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Abstract
Clustering is a pivotal challenge in unsupervised machine learning and is often investigated through
the lens of mixture models. The optimal error rate for recovering cluster labels in Gaussian and sub-
Gaussian mixture models involves ad hoc signal-to-noise ratios. Simple iterative algorithms, such
as Lloyd’s algorithm, attain this optimal error rate. In this paper, we first establish a universal lower
bound for the error rate in clustering any mixture model, expressed through Chernoff information, a
more versatile measure of model information than signal-to-noise ratios. We then demonstrate that
iterative algorithms attain this lower bound in mixture models with sub-exponential tails, notably
emphasizing location-scale mixtures featuring Laplace-distributed errors. Additionally, for datasets
better modelled by Poisson or Negative Binomial mixtures, we study mixture models whose distri-
butions belong to an exponential family. In such mixtures, we establish that Bregman hard cluster-
ing, a variant of Lloyd’s algorithm employing a Bregman divergence, is rate optimal.
Keywords: clustering, mixture models, k-means, iterative algorithms

1. Introduction

Clustering is the task of partitioning a set of data points into groups, called clusters, such that data
points within the same cluster are more similar to each other than they are to data points in different
clusters. Clustering is an important problem in statistics and machine learning (Hastie et al., 2009;
Wu et al., 2008), with many applications.

Mixture models provide an elegant framework for the design and theoretical analysis of clus-
tering algorithms (McLachlan et al., 2019; Bouveyron and Brunet-Saumard, 2014). Denoting by
z∗ ∈ [k]n the vector of cluster assignments, a mixture model assumes that the n observed data
points X1, · · · , Xn ∈ X n, where X ⊂ Rd, are independently generated such that

∀i ∈ [n] : Xi | z∗i ∼ fz∗i , (1.1)

where f1, · · · , fk are the k probability distributions over X . An estimator ẑ = ẑn of z∗ is a mea-
surable function ẑ : (X1, · · · , Xn) 7→ ẑ(X1, · · · , Xn) ∈ [k]n. The loss of an estimator ẑ of z∗ is
quantified by the number of disagreements between ẑ and z∗, up to a global permutation of ẑ, i.e.,

loss(z∗, ẑ) = min
τ∈Sym(k)

Ham(z∗, τ ◦ ẑ), (1.2)
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where Sym(k) denotes the group of permutations on [k] and Ham the Hamming distance. The
expected relative error made by an estimator ẑ : (X1, · · · , Xn) → [k]n is then defined as

E
[
n−1loss (z∗, ẑ)

]
,

where E[·] denotes the expectation with respect to the model (1.1).
Gaussian mixture models are an important class of mixture models, in which for all a ∈ [k], the

distribution fa is Gaussian with mean µa ∈ Rp and covariance matrix Σa. If the Gaussian mixture
is isotropic, that is, Σa = σ2Ip for all a ∈ [k] (with σ2 > 0), finding the maximum likelihood
estimator (MLE) of (z∗, µ) is equivalent to solving the k-means problem

ẑ, µ̂ = argmin
z∈[k]n

µ̃1,··· ,µ̃p∈Rp

n∑
i=1

k∑
a=1

1{zi = a}∥Xi − µ̃za∥22, (1.3)

where ∥ · ∥2 denotes the Euclidean ℓ2-norm. Lloyd’s algorithm provides a simple way to find
an approximate solution of this NP-hard minimisation problem iteratively (Lloyd, 1982). Under
technical conditions on the initialisation and on the model parameters, Lu and Zhou (2016) show
that the number of misclustered points by Lloyd’s algorithm after Θ(log n) iterations verify

E
[
n−1loss

(
z∗, ẑLloyd

)]
≤ e−(1+o(1)) 1

2
SNR2

, (1.4)

where the signal-to-noise ratio (SNR) of this isotropic Gaussian mixture is defined as

SNR =
min1≤a̸=b≤k ∥µa − µb∥2

2σ
. (1.5)

More generally, in a mixture of anisotropic Gaussians, where the probability distributions f1, · · · , fk
are Gaussians with means µ1, · · · , µk and share the same covariance matrix Σ, the MLE becomes

ẑ, µ̂ = argmin
z∈[k]n

µ̃1,··· ,µ̃p∈Rp

n∑
i=1

k∑
a=1

1{zi = a}∥Xi − µ̃za∥2Σ,

where ∥x− y∥2Σ = (x− y)TΣ−1(x− y) denotes the square of the Mahalanobis distance. Because
the formulation of the new MLE is similar to (1.3), it is natural to modify the Lloyd algorithm by (i)
estimating the means and covariances in the estimation step and (ii) replacing the squared Euclidean
distance by the Mahalanobis distance in the clustering step. The error of this new iterative algorithm
is also upper-bounded as in (1.4), where the signal-to-noise ratio of this model is SNRanisotropic =
2−1min1≤a̸=b≤k ∥µa − µb∥Σ (Chen and Zhang, 2021). Moreover, for this anisotropic Gaussian
mixture model, the upper bound (1.4) on the error attained by this iterative algorithm is tight and
cannot be improved. More precisely, Chen and Zhang (2021) establish that

inf
ẑ

sup
z∗∈[k]n

E
[
n−1loss (z∗, ẑ)

]
≥ e−(1+o(1)) 1

2
SNR2

anisotropic , (1.6)

where the inf is taken over all estimators ẑ. Combining (1.4) and (1.6) shows that a Lloyd-based
scheme for solving the MLE in a mixture of anisotropic Gaussians achieves the minimax rate.
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Error rates of iterative algorithms are now well understood for (sub)-Gaussian mixture models,
but what happens for the mixture of distributions with heavier tails than Gaussians? As a first
setting, we will study location-scale mixture models, for which the coordinates of each data point
are generated as

∀i ∈ [n], ∀ℓ ∈ [d] : Xiℓ = µz∗i ℓ + σz∗i ℓϵiℓ, (1.7)

where (µa, σa) ∈ Rd × (0,∞)d denote the location and the scale of block a ∈ [k], and the random
variables ϵiℓ are independently sampled from a distribution with mean 0 and variance 1. When
the ϵiℓ’s are not Gaussians, does the minimax error rate also relate to a signal-to-noise ratio?
Furthermore, parametric mixture models do not always involve location and scale parameters. For
example, single-cell RNA sequencing datasets are represented by a matrix X ∈ Zn×d where n is
the number of cells, d is the number of genes, and Xiℓ records the number of unique molecular
identifiers from the i-th cell that map to the ℓ-th gene. Cells can be of different types, and entries
Xij are often assumed to come from a negative binomial, whose parameters depend on the types
of the cell i and of the gene ℓ (Grün et al., 2014; Haque et al., 2017). This motivates the study of
negative binomial mixture models and, more generally, of mixture models of the form (1.1) where
the pdfs f1, · · · , fk belong to an exponential family, but not necessarily Gaussian.

Our first contribution is the characterisation of a fundamental limit for the misclustering error.
Denote by Chernoff(f, g) the Chernoff information between two probability distributions f and
g. We establish that the classification error made by any clustering algorithm when applied to a
mixture model defined in (1.1) is lower bounded as

inf
ẑ

sup
z∗∈[k]n

E
[
n−1loss (z∗, ẑ)

]
≥ e

−(1+o(1)) min
1≤a̸=b≤k

Chernoff(fa,fb)
. (1.8)

This lower bound involves the Chernoff information instead of signal-to-noise ratios, but we show
that these two quantities are related in many models of interest. In particular, for anisotropic Gaus-
sian mixture models, the lower bounds (1.8) and (1.6) are the same. However, expressing the lower
bound in terms of the Chernoff information instead of SNR is more versatile as it does not require
making any assumption on the pdfs f1, · · · , fk. The rationale for finding the Chernoff informa-
tion in the lower bound (1.8) lies in the reformulation of the problem of assigning a data point Xi

to a cluster ẑi as an equivalent hypothesis testing problem, which tests the k different hypothesis
Hk : ẑi = ℓ for ℓ ∈ [k]. The difficulty of this problem is defined as the error made by the best
estimator, which is asymptotically exp(−(1 + o(1))min1≤a̸=b≤k Chernoff(fa, fb)).

Our second contribution is to show that iterative clustering algorithms can attain this error
rate in sub-exponential mixture models. More precisely, we establish that an iterative algorithm
achieves the lower bound (1.8) in the location-scale mixture model (1.7) when the ϵiℓ’s are Laplace-
distributed. An interesting example is when each dimension has the same variance, i.e., σ1ℓ = · · · =
σkℓ =: σℓ. In such a model, the minimax error rate can be written as exp(−(1+ o(1))SNRLaplace),
where

SNRLaplace = min
1≤a̸=b≤k

∥Σ−1(µa − µb)∥1,

where Σ is the diagonal matrix whose diagonal elements are σ1, · · · , σd. Furthermore, for the mix-
ture model defined in (1.1) whose pdfs belong to an exponential family, we show that the lower
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bound (1.8) is attained by a variant of Lloyd’s algorithm that replaces the minimisation of the
squared Euclidean distance by the minimization of a Bregman divergence. This algorithm is com-
monly called Bregman hard clustering in the literature, and the choice of the Bregman divergence
depends on the exponential family considered (Banerjee et al., 2005).

Paper structure The paper is structured as follows. In Section 2, we establish a lower bound
on the error rate made by any algorithm in clustering mixture models. We show in Section 3 that
iterative algorithms attain this lower bound in various mixture models, such as the Laplace mixture
model (Section 3.2) and the exponential family mixture models (Section 3.3). We discuss these
results in Section 4 and compare them with the existing literature.

Notations The notation 1n denotes the vector of size n× 1 whose entries are all equal to one. For
a vector x, we denote by ∥x∥p its ℓp norm (with 1 ≤ p ≤ ∞). The standard scalar product between
two vectors x, y is denoted < x, y >. The indicator of an event A is denoted 1{A}. We abbreviate
”random variable” by rv and ”probability density function” by pdf. Laplace and Gaussian random
variables with mean µ and scale σ are denoted by Lap(µ, σ) and Nor(µ, σ2). Given a pdf f , we
write X ∼ f if X is a rv whose pdf is f . A real-valued rv X is sub-exponential if there exists
C > 0 such that for all x ≥ 0 we have P (|X| ≥ x) ≤ 2e−Ct. Finally, we use the standard Landau
notations o and O, and write a = ω(b) when b = o(a) and a = Ω(b) when b = O(a). We also write
a = Θ(b) when a = O(b) and b = O(a).

2. Minimax rate of the clustering error in mixture models

Let f and g be two pdfs with respect to a reference dominating measure ν. The Chernoff information
between f and g is defined as

Chernoff(f, g) = − log inf
t∈(0,1)

∫
f t(x)g1−t(x)dν(x).

For a family F = (f1, · · · , fk) composed of k probability distributions, we define

Chernoff(F) = min
1≤a̸=b≤k

Chernoff (fa, fb) . (2.1)

The following theorem establishes an asymptotic lower bound on the clustering error in a mixture
model composed of the distributions belonging to the family F .

Theorem 1 Consider the mixture model defined in (1.1) and let F = (f1, · · · , fk) be the family of
k probability distributions that comprise the mixture, where k and the distributions fa scale with n.
Suppose that Chernoff(F) = ω(log k). Then,

inf
ẑ

sup
z∈[k]n

E
[
n−1loss(z, ẑ)

]
≥ e−(1+o(1))Chernoff(F),

where the inf is taken over all estimators ẑ : (X1, · · · , Xn) → [k]n.

The proof of Theorem 1 is given in Section A. The proof of Theorem 1 has two main steps. The
first challenge is to address the minimum over all permutations in the definition of the error loss.
Hence, rather than directly examining inf ẑ supz∈[k]n E

[
n−1loss(z, ẑ)

]
, we focus on a sub-problem
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inf ẑ supz∈Z̃ E
[
n−1loss(z, ẑ)

]
, where Z̃ ⊂ [k]n is chosen such that loss(z, ẑ) = Ham(z, ẑ) for all

z, ẑ ∈ Z̃ . The idea is that this sub-problem is simple enough to analyze, but it still captures the
hardness of the original clustering problem. Next, we bound the minimax risk of this sub-problem
by the Bayes risk and we demonstrate that it is sufficient to lower-bound the testing error between
each pair. The optimal error of this pairwise testing problem follows naturally from Lemma 2.

In Gaussian mixture models, the following example shows that the quantity Chernoff(F) is
related to the more commonly used signal-to-noise ratios.

