
Proceedings of Machine Learning Research vol 196:1–15, 2024 37th Annual Conference on Learning Theory

Undetectable Watermarks for Language Models

Miranda Christ MCHRIST@CS.COLUMBIA.EDU
Columbia University

Sam Gunn GUNN@BERKELEY.EDU
UC Berkeley

Or Zamir ORZAMIR@TAUEX.TAU.AC.IL

Tel Aviv University

Editors: Shipra Agrawal and Aaron Roth

Abstract
Recent advances in the capabilities of large language models such as GPT-4 have spurred increas-
ing concern about our ability to detect AI-generated text. Prior works have suggested methods
of embedding watermarks in model outputs, by noticeably altering the output distribution. We
ask: Is it possible to introduce a watermark without incurring any detectable change to the output
distribution?

To this end, we introduce a cryptographically-inspired notion of undetectable watermarks for
language models. That is, watermarks can be detected only with the knowledge of a secret key;
without the secret key, it is computationally intractable to distinguish watermarked outputs from
those of the original model. In particular, it is impossible for a user to observe any degradation in
the quality of the text. Crucially, watermarks remain undetectable even when the user is allowed to
adaptively query the model with arbitrarily chosen prompts. We construct undetectable watermarks
based on the existence of one-way functions, a standard assumption in cryptography.
Keywords: Language Models, Machine Learning, Cryptography, Security, Watermarking

1. Introduction

With the rise in the use of artificial models that churn out human-like text, there’s also an increase
in the potential for misuse. Imagine a student employing a language model to effortlessly write
her “Machine Learning 101” homework or conjuring up tear-jerking emails to beg professors for
easier exams. That’s when the need arises to distinguish between texts penned by a language model
and those crafted by human hands. The go-to method of employing a heuristic test to determine
if a text was AI-generated, however, grows increasingly fragile as large language models (LLMs)
advance. Even the cutting-edge detectors, like GPTZero (Tian (2023)), can be outsmarted with
cleverly crafted prompts.

Ultimately, as LLM outputs move closer to becoming identical to human-generated text, this
approach becomes hopeless. It is already very hard to tell, for instance, that the previous paragraph
was written by such a model. To overcome this problem, it is reasonable to consider intentionally
modifying the model to embed watermarks into the text. Recent work of Kirchenbauer et al. (2023)
introduced such watermarks in the context of LLMs. However, existing watermarking schemes
come with a cost: To plant a useful watermark, the distribution of texts the model generates has to
be noticeably changed. In fact, for existing schemes it is possible for the user to distinguish between
outputs of the original model and of the watermarked one, and it is hence possible that the quality
of text degrades.

We show how to plant watermarks with the following properties, stated informally, in any LLM.

© 2024 M. Christ, S. Gunn & O. Zamir.

CHRIST GUNN ZAMIR

1. (Undetectability) It is computationally infeasible to distinguish between the original and the
watermarked models, even when the user is allowed to make many adaptive queries. In
particular, the quality of generated text remains identical.

2. (Completeness) There is a secret key that enables efficient detection of responses from the
watermarked model, as long as “enough randomness” was used to generate the response. The
detection works even when presented with only a contiguous substring from the response,
and it doesn’t require any other information.

3. (Soundness) Any text generated independently from the secret key has a negligible chance of
being detected as watermarked.

We note that the existence of a secret key is necessary, as otherwise these properties would directly
contradict each other. However, in practice the secret key can be published if one wishes; Prop-
erty (1) still ensures that the quality of the text is imperceptibly changed for all uses not involving
the secret key.

An important aspect of our construction is that Properties (1) and (3) will always hold, for any
LLM with any choice of parameters, and without making any assumptions on the text. Our scheme
is the first to have these properties, and we argue that they are completely crucial. First, the creator
of a state-of-the-art LLM is unlikely to intentionally degrade the quality of their model, making
Property (1) necessary for any practical watermarking scheme. As the quality and versatility of
LLMs have reached such high levels, any noticeable change due to the watermark is liable to have
adverse side effects in some situations. Second, falsely accusing humans of using LLMs to generate
their texts should be completely unacceptable. When heuristics are used for detection, this will
always be a possibility — indeed, instances of such false accusations against students have already
made news headlines (Fowler (2023); Jimenez (2023)), and concerningly, false accusations may be
more common for non-native English writers (Liang et al. (2023)). Property (3) in our construction
rigorously guarantees that natural text will not be detected as watermarked.

