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Abstract
Markov Games (MG) is an important model for Multi-Agent Reinforcement Learning, and various
algorithms have been proposed to tackle different types of MGs. In this paper, we focus on the
special type of MGs called independent linear MGs where the number of states and agents are both
large, and independent linear function approximations are employed for each agent. This function
approximation scheme is recently proposed by Cui et al. (2023) and Wang et al. (2023), which is
shown to be capable of avoiding the “curse of multi-agents” (i.e., the number of samples needed for
finding an equilibrium depends polynomially on the number of agents – instead of exponentially).

However, while the recent algorithms proposed by Cui et al. (2023) and Wang et al. (2023)
successfully avoided the curse of multi-agents in independent linear MGs, they either i) had a sub-
optimal convergence rate of O(T−1/4) (Cui et al., 2023), or ii) had a polynomial dependency on
the number of actions Amax (Wang et al., 2023) (which is avoidable in single-agent cases).

In this paper, we give a single algorithm for finding Markov Coarse Correlated Equilibria
(CCE) for independent linear MGs. It simultaneously i) resolves the “curse of multi-agents”, ii)
attains the optimal O(T−1/2) convergence rate, and iii) avoids poly(Amax) dependencies.

Our approach exploits the following two technical innovations:

1. When refining the AVLPR framework by Wang et al. (2023), we propose that designing data-dependent
(i.e., stochastic) pessimistic estimations of the sub-optimality gap can allow a broader choice of plug-in
algorithms. Specifically, instead of the original requirement that the gap estimator must be determin-
istic, we allow it to be stochastic but with a bounded expectation. This avoids the poly(Amax) factors.

2. To ensure O(T−1/2) convergence rate, we not only borrowed state-of-the-art techniques from the
single-agent RL literature (Zimmert and Lattimore, 2022; Dai et al., 2023; Liu et al., 2023), but also
proposes a novel technique called action-dependent bonuses. It can be used to cancel estimation errors
that occasionally has very extreme magnitudes (so classical techniques fail), but only those “rarely-
visited” actions are related to enormous errors. We expect this technique to be of independent interest.

Our final algorithm attained the three aforementioned properties at the same time: It finds an ϵ-
CCE in independent linear MGs with only Õ(m4d5H6ϵ−2) samples, which polynomially depends
on m, attains the optimal O(T−1/2) convergence rate, and avoids poly(Amax) factors.

Concurrent to this work, Fan et al. (2024) considered the same problem of finding CCEs in
independent linear MGs but under the much stronger assumption of local access models. Under
this stronger assumption, they proposed an algorithm with Õ(m2d2H6ϵ−2) sample complexity,
also enjoying the three nice properties. A detailed comparison can be found in our arXiv version.1
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1. Extended abstract. Full version available at https://arxiv.org/abs/2402.07082v2.
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