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Abstract
The empirical risk minimization (ERM) principle has been highly impactful in machine learning, leading
both to near-optimal theoretical guarantees for ERM-based learning algorithms as well as driving many of
the recent empirical successes in deep learning. In this paper, we investigate the question of whether the
ability to perform ERM, which computes a hypothesis minimizing empirical risk on a given dataset, is nec-
essary for efficient learning: in particular, is there a weaker oracle than ERM which can nevertheless enable
learnability? We answer this question affirmatively, showing that in the realizable setting of PAC learning
for binary classification, a concept class can be learned using an oracle which only returns a single bit indi-
cating whether a given dataset is realizable by some concept in the class. The sample complexity and oracle
complexity of our algorithm depend polynomially on the VC dimension of the hypothesis class, thus show-
ing that there is only a polynomial price to pay for use of our weaker oracle. Our results extend to the agnos-
tic learning setting with a slight strengthening of the oracle, as well as to the partial concept, multiclass and
real-valued learning settings. In the setting of partial concept classes, prior to our work no oracle-efficient al-
gorithms were known, even with a standard ERM oracle. Thus, our results address a question of (Alon et al.,
2021) who asked whether there are algorithmic principles which enable efficient learnability in this setting.
Keywords: PAC learning, ERM oracle, One-inclusion graph, Partial concept class

1. Introduction

Many of the successful techniques in modern machine learning proceed by specifying a large function class
H, such as a class of neural networks, and optimizing overH to find a minimizer of a loss function on a
finite dataset. This approach, known as empirical risk minimization (ERM), has long been known to lead to
near-optimal PAC learning guarantees in fundamental settings such as binary classification and regression
(Vapnik and Chervonenkis, 1968, 1974; Blumer et al., 1989; Bartlett and Long, 1998; Alon et al., 1997).
Due to the ability of heuristics such as gradient descent to approximately implement ERM for neural net-
work function classes, the ERM principle also lies behind numerous empirical successes in supervised learn-
ing (Krizhevsky et al., 2012). Inspired by these successes, various works have also investigated to what ex-
tent an oracle which can implement ERM for a given function class is useful for learning problems beyond
the PAC setting, including online learning (Block et al., 2022; Haghtalab et al., 2022; Assos et al., 2023), ban-
dits (Simchi-Levi and Xu, 2022), and reinforcement learning (Agarwal et al., 2020; Mhammedi et al., 2023).

In this paper, we return to the basics and ask: is ERM necessary? Or can we efficiently perform learning
tasks with a weaker oracle than an ERM oracle? For the foundational problem of realizable PAC learning,
it is known that a consistency oracle, which returns a hypothesis ĥ in the classH which is consistent with
a given dataset (and fails if one does not exist), is still sufficient for efficient learning. Perhaps the most
drastic way to further weaken such a consistency oracle is as follows: suppose that the oracle does not
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return ĥ, and only returns a single bit indicating whether such a ĥ∈H exists which fits the data. We refer to
such an oracle as a weak consistency oracle. Is there a PAC learning algorithm which learns efficiently with
respect to this oracle? Perhaps surprisingly, we find that the answer is yes. Moreover, this positive answer
extends to the agnostic PAC setting, if we slightly generalize the weak consistency oracle to return the value
of the empirical risk minimizer ĥ on the dataset, but not ĥ itself; we call such an oracle a weak ERM oracle.

Motivation. We discuss several possible sources of motivation behind a weakening of an ERM (or
consistency) oracle. First, note that a weak consistency oracle, which only returns a single bit indicating
whether a consistent hypothesis exists, corresponds to a decision problem on H, whereas a standard
consistency oracle corresponds to a search problem. For many natural classes of problems (e.g., see
(Agrawal et al., 2004; Reith and Vollmer, 2003; Khuller and Vazirani, 1991)), the decision variant is known
to be computationally cheaper than the search variant.1 Based off of such a separation, in Proposition J.1,
we provide a concrete example of a class for which implementing a weak consistency oracle is possible
in polynomial time but implementing a standard consistency oracle is not, under standard computational
assumptions. Thus, in such a case, our approach, via a weak consistency oracle, will lead to improved
computational guarantees over the standard approach which calls a consistency oracle.

From a more theoretical perspective, the use of weak consistency and weak ERM oracles yields
PAC learning bounds that do not rely on uniform convergence, in contrast to some prior analyses of
ERM. A notable setting where PAC learning is known to be statistically feasible but uniform convergence
fails is that of learning with partial concept classes (Alon et al., 2021; Long, 2001), which in turn has
numerous applications including to regression (Long, 2001; Bartlett and Long, 1998), learning with fairness
constraints such as multicalibration (Hu and Peale, 2023), adversarially robust learning (Attias et al., 2022),
and others (see Section 4). Our results provide the first (ERM) oracle-efficient learning algorithm for
partial concept classes, which addresses a question asked in (Alon et al., 2021). We emphasize that even
with a standard ERM oracle, no efficient algorithm was known, whereas our guarantees for partial concept
classes hold with a weak ERM oracle.

1.1. Overview of results

First, we consider the setting of PAC learning of partial concept classes (Alon et al., 2021; Long, 2001),
which are classesH⊂{0,1,∗}X for some domain space X . Hypotheses h∈H should be thought of as
undefined at points x∈X for which h(x)=∗ (see Section 2 for a formal definition).2 Our main results
for this setting are as follows:

• In the realizable setting of PAC learning, any partial concept classH of VC dimension at most dVC
can be learned by an algorithm that makes polynomially many calls to a weak consistency oracle
Ocon,w, which receives as input a dataset S = {(xi,yi)}i∈[n] and returns True if there is h ∈H
satisfying h(xi)=yi∈{0,1} for all i, and False otherwise. The sample complexity scales as Õ(d3

VC)
(see first part of Theorem 3.1).

• In the agnostic setting of PAC learning, the same guarantee holds, except with respect to a
weak ERM oracle Oerm,w which receives as input S = {(xi, yi)}i∈[n] and returns the value
minh∈H

1
n

∑n
i=11{h(xi) 6=yi∨h(xi)=∗}∈{0,1/n,...,1} (see second part of Theorem 3.1).

1. More generally, such separations can emerge for non-self-reducible problems in NP.
2. The unfamiliar reader can simply consider the special case of those H whose hypotheses never take the value ∗, which

corresponds to standard binary classification.
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We proceed to generalize our upper bounds beyond the binary setting, namely the multiclass and real-valued
(regression) settings:

• ForK∈N, any multiclass concept classH⊂ [K]X of Natarajan dimension at most dN can be PAC
learned by an algorithm that uses n=Õ(d3

Nlog4K) samples and makesK ·poly(n) calls to a weak
consistency oracle (or to a weak ERM oracle in the agnostic setting); see Theorem 4.1.

• Any real-valued classH⊂ [0,1]X whose fat-shattering dimension at scales γ∈(0,1) is at most dfat,γ
can be agnostically PAC learned by an algorithm that uses n samples as long as n&d3

fat,γ for an
appropriate chocie of γ, using poly(n) calls to a weak ERM oracle. Moreover, a similar guarantee
holds for the realizable setting; see Theorem 4.2.

In the setting of partial concept classes as well as the agnostic setting of regression, VC dimension and
fat-shattering dimension, respectively, are known to characterize learnability. Thus, our results above show
that there is at most a polynomial price to pay in terms of sample complexity if we require efficiency with
respect to a weak ERM oracle. In contrast, in the multiclass and realizable regression settings, the optimal
sample complexity is characterized by the Daniely-Schwartz dimension (Daniely and Shalev-Shwartz,
2014; Brukhim et al., 2022) and the one-inclusion graph dimension (Attias et al., 2023), respectively.
These quantities can be arbitrarily smaller than our corresponding sample complexities above, namely
dNlogK and dfat,γ, respectively.

Can our bounds for the multiclass and realizable regression settings be improved to get near-optimal
sample complexity while retaining oracle efficiency? Our final results show a negative answer to this
question, even when the algorithm is given a standard ERM oracle:

• Multiclass concept classes of Daniely-Schwartz dimension 1 are not PAC learnable with any finite
number of ERM oracle queries; see Theorem I.2.

• In the realizable setting of regression, real-valued classes with one-inclusion graph dimension 1 are
not PAC learnable with any finite number of ERM oracle queries; see Theorem I.3.

Techniques. Our results rest on a new technique to efficiently implement a randomized variant of the
one-inclusion graph algorithm, formalized in Theorem 3.2 (see also Definition 2.7). In particular, we
show first that we can obtain a weak learner by constructing a random orientation of the one-inclusion
graph with bounded out-degree, as follows. For each edge we wish to orient, we take a random walk
starting from each of its endpoints and inspect the distribution of hitting times of the complement of the
one-inclusion graph. The vertex whose random walk reaches the complement of the one-inclusion graph
sooner should have the edge directed away from it. We then use standard boosting techniques to improve
the weak learner to a strong learner. A detailed proof overview may be found in Section 3.1.

Open questions. Taken together, our results represent a comprehensive treatment of the weak oracle
efficiency of PAC learning in the standard settings of partial, multiclass, and real-valued learning. One
intruiging question that remains is closing the gap between our Õ(d3

VC) sample complexity in the binary
setting and the fact that onlyO(dVC) samples are required when one is allowed access to a standard ERM
oracle. In particular, is there a (polynomial-sized) cost in sample complexity to pay for using a weak
oracle? Analogous questions can be asked in the multiclass and real-valued settings. Along different lines,
it would be interesting to investigate the use of weaker notions of ERM oracles in more complex learning
situations such as contextual bandits, online learning, and reinforcement learning.
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1.2. Broader perspectives

Broadly speaking, our work connects to an extensive body of literature, both in empirical and theoretical
communities, on query-efficient learning. Spurred by the increasing prevelance of proprietary models
and the availability of APIs to query inputs to these models at a small cost, recent empirical research has
studied to what extent such API calls, which typically each reveal a small amount of information, can
be used to reconstruct information such as the model’s training data or an approximation to the model
itself. For instance, (Tramèr et al., 2016) showed that several types of models, including decision trees,
SVMs, and neural networks can be reconstructed to high fidelity using a relatively small number of queries
to evaluate the model at chosen inputs. Similar results have been shown for various specific domains,
including sentence classification (Krishna et al., 2020), machine translation (Wallace et al., 2020), and
sentence embedding encoders (Dziedzic et al., 2023).3 These papers on “model stealing” roughly parallel
an old line of work in learning theory on learning from queries (Angluin, 1988), in which one can make
several types of queries to the ground-truth hypothesis h?, such as a membership query where one specifies
x and receives h?(x). (Angluin, 1988) and many follow-up works study the question of how many such
queries are sufficient for learning h?.

The high-level implications of the works mentioned above parallel our own in that one often arrives at
the conclusion that a surprisingly large amount of information be gleaned from a relatively small number
of queries, each of which returns a relatively small number of bits. At a technical level, the above papers
differ from our own in that the queries performed by the learning algorithm depend explicitly on the
ground-truth hypothesis h?, whereas the oracle queries we consider are queries to the hypothesis classH
without any mention of h?. Nevertheless, with the advent of methods such as in-context learning (Brown
et al., 2020), which allows a fully trained large language model to simulate learning algorithms such as
gradient descent, the distinction between these two settings is somewhat blurred. In particular, one could
imagine a setting where a proprietary large language model itself serves as an ERM oracle for simpler
classes, and thus our results demonstrating that queries which return only a few bits of information still
permit learning could be informative. We leave it to future work to elucidate the question of whether the
success of such weak oracles ultimately amounts to a feature (allowing learning without giving too much
away) or a bug (giving enough away to allow reconstruction attacks).

2. Preliminaries

Consider a domain X , a label set Y, and a concept classH⊂YX . Elements h∈H are known as concepts
(or hypotheses). In this paper, we consider the following different label sets Y:

• If Y = {0,1,∗}, then we say that H is a partial (binary) concept class (Alon et al., 2021). A
hypothesis which outputs a label of ∗ on some x∈X should be interpreted as being undefined at x.
In the special case that no hypothesis ever outputs ∗, a partial binary concept class is known as a total
binary concept class. We define the binary loss function `bin(y,y′):=1{y 6=y′∨y=∗∨y′=∗}, for
y,y′∈{0,1,∗}. In words, we suffer a loss for true label y when predicting y′ if we predict the wrong
label or either y,y′ is ∗.

• If Y=[K], thenH is said to be a multiclass concept class. We define the multiclass loss function
`mc(y,y′):=1{y 6=y′}, for y,y′∈ [K].

3. See also (Dosovitskiy and Brox, 2015; Morris et al., 2023) and references within for work on the related problem of inverting
trained models.
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• If Y=[0,1], thenH is said to be a real-valued concept class. We define the absolute loss function
`abs(y,y′):= |y−y′|, for y,y′∈ [0,1].

Throughout the paper, all concept classesH⊂YX will be understood as being either partial, multiclass,
or real-valued concept classes.

2.1. PAC learning

Given a distribution P ∈∆(X ×Y), a loss function ` : Y ×Y → [0,1], and a hypothesis h : X →Y,
we define erP,`(h) := E(x,y)∼P [`(h(x),y)]. Given a sequence S ∈ (X ×Y)n, which we refer to as a
sample, a loss function ` :Y×Y→ [0,1], and h :X →Y, we define êrS,`(h) := 1

n

∑
(x,y)∈S1{h(x) 6=y}.

When working with partial, multiclass, or real-valued concept classes, we will typically take ` to be
the corresponding respective loss function among `bin,`mc,`abs. Thus, unless otherwise stated, in such
situations we will write erP (·) in place of erP,`(·) and êrS(·) in place of êrS,`(·), where `∈{`bin,`mc,`abs}
is understood to be the appropriate choice. We denote samples using curly braces, but emphasize that
samples should be interpreted as sequences of n examples (in particular, examples can be repeated).

Given a concept classH⊂YX , a sample S={(xi,yi)}i∈[n]⊂(X×Y)n is said to beH-realizable if
there is h∈H so that h(xi)=yi 6=∗ for each i∈ [n]. Moreover, a distribution P ∈∆(X×Y) is defined
to beH-realizable if the following holds: in the case thatH is a partial concept class, for any n∈N, then a
sample S∼Pn isH-realizable with probability 1; in the case thatH is a multiclass or real-valued concept
class, then infh∈HerP (h)=0. We remark that these two conditions coincide if P has finite or countable
support (see (Alon et al., 2021, Lemma 33)).

Realizable oracle-efficient PAC learning. In the problem of realizable PAC learning (or simply PAC
learning), for a concept class H⊂YX and a H-realizable distribution P , an algorithm Alg receives a
sample S∼Pn and outputs a hypothesisH :X→Y. While often it is assumed that Alg has full knowledge
of the classH, we are concerned with the setting in which Alg’s only access toH comes in the form of
an oracleO : (X×Y)?×{0,1}?→{0,1}?, which takes as input a sequence of examples (x,y)∈X×Y
as well as a string of bits, and outputs a string of bits. While much prior work in the literature has focused
on oracles, such as a (strong) ERM oracle (Definition 2.6), which can return elements ofH, the oracles we
consider are weaker in the sense that their only outputs are strings of bits, which will be quite short.4 For
an input (S,z)∈(X×Y)?×{0,1}? to an oracleO, we let the size of (S,z) be |S|+|z|, namely the sum
of the number of examples in S and the number of bits in z. We say that an algorithm Alg has cumulative
query cost q if the sum of the sizes of the inputs for all oracle calls that Alg makes toO is at most q. Note
that the number of oracle calls made by Alg is bounded above by q.

Definition 2.1 (Oracle-efficient PAC learning). Let domain and label spacesX ,Y be given. Givenn∈N, let
Alg be an algorithm which takes as input a dataset S∈(X×Y)n, x∈X , and a string of uniformly random
bits R∈{0,1}?, has cumulative query cost q to an oracle O : (X×Y)?×{0,1}?→{0,1}?, and outputs
some value AlgR(S,x)∈Y, which is a deterministic function ofR,S,x, and the results of the oracle calls.

LetH⊂YX be a hypothesis class andO be an oracle as above. Given ε,δ∈(0,1), we say that the class
H is (O;ε,δ)-PAC learnable by Alg with sample complexity n and oracle complexity q if the following
holds. LettingHS,R(x):=AlgR(S,x), we have PrS∼Pn,R(erP (HS,R)≤ε)≥1−δ.

4. Of course, elements of H can be represented with log |H| bits, but our oracles will always return strings of length
poly(logd,log1/ε,loglog1/δ), which can be infinitely smaller than log|H|. Here d denotes a dimension quantity (e.g., VC
dimension) and ε,δ are accuracy parameters.
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We emphasize that in the above definition Alg has no knowledge of H (apart from its calls to O);
of course, the oracleO will depend onH. Often we will slightly abuse terminology by stating that Alg
“outputs” the hypothesisHS,R.

