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Abstract
Glauber dynamics are a natural model of dynamics of dependent systems. While originally intro-
duced in statistical physics, they have found important applications in the study of social networks,
computer vision and other domains. In this work, we introduce a model of corrupted Glauber dy-
namics whereby instead of updating according to the prescribed conditional probabilities, some of
the vertices and their updates are controlled by an adversary. We study the effect of such corrup-
tions on global features of the system. Among the questions we study are: How many nodes need to
be controlled in order to change the average statistics of the system in polynomial time? And how
many nodes are needed to obstruct approximate convergence of the dynamics? Given a specific
budget, how can the adversary choose nodes to control to maximize the overall effect?

Our results can be viewed as studying the robustness of classical sampling methods and are
thus related to robust inference. The proofs connect to classical theory of Glauber dynamics from
statistical physics.

1. Introduction

Many models of great interest in mathematics have been motivated by the goal of explaining com-
plex systems and their behavior. The phase transitions of magnets, the evolution of opinions on a
social network, the spread of infections among a population, and the inter-dependencies between
nodes of a biological network are important examples of systems of interest.

Statistical physics studies the macroscopic behaviors of large systems that emerge. Often times
these systems are built from simple building blocks. Major efforts have been invested to describe the
properties of such systems in equilibrium, and how they change under perturbations. For example,
what is the effect of imposing boundary conditions? And how do small differences in the initializa-
tion of the system play out? The seminal works of Martinelli (1999); Martinelli and Toninelli (2010)
study the relaxation to equilibrium with various boundary conditions imposed on the Ising model.
The study of differences in initialization is often called “damage spreading” as coined by Kauffman
(1969). Many works have performed physical experiments and simulations to estimate the impact
of small changes in initialization on macroscopic properties in equilibrium, see e.g. Stanley et al.
(1987). See Puzzo and Albano (2008) for a survey of the work and results in this area.

But what can we say about the effect of perturbations over short periods of time as the system
evolves toward equilibrium? A natural question to ask in this framework is: what macroscopic
behavior can an adversary efficiently induce in a physical system with control over some subset of
its microscopic constituents? By the term efficiently we mean that we are interested in the effects
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after at most a polynomial number of time steps of running the natural dynamics. We emphasize
that our notion of an adversary is new and flexible, as it allows the nodes to act, collude, and change
over time arbitrarily.

In this work, we focus on systems represented by an Ising model. The Ising model has wide-
ranging applications, including as a model for opinion dynamics in a social network in Liu et al.
(2010), as a model for computer networks in Antonio et al. (2010), and as a model for a biological
system in Majewski et al. (2001). See Lipowski (2022) for an extensive collection of works studying
the Ising Model from various perspectives. Analogous questions are similarly interesting in other
settings such as the Potts model, other Markov random fields and spin glasses. In such settings the
macroscopic behavior can be much more complex, and the effectiveness of the adversary becomes
even more apparent.

The Glauber dynamics introduced by Glauber (1963) is the natural formalism by which to add
a time component to the Ising model to describe its evolution and progress towards equilibrium.
Indeed, prior work by Montanari and Saberi (2010) and Lara et al. (2019) used it to study the
spread of innovation and disease across a network. More recently Baldassarri et al. (2022) studied
the evolution of opinions under Glauber-type dynamics. Another interesting application is Jiang
et al. (2012), where the Glauber dynamics are used to produce a scheduling algorithm on a wireless
network. Each of these examples can be subject to adversarial behavior of collections of nodes or
agents.

One setting to highlight is that of a social network. Each vertex of a graph represents a per-
son, with the corresponding label being their opinion on a specified topic. The edges between
vertices correspond to personal connections that may influence the opinions of both people. Encod-
ing opinions in this way allows for the analysis of both the distribution of opinions over the entire
population, as well as how it changes over time. The adversary in this case can be interpreted as an
advertisement campaign or an external party seeking to influence the global population as efficiently
as possible.

1.1. Our Contributions

We introduce a general model of adversarially perturbed dynamics called corrupted Glauber dy-
namics. And we establish the first baselines, in this natural model, of the power of adversarial
corruptions.

For context, in the high temperature regime, it is known that the presence of boundary conditions
does not alter the equilibrium measure by much. For example, the notion of strong spatial mixing
introduced by Martinelli and Olivieri (1994) stipulates that in equilibrium, the correlation between
spins decreases exponentially in the graph distance between the corresponding vertex sets. While in
physical systems it is natural to assume that the boundary conditions are “far away”, in our setting,
the set of controlled vertices can be distributed in such a way that every node is close to one or more
of the corrupted vertices. Our goal is to study the effect of controlling general subsets and we show
that controlling a small set of corrupted vertices has a small effect on the system as a whole.

Second, in the low temperature regime, it was proven in many settings, starting with Peierls
(1936) that the equilibrium measure consists of two distinct phases, a positive phase and a negative
phase. Moreover, we know that the intermediate configurations between these phases are super-
polynomially unlikely under the equilibrium measure for many families of graphs, see for example
Levin and Peres (2017). In this strong correlation regime, fixing even a single vertex to +1 can
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heavily bias the configuration toward the positive phase at equilibrium. Surprisingly, this property
does not always carryover when we restrict to a polynomial number of steps of the dynamics. In
particular, we establish that control of a small constant fraction of the vertices is insufficient to flip
the phase in expander graphs. On graphs that are less expanding such as the n×n grid, we establish
results showing to change the phase in polynomial time requires Θ(n) vertices.

We also move away from the setting of fixed boundary conditions and take advantage of the flex-
ibility of our definition to accommodate more complex goal. In particular, suppose the corrupted set
of vertices behaves adversarially in more sophisticated and coordinated ways. In the low tempera-
ture regime, it is known that configurations away from one of the two equilibrium phases are super-
polynomially unlikely. We consider how much control the adversary requires to force the dynamic
configuration to remain in these unlikely states, which are most polarized, for super-polynomial
time. We prove that in the mean field setting with n vertices, it suffices to control slightly more than√
n vertices to induce polarization in the spin configuration for a super-polynomial amount of time.

Thus a coordinated adversary can force a system to remain in a fragile state for an extended period
of time.

Finally, we consider the optimization problem from the perspective of the adversary. Following
up on how large of an effect the adversary can have, it is natural to ask if the adversary can efficiently
determine which set of vertices produces this maximal effect. This question is closely related to the
problem of influence maximization, initially studied by Kempe et al. (2003); Mossel and Roch
(2010). We initiate the corresponding study of influence maximization in the short-term evolution
of the model by answering some preliminary questions.

1.2. Main Results

The main purpose of our paper will be to analyze a new process, which we call the corrupted Glauber
dynamics, in which some vertices update adversarially and in a coordinated fashion.

Definition 1 (Corrupted Glauber Dynamics) Consider a graph G and a subset of vertices A ⊂
V (G). The A-corrupted Glauber dynamics is a Markov Chain that follows the transitions of the
standard Glauber dynamics, except when a vertex v ∈ A is chosen to be updated, the update is
over-ridden by a rule specified by an adversary. The rule can be any function of the current and
past states, and has no requirement of computational efficiency. The adversary can update any of
the corrupted vertices at any time. We use m-corrupted Glauber dynamics to refer to A-corrupted
Glauber dynamics where A is unspecified other than |A| = m.

