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Abstract

We study the problem of estimating the mean of an identity covariance Gaussian in the truncated
setting, in the regime when the truncation set comes from a low-complexity family C of sets.
Specifically, for a fixed but unknown truncation set S C R%, we are given access to samples from
the distribution A (g, I) truncated to the set S. The goal is to estimate p within accuracy € > 0 in
£2-norm. Our main result is a Statistical Query (SQ) lower bound suggesting a super-polynomial
information-computation gap for this task. In more detail, we show that the complexity of any SQ
algorithm for this problem is dP°"Y(1/¢)  even when the class C is simple so that poly(d/c) samples
information-theoretically suffice. Concretely, our SQ lower bound applies when C is a union of a
bounded number of rectangles whose VC dimension and Gaussian surface are small. As a corollary
of our construction, it also follows that the complexity of the previously known algorithm for this
task is qualitatively best possible.

Keywords: truncated statistics, mean estimation, SQ model, low-degree polynomial tests

1. Introduction

We study the classical problem of high-dimensional statistical estimation from truncated (or censored)
samples, with a focus on establishing information-computation tradeoffs. Truncation refers to the
situation where samples falling outside of a fixed (potentially unknown) set are not observed. This
phenomenon naturally arises in a wide range of applications across the sciences. Estimation from
truncated samples has a rich history in statistics, dating back to Bernoulli (1760), who studied it in the
context of smallpox vaccination. Pioneering early works include those of Galton (1898), in the context
of analyzing speeds of trotting horses; Pearson and Lee (Pearson, 1902; Pearson and Lee, 1908; Lee,
1914), who used the method of moments for mean and standard deviation estimation from truncated
Gaussian one-dimensional data; and Fisher (1931), who leveraged maximum likelihood estimation
for the same problem. The reader is referred to Schneider (1986); Cohen (1991); Balakrishnan and
Erhard (2014) for some textbooks on the topic.

Despite extensive investigation in the statistics community, the first statistically and computa-
tionally efficient algorithms for learning multivariate structured distributions in the truncated setting
were developed fairly recently in the computer science community. The first such work (Daskalakis
et al., 2018) focuses on the fundamental setting of Gaussian mean and covariance estimation, and
operates under the assumption that the truncation set is known (i.e., the learner is given oracle access
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to it). Most relevant to the current paper is the subsequent work of Kontonis et al. (2019) that studies
mean estimation of a spherical Gaussian under the assumption that the truncation set is unknown
and is promised to lie in a family of sets with “low complexity”. Beyond mean and covariance
estimation, a related line of work has addressed a range of other statistical tasks, including linear
regression (Daskalakis et al., 2019, 2020; Ilyas et al., 2020; Daskalakis et al., 2021b; Cherapanamjeri
et al., 2023), non-parametric estimation (Daskalakis et al., 2021a), and learning other structured
distribution families (Fotakis et al., 2020; Plevrakis, 2021; Lee et al., 2023).

In this paper, we focus on the basic task of estimating the mean of a spherical Gaussian in the
truncated setting with unknown truncation set. The setup is as follows: Let S C R be a fixed subset
of R? and denote by a > 0 its probability mass under N(u, I), the d-dimensional Gaussian with
mean p and identity covariance. Given access to samples from the distribution NV (u, I) truncated
to the set S, the goal is to estimate g within accuracy € > 0 in £5 norm. For the special case of
this task where the truncation set S' is known to the algorithm (more accurately, the algorithm has
oracle access to .5), Daskalakis et al. (2018) gave a polynomial-time algorithm that draws Oa(d /%)
truncated samples'. They also pointed out that if S is unknown, and arbitrarily complex, then the
learning problem is not solvable to better than constant accuracy, with any finite number of samples.

Although the latter statement might seem discouraging, a natural avenue to circumvent this
bottleneck is restricting the set S to a family of “low complexity”. For example, early work in the
statistics community considered the case where S is a rectangle (box) or a union of a small number
of rectangles. Intuitively, for such “simple” classes of sets, positive results may be attainable, even
for unknown truncation set. Kontonis et al. (2019) formalized this intuition by providing the first
positive results — both information-theoretic and algorithmic — for settings where the unknown set
S has “low complexity”. Specifically, Kontonis et al. (2019) showed two (incomparable) positive
results, corresponding to natural complexity measures of the family of sets containing S:

1. If S comes from a family of sets C with VC-dimension V/, then the problem is information-
theoretically solvable to /5 error ¢ with O(V/e + d? /&%) truncated samples.

2. If S comes from a family of of sets C with Gaussian Surface Area at most I' > 0 (Definition 4),
then the problem is solvable using sample and computational complexity d" “poly(1/e),

For the setting of bounded VC-dimension, Kontonis et al. (2019) stated that “Obtaining a computa-
tionally efficient algorithm seems unlikely, unless one restricts attention to simple specific set families
[...]”. For the setting of bounded surface area, the algorithm of Kontonis et al. (2019) has sample and
computational complexity dP°¥(1/¢) even for I’ = O(1), which is not required for simple classes of
sets. This discussion serves as a natural motivation for the following question:

Are there “simple” families of sets for which learning truncated Gaussians
exhibits an information-computation tradeoff?

In more detail, is there a class of sets C such that our learning task is information-theoretically
solvable with a few samples, and at the same time any computationally efficient algorithm requires
significantly more samples?

We tackle this question in two well-studied restricted models of computation — namely, in the
Statistical Query (SQ) model (Kearns, 1998) and the low-degree polynomial testing model (Hopkins,

1. The notation O, suppresses poly-logarithmic dependence on its argument and some dependence on the parameter c.
In the context of the lower bounds established here, o will be a positive universal constant, specifically o > 1/2.
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2018; Kunisky et al., 2022). As our main result, we answer the above question in the affirmative for
both of these models. Specifically, we exhibit a family of sets with small VC dimension and small
Gaussian surface area (hence, for which our problem is solvable with polynomial sample complexity),
such that any SQ algorithm (and low-degree polynomial test) necessarily requires super-polynomial
complexity. As a corollary of our construction, it also follows that the complexity of the algorithm
in Kontonis et al. (2019) (which is efficiently implementable in these models) is qualitatively best
possible. Finally, we remark that the underlying family of sets used in our hard instance is quite
simple — consisting of unions of a bounded number of rectangles.

1.1. Our Results

To formally state our main result, we summarize the basics of the SQ model.

SQ Model Basics The model, introduced by Kearns (1998) and extensively studied since, see, e.g.,
Feldman et al. (2013), considers algorithms that, instead of drawing individual samples from the
target distribution, have indirect access to the distribution using the following oracle:

Definition 1 (STAT Oracle) Let D be a distribution on R%. A statistical query is a bounded function
f: R4 — [=1,1]. For T > 0, the STAT(7) oracle responds to the query f with a value v such that
v —Ex~plf(X)]| < 7. We call T the tolerance of the statistical query.

An SQ lower bound for a learning problem is an unconditional statement that any SQ algorithm for
the problem either needs to perform a large number g of queries, or at least one query with very
small tolerance 7. Note that, by Hoeffding-Chernoff bounds, a query of tolerance 7 is implementable
by non-SQ algorithms by drawing O(1/72) samples and averaging them. Thus, an SQ lower bound
intuitively serves as a tradeoff between runtime of €2(¢) and sample complexity of Q(1/7).

Main Result We are now ready to state our main result:

Theorem 2 (SQ Lower Bound for Learning Truncated Gaussians) Letd,k € Z, € > d~¢ for
some sufficiently small constant ¢ > 0, and assume k < c/ V15, Let C be the class of all sets S C RY
with the properties that: (i) S is the complement of a union of at most k? rectangles, and (ii) S
has O(1) Gaussian surface area and (1) mass under the target Gaussian. Suppose that A is an
algorithm with the guarantee that, given SQ access to N'(u, 1) truncated on a set S € C (where
and S are unknown to the algorithm), it outputs a 1 with ||t — p||2 < €. Then, A either performs

Q(1 . . _
9d?M many queries, or makes at least one query with tolerance d—®).