Agnostic oracle-efficient PAC learning. The setting of agnostic PAC learning is similar to the setting
of realizable PAC learning, except that the distribution P ∈∆(X×Y) is no longer required to be realizable.
As such, we measure the performance of the output hypothesis of an algorithm by comparing to the
best hypothesis in the class H. In the case that H is a multiclass or real-valued class, the error of the
best-performing concept inH on P is defined as erP (H):=infh∈HerP (h). In the case thatH is a concept
class, we instead define erP (H) := limn→∞ES∼Pn [minh∈HêrS(h)]. (Alon et al., 2021, Lemma 39)
shows that the limit exists, and that whenH is a total class, the two notions of erP (H) coincide.5

Definition 2.2 (Oracle-efficient agnostic PAC learning). Using the setup and terminology of Definition 2.1,
the classH is said to be (O;ε,δ)-agnostically PAC learnable by Alg with sample complexity n and oracle
complexity q if, forHS,R(x):=AlgR(S,x), we have

PrS∼Pn,R(erP (HS,R)≤erP (H)+ε)≥1−δ.

2.2. Oracles

In this section, we formally introduce the oracles that our algorithms will use. We begin with a weak
consistency oracle, which will be used by our realizable PAC learning algorithms for partial and multiclass
concept classes.

Definition 2.3 (Weak consistency oracle). Given a concept classH⊂YX , a (weak) consistency oracle
Ocon,w forH is defined as follows: it takes as input a sample S∈(X×Y)n, andOcon,w(S) outputs True
if S isH-realizable and False otherwise.

For real-valued learning, a weak consistency oracle is not sufficient for learning, due to the fact that
labels inY=[0,1] can take infinitely many values. Therefore, for realizable PAC learning in the real-valued
setting, we make use of a range consistency oracle, which is a natural generalization of a weak consistency
oracle when one allows some margin of error in label space:

Definition 2.4 (Range consistency oracle). Given a real-valued concept classH⊂ [0,1]X , a range con-
sistency oracleOrange forH is defined as follows: it takes as input a sample S={(xi,`i,ui)}i∈[n]∈(X×
[0,1]2)n, and outputs True if there is some h∈H so that `i≤h(xi)≤ui for all i∈ [n], and False otherwise.

The consistency oracles defined above are not sufficient for oracle-efficient agnostic PAC learning: the
challenge is that even approximating the value of the empirical risk minimizer minh∈HêrS(h)∈ [0,1] on
a sample S∈(X×{0,1})n can require many weak consistency queries toH. Rather surprisingly, it turns
out that an oracle which returns only the value of the empirical risk minimizer on a sample, as defined
formally below, is sufficient for efficient agnostic PAC learnability.

Definition 2.5 (Weak ERM oracle). Consider a concept classH⊂YX , and a real-valued loss function
` :Y×Y→ [0,1]. A weak ERM oracleOerm,w is a mapping which takes as input a dataset S∈(X×Y)n

and outputs the value minh∈HêrS,`(h)∈ [0,1].6

5. See Footnote 12 of (Alon et al., 2021) for discussion on why the particular choice of erP (H) is made.
6. When ` ∈ {`bin,`mc} is binary-valued, minh∈H êrS,`(h) ∈ {0,1/n,...,1} can be represented with O(logn) bits. In the

real-valued setting, while this is no longer the case, one can assume thatOerm,w returns only the log(1/ε) most significant
bits of the empirical risk, at the cost of an O(ε) error that propagates through the PAC bounds. For simplicity, we ignore
such considerations relating to arithmetic precision.
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Finally, for reference, we introduce the standard notion of ERM oracle, which returns a hypothesis
that minimizes the empirical risk on a sample; to contrast with a weak ERM oracle, we call such an oracle
a strong ERM oracle.

Definition 2.6 (Strong ERM oracle). Consider a concept classH⊂YX and a real-valued loss function
` :Y×Y→ [0,1]. A strong ERM oracleOerm,s is a mapping which takes as input a dataset S∈(X×Y)n

and outputs some concept in argminh∈HêrS,`(h)∈H.

2.3. The one-inclusion graph

In this section, we introduce the one-inclusion graph (Haussler et al., 1988), which plays a fundamental
role in many PAC learning results. For a (partial, multiclass, or real-valued) concept classH⊂YX and
X = (x1,...,xm)∈Xm, we define H|X := {y ∈ (Y\{∗})m : ∃h∈H s.t. h(xi) = yi ∀i∈ [m]}. Note
that, in the special case of partial concept classes,H|X⊂{0,1}m and in particular does not include the
∗ symbol. For a partial binary concept classH, its VC dimension, denoted dVC(H), is the largest positive
integer d so that there is some X = (x1,...,xd)∈X d so that H|X = {0,1}d. It is known that the VC
dimension tightly characterizes statistical learnability of (partial) concept classes (Alon et al., 2021).

For v∈{0,1}n and i∈ [n], we write v⊕i to denote v with coordinate i flipped, i.e., v⊕ij =vj for all j 6=i
and v⊕ii =1−vi. For n∈N, letGn=(Vn,En) be the n-dimensional hypercube graph, so that Vn={0,1}n
andEn={((v−i,0),(v−i,1)) : i∈ [n],v−i∈{0,1}n−1}.

Definition 2.7 (One-inclusion graph). Consider a setW⊂{0,1}n. The one-inclusion graph G(W)=
(V,E) induced byW is defined as the following graph. The vertex set V is equal toW. The edge setE
is the subgraph ofGn induced byW, namely:

E :={(v,v⊕i) : i∈ [n], v,v⊕i∈W}.

For any i ∈ [n] and h ∈ {0,1}n, we will occassionally write ei,h to refer to the edge (h,h⊕i). For a
partial concept class H⊂{0,1,∗}X and X ∈Xn, we refer to the the one-inclusion graph induced by
H|X⊂{0,1}n as the one-inclusion graph ofH induced byX.

For a setW⊂{0,1}n,Wc denotes its complement in {0,1}n.

Orientations. Given a graphG=(V,E), a random orientation ofG is a mapping σ :E→∆(V ), where,
for all e∈E, supp(σ(e))⊆e (i.e., σ(e) is supported on the 2 vertices of e). σ is called an orientation if
σ(e) is supported on a single vertex v, in which case we will write v=σ(e). Given a functionF :V → [0,1]
and λ ∈ [0,1], we consider a random orientation σF,λ induced by F , defined as follows: for an edge
e=(v,v′), we set

σF,λ(e)(v)=
1+λ·(F(v′)−F(v))

2
, σF (e)(v′)=

1+λ·(F(v)−F(v′))

2
. (1)

Given a random orientation σ and a vertex v∈V , we define the out-degree of σ at v to be outdeg(v;σ):=∑
e3v(1−σ(e)(v)), and the out-degree of σ is outdeg(σ):=maxv∈V outdeg(v;σ).

3. Learning partial concept classes with a weak oracle

In this section, we give an algorithm for realizable PAC learning with low oracle complexity for a weak
consistency oracle, and an algorithm for agnostic PAC learning with low oracle complexity for a weak
ERM oracle.
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Theorem 3.1 (Oracle-efficient partial concept class learning). For any ε,δ ∈ (0,1) and dVC ∈ N, the
following statements hold:

1. There is an algorithm AlgR so that for any classH⊂{0,1,∗}X satisfying dVC(H)≤dVC and any
weak consistency oracle Ocon,w for H, the class H is (Ocon,w;ε,δ)-PAC learnable by AlgR with

sample complexity n=Õ
(
d3VClog(1/δ)

ε

)
and oracle complexity poly(n).

2. There is an algorithm AlgA so that for any classH⊂{0,1,∗}X satisfying dVC(H)≤dVC and any
weak ERM oracleOerm,w forH, the classH is (Oerm,w;ε,δ)-PAC learnable by AlgA with sample

complexity n=Õ
(
d3VClog(1/δ)

ε2

)
and oracle complexity poly(n).

In the theorem statement above, Õ(·) hides factors which are polynomial in log(dVC),log(1/ε),loglog(1/δ).
The proof of the realizable case of Theorem 3.1 proceeds by first constructing an algorithm (WeakRealizable;
Algorithm 1) which is a weak learner for any class of VC dimension at most dVC in the realizable setting
and makes polynomially many oracle calls toOcon,w. We then use a standard boosting algorithm (namely,
Adaboost; Algorithm 5) to boost the performance of the weak learner so as to obtain a learner which
has error at most ε with high probability. To analyze the generalization error of this approach, we use a
technique involving sample compression schemes (David et al., 2016; Schapire and Freund, 2012). Finally,
to handle the agnostic case of Theorem 3.1, we reduce to the realizable setting by showing that a weak ERM
oracle can be used in an efficient manner to determine, given any sample S∈(X×{0,1})n, a subsample
of maximum size which isH-realizable (Lemma C.1). In the remainder of the section, we introduce our
weak learner; the remaining ingredients are (mostly) standard and are presented in Appendices E and F.

3.1. An oracle-efficient weak learner

Our goal is to construct an oracle-efficient weak learner, namely one that improves upon random guessing
in expectation over its dataset by a small margin η>0:

Definition 3.1 (Weak learner). For m ∈ N and η ∈ (0, 1), a randomized learning algorithm A :
(X × {0,1})m ×X → {0,1} is defined to be a m-sample weak learner with margin η for the con-
cept classH if the following holds. For anyH-realizable distribution P ∈∆(X×{0,1}), A takes as input
an i.i.d. sample S∼Pm and x∈X and outputs a (random) bit A (S,x), so that

ES∼PmE(x,y)∼PEA

[
`bin(A (S,x),y)

]
≤ 1

2
−η. (2)

We construct an oracle-efficient weak learner using polynomially many calls to a weak consistency
oracleOcon,w by simulating a random walk on the one-inclusion graph ofH|X for an appropriate choice
ofX∈Xm. This procedure is formalized in the WeakRealizable algorithm (Algorithm 1), whose
main guarantee is shown below:

Theorem 3.2 (Weak learning guarantee). There are constants C1,C2 so that the following holds. Con-
sider a partial concept class H of VC dimension d, δ ∈ (0,1), and suppose m ≥ C1d logd. For
an H-realizable sample S ∈ (X × {0,1})m−1 and x ∈ X , let A (S,x) ∈ {0,1} be the output of
WeakRealizable(S,x,1− 1

C1mlogm ,1,C1m
2log3m,Ocon,w) (Algorithm 1), which is a random vari-

able. Then for anyH-realizable sample S={(xi,yi)}i∈[m]∈(X×{0,1})m, it holds that

1

m

m∑
i=1

E
[
`bin(A (S−i,xi),yi)

]
≤ 1

2
− 1

C2mlogm
(3)
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where the expectation is taken over the randomness in the runs of A (S−i,xi). Moreover, WeakReal-
izable makes at most Õ(m3) calls toOcon,w, each with a dataset of sizem−1.

Algorithm 1 Weak oracle-efficient OIG learner
Require: A partial concept class H, an H-realizable sample S= {(xi,yi)}i∈[m−1] ∈ (X ×{0,1})m−1,

query point x∈X , consistency oracleOcon,w, parameters λ,γ∈(0,1), U∈N.

1: function WEAKREALIZABLE(S,x,γ,λ,U,Ocon,w)

2: SetX←(x1,...,xm−1,x)∈Xm.

3: Set y0←(y1,...,ym−1,0)∈{0,1}m and y1←(y1,...,ym−1,1)∈{0,1}m.

4: ifOcon,w({(Xj,y
b
j)}j∈[m])=False for some b∈{0,1} then

5: return 1−b.
6: For b∈{0,1}, set F̂(yb)←EstimatePotential(X,yb,K,γ,Ocon,w).

7: return a sample from Ber(σ̂), where σ̂ := 1+λ·(F̂(y0)−F̂(y1))
2 .

Require: U,γ,Ocon,w as above, andX∈Xm,y∈{0,1}m.

8: function ESTIMATEPOTENTIAL(X, y,U,γ,Ocon,w) .

y represents a vertex of the OIG induced byH|X , and U is the number of trials

9: for 1≤u≤U do
10: Set Y (0)←y and Tu← log(32e/(1−γ))

log(1/γ) .

11: for 0≤t≤ log(32e/(1−γ))
log(1/γ) do

12: ifOcon,w({(Xj,(Y
(t))j)}j∈[m])=False then

13: Set Tu←t, and break (out of the inner for loop).

14: else
15: Choose i∼Unif([m]), and set Y (t+1)←(Y (t))⊕i.

16: return the quantity 1
U

∑U
u=1γ

Tu.

The guarantee (3), in which an arbitrary realizable dataset S is fixed and the algorithm’s performance is
measured on all leave-one-out configurations of S, is known as a transductive learning guarantee. A stan-
dard exchangeability argument (see Lemma D.4) shows that (3) implies an in-expectation error guarantee
under any realizable distribution P ∈∆(X ×{0,1}), and thus Theorem 3.2 implies that WeakReal-
izable is anm-sample weak learner with margin η=Θ(1/(mlogm)) forH. In the remainder of the
section we focus on the proof of Theorem 3.2.

Analyzing WeakRealizable. Given a dataset S={(xi,yi)}i∈[m−1] together with a “query point”
x∈X , WeakRealizable considers the two vertices y0 =(y1,...,ym−1,0),y1 =(y1,...,ym−1,1) of the
one-inclusion graphG(H|X) induced byH on the sequenceX=(x1,...,xm−1,x). (If yb is not a vertex of
G(H|X) for some b∈{0,1}, then, by realizability, the correct prediction on xmust be 1−b – see Line 5 of
Algorithm 1.) WeakRealizable then calls EstimatePotential on each of the vertices y0,y1,
which returns estimates F̂(y0),F̂(y1) of a certain potential function on vertices of G. These potentials
are used to randomly return an output bit in Line 7.

9
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The proof that WeakRealizable satisfies (3) proceeds by considering the following perspective:
the value σ̂= 1+λ(F̂(y0)−F̂(y1))

2 computed in Line 7 can be viewed as a decision to randomly orient the
edge (y0,y1) of the one-inclusion graph G(H|X) by putting mass σ̂ on y1 and mass 1− σ̂ on y0 (see
Section 2.3). To minimize loss, we hope that this orientation puts as much mass as possible on whichever
of y0,y1 corresponds to the ground-truth hypothesis, i.e., we want the edge (y0,y1) to not contribute much
to the out-degree of the ground-truth.

Translated into this language of orientations, the transductive error guarantee (3) of Theorem 3.2 is there-
fore equivalent to the following statement: fixm∈N, consider anyH-realizable dataset S={(xi,yi)}i∈[m],
and letX=(x1,...,xm). Then the random orientations of them edges adjacent to y∈G(H|X) induced
by running WeakRealizable with inputs (S−i,xi), for each i∈ [m], lead the out-degree of y to be
bounded above bym·(1/2−Ω(1/(mlogm))). As a sanity check, it is trivial to achieve out-degreem/2
by orienting each edge to each of its vertices with probability 1/2; thus, the quantity of interest is the
decrease of−m·Ω(1/(mlogm)) in the out-degree.

To explain how we achieve such an out-degree bound, consider them-dimensional hypercube graph
Gm = (Vm,Em). Note that the one-inclusion graph G(H|X) is the subgraph of Gm induced by H|X .
Given v∈Vm, we consider the (lazy) random walk on Gm started at v. In particular, it is the sequence
Z

(0)
v ,Z

(1)
v ,Z

(2)
v ,...∈Vm of random variables with Z(0)

v =v, and with Z(t)
v defined as follows, for t≥0:

given Z(t)
v ∈ Vm, the value of Z(t+1)

v is defined by selecting uniformly at random an edge e of Gm
containing Z(t)

v , and then letting Z(t+1)
v to be a uniformly random vertex of e. Given a subset S⊂Vm and

a vertex v∈Vm, the hitting time for S starting at v is the random variable

τS,v :=min
{
t≥0 : Z(t)

v ∈S
}
. (4)

Moreover, the generating functionMS,v(γ), for γ∈(0,1), is defined for v∈Vm byMS,v(γ):=E[γτS,v ].7

The definition of the random walk yields the following recursive formula forMS,v(γ) (see Lemma D.1
for a formal statement): for all v∈Sc,

MS,v(γ)=
γ

(2−γ)m

∑
i∈[m]

MS,v⊕i(γ). (5)

Given H and X ∈Xm as above, we now choose S := (H|X)c, γ := 1−Θ(1/(mlogm)), and define
F(v)=MS,v(γ). We may consider the orientation σF,1 induced by F (see (1)). It is a simple consequence
of (5) (see Lemma D.2 that

outdeg(σF,1)≤m
2
−(1−γ)m·min

v∈Vm
F(v). (6)

Finally, we can show (in Lemma D.3) that as long as m≥Ω(dlogd) (where d is an upper bound on
dVC(H)), we have minv∈VmF(v)≥Ω(1). This statement is a consequence of the Sauer-Shelah lemma,
which bounds |Sc|= |H|X|≤ (em)d. In particular, since Sc is relatively “small”, the hitting time τS,v
cannot get too large for any vertex v, meaning that γτS,v cannot become too small. To summarize, we
thus obtain from (6) that outdeg(σF,1)≤m·

(
1
2−Ω(1−γ)

)
=m·

(
1
2−Ω

(
1

mlogm

))
.

