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Abstract
Spin-glasses are natural Gibbs distributions that have been studied in theoretical computer science
for many decades. Recently, they have been gaining renewed attention from the community as
they emerge naturally in neural computation and learning, network inference, optimisation and
many other areas.

Here we consider the 2-spin model at inverse temperature β when the underlying graph is
an instance of G(n, d/n), i.e., the random graph on n vertices such that each edge appears in-
dependently with probability d/n, where the expected degree d = Θ(1). We study the problem
of efficiently sampling from the aforementioned distribution using the well-known Markov chain
called Glauber dynamics.

For a certain range of β, that depends only on the expected degree d of the graph, and for
typical instances of the 2-spin model on G(n, d/n), we show that the corresponding (single-site)
Glauber dynamics exhibits mixing time O

(
n
2+ 3

log2 d

)
. The range of β for which we obtain our

rapid mixing result corresponds to the expected influence being smaller than 1/d.
We establish our results by utilising the well-known path-coupling technique. In the standard

setting of Glauber dynamics on G(n, d/n) one has to deal with the so-called effect of high degree
vertices. Here, with the spin-glasses, rather than considering vertex-degrees, it is more natural to
use a different measure on the vertices of the graph, that we call aggregate influence.

We build on the block-construction approach proposed by [Dyer, Flaxman, Frieze and Vigoda:
2006] to circumvent the problem with the high degrees in the path-coupling analysis. Specifically,
to obtain our results, we first establish rapid mixing for an appropriately defined block-dynamics.
We design this dynamics such that vertices of large aggregate influence are placed deep inside
their blocks. Then, we obtain rapid mixing for the (single-site) Glauber dynamics by utilising a
comparison argument.
Keywords: Spin glasses, Phase transitions, Gibbs Sampler, Random graphs

1. Introduction

Spin-glasses are natural, high dimensional Gibbs distributions that have been studied in theoreti-
cal computer science for many decades. Recently, they have been gaining renewed attention from
the community as they emerge naturally in neural computation and learning, e.g., in the Hop-
field model, as models of network inference, e.g., in the stochastic block model, in optimisation,
counting-sampling and many other areas, e.g., see Stein and Newman (2013); Gamarnik et al.
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(2020); Coja-Oghlan et al. (2018); Alaoui et al. (2021); Koehler et al. (2022); Eldan et al. (2022);
Efthymiou (2022).

Furthermore, spin-glasses are widely considered to be canonical models of extremely disor-
dered systems Mézard et al. (1987); Stein and Newman (2013) and, as such, they have beed stud-
ied extensively in mathematics & mathematical physics, e.g., see Talagrand (2006); Panchenko
(2013); Franz et al. (2001); Guerra and Toninelli (2004), and also in statistical physics Mézard
et al. (1987); Stein and Newman (2013); Parisi (1979). In particular, as far as physics is concerned,
spin-glasses have been studied intensively since the early ’80s, while the seminal, groundbreaking
work of Giorgio Parisi on spin-glasses got him the Nobel Prize in Physics in 2021.

In this work, we consider the natural problem of sampling from these distributions. To this end,
our endeavour is to employ the powerful Markov Chain Monte Carlo (MCMC) method. Typically,
the MCMC sampling algorithms are very simple to describe and implement in practice, however,
analysing their performance can be extremely challenging.

We focus on a very natural and well-known case of spin glasses: the 2-spin model. Given a
fixed graph G = (V,E), and the vector J = {Je : e ∈ E} of independent, identically distributed
(i.i.d.) standard Gaussians, the 2-spin model with inverse temperature β > 0, corresponds to the
Gibbs distribution µ = µG,J ,β on the configuration space {±1}V such that

µ(σ) ∝ exp

(
β
∑

{w,u}∈E
1{σ(u) = σ(w)} · J{u,w}

)
, (1)

where ∝ stands for “proportional to”. We usually refer to vector J as the edge couplings.
The above distribution is encountered in the literature with different names, i.e., depending on

the underlying graph. For example, the 2-spin model on the complete graph corresponds to the
well-known Sherrington-Kirkpatrick model (SK model) Sherrington and Kirkpatrick (1975). For
the d-dimensional square lattice Zd, we use the name Edwards-Anderson model. The choice of
terminology, here, is standard and follows, e.g., Panchenko and Talagrand (2004).