Remark 2 In the case of a particular set of vertices being pinned to a fixed state by the adversary,
the resulting measure can be interpreted as the Ising model with boundary conditions imposed.
See Martinelli and Toninelli (2010); Dyer et al. (2004); Weitz (2005) for a definition and discussion
of boundary conditions.

The Ising model will be the vehicle we use to study and quantify macroscopic changes that can
be induced when certain sets of vertices are controlled by an adversary.

Definition 3 (Ising Model) Let G = (V (G), E(G)) be a graph and Ω = {+1,−1}V (G). The
Ising Model with parameter β is defined by the probability measure µ on Ω where for
σ = (σ(v))v∈V (G),

µ(σ) =
eβH(σ)

Z(β)
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where H(σ) =
∑

uv∈E(G) σ(u)σ(v) and Z(β) =
∑

σ∈Ω eβH(σ) is the normalization constant. We
refer to the ±1 label assigned to a vertex v as its spin.

The parameter β is known as the inverse temperature, which governs the strength of the dependen-
cies between spins on adjacent vertices in G. The magnetization is the canonical measure of the
global state of an Ising model as it measures the average behavior of the system. In much of the
discussion below we will assume that the adversary wishes to shift the magnetization in a certain
direction.

Definition 4 (Magnetization) Given a configuration σ ∈ Ω the magnetization
m(σ) :=

∑
v∈V (G) σ(v) is the sum of all the spins over all the vertices.

Our main results can be summarized in the following theorems. In the high temperature regime,
it is known that boundary conditions, i.e. a small set of vertices that are far away from most vertices,
induces a negligible change in the resulting equilibrium measure as measured by magnetization.
One sense in which this is captured is the property of strong spatial mixing and correlation decay.
In our models, it is not natural to consider only far away vertices, so we consider the more general
question of the effect of a small vertex set. The following theorem shows that the two configurations
can be coupled such that for a polynomial number of time steps, the number of vertices that differ
is very likely to be small. In particular, controlling a small number of vertices cannot change the
overall statistics by much in the high temperature setting.

Theorem 5 Let G be an n-vertex, d-regular graph. For β(d) sufficiently small, when controlling
ϵn of the vertices, the probability that the magnetization changes by 2ϵ in polynomial time is ex-
ponentially small in n. In fact, the trajectory can be coupled with a standard dynamics such that
difference in magnetization is at most 2ϵ for exponential time with high probability.

Note that the theorem above implies both that in polynomial time it is impossible to deviate by
more than 2ϵ and also that the same is true for the stationary measure. See Theorem 13 for a formal
statement. In contrast, in the regime of low temperature, it is known that the equilibrium exhibits
a non-zero magnetization Peierls (1936). As a result imposing homogeneous boundary conditions
(as in Martinelli and Toninelli (2010)), or even fixing a single vertex, will select a phase of the
equilibrium measure. Thus, it is natural to wonder if a small corrupted set can change the phase of
the configuration efficiently. On the contrary, we prove that on an expander graph, a small fraction
of the vertices does not suffice to dynamically flip the magnetization in a polynomial number of time
steps. Thus there are important differences in the efficacy of adversarial corruptions that vary greatly
depending on the inherent robustness and error correction properties of the underlying network.

Theorem 6 Let G be an n-vertex d-regular α-edge expander graph. For β(d, α) sufficiently large
and ϵ(d, α) sufficiently small, when controlling ϵn vertices the stationary measure still consists of
two phases – one with positive magnetization and one with negative magnetization. When starting
from an all +1 configuration it takes exponentially many time steps to move to the negative phase.

See Theorem 16 for a formal statement. For graphs which are not such good expanders, the
behavior is likely more subtle. Controlling one vertex still is not sufficient to change the phase in
polynomial time. However, it suffices to control o(|V |) vertices to change the phase in polynomial
time. For example for the n× n grid we prove the following:
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Theorem 7 Consider the all +1 configuration on the n× n grid. For β = Ω(log n) the adversary
needs to control linear in n vertices to reach the −1 configuration in a polynomial number of steps.
On the other hand, for β a sufficiently large constant, controlling o(n) vertices yields two phases of
the stationary measure, and an exponential number of steps is needed to reach the negative phase.

See Theorems 19, 20, and 23 for the precise results. It is an interesting question to develop a
more refined understanding of the interaction between adversarial corruptions and network topol-
ogy. But our results already set the stage by establishing some important phenomena.

Next we ask the question: Are there macroscopic changes that a dynamic adversary, who does
not merely pin all the corrupted vertices, can induce? We study the power of an adversary to
prolong polarization. We use the term polarization to refer to the state of having an approximately
equal number of +1 and −1 spins, in other words a magnetization close to zero, which is typically
an exponentially unlikely configuration. The following theorem gives a tight bound on the size of
the corrupted set necessary for the adversary to maintain polarization for longer than polynomial
time.

Theorem 8 For β = c
n in the mean field setting, i.e. G = Kn, starting from an i.i.d. random con-

figuration, there is a strategy for an adversary controlling n1/2+ϵ vertices to maintain polarization
for a super-polynomial number of time steps (in other words, it prevents convergence to one of the
phases in polynomial time).

To prove this theorem, a more sophisticated and coordinated attack is needed. Our attack is
based on assigning the corrupted vertices to the minority spin, until that spin nearly becomes an
overwhelming majority. This is formalized in Theorem 24. Note that the random initialization
in this result is essential, as corrupting o(n) vertices starting from a global +1 configuration has
no desired effect. Understanding the scope and extent of an adversary’s power to shape opinion
dynamics is obviously a challenging problem. Our results show that, depending on the goal, an
adversary’s strategy can be subtle and hard to detect.

Finally, we address the question: Given a budget of ϵn nodes, which ones should the adversary
choose to minimize the magnetization when measured at a specific time in the future? We note
that for the ferromagnetic Ising model if we are interested in the long term-behavior (stationary)
behavior of the system then it is known that the influence maximization problem is sub-modular,
see Bresler et al. (2019). Our main result in this direction is that the sub-modularity extends to the
dynamic setting under a sufficiently strong external field.

Theorem 9 For the corrupted Glauber dynamics on a graph G with external field at least the
maximum degree, the influence maximization problem at any time step t is submodular.

This is formalized in Theorem 33. The proof captures a general phenomenon that submodularity
of the local update rule implies global submodularity of the maximization problem.

1.3. Follow-up Work

Since the initial release of our work, several papers have studied our model of adversarial Glauber
dynamics. Gaitonde and Mossel (2023) gave a new analysis of a simple algorithm for learning
the underlying structure and parameters of Ising models based on independent samples from the
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measure. Among their new results includes novel guarantees for learning based on samples from
our adversarial Glauber dynamics. Chen and Mossel (2024) uncovered a sharp computational phase
transition for the influence maximization problem that we consider. Their methods are based on
spectral independence and spatial mixing properties.

