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Abstract
In this paper, we provide lower bounds for Differentially Private (DP) Online Learning algorithms.
Our result shows that, for a broad class of (ε, δ)-DP online algorithms, for number of rounds T
such that log T ⩽ O (1/δ), the expected number of mistakes incurred by the algorithm grows as
Ω (log T ). This matches the upper bound obtained by Golowich and Livni (2021) and is in contrast
to non-private online learning where the number of mistakes is independent of T . To the best of
our knowledge, our work is the first result towards settling lower bounds for DP–Online learning
and partially addresses the open question in Sanyal and Ramponi (2022).

1. Introduction

With the increasing need to protect the privacy of sensitive user data while conducting meaningful
data analysis, Differential Privacy (DP) (Dwork et al., 2006) has become a popular solution. DP
algorithms ensure that the impact of any single data sample on the output is limited, thus safeguard-
ing individual privacy. Several works have obtained DP learning algorithms for various learning
problems in both theory and practice.

However, privacy does not come for free and often leads to a statistical (and sometimes compu-
tational) cost. The classical solution for non-private Probably Approximately Correct (PAC) learn-
ing (Valiant, 1984) is via Empirical Risk Minimisation (ERM) that computes the best solution on
the training data. Several works (Bassily et al., 2014; Chaudhuri et al., 2011) have shown that in-
corporating DP into ERM incurs a compulsory statistical cost that depends on the dimension of the
problem. In the well-known setting of PAC learning with DP, Kasiviswanathan et al. (2011) pro-
vided the first guarantees that all finite VC classes can be learned with a sample size that grows loga-
rithmically in the size of the class. This line of research was advanced by subsequent works (Beimel
et al., 2013a, 2014; Feldman and Xiao, 2014), resulting in the findings of Alon et al. (2022) which
established a surprising equivalence between non-private online learning and Approximate DP-PAC
learning.

Unlike the setting of PAC learning, Online learning captures a sequential game between a learner
and an adversary. The adversary knows everything about the learner’s algorithm except its random
bits. In this work we consider a setting where, for a known hypothesis class H, the adversary
chooses a sequence of data points {x1, . . . , xt} and the target hypothesis f∗ ∈ H prior to engaging
with the learner. Then, the adversary reveals these data points one by one to the learner, who must
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offer a prediction for each. After each prediction, the adversary reveals the true label for that point.
The learner’s performance is evaluated by comparing the incurred mistakes against the theoretical
minimum that could have been achieved by an optimal hypothesis in hindsight. Known as the
realisable oblivious mistake bound model, the seminal work of Littlestone (1988) showed that i) the
number of mistakes incurred by any learner is lower-bounded by the Littlestone dimension (more
precisely, Ldim(H)/2) of the target class H and ii) there is an algorithm that makes at most Ldim (H)
mistakes. This algorithm is commonly referred to as the Standard Optimal Algorithm (SOA).

Recall that certain problem classes possess finite Vapnik-Chervonenkis (VC) dimensions but
infinite Littlestone dimensions (such as the one-dimensional threshold problem). This, together
with the equivalence between non-private online learning and DP-PAC learning (Alon et al., 2022)
implies that there exists a fundamental separation between DP-PAC learning and non-private PAC
learning. In other words, some learning problems can be solved with vanishing error, as the amount
of data increases, in PAC learning but will suffer unbounded error in DP-PAC learning. This im-
plication was first proven for pure DP by Feldman and Xiao (2014) and later for approximate DP
by Alon et al. (2019). With the debate on the sample complexity of approximate DP-PAC learning
resolved, we next ask whether a similar gap exists between online learning with DP and non-private
online learning. Golowich and Livni (2021) addressed this by introducing the Differentially Private
Standard Optimal Algorithm (DP-SOA), which suffers a mistake count, that increases logarithmi-
cally with the number of rounds T compared to a constant error rate in non-private online learn-
ing (Littlestone, 1988). This difference suggests a challenge in DP online learning, where errors
increase indefinitely as the game continues. The question of whether this growing error rate is an
unavoidable aspect of DP-online learning was posed as an open question by Sanyal and Ramponi
(2022).

Main Result In this work, we provide evidence that this additional cost is inevitable. Consider
any hypothesis class H and for a learning algorithm A. Let E [MA] be the expected number of
mistakes incurred by A and let T be the total number of rounds for which the game is played.

We obtain a lower bound on E [MA] under some assumptions on the learning algorithm A.
Informally, we say an algorithm A is β-concentrated (see Definition 7 for a formal definition) if
there is some output sequence that it outputs with probability at least 1 − β in response to a non-
distinguishing input sequence. A non-distinguishing input sequence is a (possibly repeated) se-
quence of input data points such that there exists some f1, f2 ∈ H which cannot be distinguished
just by observing their output on the non-distinguishing input sequence. We prove a general state-
ment for any hypothesis class in Theorem 1 but show a informal corollary below.

Corollary 1 (Informal Corollary of Theorem 1) There exists a hypothesis class H with
Ldim (H) = 1 (see Definition 2), such that for any ε, δ > 0, T ⩽ exp(1/(32δ)), and any on-
line learner A that is (ε, δ)-DP and 0.1-concentrated, there is an adversary, such that

E [MA] = Ω̃

(
log T

ε

)
, (1.1)

where Ω̃ hides logarithmic factors in ε. For T > exp(1/(32δ)), E [MA] = Ω̃ (1/δ).

While the above result uses a hypothesis class of Littlestone dimension one, our main result
in Section 4.1 also holds for any hypothesis class, even with Littlestone dimension greater than one.
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Utilising the PointN hypothesis class (see Definition 4) in Corollary 1, we demonstrate that the
minimum number of mistakes a DP online learner must make is bounded below by a term that in-
creases logarithmically with the time horizon T . This holds if the learning algorithm is concentrated
at least when T is less than or equal to exp (1/(32δ)). This contrasts with non-private online learn-
ing, where the number of mistakes does not increase with T in hypothesis classes with bounded
Littlestone dimension, even if the learner is concentrated.1 Our result also shows that the analy-
sis of the algorithm of Golowich and Livni (2021), which shows an upper bound of Ω (log (T/δ))
for DP-SOA is tight as long as T ⩽ exp (1/(32δ)). However, as illustrated in Figure 1, this is
not a limitation as for larger T , since a simple Name & Shame algorithm incurs lesser mistake
than DP-SOA albeit at vacuous privacy levels (see discussion after Theorem 1).

In fact, the assumption of concentrated learners is not overly restrictive given that known DP-
online learning algorithms exhibit this property, as detailed in Section 4.2. Notably, the DP-SOA
presented by Golowich and Livni (2021) which is the sole DP online learning method known to
achieve a mistake bound O (log (T )), is concentrated as shown in Corollary 2. This suggests that
the lower bound holds for all potential DP online learning algorithms.

