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Decision-makers in many domains are sensitive to risks of certain sizes or likelihoods, motivating the
incorporation of risk sensitivity into decision-making objectives. While such risk sensitivity has been exten-
sively studied in online learning problems (e.g., Even-Dar et al. (2006)), very little work has examined the
impact of risk-sensitive objectives on algorithm design for competitive online optimization problems like ski
rental, online search, and metrical task systems; closest to this direction is the recent paper of Dinitz et al.
(2024) on designing ski rental algorithms with constrained tail risk. In this work, we begin to fill this gap,
considering the design of algorithms for competitive online optimization problems with risk-sensitive objec-
tives. In particular, we introduce a variant of the standard competitive ratio metric, the CVaRδ-competitive
ratio (δ-CR), using the conditional value-at-risk of an algorithm’s cost (Acerbi and Tasche, 2002), which
measures the expectation of the (1 − δ)-fraction of worst outcomes against the offline optimal cost. Using
this metric, we design algorithms for three prototypical online optimization problems: continuous-time ski
rental, discrete-time ski rental, and one-max search. We find that the structure of the optimal δ-CR and
algorithm varies significantly across problems:

• The optimal algorithm for continuous-time ski rental arises as the solution to a delay differential
equation, and achieves δ-CR 2− 2−Θ( 1

1−δ
) as δ ↑ 1.

• For discrete-time ski rental with buying cost B, the classic randomized algorithm is optimal for δ =
O( 1

B ), and there is an abrupt phase transition at δ = 1−Θ( 1
logB ), after which the classic deterministic

strategy is optimal.

• One-max search also exhibits a sharp phase transition at δ = 1
2 , after which the classic deterministic

strategy is optimal. Moreover, we propose an algorithm arising as the solution to a delay differential
equation that is asymptotically optimal as δ ↓ 0.

Our results imply limits on the power of randomness to improve performance in certain risk-sensitive set-
tings and suggest avenues for the design of risk-sensitive algorithms in more general online problems.1
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1Extended abstract. Full version appears as [arXiv:2405.09859, v2].
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