Example 1 Suppose that fa = Nor(µa,Σa) where µ1, · · · , µk ∈ Rd and Σ1, · · · ,Σk are k-by-k
positive definite matrices. Then,

Chernoff(F) = max
a̸=b∈[k]

sup
t∈(0,1)

(1− t)

{
t

2
(µa − µb)

TΣ−1
abt(µa − µb)−

1

2(t− 1)
log

|tΣa + (1− t)Σb|
|Σa|1−t · |Σb|t

}
.

When Σ1 = · · · = Σk the sup is achieved for t = 2−1 and we obtain Chernoff(F) = 2−1SNR2
anisotropic

where SNRanisotropic = 2−1maxa,b∈[k] ∥Σ−1/2(µa−µb)∥2. This recovers the minimax lower bound
for clustering Gaussian mixtures established in Chen and Zhang (2021).

Theorem 1 is closely related to hypothesis testing. Indeed, suppose that the probability densities
f1, · · · , fk are known. By the Neyman-Pearson lemma, the optimal clustering ẑMLE verifies

ẑMLE
i = argmax

a∈[k]
fa(Xi),

and ẑMLE
i is a function of Xi only, and not of the other data points X−i = (Xj)j ̸=i.

Yet, hypothesis testing conventionally operates within the framework of fixed pdfs f and g,
where observations consist of n data points Y1, · · · , Yn, independently sampled from either f or g.
It is standard to quantify the optimal error rate of this problem using the Chernoff information. We
focus on an alternative scenario: when we have two sequences of distributions fm and gm, indexed
by a parameter m, which diverge with m (as indicated by the unbounded Chernoff information),
distinguishing between the two hypotheses at each iteration m becomes feasible with just a single
data point Y sampled from fm or gm. The following lemma, whose proof is given in Appendix A.1,
provides the optimal error rate of this hypothesis problem. This lemma cannot be directly derived
from existing results, as the pdfs f and g are not fixed but vary with m.

Lemma 2 Given two sequences of pdfs (fm) and (gm) indexed by a parameter m ∈ Z+, consider
the two hypotheses H0 : Y ∼ fm and H1 : Y ∼ gm. Let ϕMLE(Y ) = 1{fm(Y ) < gm(Y )} and
define the worst-case error of ϕ : Y 7→ ϕ(Y ) ∈ {0, 1} by

r(ϕ) = max{P (ϕ(Y ) = 0 |H1) ,P (ϕ(Y ) = 1 |H0)}.

Then, infϕ r(ϕ) = r(ϕMLE). Furthermore, if Chernoff(fm, gm, ) = ω(1), we have

log r(ϕMLE) = −(1 + o(1))Chernoff(fm, gm).

Otherwise, if Chernoff(fm, gm) = O(1), we have r(ϕMLE) ≥ c for some constant c > 0.

A direct consequence of Lemma 2 is that the classification rule ẑi = argmaxm∈[k] fm(Xi)
for all i ∈ [n] yields an error rate of exp(−(1 + o(1))Chernoff(F)). Hence, if one has access to
the true probability distributions f1, · · · , fk composing the mixture, then the lower bound given in
Theorem 1 is tight. In most practical settings, the true probability distributions are unknown. The
following section demonstrates how the minimax error rate can still be achieved.
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3. Clustering error of iterative algorithms on parametric mixture models

3.1. Parametric mixture model

In this section, we consider the recovery of the clusters of parametric mixture models. More pre-
cisely, we let PΘ = {fθ, θ ∈ Θ} be a family of pdfs parameterised by a subset Θ ⊂ Rp. For
m points Y1, · · · , Ym sampled from fθ, we denote by θ̂({Y1, · · · , Ym}) an estimator of θ. We let
z∗ ∈ [k]n be the vector of cluster assignments, and θ1, · · · , θk ∈ Θ. Conditioned on z∗, the n
observed data points (X1, · · · , Xn) are independently sampled, such that

Xi | z∗i = a ∼ fθa . (3.1)

A natural estimator ẑoracle of z∗ that uses the knowledge of the true parameters of the model
(θa)a∈[k] is given by

∀i ∈ [n] : ẑoraclei = argmax
a∈[k]

log fθa(Xi). (3.2)

When the model parameters (θa)a∈[k] are unknown, Algorithm 1 provides an iterative scheme for
estimating the cluster assignment z∗. This algorithm sequentially performs the estimation and clus-
tering stages. The goal of this section is to provide general bounds on the error made by Algorithm 1.
Following the same proof strategy as previous works on iterative algorithms (Gao and Zhang, 2022),
we first decompose the error into two terms and then provide general conditions under which these
terms can be upper-bounded.

Algorithm 1 Clustering parametric mixture models.
Input: Set of n data points (X1, · · · , Xn) ∈ X n, parametric family PΘ = {fθ, θ ∈ Θ} of pdfs,

number of clusters k, number of iteration tmax, initial clustering ẑ(0) ∈ [k]n.
Output: Predicted clusters ẑ ∈ [k]n.
For t = 1 · · · tmax do

1. For a = 1, · · · , k, let θ̂(t)a = θ̂
(
{Xi : z

(t−1)
i = a}

)
be an estimate of θa;

2. For i = 1, · · · , n let ẑ(t)i = argmaxa∈[k] log fθ̂(t)a
(Xi).

Return: ẑ = ẑ(tmax).

3.1.1. DECOMPOSITION OF THE ERROR TERM

Let us introduce ℓa(x) = log fθa(x) and ℓ̂(t)a (x) = log f
θ̂
(t)
a
(x). We show in Appendix B.1 that we

can upper-bound the error loss(z∗, ẑ(t)) of Algorithm 1 made at step t as

loss
(
z∗, ẑ(t)

)
≤ ξideal(δ) + ξ(t)excess(δ), (3.3)

where δ > 0 and

ξideal(δ) =
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
ℓz∗i (Xi)− ℓ

b
(Xi) < δ

}
, (3.4)

ξ(t)excess(δ) = 2δ−1
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
ẑ
(t)
i = b

}
max
a∈[k]

∣∣∣ℓ̂(t)a (Xi)− ℓa(Xi)
∣∣∣ . (3.5)

6



UNIVERSAL LOWER BOUNDS AND OPTIMAL RATES

When δ = 0, the ideal error ξideal(0) is an upper bound on the error done by one step of Algorithm 1
that uses the correct parameters θ∗1, · · · , θ∗k and not the estimated ones. Studying ξideal(δ) instead
of ξideal(0) gives us some room to control the excess error ξ(t)excess(δ) made by estimating the model
parameters. The value of δ must be small enough so that ξideal(δ) has the same asymptotic behaviour
as ξideal(0), but large enough so that ξ(t)excess(δ) remains small. The following lemma motivates the
choice of δ = o(Chernoff(F)).

Lemma 3 Consider a family F = (f1, · · · , fk) of pdf. Suppose Chernoff(F) = ω(1) and let
δ = o(Chernoff(F)). Then, with a probability of at least 1− e−

√
Chernoff(F),

ξideal(δ) ≤ nke−(1+o(1))Chernoff(F).

3.1.2. CONDITIONS FOR RECOVERY

After Lemma 3, the last remaining step to upper-bound the loss is to control the excess error term.
Because the estimates ẑ(t) are data dependent, we have to establish that, starting from any ẑ(0) with
a loss small enough, the excess error after one step is upper bounded by a nicely behaved quantity.
More precisely, denote znew the clustering obtained after one step of Algorithm 1 starting from some
arbitrary initial configuration zold ∈ [k]n, and define the following event

Eτ,δ,c,c′ =
{
loss(z∗, zold) ≤ nk−1τ implies ξexcess(δ) ≤ c loss(z∗, znew) + c′ loss(z∗, zold)

}
,

where τ, δ, c, c′ are determined later. The following condition states that the event Eτ,δ,c,c′ holds
with probability 1− o(1) (with respect to the data sampling process) for a certain choice of τ, δ.

Condition 1 Assume there exists τ = Ω(1), δ = o(Chernoff(F)) and constants c, c′ ∈ (0, 1) with
c′ < 1− c such that P

(
Eτ,δ,c,c′

)
≥ 1− o(1).

Assume loss(z∗, ẑ(0)) ≤ nk−1τ . Conditionally on the high probability event Eτ,δ,c,c′ , we establish
(by induction and by combining the error decomposition (3.3) with Lemma 3) that

loss
(
z∗, ẑ(t)

)
≤ nk

1− c
e−(1+o(1))Chernoff(F) +

c′

1− c
loss

(
z∗, ẑ(t−1)

)
, (3.6)

as long as we can ensure that loss
(
z∗, ẑ(t)

)
≤ nk−1τ at every step t ≥ 0 for the same τ = O(1).

We can now state the following lemma, whose proof is given in Appendix B.3.

Lemma 4 Let θ1, · · · , θk ∈ Θ and F = (fθ1 , · · · , fθk). Let τ = Ω(1) such that Condition 1 holds
and Chernoff(F) = ω(log(k2τ)). Let ẑ(t) be the output of Algorithm 1 after t steps. We have

∀t ≥
⌊
log

(
1− c

c′

)
log n

⌋
: n−1loss

(
z∗, ẑ(t)

)
≤ e−(1+o(1))Chernoff(F).

Lemma 4 establishes that Algorithm 1 achieves the minimax rate of recovering z∗ with respect to
the loss function n−1loss(z∗, z) after at most Θ(log n) iterations when Condition 1 is verified. In
the next two sections, we show that this condition holds for specific parametric families P(Θ).
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3.2. Clustering Laplace mixture models

A real-valued random variable Y has a (1-dimensional) Laplace distribution with location µ ∈ R
and scale σ > 0 if its pdf is g(µ,σ)(x) = 1

2σ exp
(
−σ−1|x− µ|

)
. We denote such a rv by Y ∼

Lap(µ, σ). In this section, we suppose that the n observed data points X1, · · · , Xn belong to Rd

and are generated from the mixture model (1.1) such that for every i, the d coordinates of Xi are
independently generated and follow a Laplace distribution, i.e.,

∀ℓ ∈ [d] : Xiℓ = µz∗i ℓ + σz∗i ℓϵiℓ where ϵiℓ ∼ Lap(0, 1), (3.7)

where for all a ∈ [k] we have µa ∈ Rd and σa ∈ (0,∞)d. Equivalently, we can rewrite the
mixture (3.7) as a mixture of the parametric family indexed over Θ = Rd × (0,∞)d defined by

P(Θ) =

{
fθ(x) =

d∏
ℓ=1

σ−1
ℓ g(0,1)

(
xℓ − µℓ
σℓ

)
, θ = (µ, σ)

}
.

Given a sample Y1, · · · , Ym of a 1-dimensional Laplace distribution, we estimate the location and
the scale by

µ̂(Y1, · · · , Ym) = m−1
m∑
i=1

Yi, and σ̂(Y1, · · · , Ym) = m−1
m∑
i=1

|Yi − µ̂(Y1, · · · , Ym)| .

For simplicity of the exposition of the theorem, we assume that the locations µaℓ depend on n, but
the scales σaℓ are constant. We denote ∆µ,∞ = maxa̸=b∈[k] ∥µa − µb∥∞ the maximum distance
between the cluster centres. The following theorem establishes bounds on the recovery of Laplace
mixture models. The proof is given in Appendix D.

Theorem 5 Let X1, · · · , Xn be generated from a Laplace mixture model as defined in (3.7). Sup-
pose that k log2(dk) = o(n) and mina∈[k]

∑
i∈[n] 1{z∗i = a} ≥ αnk−1 for some α > 0 (indepen-

dent of n). Assume that ∆µ,∞ = O
(
d−1Chernoff(F)

)
and Chernoff(F) = ω(d

√
k(1 +

∆µ,∞√
nk−1

)).

Let ẑ(t) be the output of Algorithm 1 after t steps, and suppose that the initialization verifies
loss(z∗, ẑ(0)) = o

(
nk−1∆−1

µ,∞
)
. Then, with probability of at least 1− o(1), it holds

n−1loss
(
z∗, ẑ(t)

)
≤ e−(1+o(1))Chernoff(F) ∀t ≥ ⌊c log n⌋ ,

for any arbitrary constant c > 0.

While we adopt a similar error decomposition approach as in prior works on clustering sub-
Gaussian mixtures (Chen and Zhang, 2021; Gao and Zhang, 2022), our analysis of the individual
error terms is different due to the sub-exponential nature of the data. This is done in Appendix C.