Additionally, we extend our result to another class of DP online algorithms, which we refer
to as uniform firing algorithms, that are in essence juxtaposed to concentrated algorithms. These
algorithms initially select predictors at random until a certain confidence criterion is met, prompting
a switch to a consistent predictor—this transition, or ‘firing’, is determined by the flip of a biased
coin (with bias pt), where the likelihood of firing increases with each mistake. However, the choice
of how pt increases and the selection of the predictor upon firing depend on the algorithm’s design.
For this specific type of algorithms, particularly in the context of learning the Point3 hypothesis
class, Proposition 4 establishes a lower bound on mistakes that also grows logarithmically with T .

Section 5.1 discusses Continual Observation (Chan et al., 2011; Dwork et al., 2010b), another
popular task within sequential DP. We show that results on DP Continual Counters can be used
to derive upper bounds in the online learning setting. Nonetheless, it is not clear whether lower
bounds for that setting can transferred to DP-Online learning. In addition, these upper bounds
suffer a dependence on the hypothesis class size.

Finally, we point out that, to the best of our knowledge we are unaware of any algorithms in
the literature for pure DP online learning. Our lower bound in Corollary 1 immediately provides a
lower bound for pure DP. Similarly, DP Continual Counters provide a method for achieving upper
bounds, specifically for the PointN classes, albeit with a linear dependency on N . Obtaining tight
upper and lower bounds remains an interesting direction for future research.

2. Preliminaries

We provide the necessary definitions for both Online Learning and Differential Privacy.

2.1. Online Learning

We begin by defining the online learning game between a learner A and an adversary B. Let T ∈ N+

denote number of rounds and let X be some domain.

Definition 1 (General game) Let H ⊆ {0, 1}X be a hypothesis class of functions from X to {0, 1}.
The game between a learner A and adversary B is played as follows:

1. All deterministic algorithms are 0-concentrated by definition.
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• adversary B picks f∗ ∈ H and a sequence x1, . . . , xT ∈ X

• for t = 1, . . . , T :

– learner A outputs a current prediction f̂t ∈ {0, 1}X (see Definition 3)

– A receives (xt, f∗(xt))

• let MA =
∑T

t=1 I
{
f̂t(xt) ̸= f∗(xt)

}
In this work, we study the following min-max problem:

min
A

max
B

E [MA] = min
A

max
B

T∑
t=1

P
[
f̂t(xt) ̸= f∗(xt)

]
, (2.1)

where probability is taken over the randomness in A. We refer to the random variable MA as the
mistake count of A. The optimal mistake count of this game can be characterised by a combinatorial
property of the hypothesis class H, called Littlestone dimension, first shown by Littlestone (1988).

Littlestone dimension To define Littlestone dimension, we need the concept of mistake tree. A
mistake tree T is a complete binary tree, where each internal node v corresponds to some xv ∈ X .
Each root-to-leaf path of the tree – denoted as x1, x2, . . . , xd, xleaf – is associated with a label
sequence y1, . . . , yd, where yi = I {xi+1 is the right child of xi}.

We say that T is shattered by H, if for every possible root-to-leaf labeled path
((x1, y1), . . . , (xd, yd)), there exists f ∈ H, such that f(xi) = yi for all i ∈ [d]. This concept
leads us to the formal definition of the Littlestone dimension as follows:

Definition 2 Littlestone dimension (Ldim (H)) of a hypothesis class H is defined as the maximum
depth of any mistake tree that can be shattered by H.

Littlestone (1988) proved that for any hypothesis class H, there exists a deterministic learner,
called Standard Optimal Algorithm (SOA) such that MSOA ⩽ Ldim (H). Furthermore, for any
learner A there exists a (possibly random) adversary B, such that E [MA] ⩾

Ldim(H)
2 , where expec-

tation is taken with respect to the randomness in B. However, the SOA learner is not restricted to
output a hypothesis in H while making its predictions. Such learning algorithms are classified as
improper learners, which we define formally below:

Definition 3 (Proper and Improper learner) A learner A for a hypothesis class H is called
proper if its output is restricted to belong to H. Any learner that is not proper is called improper.

It is worth noting that most learners in online learning are improper learners though their output
may only be simple mixtures of hypothesis in H (Hanneke et al., 2021). We illustrate the importance
of improper learners with a simple hypothesis class that we heavily use in the rest of this paper.

Definition 4 (Point class) For N ∈ N+, for domain X = [N ] := {1, . . . , N}, define

PointN :=
{
f (i), i ∈ [N ]

}
, where f (i)(x) = I {i = x} . (2.2)

Note that Ldim (PointN ) = 1 for any N > 1. A simple algorithm to learn PointN predicts 0 for
every input until it makes a mistake. The input i where it incurred the mistake must correspond to
the true target concept f (i). This algorithm is improper as no hypothesis f in PointN predicts 0
universally over the whole domain.
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2.2. Differential Privacy

In this work, our goal is to study learners that satisfy the DP guarantee (Dwork et al., 2006) defined
formally below.

Definition 5 (Approximate differential privacy) An algorithm A is said to be (ε, δ)-DP, if for
any two input sequences τ = ((x1, y1) , . . . , (xT , yT )) and τ ′ = ((x′1, y

′
1) , . . . , (x

′
T , y

′
T )), such that

there exists only one t with (xt, yt) ̸= (x′t, y
′
t), it holds that

P(A(τ) ∈ S) ⩽ exp(ε)P(A(τ ′) ∈ S) + δ, (2.3)

where S is any set of possible outcomes.

When δ = 0 we recover the definition of pure differential privacy, denoted by ε-DP. Note that
for online learner A, output at step t depends only on first t − 1 elements of the input sequence.
In the setting of offline learning, the inputs τ, τ ′ can be thought of as two datasets of length
T and A as the learning algorithm that outputs one hypothesis f (not necessarily in H). If A
simulatanously satisfies DP and is a PAC learner (Valiant, 1984), it defines the setting of DP-PAC
learning (Kasiviswanathan et al., 2011). However, the setting of DP-online learning is more
nuanced due to two reasons.

