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Abstract
We study the problem of designing minimax procedures in linear regression under the quantile risk.
We start by considering the realizable setting with independent Gaussian noise, where for any given
noise level and distribution of inputs, we obtain the exact minimax quantile risk for a rich family of
error functions and establish the minimaxity of OLS. This improves on the lower bounds obtained
by Lecué and Mendelson (2016) and Mendelson (2017) for the special case of square error, and
provides us with a lower bound on the minimax quantile risk over larger sets of distributions.

Under the square error and a fourth moment assumption on the distribution of inputs, we show
that this lower bound is tight over a larger class of problems. Specifically, we prove a matching
upper bound on the worst-case quantile risk of a variant of the procedure proposed by Lecué and
Lerasle (2020), thereby establishing its minimaxity, up to absolute constants. We illustrate the
usefulness of our approach by extending this result to all p-th power error functions for p ∈ (2,∞).

Along the way, we develop a generic analogue to the classical Bayesian method for lower
bounding the minimax risk when working with the quantile risk, as well as a tight characterization
of the quantiles of the smallest eigenvalue of the sample covariance matrix.
Keywords: minimax procedures, linear regression, sample covariance matrix, quantile risk.

1. Introduction

We study the problem of designing minimax procedures in linear regression under the quantile risk
over large classes of distributions. Specifically, for some d ∈ N, there is an input random vector
X ∈ Rd and an output random variable Y ∈ R, and we are provided with n ∈ N i.i.d. samples
(Xi, Yi)

n
i=1 from their joint distribution P , with the goal of constructing a predictor of Y given

X . We consider the set of linear predictors
{
x 7→ ⟨w, x⟩ | w ∈ Rd

}
, and measure the error of a

predictor w ∈ Rd on an input/output pair (X,Y ) through e(⟨w,X⟩ − Y ) for an error function of
our choice e : R → R. We evaluate the overall error of a predictor w ∈ Rd through the expected
error E(w) := E[e(⟨w,X⟩ − Y )], and define E(w) := E(w)− infv∈Rd E(v).

For a user-chosen failure probability δ ∈ (0, 1), we evaluate the performance of a procedure
ŵn,δ : (Rd × R)n → Rd on a particular distribution P through its quantile risk

Rn,δ(P, ŵn,δ) := QE(ŵn,δ)(1− δ) = inf{t ≥ 0 |P(E(ŵn,δ) ≤ t) ≥ 1− δ}, (1)

where we shortened ŵn,δ((Xi, Yi)
n
i=1) to ŵn,δ. We consider the scenario where all that is known

about P is that it belongs to a class of distributions P on Rd×R. This justifies evaluating the overall
performance of a procedure through its worst-case risk

Rn,δ(P, ŵn,δ) := sup
P∈P

Rn,δ(P, ŵn,δ).

Our goal is to characterize the minimax riskR∗
n,δ(P) := infŵn,δ

Rn,δ(P, ŵn,δ) and design minimax
procedures for rich classes of distributions and error functions.
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Note on terminology. In this paper, we reserve the terms ‘risk’ and ‘loss’ to refer to the corre-
sponding decision-theoretic concepts, see e.g. Lehmann and Casella (2006) for background on these
notions. To avoid any confusion, we have used the terms ‘error’ and ‘expected error’ to refer to what
is commonly called ‘prediction loss’ and ‘prediction risk’ in statistical learning theory.

Motivation. Our motivation for studying this problem has its roots in the work of Catoni (2012),
who showed that the empirical mean is no longer minimax over the set of all distributions with finite
variance under the square loss if one replaces the classical notion of risk, given by the expected loss,
with the quantile risk, given by the 1− δ quantile of the loss, for any user-chosen failure probability
δ ∈ (0, 1). Since then, minimax procedures were discovered for this problem (Devroye et al., 2016;
Lee and Valiant, 2022), and there has been a lot of effort to construct minimax procedures under this
new notion of risk for a variety of statistical problems (Lugosi and Mendelson, 2019a,b; Mendelson
and Zhivotovskiy, 2020). We view our work as part of this larger effort.

Known results. To understand why previous results are insufficient to accomplish our stated goal,
let us briefly review the most relevant ones. Most previous work has focused on the case of square
error e(t) = t2/2 (Audibert and Catoni, 2011; Hsu and Sabato, 2016; Lugosi and Mendelson,
2019a; Lecué and Lerasle, 2020). In this case, a natural class of distributions to consider is

P2(PX , σ
2) :=

{
P
∣∣ (X,Y ) ∼ P : X ∼ PX and ess sup(E[ξ2 | X]) ≤ σ2

}
, (2)

for a given distribution PX of inputs, noise level σ2 ∈ (0,∞), and where ξ := Y − ⟨w∗, X⟩ is the
noise and w∗ is the unique minimizer of the expected error E(w) under square error. The best lower
bound on the minimax risk over this class has been obtained by considering the subclass

PGauss(PX , σ
2) := {P | (X,Y ) ∼ P : (X, η) ∼ PX ×N (0, σ2), Y = ⟨w∗, X⟩+ η for w∗ ∈ Rd}.

The following results yield the best upper and lower bounds on the minimax risk over P2(PX , σ
2).

Proposition 1 (Lecué and Mendelson (2016); Mendelson (2017)) Suppose that e(t) = t2/2. There
exist absolute constants C, c > 0 such that for all δ ∈ (0, 1/8), it holds that

R∗
n,δ(PGauss(PX , σ

2)) ≥


∞ if n ≤ d/C,

c · σ
2(d+ log(1/δ))

n
otherwise.

Proposition 2 (Oliveira and Resende (2023)) Suppose that e(t) = t2/2. There exists a procedure
ŵn,δ and absolute constants C, c > 0 such that the following holds. If

n ≥ c · θ2(PX)(d+ log(1/δ)), where θ(PX) := sup
w∈Rd\{0}

E
[
⟨w,X⟩2

]1/2
E[|⟨w,X⟩|]

,

then

Rn,δ(P2(PX , σ
2), ŵn,δ) ≤ C · θ2(PX) · σ

2 · (d+ log(1/δ))

n
.

In the prescribed regime (n, δ) stated in Proposition 2, and on the set of distributions for which
θ(PX) is upper bounded by an absolute constant, the combination of Propositions 1 and 2 proves
the minimaxity, up to an absolute constant, of the procedure in Proposition 2 over P2(PX , σ

2).
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MINIMAX LINEAR REGRESSION

Unfortunately, this minimaxity result is unsatisfactory for two important reasons. First, the set
of distributions for which θ(PX) is bounded by an absolute constant is both difficult to characterize
and too small to cover classes of problems of interest. Indeed, by using the relationship between
θ(PX) and the small-ball constants (Lecué and Lerasle, 2019), and using the lower bounds derived
on the latter by Saumard (2018), it is possible to derive dimension-dependent lower bounds on
θ(PX) for standard linear regression problems with bounded inputs. Second, this minimaxity result
is specific to the square error function. While procedures with guarantees have been studied for
other error functions (Chinot et al., 2020), no lower bounds are known outside of Proposition 1.

Contributions. Below we summarize our main results related to linear regression.

• We compute the exact minimax quantile risk over the class PGauss(PX , σ
2) for a rich set of

error functions, and show that OLS is minimax in this setting (Theorem 3). We deduce from
this result the asymptotic minimax quantile risk over this class (Proposition 4).

• Focusing on the non-asymptotic setting with e(t) = t2/2, we complement our exact compu-
tation with tight upper and lower bounds (Proposition 7). We then recover the lower bound of
Proposition 1 and identify a setting in which it is tight (Corollary 9). We give an analogous
result under the error function e(t) = |t|p/[p(p− 1)] for p ∈ (2,∞) (Proposition 10).

• We then turn to finding minimax procedures on larger classes of distributions. For the square
error, we establish the minimaxity, up to an absolute constant, of a variant of the min-max
regression procedure (Audibert and Catoni, 2011; Lecué and Lerasle, 2020) over the class
P2(PX , σ

2), and under a fourth moment assumption on PX (Theorem 11).
• Finally, we study minimax linear regression under the error function e(t) = |t|p/[p(p − 1)]

for p ∈ (2,∞). Guided by our results, we identify a rich class of distributions analogous to
P2(PX , σ

2), and show that the min-max regression procedure is minimax, up to a constant
that depends only on p, and under a fourth moment assumption on PX (Theorem 12).

Our contributions on linear regression are supported by the following more general results.

• We consider the quantile risk in full generality. We develop an analogue to the Bayesian
method for lower bounding the minimax quantile risk (Theorem 13). We then prove that
the minimaxity of procedures under the quantile risk is invariant to strictly increasing left-
continuous transformations of the loss (Proposition 14).

• We illustrate the generality of our methods by applying them to two unrelated problems:
multivariate mean estimation with Gaussian data, in which we recover a strengthening of the
recent result of Depersin and Lecué (2022) (Proposition 15), and variance estimation with
Gaussian data and known mean, where we show that, surprisingly, the sample variance is
suboptimal, and design a new minimax estimator (Proposition 16).

• We conclude by studying the smallest eigenvalue of the sample covariance matrix. We
prove a new tight asymptotic lower bound on its quantiles, and a nearly matching fully non-
asymptotic upper bound (Proposition 17), both under a fourth moment assumption on PX .