The conditions ∆µ,∞ = O
(
d−1Chernoff(F)

)
and loss(z∗, ẑ(0)) = o

(
nk−1∆−1

µ,∞
)

in Theo-
rem 5 impose that the quantity ∆µ,∞ should not be too large. This might seem counter-intuitive
at first. In fact, ∆µ,∞ is the maximum distance between the cluster centres, and therefore a large
∆µ,∞ should not impact the difficulty of recovery. But the first step of Algorithm 1 estimates the
quantities µ̂(1)a by taking a sample mean based on the initial prediction ẑ(0). Because (i) the sample
mean is not a robust estimator and (ii) mistakes made by the initial clustering are arbitrary, those

8
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mistakes may have an enormous impact on the mean estimation if ∆µ,∞ is arbitrarily large. Similar
conditions, albeit usually involving ∆µ,2 = maxa̸=b ∥µa − µb∥2, already appear in the study of
k-means algorithm for (sub)gaussian mixture models. We refer the reader to (Lu and Zhou, 2016,
Section A.5) for a counter-example showing that such a condition is necessary when studying worst-
case scenarios. Gao and Zhang (2022) avoid such an extra condition on ∆µ,2, but at the expense
of using a different loss function: w-loss (z∗, ẑ) =

∑k
a=1

∑k
b=1
b ̸=a

∥µa − µb∥21{z∗i = a, ẑi = b}.

This new loss function imposes a heavier penalty on mistakes made between clusters having a large
∥µa−µb∥2. Assuming that w-loss

(
z∗, ẑ(0)

)
= o(nk−1mina̸=b ∥µa−µb∥2), Gao and Zhang (2022)

establish that Lloyd’s algorithm attains the optimal error rate in isotropic Gaussian mixture models.
The assumption of w-loss

(
z∗, ẑ(0)

)
is stronger than the assumption on loss

(
z∗, ẑ(0)

)
, as the former

automatically rules out settings in which too many mistakes are made across cluster pairs that have
a large ∥µa − µb∥1.

Finally, we note that in previous literature, the difficulty of clustering is expressed by a small
signal-to-noise ratio, instead of a small Chernoff information. In many cases, the two are related, but
as we saw in the introduction, the signal-to-noise ratio might take a different expression depending
on the model considered. This is also the case for the Laplace mixture model. For example, if each
dimension has a unique scale across the k clusters (i.e., σ1ℓ = · · · = σkℓ = σℓ), we have (see
detailed computations in Appendix D.3)

Chernoff(F) = (1 + o(1))min
a̸=b

d∑
ℓ=1

|µaℓ − µbℓ|
σℓ

.

This can be rewritten as

Chernoff(F) = (1 + o(1))min
a̸=b

∥Σ−1(µa − µb)∥1,

where Σ is the diagonal matrix whose elements are σ1, · · · , σℓ. This quantity ∥Σ−1(µa − µb)∥1
can be interpreted as an SNR. If we further restrict σ1 = · · · = σℓ = σ (isotropic Laplace mixture
model), we obtain

Chernoff(F) = (1 + o(1))
mina̸=b ∥µa − µb∥1

σ
.

For this isotropic Laplace mixture model, the error rate involves the ℓ1 distance, instead of the more
traditional ℓ2 distance used in the Gaussian mixture model (see (1.5)).

3.3. Bregman hard clustering of exponential family mixture models

A set of pdf Pψ(Θ) = {pθ, θ ∈ Θ} form an exponential family if each pdf pθ (defined with respect
to a common reference measure ν) can be expressed as

pψ,θ(y) = h(y)e<u(y),θ>−ψ(θ), (3.8)

where h(·) is the carrier measure, u(·) is the sufficient statistics, ψ(θ) = log
∫
h(y)e<u(y),θ>dν(y)

is the log-normalizer (also called the cumulant function), and θ is the natural parameter belonging

1. More precisely, we notice that mina̸=b ∥µa − µb∥2loss(z∗, z) ≤ w-loss(z∗, z) for all z ∈ [k]n. Therefore, the

condition w-loss
(
z∗, ẑ(0)

)
= o(nk−1 mina̸=b ∥µa − µb∥2) implies loss

(
z∗, ẑ(0)

)
= o(nk−1), but the converse

does not hold.

9
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to the space Θ = {θ ∈ Rp : ψ(θ) < ∞}. We assume that Θ is open so that P(Θ) forms a regular
exponential family, and that u is a minimal sufficient statistics2. Among important properties of
regular exponential families, we recall that ψ is a differentiable and strongly convex function which
verifies EY∼pψ,θ [u(Y )] = ∇ψ(θ) (Banerjee et al., 2005, Sections 4.1 and 4.2).

We consider a family of k pdf F = {fθ1 , · · · , fθk} belonging to the same exponential family,
such as each fθa can be written as

fθa(x1, · · · , xd) =

d∏
ℓ=1

hℓ(xℓ)e
<uℓ(xℓ),θaℓ>−ψℓ(θaℓ). (3.9)

In other words, each coordinate Xiℓ of Xi is sampled from an exponential family with sufficient
statistics uℓ, cumulant function ψℓ, and parameter θz∗i ℓ. We note that, for each coordinate ℓ, differ-
ent clusters share the same the sufficient statistic uℓ and cumulant function ψℓ, but have different
parameters θ1ℓ, · · · , θkℓ. Moreover, we assume that uℓ is a function from R to R, but our results
extend naturally if uℓ : R → Rp.

For any convex, differentiable functionφ : Θ → R, we define its Legendre transform asφ∗(y) =
supθ∈Θ{< θ, y > −φ(θ)}. The Bregman divergence Bregφ(·∥·) with generator φ is defined by

Bregφ(x∥y) = φ(x)− φ(y)− (x− y)T∇φ(y).

The pdf pψ,θ defined in (3.8) can be rewritten as (Banerjee et al., 2005, Theorem 4)

pψ,θ(y) = bψ(y)e
−Bregψ∗ (x,µ),

where bψ(·) is independent of θ. Therefore, for any fθa ∈ P(Θd) we have

fθa(x) = b(x)e
−

∑L
ℓ=1 Bregψ∗

ℓ
(uℓ(xℓ),µaℓ),

where µaℓ = EX∼fθa [uℓ(Xℓ)] = ∇ψℓ(θaℓ). Therefore, for a mixture model for the parametric
family (3.8), we can reformulate Algorithm 1 as Algorithm 2. As in Section 3.2, we also define
∆µ,∞ = max1≤a̸=b≤k ∥µa − µb∥∞.

The following theorem, whose proof is provided in Appendix E, shows that Algorithm 2 is
rate-optimal if correctly initialised.

Theorem 6 Let X1, · · · , Xn be generated from a mixture model of exponential family as de-
fined in (3.9), and such that uℓ(Xiℓ) is sub-exponential. Suppose that k log2(dk) = o(n) and
mina∈[k]

∑
i∈[n] 1{z∗i = a} ≥ αnk−1 for some constant α > 0. Suppose that ∇2ψ∗(µaℓ) = Θ(1),

∆µ,∞ = O(d−1Chernoff(F)) and Chernoff(F) = ω(d
√
k(1 +

∆µ,∞√
nk−1

)). Let ẑ(t) be the output

of Algorithm 2 after t steps, where the initialisation verifies loss(z∗, ẑ(0)) = o
(
nk−1∆−1

µ,∞
)
. Then,

with a probability of at least 1− o(1), it holds

n−1loss
(
z∗, ẑ(t)

)
≤ e−(1+o(1))Chernoff(F) ∀t ≥ ⌊c log n⌋ ,

for any arbitrary constant c > 0.

2. A sufficient statistic u is said to be minimal if for any other sufficient statistic ũ, there exists a measurable function φ
such that u = φ(ũ).

10
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Algorithm 2 Bregman hard clustering (Banerjee et al., 2005)
Input: Set of n data points (X1, · · · , Xn) ∈ Rn×d, sufficient statistics u1, · · · , ud : R → R,

convex functions ψ∗
1, · · · , ψ∗

p : R → R, number of clusters k, number of iteration tmax,
initial clustering ẑ(0) ∈ [k]n.

Output: Predicted clusters ẑ ∈ [k]n.
For t = 1 · · · tmax do

1. For a = 1, · · · , k and ℓ = 1, · · · , d, let µ̂aℓ =

∑
i 1

{
ẑ
(t−1)
i =a

}
uℓ(Xiℓ)∑

i 1
{
ẑ
(t−1)
i =a

} ;

2. For i = 1, · · · , n let ẑ(t)i = argmin
a∈[k]

∑L
ℓ=1Bregψ∗

ℓ
(uℓ(xℓ), µ̂aℓ).

Return: ẑ = ẑ(tmax).

We need the technical condition ∇2ψ∗
ℓ (µaℓ) = Θ(1) to control the term Bregψ∗

ℓ
(µaℓ, µ̂aℓ) when

µ̂aℓ is an estimate of µaℓ. This condition is verified in many models of interest (such as Poisson,
Negative Binomial, Exponential, or Gaussian mixture models). For example, for Poisson distribu-
tions, we have ψ∗(x) = x log x − 1 and hence ∇2ψ∗(x) = x−1 is a Θ(1) if we assume that the
intensities of the Poisson pdf forming the mixture are all lower-bounded.

The assumption that uℓ(Xiℓ) is sub-exponential can be verified even ifXiℓ has a heavier tail than
exponential. For example, if Xiℓ is log-normal, then uℓ(Xiℓ) = log(Xiℓ) is Gaussian and hence
has sub-exponential tails. Pareto distribution provides another interesting example: if Xiℓ is Pareto
distributed with shape α and scale xm = 1, then logX is exponentially distributed with mean α−1.

Finally, we notice that, except for particular cases (such as Gaussian mixture models), the quan-
tity Chernoff(F) does not have a nice closed-form expression, and we can not easily define an SNR
in those models. An important example of such a quantity already appearing in the literature is the
Chernoff-Hellinger divergence, originally defined in Stochastic Block Models (Abbe and Sandon,
2015; Dreveton et al., 2023), and appearing in the study of Poisson mixture models, as shown in the
following example.

Example 2 (Poisson mixture model) Consider the family F = {fθ1 , · · · , fθk} of multi-variate

Poisson distributions, defined by fθa(x) =
∏d
ℓ=1

θ
xℓ
aℓ
xℓ!
e−θaℓ for x ∈ Zd+ and θa ∈ Rd+. Then,

Chernoff(F) = min
1≤a̸=b≤k

sup
t∈(0,1)

∑d
ℓ=1

(
tθaℓ + (1− t)θbℓ − θtaℓθ

1−t
bℓ

)
.

4. Discussion

4.1. Initialisation

In the literature, initialisation is commonly accomplished through spectral methods, an umbrella
term denoting a dimension reduction via spectral decomposition followed by clustering. Here, we
perform the dimension reduction through the Singular Value Decomposition (SVD) of a well-chosen
matrix Y , and the clustering is done by finding an (1 + ϵ)-approximation of a k-means problem.

1. Let Y =
∑p∧n

ℓ=1 sℓvℓw
T
ℓ with s1 ≥ s2 ≥ · · · ≥ sp∧n be the SVD decomposition of Y ∈ Rp×n.

Let V = [v1, · · · , vk] ∈ Rp×k and define M̂ = V Y ∈ Rk×n.

11
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2. Return ẑ(0), an (1 + ϵ) approximation of argmin
z∈kn
µ̌∈Rd×k

∑n
i=1 ∥M̂·i − µ̌zi∥22, where M̂·i is the i-th

column of M̂ (Kumar et al., 2004).

For the Laplace mixture model, we apply the SVD directly on Y = X , while for an exponential
family mixture, we apply it on the matrix Y obtained such that Yiℓ = uℓ(Xiℓ) for all i ∈ [n], ℓ ∈ [d].
The following lemma ensures that the error made by this initialisation is o(nk−1∆−1

µ,∞), as required
by Theorems 5 and 6.

Lemma 7 Define δµ,2 = min1≤a̸=b≤k ∥µa − µb∥2. Let ẑ(0) be the clustering obtained by the
initialisation described above, with ϵ being defined in step 2. Assume mina∈[k]

∑
i∈[n] 1{z∗i = a} ≥

αnk−1 for some constant α > 0 and ∆µ,∞ = o

(
δ2µ,2

(1+ϵ)k2(1+ d
n
)

)
. Then

loss
(
z∗, ẑ(0)

)
= o

(
nk−1∆−1

µ,∞
)
.

The proof of Lemma 7 follows the same steps as in the proof of (Gao and Zhang, 2022, Propo-
sition 4.1), the only modification being a different choice of the loss function. The central argument
in the proof of (Gao and Zhang, 2022, Proposition 4.1) is that ∥Y −EY ∥2 = O(

√
n+ d) with prob-

ability at least 1− e−Cn for some C > 0 when Y has independent Gaussian entries. In our setting,
Y is a random matrix with independent, sub-exponential random entries, and hence its concentrate
(see for example (Bandeira and van Handel, 2016, Corollary 3.5) and (Dai et al., 2023)).