Of course, a watermark is only useful if it can be detected with the secret key. If the model
has a deterministic response to some prompt, then we should not be able to embed the watermark
in that response (as any change to the output would necessarily be detectable). For Property (2),
we therefore need to assume that enough “randomness” was used in the generation of the specific
text we are considering. We introduce a formal notion that we call empirical entropy, and show
that this condition is necessary. Our detection algorithm works when it is given text containing any
consecutive sub-string with enough empirical entropy from an output of the model. Intuitively, we
should think of empirical entropy as linear in the length of text, we substantiate this intuition both
theoretically and empirically in Section 3.3.1.

Primary contributions of this work include the formal definition and construction of unde-
tectable watermarks, and the notion of empirical entropy that quantifies the randomness used in
the generation of a specific output. These definitions and the rigorous statement of our results ap-
pear in Section 3.

1.1. Related Work

Approaches for detecting AI-generated text largely fall into two categories. Watermarking schemes
alter the output of a language model in a way that a corresponding detection algorithm can observe.

2

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

Post-hoc detectors leave the output of the model unchanged and instead identify AI-generated text
using existing differences between natural language and the model’s output.

Post-hoc detectors. The simplest post-hoc detectors use natural heuristics to distinguish between
human- and AI-generated text. These heuristics include relative entropy scoring (Lavergne et al.
(2008)), perplexity (Beresneva (2016)), and other statistical methods (Gehrmann et al. (2019)); see
Beresneva (2016) for a survey of such methods. Other post-hoc detectors (e.g., Zellers et al. (2019);
Mitchell et al. (2023); Tian (2023); Kirchner et al. (2023)) are themselves models, specifically
trained for this binary classification task. Unfortunately, these heuristic and model-based methods
lack formal guarantees, and it’s possible to train a model to transform AI-generated text in a way that
evades them. See Jawahar et al. (2020) for more comprehensive background on post-hoc detection
of AI-generated text and attacks.

Language watermarking schemes. Several schemes (e.g., Abdelnabi and Fritz (2021); Qiang
et al. (2023); Yoo et al. (2023); Munyer and Zhong (2023)) involve using a machine learning model
in the watermarking algorithm itself. Abdelnabi and Fritz (2021) and Munyer and Zhong (2023)
work by taking a passage of text and using a model to produce a semantically similar altered passage.
By nature of using machine learning, these constructions have no formal guarantees and rely on
heuristic arguments for undetectability, completeness, soundness.

In a recent work, Kirchenbauer et al. (2023) presented the first watermarking scheme for LLMs
with any formal guarantees. They showed that a watermark can be planted in outputs with large
enough entropy (with a definition different than ours, yet morally similar). Their watermark, and
a similar ongoing project of Aaronson (2022), use a PRF applied to the previous k − 1 tokens to
bias the kth token. The watermark can be detected by computing these PRF outputs and a score that
reflects the correlation between tokens and the biases specified by the PRF outputs.

However, these schemes crucially change the distribution of generated texts and use this change
to detect the watermark. Kirchenbauer et al. (2023) bounds the difference between the original
distribution and the distribution of their watermarked model, using a quantity called perplexity.
Aaronson (2022) guarantees that the two distributions will be indistinguishable, but only as long
as no two output texts are seen that share a common substring of k − 1 tokens. These guarantees
of Kirchenbauer et al. (2023) and Aaronson (2022) are relatively weak, and in particular these
watermarks may degrade the model’s performance on downstream tasks.

A recent manuscript of Kuditipudi et al. (2023) (uploaded after this work and citing it) focuses
on robustness of watermarks to edits but achieves a weaker quality notion that they define, called
distortion-freeness. Roughly, it says that any single watermarked output is indistinguishable from
the original model. However, their watermark introduces correlations between responses which are
noticeable given multiple responses.

In contrast, in our work the original and watermarked output distributions are completely indis-
tinguishable, without any assumption on the texts or the model. In particular we allow the distin-
guisher to make adaptive queries with arbitrary prompts, so it may force the model to return outputs
that share long parts with each other.

2. Organization of the Paper

In Section 3, we formally define our model, introduce the notions of empirical entropy and un-
detectable watermarks, and outline our results. We consider the formalization of watermarking in

3

CHRIST GUNN ZAMIR

language models and the rigorous definition of relevant security guarantees as the main contribution
of this paper in comparison to prior work, hence we dedicate much of the short version to those.
In Section 4, we give a high-level overview of our construction of undetectable watermarks. We
also include the pseudo-codes for the construction, but the proofs of correctness are deferred to the
full version. In Section 5 we review a short part of the discussion in the full paper on possible
methods of removing watermarks from texts. In particular, we prove that it is impossible to create
undetectable watermarks that are completely unremovable, under certain assumptions.

We defer the majority of proofs and further discussion to the full version of this paper, available
at Christ et al. (2023a,b). Besides what is discussed above, the full version also contains discussion
of the necessity of the assumptions we make.