Organization The rest of the paper is organized as follows. In Section 2, we present our results
on the minimax quantile risk over the class PGauss(PX , σ

2). In Section 3, we present new upper
bounds on the worst-case quantile risk of the min-max regression procedure for the error functions
e(t) = |t|p/[p(p− 1)] for p ∈ [2,∞), showing its minimaxity over suitable classes of distributions
up to constants. In Section 4 we study the quantile risk in full generality. Finally, in Section 5, we
present our results on the smallest eigenvalue of the sample covariance matrix.
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Notation. We call a function f : R → R increasing if x ≤ x′ implies f(x) ≤ f(x′). If f : R → R
is an increasing function, we define its pseudo-inverse f− : [−∞,∞] → [−∞,∞] by f−(y) :=
inf{x ∈ R | f(x) ≥ y}. For a random variable X : Ω → R, we denote its CDF by FX and its
quantile function by QX := F−

X . We allow random variables of the form X : Ω → [0,∞], but we
restrict the definition of their CDFs to [0,∞). Without loss of generality, we assume throughout
that the support of the distribution of inputs PX is not contained in any hyperplane. We write
Σ = E

[
XXT

]
for the covariance matrix of the random vector X . We write a ≍ b to mean that

there exist absolute constants C, c > 0 such that c · b ≤ a ≤ C · b.

2. Minimax quantile risk over PGauss(PX , σ
2)

The following is the main result of this section.

Theorem 3 Let PX be a distribution on Rd and σ2 ∈ (0,∞). Assume that e is strictly convex,
differentiable, and symmetric i.e. e(t) = e(−t) for all t ∈ R. Define, for (X, η) ∼ PX ×N (0, σ2),

Ẽ(∆) := E[e(⟨∆, X⟩+ η)], Ẽ(∆) := Ẽ(∆)− Ẽ(0).

If PX is such that Ẽ is finite everywhere and differentiable at 0 with ∇Ẽ(0) = E[∇e(η)], then

R∗
n,δ(PGauss(PX , σ

2)) = QẼ(Z)
(1− δ),

where the random variable Z is jointly distributed with (Xi)
n
i=1 ∼ Pn

X such that Z | (Xi)
n
i=1 ∼

N (0, σ
2

n Σ̂−1
n ) on the event that the sample covariance matrix Σ̂n := n−1

∑n
i=1XiX

T
i is invertible,

otherwise Ẽ(Z) := ∞. Moreover, all procedures satisfying the following condition are minimax

ŵn,δ((Xi, Yi)
n
i=1) ∈ argmin

w∈Rd

1

n

n∑
i=1

(⟨w,Xi⟩ − Yi)
2.

We make a few remarks about this result before interpreting its content. First, Theorem 3
improves on the best known comparable result, Proposition 1, in two distinct ways: it provides
the exact minimax risk over the class PGauss(PX , σ

2) for the error function e(t) = t2/2, and it
generalizes this result to a rich collection of error functions. Second, and as can readily be seen
from the proof, the strict convexity hypothesis on e(t) in Theorem 3 can be weakened to the strict
quasiconvexity of E(w), and the strictness can be replaced by the existence of a unique minimizer
of E(w). Finally, the proof of Theorem 3 is based on the Bayesian method we develop in Theorem
13, an adaptation of an argument of Mourtada (2022), and Anderson’s Lemma (e.g. Keener, 2010).

While exact, the result in Theorem 3 is both difficult to interpret and hard to manipulate. In
particular, the dependence of the minimax risk on the problem parameters (n, δ, PX , σ

2) as well as
the error function e remains implicit in Theorem 3. This is not too surprising as the error function
can interact with the parameters of the problems in quite complicated ways.

In the rest of this section, we develop tools to make these dependencies explicit. Specifically,
in Section 2.1, we compute the asymptotic minimax risk for generic error functions as n→ ∞ and
show that it takes on a simple form. In Section 2.2, we focus on the case of square error function,
and identify a setting where the lower bound of Proposition 1 is tight. In Section 2.3, we extend this
result to the case of the p-th power error function for p ∈ (2,∞).
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2.1. General error functions

The following result shows that under a mild assumption on the error function, the asymptotic
minimax risk is a pleasingly simple function of the parameters of the problem. In particular, this
result shows that the lower bound of Proposition 1 is asymptotically tight.

Proposition 4 Under the setup of Theorem 3, further assume that e is twice differentiable and Ẽ
is twice differentiable at 0 with ∇2Ẽ(0) = E

[
∇2e(η)

]
, and let α := E[e′′(η)]/2. Then

lim
n→∞

n ·R∗
n,δ(PGauss(PX , σ

2)) = σ2α ·Q∥Z∥22(1− δ) ≍ σ2α · [d+ log(1/δ)],

where Z ∼ N (0, Id×d), and where the relation ≍ holds when δ ∈ (0, 1/2).

Non-asymptotically, and with no more assumptions on the error function, it is difficult to say
much more about the minimax risk than Proposition 4. However, determining when the minimax
risk is infinite is tractable, as the next result shows.

Lemma 5 Under the setup of Theorem 3, let εn := P
(
rank(Σ̂n) < d

)
. Then

R∗
n,δ(PGauss(PX , σ

2)) = ∞ ⇔ δ ≤ εn and ρ(PX)n ≤ εn ≤
(

n

d− 1

)
ρ(PX)n−d−1,

where ρ(PX) := supw∈Rd\{0} P(⟨w,X⟩ = 0) < 1.

The upper bound on εn as well as the statement ρ(PX) < 1 in Lemma 5 are due to El Hanchi and
Erdogdu (2023). At a high level, Lemma 5 says that the range of failure probabilities for which the
risk is infinite gets exponentially small as a function of n. This is in sharp contrast with the result
of Mourtada (2022) under the classical notion of risk and the square error, where it was shown that
the minimax risk in that case is infinite for all sample sizes as soon as ρ(PX) > 0.

2.2. Square error

We assume throughout this section that e(t) = t2/2. We derive increasingly loose but more inter-
pretable upper and lower bounds on the minimax risk in this setting. Our motivation is to better
understand the influence of each of the parameters (n, δ, PX , σ

2) of the problem on the minimax
risk. Practically, the main result of this section is the identification of a general sufficient condition
under which the lower bound in Proposition 1 is tight. With that achievement to look forward to,
we start with a simple Corollary of Theorem 3.

Corollary 6 Under the setup of Theorem 3,

R∗
n,δ(PGauss(PX , σ

2)) =
σ2

2n
·Q∥Z∥22(1− δ),

where the random variable Z is jointly distributed with (Xi)
n
i=1 ∼ Pn

X such that Z | (Xi)
n
i=1 ∼

N (0, Σ̃−1
n ) on the event that the sample covariance matrix Σ̂n is invertible, and where Σ̃n =

Σ−1/2Σ̂nΣ
−1/2 is the whitened sample covariance matrix; otherwise ∥Z∥22 := ∞.

Corollary 6 already makes explicit the dependence of the minimax risk on (n, σ2), but the depen-
dence on (PX , δ) remains implicit. The next result is a step towards clarifying this relationship.
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Proposition 7 Under the setup of Theorem 3, and for all δ ∈ (0, (1− εn)/4),

R∗
n,εn+δ(PGauss(PX , σ

2))


≤ 2 · σ

2

n

[
Q

Tr(Σ̃−1
n )(1− εn − δ/2) +QW (1− εn − δ/2)

]
,

≥ 1

6428
· σ

2

n

[
Q

Tr(Σ̃−1
n )(1− εn − 4δ) +QW (1− εn − 4δ)

]
,

where we defined Tr(Σ̃−1
n ) := ∞ when Σ̃n is not invertible, and W is a random variable jointly

distributed with (Xi)
n
i=1 ∼ Pn

X and with conditional distribution W | (Xi)
n
i=1 ∼ Exp(λmin(Σ̃n)),

with the convention that the exponential distribution Exp(0) refers to the unit mass at ∞.

It is interesting to compare this result with the exact minimax risk under the classical notion of
risk computed by Mourtada (2022), and given by (σ2/n) · E[Tr(Σ̃−1

n )]. Proposition 7 says that
the minimax quantile risk is upper and lower bounded by a ‘strong’ term given by a quantile of
Tr(Σ̃−1

n ), and a ‘weak’ term governed by the distribution of λmin(Σ̃n). Our next result shows that
the lower bound from Proposition 7 improves on the one from Proposition 1.

Lemma 8 Let δ ∈ (εn, 1). Then

d · (1− δ) ≤Q
Tr(Σ̃−1

n )(1− δ) ≤ Q
λmax(Σ̃

−1
n )

(1− δ) · d,

log(1/δ) ≤ QW (1− δ) ≤ Q
λmax(Σ̃

−1
n )

(1− δ/2) · log(2/δ).

This lemma further shows that a sufficient condition for the lower bound of Proposition 1 to be
tight is the boundedness of Q

λmax(Σ̃
−1
n )

(1− δ/2) by an absolute constant. Under what conditions on
(n, δ, PX) does this hold ? Our results from Section 5 provide a satisfying answer.

Corollary 9 Assume that PX has fourth moments. If δ ∈ (0, 1/2) and

n ≥ max

{
128[4 log(3d)λmax(S(PX)) +R(PX) log(2/δ)],

log(3d)

18λmax(S(PX))
,
log(2/δ)

R(PX)

}
,

then

R∗
n,δ(PGauss(PX , σ

2)) ≍ σ2(d+ log(1/δ))

n
,

where the parameters S(PX), R(PX) are as defined in (4).

Corollary 9 can be interpreted as a non-asymptotic version of Proposition 4 for the square error
function. As we argue in Section 5, the fourth moment assumption is very natural in this setting,
and the sample size restriction is, in a sense, optimal. The main restriction on the sample size comes
from the first term, as both λmax(S(PX)) and R(PX) are expected to be large.