We conclude with some remarks about our main theorem. First, our SQ lower bound holds
against a simple family of sets. The class C, as (the complement of) a union of k2 < poly(1/¢)
rectangles, has VC dimension poly(dlog(k)). By the sample upper bound of Kontonis et al. (2019),
the corresponding learning problem is thus solvable with poly(d/e) samples. Even for this simple
class, our result suggests that any efficient SQ algorithm requires droly(1/e) samples. Second, the
fact that our family of sets has bounded Gaussian surface area implies that the algorithm of Kontonis
et al. (2019) (which fits in the SQ model) is qualitatively optimal. Finally, using a known equivalence
between SQ and low-degree polynomial tests (Brennan et al., 2021), a qualitatively similar lower
bound holds for the latter model. This implication is formally stated in Appendix E.
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1.2. Overview of Techniques

Our SQ lower bound leverages the methodology of Diakonikolas et al. (2017) (and in particular the
low-dimensional extension from Diakonikolas et al. (2021)), which provides a generic SQ hardness
result for the problem of non-Gaussian component analysis: Fix a low-dimensional distribution A
on R™ with m < d, and consider the family D of all d-dimensional distributions defined to coincide
with A in some (hidden) m-dimensional subspace and being equal with the standard Gaussian in
its orthogonal complement. The main result of that framework (cf. Fact 6) is that, if A is itself
similar to AV(0, I,;,x,n,) — in the sense that it matches its first ¥ moments with A/(0, L, ;) — then
the hypothesis testing problem of distinguishing between a member of D and N (0, I, 4) requires
either 27" statistical queries, or a query of small tolerance 7 < d=%*)_ Given this fact, we want
formulate our problem as an instance of non-Gaussian component analysis, i.e., we aim to find an
A that matches k = poly(1/¢) moments with (0, I;,x,,) and is itself a truncated Gaussian with
mean g with ||p|2 > ¢, truncated on a set S of large mass and small Gaussian surface area. This
would imply that learning the mean of truncated Gaussians within error € in d dimensions is SQ hard.

A first attempt is to try to find a one-dimensional distribution A for the above construction, in
particular an A of the form N (e, 1) conditioned on a set S which is a union of a small number
of intervals. We first note that it suffices to make this construction work for any finite number of
intervals — indeed, an existing technique from Diakonikolas et al. (2020) can be leveraged to show
that if £ moments can be matched using a finite union of intervals, they can also be matched using
just k intervals (Proposition 13). Without having to worry about the number of intervals, our proof
strategy would be as follows: The first step is to create a continuous version of the construction.
Namely, we wish to find a function f : R — [0, 1] so that if the probability density function of
N(g,1) is multiplied by f and re-normalized, we obtain a probability distribution that matches
k moments with A/(0,1) (here f represents some fractional version of the indicator function of
S). This can be done somewhat explicitly. In particular, we can take f to be a carefully chosen
exponential function, so that the density of N'(u, 1) times f re-normalized is exactly A/(0, 1) (cf.
Claim 14). Unfortunately, this f will not be bounded in [0, 1], and in particular in the extreme tails
will have f(x) > 1. However, since so little mass lies at these tails, if we truncate f to have value at
most 1, we do not change the first £ moments by much (cf. Claim 15). Then, using a technique of
Diakonikolas et al. (2017) (also see Chapter 8 in Diakonikolas and Kane (2023)), we can modify f
slightly (by adding a carefully chosen polynomial times the indicator function of an interval) to fix
this moment discrepancy.

The above sketch gives a one-dimensional construction, where .S is a union of at most & intervals.
Unfortunately, this class of sets will have surface area approximately k, which is far too large for our
purposes. In fact, for any reasonable one-dimensional set .S, we will expect to have at least constant
surface area (as a single point on the boundary of .S contributes this much). Thus, we will need to
consider a two-dimensional construction instead (eventually given in Proposition 8). That is, we
want to exhibit a family of sets S C R? so that if the two-dimensional Gaussian N ((g,0), Iox2)
is conditioned on S, we match k low-degree moments with A/ (0,Is.2). We will take S to be
the complement of an appropriate union of rectangles in R?. We first describe the goal of our
construction for each axis separately: For the y-axis, we need to find a small union of intervals U
such that (i) the mass of U is §; = poly(e), and (i) N'(0, 1) conditioned outside of U matches
k moments with N'(0,1). For the x-axis, we need another union of intervals 7', which also has
small mass d2 = poly(e), and such that the pdf of A/(e, 1) multiplied by (1 — §1(x € T')) matches
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its first £ moments with NV (0, 1). The multiplication by (1 — §1(z € T)) is needed to take into
account the J-mass removed in the y-axis earlier. After having these at hand, we can let .S be the
complement of 7' x U. By a direct computation one can show that, given the properties above,
N((e,0),I) conditioned on S matches its low-degree moments with N (0, Iz2) (see the calculation
in (3)). We note that the boundary of S consists of k2 rectangles, each with perimeter approximately
01 + 92 = poly(e). So, if k < 1/4/01 + 92, S will have small Gaussian surface area. Finally, the
plan for showing existence of the sets U and 7' is the following: To establish the existence of the U
set (cf. Lemma 9), we first provide an explicit construction of intervals, by splitting the real line into
tiny intervals and defining U to include 1 — ¢ fraction of each; and then leverage the technique from
Diakonikolas et al. (2020) to reduce the number of intervals down to k. The proof strategy for the set
T (Lemma 10) is essentially the one that was discussed in the previous paragraph.

2. Preliminaries

Basic Notation We use the notation [n] o {1,...,n}. We use Z for positive integers, and || - ||2 for
the ¢-norm of vectors. We use N (, X) to denote the Gaussian with mean g and covariance matrix
3 and use ¢, 1 (x) for its probability density function. For other distributions, we will slightly abuse
notation by using the same letter for a distribution and its pdf, e.g., we will denote by P(x) the pdf
of a distribution P.

Definition 3 (Truncated Gaussian) For a set S C R, a vector JINS R? and a PSD matrix ¥ €
R¥*4 e define N'(p, 2, S) to be the Gaussian with mean N (u, X) after truncation using the set S,
i.e., the distribution with the following pdf (where ¢,, 5; denotes the pdf of N (p, X)): ¢p.3:.5(x) :=
Z M (z € S)ppux(x), where Z := [pq 1(z € S)dy x(x)dx.

We now define Gaussian Surface Area (GSA), which has served as a complexity measure of sets
in learning theory and related fields; see, e.g., Klivans et al. (2008); Kane (2011); Neeman (2014).

Definition 4 (Gaussian Surface Area) For a Borel set A C RY, its Gaussian surface area is
defined by I'(A) 4 im infs_,0 w, where As = {x : dist(z, A) < 6}.

Additional Background on the SQ Model The main fact that we use from the SQ literature
(Feldman et al., 2013; Diakonikolas et al., 2017) concerns the family of distributions which are
standard Gaussian along every direction, except from a low-dimensional subspace, where they are
forced to be equal to some other (non-Gaussian) distribution A.

Definition 5 (Hidden Direction Distribution) For an m-dimensional distribution A and a matrix
(d—m)
V € R™*4 e define the distribution Pa~ with pdf A(Vx)(2m)~" 2 eIV VI,

The main result from Diakonikolas et al. (2017) is that, if A is similar to Gaussian, in the sense that its
first moments agree with those of A/(0, I), then the hypothesis testing problem between A (0, I) and
a distribution of the above family is hard for any SQ algorithm. The following fact shows formally
this hardness. See Appendix A for related preliminaries and the proof of the fact below; x?(A, B)
below is defined as [q A%(x)/B(x)dx — 1.



DIAKONIKOLAS KANE PITTAS ZARIFIS

Fact 6 Letd, k € Z and m < d*/1° and k < d° for some sufficiently small constant ¢ > 0. Let A be
a distribution over R™ such that its first k moments match the corresponding moments of N'(0,1,,).
Define the family D of distributions containing Pa v (cf. Definition 5) for all matrices U € R xd
such that UU" = 1,,,. Then, any SQ algorithm that distinguishes between N'(0,1;) and D requires
either 24" many queries, or at least one query with tolerance d—"®) VX2(A,N(0,1,,,)).

3. SQ Lower Bound For Truncated Gaussians

In this section we formalize the proof strategy for Theorem 2 which had been informally described
in Section 1.2. We will show a stronger version of that theorem, stated below, which concerns
hypothesis testing between the standard Gaussian and an truncated Gaussian.

Theorem 7 (SQ Lower Bound; Hypothesis Testing Hardness) Letd, k € Z, € > d~¢ for some
sufficiently small constant ¢ > 0, and k < ¢/"5. Let C be the class of all sets S C R? with the
properties that: (i) S is a union of at most k?-many d-dimensional rectangles, and (ii) S has O(1)
Gaussian surface area and (1) mass under the target Gaussian. Consider the hypothesis testing
problem defined below:

1. Null Hypothesis: D = N(0,1).

2. Alternative Hypothesis: P € D, where D is the the truncated Gaussians N (u,1,S) for all
lell2 > eand S € C.

Then, any SQ algorithm that solves the above problem, either performs 9d?M many queries or
—Q(k)

performs at least one query with tolerance d .