On a first account, the 2-spin model may look innocent, i.e., it looks similar to the standard Ising
model with just the addition of the Gaussian couplings. It turns out, though, that it is a fascinating
distribution with a lot of intricacies, while the configuration space has extremely rich structure, e.g.
in various settings, it is conjectured to exhibit the “infinite Replica Symmetry Breaking” Mézard
et al. (1987).

Interestingly, with the Gaussian couplings, we expect to have edges e in the graph such that
Je is unbounded. There is a related, more tame spin-glass distribution where the couplings are
independent, random {±1}, rather than Gaussian. In this case, the disorder comes from interactions
choosing between being ferromagnetic, or antiferromagnetic, while their intensity always remains
bounded. Here, unless otherwise is specified, we always assume that the couplings are standard
Gaussians.

We use the Glauber dynamics to sample from the 2-spin model. We assume that the underlying
geometry is an instance of the sparse random graph G(n, d/n). This is a random graph on n
vertices, such that each edge appears, independently, with probability p = d/n, for some constant
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d > 0. Note that we obtain an instance of the problem by first drawing the underlying graph form
the distribution G(n, d/n) and then, given the graph, we generate the random Gibbs distribution.

Sampling from Gibbs distributions induced by instances of G(n, d/n), or, more generally, in-
stances of so-called random constraint satisfaction problems, is at the heart of recent endeavors to
investigate connections between phase transitions and the efficiency of algorithms, e.g. Achliop-
tas and Coja-Oghlan (2008); Alaoui and Montanari (2020); Coja-Oghlan and Efthymiou (2011);
Galanis et al. (2015); Gamarnik and Sudan (2017); Sly and Sun (2012); Mossel and Sly (2013).
The MCMC sampling problem on random graphs has garnered a lot of attention, e.g., see Dyer
et al. (2006); Bezáková et al. (2022); Efthymiou and Feng (2023); Mossel and Sly (2010, 2013);
Efthymiou et al. (2018a); Dyer and Frieze (2010); Chen et al. (2023), as it is considered to be
an intriguing case to study. So far, the focus has been on sampling standard Gibbs distributions,
which, already, is a very challenging problem. The study of spin-glasses takes us a step further.
Working with the 2-spin model, we introduce an extra level of disorder which is due to the Gaus-
sian couplings at the edges of the graph. Hence, in our analysis, we need to deal with the disorder
of both G(n, d/n) and the random couplings.

For typical instances of both the random graph G(n, d/n) and the 2-spin model, we show that

Glauber dynamics exhibits mixing time O(n
2+ 3

log2 d ) for any inverse temperature β > 0 such that

E
[
tanh

(
β
2 |J |

)]
< 1/d , (2)

where the expectation is with respect to the standard Gaussian random variable J . For large d,
the above condition corresponds to (roughly) having 0 < β <

√
2π
d . In turn, this implies that the

expected influence is smaller than 1/d, a quite natural requirement to have.
Until recently, the focus of the study for MCMC sampling has been on the mean-field SK

model, with the most recent works being Alaoui et al. (2022); Bauerschmidt and Bodineau (2019);
Koehler et al. (2022); Eldan et al. (2022). For the cases we consider here, these results imply a
much weaker bound on β compared to what we get with our approach, i.e., they require β to be a
vanishing function of n.1 This comes without surprise as the SK model lives on the complete graph,
hence, there is no geometry in the problem. On the other hand, the 2-spin model on G(n, d/n) has
a very rich, and as it turns out, intricate geometry.