2.3. p-th power error

The results of the last section are quite specific to the case of the square error, and it is a priori unclear
how the minimax risk of other error functions can be studied non-asymptotically. Let us build on
the observation that Corollary 9 is a non-asymptotic version of Proposition 4 for the square error.
Can we do this for more general error functions ? The underlying proof idea of Proposition 4 is a
simple second order Taylor expansion, which becomes exact as n→ ∞. If we have non-asymptotic
control over the error in this expansion, we can carry out the argument behind Proposition 4 non-
asymptotically. We implement this idea here, and conclude this section with the following non-
asymptotic lower bound on the minimax risk under a p-th power error function.
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Proposition 10 Assume that e(t) = |t|p/[p(p − 1)] for some p ∈ (2,∞). Under the setup of
Theorem 3, and for δ ∈ (0, 1/2), we have

R∗
n,δ(PGauss(PX , σ

2)) ≥ m(p− 2)

16(p− 1)
· σ

p[d+ log(1/δ)]

n

where m(p) := 2p/2−1Γ(p/2− 1)/
√
π is the p-th absolute moment of a standard normal variable.

3. Minimaxity of the min-max linear regression procedure

In this section, we establish the minimaxity of a variant of the popular min-max regression proce-
dure, e.g. Audibert and Catoni (2011); Lecué and Lerasle (2020); Oliveira and Resende (2023) over
suitably large classes of problems under the p-th power error functions e(t) = |t|p/[p(p − 1)], for
p ∈ [2,∞). Before stating our results, we briefly describe the construction of the procedure.

Let α, β ∈ R such that α ≤ β and define ϕα,β(x) := α1(−∞,α)(x) + x1[α,β](x) + β1(β,∞)(x).
For a real valued sequence a := (ai)

n
i=1, define the sequence a∗ = (a∗i )

n
i=1 by a∗i := aπ(i)

where π is a permutation that orders a increasingly. Fix k ∈ {1, . . . , ⌊n/2⌋}, and define φk[a] :=∑n
i=1 ϕa∗1+k,a

∗
n−k

(ai). Given samples (Xi, Yi)
n
i=1, and for w, v ∈ Rd, define

ψk(w, v) := n−1φk[(e(⟨w,Xi⟩ − Yi)− e(⟨v,Xi⟩ − Yi))
n
i=1],

and consider the procedure

ŵn,k((Xi, Yi)
n
i=1) ∈ argmin

w∈Rd

max
v∈Rd

ψk(w, v). (3)

3.1. Square error

Our first result shows that for the square error, and under appropriate conditions, the procedure (3)
is minimax up to absolute constants over P2(PX , σ

2) when PX has finite fourth moments.

Theorem 11 Under the square error e(t) = t2/2, let δ ∈ (0, 1/4) be such that k := 8 log(4/δ) is
an integer satisfying 1 ≤ k ≤ ⌊n/8⌋. Assume that PX has finite fourth moments. If

n ≥ 8002 · (8 log(6d) · [λmax(S(PX)) + 1] + [R(PX) + 1] log(1/δ)),

where S(PX) and R(PX) are as defined in (4), then

Rn,δ(P2(PX , σ
2), ŵn,k) ≤ (100)2 · σ

2(d+ log(1/δ))

n
.

Compared to Proposition 2, the upper bound in Theorem 11 contains no distribution-dependence,
showing the minimaxity of the procedure (3) up to an absolute constant by Proposition 1. On the
other hand, we require the existence of fourth moments, which is more than what is required in
Proposition 2. As we argue in Section 5 however, the fourth moment assumption is quite natural.
We also note that the sample size restriction in Theorem 11 nearly matches that in Corollary 9,
which as we discuss in Section 5 is optimal in a certain sense.

7
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3.2. p-th power error

We now move to the case p ∈ (2,∞). The first difficulty we are faced with here is that it is a priori
unclear what set of problems we should select that is both tractable and large enough to model
realistic scenarios. Using our insights from Section 2, we propose the following analogue to the
class P2(PX , σ

2), under the necessary conditions that PX and the noise ξ have finite p-th moments

Pp(PX , σ
2, µ) := {P | (X,Y ) ∼ P : X ∼ PX and (⋆) holds.},

where µ ∈ (0,m(p) · σp−2], m(p) is as in Proposition 10, and (⋆) is the condition

ess sup(E[|ξ|2(p−1) | X])

ess inf(E[|ξ|p−2 | X])
≤ m(2p− 2)

m(p− 2)
· σp =: r(p) and ess inf(E[|ξ|p−2 | X]) ≥ µ, (⋆)

where ξ := Y − ⟨w∗, X⟩ and w∗ ∈ Rd is the unique minimizer of the expected error E(w). It is
straightforward to check that PGauss(PX , σ

2) ⊂ Pp(PX , σ
2, µ), for all legal choices of µ.

While at first this seems like an overly special class of distributions, let us now argue that this
far from the case. In fact, we claim that this class is a natural extension of P2(PX , σ

2). Firstly,
by setting p = 2, we recover P2(PX , σ

2, µ) = P2(PX , σ
2) for all legal µ. Secondly, we note that

Pp(PX , σ
2, µ) ⊂ Pp(PX , σ

2, µ′) whenever µ ≥ µ′. Ideally, we would like to take as large a class
as possible, which would correspond to the choice µ = 0. Unfortunately, our bounds diverge in
this setting. On the positive side however, this means that the upper constraint on µ is benign as
the interesting regime is when µ is near zero. Finally, note that much like with the set P2(PX , σ

2),
one can capture a large set of problems by varying σ2. As an example, for any linear regression
problem where the noise ξ is non-zero, symmetric, and independent of X , there exists (σ2, µ) such
that Pp(PX , σ

2, µ) contains this problem.
Remarkably, we show that the procedure (3) is minimax over this class under mild assumptions.

Theorem 12 Under the p-th power error e(t) = |t|p/[p(p − 1)] for p ∈ (2,∞), let δ ∈ (0, 1) be
such that k := 8 log(4/δ) is an integer satisfying 1 ≤ k ≤ ⌊n/8⌋. Assume that PX has finite fourth
moments. If

n ≥ r
p−2
p−1 (p)µ

− p
p−1 · [8 log(6d)(λmax(S(PX)) + 1) + (R(PX) + 1) log(1/δ)]

+ (2400)2 · r(p)µ−
p

p−2 p4N
2p
p−2 (PX , p) · [d+ log(4/δ)]

where r(p) and µ are as in (⋆), S(PX) and R(PX) are as in (4), and N(PX , p) is the norm equiv-
alence constant between the Lp and L2 norms induced by PX on the set of linear functions on Rd,
given by N(PX , p) = supw∈Rd\{0} E[|⟨w,X⟩|p]1/p/E

[
⟨w,X⟩2

]1/2, then

Rn,δ(Pp(PX , σ
2, µ), ŵn,k) ≤ 1202 ·K(p) · σ

p[d+ log(1/δ)]

n
,

where K(p) := (p− 1)2 ·m(2p− 2)/m(p− 2).

Combining this result with Proposition 10 shows the minimaxity of the procedure (3) on this class of
problems, up to a constant that depends only on p. The closest related result is due to El Hanchi and
Erdogdu (2023) who studied the performance of ERM on linear regression under p-th power error.
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Their result however is specific to ERM, and, as expected, only yields a polynomial dependence on
1/δ instead of the needed log(1/δ) to establish minimaxity. Our result combines the insights of that
work with the proof techniques used to study the procedure (3) developed by Lugosi and Mendelson
(2019a), as well as our new insights on how to leverage the fourth moment assumption to obtain
absolute constants instead of distribution-dependent constants in the upper bound.

4. The quantile risk

In this section, we study the quantile risk in full generality. Our motivation for doing so is to provide
the tools necessary for proving Theorem 3. The results we obtain are however more general and can
be used to tackle other problems. We illustrate this with two examples at the end of the section.

Before we formulate our results, let us briefly introduce some basic decision-theoretic concepts.
To avoid overloading the notation, the symbols we introduce here will be specific to this section.
A decision problem has the following components: a set of possible observations O, a subset P
of probability measures on O, a set of available actions A, a loss function ℓ : P × A → R, and a
decision rule d : O → A. For a fixed distribution P , the performance of a decision rule is classically
evaluated through its expected loss E[ℓ(P, d(O))] where O ∼ P . Here instead, for a user-chosen
failure probability δ ∈ (0, 1), we evaluate the performance of a decision rule through its quantile
risk Rδ(ℓ, P, d) := Qℓ(P,d(O))(1 − δ). We define the associated worst-case and minimax risks by
Rδ(ℓ, d) := supP∈P Rδ(ℓ, P, d) and R∗

δ(ℓ) := infdRδ(ℓ, d) respectively. Our aim is to develop
methods to understand the minimax risk and establish the minimaxity of candidate decision rules.

4.1. A Bayesian criterion for minimaxity and an invariance principle

A classical way to establish the minimaxity of a decision rule is by computing its worst-case risk
and showing that it matches the limit of a sequence of Bayes risks (Lehmann and Casella, 2006).
The following result provides an analogue to this method when working under the quantile risk.

Theorem 13 For a distribution π on P , define F π
ℓ(P,d(O)) to be the cumulative distribution function

of the random variable ℓ(P, d(O)), where P ∼ π and O | P ∼ P . Let (πk)k∈N be a sequence of
distributions on P . For any t ∈ R, define

pℓ,k(t) := sup
d
F πk

ℓ(P,d(O))(t).

Assume that the functions (pℓ,k)k∈R are right-continuous and that the sequence is decreasing, i.e.
pℓ,k ≥ pℓ,k+1 and let pℓ := infk∈N pℓ,k = limk→∞ pℓ,k. If d̂ is a decision satisfying

sup
P∈P

Rδ(ℓ, P, d̂) = p−ℓ (1− δ),

where p−ℓ is the pseudo-inverse of pℓ, then d̂ ∈ argmindRδ(ℓ, d), i.e. it is minimax.