Note that Theorem 7 implies immediately Theorem 2 by a trivial reduction: One can first find p
approximating the true mean up to error £/2 and then reject the null hypothesis if ||p|| > /2.

The end goal towards showing Theorem 7 is to establish the existence of the following two-
dimensional truncated Gaussian distribution A that matches k& = poly(1/¢) moments with the
standard Gaussian (Proposition 8).

Proposition 8 Let ¢ > 0 be a sufficiently small absolute constant, ¢ € (0,c), and k = ¢/£%1.
There exists a distribution A on R?, for which the following are true:

1. A matches its first k moments with the 2-dimensional standard Gaussian.
2. X*(A,N(0,1)) = O(1).

3. Every distribution of the form P4 v (cf. Definition 5) can be written as a truncated Gaussian
N(p, %, S) for u = (,0), = = Iy (the 2 x 2 identity matrix) and some S C R? which has mass
(with respect to the target Gaussian) at least 1/2 and Gaussian surface area at most 1.

Having Proposition 8 at hand, then Theorem 2 follows from Fact 6.

The proof of Proposition 8 requires two key results (Lemmas 9 and 10). In Proposition 8, A
is a 2-dimensional distribution that matches moments with the standard normal. In the following
lemmata, we construct independently each dimension of that distribution. The marginal on the y-axis
will be a standard normal, conditioned on a union of k intervals, as shown in Lemma 9 below. As
mentioned in the proof sketch of Section 1.2, we want these intervals to have small mass, thus we
will eventually use § = /¢ below. We defer the proof to Section 4.
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Lemma9 Foranyd € (0,1) and k € Z, there exists a set U C R such that: U is a union of k
intervals with Pt zr01)[y € U] = d and forallt = 1, ..., k it holds

E t U= E . 1
yMMmJﬂy!zx€ ] yMNmJﬂy] (1)

Next we construct the marginal of A for the z-axis. In this case, we start with a Gaussian
distribution with mean &, and we reweight it with a k-piecewise constant function taking values in
{1 — 4, 1} so that it matches k¥ moments with the standard normal. The reason why we use values in
{1 — 4, 1} is because we have removed § mass in our construction for the y-axis. This will be clearer
when we provide the calculation that A matches moments with the 2-dimensional Gaussian. The
proof can be found on Section 5.

Lemma 10 Let ¢ > 0 be a sufficiently small absolute constant and £ € (0, c). Let 0, k be parameters
so that § = /e and k = c/"15. There exists a set T C R such that: T is a union of k intervals,
Pr, nenle € T) <% and forallt =0, ...k it holds

E 1-01{zeT E [z, 2
LB —dtfeeryz = B @
where Z = E, e 1)[l — 01{z € T}].
Using Lemmas 9 and 10, we can prove Proposition 8 by letting
oz —e)o(y)1((x,y) € T x U
Aary) = 2E ) £T0).

In particular, it can be seen that A matches £ moments with the 2-dimensional normal by a direct
computation that uses (1), (2). Let ¢ and s be non-negative integers with £ + s < k. Then

“+00 +0o0

// yio(r —e)p(y)L((z,y) € T x U)dydx 3)
- B

/ @9 |teen) [ vy +1aeD) [ oy | @
ygU —o0

— / (x—¢ / Yoo(y) Lz e T)(1—-90)+1(x ¢ T))dydx (by Lemma 9)

+oo

— -6
_ /xt¢(x g)(1 _ ]l(xGT))dx / y*b(y)dy 5)
400 +0o0
= /xtgb(x)dx/ysd)(y)dy (by Lemma 10)

—0oQ —00
Also, P4 v is a truncated Gaussian trivially by our definitions and the fact that A is a truncated
Gaussian. The Gaussian surface area bound comes from the fact that 7' x U is a union of at most k>
many rectangles (see Lemmas 9 and 10), each with perimeter O (5 + £%-3) = O(£"3). Using that
k < ¢/£%1°, we obtain that the Gaussian surface area is at most 1. The full proof of Proposition 8
can be found on Appendix B.
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4. Proof of Lemma 9

Regarding Lemma 9, we need to find a union U of k intervals such that the truncated version of
N (0, 1) on these intervals matches moments with A/(0, 1), and the mass of U under N (0, 1) is equal
to a parameter § of our choice. The proof strategy is the following: First, we note in Claim 11 that it
suffices to find a piecewise constant function f : R — {—4,1 — 6} such that B, o1y [2" f(2)] = 0,
i.e., the weighted by f moments of A'(0, 1) are zero. Claim 11 implies that once such a function
f is found, Lemma 9 follows by letting the set U be the union of all the intervals where f(z) > 0.
We proceed to showing the existence of f through a two-step process. We start with an explicit
construction in Claim 12. Although capable of making the weighted moments arbitrarly close to
zero, this construction yields a function with a significantly larger number of pieces than k. We are
then able to reduce the number of pieces down to the desired count of k using a technique from
Diakonikolas et al. (2020), implemented in Proposition 13.

Claim 11 LetU C Randt € Z be a set and an integer. Define the piecewise constant function

1-6, z€U
O

with ¢ := Pr, 0,1 [z € U]. The following three statements are equivalent:
L E. nonlz'f(2)] =
2. B, nonl2'lz € Ul = ELonvon 2]
3. E.onon[2'z € Ul = E.ono,)[2'].

The proof of Claim 11 essentially follows by direct re-writing. That is,

1 1 1
50— 8) smatton)” TN =5 B F U= 75 &, F 20

= E [JlzeUl- E [!lz2¢U]. 6

ZNN(o,n["‘ |z € U] ZNN(O,U[Z 12 ¢ U] )

This means that if we start by assuming that B, 1)[2"f(2)] = 0, then we obtain the equality
E. x|z € Ul = E.n(0,1)[2'|2 & U]. Then, by another re-writing, we can decompose the
moment as follows: E,.xr,1)[2 ] =0E, nonlzflz € Ul + ( -0 E, no)le'z & U] This,
combined with the first sentence, implies that both E. w2z € Uland E, (o122 € U]
areequal to E, N(O,l)[ 2!]. The full proof of Claim 11 can be found in Appendix C.1.

Next we explicitly construct a piecewise constant function from R to {—4,1 — §} that achieves
zero weighted moments (or, more accurately, arbitrarily small weighted moments).

Claim 12 For any n > 0 and 6 € (0,1), there exists a (klog(1/n))?* /n-piecewise constant
function g, : R — {1 — 6, =0} such that | B, r01)lgn(2)2"]] <, forallt = 0,1,...,k and
Pr, anonlf(z) =1-0] €6 —n,6 +n.

We sketch the proof of Claim 12, with the full version being deferred to Appendix C.2. The idea is
that we partition the real line into intervals A; = [is, (i + 1)s] for i € Z using a small step size s. For
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each i € Z, we further split A; into two parts A := [is, (i +0)s] and A; := [(i+6)s, (i +1)s], i.e.
the ratio of the sub-intervals’ length is §/(1 — &). We define g, () = 1 — 6 on A} and g,)(z) = —§
on A; for all 7. The main argument is that since the Gaussian density does not change by much inside
A;, the contribution to the moment integral from the sub-intervals AZ* and A;” must approximately
adhere to the ratio of the sub-intervals’ lengths, i.e.,

fA;r 2Lo(z)dz 8
[4-#to(z)dz 10

(1+&) (7

for some small &;. In fact, we can show it for |£;| = O(is?) using a polynomial approximation for
the density function ¢(z). The important part is that we can control |;| using the step size s. Finally,

] _ t _ t _ t
B4 = |2 JCERCE <T|a-9 / oz [ Lot
<Slals| [ e <. (using (7)
icZ 2€A;

The last step above amounts to a sufficiently small s so that the entire right hand side becomes less
than 7). There are additional details needed to formalize this, such as noting that the summation does
not need to cover the entire range of ¢ € Z. We defer these details to Appendix C.2.

The final step is to reduce the number of pieces from (klog(1/1))%* /1 down to k. To this end,
we use the proposition below which shows that we can start with a ¢ > k piecewise constant function
and decrease the number of pieces to k without changing the desired properties of the function.
An analogous statement was shown in Diakonikolas et al. (2020); here we require a generalization
of this for all continuous distributions and any sequence of moments. The main idea of the proof
is to model the endpoints of the intervals as a differential equation. To do so, we start with an
instance that has many more endpoints than our goal, i.e., the instance has ¢ endpoints, and the first k&
moments of this distribution have specific values. One can model this as a vector-valued function
M(z1,...,2) : R RF, where 21, . . ., 2 are the endpoints and M; is the value of the i-th moment.
Our task is to move the endpoints z; until two of them coincide or one of them goes to infinity, while
keeping the vector M constant (so that the moments will continue to satisfy our assumptions). This
is achieved by finding a specific u(z) : R — R? with the properties that u(0) = [21, ..., 2] (so that
the initial conditions satisfy our moment assumptions), dM(uy(z), ..., us(z))/dz = 0 (so that the
moments remain constant), and du;(z)/dz = 1 (so that at least one endpoint will be removed, i.e.,
in the worst case the ¢-th endpoint goes to infinity). One can show that such a function u always
exists, as long as t > k + 1. For completeness, we provide a proof in Appendix C.3.