Privacy of Prediction or Privacy of Predictor The first complexity arises from what the privacy
adversary observes when altering an input, termed as its view. Since A provides an output hy-
pothesis f̂t ∈ {0, 1}X at every time step t ∈ [T ] as shown in Definition 1, the adversary’s view
could encompass the entire list of predictors. Our work, like Golowich and Livni (2021), focuses
on this scenario, where the output set is S ⊆ {0, 1}X×T . Nevertheless, certain studies restrict the
adversary’s view to only the predictions, excluding the predictors themselves (Beimel et al., 2013b;
Dwork and Feldman, 2018; Naor et al., 2023). In this setting, it is also important to assume that
the adversary only observes the predictions on the inputs that it did not change (Kaplan et al., 2023;
Kearns et al., 2015); thus, they have S ⊆ {0, 1}(T−1).
Oblivious and Adaptive adversary The second complexity is about whether the online adversary
B pre-selects all input points or adaptively chooses the next point based on the learner A’s previous
response. Although the former, known as an oblivious adversary, seems less potent, this differ-
ence does not manifest itself in non-private learning (Cesa-Bianchi and Lugosi, 2006). However,
this distinction becomes significant in the context of DP online learning. Adaptive adversaries, by
design, leverage historical data in their decision-making process. While works like Kaplan et al.
(2023) focus on adaptive adversaries, others like Kearns et al. (2015) concentrate on oblivious ones,
and Golowich and Livni (2021) examine both. Our contribution lies in setting lower bounds against
the simpler scenario of oblivious adversaries.

3. Related work

Understanding which hypothesis classes can be privately learned is an area of vibrant research and
was started in the context of Valiant’s PAC learning model (Valiant, 1984). A hypothesis class H
is considered PAC-learnable if there exists an algorithm A, which can utilize a polynomial-sized2,

2. The term ‘polynomial-sized’ refers to a sample size that is polynomial in the PAC parameters, including the error
rate, confidence level, size of the hypothesis class, and the dimensionality of the input space.
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independent, and identically distributed (i.i.d.) sample D from any data distribution to produce a
hypothesis h ∈ H that achieves a low classification error with high probability on that distribution.
In the context of DP-PAC learning, as defined by Kasiviswanathan et al. (2011), the learner A must
also satisfy DP constraint with respect to the sample D. The overarching objective in this research
domain is to find a clear criterion for the private learnability of hypothesis classes, analogous to the
way learnability has been characterized in non-private settings—through the Vapnik-Chervonenkis
(VC) dimension for offline learning (Blumer et al., 1989) and the Littlestone dimension for online
learning (Ben-David et al., 2009; Littlestone, 1988).

Kasiviswanathan et al. (2011) started this line of research by showing that the sample complexity
of DP-PAC learning a hypothesis class H is O (log (|H|)). Beimel et al. (2014) showed that the VC
dimension does not dictate the sample complexity for proper pure DP-PAC learning of the PointN
class. However, they showed that if the setting is relaxed to improper learning then this sample
complexity can be improved, thus showing a separation between proper and improper learning,
something that is absent in the non-private PAC model. Beimel et al. (2013a) sharpened this result by
constructing a new complexity measure called probabilistic representation dimension and proving
that this measure characterises improper pure DP exactly.

By leveraging advanced tools from communication complexity theory, they refined the under-
standing of the probabilistic representation dimension and demonstrated that the sample complexity
for learning a notably simple hypothesis class, denoted as Linep, under approximate improper DP-
PAC conditions, is significantly lower than the corresponding lower bound established for pure
contexts.

Relaxing the notion of pure DP to approximate DP, Beimel et al. (2013b) showed that the
sample complexity for proper approximate DP-PAC learning can be significantly lower than
proper pure DP-PAC learning, thereby showing a separation between pure and approximate DP
in the context of proper DP-PAC learning. The inquiry into whether a similar discrepancy exists
in improper DP-PAC learning was resolved by Feldman and Xiao (2014) who proved a separation
between pure and approximate DP in the improper DP-PAC learning model. To do this, they first
proved a sharper characterisation of the probabilistic representation dimension using concepts from
communication complexity. Then, they showed that the sample complexity for learning a notably
simple hypothesis class, denoted as Linep, under approximate improper DP-PAC conditions, is sig-
nificantly lower than the corresponding lower bound established for pure DP.

Feldman and Xiao (2014) were also the first to obtain lower bounds for DP-PAC learning that
grows as Ω (Ldim (H)), albeit limited to the pure DP setting. Alon et al. (2019) showed that it
is possible to obtain a lower bound for approximate DP that grows as Ω (log∗ (Ldim (H))) thus
marking a clear distinction between non-private and approximate DP-PAC learning. This finding
illustrated that DP-PAC learning’s complexity could align with that of online learning, which is
similarly governed by the Littlestone dimension. In a series of subsequent works, see Alon et al.
(2022); Ghazi et al. (2021), a surprising connection was established between private offline learning
and non-private online learning. In particular, classes that are privately offline learnable are precisely
those with finite Littlestone dimension.

This naturally highlights a similar question of private online learning, in particular whether DP
further limits which classes are learnable in the DP-Online learning model. Golowich and Livni
(2021) provided an algorithm, called DP-SOA, which has expected number of mistakes growing
as O(22

Ldim
log T ). Interestingly, unlike SOA in the non-private online setting, DP-SOA’s mistake

count increases with number of steps T in the online game. When considering adaptive adversaries,
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the upper bound on mistakes escalates to O
(√

T
)

. Under a slightly weaker definition of DP,
known as Challenge-DP, where the privacy adversary only sees the predictions and not the whole
predictor function, Kaplan et al. (2023) obtained an upper bound of O

(
log2 (T )

)
for both adaptive

and oblivious adversaries. However, it is not clear from these works, whether the dependence on T
is unavoidable. A related setting is that of continual observation under DP where such a dependence
is indeed unavoidable under the pure DP model. However, the results from continual observation
do not immediately transfer to online learning as discussed in Section 5.1.

4. Lower Bound for Private Online learning under Concentration assumption

In this section, we provide the main result of our work along with their proof. Before stating the
main result in Theorem 1, we need to define the concept of distinguishing tuple and β-concentrated
learners.

Definition 6 Given f0, f1 ∈ H and xeq, xdif ∈ X , we call the tuple (f0, f1, xeq, xdif) distinguish-
ing, if it satisfies both f0(xeq) = f1(xeq) and f0(xeq) = f0(xdif) ̸= f1(xdif).

A distinguishing tuple means that there are two functions (f0, f1), and two input points (xeq, xdif ),
such that only one of these points can effectively differentiate between the two functions. The
absence of a distinguishing tuple implies a restricted hypothesis class: either H is a singleton (|H| =
1), or it contains precisely two inversely related functions ( |H| = 2 with f1 = 1− f0). In the latter
case, every input point contains information distinguishing f1 and f2. This implies that there is no
difference between input sequences, and the mistake bound will not depend on T . For the purposes
of our analysis, we proceed under the assumption that a distinguishing tuple always exists.

Let (f0, f1, xeq, xdif) be a distinguishing tuple and suppose that adversary chooses f∗ ∈
{f0, f1}. Knowing only information on f∗(xeq) does not help to tell apart f0 from f1. Further-
more, if an algorithm is ‘too confident’, meaning that it strongly prefers output of f0 on xdif over
output of f1, it will necessarily make a mistake on xdif if f∗ = f1. We will use this basic intuition
to obtain our main lower bound and we will call such learners ‘concentrated’, as defined below.