We mention that instantiations of the arguments leading to Theorem 13 have been used by
Depersin and Lecué (2022) and Gupta et al. (2023) to tackle specific problems. The general form we
present here is new, and relies on new analytical results concerning collections of quantile functions.

In applications, it is desirable that the optimality of a decision rule depends as little as possible
on the loss function, or conversely, that a single decision rule be minimax for as large a number of
loss functions as possible. The following result shows that the minimaxity of a decision rule in the
quantile risk is invariant to at least one form of transformation of the loss function.

9
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Proposition 14 Let φ : R → R be a strictly increasing left-continuous function, and define
φ(∞) := ∞ and φ(−∞) := −∞. Then Rδ(φ ◦ ℓ, P, d) = φ(Rδ(ℓ, P, d)). Furthermore, if
Rδ(ℓ, d) <∞, then Rδ(φ ◦ ℓ, d) = φ(Rδ(ℓ, d)). Finally, if R∗

δ(ℓ) <∞, then

d∗ ∈ argmin
d

Rδ(ℓ, d) =⇒ d∗ ∈ argmin
d

Rδ(φ ◦ ℓ, d).

4.2. Mean estimation revisited

To exhibit the usefulness of the above results, we briefly revisit the problem of mean estimation
under Gaussian data. This problem can be embedded in the above decision-theoretic setting as
follows. The observations are random vectors (Xi)

n
i=1 ∈ (Rd)n for some d, n ∈ N, the subset of

distributions is the n-product of distributions in the class PGauss(Σ) :=
{
N (µ,Σ)

∣∣µ ∈ Rd
}

, for a
fixed Σ ∈ Sd

++. The set of available actions is Rd, and the loss function is given by ℓ(Pn, µ) :=
e(µ − µ(P )) for some error function e and where µ(P ) is the mean of the distribution P . Finally,
a decision rule is given by an estimator µ̂ : (Rd)n → Rd. The following result gives the minimax
quantile risk for this problem under a mild assumption on the error function e, generalizing the
recent result of Depersin and Lecué (2022) which holds under stronger assumptions on e.

Proposition 15 Assume that the error function e satisfies e = φ ◦ s, where φ is a left-continuous
strictly increasing function, and s is both quasiconvex, i.e. s(tv+(1− t)u) ≤ max{s(v), s(u)} for
all t ∈ [0, 1] and u, v ∈ Rd, and symmetric, i.e. s(v) = s(−v). Then for all Σ ∈ Sd

++

inf
µ̂

sup
P∈PGauss(Σ)

Rδ(ℓ, P
n, µ̂) = Qe(Z)(1− δ),

where Z ∼ N (0,Σ/n). Furthermore, the sample mean µ̂((Xi)
n
i=1) := n−1

∑n
i=1Xi is minimax.

4.3. Minimax estimation of the variance of a Gaussian with known mean

As a second application of our results, we consider the problem of variance estimation with one-
dimensional Gaussian data. For this problem, the observations are random variables (Xi)

n
i=1 ∈ Rn

for some n ∈ N, the subset of distributions is the n-product of distributions in the class PGauss(µ) :={
N (µ, σ2)

∣∣σ ∈ (0,∞)
}

, for a fixed µ. The set of available actions is (0,∞), and we consider the
following loss function which captures the problem of estimating σ2 in relative error: ℓ(Pn, σ2) :=∣∣log(σ2(P )/σ2)∣∣ where σ2(P ) is the variance of the distribution P . Finally, a decision rule is given
by an estimator σ̂2 : Rn → (0,∞). Using Theorem 13, we obtain the following result.

Proposition 16 For α ∈ (0,∞) and Z ∼ Inv-Gamma(α, α), define pα : (0,∞) → [0, 1) by

pα(t) := P

(
1− exp(−2t)

2t
≤ Z ≤ exp(2t)− 1

2t

)
.

Then for all µ ∈ R
inf
σ̂2

sup
P∈PGauss(µ)

Rδ(ℓ, P
n, σ̂2) = p−n/2(1− δ).

Furthermore, the sample variance is not minimax and the estimator

σ̂2((Xi)
n
i=1) :=

∑n
i=1(Xi − µ)2

n
ϕ
(
p−n/2(1− δ)

)
is minimax, where ϕ(x) := sinh(x)/x, and p−n/2 is the pseudo-inverse of pn/2.

10
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Surprisingly, Proposition 16 shows that the sample variance is suboptimal under the quantile risk,
but that a careful reweighting of it is. We note that as n→ ∞, the weight converges to 1, so that the
sample variance is asymptotically minimax. We are not aware of a similar result in the literature.

5. Smallest eigenvalue of the sample covariance matrix

The results of Sections 2 and 3, and in particular the sample size conditions in Corollary 9 and
Theorems 11 and 12, rely on new high probability lower bounds on the smallest eigenvalue of the
sample covariance matrix we describe in this section. We briefly formalize our problem, we then
state our main results, and conclude this section by discussing and relating them to the literature.

Let PX be a distribution on Rd with finite second moments, X ∼ PX , and denote by Σ :=
E
[
XXT

]
its covariance matrix. For i.i.d. samples (Xi)

n
i=1 ∼ Pn

X , define the sample covariance
matrix Σ̂n := n−1

∑n
i=1XiX

T
i . In this section, we want to identify how close Σ̂n is to Σ in a

relative error sense and in a one-sided fashion. Specifically, we want to characterize the quantiles
of the random variable λmax(I − Σ−1/2Σ̂nΣ

−1/2) = 1 − λmin(Σ
−1/2Σ̂nΣ

−1/2). To ease notation,
we introduce the whitened random vector X̃ := Σ−1/2X . Notice that E[X̃X̃T ] = Id×d, and that
Σ̃n := n−1

∑n
i=1 X̃iX̃

T
i = Σ−1/2Σ̂nΣ

−1/2. We want to understand the quantiles of 1− λmin(Σ̃n).
As already mentioned, our motivation for studying this problem stems from the fact that upper

bounds on these quantiles form a crucial step in the analysis of linear regression in general, e.g.
Oliveira (2016); Mourtada (2022), and in particular our results from Section 2 and 3.

We are now ready to state our results. Define the following variance-like parameters

S(PX) := E

[(
X̃X̃T − I

)2]
, R(PX) := sup

v∈Sd−1

E

[(
⟨v, X̃⟩2 − 1

)2]
. (4)

Our first result is the following proposition, which provides an asymptotic lower bound on the
quantiles of 1− λmin(Σ̃n), and a nearly matching non-asymptotic upper bound.

Proposition 17 Assume that PX has finite fourth moments. Then for all δ ∈ (0, 0.1),

lim
n→∞

√
n ·Q

1−λmin(Σ̃n)
(1− δ) ≥ 1

40
·
(√

λmax(S(PX)) +
√
R(PX) log(1/δ)

)
.

Furthermore, for all n ∈ N and δ ∈ (0, 1),

Q
1−λmin(Σ̃n)

(1−δ) ≤
√

8λmax(S(PX)) log(3d)

n
+

√
2R(PX) log(1/δ)

n
+
(2 log(3d) + 4 log(1/δ))

3n
.

Our second result extends the upper bound in Proposition 17 to the case where λmin(Σ̃n) =
infv∈Sd−1 n−1

∑n
i=1⟨v, X̃i⟩2 is subject to a direction dependent adversarial truncation. This result

is needed in our analyses of Section 3, from which we recall the definition of a∗ for a sequence a.

Proposition 18 Let δ ∈ (0, 1/2) such that k = 8 log(2/δ) is an integer satisfying 1 ≤ k ≤ ⌊n/2⌋.
For (v, i) ∈ Sd−1 × [n], define Yi,v := ⟨v, X̃i⟩2 and λmin(Σ̃n) := infv∈Sd−1 n−1

∑n−k
i=k+1 Y

∗
i,v.

Then, if n ≥ 8 log(6d),

Q
(1−2k/n)−λmin(Σ̃n)

(1−δ) ≤ 100

(√
8 log(6d)(λmax(S(PX)) + 1)

n
+

√
(R(PX) + 1) log(1/δ)

n

)
.

11
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Comparison with existing results. To the best of our knowledge, the only known lower bound,
asymptotic or not, on the quantiles of 1 − λmin(Σ̃n) is due to Mourtada (2022, Proposition 4).
This bound however is distribution-free and decays fast, as log(1/δ)/n. In terms of upper bounds
comparable to that of Proposition 17, the closest result we are aware of is due to Oliveira (2016) (see
also Zhivotovskiy (2024)), who proved

√
nQ

1−λmin(Σ̃n)
(1 − δ) ≲

√
(R(PX) + 1)[d+ log(1/δ)].

In general, our upper bound and theirs are not comparable, and when combined they yield the best
of both. Nevertheless, we suspect that our bound is better on heavy-tailed problems. Indeed, by
Jensen’s inequality, it is not hard to see that λmax(S(PX)) ≤ R(PX) · d, so our upper bound from
Proposition 17 can be at most worse by

√
log(d). This occurs when X is a centred Gaussian, for

which it is known that Oliveira’s bound is tight (Koltchinskii and Lounici, 2017). On the other hand,
considerX with centred independent coordinates, and where the first coordinate has kurtosis κ≫ 1,
while the other coordinates have constant kurtosis. Then Oliveira’s bound scales as

√
κ · d, while

ours scales as
√
κ · log(d). Finally, versions of Proposition 18 that mimic Oliveira’s bound can be

deduced from the recent literature (Abdalla and Zhivotovskiy, 2023; Oliveira and Rico, 2022). The
same considerations apply when comparing these results.