1.4. Future Questions

Our framework leaves many interesting questions and research directions.
Is it possible to generalize our result about preventing convergence outside of the mean field

setting? It is natural to believe that the conclusion should hold true as long as the graph is sufficiently
well-connected, which leads to the following conjecture.

Conjecture 10 Let G be an expander graph. Then there is a choice of corrupted set that maintains
polarization for a super-polynomial number of time steps.

We expect many interesting phenomena to occur for models that allow anti-ferromagnetic inter-
actions, including spin glasses, where we believe that finding the optimal set (even approximately)
is computationally hard. Indeed given that sampling from such models is computationally hard Sly
(2010); Sly and Sun (2012), it is natural to expect that influence maximization is also hard.

Another dimension of complexity may be introduced by considering game theoretic models
where a number of different players with different objectives may choose different sets. For exam-
ple, what are the optimal strategies for 3 players in an anti-ferromagnetic Potts models if one wants
to maximize the number of green nodes, another the number of blue nodes and the third the number
of red nodes at a specific time? We can assume for example that players each have a budget of ϵn
nodes and a node is allocated uniformly at random to one of the players that bid for it.

It is interesting to answer analogous questions here, where the study of censored rather than
corrupted nodes has also been of recent interest, see e.g. Moitra et al. (2021) and references within.

2. Preliminaries

Here we introduce the remaining main definitions and notation that we will use for the rest of the
paper. In order to study the process of how the effect of a corrupted set of vertices permeates through
the configuration, we need a process for re-sampling the spins of vertices that agrees with the Ising
model distribution. This role will be played by the well-known Glauber dynamics.

Definition 11 (Glauber Dynamics) The Glauber dynamics is a Markov chain Xt on Ω with the
following transition rule. Choose a vertex v ∈ V (G) uniformly at random. Then Xt+1(u) = Xt(u)

for every u ̸= v and Xt+1(v) = +1 with probability
exp(β

∑
uv∈E(G) Xt(u))

exp(β
∑

uv∈E(G) Xt(u))+exp(−β
∑

uv∈E(G) Xt(u))
.

The transition probability is the conditional probability of the spin at v being +1 under the
measure µ conditioned on the remaining spins in the graph. It is easy to check that the Glauber
dynamics is reversible with respect to the measure µ, and thus has our desired stationary distribution.

The Glauber dynamics is one of the most extensively studied ways to sample from the Ising
model distribution. Given the computational hardness of exactly sampling from the measure (see
e.g. Istrail (2000)), such a Markov chain is the most common way to sample approximately. There
is a rich line of research aimed at analyzing the Glauber dynamics. Through many innovations and
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breakthroughs, it is known that in many cases, the chain exhibits a phase transition in the time it
takes to reach equilibrium. For a comprehensive overview of techniques see Martinelli (1999) and
Levin and Peres (2017).

At a technical level, some of our results will be established using bottlenecks for the magnetiza-
tion. More generally, a bottleneck is a constraining region of the configuration space Ω that limits
the transitions of the Glauber dynamics. The strength of a bottleneck is quantified by the bottleneck
ratio.

Definition 12 (Bottleneck Ratio) Let P be the transition matrix of the Glauber dynamics on Ω,
which has stationary distribution µ. Define

Q(σ1, σ2) := µ(σ1)P (σ1, σ2) and Q(A,B) =
∑

σ1∈A,σ2∈B
Q(σ1, σ2).

The bottleneck ratio of a subset S ⊂ Ω is defined as

Φ(S) :=
Q(S, Sc)

µ(S)

and the bottleneck ratio of the dynamics is

Φ∗ := min
µ(S)≤ 1

2

Φ(S).

As alluded above, the bottleneck ratio controls the time it takes for the Glauber dynamics to
move from one region of Ω to another, and will be used to bound the number of steps needed for the
impact of the corrupted set A to take effect. See Levin and Peres (2017) Theorem 7.4 for a useful
result in this spirit.

Notation

For the rest of the paper, we will use the convention that variables with a tilde will refer to the
corrupted dynamics (e.g. X̃t, µ̃, Φ̃, etc) and variables with no tilde will refer to the corresponding
values in the standard dynamics.

3. No Corruption Effect

We first prove “negative” results (in the sense that the corrupted vertices do not change much) in
both the high and low temperature regimes. These results will all take place on regular graphs. The
first result is in the case of a high temperature (small β) system, where interactions between vertices
are close to independent. In this case it is natural to believe that a group of few vertices cannot
strongly influence the remaining vertices. This is captured in a quantitative sense by comparing the
trajectories between Xt and X̃t.

Theorem 13 Fix ϵ > 0. Suppose β ≤ 1
10d , and let G be a d-regular graph. Let Xt be the standard

Glauber dynamics, and X̃t be ϵn-corrupted Glauber dynamics coupled in the natural way. Let
Dt = {v ∈ V (G) \A : Xt(v) ̸= X̃t(v)} where A is the set of vertices controlled by the adversary.
Then |Dt| ≤ 2ϵn for all times t ≤ eϵ

2βn with probability 1 − 8βϵe−ϵ2βn. In particular, this holds
for t = nk for any k ∈ N.
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The proof proceeds by comparing the trajectories of the standard dynamics with the corrupted
one. We show that when the number of differences is large, there is a bias toward returning to 0.
Thus, at any fixed time, it will be unlikely for there to be a large number of differences between the
two processes. The first claim is captured by the following lemma, whose proof is in Appendix A.

Lemma 14 For any δ > 0 let L1 = n
(
δ + (ϵ+δ)dβ

1−dβ

)
. Then for all L ≥ L1,

E [|Dt+1|||Dt| = L] ≤ L− δ.

The second claim is the following estimate on the hitting probabilities of a biased random walk.
The proof is in Appendix B.

Lemma 15 Fix 0 < δ < 1
4 . Let Wt be a random walk such that W0 = 1, P (Wt+1 = Wt + 1) =

1
2 − δ, and P (Wt+1 = Wt − 1) = 1

2 + δ. Let τa = inf{t ≥ 0 : Wt = a}. Then

P (τa < τ0) < 8δe−2δa.

Proof sketch of Theorem 13 Applying Lemma 14 implies that the numbr of differences between
the corrupted and standard dynamics is dominated by a biased random walk whenever it becomes
large. Lemma 15 then shows that the difference stays large with very small probability. See Ap-
pendix C for the details.

We now consider the opposite case of a low temperature (large β) system. In this case, there
are strong interactions between adjacent vertices, so it is possible to hope for a large impact on
the dynamics while only controlling a small number of vertices. However, as long as the graph
is sufficiently well-connected (captured by the notion of edge expansion), then a small constant
fraction of the vertices is still insufficient to flip the phase of the configuration efficiently. This is
captured by the following theorem.

Theorem 16 Let G be a d-regular, α-edge-expander graph. There exists a C(αd ) such that for
β > 1

2dC(αd ) and ϵ < α
4d , the mixing time of the ϵn-corrupted Glauber dynamics is at least

C exp(14αβn). In particular, if α = Θ(d) then this holds for β = Ω(1d).