Perhaps, more related to our paper is the recent work in Anari et al. (2024) which studies the
distribution with random {±1} couplings, on the random d-regular graph. Interestingly, they obtain
a bound β = O(1/

√
d) for rapid mixing of Glauber dynamics. As opposed to the distribution we

consider here, where both vertex degrees and couplings take unbounded values, in the distribution
considered in Anari et al. (2024), both these quantities remain bounded. Subsequently to our work
here, Liu et al. (2024) obtains a β = O(1/

√
d) rapid mixing bound of Glauber dynamics for

the distribution with random {±1} couplings on G(n, d/n). The approach in Liu et al. (2024) is
different than ours and uses stochastic localization ideas from Eldan et al. (2022). It seems, though,

1. More concretely, it is elementary to verify that they require β = O
(√

log logn
logn

)
.
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that the block-construction analysis, there, cannot produce similar bounds, or improvements, for
the case of Gaussian couplings.

In light of Anari et al. (2024); Liu et al. (2024), it seems natural to have a bound β =
O(1/

√
d) for rapid mixing of Glauber dynamics on the 2-spin model on G(n, d/n), i.e., with

Gaussian couplings. Our conjecture is that the mixing time in the aforementioned range of β is
n exp(Θ(

√
log n)). This is because we typically have isolated stars with rather large couplings at

their edges, i.e., we expect to see couplings of magnitude as large as Θ(
√
log n). Let us remark

that the conjectured bound for the mixing time does not apply to the {±1}-case, as the couplings
there are bounded.

Our analysis does not rely on the newly introduced methods such as the Spectral Independence
(SI) Anari et al. (2020); Chen et al. (2021, 2022), even though there are rapid mixing results for
Gibbs distributions on G(n, d/n) that utilise SI, e.g., see Bezáková et al. (2022); Efthymiou and
Feng (2023). When it comes to spin-glasses, the natural quantities that arise with SI turn out to be
too complicated to work with. Our approach exploits the classic path-coupling technique Bubley
and Dyer (1997). Specifically, we build on the machinery developed in the sequence of results in
Dyer et al. (2006); Efthymiou (2014); Efthymiou et al. (2018b) that establish fast mixing of the
Glauber dynamics for (standard) Gibbs distributions on G(n, d/n). Basically, our approach builds
on these ideas so that we can accommodate the extra disorder that the problem exhibits. Note that
these previous works are about distributions such as the colouring model, the hard-core model, etc.,
and not for spin-glasses.

For typical instances of G(n, d/n) all but an exp(−Θ(d)) fraction of the vertices are of degree
close to d, while we expect to have vertices with degrees as huge as Θ

(
logn

log logn

)
. In that respect, it

is natural to have the parameters of the problem expressed in terms of the expected degree d, rather
than, e.g., the maximum degree. Hence, a major challenge in the analysis is how to circumvent the
so-called “effect of high degrees”.

Roughly speaking, the approach underlying Efthymiou et al. (2018b) is as follows: rather than
considering (single site) Glauber dynamics, we consider block dynamics. That is, there is an ap-
propriately constructed block-partition of the set of vertices such that, at each step, we update the
configuration of a randomly chosen block. As it was already observed in Dyer et al. (2006), the
typical instances of G(n, d/n) admit a block-partition, such that the high-degree vertices are hid-
den deep inside the blocks, in a way that makes their effect vanish. This allows one to circumvent
the problem that the high-degree vertices pose in the path-coupling analysis and show fast mixing
for the block dynamics. Subsequently, one obtains the bounds on the mixing time for the single-site
dynamics using a comparison argument.

A primary challenge of the above approach is to construct the desirable block-partition. The
contribution coming from the aforementioned works amounts to introducing a weighting-scheme
(a set of potentials) for the paths in the graph, leveraged for the block construction. Typically, this
approach entails heavy probabilistic analysis.

It turns out that the use of potentials for the paths is quite natural in our setting, too. One of
our main contributions here is to introduce new weights (new potentials) for the paths of the graph,
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which accommodate the richer structure of the problem. Unlike the previous works that focus only
on vertex-degrees, we utilise concepts from Spectral Independence and introduce a new measure
for the vertices of the graph, which we call aggregate influence.