For input τ , index t ∈ [T ] and an input point x ∈ X , we denote A(τ)t [x] to be the value of the
t-th output function of A(τ) evaluated at point x.

Definition 7 An algorithm A is called β-concentrated, if there exists a distinguishing tuple
(f0, f1, xeq, xdif), such that

P [∀t ∈ [T ], A (τ0)t [xdif ] = f0(xdif)] ⩾ 1− β, (4.1)

where τ0 = ((xeq, f0(xeq)) , . . . , (xeq, f0(xeq))).

Note that τ0 from Definition 7 is a ‘dummy’, non-distinguishing input, as it does not contain any
information to distinguish f0 from f1.

4.1. Main Result

We now show that if the learner is both differentially private and concentrated, it will necessarily
suffer a large (logarithmic in T ) number of mistakes in the game of Definition 1.
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Lowerbound

DP-SOA

Offline learning

Name & Shame

1/δ exp(1/δ)
Number of samples T

O(log 1/δ)

O(1/δ)

Figure 1: Lower bound from Theorem 1 vs. existing upper bounds. We assume that ε, δ are fixed and for
simplicity ignore dependence on ε. X-axis corresponds to the number of samples, growing from
T ∼ 1/δ to T ∼ exp(1/δ) and larger. Y-axis shows the expected number of mistakes, E [MA].

Theorem 1 Let H be an arbitrary hypothesis class. Let ε > 0, δ ⩽ ε2 and T ⩽ exp(1/(32δ)). If,
for some δ ⩽ β ⩽ 1/10, A is a β-concentrated (ε, δ)-DP online learner of H, then there exists an
adversary B, such that

E [MA] = Ω̃

(
log T/β

ε

)
, (4.2)

where Ω̃ contains logarithmic in ε factors. For T > exp(1/(32δ)), E [MA] = Ω̃ (1/δ).

Before comparing our lower bound with known upper bounds, we first discuss the condition
T ⩽ exp(1/(32δ)). Our bound suggests that for sufficiently large T , specifically when T exceeds
exp(1/(32δ)), the dependency on T is in fact not needed. This can be seen from the following
simple Name & Shame algorithm: initialize an empty set S; at each step, apply SOA and output
SOA(S); upon receiving a new entry (xt, f

∗(xt)), add it to S with probability δ. Clearly, this
algorithm is (0, δ)-DP, since for any fixed input point, it only depends on this point with probability
δ. Furthermore, each time the algorithm incurs a mistake, it adds this mistake to S with probability
δ. Since the algorithm runs SOA on S, it will make on expectation at most Ldim (H) /δ mistakes.
This algorithm is, however, not ‘conventionally’ private, since it potentially discloses a δ-fraction
of the data, namely the set S.

Now, we compare result of Theorem 1 with known upper bounds in Figure 1. Recall that DP-
SOA in Golowich and Livni (2021) obtained an upper bound which increases logarithmically with
the time horizon T . Figure 1 shows that for T ⩽ exp(1/(32δ)), the dependency on T is neces-
sary, thereby showing the tightness of DP-SOA (Golowich and Livni, 2021). For larger T , the
aforementioned Name & Shame actually outperforms DP-SOA, indicating that, for fixed ε, δ, on-
line algorithm always compromises privacy at very large T . However, even for smaller T , the plot
shows that the number of mistake must grow with increasing T until it matches the Name & Shame
algorithm.

The main idea behind the construction of the lower bound is the following: assume that there
is a distinguishing tuple (f0, f1, xeq, xdif), such that A on (xeq, . . . , xeq) with high probability only
outputs functions that are equal to f0 at xdif . Then, the adversary picks f∗ = f1 and its goal is to
select time steps t to insert xdif , such that (i) A with high probability will make a mistake at t, and
(ii) A will not be able to ‘extract a lot of information’ from this mistake. As we show, both of these
conditions can be guaranteed using the DP property and concentration assumption of A. Note that
if adversary inserts xdif serially starting from t = 1, A can have regret much smaller than log T .
For example, if A first incurs a constant number of mistakes, the group privacy property allows a
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considerable change in the output distribution to only output f1 = f∗. But this is possible only if A
can predict in advance, where it will make the mistake in the future.

Therefore, the adversary needs to ‘disperse’ the points xdif across T time steps, such that A
cannot predict, where it might make the next mistake. We begin our construction by first inserting
a point at the beginning. Then, depending on whether the leaner anticipates more points xdif in the
first half or in the second half of the sequence, we insert xdif in the half where it least expects it.
Note that because of the concentration and DP assumption, the learner cannot anticipate points xdif
in both halves simultaneously (recall that on input sequence consisting of only xeq, learner does not
output a correct function for xdif ). By continuing this construction recursively, we are able to insert
Ω(log T ) points xdif , such that with constant probability, on each of them A will make a mistake.
Proof [of Theorem 1] Since A is 0.1-concentrated, there exists a distinguishing tuple
(f0, f1, xeq, xdif), such that

P [∀t ∈ [T ], A (τ0)t [xdif ] = f0(xdif)] ⩾ 0.9, (4.3)

where τ0 = ((xeq, f0(xeq)) , . . . , (xeq, f0(xeq))). WLOG assume that f0(xeq) = f0(xdif) = 0.
When T > exp(1/(32δ)), by simply only using the first exp(1/(32δ)) rounds, we obtain the re-
quired lower bound Ω̃(1/δ). In the remaining, we assume that T ⩽ exp(1/(32δ)). Furthermore, let
k be the largest integer, such that 2k − 1 ⩽ T . Note that 1

2 log T ⩽ k ⩽ 2 log T ⩽ 1/(16δ). For
simplicity, we also assume that T = 2k − 1. We start with the case ε = ε0 = log (3/2) and pick
f∗ = f1 for the adversary.

Note that to show E [MA] = Ω (log T/β), we can construct two adversaries, first achiev-
ing E [MA] = Ω (log 1/β) (Case I) and the other E [MA] = Ω (log T ) (Case II). We now prove
each of them.