Remark 17 In the above theorem, the corrupted set is fixed to +, so the mixing time refers to the
mixing time of standard Glauber dynamics with boundary conditions.

Proof sketch The proof is a generalization of the standard bottleneck calculation for the Ising
model on the complete graph. See Appendix D for the details.

4. Forcing on the Grid

In this section we give a series of “positive” results in which the corruption has a macroscopic
effect the dynamics in polynomial time. These results will take place on the n × n square lattice.
As opposed to the prior results which are for general graphs satisfying certain nice properties, the
analysis of Glauber dynamics on the grid rely on the specific geometric structure of the graph. The
common question we study is: starting from the +1 configuration, how many nodes need to be
corrupted in order to force the dynamics to the −1 configuration in a polynomial (in n) number of
steps?

8



CORRUPTED DYNAMICS

Remark 18 By the monotonicity of the measure µ, we only need to consider the case in which the
corrupted vertices are fixed to the −1 spin.

To start, we consider the case of zero temperature, which is closely tied to the study of bootstrap
percolation (see Balogh and Pete (1998) for further background on this related problem).

Theorem 19 Let β = ∞ and G be the square lattice with vertex set [n]2 . Suppose the configura-
tion is initialized to be identically +1. Then:

1. The m-corrupted Glauber dynamics can never reach the −1 configuration for m < n.

2. Let A = {(i, i) : i ∈ [n]}. Then the A-corrupted Glauber dynamics will reach the −1
configuration in expected time O(n5).

Proof sketch Statement 1 follows from a well-known perimeter argument in bootstrap percolation.
We prove statement 2 by noting that once the triangle Tk = {(i, j) : i < j, j < k} has all −1s,
the configuration will never change. The time for Tk to become −1 is estimated by comparison to a
simple random walk. See Appendix E for the details.

As a corollary of the above theorem, we can study the case of slowly decreasing temperature.

Theorem 20 Let β ≥ 4 log n and G be the square lattice with vertex set [n]2 . Suppose the initialize
with the identically +1 configuration. Then for A = {(i, i) : i ∈ [n]}, the A-corrupted Glauber
dynamics will reach the −1 configuration in expected time O(n5).

Proof sketch The main observation is that at sufficiently low temperature, the behavior of the chain
is unlikely to differ from that of a zero temperature chain during a polynomial number of steps. The
details are contained in Appendix F.

Remark 21 It follows from the proof that once the all −1 state is reached, the configuration remains
in this state for at least n8 time in expectation. In particular, since the time taken to reach the state
is O(n5) on average, the configuration will remain in the −1 state for 1− o(1) fraction of time.

Remark 22 It does not follow from the perimeter argument cited previously that n−1 vertices does
not suffice for a polynomial time phase flip. Indeed, given n − 1 vertices as the set A, a deviation
at the remaining diagonal site will occur in expected polynomial time, after which the global spin
configuration will flip in polynomial time once again.

Finally, to handle the case of low (but constant) temperature, considerably more work is needed.
In this case, the fluctuations of the model prevent us from converging to the −1 configuration.
However, the configuration converges to the −1 phase, which is the distribution on configurations
under −1 boundary conditions. In this setting we show a transition in behavior when the size of the
corrupted set moves from sub-linear to linear.

Theorem 23 Let G be the n × n grid, and let β be a sufficiently large constant. Starting from
the all +1 configuration, the 4n-corrupted Glauber dynamics vertices converges to the −1 phase in
sub-exponential time. Conversely, the o(n)-corrupted Glauber dynamics mixes in exponential time.
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Proof sketch The analysis in this case builds on a series of results by Martinelli which use the
geometric structure of the square grid to analyze the standard Glauber dynamics under various
boundary conditions. We use these results to show that fixing a sub-linear number of vertices does
not significantly change the stationary measure. The proof is in Appendix G.

5. Efficient Polarization

We next present a new question that demonstrates the flexibility of our new model. As opposed to the
above results in which the goal was to influence the overall state of the network as much as possible
in a specified direction, we now consider the goal of introducing as much disorder as possible. If the
spins of the configuration are initialized randomly, there will be a strong misalignment within the
system. We desire the effect of oscillating the configuration repeatedly, perpetuating the polarization
of the configuration. In this case, it is also natural to ask how much of the network must be corrupted
to induce this behavior.

Theorem 24 Let G = Kn with an i.i.d. initial configuration in n1/2+ϵ-corrupted Glauber dynam-
ics. With probability at least (1 − e−βn1+ϵ

)T − e−n2ϵ/32, the adversary can force m(X̃t) to enter
[−2

√
n, 2

√
n] and fluctuate within this interval up to time T before |m(X̃t)| ever reaches n1/2+ϵ.

In particular, for β = c
n the dynamics will not converge in polynomial time.

Remark 25 Note that a randomly initialized configuration has fluctuations in magnetism of order√
n, so to influence the network the control of the adversary must dominate this fluctuation.

Proof At initialization, set the spins on A to be identically +1. Let Mt = m(X̃t(V (G) \ A)).
Whenever Mt ≥ −1

2n
1/2+ϵ we have the following estimates. Suppose that a vertex v is selected

by the dynamics and σ(v) = −1. Then the conditional probability that the spin is updated to +1 is
(recall Definition 11)

eβ(|A|+Mt+1)

eβ(|A|+Mt+1) + e−β(|A|+Mt+1)
≥

exp(12βn
1/2+ϵ)

exp(12βn
1/2+ϵ) + exp(−1

2βn
1/2+ϵ)

=: p.

Similarly, if v is selected with σ(v) = +1, the conditional probability that the spin is updated to −1
is

e−β(|A|+Mt−1)

eβ(|A|+Mt−1) + e−β(|A|+Mt−1)
≤

exp(−1
2βn

1/2+ϵ)

exp(12βn
1/2+ϵ) + exp(−1

2βn
1/2+ϵ)

=: q.

Thus, in this regime Mt stochastically dominates a lazy random walk with p
2 probability of a

+1 step and q
2 probability of a −1 step. Thus, started from a configuration with magnetization

≥ −1
4n

1/2+ϵ, a standard calculation similar to Lemma 15 shows that the probability that Mt hits
n1/2 before −1

2n
1/2+ϵ is at least

( qp)
− 1

4
n1/2+ϵ − ( qp)

− 1
2
n1/2+ϵ

( qp)
n1/2 − ( qp)

− 1
2
n1/2+ϵ

≥ 1− e−
1
4
βn1+2ϵ

.

In particular, the probability of failure is exponentially small in βn1+2ϵ. The same calculation shows
that when started from a configuration with magnetization ≥ −n1/2, the probability that Mt hits
n1/2 before −2n1/2 is at least 1− exp(−βn1+ϵ).

10
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By symmetry, the analogous statements hold for Mt ≤ 1
2n

1/2+ϵ when the spins on A are set to
−1. In particular, started from a configuration with magnetization ≤ 1

4n
1/2+ϵ, the probability that

Mt hits −n1/2 before 1
2n

1/2+ϵ is at least 1 − e−
1
4
βn1+2ϵ

. Also, started from a configuration with
magnetization ≤ n1/2, the probability that Mt hits −n1/2 before 2n1/2 is at least 1−exp(−βn1+ϵ).
Thus, by flipping the corrupted set whenever the magnetization reaches −n1/2 from n1/2 and vice
versa, the number of iterations that the magnetization of the system oscillates between −2

√
n and

2
√
n under the corruption of A dominates a geometric random variable with mean eβn

1+ϵ
.