Overall, getting a handle on the behaviour of the weights of the paths is one of the most tech-
nically demanding parts of this work. It is worth mentioning that the set of blocks we obtain here
is quite different from the one that appears in Efthymiou et al. (2018b). Note that in this work, the
block partition is such that vertices with large degree are hidden deep inside the blocks. Here, it
is typical to have single-vertex blocks consisting of a high-degree vertex, or having multi-vertex
blocks whose vertices are all low-degree ones. This comes without surprise, as the notions of the
aggregate influence and the degree of a vertex are different from each other.

1.1. Results

We let G = G(n, d/n) be the Erdős–Rényi graph on a set Vn of n vertices, with edge probability
d/n, where d > 0 is a fixed number. The 2-spin model on G at inverse temperature β > 0, is
defined as follows: for J = {Je : e ∈ E(G)} a family of independent, standard Gaussians, and
for σ ∈ {±1}Vn , we let

µG,J ,β(σ) =
1

Zβ(G,J )
· exp

(
β
∑
x∼y

1{σ(y) = σ(x)} · J{x,y}

)
, (3)

where

Zβ(G,J ) =
∑

τ∈{±1}Vn
exp

(
β
∑
x∼y

1{τ(y) = τ(x)} · J{x,y}

)
.

Typically, we study this distribution as n → ∞.
We use the discrete time, (single site) Glauber dynamics (Xt)t≥0 to approximately sample from

the aforementioned distribution µ = µG,J ,β . Glauber dynamics is a Markov chain with state space
the support of the distribution µ. We assume that the chain starts from an arbitrary configuration
X0 ∈ {±1}Vn . For t ≥ 0, the transition from the state Xt to Xt+1 is according to the following
steps:

1. choose uniformly at random a vertex v,

2. for every vertex w different than v, set Xt+1(w) = Xt(w),

3. set Xt+1(v) according to the marginal of µ at v, conditional on the neighbours of v having
the configuration specified by Xt+1.

It is standard to show that when a Markov chain satisfies a set of technical conditions, called
ergodicity, then it converges to a unique stationary distribution. For the cases we consider here, the
Glauber dynamics is trivially ergodic.
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Let P be the transition matrix of an ergodic Markov chain (Xt) with a finite state space Ω, and
equilibrium distribution µ. For t ≥ 0, and σ ∈ Ω, let P t(σ, ·) denote the distribution of Xt, when
the initial state of the chain is σ, i.e., X0 = σ. The mixing time of the chain (Xt)t≥0 is defined by

TMix = max
σ∈Ω

min
{
t > 0 : ∥P t(σ, ·)− µ∥TV ≤ 1/e

}
.

Our focus is on the mixing time of the aforementioned Markov chain.
Finally, for k > 1 we let

βc(k) =

√
2π

k
. (4)

Theorem 1 For any ε ∈ (0, 1), there exists d0 = d0(ε) ≥ 1, such that for d ≥ d0, for β ≤
(1− ε)βc(d), there is a constant C > 0 such that the following is true:

Let G = G(n, d/n), while let µ be the 2-spin model on G, at inverse temperature β. Then,
with probability 1 − n−1/4 over the instances of G and J , the Glauber dynamics on µ exhibits
mixing time

TMix ≤ C · n2+ 3
log2 d .

A couple of remarks are in order. First, since we take d to be sufficiently large, rather than
using the condition in (2), we equivalently write β < βc(d) in Theorem 1. This leads to cleaner
derivations.

Second, we note that Theorem 1 continues to hold if we replace the Gaussian couplings with
couplings drawn from an arbitrary sub-Gaussian distribution. To see this, notice that if J ′ is sub-
Gaussian, and J is a zero-mean Gaussian, there exist a constant c ≥ 0, such that for all t > 0 we
have that Pr[|J ′| ≥ t] ≤ c · Pr[|J | ≥ t]. Therefore, via a standard coupling, we can reduce any
sub-Gaussian model to the 2-spin model we consider here.

2. Approach

In this section, we give a high-level overview of the construction we use to prove Theorem 1. Note
that the construction relies on a good number of potentials.