3. Modeling the Problem

3.1. Preliminaries

Notation. Let λ denote the security parameter. A function f of λ is negligible if f(λ) ∈ O(1
poly(λ))

for every polynomial poly(·). We write f(λ) ≤ negl(λ) to mean that f is negligible. The security
parameter λ should be thought of as “the length of the password/key;” we intuitively think inter-
changeably of “feasible” and of “polynomial in λ.” Cryptographic schemes are considered secure if
breaking them requires time/work that is not polynomial (and frequently exponential) in λ. Due to
this interpretation of the security parameter, it is standard to assume that everything we encounter
(e.g., outputs of the LLM) is of size polynomial in λ.

For a vector or sequence of tokens s = (s1, . . . , s|s|) and positive integers b ≥ a, let s[a : b]
denote (sa, . . . , sb). We use log(x) to denote the logarithm base 2 of x, and ln(x) to denote the
natural logarithm of x. For integer n > 0, we define [n] := {1, . . . , n}. For integers 0 ≤ k ≤ n, we
define [k, n] := {k, . . . , n}.

Pseudorandom function (PRF). Let F = {Fsk : {0, 1}ℓ1(λ) → {0, 1}ℓ2(λ) | sk ∈ {0, 1}λ} be a
family of functions. F is a PRF if Fsk is efficiently computable and for all probabilistic polynomial-
time distinguishers D,∣∣∣∣ Pr

sk←{0,1}λ

[
DFsk(·)(1λ) = 1

]
− Pr

f

[
Df(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

where f denotes a random function from {0, 1}ℓ1(λ) to {0, 1}ℓ2(λ). PRFs are a standard crypto-
graphic primitive equivalent to one-way functions and can be constructed from standard assump-
tions (Goldreich et al. (1986); Håstad et al. (1999)).

3.2. Language Models

We loosely follow Kirchenbauer et al. (2023) in our definition of a language model. We will often
refer to language models simply as models.

Definition 1 A language model Model over token set T is a deterministic algorithm that takes as
input a prompt PROMPT and tokens previously output by the model x = (x1, . . . , xi−1), and outputs
a probability distribution pi = Model(PROMPT, x) over T .

A language model Model is used to generate text as a response to a prompt by iteratively sam-
pling from the returned distribution until a special terminating token done ∈ T is drawn.

4

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

Definition 2 A language model’s response to PROMPT is a random variable Model(PROMPT) ∈
T ⋆ that is defined algorithmically as follows. We begin with an empty list of tokens x = (). As long
as the last token in x is not done, we draw a token xi from the distribution Model(PROMPT, x) and
append it to x. Finally, we set Model(PROMPT) = x.

Throughout the text we will make use of a security parameter λ. We will assume that our model
never outputs text of length super-polynomial in λ. (For OpenAI’s language models, there is actually
a fixed limit to the length of generated text.)

3.3. Entropy and Empirical Entropy

Let log(x) denote the logarithm base 2 of x. For a probability distribution D over elements of a
finite set X , we define the Shannon entropy of D as

H(D) = E
x∼D

[− logD(x)],

where D(x) is the probability of x in the distribution D. The empirical entropy (also known as
Shannon information or surprisal) of x in D is simply − logD(x). The expected empirical entropy
of x ∼ D is exactly H(D). Intuitively, the empirical entropy of x (with respect to D) is the number
of random bits that were required to draw x out of the distribution D. The entropy H(D) is thus the
expected number of random bits needed to draw an element out of the distribution D.

We thus define the empirical entropy of a model’s response as follows.

Definition 3 For a language model Model, a prompt PROMPT, and a possible response x ∈ T ⋆,
we define the empirical entropy of Model responding with x to PROMPT as

He(Model, PROMPT, x) := − log Pr
[
Model (PROMPT) = x

]
.

We next generalize the definition of empirical entropy from whole outputs to substrings out of a
model’s output. This will quantify how much entropy was involved in the generation of a particular
contiguous substring of the output.

Definition 4 For a language model Model, a prompt PROMPT, a possible response x ∈ T ⋆, and
indices i, j ∈ [|x|] with i ≤ j we define the empirical entropy on substring [i, j] of Model responding
with x to PROMPT as

H [i,j]
e (Model, PROMPT, x) := − log Pr

[
Model (PROMPT) [i : j] = x[i : j]

| Model (PROMPT) [1 : (i− 1)] = x[1 : (i− 1)]
]
.

We sometimes write H i
e := H

[i,i]
e to denote the empirical entropy of a single token i. We remark

that in expectation, Definition 3 simply captures the entropy in the response generation. That is, we
have

E
x
[He(Model, PROMPT, x)] = H

(
Model (PROMPT)

)
,

where x ∼ Model (PROMPT).