Case I: We start with showing the adversary for the former bound, i.e., such that E [MA] =
Ω (log 1/β). The concentration assumption implies that for any t ∈ [T ], P (A (τ0)t [xdif ] = 1) ⩽ β.
Therefore, if τk contains k copies of the point (xdif , 1), by applying DP property of A k times,
we obtain that for any t ∈ [T ], P (A (τk)t [xdif ] = 1) ⩽ β exp(kε0) + δ

(
exp(kε0)−1
exp(ε0)−1

)
⩽ (kδ +

β) exp(kε0). If k = 1
8ε0

log(1/β), we derive that for any t ∈ [T ],

P(A(τk)t [xdif ] = 1) ⩽ (kδ + β) exp(kε0) ⩽
δ log(1/δ)

8δ1/8ε0
⩽

1

3
δ1/2 log(1/δ) ⩽

1

2
. (4.4)

This implies that for the sequence τk, expected number of mistakes is E [MA] ⩾ 1
16ε0

log(1/β).
Case II: In the previous case, it did not matter where exactly the points (xdif , 1) are inserted.
However, if we want to prove the lower bound Ω(log T ), this is no longer true and one needs to be
careful with the placement of the inserted points.

In the following, we construct a sequence c = (x1, . . . , xT ), such that expected number of
mistakes of A will be large. We proceed iteratively, maintaining scalar sequences (li), (ri), and
sequences c(i) such that

1. c(i) contains exactly i points xdif on the prefix [1, li − 1],

2. pi := P
[
∀t ∈ [1, li − 1],A(c(i))t [xdif ] = 0

]
⩾ 1/2− 4iδ,

3. qi := P
[
∀t ∈ [1, li − 1],A(c(i))t [xdif ] = 0 and ∃t ∈ [li, ri], s.t. A(c(i))t [xdif ] = 1

]
⩽ 2δ.

9
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Assume that we obtain these sequences until i = k ⩾ 1
2 log T . Then on the event{

∀t ∈ [1, lk − 1],A(c(i))t [xdif ] = 0
}

, A will make k mistakes. Since k ⩽ 1/(16δ), from the
second property above pk ⩾ 1/4. This implies that for the sequence c(k) we have E [MA] ⩾ pkk ⩾
1
8 log T .

We construct the sequences by induction, starting with c(0) = (xeq, . . . , xeq). For each i, c(i)

will differ from c(i+1) at exactly one point. This allows us to use DP property of A in order to
compare outputs on c(i) and c(i+1). From δ-concentrated assumption, we can pick l0 = 1, r0 = T
which gives p0 = 1 and q0 = 0.1 (we interpret P [∀t ∈ ∅ . . .] = 1).

Given c(i) we construct c(i+1) by substituting li-th input point with xdif :

1. Let (c(i+1))j = (c(i))j for all j ̸= li,

2. Set (c(i+1))li = xdif .

Now we compute li+1, ri+1 and bound pi+1, qi+1. To do this, we first introduce

p′i := P
[
∀t ∈ [1, li],A(c(i))t [xdif ] = 0

]
⩾ pi − qi,

q′i := P
[
∀t ∈ [1, li],A(c(i))t [xdif ] = 0 and ∃t ∈ [li + 1, ri], s.t. A(c(i))t [xdif ] = 1

]
⩽ qi,

(4.5)

which just account for the shift li → li+1. Next, for mi = (li+ri)/2 and for any x ∈ {xeq, xdif}T ,
define

Q(x) := {∀t ∈ [1, li],A(x)t [xdif ] = 0 and ∃t ∈ [li + 1, ri], s.t. A(x)t [xdif ] = 1} ,
Q1(x) := {∀t ∈ [1, li],A(x)t [xdif ] = 0 and ∃t ∈ [li + 1,mi], s.t. A(x)t [xdif ] = 1} ,
Q2(x) := {∀t ∈ [1,mi],A(x)t [xdif ] = 0 and ∃t ∈ [mi + 1, ri], s.t. A(x)t [xdif ] = 1} .

(4.6)

Clearly, for any x, Q(x) = Q1(x) ∪Q2(x) with Q1(x) ∩Q2(x) = ∅. Therefore,

q′i = P
[
Q(c(i))

]
= P

[
Q1(c

(i))
]
+ P

[
Q2(c

(i))
]
. (4.7)

We can use DP property of A when comparing outputs on c(i) and c(i+1) to get

min
(
P
[
Q1(c

(i+1))
]
,P

[
Q2(c

(i+1))
])

⩽
1

2
(P

[
Q1(c

(i+1))
]
+ P

[
Q2(c

(i+1))
]
)

=
1

2
P
[
Q(c(i+1))

]
⩽

1

2

(
exp(ε0)P

[
Q(c(i))

]
+ δ

)
= exp(ε0)q

′
i/2 + δ/2 ⩽

3

4
qi + δ/2.

(4.8)
If P

(
Q1(c

(i+1))
)

⩽ P
(
Q2(c

(i+1))
)

we set li+1 := li + 1, ri+1 := mi, which gives qi+1 =

P
(
Q1(c

(i+1))
)

and pi+1 = p′i ⩾ pi − qi . Otherwise, we set li+1 = mi + 1, ri+1 = ri, with
qi+1 = P

(
Q2(c

(i+1))
)

and pi+1 ⩾ p′i − q′i ⩾ pi − 2qi. Overall, with our choice of li+1, ri+1:

qi+1 ⩽
3

4
qi + δ/2 and pi+1 ⩾ pi − 2qi. (4.9)

By geometric sum properties, we have that qi ⩽ 1
10(3/4)

i + 2δ, and therefore, pi ⩾ 1/2 − 4iδ.
Finally, note that ri+1− li+1 = (ri− li)/2−1. In the beginning we have r0− l0 = 2k−2, therefore
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ri − li = 2k−i − 2. Thus, we can repeat this process 1
2 log T ⩽ k ⩽ 2 log T ⩽ 1/(16δ) times. By

construction, all inserted points xdif for c(i) lie on the prefix [1, li − 1]. In order to extend to other
values of ε, we either insert more points per step (if ε < ε0), or divide the segment into more parts
(if ε > ε0). We refer to Appendix C for the argument in these cases. This concludes the proof.

4.2. Examples of β-concentrated online learners for PointN

Next, we show that several learners that could be used for online learning PointN , satisfy Defini-
tion 7. In particular, in Lemma 1 we prove that any improper learner that learns PointN using a finite
union of hypothesis in PointN (defined as Multi-point in Definition 8) is concentrated. Corollary 2
implies that the only existing private online learning algorithm DP-SOA is concentrated.

Definition 8 (Multi-Point class) For 1 ⩽ K ⩽ N ∈ N+, we define PointKN to be the class of
functions that are equal to 1 on at most K points.

Lemma 1 Let β > 0 and K,T ∈ N+. For any N ⩾ 3KT 2/β, any learner A of PointN that only
uses PointKN as its output set is β-concentrated.