Since the generating function F(v) is not known exactly, WeakRealizable cannot compute
the orientation σF,1 exactly. Instead, it computes estimates F̂(y0),F̂(y1) of F(y0),F(y1) respectively

7. For v∈S, we have τS,v=0 and henceMS,v(γ)=1.

10
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(using EstimatePotential), via random rollouts. Crucially, doing so is possible using only a weak
consistency oracleOcon,w: we only need to be able to check, at each step, whether the random walk has hit
S=(H|X)c, which is exactly what is accomplished byOcon,w. By standard concentration arguments, we
can show that the induced orientation σF̂ ,1 is sufficiently close to σF,1 to enjoy the same outdegree bounds,
thus establishing Theorem 3.2. The full details of the proof of Theorem 3.2 may be found in Appendix D.

4. Extensions to multiclass and real-valued classes

We next extend the guarantee of Theorem 3.1 to the settings of multiclass classification and regression.
The proofs for both of these settings proceed via a reduction to the case of partial concept classes.

4.1. Multiclass concept classes

Our upper bounds for the multiclass setting are phrased in terms of Natarajan dimension: for a multiclass
concept classH⊂ [K]X , its Natarajan dimension, denoted dN(H), is the smallest d∈N so that there is
some X = (x1,...,xd)∈X d together with vectors a,b∈ [K]d with ai 6= bi for all i∈ [d] so that H|X ⊇
{a1,b1}×···×{ad,bd}. It is known that the algorithm the algorithm which returns an empirical risk min-
imizer ofH on an i.i.d. sample, which requires access to a strong ERM oracleOerm,s, enjoys sample com-
plexity for PAC learning of Õ(dN(H)log(K)/ε) in the realizable setting and of Õ(dN(H)log(K)/ε2) in the
agnostic setting (Daniely et al., 2011). Theorem 4.1 shows that we can extend this result to the setting where
we only have a weak ERM oracle, as long as the oracle complexity is allowed to grow linearly withK.

Theorem 4.1 (Oracle-efficient multiclass learning). For any ε,δ ∈ (0,1) and dN ∈ N, the following
statements hold:

1. There is an algorithm AlgR so that for any classH⊂ [K]X satisfying dN(H)≤dN and any weak
consistency oracleOcon,w forH, the classH is (Ocon,w;ε,δ)-PAC learnable by AlgR with sample

complexity n=Õ
(
d3Nlog4(K/δ)

ε

)
and oracle complexityK ·poly(n).

2. There is an algorithm AlgA so that for any classH⊂ [K]X satisfying dN(H)≤dN and any weak
ERM oracle Oerm,w forH, the classH is (Oerm,w;ε,δ)-agnostically PAC learnable with sample

complexity n=Õ
(
d3Nlog4(K/δ)

ε2

)
and oracle complexityK ·poly(n).

The Õ(·) above hides factors that are polynomial in log(1/ε),log(dN),log(K/δ). It is straightforward
to show that oracle complexity growing linearly in K is necessary if one only uses a weak ERM or
consistency oracle, by considering the case whereH is a class that consists of a single unknown hypothesis
on a large domain X , and where the covariates are uniformly distributed on X .

It is known that for any classH⊂ [K]X , the sample complexity of PAC learningH is always within a
polynomial factor of the DS dimension ofH, denoted dDS(H) (Brukhim et al., 2022), and is in particular
bounded below by Ω(dDS(H)) (see Appendix I.1 for a definition of the DS dimension). Moreover, we
always have dN(H)≤dDS(H)≤O(dN(H)·logK). Thus, the sample complexity obtained by the oracle-
efficient algorithms AlgR,AlgA of Theorem 4.1 comes within a polylogK factor of the optimal sample
complexity. While the logK factor is unlikely to be large in many applications, it is nevertheless of the-
oretical interest to wonder if there is an oracle-efficient algorithm with sample complexity poly(dDS(H)),
even if one allows a strong ERM oracle. We show in Theorem I.2 (Appendix I) that no such algorithm
exists, even if we restrict dDS(H)=1.
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4.2. Real-valued concept classes

Our bounds for the regression setting are phrased in terms of fat-shattering dimension: for a real-valued
concept classH⊂ [0,1]X and γ∈(0,1), its fat-shattering dimension at scale γ, denoted dfat,γ(H), is the
largest positive integer d so that there exist x1,...,xd∈X and s1,...,sd∈ [0,1] so that, for all b∈{0,1}d,
there is some h∈H so that h(xi)≥si+γ if bi=1 and h(xi)≤si−γ if bi=0. It is known that finiteness
of the fat-shattering dimension at all scales γ is a sufficient condition for learnability in both the realizable
and agnostic settings, and that a sample complexity scaling nearly linearly with the fat-shattering dimension
at an appropriate scale can be obtained by outputting an empirical risk minimizer ofH on an i.i.d. sample
(which requires access to a strong ERM oracle) (Long, 2001; Bartlett and Long, 1998; Alon et al., 1997).
Theorem 4.2 shows that we can extend this result to the setting where we only have a weak ERM oracle,
with a polynomial cost in the sample complexity.

Theorem 4.2 (Oracle-efficient regression). For any δ∈ (0,1), n∈N, and function γ 7→ dfat,γ ∈N (for
γ∈(0,1)), the following statements hold:

1. There is an algorithm AlgR so that for any classH⊂ [0,1]X satisfying dfat,γ(H)≤dfat,γ for all γ
and any weak range oracleOrange forH, the classH is (Orange;ε,δ)-PAC learnable with sample

complexity n and oracle complexity poly(n), for ε=infγ∈[0,1]

{
O(γ)+Õ

(
d3fat,γ·log(1/δ)

n

)}
.

2. There is an algorithm AlgA so that for any classH⊂ [0,1]X satisfying dfat,γ(H)≤dfat,γ for all γ
and any weak ERM oracleOerm,w forH, the classH is (Oerm,w;ε,δ)-agnostically PAC learnable
with sample complexity n and oracle complexity poly(n), for

ε=infγ∈[0,1]

{
O(γ)+Õ

(√
d3fat,γ·log(1/δ)

n

)}
.

The Õ(·) above hides factors that are polynomial in log(n),log(dfat,γ),loglog(1/δ). In the agnostic
setting the fat-shattering dimension is known to characterize PAC learnability, and thus Theorem 4.2 shows
that the price to pay for oracle-efficiency with respect toOerm,w is only a polynomial (assuming reasonable
growth of dfat,γ). In contrast, in the realizable setting, the sample complexity is characterized by a different
quantity known as the one-inclusion graph (OIG) dimension (Attias et al., 2023), which can be smaller
than the fat-shattering dimension by an arbitrarily large factor. We show in Theorem I.3 (Appendix I.2)
that, even with a strong ERM oracle, it is impossible to obtain an oracle-efficient algorithm even for classes
whose OIG dimension is a constant.
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Appendix A. Additional Preliminaries

In this section, we give some additional preliminaries which will be useful in the proofs. Our techniques
will involve the use of sample compression schemes, which we proceed to define.

Definition A.1 (Sample compression scheme; (Littlestone and Warmuth, 2003; David et al., 2016)).
Fix a domain X and a label set Y. A compression scheme for the tuple (X ,Y) is a pair (κ,ρ), con-
sisting of a compression function κ : (X ×Y)?→ (X ×Y)?×{0,1}? and a reconstruction function
ρ : (X ×Y)?×{0,1}?→YX , satisfying the following property. For any sequence S ∈ (X ×Y)?, κ(S)
evaluates to some tuple (S′,B)∈(X×Y)?×{0,1}?, where S′ is a sequence of elements of S.

For S∈(X×Y)m, writing (S′,B):=κ(S), define |κ(S)| := |S′|+|B|, i.e., to denote the sum of the
number of samples in S′ and the length ofB. The size of the compression scheme (κ,ρ) form-sample
datasets is |κ| :=maxS∈(X×Y)≤m|κ(S)|.

For a (partial, multiclass, or real-valued) concept classH, a sample compression scheme forH is a
compression scheme (κ,ρ), so that for every H-realizable sequence S ∈ (X ×Y)m, ρ(κ(S)) correctly
classifies every point in S, i.e., 1

n

∑
(x,y)∈S`(ρ(κ(S)),y)=0, where `∈{`bin,`mc,`abs} is the appropriate

loss function corresponding toH.

Lemma A.1 below shows that compression schemes of bounded size generalize.

Lemma A.1 (Generalization-by-compression; Theorem 2.1 of (David et al., 2016)). There is a constant
C>0 so that the following holds. Consider any domain X and label set Y, together with a loss function
` :Y×Y→ [0,1]. For any compression scheme (κ,ρ), for any n∈N, and δ∈(0,1), for any distribution
P ∈∆(X×{0,1}), the following holds with probability 1−δ over S∼Pn:

|erP,`(ρ(κ(S)))−êrS,`(ρ(κ(S)))|

≤C

√
êrS,`(ρ(κ(S)))· 1

n

(
|κ(S)|log(n)+log

1

δ

)
+C · 1

n

(
|κ(S)|log(n)+log

1

δ

)
.

In particular, if êrS,`(ρ(κ(S)))=0, then

erP,`(ρ(κ(S)))≤C · 1
n

(
|κ(S)|log(n)+log

1

δ

)
.

Appendix B. Helpful lemmas

In this section we collect various probabilistic lemmas which are used throughout the proofs. Fix n∈N,
and consider the hypercube Vn = {0,1}n. For some v ∈ V , we consider the lazy random walk on Vn,
denoted Z(0)

v ,Z
(1)
v ,..., where Z(0)

v , and Z(t)
v is generated from Z

(t−1)
v by picking i ∈ [n] uniformly at

random and flipping the ith coordinate of Z(t−1)
v with probability 1/2.

Lemma B.1 (Mixing time of the hypercube; (Levin et al., 2006)). Consider n ∈ N, v ∈ Vn, and let
Z

(0)
v ,Z

(1)
v ,... denote the lazy random walk on the hypercube Vn. Let U be a uniformly distributed random

variable on Vn. Then for any ε∈(0,1) and t≥nlogn+nlog(1/ε), it holds thatDTV(Z
(t)
v ,U)≤ε.

Lemma B.2 (Sauer-Shelah; (Shalev-Shwartz and Ben-David, 2014)). IfH⊂{0,1,∗}X is a partial concept
class with VC dimension d andX∈Xm, then |H|X|≤(em/d)d.
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The following result is a corollary of Freedman’s inequality.

Lemma B.3 (Lemma A.3 of (Foster et al., 2021)). Let (Xt)t∈[T ] be a sequence of random variables adapted
to a filtration (Ft)t∈[T ]. If 0≤Xt≤R almost surely for all t∈ [T ], then with probability at least 1−δ,

T∑
t=1

E[Xt |Ft−1]≤2
T∑
t=1

Xt+8Rlog(2/δ).

Appendix C. Manipulating a weak ERM oracle

In this section, we prove some lemmas showing that a weak ERM oracle can be used to implement a
slightly stronger oracle which, given a dataset S={(xi,yi)}i∈[n]∈(X×Y)n, gives the values of h?(xi)
for i∈ [n], where h? is a risk-minimizing element ofH.

C.1. Weak ERM oracle: binary-valued labels

Algorithm 2 Finding the ERM minimizer on a sample from a weak ERM oracle
Require: Concept class H ⊂ YX , weak ERM oracle Oerm,w, binary-valued loss function

` :Y×Y→{0,1}, sample S={(xi,yi)}ni=1∈(X×Y)n.

1: function SAMPLEERM.BINARY(S,`,Oerm,w)

2: Set I← [n].

3: while There is i∈I so thatOerm,w({xj,y′j)}j∈I>Oerm,w({(xj,y′j)}j∈I\{i}) do
4: Remove such i from I.

5: For each i∈ [n], set zi←1{i 6∈I}.
6: Return (z1,...,zn).

We begin with the case of binary-valued loss functions.

Lemma C.1. Consider a concept classH⊂YX and a binary-valued loss function ` :Y×Y→{0,1}. Let
Oerm,w be a weak ERM oracle for the classH and loss function ` (Definition 2.5). Then for any dataset
S={(xi,yi)}i∈[n]∈(X×Y)n, the algorithm SampleERM.Binary(S,`,Oerm,w) (Algorithm 2) makes
O(n2) calls to Oerm,w and outputs a vector (z1,...,zn)∈{0,1}n so that, for some empirical minimizer
h?=argminh∈H

∑n
i=1`(h(xi),yi), we have zi=`(h?(xi),yi) for all i∈ [n].

Proof. FixH,`,Oerm,w, and S.
Let the number of iterations of the while loop be denotedN . For 0≤t≤N , let It denote the value

of the set I in SampleERM.Binary(S,`,Oerm,w) directly after round t (so that, in particular, I0 =[n]).
Note that each iteration of the while loop, I decreases in size by 1. Moreover, on round t of the while
loop, letting it denote the chosen i∈It−1, we have

min
h∈H

∑
j∈It−1

`(h(xj),yj)>min
h∈H

∑
j∈It−1\it

`(h(xj),yj)=min
h∈H

∑
j∈It

`(h(xj),yj)≥min
h∈H

∑
j∈It−1

`(h(xj),yj)−1.

It follows that for 1≤t≤N , minh∈H
∑

j∈It`(h(xj),yj)=minh∈H
∑

j∈[n]`(h(xj),yj)−t.
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Note also that we must have minh∈H
∑

j∈IN `(h(xj),yj)=0, as otherwise we could remove some i
from IN and decrease the empirical loss. Thus,N=minh∈H

∑
j∈[n]`(h(xj),yj). Moreover, there is some

h?∈H so that `(h(xj),yj)=0 for each j∈IN .
If any i∈ [n]\IN satisfies `(h?(xi),yi)=0, then we would have

∑
j∈[n]`(h(xj),yj)<n−|IN |=N ,

which is a contradiction. Thus, `(h?(xi),yi)=1{i 6∈IN} for all i∈ [n], as desired.
The total number of oracle calls made in Algorithm 2 is at most 2n2: we certainly haveN≤n, and

each round of the while loop requires at most |I|+1≤2n calls toOerm,w.

C.2. Weak ERM oracle: real-valued labels

Next, we prove an analogue of Lemma C.1 for real-valued loss functions; to keep the oracle complexity
bounded, we need to tolerate some approximation error.

Lemma C.2. Consider a concept classH⊂ [0,1]X . LetOerm,w be a weak ERM oracle for the classH
and absolute loss function `abs (Definition 2.5). Then for any dataset S={(xi,yi)}i∈[n]∈ (X×[0,1])n

and γ ∈ (0,1), the algorithm SampleERM.Real(S,`,Oerm,w,γ) (Algorithm 3) makes O(n/γ) calls
to Oerm,w of length O(n) and outputs a vector (z1,...,zn)∈ [0,1]n so that, for some h? ∈H satisfying∑n

i=1`
abs(h?(xi),yi)≤ infh∈H

∑n
i=1`

abs(h(xi),yi), we have |zi−`(h?(xi),yi)|≤γ for all i∈ [n].

Proof. FixH,Oerm,w,S,γ. For 0≤ i≤n, let S̃(i) denote the value of S̃ directly after round i, so that, in
particular, S̃(0) =∅, and S̃(i) consists of n·d1/γe copies of (xj,y

′
j), for each j∈ [i]. For 1≤i≤n, let ∆(i)

denote the value of ∆ defined on round i. We show the following claim:

Lemma C.3. For each 0 ≤ i ≤ n, the following properties hold for any empirical risk minimizer
h(i)∈argminh∈H

∑
(x,y)∈S(i)∪{(xj,yj)}j∈[n]`

abs(h(x),y):

1. For each j≤i, h(i)(xj)∈ [y′j,y
′
j+γ].

2. h(i) is an empirical risk minimizer for S(i−1)∪{(xj,yj)}j∈[n].

Proof of Lemma C.3. We prove the claim by induction on i, noting that there is nothing else to establish for
the base case i=0. To establish the inductive step, suppose that both claims hold at steps j<i, for some i∈
[n]. Let us write Vi−1 :=

∑
(x,y)∈S̃(i−1)∪{(xj,yj)}j∈[n]`

abs(h(i−1)(x),y). Taking `=bh(i−1)(xi)/γc yields

Vi,`≤
∑

(x,y)∈S̃(i−1)∪{(xj,yj)}j∈[n]∪{(xi,γ`),(xi,γ(`+1))}

`abs(h(i−1)(x),y)≤Vi−1+γ,

which yields thatVi,`?i ≤Vi−1+γ. On the other hand, since any functionh satisfies
∑

(x,y)∈{(xi,γ`),(xi,γ(`+1))}`
abs(h(x),y)≥

γ, we must have that Vi,`≥Vi−1+γ for each `. It follows that Vi=Vi,`?i =Vi−1+γ, and that any empirical
risk minimizer h(i) for S̃(i)∪{(xj,yj)}j∈[n] satisfies the following two properties:

• h(i)(xi)∈ [γ`?i ,γ(`?i +1)]=[y′i,y
′
i+γ].

• h(i) is an empirical risk minimizer on S̃(i−1)∪{(xj,yj)}j∈[n].

Thus the second claim of the lemma statement holds at step i. Moreover, using the inductive hypothesis
together with the first item above, we see that h(i)(xj)∈ [y′j,y

′
j+γ] for all j<i.
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Algorithm 3 Finding the ERM minimizer on a sample from a weak ERM oracle
Require: Concept classH⊂ [0,1]X , weak ERM oracleOerm,w, sample S={(xi,yi)}ni=1∈(X×[0,1])n,

accuracy parameter γ so that 1/γ∈N.