Proposition 13  Let k, ¢ be positive integers with £ > k + 1 and a,b € R with b > a. Let D
be a continuous distribution over R and let vy, ... ,vx_1 € R. If for any n > 0 there exists an
at most (-piecewise constant function g, : R — {a,b} such that |E.p|g,(z)z"] — vi| < n for
every non-negative integer t < k, then there exists an at most (k + 1)-piecewise constant function
f:R = {a,b} such that E..p|f(2)z'] = v, for every non-negative integer t < k.

Having the above at hand, the proof of Lemma 9 follows from Claim 12 and Proposition 13
applied witha = —6,b =1+, D = N(0,1). The set U that satisfies the conclusion of Lemma 9
is the set of intervals on which f(z) > 0.
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5. Proof of Lemma 10

The high-level approach for proving Lemma 10 is to first show a relaxed version of the statement,
where the “hard set 7" is replaced by a “soft set f” which is a function f : R — [0, 1]. That is,
define the distribution

+o0o
P(z) = ¢(x —e)(1 —6f(x))Z " for Z := p(x —e)(1 —5f(x))dx . ®)

—0o0
We seek to find an f : R — [0, 1] satisfying the following two constraints:
1. (Moment matching) Eyp, [2'] = E,xr(0,1)["], and
2. (f has small mass) Z = 1 — 6¢°3

Note that this is indeed a relaxed version of the statement of Lemma 10 which results by replacing
the 1(xz € T') by f(z): the first constraint above is the relaxed version of (1) and the second
constraint is equivalent to E, 1) [f(7)] < £0-3 which is the relaxed version of the constraint
Pr, neylr € T] < 03 appearing in Lemma 10. Once we find such an f, we can convert it to
a “hard set” T" which is a union of intervals by using a randomized rounding technique, similar to
Diakonikolas et al. (2020). Finally, that technique does not ensure any guarantees on the number of
intervals produced, but using Proposition 13 as in the previous section, we can bring this number
down to k.

We will prove Item 1 and Item 2 that were listed before in two steps: We will find an f consisting
of two parts f(x) = fi(z) + fa(z) with fi(x) € [e,1/2] and fa(x) € [—¢,€] (so that overall
f(z) € [0,1]). For the first part (cf. Claim 14), the idea is to start by f; being the function that would
make the distribution Py, (cf. notation of (8)) exactly the same as ¢(z) (the pdf of (0, 1)), and
then clip f1(z) so that it only takes values in [, 1/2]. The important observation is that the clipping
only happens for = with large |x|. Thus, already Py, is equal to ¢(x) on big part of the real line. The
remaining part contributes negligible amount to the moments, thus we can correct the moments by
adding a correction term fa(x) to fi(z). We find f by finding an appropriate polynomial using a
technique from Diakonikolas et al. (2017).

We now implement the two steps of the proof. For the first one, (regarding f;), we have the
following.

Claim 14 Fix 0 = \/e. There exists an f1 : R — [e,1/2] such that fj;o dpx—e)(1—=0f1(z))dx =
1 — 693 and the distribution with pdf

Py 2= 20 o)

satisfies q(x) = ¢(z) for all x with |z| < 1/,

Proof Define ¢ := §e%-3 = £%® (recalling that § = /2). For notational convenience, we will consider
the following equivalent statement of our claim: there exists an h : R — [1 — de, 1 — 6/2] such that
fjoooo ¢(x —e)h(z)dr =1—¢ =1 — 6% and W%)fh(x) = ¢(x) for all z with |z| < 1/2/11; the
original statement would follow by this after letting fi(x) = (1 — h(z))/9).

10
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To show our claim, let us first consider the function B, which we define so that

¢(z — e)h(z)
1=-¢
That is, we define h(z) := exp(e2/2 — ex)(1 — €). Then, we define A to the version of & which is
clipped in the interval [1 — de, 1 — 6/2], i.e.,

=¢(x) forallz e R.

1—0de, ifh(z)>1-2de
h(x) := ¢ h(z) if1—6/2<h(z)<1-—2de
1-6/2, ifh(z)<1-6/2.

Finally, it remains to verify that the clipping happens only for 2 with |z| > 1/¢2/1. First, note that /
is a decreasing function. By plugging z = —1/¢2/'! we can see that h(—1/e2/11) = 1—0(*/°) (we
can see that by using a polynomial approximation for the e” function), which is less than the clipping
threshold of 1 —de = 1—&'5. Thus, by monotonicity of h, sup{z € R : h(z) > 1—-de} < —1/%/11,
Similarly, we can check the other boundary. |

We now move to the second part of the argument, which aims to find an fo : R — [—¢, €] such
that when f = fi + fo, the moments of Py get corrected and equal to those of A/(0,1). Fix C' = /e
and £ = 603 = 1 — 98, We will search for an f; of the particular form below

1-¢ p(x)
=——"1 <C 9
fola) = =5 5Bl < 0, ©)
for some appropriate polynomial with ff’c p(z)dz = 0 and small |p(z)| for all z € [-C,C]. We
now show how to find that polynomial and ensure the above properties. Our moment-matching
constraint ig the following (note that the normalization of the distribution is still 1 — &, because of the
property [~ p(z)dz = 0):

+o00 T —¢ _ ) — T +o00
/ ) oz =) fflé )= 0fa(@) J

By letting Py, (x) = %ﬁfl@) as in Claim 14, the above is equivalent to

C 9] 0o
/+ zlp(z)de = /+ xtPfl (z)dx — /+ rlo(x)dx . (10)

-C —00 —00

The rest of the proof mirrors that in Diakonikolas et al. (2017). By Claim 5.8 in Diakonikolas
et al. (2017), there exists a unique polynomial p satisfying (10), which has the form p(xz) =
Zf:o a;P;(z/C'), where P, is the i-th Legendre polynomial and a; = 2;”51 f_CC Pi(z/C)p(x)dz.
We want to show that |a;| = O(ie®). First we note why this would be enough. This is because, by
properties of the Legendre polynomials (see Appendix A for basic properties that we will use), it
would imply that |p(z)| = O(Zf:1 |lai|) = O(k%e%) for all z € [~C, C]. We would then be done,
because after combining with (9), we would obtain that for all z € [—C, C] it holds

(1= 9lp)| _ Ok
0p(z —e) ~ op(x—e)

|[f2(2)] <

<e,

11
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where we used § = /¢, k < ¢/e%15, and that ¢(x — &) > 1/3 for all 2 € [—1,1]. We conclude by
showing that |a;| = O(ie®). First, by orthogonality of the P;’s and (10),

‘ / \(2/C)p ‘ /+°° (2/C)(6(x) - Py (a | /x|>1/a2/n (2) — Py, ())dz

Pi(z/C)¢(x)dz| + bi(x/C) Py, (v)dx

|z|>1/2/11 ja|>1/e2/11

<

where the second step used that Py, (z) = ¢(z) for all z with |z| < 1/¢%/!! by Claim 14. We will
show the bound for the first term (the other one is similar).

Claim 15 Fix C = /¢, and let P; denote the i-Legendre polynomial and p be the solution to (10).
Then, | fi,1-1 e Pi(x/C')gzb(J:)dm‘ = 0(c%).