5

CHRIST GUNN ZAMIR

3.3.1. EMPIRICAL ENTROPY IN NATURAL LANGUAGE

Quantitative linguistics research (Genzel and Charniak (2002); Shi and Lei (2022)) concludes that
in natural language, the entropy of each unit of text (e.g., a paragraph, a sentence or a word) is
usually constant throughout the entire text. As a corollary, the empirical entropy of a text generated
from a natural language should be linear in the length of the text. In the full version of this paper,
we also run empirical experiments in which we compute the empirical entropy in the responses of
popular LLMs, and indeed verify the above claim. For the purpose of this work, this means that any
time we say “large enough empirical entropy” it is informally equivalent to saying “long enough”.

3.4. Watermarks

We formally define a watermarking scheme as follows.

Definition 5 (Watermarking Scheme) A watermarking scheme for a model Model over T is a
tuple of algorithmsW = (Setup,Wat,Detect) where:

• Setup(1λ)→ sk outputs a secret key, with respect to a security parameter λ.

• Watsk(PROMPT) is a randomized algorithm that takes as input a prompt PROMPT and gener-
ates a response in T ⋆.

• Detectsk(x) → {true, false} is an algorithm that takes as input a sequence x ∈ T ⋆ out-
puts true or false.

Ideally, Detectsk(x) should output true if x is generated by Watsk(PROMPT), and should output
false if x is generated independently of sk. The former property is called completeness and the latter
soundness.

Definition 6 (Soundness) A watermarking scheme W is sound if for every security parameter λ
and token sequence x ∈ T ⋆ of length |x| ≤ poly(λ),

Pr
sk←Setup(1λ)

[Detectsk(x) = true] ≤ negl(λ).

A scheme is sound if any text that is generated independently from sk has negligible probability
of being detected as watermarked by Detectsk. Essentially, this means we will never see a false-
positive detection.

Defining completeness requires care: It is not reasonable to require Detectsk to detect any se-
quence x generated by Watsk(PROMPT) for some PROMPT, as it is possible that x is very short,
or that Model(PROMPT) is deterministic or has very low entropy. Instead, we require Detectsk to
detect watermarks only in responses for which the entropy in the generation process is high enough.

Definition 7 (Completeness) A watermarking scheme W is b(L)-complete if for every security
parameter λ and prompt PROMPT of length |PROMPT| ≤ poly(λ),

Pr
sk←Setup(1λ)

x←Watsk(PROMPT)

[Detectsk(x) = false and He (Model, PROMPT, x) ≥ b (|x|)] ≤ negl(λ).

6

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

Definition 7 guarantees that any output generated by Watsk with empirical entropy at least b(L),
where L is the length of the output, will be detected as watermarked with high probability. Es-
sentially, this means we will never see a false-negative detection on any output of high enough
empirical entropy. It is provably necessary to consider the empirical entropy of the specific output
rather than the standard entropy of the entire model.

We also generalize Definition 7 to capture contiguous substrings of outputs. That is, we should
be able to detect a watermarked output of Watsk even if Detectsk is only given a long enough
contiguous substring from it.

Definition 8 (Substring Completeness) A watermarking schemeW is b(L)-substring-complete if
for every prompt PROMPT and security parameter λ,

Pr
sk←Setup(1λ)

x←Watsk(PROMPT)

[
∃ i, L ∈ [|x|] such that Detectsk(x[i : i+ L]) = false

and H [i:i+L]
e (Model, PROMPT, x) ≥ b(L)

]
≤ negl(λ).

This means that every contiguous part of an output of the watermarking procedure, that has
high enough empirical entropy, is detected as watermarked with high probability. We stress that
the empirical entropies in Definitions 7,8 are defined with respect to the original model Model,
without reference to the watermarking procedure Watsk. We also note that the empirical en-
tropy He(Model, PROMPT, x) is only used as part of the definition, and is not necessarily known
to Detectsk. It is in general not possible to compute He(Model, PROMPT, x) without knowledge
of PROMPT.

3.5. Undetectable Watermarks

Finally, we define the notion of computationally undetectable watermarking schemes. Intuitively, a
scheme is undetectable if it is infeasible to distinguish between the distributions of Model and Watsk,
even when the given distribution can be queried adaptively with arbitrary prompts.

Definition 9 (Undetectability) A watermarking schemeW = (Setup,Wat,Detect) is undetectable
if for every security parameter λ and all polynomial-time distinguishers D,∣∣∣∣Pr[DModel,Model(1λ)→ 1]− Pr

sk←Setup(1λ)
[DModel,Watsk(1λ)→ 1]

∣∣∣∣ ≤ negl(λ),

where the notation DO1,O2 means that D is allowed to adaptively query both O1 and O2 with
arbitrary prompts.