On the fourth moment assumption. We carried out our analysis under a fourth moment as-
sumption on PX . We argue here that this is in some sense the most natural assumption to study
this problem. Indeed, recall the fact that Σ̃n is an empirical average of the random matrix X̃X̃T .
Therefore, by the law of large numbers, Σ̃n

d→ Id×d, and by the continuous mapping theorem,
λmin(Σ̃n)

d→ 1 as n → ∞. To say something about the rate of this convergence, the most natural
assumption to make is that the entries of the random matrix XXT have finite variance so that the
CLT holds. This is equivalent to assuming that PX has fourth moments.

On the critical sample size. Our main application of Propositions 17 and 18 is in providing upper
bounds on the critical sample size n∗(PX , δ) := min

{
n ∈ N

∣∣∣Q1−λmin(Σ̃n)
(1− δ/2) ≤ 1/4

}
. In

particular, these upper bounds correspond to the sample size restrictions in Corollary 9 and The-
orems 11 and 12. We claimed after the statement of these results that these restrictions were in
some sense optimal; we expand on this here. Let L := limn→∞

√
n · Q

1−λmin(Σ̃n)
(1 − δ), and

define n0(PX , δ) := min
{
n ∈ N

∣∣∣m ≥ n⇒ Q
1−λmin(Σ̃m)

(1− δ/2) ≥ L
4
√
m

}
. If n0(PX , δ) ≤

n∗(PX , δ), then we can reverse the above-mentioned upper bounds using the first item of Proposi-
tion 17, up to a

√
log(d) factor. In words, if the critical sample size is determined by the asymptotic

behaviour of the 1− δ/2 quantile of 1− λmin(Σ̃n), then our bounds on the critical sample size are
tight. When the hypothesis in this last statement is true remains unclear however. The choice of the
constant 1/4 in the above argument is arbitrary, and can be replaced with any absolute constant.

6. Conclusion

In this paper, we studied minimax linear regression under the quantile risk. We gave an in-depth
characterization of the minimax risk over the Gaussian class PGauss(PX , σ

2), and leveraged these
results to establish the minimaxity, up to absolute constants, of the min-max regression procedure
for p-norm regression problems. While the problem of estimation with high confidence has been
studied intensely recently, we are not aware of its formalization through quantiles as was done in
this paper. We hope this new perspective proves fruitful in advancing both our understanding of
learning problems and our ability to design efficient solutions for them.
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Appendix A. Preliminaries

A.1. Pseudo-inverses and quantile function

We say a function f : R → R is increasing if x < y implies f(x) ≤ f(y), and strictly increasing if
x < y implies f(x) < f(y). For a function f : R → R, we define Im(f) = {f(x) |x ∈ R}.

Definition 19 Let f : R → R be an increasing function. We define f− : [−∞,∞] → [−∞,∞],
the pseudo-inverse of f , by

f−(y) := inf{x ∈ R | f(x) ≥ y},

with the conventions inf ∅ := ∞ and inf R := −∞.

Lemma 20 The following holds.

• Let f : R → R be an increasing function. Then for all x ∈ R, f−(f(x)) ≤ x.

• Let f, g be increasing functions from R to R. If f ≥ g then f− ≤ g−.

• Let I be an index set and let {fi}i∈I be a collection of increasing functions from R to R. Then(
sup
i∈I

fi

)−
≤ inf

i∈I
f−i ≤ sup

i∈I
f−i ≤

(
inf
i∈I

fi

)−
.

• Let f : R → R be a strictly increasing function, so that it is a bijection from R to Im(f).
Denote by f−1 : Im(f) → R the inverse of f . Then for all y ∈ Im(f), f−(y) = f−1(y).

• Let f : R → R be an increasing right-continuous function. Then for all y ∈ [−∞,∞],

f−(y) = min{x ∈ R | f(x) ≥ y},

with the conventions min∅ := ∞ and minR := −∞.

• Let I be an index set and let {fi}i∈I be a collection of increasing right-continuous functions
from R to R. Then

sup
i∈I

f−i =

(
inf
i∈I

fi

)−
.

• Let f : R → R be increasing and right-continuous, and let g : R → R be increasing. Then

(f ◦ g)− = g− ◦ f−.

• Let (fk)k∈N be a decreasing sequence of increasing right-continuous functions, and assume
that fn → f pointwise as n→ ∞. Then,

sup
n∈N

f−1
n = f−1.

Proof

18
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• We have, since f(x) ≥ f(x),

f−(f(x)) = inf{z ∈ R | f(z) ≥ f(x)} ≤ x.

• Fix y ∈ [−∞,∞], and define Sf := {x ∈ R | f(x) ≥ y}, and Sg := {x ∈ R | g(x) ≥ y}.
We claim that Sg ⊂ Sf from which the statement follows. If Sg = ∅, the statement follows
trivially. Otherwise let x ∈ Sg. Then f(x) ≥ g(x) ≥ y, so x ∈ Sf .

• We prove the last inequality. The first follows from a similar argument. By definition, for all
j ∈ I , supi∈I fi ≥ fj . Applying the second item yields that for all j ∈ I , (supi∈I fi)

− ≤ f−j .
Taking the infimum over j ∈ I yields the result.

• Let y ∈ Im(f) and let S := {x ∈ R | f(x) ≥ y}. We claim that f−1(y) = minS from
which the claim follows since then f−(y) = minS. Indeed, since f(f−1(y)) = y, we have
f−1(y) ∈ S. Now suppose that there exists an x ∈ S such that f−1(y) > x. Since f is
strictly increasing, we would have y = f(f−(y)) > f(x), which contradicts the fact that
x ∈ S. Therefore f−1(y) ≤ x for all x ∈ S. This proves that f−1(y) = minS.

• The statement holds trivially if f−(y) ∈ {−∞,∞}. Otherwise, f−(y) ∈ R, and by definition
of the infimum, for all k ∈ N, we have xk := f−(y) + 1/k ∈ S and therefore f(xk) ≥ y.
Furthermore, limk→∞ xk = f−1(y) and xk > f−1(y), so by the right-continuity of f we
obtain

f(f−1(y)) = lim
k→∞

f(xk) ≥ y.

Therefore f−1(y) ∈ S which implies f−1(y) = minS.

• The inequality (≤) is covered by the third item, therefore it is enough to prove the inequality
(≥). Let y ∈ [−∞,∞]. We claim that

sup
i∈I

f−i (y) ≥
(
inf
i∈I

fi

)−
(y).

The statement follows trivially if supi∈I f
−
i (y) = ∞. Otherwise, we have f−i (y) < ∞ for

all i ∈ I . If supi∈I f
−
i (y) = −∞, then f−i (y) = −∞ for all i ∈ I , which implies that

fi(x) ≥ y for all x ∈ R. This in turn implies that for all x ∈ R, infi∈I fi(x) ≥ y and
therefore (infi∈I fi)

−(y) = −∞. It remains to consider the case where supi∈I f
−
i (y) ∈ R.

We claim that

inf
i∈I

fi

(
sup
j∈I

f−j (y)

)
≥ y

from which the main claim follows by definition of the pseudo-inverse. Indeed, let i ∈ I . If
f−i (y) ∈ R, then we have

fi

(
sup
j∈I

f−j (y)

)
≥ fi(f

−
i (y)) ≥ y

where the first inequality holds since fi is increasing, and the second by the fifth item and the
fact that f−i (y) ∈ R. Otherwise f−i (y) = −∞, and therefore fi(x) ≥ y for all x ∈ R, which
in particular implies the desired statement since supi∈I f

−
i (y) ∈ R.
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• Let y ∈ [−∞,∞]. By the assumed properties of f and the fifth item, we have f(g(x)) ≥ y if
and only if g(x) ≥ f−(y). Therefore

(f ◦ g)−(y) = inf{x ∈ R | f(g(x)) ≥ y}
= inf

{
x ∈ R

∣∣ g(x) ≥ f−(y)
}

= g−(f−(y)) = (g− ◦ f−)(y).

• We start with the inequality (≤). Let x ∈ R. Since (fn(x))n∈N is decreasing, we have
f(x) = limn→∞ fn(x) = infn∈N fn(x). Therefore, for all n ∈ N, we have fn ≥ f . By the
second item, we therefore have f−n ≤ f−. Taking supremum over n yields the result.

For the inequality (≥), let y ∈ R, and suppose that supn∈N f
−
n (y) < f−(y). If supn∈N f

−
n (y) =

−∞, then for all x ∈ R and for all n ∈ N, fn(x) ≥ y, which implies that for all x ∈ R,
f(x) = limn→∞ fn(x) ≥ y, and therefore f−1(y) = −∞, contradicting the strict inequality.
Otherwise x∗ := supn∈N f

−
n (y) ∈ R, and either f−(y) = ∞ or f−(y) ∈ R.

If f−(y) = ∞, then on the one hand, for all x ∈ R, limn→∞ fn(x) = f(x) < y. On
the other hand, for all n ∈ N, fn(x∗) ≥ y. Indeed, if f−n (y) ∈ R, then by the fifth item
fn(x

∗) ≥ fn(f
−
n (y)) ≥ y. Otherwise, f−n (y) = −∞ so that f(x) ≥ y for all x ∈ R, and in

particular fn(x∗) ≥ y. But then we get the contradiction y > limn→∞ fn(x
∗) ≥ y.