1: function SAMPLEERM.REAL(S,γ,Oerm,w)

2: Initialize S̃←∅.
3: for 1≤i≤n do
4: for 0≤`≤1/α−1 do
5: Set Vi,`←Oerm,w(S̃∪{(xj,yj)}j∈[n]∪{(xi,α`),(xi,α(`+1))}).

6: Define `?i :=argmin0≤`≤1/α−1l{Vi,`}, and y′i :=α·`?i .
7: Add (xi,y

′
i) and (y′i+α) to S̃.

8: return the vector (y′1,...,y
′
n).

Algorithm 4 Implementing a real-valued consistency oracle with range queries
Require: Concept class H ⊂ [0,1]X , weak ERM oracle Oerm,w, sample S = {(xi, `i, ui)}i∈[n] ∈

(X×[0,1]2)n, i∈ [n].

1: function SAMPLECON.REAL((S,Oerm,w))

2: Set S′ :=
⋃
i∈[n]{(xi,`i),(xi,ui)}.

3: Set V ←Oerm,w(S′).

4: return True if V ≤
∑n

i=1(ui−`i), else False.

By Lemma C.3, any empirical risk minimizer h(n) for S(n) ∪{(xj,yj)}j∈[n] satisfies h(n)(xi) ∈
[y′i,y

′
i+γ] for each i∈ [n] and moreover is also an empirical risk minimizer for S. This establishes the

claim of Lemma C.2.

Lemma C.4. Consider a concept classH⊂ [0,1]X equipped with a weak ERM oracleOerm,w. Then for any
S={(xi,`i,ui)}i∈[n]∈(X×[0,1]2)n with `i≤ui for all i, the algorithm SampleCon.Real(S,Oerm,w)
(Algorithm 4) outputs True if and only if there is some h∈H satisfying `i≤h(x)≤ui for all i∈ [n].

Proof. The lemma statement is immediate from the fact that there is h∈H satisfying `i≤h(x)≤ui if
and only if

inf
h∈H

n∑
i=1

|h(xi)−`i|+|h(xi)−ui|=
n∑
i=1

(ui−`i).

Appendix D. Proof of Theorem 3.2

D.1. Properties of the generating function

Givenm,S⊂Vm={0,1}m, and v∈Vm, recall the definition of the hitting time τS,v in (4). We begin by
proving the following basic recursive property of the generating function MS,v(γ) of the random walk
on the hypercube graphGm defined in Section 3.1.
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Lemma D.1. Suppose W ⊂ {0, 1}m is given, and consider the m-dimensional hypercube graph
Gm=(V,E). Then the following holds for all v∈W:

MWc,v(γ)=
γ

(2−γ)m

∑
i∈[m]

MWc,v⊕i(γ).

Proof. For any v∈W and t>0, we have

Pr(τWc,v=t)=
1

2
·Pr(τWc,v=t−1)+

1

2

m∑
i=1

1

m
·Pr(τWc,v⊕i=t−1),

where we have used the fact that for v∈W, each of them edges containing v, indexed by i∈ [m] has two
vertices, namely v and v⊕i. Moreover, for v∈W, we have that Pr(τWc,v =0)=0. Thus, for γ∈ (0,1),
we have

MWc,v(γ)=
∑
t≥1

γt·

(
1

2
·Pr(τWc,v=t−1)+

1

2

m∑
i=1

1

m
·Pr(τWc,v⊕i=t−1)

)

=
γ

2
·MWc,v(γ)+

γ

2m

m∑
i=1

∑
t≥1

γt−1·Pr(τWc,v⊕i=t−1)

=
γ

2
·MWc,v(γ)+

γ

2m

m∑
i=1

MWc,v⊕i(γ).

Rearranging, we see that

MWc,v(γ)=
γ

(2−γ)m

∑
i∈[m]

MWc,v⊕i(γ),

as desired.

Lemma D.2 establishes an upper bound on the outdegree of the orientation σF,λ (defined in (1))
induced by the function F(v):=MWc,v(γ).

Lemma D.2. Given m ∈ N, γ ∈ (0,1), λ ∈ [0,1], and W ⊂ {0,1}m, write F(v) := MWc,v(γ) for
v∈{0,1}m. Then the induced orientation σF,λ satisfies

outdeg(σF,λ)≤m
2
−(1−γ)λm·min

v∈V
F(v).

Proof. Consider any v∈W. As a consequence of Lemma D.1, we have

m·F(v)−
∑
i∈[m]

F(v⊕i)=−m·2(1−γ)

γ
·F(v). (7)

22



PAC LEARNING WITH WEAK ORACLES

We compute

outdeg(v;σF,λ)=
∑
i∈[m]

(1−σF,λ((i,ei,v))(v))

=
∑
i∈[m]

1−λ·(F(v⊕i)−F(v))

2

=
m

2
+
λm

2
·F(v)−λ

2

∑
i∈[m]

F(v⊕i)

=
m

2
− (1−γ)λm

γ
·F(v)≤m

2
−(1−γ)λm·F(v), (8)

where the first equality uses that if v⊕i∈Wc, then 1−σF,λ((i,ei,v))(v)=0≤ 1−λ(1−F(v))
2 , and the final

equality uses (7).

Next, Lemma D.3 lower bounds the functionMWc,v(γ), which is needed to apply Lemma D.2.

Lemma D.3. Letm≥4 be an integer, γ∈(0,1), andW⊂{0,1}m be given. Then, if 1
1−γ ≥4mlogm and

|W|≤ 1
m2m−2,

min
v∈W

MWc,v(γ)≥ 1

4e
.

Proof. Suppose for the purpose of contradiction that there is some v∈W for whichMWc,v(γ)<1/(4e).
Let X(0)

v ,X
(1)
v ,...∈V denote the lazy random walk on the m-dimensional hypercube, Gm, started at v.

Since γ1/(1−γ)≥1/e for all γ<1, we have that

1

e
Pr(τWc,v≤b1/(1−γ)c)=

∑
0≤t≤b1/(1−γ)c

γt·Pr(τWc,v=t)≤MWc,v(γ). (9)

Let us write L := b1/(1−γ)c and τ = τWc,v. Note that the distribution of X(0)
v ,...,X

(τ)
v is exactly the

distribution of a lazy random walk Y (0)
v ,...,Y

(τ)
v on the hypercube {0,1}m, up to the stopping time τ .

Let U denote a uniformly distributed random variable on {0,1}m. By Lemma B.1 together with the
fact that L≥ 1/(2(1−γ))≥ 2mlog(m)≥mlogm+mlog(4), we have that DTV(Y

(L)
v ,U)≤ 1/4. Let

X̄
(t)
v :=X

(t∧τ)
v denote the stopped random walk, with respect to the stopping time τ .

Consider a coupling between the distributions {X̄(t)
v }t≥0 and {Y (t)

v }t≥0 so that X̄(t)
v = Y

(t)
v for

all t≤ τ , almost surely. Since τ > L with probability at least 1− e ·MWc,v(γ) by (9), we have that
Pr(X̄

(L)
v =Y

(L)
v )≥Pr(τ≥L)≥1−e·MWc,v(γ), where the probability is with respect to the coupling.

It follows thatDTV(X̄
(L)
v ,Y

(L)
v )≤e·MWc,v(γ)<1/4. By the triangle inequality, we have

DTV(X̄(L)
v ,U)≤e·MWc,v(γ)+1/4<1/2.

Let N̄(W) := {v∈{0,1}m : v∈W or ∃i s.t. v⊕i ∈W} denote the union ofW and its neighborhood.
Thus, we must have supp(X̄

(L)
v )>2m−1, which contradicts |W|≤ 1

m2m−2 since supp(X̄
(L)
v )⊂N̄(W),

and N̄(W)≤2m|W|≤2m−1.
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D.2. Transductive learning guarantee

Proof of Theorem 3.2. Let us write γ := 1− 1
C1mlogm . Set ε= 1−γ

16e and L := dlog(2/ε)/log(1/γ)e=
dlog(32e/(1 − γ))/ log(1/γ)e ≤ O(log(1/(1 − γ))/(1 − γ)). Moreover, write δ = ε/2 and U =

C1m
2log3m; note that U=Θ( log(1/δ)

ε2
).

Let us write X = (x1,...,xm)∈Xm, y= (y1,...,ym)∈ {0,1}m. LetW :=H|X be the projection
of H onto X and Gm = (V,E) denote the m-dimensional hypercube graph. For y′ ∈ W, recall the
definition of the stopping time τWc,y′ in (4). Note that, for any y′ ∈ V and each u ∈ U , the random
variable Tu constructed in EstimatePotential(X,y′,U,γ,Ocon,w) is distributed exactly according
to L∧τWc,y′. Thus, for any δ,U satisfying U≥Clog(1/δ)/ε2 for a sufficiently large constant C, we have
from Hoeffding’s inequality that with probability 1−δ,∣∣∣∣∣ 1

U

U∑
u=1

γTu−E[γL∧τWc,y′ ]

∣∣∣∣∣≤ε/2. (10)

Moreover, by our choice of L, we have that, almost surely,∣∣∣γL∧τWc,y′−γτWc,y′
∣∣∣≤γL≤ε/2. (11)

Thus, combining Eqs. (10) and (11), with probability at least 1−δ, the output ofEstimatePotential(X,y′,U,γ,Ocon,w)
satisfies ∣∣∣∣∣ 1

U

U∑
u=1

γTu−MWc,y′(γ)

∣∣∣∣∣=
∣∣∣∣∣ 1

U

U∑
u=1

γTu−E[γτWc,y′ ]

∣∣∣∣∣≤ε. (12)

For y′ ∈W, define F(y′) :=MWc,y′(γ). For each i∈ [m], write yi,0 = (y−i,0) and yi,1 = (y−i,1).
Now consider i∈ [m] for which yi,0,yi,1∈W. Note that WeakRealizable(S−i,xi,γ,λ,Ocon,w) calls
EstimatePotential(X,y0,U,γ,Ocon,w) and EstimatePotential(X,y1,U,γ,Ocon,w). These
calls return values F̂(yi,0),F̂(yi,1)∈ [0,1] respectively. Since can ensure, by our choices of the values U,δ
above, that U≥Clog(1/δ)/ε2 (by making C1 sufficiently large), it follows by (12) and a union bound
that with probability at least 1−2δ, for each b∈{0,1},∣∣∣F̂(yi,b)−F(yi,b)

∣∣∣=∣∣∣F̂(yi,b)−MWc,yi,b(γ)
∣∣∣≤ε.

Thus, with probability at least 1−2δ, the output ŷi :=
1+(F̂(yi,0)−F̂(yi,1))

2 ofWeakRealizable(S−i,xi,γ,1,Ocon,w)
satisfies

∣∣ŷi−σF,1(ei,y)(y
i,1)
∣∣=∣∣∣∣∣1+(F̂(yi,0)−F̂(yi,1))

2
−1+(F(yi,0)−F(yi,1))

2

∣∣∣∣∣
≤1

2
·|F̂(yi,0)−F(yi,0)|+ 1

2
·|F̂(yi,1)−F(yi,1)|≤ε,

and thus, using that y=yi,yi,

|ŷi−yi|= |ŷi−σF,1(ei,y)(y
i,1)|+|σF,1(ei,y)(y

i,1)−yi|≤ε+(1−σF,1(ei,y)(y)).
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By our choice of δ=ε/2, it follows that, for each i∈ [m],

E
[
`bin(A (S−i;xi),yi)

]
=E[|ŷi−yi|]≤2δ+ε+(1−σF,1(ei,y)(y))=2ε+(1−σF,1(ei,y)(y)). (13)

Next, the Sauer-Shelah lemma (Lemma B.2) gives that |W|= |H|X|≤(em/d)d≤ 1
m2m−2, since we

have chosenm≥C1dlogd for a sufficiently large constant C1. Thus, by our choice of γ=1− 1
C1mlogm

and Lemma D.3 we have that minv∈WF(v)=minv∈WMWc,v(γ)≥1/(4e). We may now compute∑
i∈[m]

E[`bin(A (S−i;xi),yi)]≤2εm+
∑
i∈[m]

(1−σF,1(ei,y)(y))

=2εm+outdeg(y;σF,1)

≤2εm+
m

2
− (1−γ)m

4e
≤m

2
− (1−γ)m

16e
,

where the first inequality uses (13), the second inequality uses Lemma D.2, and the final inequality uses
the choice of ε= 1−γ

16e .

Finally, for use in applying Theorem 3.2, we state the following standard lemma, which relates the
transductive error of a learning algorithm A to its expected error with respect to any realizable distribution.

Lemma D.4 (Leave-one-out). Let P ∈∆(X×{0,1}) beH-realizable andm∈N be given. Furthermore,
let A (·,·) : (X ×{0,1})m−1×X →{0,1} be a (possibly randomized) mapping which takes as input a
dataset of sizem−1 and a point in X , and outputs a real number. Then

E
S′∼Pm−1

E
(X,Y )∼P

E[`bin(A (S′,X),Y )]= E
S∼Pm

S={(xi,yi)}i∈[m]

[
1

m

m∑
i=1

E[`bin(A (S−i,xi),yi)]

]
,

where the inner expectation is over the randomness in A .

Proof. Let (x1,y1),...,(xm,ym),(X,Y ) denote i.i.d. samples from P , and write S′={(xi,yi)}i∈[m−1],S=
{(xi,yi)}i∈[m]. By exchangeability of these samples and linearity of expectation, we have

ES′E(X,Y )∼PE[`bin(A (S′,X),Y )]=ES′E(xm,ym)∼PE[`bin(A (S′,xm),ym)]

=
1

m

m∑
i=1

ESE[`bin(A (S−i,xi),yi)]

=ES

[
1

m

n∑
i=1

E[`bin(A (S−i,xi),yi)]

]
.

Appendix E. Boosting

In this section, we discuss the technique of boosting, which is used to upgrade a weak learner (in the sense of
Definition 3.1) to a strong learner, i.e., one which achieves error at most an arbitrary threshold ε∈(0,1) with
high probability. Notice that we allow a weak learner to only possess its guarantee (2) in expectation, rather
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than with high probability. To account for this weaker assumption, it is necessary to slightly modify standard
boosting results (Schapire and Freund, 2012, Chapters 3 & 4), as stated in Lemma E.1 below. The main dif-
ference in the proofs is the use of an appropriate martingale concentration inequality (namely, Lemma B.3)
to deal with the deviations in errors exhibited by the individual calls to the weak learner by the boosting
algorithm. Lemma E.1 gives a bound on the training error of the Adaboost algorithm (Algorithm 5).

Algorithm 5 Adaboost (Algorithm 1.1 of (Schapire and Freund, 2012))
Require: Input dataset {(xi,yi)}i∈[n]⊂(X×{0,1})n, randomized weak learner A , number of time steps

T .

1: InitializeD1 :=Unif([n])∈∆([n]).

2: for 1≤t≤T do
3: Sample a fresh string of uniform bitsRt for use in A and to sample St in Line 4 below.

4: Sample an i.i.d. dataset St of sizem from the distribution of xi, i∼Dt, so that St∈(X×{0,1})m.

5: Let ht :X→{0,1} be the output of ARt(St,·).
6: Define εt :=Pri∼Dt(ht(xi) 6=yi), and αt := 1

2 ln
(

1−εt
εt

)
.

7: For i∈ [n], define

Dt+1(i):=
Dt(i)·exp(−αt·(2yi−1)·(2ht(xi)−1))

Zt
, (14)

where Zt :=
∑

j∈[n]Dt(j)·exp(−αt·(2yj−1)·(2ht(xj)−1)).

8: return the hypothesisH :X→{0,1}, whereH(x):= 1
2 + 1

2sign
(∑T

t=1αt·(2ht(x)−1)
)

.

Lemma E.1 (Training error of Adaboost). Letm,n∈N and η∈(0,1) be given, and suppose algorithm
A is anm-sample weak learner with margin η for the classH. Let S̄∈(X×{0,1})n be anH-realizable
sample. Then if Algorithm 5 is run for T≥d16log(2n/δ)/η2e rounds on S̄, the output hypothesisH(x)
satisfies êrS(H)=0 with probability 1−δ.

Moreover, for x∈X , to computeH(x), one must only call A (St,x) for T different choices of datasets
St∈(X×{0,1})m.

Proof. The proof follows closely to that in, e.g., (Schapire and Freund, 2012, Chapter 3), with minor
modifications. We use the notation in Algorithm 5. Define F(x):=

∑T
t=1αtht(x). From the definition

of Zt in Algorithm 5 we have, for i∈ [m],

DT+1(i)=
D1(i)·exp(−yi·F(xi))

Z1···ZT
.

For all (x,y)∈X×{±1}, we have 1{H(x) 6=y}≤e−F(x)·y. We can thus bound the training error over
the dataset {(xi,yi)}i∈[n] as follows:

1

n

n∑
i=1

1{H(xi) 6=yi}≤
n∑
i=1

D1(i)·e−F(xi)·yi=

n∑
i=1

DT+1(i)·(Z1···ZT )=Z1···ZT . (15)
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By the choice of αt= 1
2 ln
(

1−εt
εt

)
in Line 6 of Algorithm 5, we have

Zt=

n∑
j=1

Dt(j)·e−αt·yjht(xj) =(1−εt)·e−αt+εt·eαt=2
√
εt(1−εt)=

√
1−4γ2

t ,

where the second equality uses the fact that
∑

j:yjht(xj)=1Dt(j)=1−εt and
∑

j:yjht(xj)=−1Dt(j)=εt,
and we have written γt :=1/2−εt for the final equality.