Finally, Lemma 7 requires an additional assumption on δµ,2. While we might be able to get
rid of this extra technical condition, we also notice that this condition is verified in interesting
regimes. We refer the reader to the detailed example of the Laplace mixture in Section D.3, for
which δ2µ,2 = Θ(d∆2

µ,∞) and Chernoff(F) = Θ(d∆µ,∞). In this regime, the extra condition in
Lemma 7 becomes Chernoff(F) = ω((1 + ϵ)k2(1 + dn−1)), which is weak if d = o(n).

4.2. Discussion and future work

There has been a recent surge in interest in establishing the error rates of various clustering algo-
rithms in (sub-Gaussian) mixture models. In this section, we provide a concise overview of some
of the latest and most pertinent works in this area, as well as directions for future work.

Robustness to model specification, perturbed samples, and heavier tails Due to its simplicity
and inclusion in popular libraries like scikit-learn, the standard Lloyd’s algorithm often serves as
the default choice for clustering tasks. While its optimality has been demonstrated for clustering
isotropic Gaussian mixture models, its performance on other mixture models has not been studied.
More generally, Theorems 5 and 6 demonstrate that iterative algorithms are rate-optimal when the
parametric family underlying the mixture distributions is known. But what happens under model
misspecification? For instance, what error rate can we expect to achieve if we cluster a mixture of
negative binomial distributions using the Bregman divergence associated with the Poisson distribu-
tion? As a first result in this direction, (Jana et al., 2023, Theorem 1) establishes that employing
the ℓ1 distance instead of the squared ℓ2 distance for clustering a mixture of isotropic Gaussian
yields an error rate of at least exp(−(2 + C)−1SNR2

isotropic), where C > 0, which is larger than
the optimal rate of exp(−2−1SNR2

isotropic).

12
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Another important type of robustness lies in the observation of perturbed samples. Suppose that
{Xi}i∈[n] is generated from a mixture model, but we observe a perturbed sample {X̃i}i∈[n] with
X̃i = Xi + ei, where the noise terms {ei}i∈[n] verify ∥ei∥ ≤ ϵ. For sub-Gaussian Xi, (Patel et al.,
2023, Theorem 4.1) establish that the mis-clustering rate of Lloyd’s algorithm on this model is at
most exp

(
−4−1SNR2

isotropicmin{1, 2ϵ}
)
.

Because the mean is notoriously non-robust to outliers (Tukey, 1960; Huber, 1964), another
strategy to ensure the robustness of the iterative method is to estimate the cluster means by a ro-
bust location estimator, such as the coordinate-wise median (Jana et al., 2023), the geometric me-
dian (Godichon-Baggioni and Robin, 2024), or trimmed estimators (Cuesta-Albertos et al., 1997;
Garcı́a-Escudero et al., 2008; Brécheteau et al., 2021). Furthermore, robust estimators might be-
come necessary for handling distributions with tails heavier than sub-exponential.

High dimension regime When d can grow arbitrarily large, Ndaoud (2022) showed that the op-
timal error rate for clustering mixture of isotropic Gaussians with k = 2 clusters is no longer

exp(−2−1SNR2
isotropic) but becomes exp

(
Θ

(
SNR4

isotropic

SNR2
isotropic+dn

−1

))
. An extension to k = Θ(1)

clusters is studied in Chen and Yang (2021). The theoretical analysis of both of these works heavily
relies on the Gaussian assumption, and it remains open to extend such results to other mixture mod-
els. The key challenge is that in a mixture of two isotropic Gaussians 1

2N (µ1, Id) +
1
2N (µ2, Id)

where d ≫ n, the dimension of the parameters of the distributions (µ1, µ2 ∈ Rd) is much larger
than the number of data points n. This creates a discrepancy between the minimax error rates of
algorithms with and without access to the true centres µ1, µ2 (Ndaoud, 2022). Exploring this phe-
nomenon for models beyond the mixture of two isotropic Gaussians is a crucial avenue for future
research.

(Semi)-supervised extensions Once the unsupervised error rate of various mixture models is well
understood, researchers can also examine the supervised error rate of classification (Li et al., 2017;
Minsker et al., 2021). An intriguing perspective emerges when extending these analyses to a semi-
supervised setting, aiming to ascertain whether a small amount of labelled data can notably diminish
the clustering error rate (Lelarge and Miolane, 2019; Tifrea et al., 2023).
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Appendix A. Proof of the lower-bound

A.1. Proof of Lemma 2

We recall that, given two pdfs f and g with respect to a reference dominating measure ν, the Rényi
divergence of order t between f and g is

Rent(f∥g) =
1

t− 1
log

∫
f t(x)g1−t(x)dν(x).

Chernoff information and Rényi divergences are linked by the following relationship

Chernoff(f, g) = sup
t∈(0,1)

(1− t)Rent(f∥g).

The Rényi divergence is not symmetric in f and g (except for t = 2−1), but the Chernoff information
is symmetric.
Proof [Proof of Lemma 2] Let ℓ(Y ) = log gm

fm
(Y ). By the definition of ϕMLE and of the worst-case

risk r(·), we have

r
(
ϕMLE

)
= max {PY∼fm (ℓ(Y ) > 0) ,PY∼gm (ℓ(Y ) < 0)} .

In the following, we establish upper and lower bounds for PY∼fm (ℓ(Y ) > 0). A similar reasoning
provides bounds for PY∼gm (ℓ(Y ) < 0).

(i) Upper-bound. Applying Chernoff bounds, it holds for any t ∈ (0, 1)

PY∼fm (ℓ(Y ) > 0) = PY∼fm

(
etℓ(Y ) > 1

)
≤ Efm

[
etℓ(Y )

]
.

By the definition of ℓ(Y ), we have Efm
[
etℓ(Y )

]
= Efm

[(
gm
fm

(Y )
)t]

. By the definition of the

Rényi divergence, we also have Efm

[(
gm
fm

(Y )
)t]

= e−(1−t)Rent(gm∥fm). Hence,

PY∼fm (ℓ(Y ) > 0) ≤ inf
t∈(0,1)

e−(1−t)Rent(gm∥fm)

= e− supt∈(0,1)(1−t)Rent(gm∥fm)

= e−Chernoff(fm,gm).

We can similarly establish that PY∼gm (ℓ(Y ) < 0) ≤ e−Chernoff(fm,gm), and thus

log r(ϕMLE) ≤ −Chernoff(fm, gm).

(ii) Lower-bound. For any s ≥ 0 and t ∈ (0, 1), we have

Pfm (ℓ(Y ) > 0) ≥ Efm

[
e−tℓ(Y )etℓ(Y )1{0 ≤ ℓ(Y ) ≤ s}

]
≥ e−ts Efm

[
etℓ(Y )1{0 ≤ ℓ(Y ) ≤ s}

]
.
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Next, we define h1−t =
f1−tm gtm∫
f1−tm gtm

. We notice that
∫
f1−tm gtm = e−(1−t)Rent(gm∥fm), and furthermore

Efm

[
etℓ(Y )1{0 ≤ ℓ(Y ) ≤ s}

]
=

∫
f1−tm (y)gtm(y)1{0 ≤ ℓ(y) ≤ s} dν(y)

= e−(1−t)Rent(gm∥fm)Ph1−t(ℓ(Ỹ ) ∈ [0, s]),

where Ỹ is a random variable distributed from h1−t. Therefore,

Pfm (ℓ(Y ) > 0) ≥ e−tse−(1−t)Rent(gm∥fm)Ph1−t(ℓ(Ỹ ) ∈ [0, s])

≥ e−se−Chernoff(fm,gm)Ph1−t(ℓ(Ỹ ) ∈ [0, s]),

where we used e−ts ≥ e−s and (1 − t)Rent(gm∥fm) ≤ Chernoff(fm∥gm) because t ∈ (0, 1).
Since the previous inequality is valid for any t, we obtain by taking t = 1

2 that

Pfm (ℓ(Y ) > 0) ≥ e−se−Chernoff(fm,gm)Ph1/2(ℓ(Ỹ ) ∈ [0, s]).

Next, we notice that Ph1/2(ℓ(Ỹ ) ∈ [0, s]) = Ph1/2(ℓ(Ỹ ) ∈ [−s, 0]). Let s =

√
2Eh1/2

[
ℓ(Ỹ )2

]
.

Then, Chebyshev’s inequality implies that Ph1/2(|ℓ(Ỹ )| > s) ≤ s−2Eh1/2

[
ℓ(Ỹ )2

]
≤ 1

2 .

A.2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which provides a lower bound of the minimax loss
inf ẑ supz∈[k]n loss(z, ẑ). Without loss of generality, we assume that the minimum in the definition
of Chernoff(F) in (2.1) is achieved at a = 1 and b = 2, that is

Chernoff(f1, f2) = min
1≤a̸=b≤k

Chernoff(fa, fb).

For any cluster membership vector z ∈ [k]n, we denote for all a ∈ [k] the set of all indices i ∈ [n]
belonging to cluster a by

Γa(z) = {i ∈ [n] : zi = a}.

Recall from Definition (1.2) that loss(z∗, ẑ) = minτ∈Sym(k)Ham(z∗, τ ◦ ẑ). In particular, the
loss function involves a minimum over all permutations τ ∈ Sym(k), making it hard to study
directly. But, we can get rid of this minimum in the definition of the loss if we deal with vectors
having a loss small enough, because in that case the min is attained by a unique minimiser. We state
without proof the following lemma from Avrachenkov et al. (2022).

Lemma 8 (Lemma C.5 in Avrachenkov et al. (2022)) Let z1, z2 ∈ [k]n such that Ham(z1, τ
∗ ◦

z2) < 1
2 mina∈[k] |Γa(z1)| for some τ∗ ∈ Sym(k). Then τ∗ is the unique minimiser of τ ∈

Sym(k) 7→ Ham(z1, τ ◦ z2).

Following the same proof strategy as previous works on clustering block models (Gao et al.,
2018; Chen and Zhang, 2021), we define a clustering problem over a subset of [k]n to avoid the

17



DREVETON GÖZETEN GROSSGLAUSER THIRAN

issues of label permutations. Let α > 0 be an arbitrary constant independent of n. We define
Z = Zn,k ⊂ [k]n the set of vectors such that all clusters have size at least αnk−1:

Z = {z ∈ [k]n : |Γa(z)| ≥ αnk−1 for all a ∈ [k]}.

Let z∗ ∈ Z . For every cluster a ∈ [k], collect the indices of the |Γa(z∗)| − αn
5k smallest indices i’s

in Γa(z
∗) = {i ∈ [n] : z∗i = a} into a set Ta. Let T = T1 ∪ T2 ∪ka=3 Γa(z

∗) and define a new
parameter space Z̃

Z̃ = {z ∈ Z : zi = z∗i for all i ∈ T and zi ∈ {1, 2} if i ∈ T c}.

Because T c = T c1 ∪ T c2 , this new space Z̃ is composed of all cluster labelling z that only differs
from z∗ on the indices i’s that do not belong to T1 or T2. By construction of Z̃ , we have for any
z, z′ ∈ Z̃

Ham(z, z′) =

n∑
i=1

1{zi ̸= z′i} ≤ |T c| = 2
αn

5k
.

Because z ∈ Z̃ ⊂ Z , we have by definition of Z that mina∈[k] |Γa(z)| > αnk−1. Therefore, the
previous inequality ensure that Ham(z, z′) < 2−1mina∈[k] |Γa(z)| for all z, z′ ∈ Z . We can thus
apply Lemma 8 to establish that

∀z, z′ ∈ Z̃ : loss(z, z′) = Ham(z, z′) =
∑
i∈T c

1{zi ̸= z′i}. (A.1)

Because Z̃ ⊂ Z ⊂ [k]n, we also have

inf
ẑ

sup
z∈[k]n

Ezloss(z, ẑ) ≥ inf
ẑ
sup
z∈Z̃

Ezloss(z, ẑ) = inf
ẑ
sup
z∈Z̃

EzHam(z, ẑ),

where the equality follows from (A.1). Bounding the minimax risk by the Bayes risk leads to

inf
ẑ
sup
z∈Z̃

Ez [Ham(z, ẑ)] ≥ inf
ẑ

1

|Z̃|

∑
z∈Z̃

Ez [Ham(z, ẑ)] .