To conclude it suffices to show that M0 is between −1
4n

1/2+ϵ and 1
4n

1/2+ϵ with high probability,

so the adversary has control at initialization. Since each spin is independent and uniform, M0
d
=

2Bin(n− |A|, 12)− (n− |A|). An application of Hoeffding’s Inequality implies

P
(
|M0| >

1

4
n1/2+ϵ

)
= P

(
|2Bin(n− |A|, 1

2
)− (n− |A|)| > 1

4
n1/2+ϵ

)
≤ e−n2ϵ/32.

6. Maximizing the Adversary’s Effect

To conclude, we present a series of results about the optimization problem from the perspective of
the adversary. Namely, given a budget of m nodes, we study the optimal strategy for the adversary
to implement to induce the maximum effect at time t. We start with a result about the behavior at
high temperature. In the remainder of this section, for v a vertex in a graph G, let N(v) denote the
neighbors of v, d(v) = |N(v)| denote the degree, and dS(v) denote the number of edges from v to
the set S.

Proposition 26 Let G be a graph of maximum degree d and M(ϵ) be the ϵ-mixing time for the
Glauber dynamics for the Ising model on G with inverse temperature β. Let X̃A

t be an instance
of the A-corrupted Glauber dynamics for |A| = m. For β ≤ 1

4d2m
, ϵ = β

4n and t ≥ M(ϵ),

E
[∣∣∣{v : X̃A

t (v) = +1}
∣∣∣] is maximized when A are the m vertices with largest degree to the uncor-

rupted vertices, V \A.

Proof sketch The heuristic in this high temperature regime is that the Glauber dynamics updates are
well approximated by linear functions, and thus the degree of the corrupted vertices is the dominant
contributing factor. The proof in Appendix H formalizes this heuristic.

Remark 27 For graphs G and temperatures β for which the Glauber dynamics mixes rapidly in
polynomial time, we have that M(ϵ) for this choice of epsilon is also polynomial in n. In particular,
the best choice for the adversary is to choose the highest degree vertices, and this choice manifests
itself quickly.

In situations where the explicit optimizer is not as easy to compute, submodularity is a desirable
property for the maximization of set functions. It is analogous to convexity, and thus allows for
efficient algorithms for approximate optimization, see for example the work of Feige et al. (2011).
It was shown by Bresler et al. (2019) using the GHS inequality that for the ferromagnetic Ising

11
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model, the influence maximization problem for the equilibrium measure is submodular. It is natural
to ask whether or not this property extends to the dynamic, polynomial-time setting as well. The
following observations and results begin to answer this question.

Definition 28 (Submodularity) We say that a function f : V → R is submodular if for all S, T ⊆
V , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Observation The function fv : 2N(v) → [0, 1] defined by fv(S) = e2|S|−d(v)

e2|S|−d(v)+e−2|S|+d(v) is not
submodular.

The function fv is the local update of the Glauber dynamics at vertex v when the set of neighbors
of v with +1 spin is exactly S. This function fails to be submodular when the sets S and T are
too small. Thus, it immediately follows by considering a 10-regular graph and disjoint S and T of
size 2 that the function E

[∣∣∣{v : X̃S
t (v) = +1}

∣∣∣] cannot be a submodular function of S in general
for all graph G and all times t. However, we know that as t → ∞ the expectation approaches a
submodular function. Thus, it is natural to ask whether or not there is a characterization for which
graphs G, or for which times t, that the property of submodularity holds. We provide answers in
two situations.

6.1. Approximate Submodularity

Definition 29 (Approximate Submodularity) We say that a function f : V → R is ϵ approxi-
mately submodular if for all S, T ⊆ V , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )− ϵ.

The following proposition gives a sufficient condition for the optimization problem to be approxi-
mately submodular. This gives hope for approximately solving the maximization.

Proposition 30 Let M(ϵ) be the ϵ-mixing time of the Glauber dynamics on a graph G with pa-
rameter β. In particular, for t ≥ M(ϵ) we have dTV(µ̃

S
t , µ) < ϵ where µ̃S

t is the distribution
of X̃S

t and µ is the Ising model Gibbs measure. Then for t ≥ M(ϵ), E
[∣∣∣{v : X̃S

t (v) = +1}
∣∣∣] is

4ϵn-approximately submodular as a function of S.

Remark 31 In the above proposition the adversary’s optimal strategy is to assign all corrupted
vertices to +, so the mixing time refers to the standard mixing time with boundary conditions.

Proof Note that the quantity
∣∣∣{v : X̃S

t (v) = +1}
∣∣∣ is a random variable bounded below by 0 and

above by n. The event where XS
t differs from µ has measure at most ϵ, and the random variable

differs by at most n on this event, so the expectation under the two measures differs by at most
ϵn. Applying this discrepancy to each term in the definition of submodularity yields the desired
inequality.

Note that the above proposition in particular implies for rapidly mixing chains, the maximization
problem becomes approximately submodular within a polynomial in n number of time steps.

12
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6.2. Submodularity Under Strong External Field

We conclude by showing that in the presence of a strong enough external field, the maximization
problem is in fact submodular for all time steps. The following lemma establishes that the local
update becomes submodular with a strong external field. See Appendix I for the proof.

Lemma 32 Let h be at least the maximum degree of G. Let fv : 2N(v) → [0, 1] be defined by
S 7→ exp(β(2|S|−dv+h))

exp(β(2|S|−dv+h))+exp(β(−2|S|+dv−h)) . Then fv is submodular.

Theorem 33 For any S ⊆ V , let X̃S
t be the S-corrupted Glauber dynamics with external field h

at least the maximum degree of G. The function E
[∣∣∣{v : X̃S

t (v) = +1}
∣∣∣] is submodular function

of S for every t.

Proof sketch The proof is an extension of local submodularity (given by Lemma 32) to global
submodularity, using a coupling closely related to one introduced by Mossel and Roch (2010). See
J for the details of the coupling.

Remark 34 The above proof in general shows that for any submodular local update fv, running
the Glauber dynamics will result in a submodular optimization problem for all times t.
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Appendix A. Proof of Lemma 14

Proof Suppose that |Dt| = L. In order for Dt to decrease, we need the Glauber dynamics to
select a vertex in the difference set. This happens with probability L

n . Then to decrease, the updates

must match, which occurs with probability 1 −
∣∣∣µXt(σv = +)− µX̃t

(σv = +)
∣∣∣. In order for Dt

to increase, it needs to select a vertex outside the difference set with probability 1 − ϵ − L
n , and

produce updates that do not match with probability
∣∣∣µXt(σv = +)− µX̃t

(σv = +)
∣∣∣. The remaining

ϵ probability is when Glauber selects a vertex in the corrupted set, at which Dt does not change.
To improve the dependence on d and β and obtain the desired L1, we further distinguish the

cases by the number of differences in the neighborhood of the selected vertex v to compute the
above probabilities. Let

Vt(k) = {v : NXt(v) and NX̃t
(v) contain k differences}.