Proof We will use the known property that the j-th Legendre polynomial can be written as Pj(x) =
ZW 2! ( ) ( ) =27, We will also use that there is negligible mass at the tails |z| > 1/ g2/11,

We have that
C
U‘B@mmmm
-C

=owﬂﬁh/ 2l $(z)dx

|z|>1/e2/11
sOWﬂﬁ%/ jae " 2dx
|z|>1/e2/11

< O((]{?/C)Sk) 10k (k:/\f)?’k 10k 57

where the first step bounds the binomial coefficients by k* and in the last line uses that for any
lz| > 100k log(1/e) = e3/201og(1/e) (recall that k = ©(3/20)) it holds |z|Fe="/2 < 10k /32,

in order to bound || |z|Fe=""/2da < f‘x|>1 |z|Fe=""/2dg < 10k r2dz < 10K

|z|>e—2/11 |z|>1

This completes the proof of Items 1 and 2. We next use a randomized rounding technique
s~imilar to Diakonikolas et al. (2020), in order to convert this continuous f to a piecewise constant
f: R —{0,1}, i.e., a hard set. We show the following in Appendix D:

Claim 16 For any n > 0 there exists a ((klog(1/ n))PoY(®) /n2)_piecewise constant function f :
R — {0, 1} such that Pryp . 1)[f(2)] < 20 and forall t = 0,. ..k it holds | B, p 1)[z' (1 —

5]E(x))]Z_1 - EZ‘NN 0,1) [ H <, where Z = EZ‘NN(E 1) [ - 6f(x)]
The idea for Claim 16 is to split R into [is, (i 4+ 1)s], for ¢ € Z and a sufficiently small size s,

and to let f(z) be constant in the interval = € [is, (i + 1)s), taking the following values:

1, with probability p; := lH)s x)dx lH)s —e¢)dz

0, with probability 1 — p;

We want to show that B, (. 1)z (1 — 5f(x)] ~ E, n( 1z’ (1 — 6 f(x))] (which we have
already shown that is equal to B, xr(o,1)[z]). Let ; : f(lﬂ)s ztp(x—e)d(f(x) — f(x))dx be the

12
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contribution due to the i-th interval. Then, using the Taylor approximation 2! = (is)! + (z —is)t&t 1
for some £ between is and z, the expected (with respect to f’s randomness) value of ) . I; is

(i+1)s (i+1)s
B| Y5 =) [ ote - () - pde 1671 [ o ispote - 607 ) - i
7 % s is
The first term above is zero by definition of the p;’s. We can show that the second term is at most 7
by choosing appropriately small interval size s.
The proof of Lemma 10 is completed by reducing the number of pieces to k£ using Claim 16 and
Proposition 13 as we did in Lemma 9.
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Supplemental Material
Appendix A. Additional Preliminaries

Additional Notation We use a < b to denote that there exists an absolute universal constant C' > 0
(independent of the variables or parameters on which a and b depend) such that a < Cb. We write
a < b to denote that « < ¢b for a sufficiently small absolute constant ¢ > 0.

Legendre Polynomials In this work, we make use of the Legendre Polynomials which are orthog-
onal polynomials over [—1, 1]. Some of their properties are:

Fact 17 (Szego (1967)) The Legendre polynomials Py, for k € Z, satisfy the following properties:
1. Py is a k-degree polynomial and Py(z) = 1 and Py (z) = x.
2. [1 Pi(x)Pj(z)dz = 2/(2i + 1)1{i = j}, forall i, j € Z.
3. |Pi(x)| < 1forall |x| < 1.
4. Py(x) = (~1)*Py(—a).
5. P(w) = 278 I () (. H) 2

Additional Background on the SQ Model We now record additional definitions and facts from
Feldman et al. (2013) that are relevant to the SQ model.

Definition 18 (Pairwise Correlation) The pairwise correlation of two distributions with proba-
bility density functions Dy, Dy : R® — R_ with respect to a distribution with density D : R? —
Ry, where the support of D contains the supports of D1 and D, is defined as xp(D1, D2) =
Jga D1(x)D2(x)/D(x) dx — 1.

Definition 19 (\%-divergence) The x>-divergence between Di,Dy : R* — R is defined as
Xz(Dl, Dy) = fRd D%(x)/Dg(x) dx — 1.

Definition 20 We say that a set of s distributions D = {D1, ..., Ds} is (v, §)-correlated relative
to a distribution D if |xp(D;, D;)| < v forall i # j, and |xp(D;, D;)| < B fori = j.

Definition 21 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision (or hypothesis testing) problem in which
the input distribution D' is promised to satisfy either (a) D' = D or (b) D' € D, and the goal is to
distinguish between the two cases.

Definition 22 (Statistical Query Dimension) Lez 3,y > 0. Consider a decision problem B(D, D),
where D is a fixed distribution and D is a family of distributions. Define s to be the maximum integer
such that there exists a finite set of distributions Dp C D such that Dp is (vy, 8)-correlated relative
to D and |Dp| > s. The Statistical Query dimension with pairwise correlations (v, 3) of B is defined
as s and denoted as SD(B,~, 3).

Lemma 23 (Corollary 3.12 in Feldman et al. (2013)) Let B(D, D) be a decision problem. For
v, 8 >0, let s = SD(B,~, B8). For any~' > 0, any SQ algorithm for B requires queries of tolerance
at most \/y + ' or makes at least sy'/( — ) queries.
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We need the following result from Diakonikolas et al. (2021) that upper bounds the correlation
between two such distributions.

Lemma 24 (Corollary 2.4 in Diakonikolas et al. (2021)) Let A be a distribution over R™ such
that the first k moments of A match the corresponding moments of N'(0,1,,,). For matrices U,V €
R™%4 sych that UUT =VV'T =1,,, define Py y and P, v to be distributions over R4 according
to Definition 5. Then, the following holds: |x x(0,1,,)(Pa,u; Pav)| < ||UVT||§;1X2(A,N(O, I,))

A.1. Proof of Fact 6

We restate and prove the following fact.

Fact 25 Let d, k € Z and m < d*/'° Let A be a distribution over R™ such that the first k moments
of A match the corresponding moments of N'(0,1,,,). Define the set D of distributions containing
distributions constructed as follows: for matrices U € R™*% such that UU T = 1,,,, define Pyuto
be distributions over R® according to Definition 5. Then, any statistical query algorithm that solves
the decision problem B(D, N (0,1,)), requires either 9d?® many queries, or performs at least one
query with tolerance d=*%)x2(A, N'(0,1,,,)).

Proof Recall the definition of decision problems (Definition 21). Let the decision problem B(D, D)
where D = N(0,1,) and D is defined as the in the alternative hypothesis class above. We now lower
bound the SQ dimension (Definition 22) of B(D, D). Let S’ be the set of matrices from the fact
below.

Fact 26 (See, e.g., Lemma 17 in Diakonikolas et al. (2021)) Let m,d € N with m < d'/10.
There exists a set S of 24" atrices in R™*? such that every U € 8 satisfies UU" = 1,
and every pair U,V € S with U # V satisfies |[UV " ||g < O(d~'/19).

Let Dp := {Pa,v }ves for the distribution A.
Using Fact 26 and Lemma 24, we have that for any distinct V,U € §

A N0, 1)) < () FHII02(4 N (0,1,)

IXn0,1,) (Pau, Pav)| < HUVT .
(12)

where we used that ||Al/op < ||Al[g for any matrix A. On the other hand, when V = U, we have
that [xn(0.1,)(Pau, Pav)l < x*(A,N(0,1,)). Thus, the family Dp is (v, 3)-correlated with
v = Qd)~E+tD/1042(A N (0,14)) and 8 = x*(A,N(0,1,)) with respect to D = AN(0,1I,).
This means that SD(B(D, D), v, ) > exp(d)). Therefore, by applying Lemma 23 with
v =y = Qd)~ETD/1042( A N(0,14)), we obtain that any SQ algorithm for Z requires at
least exp(d?(1))d—O®) = calls to

STAT (Q(d)‘Q(k)X2(A,N(O, Id))) .
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Appendix B. Omitted Proofs from Section 3
B.1. Proof of Proposition 8

We restate and prove the following:

Proposition 8 Let ¢ > 0 be a sufficiently small absolute constant, ¢ € (0,c), and k = ¢/£%15.
There exists a distribution A on R?, for which the following are true:

1. A matches its first k moments with the 2-dimensional standard Gaussian.
2. \3(4,N(0,12)) = O(1).

3. Every distribution of the form P, v (cf. Definition 5) can be written as a truncated Gaussian
N, X, 9) for = (£,0), & = Iy (the 2 x 2 identity matrix) and some S C R which has mass
(with respect to the target Gaussian) at least 1/2 and Gaussian surface area at most 1.

Proof Let T, U, §, Z as in Lemmas 9 and 10, we let A to be a distribution defined by the following
probability density function:

¢la —e)o(y)((z,y) ¢ T xU)

A(‘Tay) - 7

(13)

We start with Item 1. First we note that A is indeed a valid distribution, i.e., the normalizing
factor is correct.

+00 +00 +o00
4 énydydx— /d):v—s :UGT)/yeU¢>(y)dy+ﬂ(x¢T)£ o(y)dy | dx
- /qﬁx—e)( (z€T)(1-0)+1(z ¢ T))dz (by Lemma 9)

- / 6z — ) (1 — 61(x € T))dar

where the calculation essentially used that for any fixed x, there are two cases: if x ¢ T then no
Gaussian mass is removed from the y-integral, otherwise a (1 — ¢) mass is removed (from Lemma 9).

