Computational-Statistical Gaps in Gaussian Single-Index Models

Alex Damian Princeton University Loucas Pillaud-Vivien École des Ponts ParisTech, CERMICS Jason D. Lee Princeton University Joan Bruna New York University AD27@PRINCETON.EDU

LOUCASPILLAUDVIVIEN@ORANGE.FR

JASONDLEE88@GMAIL.COM

BRUNA@CIMS.NYU.EDU

Abstract

Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime.

While the information-theoretic sample complexity to recover the hidden direction is linear in the dimension d, we show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $\Omega(d^{k^*/2})$ samples, where k^* is a "generative" exponent associated with the model that we explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by establishing matching upper bounds using a partial-trace algorithm. Therefore, our results provide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class) whenever $k^* > 2$. To complete the study, we construct smooth and Lipschitz deterministic target functions with arbitrarily large generative exponents k^* .

Keywords: Single-Index Models, Statistical Queries, Low-Degree Polynomials

If $X \in \mathbb{R}^d$ is a random data point and $Y \in \mathbb{R}$ is its corresponding label, we say that (X, Y) follow a *Gaussian single-index model* with planted direction w^* if the marginal of X is $N(0, I_d)$, and if $\mathbb{P}[Y|X]$ depends only on the projection of X in the w^* direction, i.e. $\mathbb{P}[Y|X] = \mathbb{P}[Y|X \cdot w^*]$. The goal is to recover w^* given n i.i.d. samples $\{(x_i, y_i)\}_{i=1}^n$ from a Gaussian single-index model.

We begin by defining the generative exponent k^* . If $\{h_k\}_{k\geq 0}$ are the Hermite polynomials, then k^* is defined to be the smallest $k \geq 1$ such that $\mathbb{E}[h_k(X \cdot w^*)|Y]$ is not identically 0 in $L^2(\mathbb{P}_Y)$.

Our first result shows that while the information-theoretic sample complexity for this problem is $n \gtrsim d$, computationally efficient algorithms in both the statistical query and low-degree polynomial classes require $n \gtrsim d^{k^*/2}$ samples where k^* is the generative exponent of the single index model.

Theorem 1 (informal) Any low-degree polynomial learner and any statistical query algorithm making polynomialy many queries need $n \ge \tilde{\Omega}(d^{k^*/2})$ samples from a Gaussian single-index model with generative exponent k^* to recover w^* .

We supplement this with a matching upper bound that shows this sample complexity is tight:

Theorem 2 (informal) There exists a polynomial time algorithm that recovers w^* up to error ϵ given $n \gtrsim d^{k^*/2} + d/\epsilon^2$ samples from a Gaussian single-index model with generative exponent k^* .

^{*}Extended abstract. Full version appears as [https://arxiv.org/abs/2403.05529]

[©] A. Damian, L. Pillaud-Vivien, J.D. Lee & J. Bruna.