By double counting, ∑
k≥0

k · |Vt(k)| ≤ (ϵn+ L)d.

15
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Now, if the neighborhood of v has k differences, the difference in probabilities is

1

2
tanh(β(s+ k))− 1

2
tanh(β(s− k)) ≤ tanh(kβ).

Thus we want

1

n

∑
k≥0

|Dt ∩ Vt(k)| · (1− tanh(kβ))− |Dc
t ∩ Vt(k)| · tanh(kβ)

=
1

n

∑
k≥0

|Dt ∩ Vt(k)| − |Vt(k)| tanh(kβ) > δ.

Since tanh(x) < x for x > 0, it suffices for

L

n
− 1

n

∑
k≥0

|Vt(k)| · kβ ≥ L

n
− β(ϵn+ L)d

n
=

L(1− dβ)

n
− ϵdβ > δ.

This holds when

L ≥ n(δ + ϵdβ)

1− dβ
= n

(
δ +

(ϵ+ δ)dβ

1− dβ

)
.

Appendix B. Proof of Lemma 15

Proof By considering the martingale Mt =
( 1

2
+δ

1
2
−δ

)Wt

and the stopping time τ = min{τa, τ0} we
can compute

1
2 + δ
1
2 − δ

= E [M0] = E [Mτ ] = P (τ0 < τa) + P (τa < τ0) ·

(
1
2 + δ
1
2 − δ

)a

Rearranging gives

P (τa < τ0) =

1
2
+δ

1
2
−δ

− 1( 1
2
+δ

1
2
−δ

)a
− 1

<
8δ

(1 + 4δ)a − 1
< 8δe−2δa.

Appendix C. Proof of Theorem 13

Proof Set δ = βϵ and let L1 be as in Lemma 14. Define T0 = inf{t : |Dt| > L1} and S0 = inf{t >
T0 : |Dt| = L1}. Inductively define Tk = inf{t > Sk−1 : |Dt| > L1} and Sk = inf{t > Tk :
|Dt| = L1}, so that the time intervals [Tk, Sk) capture the excursions of |Dt| above L1. For each
excursion, associate a new process (W (k)

t )Sk−Tk
t=0 started from 0 that increases by 1 with probability

1
2 − δ and decreases by 1 with probability 1

2 + δ whenever |Dt| moves. By Lemma 14 and the fact
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that |Dt+1| ∈ [|Dt| − 1, |Dt| + 1], we can couple the excursion (|Dt|)Sk
t=Tk

with W
(k)
t such that

|Dt| ≤ W
(k)
t−Tk

+ L1. Since each W
(k)
t is an identically distributed biased random walk we know

that for each k, by Lemma 15,

P
(
∃t ≤ Sk − Tk : W

(k)
t ≥ ϵn

)
< 8δe−2δϵn.

Now, for any time fixed time t, if |Dt| ≥ L1 + ϵn, then by the invariant above it must be coupled
to a biased walk satisfying W

(k)
t′ ≥ ϵn for some corresponding k ≤ t and t′. Taking a union bound

over all k ≤ eϵ
2βn,

P
(
∃t ≤ eϵ

2βn : |Dt| ≥ 2ϵn
)
< P

(
∃t ≤ eϵ

2βn : |Dt| ≥ L1 + ϵn
)

≤ P
(
∃k ≤ eϵ

2βn, t′ : W
(k)
t′ ≥ ϵn

)
< 8ϵβe−ϵ2βn

which is the desired inequality.

Appendix D. Proof of Theorem 16

Proof The proof proceeds by exhibiting a bottleneck in the dynamics of the process. Suppose G a
d-regular expander with d ≥ min0≤|S|≤n

2

|∂S|
|S| ≥ α. Define Ak = {σ : |{v : σv = +}| = k}. For

σ ∈ Ak, we know dk ≥ |∂S| ≥ αk where S = {v : σv = +}. Note that

∑
u∼v

σuσv = (|E(G)| − |∂S|)− |∂S| ∈
[
nd

2
− 2dk,

nd

2
− 2αk

]
.

Now, consider a dynamics that is corrupted with ϵn vertices fixed to +. Here, with only n(1−ϵ)

free vertices, we adjust the bottleneck to k∗ = n(1−2ϵ)
2 . Note that the number of configurations with

k < k∗ is less than that of k > k∗, and also the configurations with k < k∗ have lower probabilities
due to the fixed set of + vertices. Thus, µ̃

(⋃
k<k∗ Ak

)
< 1

2 . With k∗ + ϵn vertices labeled +′s,

µ̃(Ak∗) ≤
1

Zc
·
(
n(1− ϵ)
n(1−2ϵ)

2

)
exp(βn

(
d

2
− α

)
) =:

1

Zc
· ãk∗

µ̃

( ⋃
k<k∗

Ak

)
≥ max

k>k∗

1

Zc
·
(
n(1− ϵ)

k

)
exp(β

(
nd

2
− 2d(k + ϵn)

)
) =: max

k<k∗

1

Zc
· ãk

By the same asymptotic approximations, and writing k = cn(1− ϵ),

log ãcn(1−ϵ) = βnd

(
1

2
− 2(c(1− ϵ) + ϵ)

)
− n(1− ϵ)[c log c+ (1− c) log(1− c) + o(1)]

log ãk∗ ≤ n(1− ϵ) log 2 + βn(
d

2
− α)
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The first expression has the same critical point at c∗ = 1
1+e2βd

, so we can bound the log of the
bottleneck ratio as

log Φ̃∗ ≤ n

[
β(

d

2
− α) + (1− ϵ) log 2

]
− n

[
βd(

1

2
− 2(c∗(1− ϵ) + ϵ))− (1− ϵ)[c∗ log c∗ + (1− c∗) log(1− c∗)]

]
≤ n[(1− ϵ)(log 2 + c∗ log c∗ + (1− c∗) log(1− c∗)) + β(−α+ 2d(c∗(1− ϵ) + ϵ))].

The rightmost term is at most −1
2nαβ as long as c∗ < α

4d(1−ϵ) and ϵ < α
4d . The first condition

translates to β > 1
2d log(

8d
α − 1).

To handle the remaining term, we set C := 2dβ. We want to ensure that

log 2 + c∗ log c∗ + (1− c∗) log(1− c∗) ≤ αβ

4
=

Cα

8d
.

Taking the derivative of the left hand side with respect to C, we get the expression CeC

(1+eC)2
. Notice

that as C → ∞, this derivative tends to zero, while d
dC

Cα
8d = α

8d . Thus, there exists some C(αd )

such that for all C > C(αd ), the desired inequality holds. In particular, for β ≥ C(α/d)
2d we have

log Φ̃∗ ≤ −αβ
4 .

This gives the desired bottleneck in the corrupted case. The result for mixing time follows from
a standard inequality (i.e. Levin and Peres (2017) Theorem 7.4).