Proof Set xeq = 1 and f1 = I {· = 2}. Let τ0 = ((xeq, f1(xeq)) , . . . , (xeq, f1 (xeq))) and A(τ0) =

(f̂1, . . . , f̂T ). For t ∈ [T ], let Qt =
{
x ∈ [N ], such that P

(
f̂t(x) = 1

)
⩾ β/T

}
. We can write∑

x∈[N ]

P(f̂t(x) = 1) =
∑
x∈[N ]

∑
f∈PointKN
f(x)=1

P(f̂t = f)

=
∑

f∈PointKN

∑
x∈[N ]
f(x)=1

P(f̂t = f) ⩽ K
∑

f∈PointKN

P(f̂t = f) = K,
(4.10)

which implies that |Qt| ⩽ K⌈T/β⌉. Therefore, by union bound, as long as N ⩾ 3KT 2/β, there
exists xdif ∈

(
[N ] \

⋃T
t=1Qt

)
\ {1, 2}. Applying union bound again, we obtain that

P(∃t, such that f̂t(xdif) = 1) ⩽
T∑
t=1

P(f̂t(xdif) = 1) ⩽ β. (4.11)

Thus, A is β-concentrated and the distinguishing tuple is (f1, I {· = xdif} , xeq, xdif).

In Lemma 1 we assumed that K is a constant. Note that as long as K = o(N), by taking
N large enough one can obtain the same result. We also remark that the SOA for PointN , which
is an improper learner, uses Point1N as the output hypothesis class. Beimel et al. (2014) also uses
improper learners consisting of union of points for privately learning PointN in the pure DP-PAC
model; their hypothesis class is a subset of the Multi-Point class.3

While their motivation was to explicitly construct a smaller hypothesis class that approximates
PointN well, on a more general note, it is also common to use larger hypothesis classes in compu-
tational learning theory for improper learning. This is particularly useful for benefits like computa-
tional efficiency (e.g., 3-DNF vs 3-CNF) and robustness (Diakonikolas et al., 2019). The purpose

3. See Section 4.1 in Beimel et al. (2014) to see the conditions that the hypothesis class needs to satisfy.
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of Lemma 1 is to show that natural improper learners using larger hypothesis classes for PointN ,
like Definition 8, are also concentrated. Furthermore, as we show next, the only generic private
online learner that we are aware of— DP-SOA, is also concentrated.

Corollary 2 DP-SOA for PointN is β-concentrated for any N ⩾ 3T 2/β.

Proof Output of DP-SOA is equal to the output of SOA algorithm on some input sequence. Note
that SOA for PointN is always equal to either (i) an all-zero function, or (ii) a target function f∗,
which implies that it lies in Point1N . Therefore, by Lemma 1, we obtain that DP-SOA is also
β-concentrated.

Independent work In a concurrent and independent work, Cohen et al. (2024) established that
learners that are not concentrated must nevertheless suffer large expected regret for the specific
case of PointT . They construct an adversary, strongly relying on the large size of the function class.
In particular, generalizing for a smaller function classes, e.g. Point3 remains an interesting open
question. We obtain a partial progress in this direction, see Section 5.2.

5. Discussion

5.1. Connection to DP under continual observation

Continual observation under DP (Dwork et al., 2010b) is the process of releasing statistics contin-
uously on a stream of data while preserving DP over the stream. One of simplest problems in this
setting is DP-Continual counting where a counter C : {0, 1}T → NT

+ is used. We say C is deemed a
(T, α, β, ε)-DP continual counter if C is ε-DP with respect to its input and with probability at least
1− β satisfies

max
t⩽T

|C (τ)t −
∑
i⩽t

τi| ⩽ α. (5.1)

The proof of Proposition 3 illustrates a straightforward method to convert DP continual counters
to DP online learners for the PointN hypothesis class, thereby transferring upper bounds from DP
continual counting to DP online learning. More precisely, the reduction results in a DP online
learning algorithm for PointN with an additional

√
N factor to the privacy parameter and number

of mistakes bounded by α. We believe this argument can also be extended to other finite classes by
adjusting the mistake bound with an additional factor that depends on the size of the class.

Proposition 3 For sufficiently small ε, β ⩾ 0 and any α ⩾ 0, let C be a (T, α, β, ε)-DP continual
counter. Then, for any δ > 0, an (ε′, δ)-DP online learner A for PointN exists ensuring E [MA] ⩽
α with ε′ = ε

√
3N log (1/δ) .

Several works (see Chan et al. (2011)) have identified counters with α = O
(
(log T )1.5 /ε

)
which immediately implies a mistake bound that also scales as poly log (T ) /ε using Proposition 3.
Ignoring4 the dependence on N , this almost matches the lower bound proposed in Theorem 1. On
the other hand, Dwork et al. (2010a) have shown a lower bound of Ω

(
log T
ε

)
for α for any pure DP-

continual counter. However it is not clear how to convert the lower bound for DP-continual learning

4. We do not optimise this as this dependence is not the focus of this work, for this argument consider N = O (1).
However, we believe it can be reduced using a DP continual algorithm for MAXSUM; see Jain et al. (2023)
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to DP online learning. This is because 1) Equation (5.1) asks for a uniformly (across t) accurate
counter whereas the mistake bound in Equation (2.1) is a global measure and 2) this lower bound is
for pure DP whereas our setting is approximate DP. We leave this question for the future work.

5.2. Beyond concentration assumption

In Section 4.1, we analyzed a class of algorithms, namely concentrated algorithms, containing the
only existing DP online learning algorithm, DP-SOA, and provided a matching logarithmic in T
lower bound. A natural question is whether this lower bound can be extended to any learner. While
we do not provide a general answer, we show that our construction can be made more general. Here,
we analyze a different class of algorithms, called firing algorithms.

For simplicity of exposition, consider the hypothesis class Point3, and let f∗ ∈
{
f (1), f (2)

}
.

Let x∗ be such that f∗ = f (x∗) and assume that adversary only considers sequences consisting
of (x∗, 1) and (3, 0). Let D be a distribution on

{
all-zero function, f (1), f (2)

}
. At each point t, a

firing algorithm A computes pt = pt(#mistakes up until t) ∈ [0, 1] with pt(0) = 0, and samples a
ξt ∼ Bern(pt). If ξt = 1, the algorithm commits to the correct hypothesis henceforth; otherwise, it
outputs ft ∼ D. Note that if the adversary introduces (3, 0) at step t, A is guaranteed not to err, and
a single mistake suffices to identify (non-privately) the correct hypothesis.

When D has support on only one of
{

all-zero function, f (1), f (2)
}

, it yields a 0-concentrated
algorithm. Furthermore, the continual observation algorithm can also be viewed as a firing algorithm
with a proper choice of D. We analyze the opposite to the concentrated algorithms, in particular
when D = Unif

{
f (1), f (2)

}
. We call such learners uniform firing algorithms and we also obtain a

logarithmic in T lower bound for them.