Finally, if f−(y) ∈ R, define ε := f−(y)− x∗ > 0. By definition of x∗, f−(y)− ε ≥ f−n (y)
for all n ∈ N. We claim that for all n ∈ N

fn(f
−(y)− ε) ≥ y.

Indeed, if f−n (y) ∈ R, then by the fifth item fn(f
−(y) − ε) ≥ fn(f

−
n (y)) ≥ y. Otherwise,

f−n (y) = −∞ so that f(x) ≥ y for all x ∈ R, and in particular fn(f−(y) − ε) ≥ y since
f−(y)− ε ∈ R. Taking the limit as n→ ∞ yields

lim
n→∞

fn(f
−(y)− ε) = f(f−(y)− ε) ≥ y

contradicting the minimality of f−(y).

For a random variable X , we denote by FX : R → R its cumulative distribution function
FX(x) := P(X ≤ x), and by QX : [−∞,∞] → [−∞,∞] its quantile function QX(p) := F−

X (p).
Since FX is right-continuous, then by the fifth item of Lemma 20 we have

QX(p) = min{x ∈ R |FX(x) ≥ p}.

Furthermore, since limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1, it is easy to verify thatQX(p) ∈
R for all p ∈ (0, 1) and QX(0) = −∞. If X,Y are two random variables, we define the random
variable FX|Y (x) := P(X ≤ x |Y ) and we note that FX(x) = E[FX|Y (x)] for all x ∈ R.

Lemma 21 Let φ : R → R be strictly increasing and left continuous. Then for all p ∈ (0, 1)

Qφ(X)(p) = φ(QX(p)).

where we define φ(∞) := ∞ and φ(−∞) := −∞.
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Proof Let ε− := P(X = ∞) and ε+ = P(X = ∞). By definition, φ(X) = ∞ ⇔ X = −∞,
so the identity holds trivially for all p ∈ (0, ε−] ∪ [1 − ε+, 1). Now consider the case p ∈ I :=
(ε−, 1 − ε+). First, since limx→−∞ FX(x) = ε− and limx→∞ FX(x) = 1 − ε+ by continuity of
probability measures, we have QX(p) ∈ R. The same argument shows that Qφ(X)(p) ∈ R. Now,
since φ is strictly increasing,

FX(x) = P(X ≤ x) = P(φ(X) ≤ φ(x)) = Fφ(X)(φ(x)) = (Fφ(X) ◦ φ)(x).

Therefore, by the penultimate item of Lemma 20, we have

QX = F−
X = φ− ◦ F−

φ(X) = φ− ◦Qφ(X). (5)

We claim that for all p ∈ I ,

(φ ◦ φ− ◦Qφ(X))(p) = Qφ(X)(p). (6)

By the fourth item of Lemma 20, it is enough to show that Qφ(X)(p) ∈ Im(φ) for all p ∈ I . This
will be the goal of the proof. Let p ∈ I , and define S :=

{
x ∈ R

∣∣φ(x) ≤ Qφ(X)(p)
}

. We claim
that S is non-empty and upper bounded. Indeed, suppose not. Then either φ(x) > Qφ(X)(p) for all
x ∈ R or φ(x) ≤ Qφ(X)(p) for all x ∈ R. In the former case, this implies that for all x ∈ R

FX(x) = P(X ≤ x) = P(φ(X) ≤ φ(x)) ≥ P
(
φ(X) ≤ Qφ(X)(p)

)
≥ p > ε−,

where the second inequality follows from the fifth item of Lemma 20 and the fact that Qφ(X)(p) ∈
R. This leads to the contradiction

ε− = lim
x→−∞

FX(x) ≥ p > ε−.

In the latter case, we get that for all x ∈ R

FX(x) = P(X ≤ x) = P(φ(X) ≤ φ(x)) ≤ P
(
φ(X) ≤ Qφ(X)(p)

)
.

This leads to
1− ε+ = lim

x→∞
FX(x) ≤ P

(
φ(X) ≤ Qφ(X)(p)

)
≤ 1− ε+.

where the last inequality follows from the fact that Qφ(X)(p) ∈ R. Now, since

P
(
φ(X) ≤ lim

x→∞
φ(x)

)
= 1− ε+

and φ(x) ≤ Qφ(X)(p) for all x ∈ R, we get by the minimality property of Qφ(X)(p)

Qφ(X)(p) = lim
x→∞

φ(x).

But, on the one hand, we have by continuity of probability,

lim
n→∞

P(φ(X) ≤ φ(n)) = P
(
φ(X) ≤ lim

n→∞
φ(n)

)
= 1− ε+
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yet on the other, since φ is strictly increasing, we have φ(n) < limx→∞ φ(x) = Qφ(X)(p) for all
n ∈ N, so by the minimality of Qφ(X)(p), P(φ(X) ≤ φ(n)) < p for all n ∈ N, from which we
obtain the contradiction

1− ε+ = lim
n→∞

P(φ(X) ≤ φ(n)) ≤ p

This proves that S is non-empty and upper bounded. Now define x0 := supS, which is guaranteed
to satisfy x0 ∈ R by the upper boundedness of S and its non-emptiness. We claim that φ(x0) =
Qφ(X)(p). Indeed, by the left-continuity of φ, we have, for any sequence (xn)n∈N in S such that
xn → x0

φ(x0) = lim
n→∞

φ(xn) ≤ Qφ(X)(p) (7)

where the last inequality follows from the definition of S and the fact that xn ∈ S for all n ∈ N. On
the other hand, by the maximality of x0, we have for all x > x0, φ(x) > Qφ(X)(p), which implies
that

Qφ(X)(p) ≤ lim
x→x+

0

φ(x) (8)

Combining (7) and (8), we obtain

Qφ(X)(p) ∈

[
φ(x0), lim

x→x+
0

φ(x)

]

But for any y ∈
[
φ(x0), limx→x+

0
φ(x)

]
, we have

P(φ(X) ≤ y) = P(φ(X) ≤ φ(x0))

Indeed on the one hand
P(φ(X) ≤ y) ≥ P(φ(X) ≤ φ(x0))

On the other, if X > x0, then since φ is strictly increasing, φ(X) > limx→x+
0
φ(x) ≥ y. Therefore

P(φ(X) ≤ y) ≤ P

(
φ(X) ≤ lim

x→x+
0

φ(x)

)
≤ P(X ≤ x0) = P(φ(X) ≤ φ(x0))

but then, by the minimality of Qφ(X)(p), we obtain Qφ(X)(p) = φ(x0). This proves (6). Now
applying φ to both sides of (5) and using (6) yields the result.

A.2. Convexity

Definition 22 A subset A ⊂ Rd is

• convex if for all x, y ∈ A and t ∈ [0, 1], (1− t)x+ ty ∈ A.

• symmetric if for all x ∈ A, −x ∈ A.

Lemma 23 Let A be a non-empty convex symmetric set. Then for all λ ≥ 1, A ⊆ λA.
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Proof We start by proving that λA is convex. Indeed let x, y ∈ λA and t ∈ [0, 1]. Then by definition
x/λ, y/λ ∈ A, so by convexity of A

(1− t)
x

λ
+ t

y

λ
∈ A,

which implies
(1− t)x+ ty = λ ·

(
(1− t)

x

λ
+ t

y

λ

)
∈ λA.

Next we prove that 0 ∈ A. Let v ∈ A. Since A is symmetric, −v ∈ A, and by convexity of A

0 =
1

2
x− 1

2
x =

1

2
x+

1

2
(−x) ∈ A.

Finally, we prove the main claim. Let x ∈ A. Then by definition λx ∈ λA. But then by convexity
of λA and since λ ≥ 1

x =

(
1− 1

λ

)
0 +

1

λ
λx ∈ λA

Definition 24 A function f : Rd → R is

• quasiconvex if for all x, y ∈ Rd and t ∈ [0, 1], f((1− t)x+ ty) ≤ max(f(x), f(y)).

• symmetric if for all v ∈ Rd, f(v) = f(−v).

Remark 25 Every convex function is quasiconvex. The function f(x) = log(x) is quasiconvex but
not convex. Every norm is quasiconvex (and, in fact, convex) and symmetric.

Lemma 26 The following holds.

• f : Rd → R is quasiconvex and symmetric if and only if for all y ∈ R, f−1((−∞, y]) is
convex and symmetric.

• If f : Rd → R is quasiconvex and symmetric then 0 ∈ argminx∈R f(x).

A.3. Gaussian measures

Lemma 27 Let Z ∼ N (0, σ2). Then√
1− exp

(
− r2

2σ2

)
≤ F|Z|(r) ≤

√
1− exp

(
− 2r2

πσ2

)
.

Proof Consider first the case where σ2 = 1/2. Then

(
F|Z|(r)

)2
= (P(−r ≤ Z ≤ r))2 =

(
2√
π

∫ r

0
e−t2dt

)2

=
4

π

∫ r

0

∫ r

0
e−(t2+s2)dtds =

4

π

∫
S
e−(t2+s2)dtds
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where S :=
{
(x, y) ∈ R2

∣∣ 0 ≤ x, y ≤ r
}

is the square of length r whose lower left corner is at

0. For a radius ρ > 0, define the quarter disks D(ρ) :=
{
(x, y) ⊂ R2

∣∣∣x, y ≥ 0,
√
x2 + y2 ≤ ρ

}
.