We can similarly see that A matches the first £ moments with the standard two dimensional
Gaussian: Let ¢ and s be non-negative integers with ¢ + s < k. Then,

+00 00
2/ / Yo — )1 (wy) £ T x U)dyd (14)
L 7
=5 [aoe-a 1een) [yowurieen) [rowa|a  as
50 YU —00
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— / (x—¢ / Yo(y) Lz e T)(1—-90)+1(x ¢ T))dydx (by Lemma 9)

+oo
— 1-41 T
_ /xt¢(x £)( _ (z € ))dx/ysgb(y)dy (16)
“+oo “+o0o
= /wtqﬁ(:ﬁ)dm/ysgﬁ(y)dy. (by Lemma 10)

Finally, it is easy to see that the chi-square of A is O(1).
+00 400

X2 (A, N(0,1)) // ddx

+o0

2(z —
/¢ : /¢(y)ﬂ((xvy)¢T><U)dydm—1

<z52 (x—¢) 2
/ dz = x2>(N(e,1),N(0,1)) = e .

We move to Item 3. The fact that P4 v is a truncated Gaussian follows trivially by our definitions.
The Gaussian surface area bound comes from the fact that 7 x U is a union of at most k? many
rectangles, each with perimeter O(0) (this is because the sets 7" and U from Lemmas 9 and 10 have

mass at most O(J)). Using § = /¢ and k < 1/e'/4, we obtain that the Gaussian surface area is at
most 1. u

Appendix C. Omitted Proofs from Section 4
C.1. Proof of Claim 11

We restate and prove the following.

Claim 11 LetU C Randt € Z4 be a set and an integer. Define the piecewise constant function

1-6, z€U
-{0 ey

with 0 := Pr.xr0,1)[2 € U]. The following three statements are equivalent:
I E. oyl f(2)] =
2. E. nonl2'lz € Ul = ELonvon 2]

3. E.onon'z € Ul = E,ono,1)[2"].
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Proof We first show the equivalence between Item 2 and Item 3. We assume Item 2 and show Item 3
(the other direction is identical):

ZNJ\]/%O,I)[Zt] B zwA]/izo,l)[zt]l(Z €U+ z~/\]/£20,1)[2t]1(2 ZU)]
= 5ZNA}[3(071)[275\Z eUl+(1-9) A];%Ql)[zﬂz ¢ U] (17)
- 52%1/520’1)[2% T(1-9) 2~N(0 1)[ Az Ul
where the last line used Item 2. Rearranging, this means that E_x(0,1)[2 He g U] E. o)l ).

We now prove that Item 2 and Item 3 imply Item 1, i.e., E.xr(0,1) [ tf(2)] =

1 1 1
51— ) ttton” TN =5 BT R P Y
ZNN(OJ)[Z |z €Ul ZNN(O,l)[Z S ’ (18)

where the last equality is due to the part we showed earlier.

The direction from Item 1 to Item 2 is similar: By writing out E,._xr(0,1)[2" f(2)] = 0 similarly
to (18) we can see that B, x(o1)[2"|2 € U] = E, pr0,1)[2"|z & U]. Then, using this in (17) we get
that both conditional expectations are equal to E_ _xr(g,1) [21]. |

C.2. Proof of Claim 12

We provide the proof of the following claim.

Claim 12 For any n > 0 and § € (0,1), there exists a (klog(1/n))%* /n-piecewise constant
function g, : R — {1 — 6, =08} such that | E, r01)lgn(2)2']| < n, forallt = 0,1,...,k and
Pr. no)f(z) =1—-0] € [0 —n,0 +nl

Proof Let C be a sufficiently large absolute constant. Fix the parameters s := 0.011/(k log(1/1))¥,
imax = 101og®(1/n)/s throughout the proof. We also define UT and U~ to be the unions of
intervals in the positive and negative part of the real line as shown below. We define them so that
their union U = U™ U U~ is symmetric around zero:

1=0

imax—1
Ut := ( U [is, (i + 5)5]) U [imax$, +00) ,

tmax—1
U™ = ( U [—(i+9)s, —is]> U [—00, —imax$) -

=0

Finally define the piecewise constant function

1-90 ,z€eU
9n(2) = -4 z2¢& U
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First, we note that because of symmetry of g, (z) around zero

+oo
+ :2/0 gn(2)2'p(2)dz| .

19)

< '/(; gn(2)2'p(2)dz /0+oo gy(2)2'p(2)d2

E t
ZNN(O’I)[Qn(Z)Z ]

Therefore, in everything that follows, it suffices to only consider the integral on the positive part of
the real line.

Our goal is to bound (19) by n. As a first step, we need the following bound on the ratio of
consecutive pieces of the moment integral:

fi(z‘+6)s 2'p(z)dz §s((i +0)s)te(is) 0 iis? 5 L
[T gz (L= O)s((i+ 9o+ D) = 13 < o514 2i) Q0)

where we used the minimum and maximum values that the 2'¢(z) takes in each integral, and then
used that 1 + x < e® < 1+ 1.1z for all z < 0.1, where we applied this with 2 = is% < 755>
which is indeed less than 0.1 for our choice of s, 4;ax.

We can now proceed to bound (19). We start with the upper bound; see below for step by step
explanations:

“+oo
| ot
400 tmax—1  n(i41)s
:/ zt¢(z)dz+ Z / gn(z)zt¢(z)d2
Tmax$ i=0 s

n tmax —1 (i+6)s (i+1)s

< -+ Z (1-— 5)/ 2p(2)dz — 8 2p(2)dz (1)
4 i—0 is (i+0)s
77 imax_l 6 9 (Z+1)8 (’l+1)5

=3 + Z (1— 6)m(1 + 2is) / 2p(2)dz — 8 2p(2)dzp (22)

~ (i+0)s (i+0)s

n tmax—1 (i4+1)s

=-+ 2ids / Zo(2)dz
4 = (i+6)s
n tmax—1  o(i41)s

< - 4+ 20slog®(1/n) Z 2 p(2)dz (23)
4 = J(i+6)s
n e

< 1 + 206 logk(l/n)/ Z'p(z)dz (24)

0

< g +20s logh(1/n)(t — 1)1 (25)
n,n_n

<dp 11

<, t13 (26)

We now justify each step in the above derivations. (21) uses the Gaussian concentration Pr[z! > ] <
e~ B2 for B = imaxs = 10 logk(l/n). (22) is because of (20). (23) is because 7s < 10 logk(l/n).
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(25) uses the Gaussian moment bound. (26) holds because (t — 1)!! < ¢! < k* and the choice
5 := 0.01n/ (k¥ log®(1/n)).
The other direction, i.e., [, gy(2)2'¢(z)dz > —n/2 can be shown with a similar argument:

400 Zmax 1 (i+1)s (i+1+9)s
/ gn(2)7'd(2)dz > { "o(2)dz + (1 —6)/ zt¢(2)dZ}
0 (i+0)s (i+1)s
1

Zmax 1 (i+1+9)s
> < > (1+2is?) +1— (5} / 2'p(2)dz
(i+1)s
imax — (i+1+9) .
> - 2(1—0)i 2/ 2o(2)dz > —20slogh(1/n)(t — D! > 1
i—0 (i+1)s

where instead of (20) we used the bound flf;): tp(z)dz < 150(1 + 2is?) f(lfll);ré "2t (2)dz
which can be shown in a similar manner.
We finally calculate the Pr[z € U] (which is the same as Prg,(2) = 1 — 6])

tmax —1 (14'_5)5 Tmax—1 (H—Q)s
PrzeU]<2 Y / pa)dz=2 3 601 —|—2i32)/ 6(2)dz
i=0 is i=0 (i+1)s
Tmax—1 (i+2) tmax— ’L+2
=20 ) / z)dz + 46 Z zs/
i—0 (i4+1)s
Imax—1 (i+2)s Tmax— z+2)s
<26 Z / $(2)dz + 40slogt(1/n) Z /
i—0 (7;_|_1) z s
1
<25 + 20slogk (1/17)5 0+n.

where the first line uses a ratio bound similar to (20), the third line uses that is < 101log®(1/7), and
the last line uses that ) f(;jf ¢(z)dz < 1/2 and that s := 0.015/(k* log®(1/n)).
Similarly it can be shown that Pr[z € U] > § — 7. [ |

C.3. Proof of Proposition 13

We restate and prove the following:

Proposition 13 Let k, (¢ be positive integers with £ > k + 1 and a,b € R with b > a. Let D
be a continuous distribution over R and let vy, ..., v_1 € R. If for any n > 0 there exists an
at most (-piecewise constant function g, : R — {a,b} such that |E.p|g,(z)z"] — vi| < n for
every non-negative integer t < k, then there exists an at most (k + 1)-piecewise constant function
f:R = {a,b} such that E..p|f(2)z'] = v, for every non-negative integer t < k.