Proposition 4 Let A be an (ε, δ)-DP uniform firing algorithm for class Point3. Then, if log T =
O (1/δ), there exists an adversary, such that E [MA] = Ω(log T ).

Proof is provided in Appendix B and is similar to the proof of Theorem 1, but requires a more
delicate construction.

5.3. Pure differentially private online learners

While we have so far focused on Approximate DP with δ > 0, in this section we briefly discuss
Online learning under pure DP. Note that Lemma 1 and Theorem 1 immediately imply the following
lower bound on pure differentially private online learners for PointN .

Corollary 5 Let ε > 0, β > 0, K,T ∈ N+ and N ⩾ 3KT 2/β. For any ε-DP learner A which
uses only PointKN as its output set, there exists an adversary B, such that

E [MA] = Ω

(
min

(
log T/β

ε
, T

))
. (5.2)

Proof Lemma 1 implies that A must be β-concentrated. Furthermore, since A is ε-DP, it is also
(ε, β)-DP, and, thus, the existence of adversary with large regret follows from Theorem 1.

For (ε, δ)-DP online algorithms, there exists an upper bound provided by Golowich and Livni
(2021). However, to the best of our knowledge, not much is known about ε-DP online algorithms.

13



DMITRIEV SZABÓ SANYAL

One way to obtain such algorithm is by leveraging existing results from the continual observation
literature as done in Proposition 3. Under the same assumptions as in Proposition 3, using basic
composition instead of advanced composition in the last step results in an ε′ scaling as Nε. How-
ever, this only works for PointN and not for more general classes. For arbitrary finite hypothesis
classes, it is possible to use a DP continual counter, similar to above to obtain a mistake bound that
also scales with the size of the class. However, the question of whether generic learners can be
designed remains open. Another interesting open question is whether the dependence on the size of
the class e.g., N for PointN , is necessary.

5.4. Open problems

This work relies on assumptions about properties (Concentrated Assumption in Definition 7 or
uniform firing Assumption in Section 5.2) of the learning algorithms to show a lower bound for
any hypothesis class. On the other hand, Cohen et al. (2024) do not need any assumption on their
algorithm but their result only holds for large Point classes (and it cannot immediately be transferred
to small Point classes, e.g. Point3). To fully settle the problem of lower bounds for online DP
learners, the limitations of both this work and that of Cohen et al. (2024) need to be addressed. We
propose the following conjecture which we believe is true.

Conjecture 6 (Lower bound for Approximate DP) For any ε, δ > 0 and any (ε, δ)-DP learner
A of Point3, there exists an adversary B, such that E [MA] = Ω

(
min

(
log T/δ

ε , 1/δ
))

.

A straightforward implication of our main result is that the log T lower bound also holds for
pure DP online learners under the same assumptions on the algorithm. In Section 5.1, we showed
a generic reduction from DP continual counters to DP online learners for PointN with regret
poly log (T ). This reduction can be extended to pure DP online learner by using basic composi-
tion in Proposition 3, with an additional cost of

√
N . In Conjecture 7, we raise the question whether

for small N , the dependence on T can be lowered to log T and showed to be tight.

Conjecture 7 (Upper and lower bounds for Pure DP) For any ε > 0,

1. Upper bound: there exists ε-DP learner of Point3, s.t. for any adversary, E [M ] = O
(
log T
ε

)
.

2. Lower bound: for any ε-DP learner of Point3, there exists an adversary, s.t. E [M ] = Ω
(
log T
ε

)
.

Note that the lower bound part of Conjecture 7 follows from Conjecture 6, but can also be
viewed through connection to the continual observation model. In the latter regime, an Ω(log T )
lower bound was shown in Dwork et al. (2014).
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Appendix A. Proof of Proposition 3

Proof The proof for Proposition 3 simply follows from first instantiating |H| separate (T, α, β, ε′)-
DP continual counters, one for each h ∈ H.

Then we construct the learning algorithm as follows: at each step t, the learner outputs the
hypothesis that predicts 0 uniformly. This is possible as the learning algorithm is improper. Then
the adversary provides the learner with (xt, f

∗ (xt)). The algorithm then privately updates the
counter Ch with bh = I {f∗ (xt) = h (xt)}∧f∗ (xt). Then, as soon as any counter’s value (say Ch∗)
surpasses α, only predict using h∗.

Note that this algorithm only incurs a mistake at step t if bh = 1 at step t. However, every
time bh = 1, the counter for f∗ gets updated by one. Thus, after α updates it can be guaranteed
with probability 1 − β that h∗ = f∗. To get the final expected mistake bound, set β = α and this
completes the proof.

The privacy proof follows from applying strong composition to the different counters.

Appendix B. Lower bound for a non-concentrated algorithm

Consider the problem of learning function class Point3, such that f∗ ∈
{
f (1), f (2)

}
. Let x∗ be

such that f∗ = f (x∗) and assume that the adversary only considers sequences consisting of (x∗, 1)
and (3, 0). In this section, we show a lower bound for one special type of non-concentrated algo-
rithm: firing algorithms.

At each round t, the algorithm computes pt = pt (#mistakes up until t) ∈ [0, 1] with pt(0) = 0,
and samples ξt ∼ Bern(pt). If ξt = 1, from this point on, the algorithm always outputs the
correct hypothesis. In this case, we say that A has ‘fired’ at step t. Otherwise, it outputs ft ∼
Unif{f (1), f (2)}. We call such learners uniform firing algorithms. Note that A never errs on points
(3, 0), since both f (1) and f (2) are equal to zero at x = 3. Essentially, we analyze a distinguishing
tuple (f (1), f (2), 3, x∗).

Proof [of Proposition 4] WLOG, we assume δ > 1/T 2. For the elements of the input sequence,
we denote 0 := (3, 0) and 1 := (x∗, 1). Similar to the proof of Theorem 1, we proceed by creating
sequences τi, with τ0 = (0, . . . , 0) and τi containing exactly i copies of 1.

Assume that there is a scalar sequence (ri) and a sequence of subset of events (Gi), such that

1. P(Gi) ⩾ 1−O (iδ) ⩾ 1/2,

2. P(A(τi) outputs only f∗ starting from ri | Gi) = O (δ).
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This implies that we can upper bound probability that A outputs f∗ for any t ⩽ ri as follows (for a
subset of events A, we denote its complement by A and Pi(A) := P(A | Gi)):

P(A(τi)t = f∗) = Pi(A(τi)t = f∗)P(Gi) + P(A(τi)t = f∗ | Gi)P(Gi)

⩽ Pi(A(τi)t = f∗) +O(iδ)

= O(iδ) + Pi(A(τi)t = f∗ | A ‘fired’ before ri)Pi(A(τi) ‘fired’ before ri)

+ Pi(A(τi)t = f∗ | A(τi) did not ‘fire’ before ri)Pi(A(τi) did not ‘fire’ before ri)

⩽ Pi(A(τi) ‘fired’ before ri) +
1

2
+O(iδ)

⩽ Pi(A(τi) outputs only f∗ starting from ri) +
1

2
+O(iδ)

=
1

2
+O(iδ).