For each t ∈ [T ], let Ft denote the sigma-algebra generated by {(Ss,hs)}1≤s≤t. Note that Dt is
measurable with respect to Ft−1. Since the distribution over (xi,yi), for i∼Dt, is H-realizable, the
fact that A is an m-sample weak learner with margin η yields that for each t, E[εt |Ft−1]≤ 1

2−η, i.e.,
E[γt |Ft−1]≥η. By Jensen’s inequality it follows that E[γ2

t |Ft−1]≥η2. Note that γ2
t ∈ [0,1] for all t∈ [T ].

Then by Lemma B.3 with R= 1, there is an event E occurring with probability 1−δ so that, under E,∑T
t=1γ

2
t ≥ 1

2Tη
2−4log(2/δ). Thus, under the event E, we have

Z1···ZT =

(
T∏
t=1

(1−4γ2
t )

)1/2

≤e−2(γ21+···+γ2T )≤e−Tη2+8log(2/δ)≤e−Tη2/2≤ 1

2n
, (16)

where the second-to-last inequality above holds since we have chosen T to satisfy T≥ 16log(2/δ)
η2

, and the

final inequality holds since T also satisfies T≥ 2log(2n)
η2

. Combining the above display and (15), we obtain
that, under E, 1

n

∑n
i=11{H(xi) 6=yi}≤1/(2n), which implies thatH(xi)=yi for all i∈ [n].

E.1. Generalization error of Adaboost

Next, using the technique of sample compression schemes, and in particular their connection to gen-
eralization (Lemma A.1), we prove that the output hypothesis H of Adaboost generalizes well.
Proposition E.2 carries out this argument for the realizable setting, and Proposition E.3 does so for the
agnostic setting. Even in the agnostic setting, the input dataset for Adaboost must still be realizable
byH, as the weak learner’s guarantee depends on realizability. Thus, in the statement of Proposition E.3,
we assume that Adaboost is passed a subsample of maximum size which isH-realizable. Our final
algorithm which agnostically learns partial concept classes (Algorithm 6) will find such a subsample to
pass to Adaboost using a weak ERM oracle.

Proposition E.2 (Generalization error of Adaboost – realizable setting). Let m,n∈N and η,δ∈ (0,1)
be given, and suppose algorithm A is an m-sample weak learner with margin η for the class H. Let
P ∈∆(X×{0,1}) beH-realizable. Then if Algorithm 5 is run for T =d16log(4n/δ)/η2e rounds on a
dataset S̄∼Pn, the random output hypothesisH∈{0,1}X satisfies the following with probability 1−δ:

erP (H)≤O
(

log2(n/δ)·(m+logn)

η2n

)
.

In particular, the probability is over the draw of S̄.

Proof. We use a compression-based argument, following (Schapire and Freund, 2012, Chapter 4.2). Let
us denote the input dataset to Algorithm 5 by S̄∈(X×{0,1})n. We consider a distributionQ over sample
compression schemes on n-sample datasets, (κ,ρ), defined as follows. Given a dataset S̄, let St,αt,Rt, for
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t∈ [T ], be the random variables generated in the course of the procedure in Algorithm 5. Since the bitsRt
are used for the sampling step in Line 4 and by A (where the portions ofRt that are used for the two tasks
are independent), given a dataset S̄, the random variable (St,αt)t∈[T ] is a deterministic function of (Rt)t∈[T ]

and S̄. Then we define (ρ,κ) to be the distributed as the following (deterministic) function of (Rt)t∈[T ]:

• κ maps a dataset S̄∈ (X×{0,1})n to κ(S̄)=((S1,...,ST ),(α1,...,αT )), where St,αt are defined
as a function of (Rt)t∈[T ] and S̄, as described above.

• ρmaps an input of the form ((S′1,...,S
′
T ),(α′1,...,α

′
T )) (where (S′1,...,S

′
T ) is a sequence of examples

in X×{0,1} of length Tm and (α′1,...,α
′
T ) is a sequence of real numbers, encoded in binary) to

the hypothesis x 7→sign
(∑T

t=1αt·ARt(St,x)
)

.

Since the values εt in Algorithm 5 lie in {0,1/n,2/n,...,1}, each parameter αt can be encoded with
O(logn) bits. Thus, with probability 1 over (κ,ρ)∼Q, we have that the size of κ (for input samples S̄ of
size n) is |κ|≤O(T ·(m+log(n))). Next, Lemma E.1 establishes that, for any fixedH-realizable S̄, there
is a set E of compression schemes satisfying Q(E)≥1−δ so that, for all (κ,ρ)∈E, êrS̄(ρ(κ(S̄))) = 0.
(Here we crucially use that the output hypothesis of ρ depends on the same random bitsRt used to generate
the sequence (St,αt)t∈[T ].) Moreover, by Lemma A.1 and our bound on the size of κ drawn fromQ, there
is a constant C>0 so that the following holds for any fixed (κ,ρ)∈supp(Q): with probability 1−δ over
the draw of S̄∼Pn,

erP (ρ(κ(S̄)))≤1{êrS̄(ρ(κ(S̄)))=0}+C

n
·
(
T log(n)·(m+logn)+log

1

δ

)
.

By our choice of T together with the fact that Q(E)≥1−δ, it follows that with probability 1−2δ over
the draw of S̄∼Pn, we have

erP (ρ(κ(S̄)))≤C ·
log(2n2)log(n)· 1

η2
·(m+logn)+log(1/δ)

n
.

Since, for fixed S̄, the distribution of ρ(κ(S̄)) is the distribution of the output hypothesisH of Algorithm 5,
the claim of the proposition follows after rescaling δ.

Proposition E.3 (Generalization error of Adaboost – agnostic setting). Let m,n ∈N and η,δ ∈ (0,1)
be given, and suppose algorithm A is an m-sample weak learner with margin η for the class H. Let
P ∈∆(X×{0,1}) be an arbitrary distribution. Consider a procedure which samples a dataset S̄∼Pn,
deterministically chooses a subsample S̃⊂ S̄ of maximum size which is realizable byH, and then runs
Algorithm 5 for T = d16log(4n/δ)/η2e rounds on S̃. Then the output hypothesis H(x) satisfies the
following with probability 1−δ:

erP (H)≤ inf
h∈H

êrS̄(h)+O

√ log2(n/δ)·(m+logn)

η2n

.
Proof. The proof closely follows that of Proposition E.2. In particular, we consider the same distribution
Q over sample compression schemes on datasets with (at most) n-samples. We again have that with
probability 1 over (κ,ρ)∼Q, |κ|≤O(T ·(m+logn)), and that, for any fixedH-realizable S̃, there is a
set E of compression schemes satisfyingQ(E)≥1−δ so that, for all (κ,ρ)∈E, êrS̃(ρ(κ(S̃)))=0.
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Next, let the deterministic mapping from samples S̄ ∈ (X ×{0,1})n to S̃ be denoted by Σ. For
any compression scheme (κ, ρ) ∈ supp(Q), note that (κ ◦ Σ, ρ) is a compression scheme of size
|κ◦Σ| ≤ |κ| ≤ O(T · (m+ logn)). Thus, by Lemma A.1, there is a constant C > 0 so that, for any
fixed (κ,ρ)∈supp(Q), with probability 1−δ over the draw of S̄∼Pn,

erP (ρ(κ(Σ(S̄))))≤ êrS̄(ρ(κ(Σ(S̄))))+C

√
1

n
(T log(n)·(m+logn)+log(1/δ)).

The choice of Σ yields that, if S̄ ∈ (X ×{0,1})n and S̃= Σ(S̄), then for any hypothesis h′ satisfying
êrS̃(h′)=0, we have

êrS̄(h′)≤ n−|S̃|
n

= inf
h∈H

êrS̄(h) (17)

Thus, by our choice of T , (17), and the fact thatQ(E)≥1−δ, it follows that with probability 1−2δ over
the draw of S̄∼Pn,

erP (ρ(κ(Σ(S̄))))≤ inf
h∈H

êrS̄(h)+O

√ log2(n/δ)·(m+logn)

η2n

.
Since for fixed S̄, the distribution of ρ(κ(Σ(S̄))) is the distribution of the output hypothesisH of Algo-
rithm 5, the claim follows after rescaling δ.

Appendix F. Proof of Theorem 3.1

Algorithm 6 Oracle-efficient PAC learner for partial concept classes
Require: Partial concept classH, n∈N, sample S={(xi,yi)}ni=1∈(X×{0,1})n, weak learner A for

H with margin η∈(0,1), failure probability δ∈(0,1), weak ERM oracleOerm,w forH, domain point

x∈X .

1: function REALIZABLEPARTIAL(S,x,A ,η,δ)

2: Call Adaboost (Algorithm 5) on the dataset S using the weak learner A with

T=d16log(4n/δ)/η2e, and denote its output hypothesis byH :X→{0,1}.
3: returnH(x).

4: function AGNOSTICPARTIAL(S,x,A ,η,δ,Oerm,w)

5: Let z∈{0,1}n be the output of SampleERM.Binary(S,x,`bin,Oerm,w). . (Algorithm 2)

6: Define S̃ :={(xi,yi) : zi=0}.
7: Call Adaboost (Algorithm 5) on the dataset S̃ using the weak learner A with

T=d16log(6n/δ)/η2e, and denote its output hypothesis byH :X→{0,1}.
8: returnH(x).

The guarantees of Theorem 3.1 are established with the algorithms RealizablePartial and
AgnosticPartial (Algorithm 6). These algorithms call Adaboost on an appropriateH-realizable
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dataset and use WeakRealizable as the weak learner. We remark that AgnosticPartial uses
the algorithm SampleERM.Binary (defined in Appendix C) to find the largest subset of labels which
can be realized by the classH. Note that in the algorithms’ descriptions we have stated that Adaboost
returns a hypothesisH :X→{0,1}. RealizablePartial and AgnosticPartial never have
to compute this entire hypothesis H, and instead only have to evaluate H(x), which, as we shall show,
can be done using few calls to the oracleOcon,w orOerm,w, respectively.

Proof of Theorem 3.1. Let dVC∈N,ε,δ∈(0,1) be given. Let C1,C2 denote the constants of Theorem 3.2,
m :=C1dVClogdVC, and η := 1

C2mlogm . Let A denote the randomized mapping A :(X×{0,1})m×X→
{0,1} which, given as input (S,x), returns WeakRealizable(S,x, 1

C1mlogm ,1,C1m
2log3m,Ocon,w)

(see Algorithm 1). By Theorem 3.2 and Lemma D.4, A is anm-sample weak learner with margin η for
the classH.

Realizable setting. We take n=
d3VC·log(1/δ)

ε ·(clog(dVClog(1/δ)/ε))c, for a sufficiently large constant
c as specified below. The output hypothesis H of Adaboost in RealizablePartial is a de-
terministic function of S and the random bits R used in Adaboost (including in its calls to A ). By
Lemma E.1, for any S, with probability 1−δ over the draw of R, we have êrS(H) = 0. Moreover, by
Proposition E.2, with probability 1−δ over the draw of S,R, we have

erP (H)≤O
(

log2(n/δ)·(m+logn)

η2n

)
.

Combining the above inequality with our choice of n and rescaling ε,δ, we obtain that with probability
1−δ over the draw of S∼Pn, erP (H)≤ε.

Finally, we analyze the oracle complexity of RealizablePartial: to compute the value of
H(x), we need to compute the values ht(x) for the hypotheses ht, t∈ [T ], defined in Adaboost. Given
the value of St, each computation of ht(x), for any x∈X , requires a single run of A (St,x), which requires
Õ(m3) calls to Ocon,w with datasets of size m (Theorem 3.2). In turn, the datasets St are computed
inductively as follows: given St, we can compute ht(xi) for each i∈ [n], which requires Õ(nm3) calls
toOcon,w. This in turn allows us to computeDt+1 (per (14)), which then allows us to sample St+1. Thus,
overall, we need Õ(nm3 ·T)≤poly(n) calls toOcon,w to compute H(x), each of which uses a dataset
of size at most n. Hence the cumulative oracle cost is poly(n).

Agnostic setting. We take n=
d3VC·log(1/δ)

ε2
·(clog(dVClog(1/δ)/ε))c, for a sufficiently large constant c

as specified below. The output hypothesisH of Adaboost in AgnosticPartial is a determin-
istic function of S as well as the random bits R used in Adaboost (including in its calls to A ). By
Lemma C.1, the set S̃ constructed from S in AgnosticPartial is a subset of S of maximum size
which is realizable byH. Thus, by Lemma E.1, for any S, with probability 1−δ over the draw ofR, the
hypothesisH satisfies êrS̃(H)=0.

Moreover, by Proposition E.3, the (random) output hypothesisH of Adaboost satisfies the below
with probability 1−δ over the draw of S,R:

erP (H)≤ inf
h∈H

êrS(h)+O

√ log2(n/δ)·(m+logn)

η2n

. (18)
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Since n≥ Clog1/δ
ε2

for a sufficiently large constant C, McDiarmid’s inequality yields that with probability
1−δ over the choice of S∼Pn,

inf
h∈H

êrS(h)≤ES′∼Pn
[

inf
h′∈H

êrS′(h
′)

]
+ε≤erP (H)+ε. (19)

Combining Eqs. (18) and (19) with our choice of n and rescaling ε,δ, we obtain that with probability 1−δ
over the draw of S∼Pn, we have erP (H)≤erP (H)+ε.

Finally, note that, to compute the value H(x), for any x ∈ X , we need a single call to Oerm,w to
compute S̃ (Line 6 of Algorithm 6), and then need to compute the values ht(x) for the hypotheses ht,
t∈ [T ], defined in Adaboost. The oracle complexity of these calls are analyzed in the same manner
as in the realizable case, so we again obtain poly(n) cumulative oracle cost.

Appendix G. Multiclass classification

In this section, we generalize our results on binary classification to the setting of multiclass classification.
We begin by establishing that a variant of WeakRealizable yields a weak learner in the multiclass
setting, in an appropriate sense. It is less clear how to define a “weak learner” in the multiclass setting than
in the binary setting, and the literature on multiclass boosting has identified several possible definitions (see
(Schapire and Freund, 2012, Chapter 10) as well as many more recent works (Mukherjee and Schapire,
2013; Brukhim et al., 2023a, 2021, 2022, 2023b)). Our approach proceeds by defining a partial binary
concept class given any multiclass classification problem, in Definition G.1 below. We will then feed our
weak learner for partial binary classes (WeakRealizable; Algorithm 1) into Adaboost, and finally
show how to translate good performance of the boosted learner back to good performance for the original
multiclass problem.

Our approach is similar to the one taken in (Schapire and Freund, 2012, Chapter 11) (which originally
appeared in (Schapire and Singer, 1998)), where multiclass classification is reduced to boosting with
rankings and the Adaboost.MR algorithm is used. However, our approach is syntactically different
since the weak learner for a menu class (in the sense of Definition G.1) takes as input two labels together
with the covariate x, and must determine which of them is the correct label, in contrast to (Schapire and
Singer, 1998) where the weak learner takes as input a single label together with x and outputs a scalar
indicating how likely the label is to be correct.

Definition G.1 (Menu class). Consider a hypothesis classH⊂ [K]X , and let P2(K) denote the set of
all length-2 vectors consisting of distinct elements of [K]. We refer to the elements of P2(K) as menus.8

Given µ∈P2(K),k∈ [K], we write k∈µ to mean that k is one of the two elements of µ.
Given h∈H and (x,(`,k))∈X×P2(K), we define

hmenu(x,(`,k)):=


0 :h(x)=`

1 :h(x)=k

∗ :otherwise.

we let M2(H)⊂{0,1,∗}X×P2(K) denote the (binary) partial hypothesis class defined by

M2(H):={(x,µ) 7→hmenu(x,µ) : h∈H}.

8. This terminology is inspired by (Brukhim et al., 2022, 2023b), which considered such menus, though used them together
with techniques distinct from ours.
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We often refer to M2(H) as the menu class ofH.

The below definition gives a procedure to map hypotheses in {0,1,∗}X×P2(K) to multiclass hypotheses
in [K]X .

Definition G.2 (Multiclass decoder). We define a map Decmc :{0,1,∗}X×P2(K)→ [K]X , as follows. For
J :X ×P2(K)→{0,1,∗}, we define Decmc(J) :=H, where H(x) is defined to be the unique value
k∈ [K] for which J(x,(k,`))=0 and J(x,(`,k))=1 for all `∈ [K]\{k}, if such k exists. OtherwiseH(x)
is defined to be 1.

Note thatDecmc depends onK,X ; for simplicity, we omit this dependence in our notation. Lemma G.1
bounds the VC dimension of the menu class ofH in terms of the Natarajan dimension ofH.

Lemma G.1. For anyH⊂ [K]X , it holds that dVC(M2(H))≤O(dN(H)logK).