Proof Note that, we can always transform the function g, : R — {a,b} toa g; : R+ {1} that

satisfies similar properties. We define g; (2) def (29y(2) —a—0)/(b—a) and let v} = 214/ (b—a) +
(a+0b)/(b—a)E,.p[z!] and ' = n(2/(b — a)). Hence, we have that for any 1’ > 0, there exists
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an at most {-piecewise constant function g, : R — {&1} such that [ E. plgy(2)2'] = v <7’ for
every non-negative integer ¢ < k. By applying Lemma 28 and Lemma 27, we obtain that there exists
an at most (k + 1)-piecewise constant function f' : R — {£1} such that E..p[f’(2)z!] = v/, for
every non-negative integer ¢t < k. By setting f(z) = (f'(2)(b — a) + a + b)/2, we complete the
proof of Proposition 13. n

Lemma 27 Let k be a positive integer. Let D be a continuous distribution over R and let
Vo, ..., Vk—1 € R If for any n > 0 there exists an at most (k + 1)-piecewise constant function
gy : R — {£1} such that | E,.p[g,(2)2'] — 14| < n for every non-negative integer t < k, then there
exists an at most (k + 1)-piecewise constant function f : R — {£1} such that E,..p|[f(2)z'] = v,
for every non-negative integer t < k.

Lemma 27 follows from the above using a compactness argument.

Proof Let p(z) be the pdf of D. For every > 0, we have that there exists a function g, such that
|E..plfy(2)2"] — vi| < n, for every non-negative integer ¢ < k and the function g, is at most
(k + 1)-piecewise constant. Let M : R" — R¥, where M;i(b) = SF_ (—1)ntt fbi"“ 2ip(2)dz
and by < by < ... < by, bg = —oo and b1 = co. Here we assume without loss of generality that
before the first breakpoint the function is negative because we can always set the first breakpoint
to be —oo. It is clear that the function M is a continuous map and R isa compact set, thus
M (R is a compact set. We also have that for every n > 0 there is a point b € R" such
that [M(b) - e; — v;| < nforall i < k. Thus, from compactness, we have that there exists a point
b* € """ such that M(b*) = 0. This completes the proof. [ |

The following lemma is similar with the main lemma of Diakonikolas et al. (2020), we provide
the proof for completeness as in our case the distributions are more general and we want specific
values for their moments.

Lemma 28 Let m and k be positive integers such that m > k+1 and n > 0. Let D be a continuous
distribution over R and let vy, . . . ,vp_1 € R. If there exists an m-piecewise constant f : R — {£1}
such that | E,p[f(2)2!] — v| < nfor all non-negative integers t < k, then there exists an at most
(m — 1)-piecewise constant g : R — {41} such that | E,.plg(2)2] — v| < n for all non-negative
integers t < k.

Proof Let p(z) be the pdf of D. Let {b1,bo,...,b,_1} be the breakpoints of f, i.e., the points
where the function f changes value. Then let F'(z1,22,...,2m—1,2) : R"™ — R be an m-
piecewise constant function with breakpoints on z1,..., 2,1, Where 27 < 29 < ... < Zp-1
and F'(by,ba,...,bym—1,2) = f(z). For simplicity, let z = (z1,...,2,—1) and define M;(z) =
E..p[F(z,2)2] and let M(z) = [My(z), M1(z),... Mj_1(z)]". It is clear from the definition
that M;(z) = S7°) S F (2, 2)2'p(2)dz = S an [ 2'p(2)dz, where zp = —oo and
Zm = oo and ay, is the sign of F'(z, z) in the interval (z,, z,+1). Note that a,, = —a,+1 for every
0 < n < m. By taking the derivative of M; in z;, for 0 < j < m, we get that

0 , 0 _
. M;(z) = 2aj,1z;-p(zj) and ——M(z) = 2a;_1p(z;)[1, zjl-, o2k 1]T .
Zj OZ]'

23



DIAKONIKOLAS KANE PITTAS ZARIFIS

We now argue that for any z with distinct coordinates that there exists a vector u € R™~! such
that u = (uy,...,u;,0,0,...,0,1) and the directional derivative of M in the u direction is
zero. To prove this, we construct a system of linear equations such that V,M;(z) = 0, for all
0 < i < k. Indeed, we have Z§=1 %Mi(z)uj = —ﬁMi(z) or Z§:1 aj_1z§p(zj)uj =
—am_gzﬁnfl P(2m—1), which is linear in the variables u;. Let @ be the vector with the first & vari-
ables and let w be the vector of the right hand side of the system, i.e., w; = —am_ngn_lp(zm_l).
Then this system can be written in matrix form as VDu = w, where V is the Vandermonde matrix,
i.e., the matrix thatis V; ; = ozg _1, for some values «; and D is a diagonal matrix. In our case,
Vi;= zlj “land D j.j = 2a;j—1p(2;). It is known that the Vandermonde matrix has full rank iff for
all ¢ # j we have a; # o, which holds in our setting. Thus, the matrix VD is nonsingular and
there exists a solution to the equation. Thus, there exists a vector u with our desired properties and,
moreover, any vector in this direction is a solution of this system of linear equations. Note that the
vector u depends on the value of z, thus we consider u(z) be the (continuous) function that returns a
vector u given z.

We define a differential equation for the function v : R R, as follows: v(0) = b, where
b = (b1,...,bm-1), and v/(T) = u(v(T)) for all T € R. If v is a solution to this differential
equation, then we have:

dr

where we used the chain rule and that the directional derivative in u(v(7")) direction is zero. This
means that the function M(v(t)) is constant, and for all 0 < j < k, we have |M; — v;| < 7, because
we have that | E..p[F (21, . . ., Zm-1, 2)2!] — 14| < 1. Furthermore, since u(v(7')) is continuous in
v(T), this differential equation will be well founded and have a solution up until the point where
either two of the z; approach each other or one of the z; approaches plus or minus infinity (the
solution cannot oscillate, since v/, _;(7T") = 1 for all T).

Running the differential equation until we reach such a limit, we find a limiting value v* of v(7")
so that either:

1. There is an 7 such that vi = v7, ;, which gives us a function that is at most (m — 2)-piecewise
constant, i.e., taking F'(v*, z).

2. Either v}, _; = oo or v]j = —o0, which gives us an at most (m — 1)-piecewise constant function,

i.e., taking F'(v*, z). Since when the v, _; = oo, the last breakpoint becomes co, we have one

less breakpoint, and if vi = —oo we lose the first breakpoint.

Thus, in either case we have a function with at most m — 1 breakpoints and the same moments. This
completes the proof. |

Appendix D. Omitted Proofs of Section 5
D.1. Proof of Claim 16

We restate and prove the claim below.

24



SQ LOWER BOUNDS FOR TRUNCATED GAUSSIANS

Claim 16 For any 1) > 0 there exists a ((k log(l/n))pOIY(k)/nz)-piecewise constant function f :
R — {0, 1} such that Pr, 1) [f(x)] < 20 and forall t =0, ...,k it holds | E, -1y [x'(1 —

5f(@)]Z71 = Epno,n[2!]| < 1, where Z = Ewmgl[l—éf( x)).

Proof We fix the following parameters throughout the proof (where C' denotes a sufficiently large
absolute constant):

* imax = (Clog(1/n))/? /s
o 5 =2/ (K*C? logh (1/n))

We partition the real line in pieces [is, (i + 1)s) fori € Z. We define f to be the following random
piecewise-constant function: For each i € {—ipax, - - -, imax } We let f(x) be constant in the interval
x € [is, (i + 1)s), taking the following value:

27
0, with probability 1 — p;

fla) = {1, with probability p; := [/ lH)S x)dz/ fl;H)s —¢)dz
and we define f (z) = 0 with probability 1 in the entire (—00, —imaxs) U [imaxs, +00).
Our goal is to show that for all ¢ = 0,... ., k, we have | [p 2'Py(z)dz — [ 2" Pr(z)dz| < 1,
where we are using the notation from (8). We will do this in two steps: we will first show that
Ja #té(x — €)(1 — 3f(x))da is approximately (up to an additive term of 1) equal to [, 2'p(x —
€)(1—4df(x))dz and then we will do the same for the normalizing factor [ (z —e)(1 — Of (x))dz
We start with the first part, which we will do by probabilistic argument. First,

[a'ote — )1~ 8faNae— [ alo(o -1~ 87(@)da
- oo —i:n(:s N Gk
= / a:%(:c—s)da:—k/ rlp(x —¢) dx—i—Z / (z —e)d(f(z) — f(x))dz
(imax+1)s —00 1= —tmox

(28)

We note that the first two terms are negligible, i.e., less than a small multiple of 7. This is because of
the fact Pr, no1[|2]" > 8] < e P12 for all B > 1, applied with 8 = imaxs = (C'log(1/n))*/2.