Remark 10 In the above definition, we allow the distinguisher access to Model itself as well
as Model or Watsk. The only thing that is kept secret from the distinguisher is the secret key. A
natural alternate definition, where D has access only to Model or Watsk (and not Model), in fact
implies this definition since the adversary may have Model hard-coded.

It is important to remark that in any undetectable watermarking scheme, the quality of outputs
must be identical between Model and Watsk, as otherwise it would be possible to distinguish be-
tween them. In particular, embedding the watermark does not degrade the quality of the generated
text at all.

7

CHRIST GUNN ZAMIR

We finally note that a watermarking scheme can be made public by publishing the secret key sk.
Then, everyone can run the detection algorithm Detectsk. In particular, the scheme is no longer
undetectable as Detectsk can be used to distinguish between Model and Watsk. Nevertheless, we
still maintain the property that there is no degradation in the quality of watermarked outputs, as long
as the definition of “quality” does not depend on the secret key sk.

3.6. Statement of our Theorems

We are now ready to formally state the guarantees of the watermarking schemes that we present.

Theorem 11 For any model Model we construct a watermarking schemeW that is undetectable,
sound, and O(λ

√
L)-complete.

This means that our watermarking scheme is always undetectable and sound, and is also complete
as long as there is enough empirical entropy in the model’s response.

As proven in the full version, it is necessary for the completeness parameter b(L) to be reason-
ably large, with respect to λ. In fact, we show that it is inherent that low empirical entropy outputs
are not watermarked in any undetectable watermarking scheme for any model. Intuitively, an output
of low empirical entropy appears too frequently for its probability to be modified without detection.
However, it is not clear that the completeness parameter needs to grow with the length of text L.
Our scheme has this requirement because, roughly, the empirical entropy needs to be large enough
that the signal outweighs random fluctuations. On the other hand, in the full version we present a
scheme with completeness parameter independent of L — but that scheme is not sound. Closing
this gap remains an interesting open question.

To strengthen Theorem 11, we also present a modified scheme which obtains substring com-
pleteness, with similar parameters.

Theorem 12 For any model Model we construct a watermarking schemeW that is undetectable,
sound, and O(λ

√
L)-substring-complete.

4. Constructing Undetectable Watermarks

4.1. Reduction to a Binary Alphabet

For ease of presentation and analysis, we describe our watermarking scheme as operating on text
encoded as a binary string. That is, we assume that the token set is T = {0, 1}.

Note that this assumption is without loss of generality: We can easily convert a model M with
an arbitrary token set T into a model M ′ with a binary token set. First, we encode each token in T
as a distinct string in {0, 1}log |T |.

Let E denote this encoding function, and let pi be a distribution over T output by M . We
convert pi into a series of distributions p′i,j for M ′, where p′i,j is the distribution of the jth bit of
E(ti) for a token ti ← pi.

That is, if we have already sampled bi,1, . . . , bi,j−1, then for b ∈ {0, 1} we let

p′i,j(b) = Pr
ti←pi

[E(ti)j = b | E(ti)k = bi,k for k < j].

8

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

Note that these distributions can be easily computed as

p′i,j(b) =
∑
t∈T

pi(t) · 1[E(t)k = bi,k for k < j and E(t)j = b].

Therefore, a watermarking scheme for binary alphabets can be used on models with token alphabets
of arbitrary size using the above reduction. For GPT-4, the number of tokens is |T | = 100, 277,
and thus these strings can be chosen to have length log |T | ≈ 17 (OpenAI (2023)). We note that
the expected length of the encoding can be reduced by using a Huffman encoding of the token set
instead of an arbitrary encoding.

4.2. Overview of the Construction

If we don’t require undetectability, an easy way to watermark is to use a {0, 1}-valued hash function
h and sample tokens xj with preference for those satisfying h(xj) = 1. Given some text, we can
determine whether a watermark is present by computing the hash of each token. In watermarked
text, more tokens should hash to 1 than to 0; in un-watermarked text, there should be no bias. This
is a classic idea in steganography, discussed in Hopper et al. (2009), and is essentially the idea used
in Zhao et al. (2023).

Unfortunately, this strategy significantly alters the output distribution, making it easily de-
tectable: it prefers half of the words in the token set. Our objective is to plant a signal without
noticeably changing the distribution of generated text.

We first discuss a watermarking scheme that can only be used to generate a single output text
of a predetermined maximum length L, for an arbitrary prompt. The secret key shared by the
watermarked model and the detection algorithm will be a sequence u = u1, . . . , uL of uniformly
chosen real numbers in the range [0, 1]. Even though this state is independent of the prompt the
model will receive, we show that this shared state is enough to plant a watermark in any single
response. From the perspective of a user who doesn’t know the secret key u, the distribution of
outputs is not changed at all.

