma 14, this means that
γi is non-zero independently with probability 1/m and if it is non-zero, it is at least
2d+2mddε/nd.
LettingX be the number of non-zero γi’s. It is distributed as Bin((n/2d)d, 1/m) and so with
probability at least 99% is at least (n/2d)d/(2m). In such a case we have that the distance
of q from uniform is at least

1

2

∑
i∈[ n

2d
]d

γi ≥ X2d+1mddε/nd > ε.

We have proved that a distribution in Dyes is monotone with probability 1 and a distribution
in Dno is ε far from monotone with 99% probability. In the next section, we will apply
Proposition 9 to use this to show that one cannot build a monotonicity tester with too few
samples.

G.2. Lower Bound of Multidimensional Monotonicity Testing

Here we prove Theorem 4 starting with the case where n is at most d
(C2 log 1

ε
)3ε

and is a

multiple of 2d. Let N be a sufficiently small multiple of (n/2d)d(1/ε)2/(dm6 log(1/ε)) and
suppose for sake of contradiction that there is a tester that tests monotonicity over [n]d with
N samples. As a distribution from Dyes is monotone and a distribution from Dno is ε-far
from monotone with 99% probability, this tester can reliably distinguish N samples from
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a distribution from Dyes from N samples from a distribution from Dno. However, this is
equivalent to distinguishing Cyes from Cno, which is difficult by Proposition 9.
In particular, in the context of Corollary 10, we have that B = O(N(n/2d)d) and xmax =
O(m3ε) < 1/10. This makes Bx2max at most a small multiple of 1/(d log(1/ε)) < log(s).
Thus, we can apply Corollary 10 and conclude that dTV (CNyes, C

N
no) < 1/100 and thus that

one cannot distinguish the two with N samples, providing our contradiction.
For n not of the desired form, let n0 be the largest integer smaller than n that is both a
multiple of 2d and at most d

(C2 log 1
ε
)3ε

. As monotonicity testing over [n0]
d is a special case

of monotonicity testing over [n]d, we obtain a lower bound of

Ω((n0/2d)d(1/ε)2/(dm6 log(1/ε))) = 2−O(d)d−dε−2 log−7(1/ε) min(n, dε−1 log−3(1/ε))d.

This completes our proof.

Appendix H. Log Concavity Distribution Testing

To prove our lower bound for log-concavity testing, we will again use Proposition 9 to con-
struct indistinguishable ensembles Dyes and Dno. In particular, we need to carefully instan-
tiate our construction so that distributions from Dyes are log-concave almost surely, while
distributions from Dno are ε far with high probability. Then Proposition 1 will imply that
these ensembles are indistinguishable without a large number of samples, giving us a desired
lower bound.

H.1. Construction

The intuition for log concavity testing over [n] is: start with a log concave base distribution
Q over [n] and separate it into groups of 6 bins, then modify the 2nd and 5th bin in each
group. The reason we choose to move bins in this way is that with only 1 bin being moved in
each triple, it’s easier to evaluate how each move affects log concavity. As long as the size of
the move is small enough, the distribution will still be log concave. On the other hand, large
moves cause it to be ε far from log concavity.
We begin by constructing the base distribution Q over [n]. Firstly, we assume that with
C log(1/ε) < n < 1

C2ε
1
2 (log 1

ε
)
3
2

for some sufficiently large constant C and that n is a mul-

tiple of 6. We let Qi = b
ne
−( i

n
)2 with b = n

n∑
i=1

e−( in )2
. Observe that Q2

i = b2

n2 e
− 2i2

n2 <

b2

n2 e
− 2i2+2

n2 = Qi−1Qi+1, we use this Q as it is in some sense roughly the most log concave

that it can be and b ∈ (1, e) is a normalization factor that ensures
n∑
i=1

Qi = 1. Additionally,

Qi > Qj for i < j. Let the sequence (ji, ki)1≤i≤n
6

be defined by ji = 6i−4 and ki = 6i−1.
Let m be the smallest odd integer larger than C log n. Since n < 1

48C
3
2 ε

1
2 (log 1

ε
)
3
2

, we have

m < C log 1
ε . For 1 ≤ i ≤ n

6 , we take

Ci = n3(Q6i−1 −
√
Q6iQ6i−2) = bn2e

36i2−12i+1

n2 (1− e−
1
n2 )
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Given ε > 0 sufficiently small, we can assume that n andm are bigger than sufficiently large
constants. Therefore, we have

1

2n2
< 1− e−

1
n2 <

1

n2
.