(DS 2t (x —e)d(f(z) — f())da. These

18
are random integrals, where the randomness comes from how f (x) is defined in [is, (i + 1)s). The

goal is to show that with non-zero probability | ZZma" Ii| < 1. Then, by probabilistic argument

1=—1%m

For the remaining sum, let us use the notation /; := |

we would know that such a f exists.
We start with the expectation of these I;’s, where we will employ Taylor’s theorem for %, i.e.,
2t = (is)t + (x — is)t&! ! for some ¢ = £(x) between is and x. We have that:

. . (i+1)s
Bl Y ] >, [ aote -0 - ps

1=—1Imax is
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Zmax (i+1)s (i4+1)s
— Y (is)! / oz — 2)8(f(x) — pi)da + 1611 / (x — is)p( — £)3(f(x) — ps)da

The first term above is zero because of the definition of p; from (27). For the second term, we have
the following bounds:

. (i+1)s
> [ @il - o)) - pde

(i+1)s

Tmax
< t(imaxs) ! Z / |z —is|p(x — e)dx
1=—%max is

].
Tmax Z+

<t zmaxs Z / o(x —e)d

1=—%max
< st(imaxs) 1 < st(C"‘E/2 log"/2(1/m)" " < n

the first line uses that § < 1, & < ipaxs, f(x) € [0,1], and p; € [0, 1], the second line uses

that the integral is over an interval of length s, the third line first uses that f (i+1)s ¢(x —e)dx <

f+°° ¢(2 — €)dz = 1 and then uses that by our choice of parameters: first i,qxs = (C'log(1/n))*/?

and finally s = 2/ (k3*C2+* log"’ (1/7m)). This completes the proof that | E[ZZ’;‘"‘_’}MX L]l < n.

We now show the non-trivial probability claim. By Chernoff-Hoeffding bound with probability
atleast 1 — 7 it holds | i [ —BE[.™> L] < Ay/imax 10g(1/7) where A is any value

1=—"Tmax 1=—"Tmax

such that |I;| < A with probability one. In our case, we have that | ;| = | [ (i+1)s 2lo(x —e)dx| <
S - Sup,cg e —o? < gt < sk*. We also use T = 0.1 /k because we want the conclusion to
hold simultaneously over all ¢ = 0, ..., k. Using these parameters, and our definitions for s and

imax. the application of Chernoff-Hoeffding bound yields that | S % i B[y max L] <

t=—1im 1=—1Imax

k¥ sv/imax 10g k < k¥ /5v/imaxsvI0g k < v/5(C'log(1/n))*/*k*\/log k § n.

We now move to the second (and easier) part of the proof regarding the normalizing factor.
We want to show that | [, ¢(z — )(1 — 6 f(z))dz — [ (z — €)(1 — 0 (x))dz| < n. As before,
the parts of the integral in (—00, —imax$) U [(¢max + 1)s, +00) do not mater (the error term r has
|r| < n below) :

+00 +o0
/ oz — £)(1 — 6f(x))dz — / bz — £)(1 - 6f(x))de

(i+1)s
Tmax

<rt >, [ bla- (@) - Fo)s

1=—1Imax is

(i+1)s
Re-define I, := [ ¢(x —e)d(f(z) — f(z))dz. By definition of f, E[I;] = 0 for all the pieces
s
1 = —%max; - - - , tmax. An application of Chernoff-Hoeffding bounds similar to the previous one also

shows that | Zlm‘“ .. Ii] < n with large constant probability.

1=—1%m.

26



SQ LOWER BOUNDS FOR TRUNCATED GAUSSIANS

The proof is now concluded by noting that

+o0 fx z—e)(1—06f(x )):U fa: z—e)(1—6f(x))dz £ /100
/ xtPf(x)dx = B = T )
“c0 _f d(x—e)(1—46f(z))dx _f ¢(x —e)(1—6f(z))dx +n/100
f zt(x —e)(1 —6f(x))dz £+ 1/100 +00
= — =(1+n/2) / xtPf(x)dx:tg
(14n/100) [ é(z - £)(1 - 6f(z))de oo
(29)
where the second line used that the normalizing factor is +foo¢(a: —e)(1—6f(z))dz = Q(1). Finally,

— 0o
if we used /k" in place of 1 everywhere from the beginning of this proof, we could make the

RHS of (29) at most f 2" Py(x)dx & 7 (this is because f z' Py(x)dx is the same as the Gaussian

moments). |

Appendix E. Lower Bounds for Low-Degree Polynomial Tests

We describe the implications of SQ lower bounds to low-degree polynomials for the problem below:

Problem 29 Let a distribution A on R™. For a matrix V € R™*% e let Py v be the distribution
as in Definition 5, i.e., the distribution that coincides with A on the subspace spanned by the rows
of V and is standard Gaussian in the orthogonal subspace. Let S be the set of nearly orthogonal
vectors from Fact 26. Let S = {Pa ,, }ucs. We define the simple hypothesis testing problem where
the null hypothesis is N'(0, I;) and the alternative hypothesis is P v for some V uniformly selected
from S.

We now describe the model in more detail. We will consider tests that are thresholded polynomials
of low-degree, i.e., output H; if the value of the polynomial exceeds a threshold and H( otherwise.
We need the following notation and definitions. For a distribution D over X, we use D" to denote
the joint distribution of n i.i.d. samples from D. For two functions f : ¥ - R, g : X — R and
a distribution D, we use (f, g) p to denote the inner product Exp[f(X)g(X)]. We use || f||p to
denote /(f, f)p. We say that a polynomial f(x1,...,z,) : R®*? — R has sample-wise degree
(r, £) if each monomial uses at most ¢ different samples from z1, . .., z,, and uses degree at most r
for each of them. Let C, ; be linear space of all polynomials of sample-wise degree (r, £) with respect
to the inner product defined above. For a function f : R"*¢ — R, we use f<"! to be the orthogonal
projection onto C,. o with respect to the inner product (-, -) pen- Finally, for the null distribution Dy

and a distribution P, define the likelihood ratio ﬁ(m(x) = P®"(z)/ D™ ().

Definition 30 (n-sample 7-distinguisher) For the hypothesis testing problem between Dq (null
distribution) and D, (alternate distribution) over X, we say that a function p : X" — R is an
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n-sample T-distinguisher if | Ey_pgn [p(X)] — Ey pgn p(X)]| > T\/VarXNDgpn [p(X)]. We call
T the advantage of the polynomial p.

Note that if a function p has advantage 7, then the Chebyshev’s inequality implies that one can
furnish a test p’ : X™ — { Dy, D1} by thresholding p such that the probability of error under the null
distribution is at most O(1/72). We will think of the advantage 7 as the proxy for the inverse of the
probability of error (see Theorem 4.3 in Kunisky et al. (2022) for a formalization of this intuition
under certain assumptions) and we will show that the advantage of all polynomials up to a certain
degree is O(1). It can be shown that for hypothesis testing problems of the form of Problem 29, the
best possible advantage among all polynomials in C, ; is captured by the low-degree likelihood ratio
(see, e.g., Brennan et al. (2021); Kunisky et al. (2022)):

o~ HL(S) [<P§’%>§M] - 1” ’

®Xn
DO

where in our case Dy = N(0,1,).

To show that the low-degree likelihood ratio is small, we use the result from Brennan et al.
(2021) stating that a lower bound for the SQ dimension translates to an upper bound for the low-
degree likelihood ratio. Therefore, given that we have already established in previous section
that SD(B({Pav}ves,N(0,14)),7,8) = 2% for v = Q(d)#1/1942(A, N(0,1,)) and B =
x2(A, N(0,1)), we one can obtain the corollary:

Theorem 31 Let a sufficiently small positive constant c. Let the hypothesis testing problem of
Problem 29 the distribution A matches the first t moments with N'(0,1,,). For any d € Z with
d =t/ any n < Q(d)HD/10/32(A, N(0,1,,)) and any even integer £ < d°, we have that

UNZ/E{)(S) [(P%{; )Sooq -1

<1.

RXn
DO

The interpretation of this result is that unless the number of samples used n is greater than
Q(d)t+1/10 /3 2(A, N(0,1,,,)), any polynomial of degree roughly up to d° fails to be a good test
(note that any polynomial of degree ¢ has sample-wise degree at most (¢, £)).
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