When generating a response, the watermarked model will use the secret key to decide on each
output token. Consider the generation of the j-th token in the response, after the previous tokens
are already decided. Let pj(1) denote the probability, according to the real model, of this token
being 1. The watermarked model outputs xj = 1 if uj ≤ pj(1) and xj = 0 otherwise. As uj
was drawn uniformly from [0, 1], the probability that the watermarked model output xj = 1 is
exactly pj(1). Therefore, the distribution of generated text (in a single response) does not change at
all. Nevertheless, we next show that the detection algorithm can compare the generated text to the
shared sequence u, and deduce that the generated output was drawn from the watermarked model.

For each text bit xj , the detection algorithm can compute a score

s(xj , uj) =

{
ln 1

uj
if xj = 1

ln 1
1−uj

if xj = 0
.

Given a string x = (x1, . . . , xL), the detection algorithm sums the score of all text bits

c(x) =
L∑

j=1

s(xj , uj).

9

CHRIST GUNN ZAMIR

Crucially, the detection algorithm does not need to know the distributions with which the model
produced x1, . . . , xL. Since the detection algorithm does not have access to the prompt, it would
not be able to compute those distributions.

We observe that the expected score is higher in watermarked text, as uj is correlated with the
output bit xj . In non-watermarked text, the value of uj is independent of the value of xj . There-
fore, s(xj , uj) is simply an exponential random variable with mean 1:

E
uj

[s(xj , uj)] =

∫ 1

0
ln(1/x) dx = 1,

and we have Eu[c(x)− |x|] = 0.
For watermarked outputs, on the other hand,

E
uj

[s(xj , uj)] =

∫ pj(1)

0
ln

1

u
du+

∫ 1

pj(1)
ln

1

1− u
du

=

∫ pj(1)

0
ln

1

u
du+

∫ pj(0)

0
ln

1

u
du

=
(
pj(1)− pj(1) · ln pj(1)

)
+
(
pj(0)− pj(0) · ln pj(0)

)
= 1 + ln(2) ·H(pj),

and the total expected score is

E
u
[c(x)− |x|] = ln 2 ·H(Model(PROMPT)).

We’ve shown that there’s a substantial gap between the expected scores of watermarked and
natural text, as long as the text generation has high entropy. This should give us hope that this
biasing strategy yields a reliable detector, but there are a few obstacles left on the way.

First, the expectation argument turns out to not be very useful because the variance of the score
could be large. This requires a much more careful analysis of the distribution. In the full version
of the paper, we discuss why this implies that we must consider empirical entropy instead of the
entropy of the entire model.

Second, the scheme described above is only indistinguishable for a single response, and that
response must be shorter than the secret key. A natural idea is to use a pseudorandom function
(refer to Section 3.1 for a definition) to determine the values uj , instead of drawing them all in
advance. For example, by setting uj = Fsk(j) the length of any single response no longer has to be
bounded. As Fsk is queried on each input j at most once, the values of uj are pseudorandom and the
distribution of a single watermarked output is computationally indistinguishable from the original
distribution. But can we deal with multiple responses? One of our main contributions, and the most
substantial difference from all prior work, is to answer this question in the affirmative.

As a first attempt, let r(i) be a unique identifier assigned to each response. This might be a global
counter or a random string (sometimes referred to as a nonce). To sample the j-th token of the i-th
response we can use u

(i)
j = Fsk(r

(i), j). If all pairs (r(i), j) are unique, then the values of u
(i)
j

are pseudorandom. However, the detection algorithm needs to know r(i) to compute the detection
score. If r(i) is a counter, then we would need to keep a global state to maintain it. Moreover, to
use the detection algorithm we would need to enumerate over all possible counter values. If r(i) is

10

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

a long random string, no global state is needed, but the detection algorithm still needs to know r(i).
While r(i) must be recoverable by the detection algorithm, it cannot simply be written in the output
text, as we might as well just append “WATERMARK!” to it instead (which would obviously change
the distribution of outputs). Our solution is to use real randomness to generate the first few tokens of
each output, keeping track of how much entropy we used in the process. Once this entropy passes
some specified threshold, we use the high-entropy prefix as r(i). Since these prefixes have high
enough entropy, all choices of r(i) will be unique with all but negligible probability. The detection
algorithm will test whether any prefix in the text, if used as r(i), will yield an unusually high score
for the remainder of the text.

In the above sketch the detector needs the entire output from the model to detect the watermark.
We use a modification of this scheme which is able to detect the watermark, even when it is given
only an contiguous substring of the output with sufficiently high entropy. Essentially, this modifi-
cation works the same except it “resets” the choice of r(i) whenever enough new pseudo-entropy is
observed.