Moreover,

inf
ẑ

1

|Z̃|

∑
z∈Z̃

EzHam(z, ẑ) = inf
ẑ1,··· ,ẑn

1

|Z̃|

∑
z∈Z̃

∑
i∈T c

Pz(ẑi ̸= zi)

=
∑
i∈T c

inf
ẑi

1

|Z̃|

∑
z∈Z̃

Pz(ẑi ̸= zi).

Therefore, we can conclude from these previous inequalities that

inf
ẑ

sup
z∈[k]n

Ezloss(z, ẑ) ≥
∑
i∈T c

inf
ẑi

1

|Z̃|

∑
z∈Z̃

Pz(ẑi ̸= zi). (A.2)

18



UNIVERSAL LOWER BOUNDS AND OPTIMAL RATES

Fix i ∈ T c and define Z̃(i)
a = {z ∈ Z̃ : zi = a} for a ∈ {1, 2}. We observe that Z̃(i)

1 ∪Z̃(i)
2 = Z̃

and that Z̃(i)
1 ∩ Z̃(i)

2 = ∅. Let f : Z̃(i)
1 → Z̃(i)

2 such that for any z ∈ Z̃(i)
1 we have f(z) ∈ Z̃(i)

2

defined by

(f(z))j =

{
zj if j ̸= i,

2 if j = i.

The function f defines a one-to-one mapping from Z̃(i)
1 to Z̃(i)

2 . Because these two sets partition Z̃ ,
we have |Z̃(i)

1 | = 2−1|Z̃|. Moreover,

inf
ẑi

1

|Z̃|

∑
z∈Z̃

Pz(ẑi ̸= zi) = inf
ẑi

1

|Z̃|

( ∑
z∈Z̃(i)

1

Pz (ẑi ̸= 1) +
∑
z∈Z̃(i)

2

Pz (ẑi ̸= 2)
)

= inf
ẑi

1

|Z̃|

∑
z∈Z̃(i)

1

(
Pz (ẑi ̸= 1) + Pf(z) (ẑi ̸= 2)

)
≥ 1

|Z̃|

∑
z∈Z̃(i)

1

inf
ẑi

(
Pz (ẑi ̸= 1) + Pf(z) (ẑi ̸= 2)

)
. (A.3)

We are now reduced to the problem of estimating ẑi, and the best estimator for this task is

ẑMLE
i =

{
1 if f1(Xi) > f2(Xi),

2 otherwise.

In other words, we are in the setting of Lemma 2, where we observe a single sample Xi and want
to discriminate between H0 : Xi ∼ f1 and H1 : Xi ∼ f2. Because Chernoff(F) = ω(log k),
Lemma 2 ensures that

inf
ẑi

(
Pz (ẑi ̸= 1) + Pf(z) (ẑi ̸= 2)

)
≥ e−(1+o(1))Chernoff(f1,f2),

and thus

inf
ẑi

1

|Z̃|

∑
z∈Z̃

Pz(ẑi ̸= zi) ≥ |Z̃1|
|Z̃|

e−(1+o(1))Chernoff(f1,f2) =
1

2
e−(1+o(1))Chernoff(F).

Going back to inequality with (A.2) leads to

inf
ẑ

sup
z∈[k]n

Ezloss(z, ẑ) ≥
∑
i∈T c

inf
ẑi

1

|Z̃|

∑
z∈Z̃

Pz(ẑi ̸= zi)

≥ |T c|
2
e−(1+o(1))Chernoff(F)

=
αn

5k
e−(1+o(1))Chernoff(F),

where the last line uses |T c| = 2αn
5k . We finish the proof by using the assumption Chernoff(F) =

ω(log k).
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Appendix B. Proofs of Section 3.1

B.1. Decomposition of the error

We first notice that

loss
(
z∗, ẑ(t)

)
=
∑
i∈[n]

1
{
z
(t)
i ̸= z∗i

}
=
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
z
(t)
i = b

}
. (B.1)

Combining

1
{
z
(t)
i = b

}
=
(
1
{
z
(t)
i = b

})2
and

1
{
z
(t)
i = b

}
= 1

{
∀a ∈ [k]\{b} : ℓ̂(t)b (Xi) > ℓ̂(t)a (Xi)

}
≤ 1

{
ℓ̂
(t)
b (Xi) > ℓ̂

(t)
z∗i
(Xi)

}
with (B.1), we obtain

loss
(
z∗, ẑ(t)

)
≤
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
z
(t)
i = b

}
1
{
ℓ̂
(t)
b (Xi) > ℓ̂

(t)
z∗i
(Xi)

}
. (B.2)

Let us study the term 1
{
ℓ̂
(t)
b (Xi) > ℓ̂

(t)
z∗i
(Xi)

}
. For any δ > 0, we have

1
{
ℓ̂
(t)
b (Xi) > ℓ̂

(t)
z∗i
(Xi)

}
≤ 1

{
ℓz∗i (Xi)− ℓ

b
(Xi) < δ

}
+ 1

{
δ < ℓ̂

(t)
b (Xi)− ℓb(Xi) + ℓz∗i (Xi)− ℓ̂

(t)
z∗i
(Xi)

}
.

Using 1{1 ≤ x+ y} ≤ 1{1 ≤ |x|+ |y|} ≤ |x|+ |y| for any x, y ∈ R, we can further upper-bound
the two terms appearing in the right-hand side of the last inequality by

1
{
δ < ℓ̂

(t)
b (Xi)− ℓb(Xi) + ℓz∗i (Xi)− ℓ̂

(t)
z∗i
(Xi)

}
≤ δ−1

(∣∣∣ℓ̂(t)b (Xi)− ℓb(Xi)
∣∣∣+ ∣∣∣ℓz∗i (Xi)− ℓ̂

(t)
z∗i
(Xi)

∣∣∣)
≤ 2δ−1max

a∈[k]

∣∣∣ℓ̂(t)a (Xi)− ℓa(Xi)
∣∣∣ .

Therefore, we obtain using Expression (B.2)

loss
(
z∗, ẑ(t)

)
≤ ξideal(δ) + ξ(t)excess(δ),

where

ξideal(δ) =
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
ℓz∗i (Xi)− ℓ

b
(Xi) < δ

}
,

ξ(t)excess(δ) = 2δ−1
∑
i∈[n]

∑
b∈[k]\{z∗i }

1
{
z
(t)
i = b

}
max
a∈[k]

∣∣∣ℓ̂(t)a (Xi)− ℓa(Xi)
∣∣∣ .

20



UNIVERSAL LOWER BOUNDS AND OPTIMAL RATES

B.2. Study of the ideal error

Proof [Proof of Lemma 3] Taking the expectations in (3.4), we have

Eξideal(δ) =
∑
i∈[n]

∑
b∈[k]\{z∗i }

P
(
ℓ
b
(Xi)− ℓz∗i (Xi) > δ

)
.

Chernoff’s bound (see the proof of Lemma 2) yields that

P
(
ℓ
b
(Xi)− ℓz∗i (Xi) > δ

)
≤ e

δ−(1+o(1))Chernoff(fz∗
i
,fb),

and therefore

Eξideal(δ) ≤ nkeδ−(1+o(1))Chernoff(F).

Now, because δ = o (Chernoff(F)), Markov’s inequality implies that

P
(
ξideal(δ) > Eξideal(δ)e

√
Chernoff(F)

)
≤ e−

√
Chernoff(F).

Therefore with probability of at least 1− e−
√

Chernoff(F) we have

ξideal(δ) ≤ Eξideal(δ)e
√

Chernoff(F) ≤ nke−(1+o(1))Chernoff(F),

because Chernoff(F) = ω(1).

B.3. Proof of Lemma 4

Proof [Proof of Lemma 4] The assumption Chernoff(F) = ω(log(k2τ)) combined with loss(z∗, ẑ(0)) =
o(nk−1τ) and Condition 1 ensures that loss(z∗, ẑ(t)) = o(nk−1τ) for every t ≥ 0. Therefore,

n−1loss
(
z∗, z(t)

)
≤

(
t∑

τ=0

(
c′

1− c

)τ)
e−(1+o(1))Chernoff(F) +

(
c′

1− c

)t
≤ e−(1+o(1))Chernoff(F) +

(
c′

1− c

)t
,

where the second inequality holds because
∑∞

τ=0

(
c′

1−c

)τ
= O(1) and Chernoff(F) = ω(1).

Because n−1loss
(
z∗, z(t)

)
takes value in the set {jn−1, j ∈ {0, · · · , n}}, the term

(
c′

1−c

)t
is neg-

ligible if
(

c′

1−c

)t
= o(n−1), which occurs whenever t ≥

⌊
log
(
1−c
c′

)
log n

⌋
.
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Appendix C. Mean and scale estimations of sub-exponential random variables

C.1. Large deviations of a sum of sub-exponential random variables

Let Y1, · · · , Yn be independent, zero-mean, sub-exponential random variables. For any subset of
indices S ⊆ [n], Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.2) ensures that

P

(∣∣∣∣∣ 1√
|S|

∑
i∈S

Yi

∣∣∣∣∣ ≥ t

)
≤

{
2 exp(−ct2) if t < C

√
|S|,

2 exp(−t
√
|S|) if t ≥ C

√
|S|.

(C.1)

for some positive constants c and C. The following lemma establishes a uniform upper bound on
the quantity 1√

|S|

∑
i∈S Yi over all the sets S ⊂ [n] of size smaller than s.

Lemma 9 Let Y1, · · · , Yn be independent, zero-mean, sub-exponential random variables. Let C
be the constant in (C.1). For any s = ω(log6 n), we have

max
S⊂[n]
|S|≤s

1√
|S|

∣∣∣∣∣∑
i∈S

Yi

∣∣∣∣∣ ≤ C
√
s

with probability at least 1− 6e−C
√
s/2.

Proof We will use (C.1) with t = C
√
s. By a union bound, we have

P

max
S⊂[n]
|S|≤s

1√
|S|

∣∣∣∣∣∑
i∈S

Yi

∣∣∣∣∣ ≥ t

 ≤
⌊s⌋∑
ℓ=1

P

(
max

S⊂[n] : |S|=ℓ

1√
|S|

∣∣∣∣∣∑
i∈S

Yi

∣∣∣∣∣ ≥ t

)

≤
⌊s⌋∑
ℓ=1

(
n

ℓ

)
2 exp

(
−t

√
ℓ
)
.

For any integers a, b verifying 1 ≤ a < b ≤ n, we define

Sn(a, b) =

b∑
ℓ=a

(
n

ℓ

)
2 exp(−t

√
ℓ).

Let us chose a sequence β verifying β = ω(log2 n) and β2 log2 n = o(s). Such a choice is possible
because s = ω(log6 n)3. We then split the sum Sn(1, ⌊s⌋) into three terms as follows:

Sn(1, ⌊s⌋) = Sn

(
1,
⌊√

s/β
⌋)

+ Sn

(⌊√
s/β

⌋
+ 1,

⌊√
sβ
⌋)

+ Sn

(⌊√
sβ
⌋
+ 1, ⌊s⌋

)
,

and we show that each of these three terms is less than 2e−C
√
s/2.

For ease of notation, we drop the ⌊·⌋. We also recall the inequality
(
n
ℓ

)
≤
(
en
ℓ

)ℓ, yielding(
n
ℓ

)
≤ (en)

√
s/β for all ℓ ≤

√
s/β.

3. Since s = ω(log6 n), there exists a diverging sequence ωn = ω(1) such that s = ωn log
6 n. We then let β =

ω
1/4
n log2 n.
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(i) Recalling that t = C
√
s, we have for all 1 ≤ ℓ ≤

√
s/β(

n

ℓ

)
2 exp(−t

√
ℓ) ≤ 2e−C

√
s (en)

√
s/β ,

and therefore

Sn

(
1,
√
s/β

)
≤ 2e−C

√
s

√
s

β
(en)

√
s/β

= 2e
−C

√
s
(
1− log(s/β)

2C
√
s

− log(en)

C
√
β

)
.

Because log n = o(
√
β) (since β = ω(log2 n)) and log(s/β) = o(

√
s) (since β2 log2 n = o(s)),

we have for n large enough,

Sn

(
1,
√
s/β

)
≤ 2e−

C
2

√
s.

(ii) Similarly,

Sn

(√
s/β + 1,

√
sβ
)

≤ 2e−Csβ
−1/2√

sβ (en)
√
sβ

= 2e
−C s√

β

(
1−

√
β log(sβ)
2Cs

−β log(en)

C
√
s

)
.