Proof. Let us write d := dVC(M2(H)), and let (x1,µ1),...,(xd,µd) be shattered by M2(H). Note that
the values x1,...,xd are all distinct, since no hypothesis hmenu can shatter the points (x,µ),(x,µ′) for
distinct menus µ,µ′ ∈ P2(K). Thus, the number of vectors y ∈ [K]n for which there exists h ∈ H
so that yi = h(xi), i ∈ [n], is at least 2d. But the number of such y may also be upper bounded by
(K2ed/dN(H))dN(H), by (Haussler and Long, 1995). It follows that 2d ≤ (K2ed/dN(H))dN(H), i.e.,
d≤dN(H)·O(log(Kd/dN(H))), which yields d≤O(dN(H)·log(K)).

Algorithm 7 Multiclass learner
Require: Concept class H⊂ [K]X , sample {(xi,yi)}i∈[n] ⊂ (X × [K])n, domain point x ∈ X , weak

learner A for M2(H) with margin η, failure probability δ, weak ERM oracleOerm,w.

1: function MULTICLASSREALIZABLE(S,x,A ,η,δ)

2: Define a dataset S̃⊂(X×P2(K)×{0,1,∗})2n(K−1) as follows:

S̃={(xi,(yi,`),0) : i∈ [n],`∈ [K]\{yi}}∪{(xi,(`,yi),1) : i∈ [n],`∈ [K]\{yi}}. (20)

3: Call Adaboost (Algorithm 5) on the dataset S̃ using the weak learner A with

T=d16log(4nK/δ)/η2e, and denote the resulting hypothesis by J :X×P2(K)→{0,1}.
4: Define the hypothesisH :=Decmc(J)∈ [K]X (see Definition G.2).

5: returnH(x).

6: function MULTICLASSAGNOSTIC(S,A ,η,δ)

7: Let z∈{0,1}n denote the output of SampleERM.Binary(S,`mc,Oerm,w). . (Algorithm 2)

8: Define S̃ :={(xi,yi) : i∈ [n],zi=0}.
9: SetH :=MulticlassRealizable(S̃,A ,η,δ).

10: returnH(x).

Note that, given a weak consistency oracle Ocon,w for the class H ⊂ [K]X , we immediately
obtain a weak consistency oracle Ocon,menu for the class M2(H): for a M2(H)-realizable dataset
S={(xi,µi,yi)}i∈[n], the oracleOcon,menu(S) defines y′i=(µi)yi+1, and returnsOcon,w({(xi,y′i)}i∈[n]).
Using this observation, we may obtain a weak learner for the class M2(H) as a corollary of Theorem 3.2:
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Corollary G.2. There are constants C1,C2 so that the following holds. Consider a multiclass con-
cept class H⊂ [K]X of Natarajan dimension dN, and suppose m≥ C1dN logK · log(dN logK). Let
S = {((xi,µi),yi)} ∈ (X ×P2(K)×{0,1})m be M2(H)-realizable. and let A (S−i,(xi,µi)) be the
output of WeakRealizable(S−i,(xi,µi),1− 1

C1mlogm ,1,C1m
2 log3m,Ocon,menu) (Algorithm 1) for

each i∈ [m]. Then

1

m

m∑
i=1

EA

[
`bin(A (S−i,(xi,µi)),yi)

]
≤ 1

2
− 1

C2mlogm
,

where the expectation is taken over the randomness in the runs of WeakRealizable as well as the
sampling of ŷ from its output. Moreover, WeakRealizable makes at most Õ(m3) calls toOcon,menu,
each with a dataset of sizem−1.

Proof. The corollary follows immediately from Theorem 3.2 applied to the class M2(H), which has VC
dimension bounded by O(dNlogK) by Lemma G.1, together with the fact observed above that a weak
consistency oracle for M2(H) can be implemented using a weak consistency oracle forH.

Lemma G.3 (Training error of Adaboost in multiclass setting). Let m,n ∈N and η,δ ∈ (0,1) be
given, and suppose that algorithm A is anm-sample weak learner with margin η for the class M2(H).
Let x∈X and S̄∈ (X×[K])n be anH-realizable sample. Then the hypothesis H defined in Line 4 of
MulticlassRealizable(S̄,x,A ,η,δ) (Algorithm 7) satisfies êrS̄(H)=0 with probability 1−δ.

Note that the domain point x plays no role in Lemma G.3.

Proof of Lemma G.3. By Lemma E.1 applied to the dataset S̃ (defined in (20)) together with the guarantee
on the weak learner A , the output hypothesis J : X ×P2(K)→ {0,1} of Adaboost satisfies the
following with probability 1−δ:

∀i∈ [n], `∈ [K]\{yi}, J(x,(yi,`))=0, J(x,(`,yi))=1. (21)

For each (x,y)∈X×[K], we have

`mc(H(x),y)=1{H(x) 6=y}≤
∑

`∈[K]\{y}

1{J(x,(y,`))=1}+1{J(x,(`,y))=0},

since ifH(x) 6=y, then there must be some ` 6=y so that J(x,(y,`))=1 or J(x,(`,y))=0. The guarantee
(21) on J yields that we must haveH(xi)=yi for all i∈ [n], with probability 1−δ.

Proof of Theorem 4.1. Let dN∈N be given and consider a concept classH⊂ [K]X with dN(H)≤dN, to-
gether with a weak consistency oracleOcon,w and a weak ERM oracleOerm,w forH. LetC1,C2 denote the
constants in the statement of Corollary G.2, and definem :=C1dNlogK ·log(dNlogK) and η := 1

C2mlogm .
Write T = d16log(4nK/δ)/η2e as in Algorithm 7. Let A : (X ×P2(K)×{0,1})m×(X ×P2(K))→
{0,1} denote the learner of Corollary G.2 (in particular, A (S,(x,µ)) callsWeakRealizablewith inputs
S,(x,µ),Ocon,w, and an appropriate choice of the parameters). Then by Corollary G.2 and Lemma D.4,
A is anm-sample weak learner for the partial concept class M2(H) with margin η.
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Realizable case. We begin by proving the first statement of the theorem. Given ε,δ ∈ (0,1) and an
H-realizable distribution P ∈∆(X × [K]), consider a sample S∼Pn, where n will be chosen below.
We will show that the algorithm which, given S and some x∈X as input, returns the output H(x) of
MulticlassRealizable(S,x,A ,η,δ) satisfies the requirements of the theorem. Let H :X → [K]
denote the hypothesis constructed in Line 4 of MulticlassRealizable; we wish to show that with
probability 1−δ over S and the random bits of MulticlassRealizable, erP (H)≤ε. To do so, we
will define a distribution Q over sample compression schemes (ρ,κ) on n-sample datasets, so that the
distribution of ρ(κ(S)) is the same as the distribution ofH. The call toAdaboost (Algorithm 5) in Line 3
of Algorithm 7 generates a sequence of i.i.d. datasets S̃1,...,S̃T ∈(X×P2(K)×{0,1})m, each consisting
of examples in S̃ (defined in (20)), together with a sequence of parameters α1,...,αT ∈R and a sequence
of random bitstrings R1,...,RT for use in the weak learner A and in the sampling step on Line 4 of
Algorithm 5. The values of S̃t,αt,Rt satisfy the following: the output hypothesis J :X×P2(K)→{0,1}
of Adaboost is given by

J(x,µ):=
1

2
+

1

2
sign

(
T∑
t=1

αt·(2ARt(S̃t,x,µ)−1)

)
. (22)

For j ∈ [m], the jth example in S̃t may be written as (xit,j ,(`t,j,kt,j),bt,j), for some it,j ∈ [n],`t,j ∈
[K],kt,j∈ [K],bt,j∈{0,1}. We then define the (random) dataset St :={(xit,j ,yit,j)}j∈[m].

Note that, for fixed S∈(X×[K])n, the resulting random variables (S̃t,St,αt)t∈[T ] are a deterministic
function of S and (Rt)t∈[T ]. We now define (ρ,κ)∼Q to be distributed as follows:

• κ maps the dataset S ∈ (X × [K])n to κ(S) = (S1,...,ST ),
(
αt,(`t,j,kt,j,bt,j)j∈[m]

)
t∈[T ]

, where
St,αt,`t,j,kt,j,bt,j are defined as a function of (Rt)t∈[T ] and S as described above.

• ρ proceeds as follows, given an input of the form (S′1,...,S
′
T ),
(
α′t,(`

′
t,j,k

′
t,j,b
′
t,j)j∈[m]

)
t∈[T ]

(where

S′1,...,S
′
T is a sequence of examples in X×[K] of length Tm and the supplemental information

α′t ∈R, `′t,j,k
′
t,j ∈ [K],b′t,j ∈{0,1} are encoded in binary). Denoting S′t = {(x′t,j,y′t,j)}j∈[m], let

us define S̃′t :={(x′tj ,(`
′
t,j,k

′
t,j),b

′
t,j)}j∈[m]; then ρ outputs the hypothesis x 7→Decmc(J ′), where

J ′(x,µ):=
(

1
2 + 1

2sign
(∑T

t=1α
′
t·(2ARt(S̃

′
t,x,µ)−1)

))
.

Since the values αt defined in Adaboost can be encoded withO(logn) bits (as εt∈{0,1/n,...,1})
and the list ((`t,j,kt,j,bt,j))j∈[m] can be encoded withO(mlogK) bits, with probability 1 over (κ,ρ)∼Q,
the size of κ for inputs samples S of size n is bounded by |κ|≤O(T ·(mlogK+logn)). Next, Lemma G.3
together with the definition of Q above (and in particular the fact that ρ uses the same bits Rt as in the
definition of κ), gives that for anyH-realizable dataset S, there is a subset E of compression schemes for
whichQ(E)≥1−δ so that for all (κ,ρ)∈E, êrS(ρ(κ(S)))=0. By Lemma A.1 applied to the multiclass
loss function, there is a constant C>0 so that for each (κ,ρ)∈supp(Q), with probability 1−δ over the
draw of S∼Pn,

erP (ρ(κ(S)))≤1{êrS(ρ(κ(S)))=0}+C ·T ·(mlogK+logn)·logn+log(1/δ)

n
,

for some sufficiently large constant C. By our choice of T together with the fact that Q(E)≥1−δ, it
follows that with probability 1−2δ over the draw of S∼Pn and the draw of (ρ,κ)∼Q, we have

erP (ρ(κ(S)))≤C ·
log(n)log(nK/δ)· 1

η2
·(mlogK+logn)

n
.
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For fixed S, the distribution of ρ(κ(S)) is the same as the distribution of the output hypothesis H
of MulticlassRealizable. Thus, by our choices of m,η, after rescaling δ, we can ensure that

erP (H)≤ε with probability 1−δ as long as we take n=
d3Nlog4(K/δ)

ε ·poly(log1/ε,logdN,loglogK).
Note that the dataset S̃ passed to Adaboost in MulticlassRealizable is of size |S̃|=

O(nK). Since the number of rounds of Adaboost is T ≤poly(n) and the weak learner A makes
poly(m) calls toOcon,w, which can simulateOcon,menu (Corollary G.2), the same argument as in the proof
of Theorem 3.1 shows that the cumulative query cost of MulticlassRealizable for the oracle
Ocon,w is Õ(Knm3·T)≤K ·poly(n).

Agnostic case. Let P ∈∆(X × [K]) be a distribution. For n sufficiently large (as specified below),
we will show that the algorithm which takes as input a sample S∼Pn and x∈X , and which returns
the output H(x) of MulticlassAgnostic(S,x,A ,η,δ) (Algorithm 7) satisfies the requirements of
the theorem. Let H : X → [K] denote the hypothesis returned by MulticlassRealizable in
MulticlassAgnostic; we want to show that with probability 1−δ over S and the random bits of
MulticlassAgnostic, erP (H)≤minh∈HerP (h)+ε. To do so, we consider the same distribution
Q over sample compression schemes on datasets with (at most) n samples. Let Σ denote the mapping
which takes as input S ∈ (X × [K])n and outputs the dataset S̃ ∈ (X × [K])≤n as defined in Multi-
classAgnostic. For any compression scheme (κ,ρ)∈supp(Q), (κ◦Σ,ρ) is a compression scheme
of size |κ◦Σ|≤|κ|≤O(T ·(mlogK+logn)). Thus, by Lemma A.1, there is a constant C>0 so that, for
any fixed (κ,ρ)∈supp(Q), with probability 1−δ over the draw of S∼Pn,

erP (ρ(κ(Σ(S))))≤ êrS(ρ(κ(Σ(S))))+C

√
1

n
(T log(n)·(mlogK+logn)+log(1/δ)). (23)

By Lemma C.1 with loss function `mc, for any S ∈ (X × [K])n, the dataset S̃ = Σ(S) satisfies

infh∈H êrS(h) = n−|S̃|
n . The lemma also guarantees that S̃ is H-realizable, and thus there is a set E of

compression schemes satisfyingQ(E)≥1−δ so that for all (κ,ρ)∈E, êrS̃(ρ(κ(S̃)))=0. Using this fact
and (23), it follows that with probability 1−2δ over the draw of S∼Pn,and (ρ,κ)∼Q,

erP (ρ(κ(Σ(S))))≤n−|S̃|
n

+C

√
1

n
(T log(n)·(mlogK+logn)+log(1/δ))

= inf
h∈H

êrS̄(h)+C

√
log(n)log(nK/δ)· 1

η2
·(mlogK+logn)

n
, (24)

where the equality uses our choice of T . Moreover McDiarmid’s inequality yields that with probability
1−δ over the choice of S∼Pn,

inf
h∈H

êrS(h)≤ES′∼Pn
[

inf
h′∈H

êrS′(h
′)

]
+C

√
log1/δ

n
≤ inf
h∈H

erP (h)+C

√
log1/δ

n
, (25)

for a sufficiently large constant C. Combining Eqs. (24) and (25), using our choice ofm,η, and choosing

n=
d3Nlog4(K/δ)

ε2
·poly(log1/ε,logdN,loglogK) yields the claimed statement of the theorem.

To analyze the oracle complexity of MulticlassAgnostic, we first note that the call to Sam-
pleERM.Binary makesO(n2) calls toOerm,w (Lemma C.1). The remainder of the analysis of oracle
complexity follows the realizable case exactly.
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Appendix H. Regression

In this section, we consider another generalization of our results on binary classification, namely to the
setting of regression, in which hypotheses and labels take values in [0,1]. Similar to Appendix G, our
approach proceeds via reducing to oracle-efficient learning of partial function classes. A similar approach
was used in (Bartlett and Long, 1998; Aden-Ali et al., 2023). We thus define a partial concept class
associated to any real-valued concept class in Definition H.1 below:

Definition H.1 (Threshold class). Consider a hypothesis class H ⊂ [0,1]X and γ ∈ (0,1). We let
Dγ :={0,γ,2γ,...,b1/γcγ}, Given h∈H and τ∈Dγ, we define

hthrγ (x,τ):=


1 :h(x)≥τ+γ

0 :h(x)≤τ−γ
∗ : |h(x)−τ |<γ.

We then let Tα(H)⊂{0,1,∗}X×Dγ denote the (binary) partial hypothesis class defined by

Tα(H):={(x,τ) 7→hthrγ (x,τ) : h∈H}.

We will refer to Tα(H) as the threshold class ofH.

Lemma H.1. For anyH⊂ [0,1]X and γ∈(0,1), it holds that dVC(Tα(H))≤dfat,γ(H).

Proof. Let us write d :=dfat,γ(H), and let (x1,τ1),...,(xd,τd) be shattered by Tα(H), so that xi∈X and
τi∈Dγ for each i∈ [d]. Then by the definition of Tα(H) (Definition H.1), for each sequence b∈{0,1}d,
there is some h∈H so that, for each i∈ [d], h(x)≥τi+γ if bi=1 and h(x)≤τi−γ if bi=0. ThusH
shatters the points (x1,...,xd) as witnessed by (τ1,...,τd), i.e., dfat,γ(H)≥d.

An immediate consequence of Lemma C.4 is that given a weak ERM oracleOerm,w for the classH,
we immediately obtain a weak consistency oracle for the class Tα(H). Using this observation, we obtain
the following corollary of Theorem 3.2:

Corollary H.2. There are constants C1,C2 so that the following holds. Consider a real-valued concept
classH⊂ [0,1]X and γ∈(0,1), write d :=dfat,γ(H), and supposem≥C1dlogd. Let S={((xi,τi),yi)}∈
(X×Dγ×{0,1})m be Tα(H)-realizable. Then there is an algorithm A : (X×Dγ×{0,1})m−1×(X×
Dγ)→∆({0,1}) which makes Õ(m3) calls to a range consistency oracleOrange forH and which satisfies

1

m

m∑
i=1

Eŷ∼A (S−i,(xi,τi))

[
`bin(ŷ,yi)

]
≤ 1

2
− 1

C2mlogm
.

Proof. The corollary follows immediately from Theorem 3.2 applied to the class Tα(H), which has VC
dimension bounded by dfat,γ(H) by Lemma H.1, together with the fact that a single weak ERM oracle
call for the class Tα(H) can be implemented by a single range consistency oracle call for the classH of
the same length, using SampleCon.Real (Lemma C.4).