Appendix E. Proof of Theorem 19

Proof Note that at zero temperature, the vertices that can eventually transition to a −1 state is
exactly the bootstrap percolation set of the corrupted vertices. Thus, the first claim follows from a
perimeter argument (Balogh and Pete (1998) Folklore Fact).

For the second claim, we relate the progress of the configuration toward the −1 configuration
to a random walk. Let Cj = {(i, j) : i < j} and Tj =

⋃
k≤j Ck. Notice that once the configu-

ration is identically −1 on Tj , then this portion of the configuration is frozen in this state. Define
Sj = inf{t ≥ 0 : Tj is identically −1 at time t}. We bound Sj+1 − Sj by comparison to a random
walk. Notice that Cj+1 must flip to the − state in the order (j, j +1), (j − 1, j +1), . . . , (1, j +1).
Moreover, if (j, j + 1), . . . , (k, j + 1) are all in the −1 state, then (j, j + 1), . . . , (k + 1, j + 1)
are all frozen in the −1 state. Thus, the quantity Xt = inf{k : (k, j + 1) is − in σt} is a
simple random walk on [j] reflected at j and absorbed at 1. By the Glauber dynamic update,
P (Xt+1 = Xt + 1) = P (Xt+1 = Xt − 1) = 1

2n2 . Starting from j the expected time to absorp-
tion of Xt is j2, so E [Sj+1 − Sj ] = 2n2j2. Thus,

E [Sn] =

n−1∑
j=1

E [Sj+1 − Sj ] =

n−1∑
j=1

2n2j2 = O(n5).

By symmetry, the same argument applies to the lower triangle below the diagonal, and the hitting
time of the −1 configuration is the maximum of the upper triangle and lower triangle, yielding the
desired bound.
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Appendix F. Proof of Theorem 20

Proof The conditional probability of a vertex whose neighborhood has sum s > 0 to be updated
to a − state is e−βs

eβs+e−βs = n−s

ns+n−s = 1
n8s+1

< 1
n8 . By symmetry the conditional probability of a

vertex whose neighborhood has sum s < 0 to be updated to a +1 state is also < 1
n8 . Denote these

events as “deviations” from the β = ∞ case studied above in Proposition 19. Let T be the first
time that the configuration is identically −1 in the setting of Proposition 19, and let N be the time
of the first deviation in the process. Then N dominates N ′, a Geom(n−8) random variable that is
independent of T. We have the estimate

P
(
N < n6

)
≤ P

(
N ′ < n6

)
= 1−

(
1− 1

n8

)n6

< n−2.

We can bound

P
(
N ′ < T

)
=
∑
m<n6

P (m < T )P
(
N ′ = m

)
+
∑
m≥n6

P (m < T )P
(
N ′ = m

)
≤ P

(
N < n6

)
+
∑
m≥n6

P
(
n6 < T

)
P
(
N ′ = m

)
≤ n−2 +

E [T ]

n6
· P
(
N ′ ≥ n6

)
≤ n−2 + Cn−1

where in the last step we used Markov’s Inequality and Proposition 19. Thus, with probability
1 − o(1), we do not deviate before reaching the −1 configuration. In the event that a deviation
occurs, we “reset”, and by monotonicity the expected time to reach the −1 configuration from this
new configuration must also be bounded by O(n5). Conditioning on the number of runs until we
reach the −1 state without a deviation, we obtain the claimed result.

Appendix G. Proof of Theorem 23

Proof As shown in Martinelli and Toninelli (2010) imposing −1 boundary conditions on the n×n
grid yields a mixing time of at most exp(cnϵ). Thus, the all +1 configuration can be forced into the
−1 phase in sub-exponential time with control of O(n) vertices.

Conversely, with control of o(n) vertices, the bottleneck that yields exponential time mixing for
the square grid remains, so it is not possible to force the +1 phase to the −1 phase in sub-exponential
time. We will make repeated use of the following theorem from Martinelli (1999), Proposition 6.3.

Theorem For β sufficiently large, and ∆ ∈ (−m∗(β),m∗(β)),

lim
n→∞

− 1

β(2n+ 1)
log(µ({σ : m(σ) = ∆n2)}) = c∆ > 0

where m∗(β) is a constant known as the spontaneous magnetization.
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We use this to construct a bottleneck in the corrupted dynamics. Note that by symmetry, in
the standard dynamics with S = {σ : m(σ) > 0}, we have µ(S) = 1−e−cβ(2n+1)

2 < 1
2 and

Φ(S) < 4e−cβ(2n+1) so the bottleneck ratio is exponentially small in n. In the corrupted dynamics,
we once again have µ̃(S) < 1

2 .
The idea of the argument is that since the maximum degree of G is 4, the corrupted set of vertices

can affect at most o(n) edges, which means the probability of each state σ can change by at most
a factor of eo(n). Thus, we have that Φ̃(S) < 4e−cβ(2n+1)+o(n), which also yields an exponential
mixing time of at least ecβ(2n+1)−o(n). This is formalized below to conclude the proof.

We begin with a lemma that controls the change in the normalization constant of the two distri-
butions.

Lemma 35 Z(β)e−o(n) ≤ Z̃(β) ≤ Z(β).

Proof The upper bound is clear, since the configurations in the corrupted model are a strict subset
of the configurations for the standard dynamics, so we prove the lower bound. For τ ∈ {+1,−1}A,
let Ωτ = {σ : σ(A) = τ}. We can re-write

Z(β) =
∑
Ω

e−βH(σ) =
∑
τ

∑
Ωτ

e−βH(σ) ≤
∑
τ

e4β|A|Z̃(β) ≤ 2|A|e4β|A|Z̃(β) = eo(n)Z̃(β).

The first inequality follows from the observation that τ = −1 corresponds exactly to Z̃(β). Since
the configurations σ and στ obtained by replacing the spins on A with τ differ in at most 4|A| edges,
and thus H(σ)− 4|A| ≤ H(στ ) ≤ H(σ) + 4|A|.

Let m̃(σ) be the magnetization on the uncorrupted set of vertices. Define S̃ = {σ : m̃(σ) > 0}.
Note that this represents half of the possible configurations, and since the corrupted vertices have
spins fixed to −1, it follows that µ̃(S̃) < 1

2 . Note that Q̃(S̃, S̃c) ≤ µ̃({σ : m̃(σ) = 0}), so we
proceed by bounding the right hand side. Note that m̃(σ) = 0 implies m(σ) = −|A| with the
assumption of −1 spins on the corrupted set. Thus by the above cited theorem,

Z̃(β)µ̃({σ : m̃(σ) = 0}) =
∑

m̃(σ)=0

e−βH(σ) ≤
∑

m(σ)=−|A|

e−βH(σ)

= Z(β)µ({σ : m(σ) = −|A|}) ≤ Z(β)e−cδβ(2n+1)

for some δ > 0 and n sufficiently large. It follows from Lemma 35 that

µ̃({σ : m̃(σ) = 0}) ≤ Z(β)

Z̃(β)
e−cδβ(2n+1) = e−cδβ(2n+1)+o(n).