With our choice of β, we have
√
β log(sβ) = o(s) and β log n = o(

√
s), and therefore for n large

enough,

Sn

(√
s/β + 1,

√
sβ
)

≤ 2e
−C

2
s√
β ≤ 2e−

C
2

√
s,

because
√
s/β = ω(1).

(iii) Finally,

Sn

(√
sβ + 1, s

)
≤ 2e−Csβ

1/2
s (en)s ≤ 2e

−Csβ1/2
(
1− log s

Cs
√
β
− log(en)

C
√
β

)
≤ 2e−

C
2

√
s

for n large enough. This concludes the proof.

C.2. Quality of the estimates µ̂aℓ and σ̂aℓ
In this section, we upper bound the quantity ∥µ̂a−µa∥. For any cluster labeling z ∈ [k]n and cluster
a ∈ [k], let Γa(z) = {i ∈ [n] : zi = a}. Recall that the empirical location µ̂aℓ(z) and scale σ̂aℓ(z)
estimated from z are defined by

µ̂aℓ(z) =
1

|Γa(z)|
∑
i∈n

1{zi = a}Xiℓ

σ̂aℓ(z) =
1

|Γa(z)|
∑
i∈n

1{zi = a} |Xiℓ − µ̂aℓ(z)| .

Finally, let µ̄aℓ(z) = Eµ̂aℓ(z) and ξaℓ(z) = µ̂aℓ(z)− µ̄aℓ(z).
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Proposition 10 Let ∆µ,∞ = max
a,b∈[k]
ℓ∈[d]

|µaℓ − µbℓ|. Assume mina∈[k] |Γa(z∗)| ≥ αnk−1 for some

constant α > 0. For z ∈ [k]n and some constant C, define

Eµ(z) =

max
a∈[k]
ℓ∈[d]

|µ̂aℓ(z)− µaℓ| ≤ 2k∆µ,∞
αn

Ham(z∗, z) + C ′
√
kHam(z∗, z)

n
+

√
k

n


with C ′ = 2

√
2
α

(
C +

√
2
)
. There exists a constant C > 0 such that the event

⋂
Ham(z∗,z)≤αn

2k

Eµ(z)

holds with probability at least 1− kd
(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.

Proof Let a ∈ [k] and ℓ ∈ [d]. A first triangle inequality leads to

|µ̂aℓ(z)− µaℓ| ≤ |µ̂aℓ(z)− µ̂aℓ(z
∗)|+ |µ̂aℓ(z∗)− µaℓ|. (C.2)

Moreover, another triangle inequality yields that

|µ̂aℓ(z)− µ̂aℓ(z
∗)| = |µ̂aℓ(z)− µ̄aℓ(z) + µ̄aℓ(z)− µ̄aℓ(z

∗) + µ̄aℓ(z
∗)− µ̂aℓ(z

∗)|
≤ |µ̄aℓ(z)− µ̄aℓ(z

∗)|+ |ξaℓ(z)− ξaℓ(z
∗)|. (C.3)

Therefore, combining (C.2) and (C.3) gives

|µ̂aℓ(z)− µaℓ| ≤ |µ̂aℓ(z∗)− µaℓ|+ |µ̄aℓ(z)− µ̄aℓ(z
∗)|+ |ξaℓ(z)− ξaℓ(z

∗)|. (C.4)

We will now upper–bound separately the three terms appearing on the right-hand side of (C.4).
(i) Bounding |µ̂aℓ(z∗)− µaℓ|. Let ϵiℓ = Xiℓ − µz∗i ℓ. We have

|µ̂aℓ(z∗)− µaℓ| =
1

|Γa(z∗)|

∣∣∣∣∣∣
∑

i∈Γa(z∗)

ϵiℓ

∣∣∣∣∣∣ .
By concentration of sub-exponential random variables (see Equation (C.1)), we have

P

 1

|Γa(z∗)|

∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a}ϵiℓ

∣∣∣∣∣∣ ≥ t

 ≤ 2e−t|Γa(z
∗)|.

Because |Γa(z∗)| ≥ αn/k, this implies that with t =
√
k

1

|Γa(z∗)|

∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a}ϵiℓ

∣∣∣∣∣∣ ≤
√
k

n
(C.5)

with probability at least 1− 2e−α
√
n/k. Therefore, a union bound over a ∈ [k] and ℓ ∈ [d] ensures

that

max
a∈[k]
ℓ∈[d]

|µ̂aℓ(z∗)− µaℓ| ≤
√
k

n
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with probability at least 1− 2dke−α
√
n/k.

(ii) Bounding |µ̄aℓ(z)− µ̄aℓ(z
∗)|. Since µ̄aℓ(z∗) = µaℓ and

∑
i∈[n]

∑
b∈[k] 1{zi = a, z∗i = b} =

|Γa(z)|,

µ̄aℓ(z)− µ̄aℓ(z
∗) =

1

|Γa(z)|
∑
i∈[n]

∑
b∈[k]

1{zi = a, z∗i = b} (µbℓ − µaℓ) .

Hence, using |Γa(z)| ≥ 2−1αnk−1 (Lemma 12), we obtain

|µ̄aℓ(z)− µ̄aℓ(z
∗)| ≤ 1

|Γa(z)|
∑
i∈[n]

∑
b∈[k]\{a}

1{zi = a, z∗i = b} |µbℓ − µaℓ|

≤ 2k

αn
∆µ,∞Ham(z∗, z).

(iii) Bounding |ξaℓ(z)− ξaℓ(z∗)|. This upper-bound is more complex to derive, and is computed
in Lemma 13, which establishes that for any z verifying Ham(z∗, z) ≤ 2−1αnk−1,

max
a∈[k]
ℓ∈[d]

|ξaℓ(z)− ξaℓ(z
∗)| ≤ 2

√
2

α

(
C +

√
2
)√kHam(z∗, z)

n

holds with probability at least 1− 6dke−
C
2

√
αn
2k − 2dke−α

√
n
k .

We conclude the proof by combining the upper-bounds obtained in steps (i), (ii) and (iii) with
the decomposition (C.4).

Proposition 11 Let ∆µ,∞ = maxa,b∈[k] ∥µa−µb∥∞ and ∆σ,∞ = maxa,b∈[k] ∥σa−σb∥∞. Assume
mina∈[k] |Γa(z∗)| ≥ αnk−1 for some constant α > 0. For z ∈ [k]n and some constant C, define

Eσ(z) =

max
a∈[k]
ℓ∈[d]

|σ̂aℓ(z)− σaℓ| ≤ 2

√
k

n
+

2k(∆µ,∞ +∆σ,∞)

αn
Ham(z∗, z) + 2C ′

√
kHam(z∗, z)

n

 .

whereC ′ = 2(1+C
√
2α−1). There exists a constantC > 0 such that the event

⋂
Ham(z∗,z)≤2−1αnk−1

Eσ(z)

holds with probability at least 1− 2kd
(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.

Proof We compute, using the triangle inequality, that

|σ̂aℓ(z)− σaℓ| =

∣∣∣∣∣∣ 1

|Γa(z)|
∑

i∈Γa(z)

|Xiℓ − µ̂aℓ| − σaℓ

∣∣∣∣∣∣
≤ 1

|Γa(z)|

∣∣∣∣∣∣
∑

i∈Γa(z)

(|Xiℓ − µaℓ| − σaℓ)

∣∣∣∣∣∣+ |µ̂aℓ(z)− µaℓ| .
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Proposition 10 provides an upper bound on the second term of the right-hand side of the last in-
equality, |µ̂aℓ(z)− µaℓ|.

It also provides an upper bound on the first term of the right-hand side of the last inequality.
Indeed, let X̃iℓ = |Xiℓ − µaℓ| and σ̃aℓ(z) = 1

|Γa(z)|
∑

i∈Γa(z) X̃iℓ. The random variables X̃iℓ

are sub-exponential, and σ̃aℓ(z) is the sample mean computed over the subset {X̃iℓ, i ∈ Γa(z)}.
Therefore we can again apply Proposition 10 to show that

max
a∈[k]
ℓ∈[d]

|σ̃aℓ(z)− σaℓ| ≤
√
k

n
+

2k∆σ,∞
αn

Ham(z∗, z) + C ′
√
kHam(z∗, z)

n

with probability at least 1− kd
(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.

C.3. Additional technical lemmas

Lemma 12 Let z∗ ∈ [k]n such that mina∈[k]
∑

i∈[n] |Γa(z∗)| ≥ αn/k for all a ∈ [k] and for some
α > 0. Let z ∈ [k]n such that Ham(z, z′) ≤ αn/(2k). Then

n∑
i=1

1{zi = a ∩ z∗i = a} ≥ αn

2k
.

In particular,
∑n

i=1 1{zi = a} ≥ αn/(2k).

Proof We have
n∑
i=1

1{zi = a ∩ z∗i = a} =
n∑
i=1

1{z∗i = a} −
n∑
i=1

1{z∗i = a ∩ zi ̸= a}

≥
n∑
i=1

1{z∗i = a} −
n∑
i=1

1{z∗i ̸= zi}

≥ αn

k
− αn

2k

=
αn

2k
.

Finally, because
∑n

i=1 1{zi = a} ≥
∑n

i=1 1{zi = a ∩ z∗i = a} we also have
∑n

i=1 1{zi = a} ≥
αn/(2k).

Lemma 13 Let z∗ ∈ [k]n such that mina∈[k] |Γa(z∗)| ≥ αn/k for some constant α > 0. For any
z ∈ [k]n and C ≥ 1, we define the event

E(z) =

max
a∈[k]
ℓ∈[d]

|ξaℓ(z)− ξaℓ(z
∗)| ≤ 2

√
2

α

(
C +

√
2
)√kHam(z∗, z)

n

 .

There exists a constant C ≥ 1 such that the event
⋂

z : Ham(z∗,z)≤αn
2k

E(z) holds with probability at

least 1− 6dke−
C
2

√
αn
2k − 2dke−α

√
n
k .
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Proof The random variables ϵiℓ are independent, zero-mean, and sub-exponential. Therefore
Lemma 9 and a union bound ensure the existence of a constant C > 0 such that the event

E1 =

max
ℓ∈[d]

sup
S⊂[n]
|S|≤αn

2k

1√
|S|

∣∣∣∣∣∑
i∈S

ϵiℓ

∣∣∣∣∣ ≤ C
√
n

 (C.6)

holds with a probability of at least 1− 6de−
C
2

√
αn
2k . Similarly, we have established in (C.5) that the

event

E2(a) =

max
ℓ∈[d]

1

|Γa(z∗)|

∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a}ϵiℓ

∣∣∣∣∣∣ ≤
√
k

n

 ,

where a ∈ [k], holds with probability at least 1− 2de−α
√
n/k. Let E2 = ∩a∈[k]E2(a). We have

P (E1 ∩ E2) ≥ 1− 6de−C/2
√
αn/(2k) − 2dke−α

√
n/k. (C.7)

In the rest of the proof, we work conditionally on the event E1∩E2, and will show that the event
∩z : Ham(z∗,z)≤αn/(2k)E(z) holds. Let z ∈ [k]n verifying Ham(z∗, z) ≤ αn/(2k) and let a ∈ [k]
and ℓ ∈ [d]. We have

|ξaℓ(z)− ξaℓ(z
∗)|

=

∣∣∣∣∣
∑

i∈[n] 1{zi = a}ϵiℓ∑
i∈[n] 1{zi = a}

−
∑

i∈[n] 1{z∗i = a}ϵiℓ∑
i∈[n] 1{z∗i = a}

∣∣∣∣∣
≤

∣∣∣∣∣
∑

i∈[n] 1{zi = a}ϵiℓ∑
i∈[n] 1{zi = a}

−
∑

i∈[n] 1{z∗i = a}ϵiℓ∑
i∈[n] 1{zi = a}

∣∣∣∣∣︸ ︷︷ ︸
E1

+

∣∣∣∣∣
∑

i∈[n] 1{z∗i = a}ϵiℓ∑
i∈[n] 1{zi = a}

−
∑

i∈[n] 1{z∗i = a}ϵiℓ∑
i∈[n] 1{z∗i = a}

∣∣∣∣∣︸ ︷︷ ︸
E2

.

Let us first upper bound E1. We have

E1 =
1

|Γa(z)|

∣∣∣∣∣∣
∑
i∈[n]

(1{zi = a} − 1{z∗i = a}) ϵiℓ

∣∣∣∣∣∣
≤ 1

|Γa(z)|

∣∣∣∣∣∣
∑
i∈[n]

1{zi = a, z∗i ̸= a}ϵiℓ

∣∣∣∣∣∣︸ ︷︷ ︸
E11

+
1

|Γa(z)|

∣∣∣∣∣∣
∑
i∈[n]

1{zi ̸= a, z∗i = a}ϵiℓ

∣∣∣∣∣∣︸ ︷︷ ︸
E12

.