Clearly, D(r) ⊂ S, so that

4

π

∫
S
e−(t2+s2)dtds ≤ 4

π

∫
D(r)

e−(t2+s2)dtds = 1− exp
(
−r2

)
where the last equality is obtained by an explicit integration using polar coordinates. On the
other hand, consider the quarter disk D(2r/

√
π), and define A := D(2r/

√
π) \ S and B :=

S \D(2r/
√
π). Since S and D(2r/

√
π) have the same area, so do A and B. But for all (t, s) ∈ A

and all (x, y) ∈ B, we have

t2 + s2 ≤ 4r2

π
≤ x2 + y2 ⇒ exp

(
−(t2 + s2)

)
≥ exp

(
−(x2 + y2)

)
Therefore

4

π

∫
S
e−(t2+s2)dtds =

4

π

(∫
S∩D(2r/

√
π)
e−(t2+s2)dtds+

∫
B
e−(t2+s2)dtds

)

≤ 4

π

(∫
S∩D(2r/

√
π)
e−(t2+s2)dtds+

∫
A
e−(t2+s2)dtds

)

=
4

π

∫
D(2r/

√
π)
e−(t2+s2)dtds = 1− exp

(
−4r2

π

)
This proves the statement for σ2 = 1/2. For σ2 ∈ (0,∞), note that Z d

=
√
2σ2Z̃ where Z̃ ∼

N (0, 1/2), so

F|Z|(r) = P(−r ≤ Z ≤ r) = P

(
− r√

2σ2
≤ Z̃ ≤ r√

2σ2

)
= F|Z̃|

(
r√
2σ2

)
,

and applying the result for σ2 = 1/2 yields the general result.

Lemma 28 Let X,Y be random vectors such that X | Y = y ∼ N (y,Σ) for some fixed Σ ∈ Sd++

and for all y in the image of Y . Then X − Y ∼ N (0,Σ).

Proof Let B be a Borel subset of Rd, and let Z ∼ N (0,Σ). We have

P(X − Y ∈ B) = E[P(X − Y ∈ B |Y )] = E[P(Z ∈ B)] = P(Z ∈ B).

Lemma 29 (Anderson’s Lemma) Let Z ∼ N (0,Σ) for some Σ ∈ Sd
++ and d ∈ N. Let A ⊂ Rd

be a convex symmetric set. Then for all a ∈ Rd, we have

P(Z ∈ A) ≥ P(Z ∈ A+ a).

Lemma 30 (Gaussian Poincaré/Concentration) Let d ∈ N, Z ∼ N (0, Id×d), and f : Rd → R
be an L-Lipschitz function with respect to the Euclidean metric. Then Var[f(Z)] ≤ L2 and

P(f(Z)− E[f(Z)] ≥ t) ≤ exp

(
− t2

2L2

)
.
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A.3.1. CONCENTRATION OF NORMS OF GAUSSIAN VECTORS

For this subsection, fix d ∈ N, an arbitrary norm ∥·∥ on Rd, and a covariance matrix Σ ∈ Sd
++. Let

Z ∼ N (0,Σ), and define M := E[∥Z∥]. Let S denote the unit sphere of the dual norm ∥·∥∗, and
recall that ∥x∥ = ∥x∥∗∗ = supv∈S |⟨v, x⟩|. Define R := supv∈S v

TΣv, and v∗ = maxv∈S v
TΣv

where the maximum is attained since S is compact and the function is continuous.

Lemma 31 The function f : Rd → R given by f(x) = ∥Σ1/2x∥ is
√
R-Lipschitz in the Euclidean

metric.

Proof

|f(x)− f(y)| =
∣∣∣∥Σ1/2x∥ − ∥Σ1/2y∥

∣∣∣ ≤ ∥Σ1/2(x− y)∥

= sup
v∈S

⟨Σ1/2v, x− y⟩ ≤
(
max
v∈S

∥Σ1/2v∥2
)
∥x− y∥2

Lemma 32 For all t ≥ 0,

M2 ≤ E
[
∥Z∥2

]
≤
(
1 +

π

2

)
M2,

P(M − ∥Z∥ ≥ t) ≤ exp

(
− t2

πM2

)
.

Proof Notice that

M = E[∥Z∥] = E

[
sup
v∈S

|⟨v, Z⟩|
]
≥ sup

v∈S
E[|⟨v, Z⟩|] = sup

v∈S

√
2

π
vTΣv =

√
2

π
vT∗ Σv∗.

where the inequality follows by convexity of the supremum and Jensen’s inequality, and the third
equality by the fact that ⟨v, Z⟩ ∼ N (0, vTΣv) and an explicit calculation of the expectation. We
now prove the first item. The first inequality follows from Jensen’s inequality. For the second,
notice that Σ−1/2Z ∼ N (0, Id×d), so that an application of Lemmas 30 and 31 yields

E
[
∥Z∥2

]
− (E[∥Z∥])2 = Var[∥Z∥] = Var

[
f(Σ−1/2Z)

]
≤ R = vT∗ Σv∗ ≤

π

2
(E[∥Z∥])2.

where f is as defined in Lemma 31. For the second item, notice that −f is also
√
R-Lipschitz, so

that again an application of Lemma 30 yields

P(M − ∥Z∥ > t) = P
(
−f(Σ−1/2Z)− E

[
−f(Σ−1/2Z)

]
> t
)

≤ exp

(
− t2

2vT∗ Σv∗

)
≤ exp

(
− t2

π(E[∥Z∥])2

)
.
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Corollary 33 For all r ∈ R,

l(r) ≤ F∥Z∥(r) ≤ min{u1(r), u2(r)}

where

l(r) :=

[
1− exp

(
−(r −M)2

2R

)]
1[M,∞),

u1(r) := exp

(
−(M − r)2

πM2

)
1[0,M)(r) + 1[M,∞)(r), u2(r) :=

√
1− exp

(
−2r2

πR

)
1[0,∞)(r).

Proof We start with the lower bound. Let r ≥M . Then

F∥Z∥(r) = P(∥Z∥ ≤ r) = 1−P(∥Z∥ > r) = 1−P(∥Z∥ −M > r −M) ≥ 1−exp

(
−(r −M)2

2R

)
where the last inequality follows from Lemmas 30 and 31. For the lower bound, we have, by Lemma
32

F∥Z∥(r) = P(∥Z∥ ≤ r) = P(∥Z∥ −M ≤ r −M) = P(M − ∥Z∥ ≥M − r) ≤ u1(r).

Furthermore,

F∥Z∥(r) = P

(
sup
v∈S

|⟨v, Z⟩| ≤ r

)
≤ P(|⟨v∗, Z⟩| ≤ r) ≤ u2(r),

where the second inequality follows from the fact that ⟨v∗, Z⟩ ∼ N (0, R) and Lemma 27.

A.4. Inverse Gamma measure

Let α, β > 0. The inverse gamma measure Inv-Gamma(α, β) on (0,∞) has density

fα,β(x) :=
βα

Γ(α)
x−α−1 exp

(
−β
x

)
with respect to Lebesgue measure, where Γ is the gamma function.

Lemma 34 Let X ∼ Inv-Gamma(α, β) and Z ∼ Inv-Gamma(α, α). Let r > 0, and define

xα,β(r) :=
β[exp(r)− exp(−r)]

2αr
pα(r) := P

(
1− exp(−2r)

2r
≤ Z ≤ exp(2r)− 1

2r

)
Then for all x ∈ (0,∞)

pα(r) = P(|log(X/xα,β(r))| ≤ r) ≥ P(|log(X/x)| ≤ r).
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Proof Fix r ∈ (0,∞). Define hr(x) := P(|log(X/x)| ≤ r). Then we have

d

dx
(hr(x)) =

d

dx
(P(|log(X/x)| ≤ r))

=
d

dx
(P(x exp(−r) ≤ X ≤ x exp(r)))

=
d

dx

(∫ x exp(r)

x exp(−r)
fα,β(t)dt

)
= exp(r)fα,β(x exp(r))− exp(−r)fα,β(x exp(−r))

where in the last line we used Leibniz integral rule. Setting the derivative to 0 and solving yields
xα,β(r). Examining its derivative, we notice that hr is non-decreasing on (0, xα,β(r)] and non-
increasing on [xα,β(r),∞). Therefore xα,β(r) is the global maximizer of hr. Now

P(|log(X/xα,β(r))| ≤ r) = P(xα,β(r) exp(−r) ≤ X ≤ xα,β(r) exp(r))

= P

(
1− exp(−2r)

2r
≤ α

β
X ≤ exp(2r)− 1

2r

)
= pα(r)

where in the last line we used that if X ∼ Inv-Gamma(α, β), then cX ∼ Inv-Gamma(α, c · β) for
all c > 0.

Lemma 35 Let pα be as defined in Lemma 34. The following holds.

• pα(r) is non-decreasing in α for all r > 0.

• pα(r) is strictly increasing in r for all α > 0 and Im(pα) = (0, 1)

Appendix B. Suprema of truncated empirical processes

B.1. Truncation function

Let α, β ∈ R such that α ≤ β. Define

ϕα,β(x) :=


β if x > β,

x if x ∈ [α, β],

α if x < α.

(9)

Lemma 36 The following holds for all x ∈ R.

• c · ϕα,β(x) = ϕcα,cβ(cx) for all c ∈ [0,∞).

• −ϕα,β(x) = ϕ−β,−α(−x).

• ϕα,β(x) + y = ϕα+y,β+y(x+ y) for all y ∈ R.
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Proof Just check the three possible cases for each item.

Fix n ∈ N. For a real valued sequence a := (ai)
n
i=1, define the sequence a∗ = (a∗i )

n
i=1 by

a∗i := aπ(i) for all i ∈ [n] and where π : [n] → [n] is a permutation that orders a non-decreasingly,
i.e. aπ(1) ≤ . . . ≤ aπ(n). Note that this is well-defined since any such permutation gives the same
a∗. Addition and scalar multiplication of sequences are as usual. For two sequences a, b, we say
that a ≤ b if ai ≤ bi for all i ∈ [n].