2.1. Aggregate Influence

Consider the graph G = G(n, d/n), and the vector of real numbers J = {Je : e ∈ E(G)},
where Je’s are i.i.d. standard Gaussians, i.e., N (0, 1). For β > 0, consider also the 2-spin model
µ = µG,J ,β on {±1}Vn , that is,

µ(σ) ∝ exp
(
β
∑

x∼y
1{σ(y) = σ(x)} · J{x,y}

)
, ∀σ ∈ {±1}Vn . (5)

We usually refer to each Je as the coupling at the edge e in the graph.
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For each edge e ∈ E(G) the influence Γe is defined as

Γe =
|1− exp (βJe)|
1 + exp (βJe)

. (6)

A natural way of viewing the influence Γe is as a measure of correlation decay over the edge e. Note
that the influence is a very natural quantity to consider and emerges in many different contexts such
as Chen et al. (2021); Efthymiou (2022); Efthymiou and Zampetakis (2023), just to mention a few.

To get some intuition, note that Γe ∈ [0, 1] is an increasing function of |Je|. For a “heavy edge”,
i.e., an edge e that |Je| is “big”, the corresponding influence is close to 1. On the other hand, for a
“light edge”, i.e., when |Je| is “small”, the corresponding influence is close to 0.

Given the set of influences {Γe}e∈E(G), for every vertex w ∈ V (G), we define its aggregate
influence, A(w), with

A(w) =
∑

z∼w
Γ{w,z} . (7)

The quantities A(w)’s play a key role in the analysis, as we use them to construct the blocks.
The choice of parameters in Theorem 1, implies that for each vertex w, we have that E[A(w)] =

(1 − ε), where the expectation is with respect to both the degree of w, and the couplings at its
incident edges.

In the full version of this work, Efthymiou and Zampetakis (2024), we show that A(w) is
well-concentrated, i.e., for any fixed δ > 0, we have that

Pr[A(w) > E[A(w)] + δ] ≤ exp(−Ω(d)) .

In our analysis, we would have liked each vertex in G to have aggregate influence < 1. From
the above tail bound, we expect to have many, but relatively rare, heavy vertices in G, i.e., vertices
with aggregate influence > 1. Note that, we typically have poly(n) many vertices each of aggregate
influence as huge as Θ(log4/3 n).

2.2. Path Weights

We introduce a weighting-scheme for the vertices of the graph G that uses A(w)’s. There are two
parameters d, δ > 0 in the scheme, where d > 0 is a large number, while δ ∈ (0, 1). Each vertex
w is assigned weight M(w) defined by

M(w) =

{
1− δ/2 if A(w) ≤ 1− δ,

d ·A(w) otherwise.
(8)

Given the above weights for the vertices, we define a weight for each path in G. Specifically,
the path P = (v0, . . . , vℓ) is assigned weight M(P ) defined by

M(P ) =

ℓ∏
i=0

M(vi) .
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Subsequently, we introduce the notion of block-vertices in G. A vertex w is called block-vertex if
every path P of length at most log n that emanates from w is “light”, i.e., it has weight M(P ) < 1.
Intuitively, w being a block-vertex implies that A(w) < 1, while every heavy vertex v, i.e., having
A(v) > 1, needs to be far from w.

For the range of the parameters we consider here, it turns out that there is a plethora of block-
vertices in G. Specifically, we show the following result (see the full version Efthymiou and
Zampetakis (2024)):

Let P be the set of paths P in G of length |P | = logn√
d

, such that there is no block-vertex in P .
Then, we have that

Pr[P is empty] = 1− o(1) . (9)

Establishing the above, is a major technical challenge in this wprk, as the quantities we consider
are inherently quite involved.

Below, we show how we use (9) for the block construction.

2.3. Block construction

The aim is to obtain a block partition B = {B1, B2, . . . , BN} such that each B ∈ B is small,
simply structured, while ∂outB, the outer boundary of B, consists exclusively of block vertices.
Note that ∂outB is the set of vertices outside B which have a neighbour inside the block.