Let us denote by Γca(z
∗) = [n]\Γa(z∗) the complement of Γa(z∗). Noticing that |Γa(z)| ≥ αn/(2k)

(because of Lemma 12) and that

|Γa(z) ∩ Γca(z
∗)| =

∑
i∈[n]

1{zi = a, z∗i ̸= a} ≤ Ham(z∗, z) ≤ αn

2k
,
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we obtain

E11 =
1

|Γa(z)|
√

|Γa(z) ∩ Γca(z
∗)| ·

∣∣∣∑i∈[n] 1{zi = a, z∗i ̸= a}ϵiℓ
∣∣∣√

|Γa(z) ∩ Γca(z
∗)|

≤ 2k

αn

√
Ham(z∗, z) sup

S⊂[n]
|S|≤2−1αnk−1

1√
|S|

∣∣∣∣∣∑
i∈S

ϵiℓ

∣∣∣∣∣ .
Conditioning E11 on the event E1, we have therefore

E11 ≤ 2k

αn

√
Ham(z∗, z) · C

√
αn

2k
= C

√
2k

αn
Ham(z∗, z).

Proceeding similarly, we establish the same upper bound holds for E12. Therefore, conditionally on
E1, we have

E1 ≤ 2C

√
2k

αn
Ham(z∗, z). (C.8)

We can now upper-bound E2, whose expression can be recast as

E2 =

∣∣∣∣∣
∑

i∈[n] 1{z∗i = a} − 1{zi = a}∑
i∈[n] 1{zi = a}

∣∣∣∣∣︸ ︷︷ ︸
E21

·

∣∣∣∣∣
∑

i∈[n] 1{z∗i = a}ϵiℓ∑
i∈[n] 1{z∗i = a}

∣∣∣∣∣︸ ︷︷ ︸
E22

.

We have∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a} − 1{zi = a}

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a, zi ̸= a} −
∑
i∈[n]

1{z∗i ̸= a, zi = a}

∣∣∣∣∣∣
≤ max


∣∣∣∣∣∣
∑
i∈[n]

1{z∗i = a, zi ̸= a}

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
i∈[n]

1{z∗i ̸= a, zi = a}

∣∣∣∣∣∣


≤ Ham(z∗, z).

Moreover, Lemma 12 yields that
∑

i∈[n] 1{zi = a} ≥
∑

i∈[n] 1{zi = a, z∗i = a} ≥ αn/(2k).
Therefore,

E21 ≤ 2k

αn
Ham(z∗, z).

Finally, conditionally on the event E2, we have E22 ≤
√
k/n. Using

√
Ham(z∗, z) ≤

√
αn/(2k),

we obtain

E2 ≤ 2k

αn

√
k

n
Ham(z∗, z) ≤ 4√

2α

√
kHam(z∗, z)

n
. (C.9)

We conclude the proof by combining (C.8) and (C.9) and using (C.7).
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Appendix D. Proofs for Section 3.2 (Laplace mixture models)

D.1. Proof of Theorem 5

Following the general result on recovering parametric mixture models (Lemma 4), to prove The-
orem 5, we need to show that Condition 1 holds. We will show that it does so for arbitrary c, c′

(which can be taken as small as we would like).
Because log f(µ,σ)(x) =

∑d
ℓ=1

(
− log σℓ −

∣∣∣x−µℓσℓ

∣∣∣), we have for any a ∈ [k] and Xi ∈ Rd,

∣∣∣ℓ̂(t)a (Xi)− ℓa(Xi)
∣∣∣ =

∣∣∣∣∣
d∑
ℓ=1

(
− log

σ̂
(t)
aℓ

σaℓ
−

∣∣∣∣∣Xiℓ − µ̂
(t)
aℓ

σ̂
(t)
aℓ

∣∣∣∣∣+
∣∣∣∣Xiℓ − µaℓ

σaℓ

∣∣∣∣
)∣∣∣∣∣

≤
d∑
ℓ=1

(∣∣∣∣∣log σ̂
(t)
aℓ

σaℓ

∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣Xiℓ − µaℓ

σaℓ

∣∣∣∣−
∣∣∣∣∣Xiℓ − µ̂

(t)
aℓ

σ̂
(t)
aℓ

∣∣∣∣∣
∣∣∣∣∣
)
.

Moreover, using
∣∣|x| − |y|

∣∣ ≤ |x− y|, we have∣∣∣∣∣
∣∣∣∣Xiℓ − µaℓ

σaℓ

∣∣∣∣− ∣∣∣∣Xiℓ − µ̂
(t)
aℓ

σ̂
(t)
aℓ

∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣σ̂(t)aℓ (Xiℓ − µaℓ)− σaℓ

(
Xiℓ − µ̂

(t)
aℓ

)∣∣∣
σaℓσ̂

(t)
aℓ

≤

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σaℓσ̂

(t)
aℓ

· |Xiℓ − µaℓ|+

∣∣∣µaℓ − µ̂
(t)
aℓ

∣∣∣
σ̂
(t)
aℓ

≤

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σaℓσ̂

(t)
aℓ

·
{(∣∣Xiℓ − µz∗i ℓ

∣∣)+ ∣∣µz∗i ℓ − µaℓ
∣∣ }+

∣∣∣µaℓ − µ̂
(t)
aℓ

∣∣∣
σ̂
(t)
aℓ

≤

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σaℓσ̂

(t)
aℓ

·
(∣∣Xiℓ − µz∗i ℓ

∣∣− σz∗i ℓ
)

+

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σ̂
(t)
aℓ

(
∆µ,∞
σaℓ

+ max
b,c∈[k]

σbℓ
σcℓ

)
+

∣∣∣µaℓ − µ̂
(t)
aℓ

∣∣∣
σ̂
(t)
aℓ

.

Combining these upper bounds with the definition of the excess error in (3.5), we obtain

ξexcess(δ) ≤ 2δ−1
(
F ·Ham

(
z∗, ẑ(t)

)
+G

)
,

where F and G are defined by

F̃ = max
a∈[k]

d∑
ℓ=1

∣∣∣∣∣log σ̂
(t)
aℓ

σaℓ

∣∣∣∣∣+
∣∣∣µaℓ − µ̂

(t)
aℓ

∣∣∣+ ∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣ (σ−1
aℓ ∆µ,∞ +mσ

)
σ̂
(t)
aℓ

G̃ = max
a∈[k]

d∑
ℓ=1

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σaℓσ̂

(t)
aℓ

·
∑
i∈[n]

(∣∣Xiℓ − µz∗i ℓ
∣∣− σz∗i ℓ

)
,

where ∆σ,∞ = max1≤a̸=b≤k
ℓ∈[d]

|σaℓ − σbℓ| and mσ = max1≤a̸=b≤k
σaℓ
σbℓ

.
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The quantities F̃ and G̃ are in fact functions of the true parameters µ, σ as well as the estimated
ones µ̂(t), σ̂(t). Because these estimations are made based on the data points X and the predicted
clusters are step t− 1, we have F̃ = F (X,µ, σ, ẑ(t−1)) and G̃ = G(X,µ, σ, ẑ(t−1)), where for any
z ∈ [k]n, we define

F (X,µ, σ, z) = max
a∈[k]

d∑
ℓ=1

∣∣∣∣log σ̂aℓ(z)σaℓ

∣∣∣∣+ |µaℓ − µ̂aℓ(z)|+ |σ̂aℓ(z)− σaℓ|
(
σ−1
aℓ ∆µ,∞ +mσ

)
σ̂aℓ(z)

G(X,µ, σ, z) = max
a∈[k]

d∑
ℓ=1

|σ̂aℓ(z)− σaℓ|
σaℓσ̂aℓ(z)

·
∑
i∈[n]

(∣∣Xiℓ − µz∗i ℓ
∣∣− σz∗i ℓ

)
.

The quantities F and G are analyzed in Lemmas 14 and 15. In particular, under the assumptions of
Theorem 5, we have (with probability at least 1− o(1))

F̃ = o (d∆µ,∞) and G̃ = O

(
ωnd

√
k

(
1 +

∆µ,∞√
nk−1

))
×max

{
Ham

(
z∗, z(t−1)

)
, 1
}
,

where we are free to choose the sequence ωn as long as ωn = ω(1).
Suppose z(t−1) ̸= z∗. We choose δ such that δ = o(Chernoff(F)) and ωnd

√
k(1 +

∆µ,∞√
nk−1

) =

o(δ). Such a choice is possible. Indeed, because by assumption Chernoff(F) = ω(d
√
k(1 +

∆µ,∞√
nk−1

)), we can write Chernoff(F) = d
√
k(1 +

∆µ,∞√
nk−1

)τn with τn = ω(1). Then, we can choose

ωn = τ
1/4
n and δ = d

√
k(1 +

∆µ,∞√
nk−1

)
√
τn. With this particular choice of δ, we have ξ(t)excess(δ) =

o
(
Ham

(
z∗, ẑ(t)

))
+ o

(
Ham

(
z∗, ẑ(t−1)

))
. Hence,

ξ(t)excess(δ) ≤ cHam
(
z∗, ẑ(t)

)
+ c′Ham

(
z∗, ẑ(t−1)

)
for arbitrary constants c, c′ > 0. This establishes Condition 1.

Finally, suppose that z(t−1) = z∗. By choosing δ as in the previous paragraph, we have
ξ
(t)
excess(δ) = o(Ham(z∗, z(t)) + o(1) and therefore

(1 + o(1))Ham(z∗, z(t)) ≤ ne−(1+o(1))Chernoff(F) + o(1). (D.1)

If ne−(1+o(1))Chernoff(F)) = o(1) then Ham(z∗, z(t)) = o(1) because Ham(z∗, z(t)) is integer.
Otherwise, if ne−(1+o(1))Chernoff(F) is bounded away from 0, then the o(1) in the right hand side
of (D.1) can be absorbed by the term ne−(1+o(1))Chernoff(F). This implies Ham(z∗, z(t)) ≤
ne−(1+o(1))Chernoff(F), and this ends the proof.

D.2. Bounding F and G

Lemma 14 Suppose that mina∈[k] |Γa(z∗)| ≥ αn/k for some α > 0. Assume also that σaℓ = Θ(1)
for all a ∈ [k], ℓ ∈ [d]. Let ϵ > 0 and τ = o(nk−1∆−1

µ,∞). For n large enough, we have

max
z∈[k]n

Ham(z∗,z)≤τ

F (X,µ, σ, z) = o(d∆µ,∞)

with probability at least 1− 3kd
(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.
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Proof Let Zτ = {z ∈ [k]n : Ham(z∗, z) ≤ τ}. In the rest of the proof, we work conditionally on
the event E = Eµ ∩ Eσ, where

Eµ =

max
z∈Zτ
a∈k
ℓ∈[d]

|µ̂aℓ(z)− µaℓ| ≤
√
k

n
+

2k∆µ,∞
αn

τ + C ′
√
kτ

n

 ,

Eσ =

max
z∈Zτ
a∈k
ℓ∈[d]

|σ̂aℓ(z)− σaℓ| ≤ 2

√
k

n
+

2k(∆µ,∞ +∆σ,∞)

αn
τ + 2C ′

√
kτ

n

 .

where C ′ = 2(1 +
√
2α−1). By combining Proposition 10 and 11, the event E = Eµ ∩ Eσ holds

with a probability of at least

P(E) ≥ 1− 3kd
(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.