Lemma H.3 (Training error for regression). Letm,n∈N, x∈X , and η,δ,γ,β∈(0,1) be given, and suppose
that algorithm A is anm-sample weak learner with margin η for the class Tα(H). Let S̄∈(X×[0,1])n

be a sample so that for some h?∈H, each (xi,yi)∈S̄ satisfies |yi−h?(xi)|≤β−γ. Then the hypothesis
H(·):=γ ·

∑
τ∈DγJ(·,τ), where J is defined on Line 4 of RegRealizable(S̄,x,A ,η,δ,γ,β), satisfies

êrS̄(H)≤3β with probability 1−δ.
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Algorithm 8 Real-valued learner
Require: Concept class H⊂ [0,1]X , sample S = {(xi,yi)}i∈[n] ⊂ (X × [0,1])n, point x ∈ X , failure

probability δ, discretization parameters γ,β∈(0,1), weak learner A for Tα(H) with margin η, weak

ERM oracleOerm,w.

1: function REGREALIZABLE(S,x,A ,η,δ,γ,β)

2: For i∈ [n] and τ∈Dγ, define y′i,τ :=


1 :yi≥τ+β

0 :yi≤τ−β

∗ : |yi−τ |<β.
3: Define a dataset S̃⊂(X×Dγ×{0,1,∗})n

′
for some n′≤2n·(b1/γc+1), as follows:

S̃=
{

((xi,τ),y′i,τ) : i∈ [n],τ∈Dγ,y′i,τ 6=∗
}
. (26)

4: Call Adaboost (Algorithm 5) on the dataset S̃ using the weak learner A with

T=d16log(4n/δ)/η2e, and denote the resulting hypothesis by J :X×Dγ→{0,1}.
5: returnH(x):=γ ·

∑
τ∈DγJ(x,τ).

6: function REGAGNOSTIC(S,x,A ,η,δ,γ)

7: Let ŷ∈ [0,1]n denote the output of SampleERM.Real(S,γ/2,Oerm,w). . Algorithm 3

8: Define S̃={(xi,ŷi) : i∈ [n]}.
9: returnH(x):=RegRealizable(S̃,x,A ,η,δ,γ,2γ).

Proof. Since there is some h? so that each (x,y)∈ S̄ satisfies |y−h?(x)|≤β−γ, the dataset S̃ defined
in (26) is Tα(H)-realizable. Then by Lemma E.1 together with the assumed guarantee on A , the output
hypothesis J :X×Dγ→{0,1} of Adaboost satisfies the following with probability 1−δ:

∀i∈ [n], τ∈{τ ′∈Dγ : |yi−τ ′|≥β}, J(xi,τ)=1{τ >yi}. (27)

Thus, for each i∈ [n], letting ŷi :=τ ·byi/τc, we have

`abs(H(xi),yi)= |H(xi)−yi|≤|H(xi)−ŷi|+|ŷi−yi|

≤γ+γ ·
∑
τ∈Dγ

1{J(xi,τ) 6=1{ŷi>τ}}

≤γ+γdβ/γe+γ ·
∑

τ∈Dγ, |yi−τ |≥β

1{J(xi,τ) 6=1{ŷi>τ}}≤3β,

where the final equalitty uses (27). It follows that êrS̄(H)= 1
n

∑n
i=1`

abs(H(xi),yi)≤3β, as desired.

Proof of Theorem 4.2. The proof closely follows that of Theorem 4.1. Let a mapping γ 7→ dfat,γ be
given and consider a concept class H ⊂ [0,1]X with dfat,γ(H) ≤ dfat,γ for all γ ∈ [0,1], together a
weak range oracle Orange and a weak ERM oracle Oerm,w for H. Let C1,C2 be the constants in the
statement of Corollary H.2, and fix γ∈(0,1). Definem :=C1dfat,γ ·log(dfat,γ) and η := 1

C2mlogm . Write
T =d16log(4n/δ)/η2e as in Algorithm 8. Let A : (X×Dγ×{0,1})m×(X×Dγ)→{0,1} denote the
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learner of Corollary H.2 (in particular, A (S,(x,τ)) calls WeakRealizablewith inputs S,(x,τ), and an
appropriate choice of the parameters). Then by Corollary H.2 and Lemma D.4, A is anm-sample weak
learner for the partial concept class Tα(H) with margin η. Moreover, as guaranteed by Corollary H.2, a
single call of A can be completed using Õ(m3) calls to eitherOrange orOerm,w.

Realizable case. Given n,δ∈(0,1) and anH-realizable distribution P ∈∆(X×[K]), consider a sample
S∼Pn. We will show that the algorithm which, given S and some x∈X as input, returns the outputH(x)
of RegRealizable(S,x,A ,η,δ,γ,γ) satisfies the requirements of the theorem. LetH :X→ [0,1] be de-
fined byH(·)=γ ·

∑
τ∈DγJ(·,τ), where J is the hypothesis defined in Line 4 of RegRealizable. We

want to show that with probability 1−δ overS and the random bits of RegRealizable, erP (H)≤ε for
an appropriate choice of ε. To do so, we define a distributionQ over sample compression schemes (ρ,κ) on
datasets of size at most 2n·(b1/γc+1), so that the distribution of ρ(κ(S)) is the same as the distribution of
H. The call to Adaboost (Algorithm 5) in Line 4 of Algorithm 8 generates a sequence of i.i.d. datasets
S̃1,...,S̃T ∈(X×Dγ×{0,1})m, each consisting only of examples in S̃ (defined in (26)), together with a se-
quence of parametersα1,...,αT ∈R and a sequence of random bitstringsR1,...,RT . The values of S̃t,αt,Rt
satisfy the following: the output hypothesis J :X×Dγ→{0,1} of Adaboost is given by J(x,τ):= 1

2 +
1
2sign

(∑T
t=1αt·(2ARt(S̃t,x,τ)−1)

)
. For j∈ [m], the jth example in S̃t may be written as (xit,j ,τt,j,bt,j),

for some random variables it,j∈ [n],τt,j∈Dγ,bt,j∈{0,1}. We then define St :={(xit,j ,yit,j)j∈[m].
We define (ρ,κ)∼Q to be distributed as follows:

• κ maps the dataset S ∈ (X × [0,1])n to κ(S) = (S1, ... ,ST ),(αt,(τt,j, bt,j)j∈[m])t∈[T ], where
St,αt,τt,j,bt,j are defined as a (deterministic) function of (Rt)t∈[T ] and S as described above.

• ρ proceeds as follows, given an input of the form (S′1,...,S
′
T ),
(
α′t,(τ

′
t,j,b
′
t,j)j∈[m]

)
t∈[T ]

. Denoting

S′t = {(x′t,j,y′t,j)}j∈[m], let us define S̃′t := {(x′tj ,τ
′
t,j,b

′
t,j)}j∈[m]; then ρ outputs the hypothesis

x 7→γ ·
∑

τ∈Dγ

(
1
2 + 1

2sign
(∑T

t=1α
′
t·(2ARt(S̃

′
t,x,τ)−1)

))
.

Since the valuesαt defined in Adaboost can be encoded withO(logn) bits and the list (τt,j,bt,j)j∈[m]

can be encoded withO(mlog1/γ) bits, with probability 1 over (κ,ρ)∼Q, the size of κ for input samples
S of size n is bounded by |κ|≤O(T ·(mlog1/γ+logn)). Lemma H.3 gives that there is a subset E of
compression schemes for whichQ(E)≥1−δ so that for all (κ,ρ)∈E, êrS(ρ(κ(S)))≤3β. By Lemma A.1
applied to the absolute loss function, it follows that with probability 1−2δ over the draw of S∼Pn and
the draw of (ρ,κ)∼Q, we have that, for some constant C,

erP (ρ(κ(S)))≤C ·
√
γ∆+∆≤γ+2C2∆ (28)

for ∆:=
log(n)log(n/δ)· 1

η2
·(mlog(1/γ)+logn)

n
,

where the second inequality in (28) uses the AM-GM inequality. Given S, the distribution of ρ(κ(S)) is the
same as the distribution of the output hypothesisH of RegRealizable. Thus, by making an optimal
choice of the discretization parameter γ, our choices ofm,η and by rescaling δ, we see that erP (H)≤ε
with probability 1−δ for

ε := inf
γ∈[0,1]

{
O(γ)+

d3
fat,γ ·log(1/δ)

n
·polylog(dfat,γ,n,loglog1/δ)

}
. (29)
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Note that the dataset S̃ passed to Adaboost in RegRealizable is of size |S̃|=O(n/γ)≤
O(n2), since the optimal choice of γ in (29) is always bounded below by 1/n. Since the number of
rounds of Adaboost is T≤poly(n) and the weak learner A makes poly(m) calls toOrange (Corol-
lary H.2), the same argument as in the proof of Theorem 3.1 establishes that the cumulative query cost
of RegRealizable for the oracleOrange is poly(n).

Agnostic case. Fix a distribution P ∈ ∆(X × [0,1]). Given n ∈ N, we will show that the algo-
rithm which takes as input an i.i.d. sample S ∼ Pn and a point x ∈ X , and returns the output H(x)
of RegAgnostic(S,x,A ,η,δ,γ,2γ) (Algorithm 8) satisfies the requirements of the theorem. Let
H : X → [K] denote the (random) hypothesis defined by x 7→ RegAgnostic(S,x,A ,η,δ,γ) (in
particular, this hypothesis is exactly the one given by x 7→γ

∑
τ∈DγJ(x,τ), where J is the hypothesis

defined on Line 4 in the call to RegRealizable from RegAgnostic). We want to show that, with
probability 1−δ over S and the random bits of RegAgnostic, erP (H)≤ infh∈HerP (h)+ε, for an
appropriate value of ε. To do so, we consider the distributionQ′ on compression schemes which is defined
similarly toQ as above, with the exception that (ρ,κ)∼Q′ are defined so as to simulate the execution of
RegRealizable(S,A ,η,δ,γ,2γ), as opposed to RegRealizable(S,A ,η,δ,γ,γ). (In particular, this
changes the definition of the i.i.d. datasets S̃t as defined in (26).)

Let Σ denote the mapping which, takes as input S∈ (X×[0,1])n and outputs the dataset S̃∈ (X×
[0,1])n as defined in Line 8 of RegAgnostic. For any compression scheme (κ,ρ)∈supp(Q′), (κ◦Σ,ρ)
is a compression scheme of size |κ◦Σ|≤|κ|≤O(T ·(mlog(1/γ)+logn)). Thus, by Lemma A.1, there is
a constant C>0 so that, for any fixed (κ,ρ)∈supp(Q′), with probability 1−δ over the draw of S∼Pn,

erP (ρ(κ(Σ(S))))≤ êrS(ρ(κ(Σ(S))))+C

√
1

n
(T log(n)·(mlog(1/γ)+logn)+log(1/δ)). (30)

By Lemma C.2 and the definition of Σ, for any S={(xi,yi)}i∈[n], the dataset S̃=Σ(S), which can be
written as S̃={(xi,ŷi)}i∈[n], satisfies the following: there is some h?∈H so that êrS(h?)=infh∈HêrS(h)

and `abs(h?(xi),ŷi)≤γ for all i∈ [n]. Thus, Lemma H.3 with β=2γ yields that, for any S, the output
hypothesis H of RegRealizable(S̃,A ,η,δ,γ,β) satisfies êrS̃(H)≤6γ with probability 1−δ. Since
the hypothesisH has the same distribution as ρ(κ(Σ(S))) for (ρ,κ)∼Q′, we see that for any S, there is a
set E ′ of compression schemes satisfyingQ′(E ′)≥1−δ so that, for all (κ,ρ)∈E ′, êrS̃(ρ(κ(Σ(S))))≤6γ.
Moreover, note that, for anyH :X→ [0,1],

êrS(H)=
1

n

n∑
i=1

`abs(yi,H(xi))≤
1

n

N∑
i=1

`abs(H(xi),ŷi)+
1

n

n∑
i=1

`abs(ŷi,h
?(xi))+

1

n

n∑
i=1

`abs(h?(xi),yi)

≤êrS̃(H)+γ+ inf
h∈H

êrS(h). (31)

Combining (31) withH=ρ(κ(Σ(S))) and (30) gives that with probability 1−δ over the draw of S∼Pn
and (ρ,κ)∼Q′,

erP (ρ(κ(Σ(S))))≤êrS̃(ρ(κ(Σ(S))))+γ+ inf
h∈H

êrS(h)+C

√
1

n
(T log(n)·(mlog(1/γ)+logn)+log(1/δ))

≤7γ+ inf
h∈H

êrS(h)+C

√
1

n

(
1

η2
·log(n/δ)log(n)·(mlog(1/γ)+logn)+log(1/δ)

)
.
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McDiarmid’s inequality yields that with probability 1−δ over the choice of S∼Pn, infh∈HêrS(h)≤
infh∈HerP (h)+C

√
log(1/δ)/n, and combining this fact with the above display and the choice of Q′

gives that, with probability 1−δ over the choice of S∼Pn and the execution of RegAgnostic, its
output hypothesisH satisfies

erP (H)≤ inf
h∈H

erP (h)+7γ+C

√
d3
fat,γ ·log(1/δ)

n
·polylog(dfat,γ,n,loglog1/δ).

Infimizing over γ∈(0,1) gives the claimed result.
To analyze the oracle complexity of RegAgnostic, we first note that the call to SampleERM.Real

makesO(n/γ)≤O(n2) calls toOerm,w (Lemma C.2). The remainder of the analysis of oracle complexity
follows the realizable case exactly.

Appendix I. Lower bounds

In this section, we present lower bounds for oracle-efficient PAC learning with a (strong) ERM oracle.
Appendix I.1 treats the setting of multiclass classification with bounded DS dimension, and Appendix I.2
treats the setting of realizable regression with bounded one-inclusion graph dimension. Notice that in both
of these settings, uniform convergence does not hold (otherwise, a single ERM call on the i.i.d. sample
would suffice).

I.1. Lower bound for multiclass classification

A recent breakthrough result (Brukhim et al., 2022) established that the DS dimension of a multiclass
concept classH⊂ [K]X characterizes the sample complexity of PAC learning up to a polynomial factor,
in both the realizable and agnostic settings. Our main result of this section, Theorem I.2, shows that even
when the DS dimension is 1 a strong ERM oracle is insufficient for PAC learnability.

We begin by introducing the DS dimension. For simplicity, we restrict to the setting that the number
of classesK is finite (as such will be the case in our lower bound). Given n∈N and a nonempty subset
S⊂ [K]n, S is called a n-dimensional pseudocube if for each y∈S, there is some y′∈S so that y′i 6=yi
and yj=y′j for all j 6=i. The DS dimension ofH⊂ [K]X , denoted dDS(H) (Daniely and Shalev-Shwartz,
2014), is defined to be the largest positive integer d so that, for someX=(x1,...,xd)∈X d,H|X contains
a d-dimensional pseudocube.

Next, we introducing the concept class which will be used to prove Theorem I.2. Given positive
integersN,K∈N, we set XN :=[N ] and let the label space be YK :=[K]. For simplicity, we will often
write X=XN =[N ] and Y=YK when the values ofN,K are clear.

Let X≤q = [N ]≤q denote the set of subsequences of [N ] of length at most q (including the empty
sequence). Note that |X≤q|≤2qNq.

For mappings h? :X → [K] and φ? :X≤q→ [K] and an element z ∈X≤q, we define the merged
hypothesis merge(h?,φ?,z)∈YX , as follows:

merge(h?,φ?,z)(x):=

{
φ?(z) :x 6∈z
h?(x) :x∈z,

where x∈z denotes the event that x is one of the elements of z.
Given mappings h? :X→ [K] and φ? :X≤q→ [K], we define the classHmc

N,q(h
?,φ?)⊂YX as follows:

Hmc
N,q(h

?,φ?)={h?}∪{merge(h?,φ?,z) : z∈X≤q}.
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Lemma I.1. For any h? :X → [K] and φ? :X≤q→ [K] for which φ? is injective, the DS dimension of
Hmc
N,q(h

?,φ?) is bounded as dDS(Hmc
N,q(h

?,φ?))≤1.

Proof. Suppose for the purpose of contradiction that there were distinctx1,x2∈X so thatHmc
N,q(h

?,φ?)|{x1,x2}
contains a 2-dimensional pseudo-cube. Certainly this pseudo-cube must have some element (h(x1),h(x2))
(indexed by h∈Hmc

N,q(h
?,φ?)) so that h(x1) 6=h?(x1) and h(x2) 6=h?(x2). (Indeed, take some element

in this pseudo-cube, and for each i∈{1,2} for which the ith coordinate is h?(xi), move to an i-neighbor.)
But by definition of Hmc

N,q(h
?,φ?), we must have h(x1) =h(x2) =φ?(z) 6∈ {h?(x1),h?(x2)} for some

z∈X≤q, and thus, since φ? is injective, h=merge(h?,φ?,z), meaning that x1,x2 6∈z. But it is also clear
that (h(x1),h(x2)) cannot have any neighbor inHmc

N,q(h
?,φ?)|{x1,x2}: any neighbor (h′(x1),h′(x2)) must

satisfy h′(x1)=h?(x1) or h′(x2)=h?(x2), but there is no function h′∈Hmc
N,q(h

?) with h′(xi)=h?(xi)
and h′(x3−i)=φ?(z) for some i∈{1,2} (since x1,x2 6∈z).