Let us give a high-level description of how B looks like.
Recall that, typically, G is locally tree-like, however, there are some relatively rare short cycles,

i.e., cycles of length less than 4 logn
log4 d

, which are far apart from each other.
Each block B ∈ B can be one of the following

1. single vertex,

2. a tree,

3. a unicyclic graph.

If B consists of a single vertex, then this vertex must be a block-vertex. If B is multi-vertex, then
∂outB consists of block-vertices. This, somehow, guarantees that the heavy vertices are hidden
deep inside the blocks. The unicyclic blocks contain only short cycles.

Intuitively, (9) guarantees that the blocks are not extensive structures. Note that, for a heavy
vertex w, we can reach the boundary of its block, by following any path of length as small as logn√

d
that emanates from w.

Compared to the blocks we have in Efthymiou (2014); Efthymiou et al. (2018b) the ones we
get here are quite different. Note that the actual structure of the blocks depends on both graph G
and the 2-spin model µG,J ,β on this graph. Furthermore, here, it is typical to see single vertex
blocks consisting of a high-degree vertex, i.e., degree ≫ d, or having multi-vertex blocks whose
vertices are all low-degree ones, i.e., degree ≈ d. Of course, this has to do with the fact that the
aggregate influence is a different quantity than the degree of a vertex.

8



ON SAMPLING DILUTED SPIN-GLASSES USING GLAUBER DYNAMICS

2.4. Rapid Mixing of Block Dynamics

Suppose that we have a block partition B = {B1, . . . , BN} as the one we describe in Section 2.3.
We consider the block dynamics (Xt)t≥0 with respect to the set of blocks B. The transition

from Xt to Xt+1 is according to the following steps:

1. Choose uniformly at random a block B ∈ B.

2. For every vertex w outside B, set Xt+1(w) = Xt(w).

3. Draw Xt+1(B), the configuration at B, according to the marginal of µ at B, conditional on
the vertices in ∂outB having the configuration specified by Xt+1.

At this stage, the goal is to show that (Xt)t≥0 exhibits mixing time TMix such that

TMix = O(N logN) , (10)

where N is the number of blocks in B.
We use path coupling Bubley and Dyer (1997) to show (10). That is, we consider (Xt)t≥0 and

(Yt)t≥0, two copies of the block dynamics. Assume that at some time t ≥ 0, the configurations
Xt and Yt differ at a single vertex, u∗. It suffices to show that we have one-step contraction i.e.,
we can couple the two copies of the block dynamics such that the expected distance between Xt+1

and Yt+1 is smaller than that of Xt and Yt.
Typically, we establish contraction with respect to the Hamming metric between two configu-

rations. It turns out that, for block dynamics, this metric is suboptimal. In contrast to the single-site
dynamics, when we update a block B that is adjacent to the disagreeing vertex u∗, the number of
disagreements grows by the size of B. For this reason, we follow an analysis for path coupling
which adapts to the setting of block dynamics.

For each vertex z, we write Bz for the block that z belongs to. Furthermore, let

Aout(z) =
∑
z∼w
w/∈Bz

Γ{z,w} . (11)

That is, Aout(z) is the sum of influences over the edges that connect z with its neighbours outside
the block Bz . Typically, if vertex z has at least one neighrbour outside Bz , then Aout(z) > n−7/3.

We let W ⊆ V be the set that of vertices z such that Aout(z) > 0. We call W the set of external
vertices. On the other hand, we call internal all the vertices in V \W. Note that the internal vertices
have no neighbours outside their block and hence Aout(z) = 0.

For the path coupling, we introduce the following distance metric for any two σ, τ ∈ {±1}V

dist(σ, τ) =
∑

z∈V \W

1{z ∈ σ ⊕ τ}+ n4 ·
∑
z∈W

Aout(z) · 1{z ∈ σ ⊕ τ} ,

where σ⊕ τ is the set of vertices w ∈ V that the two configurations disagree, i.e., it consists of the
vertices w such that σ(w) ̸= τ(w).
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The above metric assigns completely different weights to the internal and external vertices,
respectively. If some vertex z is internal, then its disagreement gets (tiny) weight 1. On the other
hand, if z is external, its disagreement gets weight which is equal to n4×Aout(z) ≫ 1. Particularly,
we have that n4 ×Aout(z) = Ω(n4/3), for all external vertices z.