4.3. Pseudo-Code

Let poly1(·), poly2(·) be polynomials. Let Fsk : {0, 1}poly1(λ) → {0, 1}poly2(λ) be a PRF, where
sk ∈ {0, 1}λ. We wish to interpret the output of Fsk as a real number in [0, 1]. We do so by letting
z be the integer representation of the output and taking z

2poly2(λ)
. We consider poly2 to be a large

polynomial and ignore floating point errors. In the below algorithms, we allow Fsk to take strings
of varying length as input; we assume that poly1(·) is chosen such that these strings are never too
long, and if they are too short we pad them. In the algorithms we assume that the token alphabet is
binary as discussed in Section 4.1. We let done denote the binary encoding of the “done” token,
and we write done ∈ (x1, . . . , xk) if and only if the decoding of (x1, . . . , xk) in the original token
alphabet includes done.

We letW = (Setup,Wat,Detect) denote the watermarking scheme where Wat is Algorithm 1,
Detect is Algorithm 2, and Setup(1λ) samples sk ← {0, 1}λ. The correctness proofs are deferred
to the full version.

5. Removability of Watermarks

A natural question is how robust an undetectable watermarking scheme can be to active attempts
to remove it. Our watermark scheme, for example, is detectable as long as a long enough con-
secutive substring out of the LLM output remains intact. While we would ideally like to have an
undetectable watermarking scheme that is robust to any efficient adversary attempting to remove a
watermark, there are both practical and theoretical barriers to achieving this property. Intuitively,
a well-resourced enough user that is able to completely paraphrase an LLM output should be able
to remove any watermarks. This intuition can be substantiated both empirically (we discuss this
further in the full version of the paper) and theoretically (e.g., Zhang et al. (2023) show that under
some strong assumption on the ability to rephrase text, all watermarks are removable). We also
provide an insight on the matter by showing that certain API choices (in particular, allowing a user
to specify a prefix for the response) allow the user to provably remove undetectable watermarks.

We say that a model is prefix-specifiable if the user can specify a prefix of the model’s response.
More formally, we require that for any PROMPT and text x1, . . . , xk, the user can efficiently compute
a new prompt PROMPT′ such that Model(PROMPT′) is distributed identically to Model(PROMPT)

11

CHRIST GUNN ZAMIR

Algorithm 1: Substring-complete watermarking algorithm Watsk.
Data: A prompt (PROMPT), secret key sk, and parameter λ
Result: Watermarked text x1, . . . , xL
r ← ⊥, H ← 0, i← 1, ℓ← 1
while done /∈ (x1, . . . , xi−1) do

pi ← Model(PROMPT, x1, . . . , xi−1)
if r = ⊥ then

// Still sampling the first block
Sample xi ← pi

else
// Embed the watermark
xi ← 1[Fsk(r, ℓ) ≤ pi(1)]

H ← H − log pi(xi)
if H ≥ 2

ln 2λ
√
ℓ then

// Reassign r
r ← (xi−ℓ, . . . , xi)
H ← 0, ℓ← 0

end
i← i+ 1, ℓ← ℓ+ 1

end

Algorithm 2: Substring-complete detector Detectsk.
Data: Text x1, . . . , xL and a secret key sk
Result: true or false
for i, ℓ ∈ [L], ℓ < i do

r(i,ℓ) ← (xi−ℓ, . . . , xi)

v
(i,ℓ)
j ← xj · Fsk(r

(i,ℓ), j − i− 1) + (1− xj) · (1− Fsk(r
(i,ℓ), j − i− 1)) for each j ∈ [L]

for k ∈ [i+ 1, L] do
if
∑k

j=i+1 ln(1/v
(i,ℓ)
j) > (k − i) + λ

√
k − i then

return true
end

end
end
return false

conditioned on the response’s prefix matching (x1, . . . , xk). This property is also assumed in the
definition of a language model in Kirchenbauer et al. (2023). For example, ChatGPT does not allow
the user to specify prefixes of the response, but the OpenAI Playground allows the user to submit
text under the “Assistant” role which the model will use as a prefix for its next response.

Theorem 13 Let W = (Setup,Watsk,Detectsk) be any undetectable watermarking scheme. As-
sume that the underlying model Model is prefix-specifiable. Then there exists an efficient algorithm
A making queries to Watsk such that, for any PROMPT and a random sk← Setup(1λ), the distribu-
tions AWatsk(PROMPT) and Model(PROMPT) are negl(λ)-close in statistical distance. The number
of queries made by A to Watsk is exactly the length of text output by A.

12

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

We conclude that no undetectable watermarking scheme can be completely unremovable. Still,
it might require significantly more resources for a user to generate unwatermarked text from the
model. It remains an open problem to find the strongest model of editing to which undetectable
watermarks can be robust.