Theorem I.2. For any q∈N, there are domains X ,Y satisfying |Y|≤qO(q) so that the following holds.
There is no algorithm Alg which satisfies the following guarantee: for any classH⊂YX with dDS(H)=1
together with a strong ERM oracle Oerm,s for H, Alg is a (Oerm,s;1/4,1/4)-PAC learner for H with
sample complexity and oracle complexity at most q.

As a consequence of the bound |Y|≤ qO(q) in Theorem I.2 and the fact that dN(H)≤dDS(H), we
observe the following: even with a strong ERM oracle, there is no realizable PAC learning algorithm
with sample complexity and ERM query cost o(log(K)/loglog(K)), even for classes with Natarajan
dimension 1. This lower bound is nearly tight, as simply returning an ERM on the sample yields error
at most ε with q=O(dN(H)·log(K)/ε) samples and overall query cost. (Daniely and Shalev-Shwartz,
2014) We additionally note that in the hard instance used to prove Theorem I.2, the distribution P has the
additional property that its marginal over X is uniform.

Proof of Theorem I.2. Fix q ∈ N, and set N = 16q,K = 96q2Nq. We take X = XN = [N ] and
Y = YK = [K], so that |Y| ≤ qO(q) holds. Let H0 := YX = [K][N] denote the space of all mappings
h :X→Y and Φ:=[K][N]≤q denote the space of all mappings φ :X≤q→ [K]. Let U :=Unif(H0×Φ):
in particular, for a tuple (h?,φ?)∼U , the values h?(x)∈Y and φ?(z)∈Y are all independent and uniform
for all x∈X ,z∈ [N ]≤q. Given h? :X→Y, φ? :X≤q→Y, and a subset X ′⊂X , letOerm,s

h?,φ?,X ′ denote an
arbitrary strong ERM oracle for the classHmc

N,q(h
?,φ?) satisfying the following condition: if there is an

empirical risk minimizer of the sample passed toOerm,s
h?,φ?,X ′ of the form merge(h?,φ?,z) for some z⊂X ′,

then the oracle returns merge(h?,φ?,z). Moreover, let Ph? ∈∆(X×Y) denote the uniform distribution
over tuples (x,h?(x)), for x∈X . Note that the distribution Ph? is realizable with respect to the class
Hmc
N,q(h

?,φ?), for any φ?∈Φ.
Let us consider the execution of Alg with the classHmc

N,q(h
?,φ?) for a choice of (h?,φ?)∼U . Let

(x1,y1), ... ,(xq,yq) ∈ X ×Y denote the i.i.d. realizable sequence sampled with respect to Ph?. Let
X ′={x1,...,xq} – we will consider the interaction of Alg with the oracle Oerm,s

h?,φ?,X ′. For 1≤ t≤ q, let
(x̂t,ŷt)∈X×Y denote the tth tuple in X×Y queried in the course of the oracle calls of Alg. (In particular,
we concatenate the tuples of each oracle call and let (x̂t,ŷt) denote the tth element in this concatenated list.
As such, the ERM oracle will, in general, only return a hypothesis after receiving certain examples (x̂t,ŷt)
corresponding to the last datapoint in each dataset passed to it.) Let Ft denote the sigma-algebra generated
by (x1,h

?(x1)),...,(xq,h
?(xq)), (x̂1,ŷ1),...,(x̂t,ŷt), the values of φ?(z) for z⊂{x1,...,xq}, the internal

randomness ofAlg, and the results of all oracle calls (toOerm,s
h?,φ?,X ′) which terminated at some step s≤t. Let

Et denote the event that all oracle calls terminating at some step s≤t return an element of merge(h?,φ?,z)
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for some z⊂{x1,...,xq}. Since merge(h?,φ?,z) is Ft-measurable for each z⊂{x1,...,xq}, the event Et
is Ft-measurable.

Note that, conditioned on Ft, (x̂t+1,ŷt+1) is independent of 1{Et}·1{x̂t+1 6∈{x1,...,xq}}·h?(x̂t+1)
and 1{Et} ·φ?(z) for all z 6⊂ {x1,...,xq}: this holds because (x̂t+1,ŷt+1) is measurable with respect
to Ft, and conditioned on any instantiation of the random variables generating Ft for which Et oc-
curs, the values of 1{Et} ·φ?(z) for z 6⊂ {x1,...,xq} and of 1{Et} ·h?(x) for x 6∈ {x1,...,xq} are all
independently and uniformly distributed in [K]. Thus, conditioned on Ft, with probability at least
1−(1+2qNq)/K≥1−3qNq/K (over U and the execution of Alg), we have that

ŷt+1 6∈({1{Et}·1{x̂t+1 6∈{x1,...,xq}}·h?(x̂t+1)}∪{1{Et}·φ?(z) : z 6⊂{x1,...,xq}}). (32)

Let the event that (32) holds be denoted Gt+1. Thus, under Et∩
⋂
s≤t+1Gs, for all s≤ t+1, all pairs

(x̂s,ŷs) for which ŷs=h(x̂s) for some h∈Hmc
N,q(h

?,φ?) must satisfy either ŷs∈{φ?(z) : z⊂{x1,...,xq}}
or x̂s∈{x1,...,xq}. In particular, for any subset of the pairs (x̂s,ŷs), there must be some empirical risk
minimizer for this subset which belongs to {merge(h?,φ?,z) : z⊂{x1,...,xq}}. Thus, by definition of
Oerm,s
h?,φ?,X ′, under Et∩

⋂
s≤t+1Gs, the empirical risk minimizer returned byOerm,s

h?,φ?,X ′ at step t+1 (if any)
must belong to {merge(h?,φ?,z) : z⊂{x1,...,xq}}, i.e., Et+1 holds.

Since (32) gives that PrU ,Alg(Gt) ≥ 1 − 3qNq/K, a union bound gives that Pr
(⋂

t≤qGt
)
≥

1−3q2Nq/K. Since E0 holds with probability 1 and Et+1 holds under Et∩
⋂
s≤t+1Gs, we have that Eq

holds under the event
⋂
t≤qGt, i.e., with probability at least 1−3q2Nq/K. Write E? :=Eq∩

⋂
s≤t+1Gs.

Let H : X →Y denote the output hypothesis of Alg; note that H is Fq-measurable. We argued
above that for any x 6∈ {x1,...,xq}, conditioned on any instantiation of the random variables generating
Fq for which E? (and thus Eq) occurs, h?(x) is uniformly distributed in [K]. Thus, PrU ,Alg(H(x) =
1{E?}·h?(x))≤1/K. Taking expectation over (x,h?(x))∼Ph?, we have thatEU ,AlgE(x,y)∼Ph? [1{H(x)=1{E?}·y}]≤
1/K+q/N . Thus, by Markov’s inequality, there is some subset J ⊂H0×Φ of measure U (J )≥3/4
so that for all (h?,φ?)∈J , we have EAlgE(x,y)∼Ph? [1{H(x)=1{E?}·y}]≤2/K+2q/N . Since also E?
occurs with probability at least 1−3q2Nq/K≥31/32 (over the choice of (h?,φ?)∼U and the execution
of Alg), by Markov’s inequality there is a subset J ′⊂H0×Φ of measure U (J ′)≥3/4 so that, for all
(h?,φ?)∈J ′, we have PrAlg(E?)≥7/8.

Thus, for any (h?,φ?)∈J ∩J ′, we have PrAlg(E?)≥7/8 andEAlgE(x,y)∼Ph? [1{H(x)=1{E?}·y}]≤
1/K+2q/N . Then

EAlgE(x,y)∼Ph? [1{H(x)=y}]≤EAlgE(x,y)∼Ph? [(1−1{E?})+1{H(x)=1{E?}·y}]≤1/8+2/K+2q/N<1/2.

In particular,EAlgE(x,y)∼Ph? [`mc(H(x),y)]>1/2, which implies thatAlg cannot be a (Oerm,s
h?,φ?,X ′;1/4,1/4)-

PAC learner for forHmc
N,q(h

?,φ?).

I.2. Lower bounds for realizable regression

In this section, we prove a lower bound for oracle-efficient learning in the setting of realizable regression.
A recent paper (Attias et al., 2023) identified a combinatorial dimension depending on a scale parameter
γ, called the one-inclusion graph dimension at scale γ of a classH⊂ [0,1]X (denoted dOIG,γ(H)), so that
finiteness of dOIG,γ(H) at all scales γ characterizes real-valued learnability in the realizable setting. (In
contrast, in the agnostic setting, recall that fat-shattering dimension is known to characterize learnability
(Alon et al., 1997).) Moreover, (Attias et al., 2023) showed, roughly speaking, that the optimal sample
complexity of PAC learningH scales nearly linearly with dOIG,γ(H) for an appropriate choice of γ. In
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Theorem I.3 below, we will show that classes whose one-inclusion graph dimension is constant at all
scales may not be learnable with respect to a strong ERM oracle. To do so, we need to consider a slightly
different notion of strong ERM oracle, since a minimizer of empirical risk may not exist if the classH
is infinite. For simplicity, we assume that X is finite (as it will be in our lower bound).

Definition I.1 (Strong limiting ERM oracle). Consider a real-valued concept classH⊂ [0,1]X . A limiting
strong ERM oracleOerm,w forH is a mapping which takes as input a dataset S∈(X×[0,1])n and outputs
a concept h :X→ [0,1] so that, for some sequence of hypotheses hn∈H, ‖hn−h‖∞→0 as n→∞ and
limn→∞êrS,`abs(hn)=infh∈HêrS,`abs(h).

Note that an h as required in Definition I.1 always exists since X is finite, and thus [0,1]X is compact.

Theorem I.3. Consider any q∈N and algorithm Alg with access to a limiting strong ERM oracleOerm,s

for a real-valued concept class. Suppose that Alg has sample complexity and oracle complexity at most
q/200. Then there is a set X and a concept classH⊂ [0,1]X which satisfies the following two conditions:

1. Alg is not a (Oerm,s;1/400,1/400)-PAC learner forH.

2. For anyH-realizable distribution P ∈∆(X×[0,1]), there is a PAC learning algorithm that achieves
0 error with 1 sample with probability 1.

To avoid needing to formally define the one-inclusion graph dimension dOIG,γ(·), we have not ex-
plicitly stated an upper bound on dOIG,γ(H) in the statement of Theorem I.3, instead directly stating its
PAC learnability. Using the second item of the above theorem, the results of (Attias et al., 2023) imply
that the classH satisfies dOIG,γ(H)=O(1) for all γ∈(0,1); alternatively, it can be verified directly that
dOIG,γ(H)=1 for all γ.

Proof of Theorem I.3. For n∈N and q∈N, write Nn,q :=nq, and let pn denote a prime number which
is greater than 4n·Nn,q and distinct from pn−1,...,p1. We set X =[q]. For any sequence σ̄=(σ1,σ2,...),
where σn : [Nn,q]→ [Nn,q] is a permutation, we define a function class Hσ̄ ⊂ [0,1]X , as follows. For
n∈N and 1≤ i≤Nn,q, let gn,i :X →{0,1/n,...,(n−1)/n} be the ith function (lexicographically) in
{0,1/n,...,(n−1)/n}X . Now define

hn,i,σ̄(x):=
dgn,i(x)·pne

pn
+
σn(i)

pn
.

By our choice of pn, we have that ‖hn,i(x)−gn,i‖∞≤(σ(i)+1)/pn≤2Nn,q/(4n·Nn,q)<1/n. We now
defineHσ̄ :=

⋃
n∈N{hn,i,σ̄ : n∈N,i∈ [Nn,q]}. Note that for any function f :X→ [0,1] and n∈N, there

is some i∈ [Nn,q] so that ‖f−gn,i‖∞≤1/n, meaning that ‖f−hn,i,σ̄‖∞≤2/n. Hence, for any σ̄,Hσ̄ is
dense in the space of functions [0,1]X (with respect to ‖·‖∞). Thus, we may choose the following limiting
strong ERM oracleOerm,s for the classHσ̄: given a sample (x1,y1),...,(xn,yn)Oerm,s returns the function
which is 0 on all points x 6∈{x1,...,xn}, and which maps each xi to median({yj : xj =xi}). Note that
Oerm,s does not depend on σ̄.

We next prove that for any σ̄, the classHσ̄ is learnable with a single sample: indeed, note that for
any x∈X , n∈N, and i∈ [Nn,q], there is no hypothesis h′∈Hσ̄, h′ 6=hn,i,σ̄, with h′(x)=hn,i,σ̄(x), since
pn is prime for each n. Thus, the learning algorithm which sees a sample (x,h?(x)), for any x∈X , can
determine h? from the value of h?(x), and return h?.
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Finally, we lower bound the performance of Alg, for some choice of σ̄. Fix n= 100, and choose
σn′ for n′ 6= n arbitrarily. Moreover, we let σn : [Nn,q]→ [Nn,q] be a uniformly random permutation,
i?∼Unif([Nn,q]), and h?=hn,i?,σ̄. We let P be the distribution Unif({(x,h?(x)) : x∈X}).

We consider the performance of Alg in expectation over the distribution of σ̄ and h? that we have
defined. Let S= {(x1,y1),...,(xq/200,yq/200)} denote the i.i.d. sample from P that Alg receives. Note
that, conditioned on S, the value of i? is uniformly random over the set IS :={i∈ [Nn,q] : gn,i,σ̄(xj)=
gn,i?(xj) ∀j∈ [q/200]}. This uses the fact that the value of σ−1

n (i?)∈ [Nn,q] is uniform and independent
of i?. Since the responses to the queries toOerm,s do not depend on σ̄, the output hypothesisH of Alg and
i? are conditionally independent, conditioned on S. Thus, conditioned onH, i? is uniformly random over
the set IS, which in particular means that the function gn,i? is distributed uniformly among all functions
g∈{0,1/n,...,(n−1)/n}X satisfying g(xj)=gn,i?(xj) for j∈ [q/200]. Hence for any x 6∈{x1,...,xq/200},
Ei?,σ̄[|gn,i?(x)−H(x)| |H]≥1/10, which yields Ei?,σ̄[|hn,i?,σ(x)−H(x)| |H]≥1/10−2/n>1/100.
Averaging over the distribution ofH and of x∼Unif(X ) and using that h?=hn,i?,σ̄, we see that

Ei?,σ̄EAlgE(x,y)∼Ph? [|h?(x)−H(x)|]>1/100−(q/200)/q=1/200.

Thus, there is some σ̄ and i?∈ [Nn,q] so that, letting h?=hn,i?, EAlgE(x,y)∼Ph? [`abs(H(x),y)]>1/200.
Hence Alg cannot be a (Oerm,s;1/400,1/400)-PAC learner forHσ̄, for some choice of σ̄.

Appendix J. Computational separation between weak and strong consistency oracle

We let FACTORING denote the following computational problem: given a positive integer n, represented
in binary, in the event thatn=pq for primes p,q, then output p and q; otherwise, the output can be arbitrary.9

It is widely believed that there is no polynomial-time algorithm for FACTORING (Lenstra, 2011).
Below we define a hypothesis class Hprimes for which a weak consistency oracle Ocon,w (Defini-

tion 2.3) can be implemented in polynomial time, yet there is no polynomial-time algorithm which can
implement a strong ERM oracleOerm,s (Definition 2.6), assuming that there is no polynomial-time algo-
rithm for FACTORING. In fact, our proof shows that it is computationally hard to implement a strong
ERM oracle even if it must only succeed on realizable datasets (such an oracle corresponds to the standard
notion of consistency oracle, which returns a hypothesis consistent with the input dataset, if one exists).

We setX :=N and define the classHprimes⊂{0,1}X , as follows. For each pair of primes p,q, we define

hp,q(x):=

{
1 :x∈{p,q,pq}
0 :otherwise.

Also write, for each n∈N, gn(x):=1{x=n}. We then setHprimes :={hp,q : p,q are prime}∪{gn : n∈
N is not a product of two primes}. Note that dVC(Hprimes)≤3.

Proposition J.1. The classHprimes satisfies the following:

1. A weak consistency oracleOcon,w forHprimes can be implemented in polynomial time.

2. FACTORING reduces to the problem of implementing a strong ERM oracleOerm,s forHprimes.

Proof. We first describe how a weak consistency oracle can be efficiently implemented. Given a dataset
S :={(xi,yi)}i∈[n], we perform the following steps:

9. If one wishes to define a total problem, one can require that the output be 0 if n is not the product of 2 primes.
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• Set T :={xi : yi=1}.

• If |T |=0, return True.

• If |T |=1, let n denote the unique element of T . For each point in S of the form (xi,0), check if
n is a multiple of xi. If so, and the ratio n/xi is prime, then return False. At the end of the loop,
if we have not yet returned, then return True.

• If at least two values in T are composite, return False.

• If at least three values in T are prime, return False.

• If T consists of two prime values whose product is m, then output True if and only if the point
(m,0) does not appear in S.

• Otherwise, T consists of a composite valuem and at least one prime value p; then output True if
and only the point (m/p,0) does not appear in S.

The above steps may be efficiently implemented since there is a polynomial-time algorithm for determining
whether a given natural number is prime (Agrawal et al., 2004).

Now consider a strong ERM oracle Oerm,s for Hprimes. Given a positive integer n, consider the
hypothesis ĥ returned byOerm,s({(n,1)}). If n is a product of two primes p,q then the unique empirical
risk minimizer is the hypothesis hp,q, meaning thatOerm,s must return this hypothesis and thereby yield
the prime factors p,q.
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