The above metric essentially captures that the disagreements that do matter in the path coupling
analysis, are those which involve vertices at the boundary of blocks, i.e., external vertices. In par-
ticular, the “potential” for an external vertex to spread disagreements to adjacent blocks increases
with Aout(z). Let us remark that this observation was first introduced and exploited in Efthymiou
et al. (2018b) in an analogous setting.

In the path coupling analysis, we also exploit properties of the block partition B. Particularly,
we use that the block vertices are far from the heavy ones, i.e., the vertices that have aggregate
influence larger than 1. A heavy vertex in block B, once it becomes disagreeing, tends to create
higher than typical number of new disagreements. This is highly undesirable. Having a large
distance between the heavy vertices inside B and the boundary ∂outB implies that the probability
of a heavy vertex becoming disagreeing is very small. As a consequence, the overall expected
contribution of the heavy vertices becomes negligible.

In light of all the above, we conclude that there is a constant C > 0 such that for any vertex
u∗ ∈ V , for any pair of configurations Xt, Yt that differ on u∗ there is a coupling such that

E [dist(Xt+1, Yt+1) | Xt, Yt] ≤ (1− C/N) · dist(Xt, Yt) . (12)

Using path coupling, and arguing that N = Ω(
√
n), it is standard to obtain (10) from the above

inequality. For further details, see the full vestion, Efthymiou and Zampetakis (2024).

2.5. Rapid Mixing for Glauber Dynamics - Comparison

This part is a bit technical. Recall that our aim is to obtain a bound on the mixing time for the single-
site Glauber dynamics, whereas so far we only have a bound for the mixing time of the block-
dynamics. To this end, we utilise a well-known comparison argument form Martinelli (1999),
which relates the relaxation times of the Glauber dynamics and the block dynamics. Recall that
the relaxation time of a Markov chain with transition matrix P is equal to 1

1−λ∗ , where λ∗ is the
second largest eigenvalue in magnitude of P .

Letting τrel and τblock be the relaxation times of the Glauber dynamics and the block dynamics,
respectively, from Martinelli (1999), we obtain that

τrel ≤ τblock · (maxB∈B{τB}) , (13)

where τB is the relaxation time of the (single site) Glauber dynamics on each block B ∈ B, under
worst-case condition σ at the boundary ∂outB.

From the rapid mixing result of block dynamics it is standard to obtain a bound on τblock,
hence, it remains to get a bound on τB , for all B ∈ B. Our endeavour to bound τB gives rise to

10
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a new weight over the paths in G = G(n, d/n). Specifically, for a path P in G, we define the
weight

Υ(P ) = β
∑

e|Je|+
∑

v log deg(v) . (14)

In the first sum, which involves the couplings, the variable e varies over all edges having at least
one endpoint in P . The second sum varies over all the vertices in P .

Building on a recursive argument from Efthymiou et al. (2018b); Mossel and Sly (2010), for
every tree-like block B rooted at vertex v, we show

τB ≤ exp (maxP {Υ(P )}) , (15)

where the maximum is over all the paths P in B from the root v to ∂outB. Note that such a path P
is at most logn√

d
long. We also get a similar bound for the relaxation time when B is unicyclic.

We show that with probability 1 − o(1) over the instances of G and µ, every path P in G of
length at most logn

log4 d
, satisfies Υ(P ) ≤ logn

log2 d
. This implies that for every block B we have that

τB ≤ n
3

log2 d . (16)

As mentioned earlier, it is standard to obtain an estimate for τblock from our rapid mixing results
for the block-dynamics. Hence, plugging τB’s and τblock into (13), gives the desired bound on τrel,
the relaxation time for Glauber dynamics. From this point on, it is standard to get Theorem 1. For
further details, see the full version Efthymiou and Zampetakis (2024).
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