Thus, Ci = Θ(1).
Next, we define the sequence of swapped bins by (ji, ki) = (6i−4, 6i−1) for 1 ≤ i ≤ n/6.
Finally, we defineAi and gi so that Fyes and Fno are given by Ci/n3−Cm3ε/n(cos(2πam )+

cos(πam )) and Ci/n3 − Cm3ε/n(cos(
2π(a+ 1

2
)

m ) + cos(πam )), respectively. It will be useful to
compare this to another construction producing the same result. Namely:

Q′a :=


Qa if i 6≡ 1 (mod 3)

Qa + Ci/n
3 if x = 6i− 4

Qa − Ci/n3 if x = 6i− 1.

Then we can likewise construct Dyes/no from Q′ using the same sequence of (ji, ki) and
lettingAi = −Cm3ε/n and gi = − cos(πam ) for all i. We will switch back and forth between
these two interpretations as necessary. We note that the Q′i are all Θ(1/n) and therefore the
xmax in the primed interpretation of the construction is O(Cm3ε).
We now have some important properties to prove about this construction. Namely that dis-
tributions from Dyes are log-concave, distributions from Dno are far from that and that the
two are indistinguishable with few samples. To begin:

Lemma 26 Any distribution p in Dyes is log concave with probability 1.

Proof Consider a distribution p ∼ Dyes, given a sample of δi ∈ F iyes, it moves (6i − 4)th
bin up by δi and (6i − 1)th bin down by δi. We note that applying Lemma 14 to the Q′

formulation we have that δi ≤ Ci/n
3. On the other hand, as n2 � C−1(1/ε)(1/m3), we

have that δi > 0 for all i. Using this, we can check log-concavity of p at each i based on i
(mod 6). In particular,

p26i−5 − p6i−4p6i−6 = Q2
6i−5 −Q6i−6(Q6i−4 + δi)

= Q2
6i−5 −Q6i−6Q6i−4 − δiQ6i−6

= Ω(1/n3)− Ω(1/n4) > 0.

We are similarly still log-concave at 6i− 3. We also have that

p6i−1 −
√
p6ip6i−2 = Q6i−1 − δi −

√
Q6iQ6i−2

= Ci/n
3 − δi ≥ 0.

The other locations follow immediately from δi > 0 as

p26i−4 − p6i−3p6i−5 > Q2
6i−4 −Q6i−3Q6i−5 > 0,

and similarly for 6i− 2 and 6i.

In order to show that Dno is likely far from log-concave we need a Lemma to allow us to
show how far a distribution is from log-concave.
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Lemma 27 For a distribution p over [n] with p3i−2 > p3i >
4
5p3i−2, p3i−1 > 3

4p3i
for all 1 ≤ i ≤ n

3 , and q any log concave distribution over [n], then dTV (p, q) ≥
1
2

∑n
3
i=1 max(0,

√
p3i−2p3i − p3i−1).

Proof It’s sufficient to show that |p3i−2 − q3i−2| + |p3i−1 − q3i−1| + |p3i − q3i| ≥
max(0,

√
p3i−2p3i − p3i−1) for all 1 ≤ i ≤ n

3 . For a log concave q,
√
q3i−2q3i − q3i−1 ≤ 0

must hold for all i. Fix a given i, given p a distribution over [n], we will find such
q3i−2, q3i−1, q3i that minimizes |p3i−2 − q3i−2| + |p3i−1 − q3i−1| + |p3i − q3i| subject to
the constraint q3i−1 ≥

√
q3iq3i−2. If q3i−2 > p3i−2, we get a better set of q3i−2, q3i−1, q3i

by taking q3i−1 = p3i−2 and keeping q3i−1, q3i unchanged. Similar reasoning applies to the
case of q3i−1 < p3i−1 or q3i > p3i. Therefore, we have that the optimal q3i−2, q3i−1, q3i
satisfy q3i−2 ≤ p3i−2, q3i−1 ≥ p3i−1, q3i ≤ p3i, so

|p3i−2− q3i−2|+ |p3i−1− q3i−1|+ |p3i− q3i| = p3i−2− q3i−2 + q3i−1− p3i−1 + p3i− q3i.