To conclude, it suffices to show that µ̃(S̃) is not too small. Note that m(σ) > |A| implies m̃(σ) > 0,
as the contribution from the corrupted set to the magnetization is bounded by −|A|. Thus,

Z̃(β)µ̃(S̃) =
∑
σ∈S̃

e−βH(σ) ≥ 1

2|A|eo(n)

∑
m(σ)>|A|

e−βH(σ)

=
Z(β)

2|A|eo(n)
µ({σ : m(σ) > |A|})

≥ Z(β)

2|A|eo(n)

(
1

2
− |A|e−cAβ(2n+1)

)
≥ Z(β)e−o(n)
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Here, the penultimate inequality follows from the cited theorem and the symmetry of the Ising
model, while the final inequality holds for n sufficiently large. Again by Lemma 35, we can deduce
that µ̃(S̃) ≥ e−o(n). Thus,

Φ̃∗ ≤ Φ̃(S̃) ≤ e−cAβ(2n+1)+o(n)

e−o(n)
= e−cAβ(2n+1)+o(n).

Appendix H. Proof of Proposition 26

Proof Fix a vertex v ∈ V \ A. Note that the effect of vertices at distance k from v is of order βk.
In particular, if we condition on the second neighborhood of v, then µ(σv = +1) = 1

2 ±O((βd)2).
Thus, if we impose that the spins on A are fixed to +1, then

µ(σv = +1|σA = +1) =
1

2
+ β|N(v) ∩A|+ β2|N(N(v)) ∩A|+O(β3d3).

By linearity of expectation,

E [|{v : σ(v) = +1}||σA = +1] = m+
∑

v∈V \A

µ(σv = +1|σA = +1)

=
n+m

2
+ β

∑
a∈A

dV \A(a) +O(m(βd)2)

where the last equality follows from the maximum degree assumption and summing the resulting
geometric series. For our choice of parameters, this lives on the interval[

n+m

2
+ β

∑
a∈A

dV \A(a)−
β

4
,
n+m

2
+ β

∑
a∈A

dV \A(a) +
β

4

]
.

For t ≥ M(ϵ), we know that the total variation distance between µ and the distribution of XA
t

is at most ϵ. Since
∣∣∣{v : X̃A

t (v) = +1}
∣∣∣ is a random variable bounded by n, we know that

∣∣∣E [∣∣∣{v : X̃A
t (v) = +1}

∣∣∣]− E [|{v : σv = +1|σA = +1}|]
∣∣∣ ≤ ϵn =

β

4
.

By the computations above, the triangle inequality implies that∣∣∣∣∣E [∣∣∣{v : X̃A
t (v) = +1}

∣∣∣]−(n+m

2
+ β

∑
a∈A

dV \A(a)

)∣∣∣∣∣ ≤ β

2
.

It follows from this that in order to maximize E
[∣∣∣{v : X̃A

t (v) = +1}
∣∣∣] it suffices to maximize the

integer
∑

a∈A dV \A(a).
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Appendix I. Proof of Lemma 32

Proof Note that fv(S) = 1
2 [1 + tanh(β(2|S| − dv + h))]. Thus, for submodularity, it suffices to

prove that

tanh(β(2|S| − dv + h)) + tanh(β(2|T | − dv + h))

≥ tanh(β(2|S ∪ T | − dv + h)) + tanh(β(2|S ∩ T | − dv + h)).

We can compute that

tanh(x) + tanh(y) =
ex − e−x

ex + e−x
+

ey − e−y

ey + e−y
= 2 · ex+y − e−x−y

ex+y + ex−y + e−x+y + e−x−y
. (1)

It holds that |S|+|T | = |S∪T |+|S∩T | so we only need to compare exp(|S|−|T |)+exp(−|S|+|T |)
with exp(|S ∪ T | − |S ∩ T |) + exp(−|S ∪ T |+ |S ∩ T |). The function ex + e−x is increasing for
x > 0, and |S| − |T | ≤ |S ∪ T | − |S ∩ T | so

exp(|S| − |T |) + exp(−|S|+ |T |) ≤ exp(|S ∪ T | − |S ∩ T |) + exp(−|S ∪ T |+ |S ∩ T |).

Substituting this into (1) and noting that 2|S|+2|T | − 2dv +2h ≥ 0 implies the desired inequality.

Appendix J. Proof of Theorem 33

Proof Let At = {v ∈ V : σS∩T
t (v) = +1}, Bt = {v ∈ V : σS

t (v) = +1}, Ct = {v ∈
V : σT

t (v) = +1}, and Dt = {v ∈ V : σS∪T
t (v) = +1}. We construct a coupling such that

At ⊆ Bt ∩ Ct and Dt ⊆ Bt ∪ Ct.
At each time step t, draw vt ∼ Unif(V ) and θt ∼ Unif([0, 1]). We define the following notation

for the set of neighbors of vt with +1 spin in each chain:

A(vt) := N(vt) ∩ (At−1 ∪ (S ∩ T ))

B(vt) := N(vt) ∩ (Bt−1 ∪ S)

C(vt) := N(vt) ∩ (Ct−1 ∪ T )

D(vt) := N(vt) ∩ (Dt−1 ∪ S ∪ T )

Apply the following update rules to the respective chains:
σS∩T
t (vt) = +1 if θt < fvt(A(vt)) or v ∈ S ∩ T

σS
t (vt) = +1 if θt < fvt(B(vt)) or v ∈ S

σT
t (vt) = +1 if θt < fvt(A(vt)) or 1− θt < fvt(C(vt))− fvt(A(vt)) or v ∈ T

σS∪T
t (vt) = +1 if θt < fvt(B(vt)) or 1− θt < fvt(D(vt))− fvt(B(vt)) or v ∈ S ∪ T

and the spins are updated to −1 otherwise. Since At−1 ⊆ Bt−1 by monotonicity fvt(A(vt)) ≤
fvt(B(vt)), we have that vt ∈ At only if vt ∈ Bt and vt ∈ Ct. Moreover if vt is removed from
either Bt or Ct in this update, then it will be removed from At as well. Thus, At ⊆ Bt ∩ Ct. If
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vt ∈ Dt, then either θt < fvt(B(vt)) in which case vt ∈ Bt or 1− θt < fvt(D(vt))− fvt(B(vt)),
in which case vt ∈ Ct since

fvt(D(vt))− fvt(B(vt)) < fvt(C(vt))− fvt(A(vt)).

Indeed

fvt(B(vt)) + fvt(C(vt)) ≥ fvt(B(vt) ∩ C(vt)) + fvt(B(vt) ∪ C(vt))

≥ fvt(A(vt)) + fvt(D(vt))

where we used submodularity in the first inequality, and monotonicity and the induction hypothesis
in the second inequality. Similarly if vt is removed from both Bt and Ct then it will be removed
from Dt as well, so Dt ⊆ Bt ∪ Ct.

Now,

|Bt|+ |Ct| = |Bt ∩ Ct|+ |Bt ∪ Ct| ≥ |At|+ |Dt|

Taking expectations shows that E
[∣∣∣{v : X̃S

t (v) = +1}
∣∣∣] is submodular.
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