References

Scott Aaronson. My AI Safety Lecture for UT Effective Altruism. https://scottaaronson.
blog/?p=6823, November 2022. Accessed May 2023. 3

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pages
121–140. IEEE, 2021. 3

Daria Beresneva. Computer-generated text detection using machine learning: A systematic review.
In Natural Language Processing and Information Systems: 21st International Conference on
Applications of Natural Language to Information Systems, NLDB 2016, Salford, UK, June 22-24,
2016, Proceedings 21, pages 421–426. Springer, 2016. 3

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. CoRR,
abs/2306.09194, 2023a. doi: 10.48550/ARXIV.2306.09194. URL https://doi.org/10.
48550/arXiv.2306.09194. 4

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. IACR
Cryptol. ePrint Arch., page 763, 2023b. URL https://eprint.iacr.org/2023/763. 4

Geoffrey A. Fowler. We tested a new chatgpt-detector for teachers. it flagged an innocent student.
The Washington Post, April 2023. 2

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019. 3

Dmitriy Genzel and Eugene Charniak. Entropy rate constancy in text. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pages 199–206, 2002. 6

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792–807, 1986. 4

Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 4

Nicholas J. Hopper, Luis von Ahn, and John Langford. Provably secure steganography. IEEE Trans.
Computers, 58(5):662–676, 2009. doi: 10.1109/TC.2008.199. URL https://doi.org/10.
1109/TC.2008.199. 9

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Automatic detection of
machine generated text: A critical survey. arXiv preprint arXiv:2011.01314, 2020. 3

Kayla Jimenez. Professors are using ChatGPT detector tools to accuse students of cheating. But
what if the software is wrong? USA Today, April 2023. 2

13

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
https://doi.org/10.48550/arXiv.2306.09194
https://doi.org/10.48550/arXiv.2306.09194
https://eprint.iacr.org/2023/763
https://doi.org/10.1109/TC.2008.199
https://doi.org/10.1109/TC.2008.199

CHRIST GUNN ZAMIR

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pages 17061–17084. PMLR, 2023. URL
https://proceedings.mlr.press/v202/kirchenbauer23a.html. 1, 3, 4, 12

Jan Hendrik Kirchner, Lama Ahmad, Scott Aaronson, and Jan Leike. New
ai classifier for indicating AI-written text. https://openai.com/blog/
new-ai-classifier-for-indicating-ai-written-text, January 2023. Ac-
cessed May 2023. 3

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023. 3

Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative entropy
scoring. PAN, 8:27–31, 2008. 3

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. GPT detectors are biased
against non-native english writers. arXiv preprint arXiv:2304.02819, 2023. 2

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
DetectGPT: Zero-shot machine-generated text detection using probability curvature. CoRR,
abs/2301.11305, 2023. doi: 10.48550/arXiv.2301.11305. URL https://doi.org/10.
48550/arXiv.2301.11305. 3

Travis Munyer and Xin Zhong. Deeptextmark: Deep learning based text watermarking for detection
of large language model generated text. arXiv preprint arXiv:2305.05773, 2023. 3

OpenAI. tiktoken repository. https://github.com/openai/tiktoken, 2023. Accessed
April 2023. 9

Jipeng Qiang, Shiyu Zhu, Yun Li, Yi Zhu, Yunhao Yuan, and Xindong Wu. Natural language
watermarking via paraphraser-based lexical substitution. Artificial Intelligence, page 103859,
2023. 3

Yaqian Shi and Lei Lei. Lexical richness and text length: An entropy-based perspective. Journal of
Quantitative Linguistics, 29(1):62–79, 2022. 6

Edward Tian. gptzero update v1. https://gptzero.substack.com/p/
gptzero-update-v1, January 2023. Accessed May 2023. 1, 3

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust natural language watermarking
through invariant features. arXiv preprint arXiv:2305.01904, 2023. 3

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019. 3

14

https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://doi.org/10.48550/arXiv.2301.11305
https://doi.org/10.48550/arXiv.2301.11305
https://github.com/openai/tiktoken
https://gptzero.substack.com/p/gptzero-update-v1
https://gptzero.substack.com/p/gptzero-update-v1

UNDETECTABLE WATERMARKS FOR LANGUAGE MODELS

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for generative mod-
els. arXiv preprint arXiv:2311.04378, 2023. 11

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for AI-generated text. arXiv preprint arXiv:2306.17439, 2023. 9

15

	Introduction
	Related Work

	Organization of the Paper
	Modeling the Problem
	Preliminaries
	Language Models
	Entropy and Empirical Entropy
	Empirical Entropy in Natural Language

	Watermarks
	Undetectable Watermarks
	Statement of our Theorems

	Constructing Undetectable Watermarks
	Reduction to a Binary Alphabet
	Overview of the Construction
	Pseudo-Code

	Removability of Watermarks