Let p = (p3i−2, p3i−2, p3i) and q = (q3i−2, q3i−2, q3i), f : R3 → R is a function where
f(x) =

√
x3i−2x3i − x3i−1, applying the mean value theorem, we have

f(p)− f(q) = (p− q) · ∇f(x)

for some x = (x1, x2, x3) between p and q. In particular, it’s clear that q3i−2 ≤ x1 ≤ p3i−2,
p3i−1 ≤ x2 ≤ q3i−1 and q3i ≤ x3 ≤ p3i. Expanding the dot product, we can get

f(p)− f(q) =
1

2

√
x3
x1

(q3i−2 − p3i−2) + (p3i−1 − q3i−1) +
1

2

√
x1
x3

(q3i − p3i).

Notice that if q3i−2 >
p3i−2

2 and q3i > p3i
2 , using the relation p3i−2 > p3i >

4
5p3i−2, we

have x1 ≤ p3i−2 ≤ 2p3i < 4q3i ≤ 4x3 and x3 ≤ p3i ≤ 2p3i−2 < 4q3i−2 ≤ 4x1, we have
f(p)− f(q) ≤ |p3i−2 − q3i−2|+ |p3i−1 − q3i−1|+ |p3i − q3i| since 1

2

√
x3
x1
, 12

√
x1
x3
< 1.

On the other hand, if q3i−2 ≤ p3i−2

2 , by manipulating the relations between p3i−2, p3i−1, p3i
in the hypothesis, we have

|p3i−2−q3i−2|+|p3i−1−q3i−1|+|p3i−q3i| ≥ |p3i−2−q3i−2| ≥
p3i−2

2
≥ p3i−2−

5

8
p3i > p3i−2−

5

6
p3i−1

>
√
p3i−2p3i − p3i−1.

Similarly, with the case that q3i ≤ p3i
2 , we can show that

|p3i−2 − q3i−2|+ |p3i−1 − q3i−1|+ |p3i − q3i| ≥ |p3i − q3i|

≥ p3i
2

= (
5

4
− 3

4
)p3i

≥ 5

4
p3i − p3i−1 >

√
p3i−2p3i − p3i−1.

So in any case we have that

|p3i−2 − q3i−2|+ |p3i−1 − q3i−1|+ |p3i − q3i| ≥
√
p3i−2p3i − p3i−1.

Summing over i yields our result.

Using this we show that a distribution from Dno is likely far from log-concave.
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DISTRIBUTION TESTING LOWER BOUNDS

Lemma 28 With 99% probability, a random distribution drawn from Dno is ε far from log
concave.

Proof Let p be taken from Dno and let q be an arbitrary log-concave distribution over [n].
Applying Lemma 14, we note that for each i there is independently a 1/m probability that
δi = Ci/n

3 + Ω(Cmε/n). Let X be the number of such i’s. We note that for each such i
that

p6i−1 −
√
p6ip6i−2 = Q6i−1 −

√
Q6iQ6i−2 − δi

= Ci/n
3 − δi < −Ω(Cmε/n).

Therefore, by Lemma 27, dTV (p, q) ≥ Ω(XCmε/n). It thus suffices to show that with 99%
probability that X = Ω(n/m). However, as X ∼ Bin(n/6, 1/m), this is clear.

Finally, we can complete our proof of Theorem 5.
Proof We begin by proving it for n less than 1

C2ε
1
2 (log 1

ε
)
3
2

and a multiple of 6. Suppose

that there is a tester that can reliably distinguish between a log-concave distribution and
one that is ε-far using N < C−3nε−2 log−7(1/ε) samples. As a distribution from Dyes

is log-concave and one from Dno is likely ε-far our tester can reliably distinguish the
two. However, using the Q′ interpretation of our construction, we have B = O(N/n) so
Bx2max = O(C2m6ε2N/n) = O(C−1/ log(n/εxmax)). Thus, we can apply Corollary 10
to see that dTV (DN

yes, D
N
no) < 1/100 which contradicts our algorithm being able to reliably

distinguish them.
For other n, we can just apply this result to n0, the largest integer that satisfies our conditions.
As a log-concave distribution on [n0] is also a log-concave distribution over [n], this gives a
reduction between the testing problems and completes the proof.
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