(B.1)
For i = O(1/δ), we obtain that P(A(τi)t ̸= f∗) = Ω(1). If τi contains exactly i points (x∗, 1)
on the prefix [1, ri], then, by picking i = Ω(log T ) (recall that log T = O(1/δ)) and summing the
latter probabilities, we obtain that E [MA] = Ω(log T ).

We now construct sequences (ri), (Gi), (τi), also including a scalar sequence (li), such that
[li, ri] are nested segments and (ri), (Gi) satisfy the aforementioned requirements. We proceed by
induction. First, define l0 = 1, r0 = T/2, τ0 = (0, . . . , 0), and G0 = Ω, i.e., so that P(G0) = 1.
Note that P(A(τ0) outputs only f∗ starting from r0) = 2−T/2 ⩽ δ. Next, assume that we already
defined li, ri, Gi. We divide a segment [li, ri] into three parts [li, lmi], [lmi, rmi], [rmi, ri], with
lmi = li + (ri − li)/3 and rmi = li + 2(ri − li)/3. We have the following decomposition:

Pi(A(τi) outputs only f∗ starting from ri)

= Pi(A(τi) outputs only f∗ starting from ri and outputs only f∗ starting from [lmi, rmi])

+ Pi(A(τi) outputs only f∗ starting from ri and does not only output f∗ on [lmi, rmi]).
(B.2)

As long as rmi − lmi ⩾
√
T , we obtain

Pi(A(τi) outputs only f∗ on [lmi, rmi])

= Pi(A(τi) fires before lmi) +

rmi−lmi∑
t=1

2−tPi(A(τi) fires on lmi + t) + 2−(lmi−rmi)

⩽ 2Pi(A(τi) outputs only f∗ starting from ri) + 2−
√
T .

(B.3)

We let τi+1 = τi, except that (τi+1)li = 1. Then, using DP property we have that

Pi(A(τi+1) outputs only f∗ starting from ri)

⩽ exp(ε)Pi(A(τi) outputs only f∗ starting from ri) + δ/P(Gi)

⩽ exp(ε)Pi(A(τi) outputs only f∗ starting from ri) + 2δ.

(B.4)

Therefore, either

P(A(τi+1) outputs only f∗ starting from ri and outputs only f∗ on [lmi, rmi])

⩽
1

2
(exp(ε)P(A(τi) outputs only f∗ starting from ri) + δ),

(B.5)
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or

P(A(τi+1 outputs only f∗ starting from ri and does not only output f∗ on [lmi, rmi])

⩽
1

2
(exp(ε)P(A(τi) outputs only f∗ starting from ri) + δ).

(B.6)

In the former case, we can reiterate with li+1 = li + 1, ri+1 = lmi, and Gi+1 = Gi, using that

P(A(τi+1) outputs only f∗ starting from lmi) ⩽ P(A(τi+1) outputs all ones on [lmi, rmi]).
(B.7)

In the latter case, we set Gi+1 = Gi ∩ {A(τi+1) does not only output f∗ on [lmi, rmi]}. Note
that P(Gi+1) = P(Gi)Pi(A(τi+1) does not only output f∗ on [lmi, rmi]) ⩾ 1 − O((i + 1)δ). We
reiterate with li+1 = rmi and ri+1 = ri.

Altogether, as long as rmi − lmi ⩾
√
T , we can always maintain that

1. P(Gi+1) ⩾ 1−O(iδ),

2. P(A(τi) outputs only f∗ starting from ri | Gi) = O(δ).

We can therefore continue this process at least Ω(log T ) times, which implies a large number of
mistakes as discussed before.

Proof of Proposition 4 resembles the proof of Theorem 1 with several important differences.
The main difficulty comes from the fact that by just looking at the output of the algorithm, it is
impossible to say with certainty, whether it ‘fired’ or not. And we need to do this, in order to
bound the marginal probability of outputting f∗ (which is 1/2 if A did not fire and 1 if it fired),
see Equation (B.1).

To overcome this issue, instead of splitting the segment into two parts and reiterating in either
left or right, we split into three parts and reiterate in the first or the third. Second segment plays
a special role, to ’detect’ whether algorithm fired or not. From the properties of the algorithm, if
the full segment is equal to all f∗, we can confidently say that algorithm fired before this segment.
Event Gi corresponds to a ’good’ event, meaning that A did not fire and did not look like it fired,
i.e., in the middle segment there exist one output not equal to f∗.

Finally, we would like to highlight that there is nothing specific about the choice D =
Unif(f (1), f (2)). The main property we needed for the proof is that

P(A outputs all f∗ on a specific subsequence of large enough length | A did not fire ) ⩽ δ.

Therefore, we expect that similar technique works for other choices of D, beyond a uniform distri-
bution.

Appendix C. Extending finite lower bound to other values of ε

Smaller ε Let d ∈ N+ and ε = ε0/d, where ε0 = log(3/2). WLOG we assume that T =
d(2k − 1). We repeat the same construction as in the proof of Theorem 1 for the case ε0, but now
instead of inserting only one point at each step, we insert d points. Note that this way sequences
c(i+1) and c(i) are d points away from each other, therefore, by applying DP property of A d times,
we obtain the following equivalent version of Equation (4.8):

min
(
P
[
Q1(c

(i+1))
]
,P

[
Q2(c

(i+1))
])

⩽
1

2

(
exp(ε0)P

[
Q(c(i))

]
+Aδ

)
, (C.1)
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where A = 1 + exp(ε0/d) + exp(2ε0/d) + . . . + exp((d − 1)ε0/d) ⩽ d exp(ε0). Therefore,
multiplying δ by a factor d exp(ε0), we recover the previous setting. Since only log 1/δ appears in
the final bound, and since ε0 is a constant, we only suffer an extra log d ∼ log 1/ε term, which is
subleading.

Larger ε When ε > ε0, instead of dividing the sequence in two parts, we will divide it into s
parts, for some integer s ⩾ 3, obtaining

min
(
P
[
Q1(c

(i+1))
]
, . . . ,P

[
Qs(c

(i+1))
])

⩽
1

s

(
exp(ε)P

[
Q(c(i))

]
+ δ

)
. (C.2)

We need to ensure that exp(ε)/s ⩽ 3/4, in order for the proof to go through, which follows if
log s = O(ε). Finally, note that instead of repeating process Ω(log T ) times, we repeat Ω

(
log T
log s

)
=

Ω
(
log T
ε

)
times, which matches the required mistake bound.
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