We will show that, conditioned on this event E , we have max
z∈Zτ

F (X,µ, σ, z) = o(d∆µ,∞). We first

notice that

max
z∈Zτ

F (X,µ, σ, z) ≤ d

(
max
z∈Zτ
a∈[k]
ℓ∈[d]

∣∣∣∣log σ̂aℓ(z)σaℓ

∣∣∣∣+ |µaℓ − µ̂aℓ(z)|
σ̂aℓ(z)

+

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σ̂
(t)
aℓ

·
(
σ−1
aℓ ∆µ,∞ +mσ

))

(D.2)

Moreover, using the event Eσ and τ = o(nk−1), we have |σ̂aℓ − σaℓ| = o(1) for any z ∈ Zτ . Let n
be large enough so that |σ̂aℓ − σaℓ|σ−1

aℓ ≤ 2−1 (notice this large enough n does not depend on z).
Using | log(1 + t)| ≤ |t|

1−|t| for any |t| < 1, we have∣∣∣∣log σ̂aℓ(z)σaℓ

∣∣∣∣ =

∣∣∣∣log(1 + σ̂aℓ(z)− σaℓ
σaℓ

)∣∣∣∣ ≤ 2

∣∣∣∣ σ̂aℓ(z)− σaℓ
σaℓ

∣∣∣∣ .
Because σaℓ = Θ(1), this ensures that

max
z∈Zτ
a∈[k]
ℓ∈[d]

∣∣∣∣log σ̂aℓ(z)σaℓ

∣∣∣∣ = o(1). (D.3)

Similarly,

max
z∈Zτ
a∈[k]
ℓ∈[d]

|µaℓ − µ̂aℓ(z)|
σ̂aℓ(z)

= o(1), (D.4)
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and because σaℓ = Θ(1) and mσ = Θ(1) we also have

max
z∈Zτ
a∈[k]
ℓ∈[d]

∣∣∣σ̂(t)aℓ − σaℓ

∣∣∣
σ̂
(t)
aℓ

·
(
σ−1
aℓ ∆µ,∞ +mσ

)
= o (∆µ,∞) . (D.5)

We conclude by combining (D.2) with (D.3), (D.4), and (D.5).

Lemma 15 Let ϵ > 0, τ = o(n/k). Let σmin = mina∈[k],ℓ∈[d] σaℓ and ωn = ω(1). Suppose that
mina∈[k] |Γa(z∗)| ≥ αn/k for some α > 0. For n large enough, it holds

max
z∈[k]n

1≤Ham(z∗,z)≤τ

G(X,µ, σ, z)

Ham(z∗, z)
= O

(
d
√
kωn

(
1 +

∆µ,∞√
n/k

))

and

G(X,µ, σ, z∗) = O
(
d
√
kωn

)
with probability at least 1− 2e−ω

2
n − 3kd

(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
.

Proof Let Zτ = {z ∈ [k]n : 1 ≤ Ham(z∗, z) ≤ τ}. Because the random variables Xiℓ are Laplace
distributed with location µz∗i ℓ and scale σz∗i ℓ, the random variables 2σ−1

z∗i ℓ

∣∣Xiℓ − µz∗i ℓ
∣∣ are χ2(2)

distributed. Hence, the random variables Yi =
∣∣Xiℓ − µz∗i ℓ

∣∣ − σz∗i ℓ are sub-exponential with zero
mean. Bernstein’s inequality for sub-exponential random variables (see (C.1)) ensures that the event

E1 =

∑
i∈[n]

(∣∣Xiℓ − µz∗i ℓ
∣∣− σz∗i ℓ

)
≤ ωn

√
n


holds with a probability of at least 1− 2e−ω

2
n . Moreover, let Eµ(z) and Eσ(z) be the events

Eµ(z) =

max
a∈k
ℓ∈[d]

|µ̂aℓ(z)− µaℓ| ≤
√
k

n
+

2k∆µ,∞
αn

Ham(z∗, z) + C ′
√
kHam(z∗, z)

n

 ,

Eσ(z) =

max
a∈k
ℓ∈[d]

|σ̂aℓ(z)− σaℓ| ≤ 2

√
k

n
+

2k(∆µ,∞ +∆σ,∞)

αn
Ham(z∗, z) + 2C ′

√
kHam(z∗, z)

n

 .

By Propositions 10 and 11, the event E = E1
⋂

z∈Zτ
(Eµ(z) ∩ Eσ(z)) holds with probability at least

1− 2e−ω
2
n − 3kd

(
4e−α

√
n
k + 6e−

C
2

√
αn
2k

)
. On this event E , we have for all z ∈ Zτ ,

G(X,µ, σ, z)

Ham(z∗, z)
≤ dωn

min
a∈[k]
ℓ∈[L]

σ2aℓ

(
2
√
k

Ham(z, z∗)
+

2k(∆µ,∞ +∆σ,∞)

α
√
n

+ 2C ′

√
k

Ham(z∗, z)

)
,

and the result holds by noticing that Ham(z∗, z) ≥ 1.
To obtain the upper bound on G(X,µ, σ, z∗), we use the events E1 and Eσ(z∗).
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D.3. Example

In this section, we consider a Laplace mixture model where for all ℓ ∈ [d] we have σ1ℓ = · · · = σkℓ,
and we simply denote this quantity by σℓ. Assume also that σℓ is independent of n, and that µaℓ =
maℓρn where maℓ are non-zero constants independent of n, verifying maℓ ̸= mbℓ whenever a ̸= b,
and ρn = ω(1). The following Lemma provides the expression of the Chernoff information of this
model.

Lemma 16 Let F = {f1, · · · , fk} be the mixture of Laplace distributions described above. We
have Chernoff(F) = (1 + o(1))

∑d
ℓ=1

|µaℓ−µbℓ|
σℓ

.

Proof We denote by Rent(f∥g) the Rényi divergence of order t between f and g, and we re-
call that Chernoff(f, g) = supt∈(0,1)(1 − t)Rent(f∥g). From direct computations of Renyi di-
vergence between Laplace distributions (see for example Gil et al. (2013)), we observe that t 7→
(1− t)Rent(fa∥fb) is maximal at t = 1/2, and we further have

Chernoff(fa, fb) =
1

2

d∑
ℓ=1

(
|µaℓ − µbℓ|

σℓ
− 2 log

(
1 +

|µaℓ − µbℓ|
2σℓ

))
and we conclude because |µaℓ − µbℓ| = ω(1) and σℓ = Θ(1).

Hence, we have ∆µ,∞ = Θ(ρn) and Chernoff(F) = Θ(dρn). Therefore, the conditions
∆µ,∞ = O(d−1Chernoff(F)) and Chernoff(F) = ω(d

√
k) of Theorem 5 become ρn = ω(

√
k).

Moreover, for the initialisation, the condition of Lemma 7 are verified if ρn = ω(k2).

Appendix E. Proofs for Section 3.3 (Exponential family mixture models)

E.1. Proof of Theorem 6

To prove Theorem 6, we adopt the same approach as in the proof of Theorem 5 done in Section D.
To simplify the notations, we suppose that the data pointsXi are sampled from a natural exponential
family, that is, the sufficient statistics u in the definition of the exponential family (3.8) is the identity.
The proof for a general exponential family is obtained by substituting u(Xi) for Xi throughout the
proof.

We first notice that for any a ∈ [k], we have∣∣∣ℓ̂(t)a (Xi)− ℓa(Xi)
∣∣∣

=

∣∣∣∣∣
d∑
ℓ=1

Bregψ∗
ℓ

(
Xiℓ, µ̂

(t)
aℓ

)
− Bregψ∗

ℓ
(Xiℓ, µaℓ)

∣∣∣∣∣
=

∣∣∣∣∣
d∑
ℓ=1

Bregψ∗
ℓ

(
µaℓ, µ̂

(t)
aℓ

)
+ ⟨Xiℓ − µaℓ,∇ψ∗

ℓ (µaℓ)−∇ψ∗
ℓ (µ̂

(t)
aℓ )⟩

∣∣∣∣∣
≤

d∑
ℓ=1

{∣∣∣Bregψ∗
ℓ

(
µaℓ, µ̂

(t)
aℓ

)∣∣∣+ (|Xiℓ − µz∗i ℓ|+ |µz∗i ℓ − µaℓ|
)
·
∣∣∣∇ψ∗

ℓ (µaℓ)−∇ψ∗
ℓ

(
µ̂
(t)
aℓ

)∣∣∣} ,
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where the second equality uses Lemma 17 and the last inequality uses the triangle and Cauchy-
Schwarz’s inequalities. Hence, combining this bound with the definition of the excess error (3.5),
we obtain

ξexcess(δ) ≤ 2δ−1
(
F ·Ham

(
z∗, z(t)

)
+G

)
where F = F

(
X,µ, σ, z(t−1)

)
and G = G

(
X,µ, σ, z(t−1)

)
are defined by

F (X,µ, σ, z) = dmax
a∈[k]
ℓ∈[d]

{∣∣∣Bregψ∗
ℓ
(µaℓ, µ̂aℓ(z))

∣∣∣+ (|µz∗i ℓ − µaℓ|+ σz∗i ℓ
)
· |∇ψ∗

ℓ (µaℓ)−∇ψ∗
ℓ (µ̂aℓ(z))|

}
,

G(X,µ, σ, z) =
d∑
ℓ=1

∑
i∈[n]

∑
b∈[k]

(
|Xiℓ − µz∗i ℓ| − σz∗i ℓ

)
·max
a∈[k]

|∇ψ∗
ℓ (µaℓ)−∇ψ∗

ℓ (µ̂aℓ(z))| ,

where σz∗i ℓ = E
[∣∣Xiℓ − µz∗i ℓ

∣∣]. The bounding of the quantities F and G is done in a very similar
manner as what is done in Lemmas 14 and 15. Indeed, let Zτ = {z ∈ [k]n : Ham(z∗, z) ≤ τ}.
Because by assumption the Xiℓ are sub-exponential, we can apply Proposition 10 to show that the
event E =

⋂
Ham(z,z∗)≤2−1αnk−1 Eµ(z), where

Eµ(z) =

max
a∈k
ℓ∈[d]

|µ̂aℓ(z)− µaℓ| ≤
√
k

n
+

2k∆µ,∞
αn

Ham(z∗, z) + C ′
√
kHam(z∗, z)

n


holds with a probability of at least 1 − kd

(
4e−α

√
nk−1

+ 6e−C
√
α2−1nk−1

)
. Under this event, we

notice that |µaℓ − µ̂aℓ(z)| = o(1) and we bound F as follows. We first use Lemma 18 to show that∣∣∣Bregψ∗
ℓ
(µaℓ, µ̂aℓ(z))

∣∣∣ ≤
∣∣∇2ψ∗

ℓ (µaℓ)
∣∣ · |µ̂aℓ(z)− µaℓ|2.

Similarly,

|∇ψ∗
ℓ (µaℓ)−∇ψ∗

ℓ (µ̂aℓ(z))| ≤ sup
y∈[µaℓ,µ̂aℓ(z)]

∣∣∇2ψ∗
ℓ (y)

∣∣ · |µ̂aℓ(z)− µaℓ|

≤ 2
∣∣∇2ψ∗

ℓ (µaℓ)
∣∣ · |µ̂aℓ(z)− µaℓ|

where the last line holds by continuity of ∇2ψ∗
ℓ and because |µ̂aℓ(z)−µaℓ| = o(1). By assumption,∣∣∇2ψ∗

ℓ (µaℓ)
∣∣ = O(1) and hence F (X,µ, z) = o (d∆µ,∞).

Finally, on the event E , we have for all z ∈ Zτ ,

G(X,µ, σ, z) ≤ 2dωn
√
n

(√
k

n
+

2k∆µ,∞
αn

Ham(z∗, z) + C ′
√
kHam(z∗, z)

n

)
max
a∈[k]
ℓ∈[d]

|∇2(µaℓ)|

= O

(
ωnd

√
k

(
1 +

∆µ,∞√
nk−1

))
Ham(z∗, z).

To finish the proof, we proceed in the same way as at the end of the proof of Theorem 5.
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E.2. Additional Lemmas

Lemma 17 (Generalized triangle inequality for Bregman divergences) Let x, y, z ∈ Rd. Then

Bregϕ(x, y)− Bregϕ(x, z) = Bregϕ(z, y) + ⟨x− z,∇ϕ(z)−∇ϕ(y)⟩.

Proof By definition of Bregman divergence,

Bregϕ(x, y) = ϕ(x)− ϕ(y)− ⟨x− y,∇ϕ(y)⟩,
Bregϕ(x, z) = ϕ(x)− ϕ(z)− ⟨x− z,∇ϕ(z)⟩,

and the result holds by direct computation.

Lemma 18 Let ϕ : Θ → R be a convex twice continuously differentiable function defined on an
open space Θ, and let (xt) ∈ ΘZ+ be a sequence such that limt→∞ xt = x. Then, we have for n
large enough ∣∣Bregϕ(x, xt)∣∣ ≤ 2

∥∥∇2ϕ(x)
∥∥ · ∥x− xt∥2 .

Proof Because Bregϕ(x, xt) equals the difference between ϕ evaluated at x and its first order Taylor
approximation around xt evaluated at x, we have∣∣Bregϕ(x, xt)∣∣ ≤

∥∥∇2ϕ(xt)
∥∥ · ∥x− xt∥2.

We finish the proof by noticing that, for t large enough, we have
∥∥∇2ϕ(xt)

∥∥ ≤ 2
∥∥∇2ϕ(x)

∥∥ by
continuity of ∇2ϕ.
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