Lemma 37 Let a = (ai)
n
i=1 and b = (bi)

n
i=1 be real valued sequences.

a ≤ b⇒ a∗ ≤ b∗

Proof Let π and σ be permutations of [n] that order a and b non-decreasingly, respectively. Let
i ∈ [n]. We show that aπ(i) ≤ bσ(i). We consider two cases. If π(i) ∈ {σ(1), . . . , σ(i)}, then
aπ(i) ≤ bπ(i) ≤ bσ(i). Otherwise, π(i) ∈ {σ(i+ 1), . . . , σ(n)}. This implies that there exists
a j ∈ {i+ 1, . . . , n} such that π(j) ∈ {σ(1), . . . , σ(i)}, from which we conclude that aπ(i) ≤
aπ(j) ≤ bπ(j) ≤ bσ(i).

Let k ∈ {1, . . . , ⌊n/2⌋}. Define

φk(a) :=

n∑
i=1

ϕa∗1+k,a
∗
n−k

(ai). (10)

Lemma 38 The following holds for all real-valued sequences a = (ai)
n
i=1.

• c · φk(a) = φk(c · a) for all c ∈ R.

• φk(a) + n · c = φk(a+ c) for all c ∈ R.

• φk(a) ≤ φk(b) for all sequences b = (bi)
n
i=1 such that a ≤ b.

Proof We start with the first item. Let π : [n] → [n] be a permutation that orders a non-decreasingly.
The case c = 0 is trivial. Now consider the case c > 0. Then since c > 0, π also orders c · a non-
decreasingly. Therefore (c · a)∗i = c · a∗i and

c · φk(a) =

n∑
i=1

c · ϕa∗k,a∗n−k
(ai) =

n∑
i=1

ϕc·a∗k,c·a
∗
n−k

(c · ai) =
n∑

i=1

ϕ(c·a)∗k,(c·a)
∗
n−k

(c · ai) = φk(c · a),

where the second equality follows from the first item of Lemma 36. Now consider the case c = −1.
Then the permutation π orders −a non-increasingly so that (−a)∗i = −a∗n−i and

−φk(a) =

n∑
i=1

−ϕa∗k,a∗n−k
(ai) =

n∑
i=1

ϕ−a∗n−k,−a∗k
(−ai) =

n∑
i=1

ϕ(−a)∗k,(−a)∗n−k
(−ai) = φk(−a),

where the second equality follows from the second item of Lemma 37. For the case c < 0, we have

c · φk(a) = (−c) · −φk(a) = (−c) · φk(−a) = φk(c · a).
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For the second item, we have by Lemma 37 that a∗ ≤ b∗, from which we conclude

φk(a) =
n∑

i=1

ϕa∗k,a
∗
n−k

(ai) = ka∗k +
n−k−1∑
i=k+1

a∗i + ka∗n−k ≤ kb∗k +
n−k−1∑
i=k+1

b∗i + kb∗n−k = φk(b)

Lemma 39 Let a = (ai)
n
i=1 and b = (bi)

n
i=1 be real valued sequences such that b ≥ 0. Then

φk(a+ b) ≥ φk(a) +
n−2k∑
i=1

b∗i

Proof Let π and σ be permutations that order a + b and a non-decreasingly, respectively. By
definition

φk(a+ b) = k(a+ b)∗1+k +

n−k∑
i=k+1

(a+ b)∗i + k(a+ b)∗n−k.

We lower bound each of the three terms separately. For the first, define the sets I1 := {π(1), . . . , π(1 + k)}
and J1 := {σ(1 + k), . . . , σ(n)}, and notice that

|I1 ∩ J1| = |I1|+ |J1| − |I1 ∪ J1| ≥ (1 + k) + (n− k)− n = 1.

Therefore, we have

(a+b)∗1+k = aπ(1+k)+bπ(1+k) = max{ai + bi | i ∈ I1} ≥ max{ai + bi | i ∈ I1 ∩ J1} ≥ aσ(1+k),

where the last inequality uses the non-negativity of b. Similarly, for the third term, define the sets
I2 := {π(1), . . . , π(n− k)} and J2 := {σ(n− k), . . . , σ(n)}, and notice that

|I2 ∩ J2| = |I2|+ |J2| − |I2 ∪ J2| ≥ (n− k) + (1 + k)− n = 1.

Therefore, we get

(a+b)∗n−k = aπ(n−k)+bπ(n−k) = max{ai + bi | i ∈ I2} ≥ max{ai + bi | i ∈ I2 ∩ J2} ≥ aσ(n−k),

where again we used the non-negativity of b in the last inequality. It remains to lower bound the
second term. Let S∗ ⊂ I2 such that |S| = k and {σ(1), . . . , σ(k)} ∩ I2 ⊂ S. Notice that

n−k∑
i=k+1

(a+ b)∗i =
n−k∑

i=k+1

(aπ(i) + bπ(i))

= max
S⊂I2
|S|=k

∑
i∈I2\S

(ai + bi)

≥
∑

i∈I2\S∗

ai +
∑

i∈I2\S∗

bi
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Let us further bound each term. For the first, notice that by definition of S∗, we have (I2 \S∗) ⊂ J1
and |I2 \ S∗| = n− 2k, therefore

∑
i∈I2\S∗

ai ≥ min
T⊂J1

|T |=n−2k

∑
i∈T

ai =
n−k∑

i=k+1

aσ(i).

For the second, we have ∑
i∈I2\S∗

bi ≥ min
T⊂[n]

|T |=n−2k

∑
i∈T

bi =
n−2k∑
i=1

b∗i

Combining the bounds yields the desired result.

B.2. Suprema of truncated empirical processes

Let T be a countable index set, and let ({Zi,s}s∈T )ni=1 be independent real-valued T -indexed
stochastic processes. Define Z := sups∈T

∑n
i=1 Zi,s. For s ∈ T , define Zs := (Zi,s)

n
i=1. For i.i.d.

Rademacher random variables (εi)ni=1, define µ := E[sups∈T
∑n

i=1 εiZi,s]. We assume throughout

that σ2 := sups∈T
∑n

i=1 E
[
Z2
i,s

]
<∞. We start by recalling the following result.

Lemma 40 (Klein and Rio (2005)) Assume that for all s ∈ T and i ∈ [n], E[Zi,s] = 0, and that
R := sup(s,i)∈T ×[n]∥Zi,s∥∞ <∞. Define v := 2RE[Z] + σ2. Then

P(Z ≥ E[Z] + t) ≤ exp

(
− 4v

9R2
h

(
3Rt

2v

))
,

where h(t) := 1 + t −
√
1 + 2t with inverse h−1(t) = t +

√
2t. Consequently, with probability at

least 1− δ

Z < E[Z] +
3R log(1/δ)

2
+
√

2v log(1/δ).

The following result is due to Lugosi and Mendelson (2021).

Lemma 41 Let T > 0. Then with probability at least 1− δ

sup
s∈T

|{i ∈ [n] | |Zi,s| > T}|

< inf
ε∈(0,1)

{
2µ

εT
+

σ2

(1− ε)2T 2
+

√(
8µ

εT
+

2σ2

(1− ε)2T 2

)
log(1/δ) +

3 log(1/δ)

2

}
.

Proof Let T > 0 and ε ∈ (0, 1), and define the function χT,ε : R → [0, 1] by

χT,ε(x) :=


0 if x ≤ (1− ε)T

x

εT
− 1− ε

ε
if x ∈ ((1− ε)T, T ]

1 if x > T .
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Note that 1(T,∞) ≤ χT,ε ≤ 1((1−ε)T,∞) and χT,ε is (1/εT )-Lipschitz. Now we have

sup
s∈T

n∑
i=1

1(T,∞)(|Zi,s|) ≤ sup
s∈T

n∑
i=1

χT,ε(|Zi,s|)

≤ sup
s∈T

n∑
i=1

χT,ε(|Zi,s|)− E[χT,ε(|Zi,s|)]︸ ︷︷ ︸
Wi,s :=

+ sup
s∈T

n∑
i=1

E[χT,ε(|Zi,s|)] (11)

The second term of (11) is bounded by

sup
s∈T

n∑
i=1

E[χT,ε(|Zi,s|)] ≤ sup
s∈T

n∑
i=1

P(|Zi,s| > (1− ε)T ) ≤ σ2

(1− ε)2T 2
. (12)

We now turn to the first term of (11) which we denote by W . We note that E[Wi,s] = 0, |Wi,s| ≤ 1,
so by Lemma 28 we have with probability at least 1− δ

W < E[W ] +
3 log(1/δ)

2
+
√

2(2E[W ] + α2) log(1/δ), (13)

where α2 := sups∈T
∑n

i=1 E[W
2
i,s]. It remains to bound E[W ] and α2. The former is bounded by

E[W ] = E

[
sup
s∈T

n∑
i=1

χT,ε(|Zi,s|)− E[χT,ε(|Zi,s|)]

]

≤ 2E

[
sup
s∈T

n∑
i=1

εiχT,ε(|Zi,s|)

]
≤ 2

εT
E

[
sup
s∈T

n∑
i=1

εiZi,s

]
, (14)

where the first inequality is by symmetrization and the second by the contraction principle and the
(1/εT )-Lipschitzness of χT,ε ◦ |·|. The latter is bounded by

α2 = sup
s∈T

n∑
i=1

E
[
W 2

i,s

]
≤ sup

s∈T

n∑
i=1

E
[
χ2
T,ε(|Zi,s|)

]
≤ sup

s∈T

n∑
i=1

P(|Zi,s| > (1− ε)T ) ≤ σ2

(1− ε)2T 2
.

(15)
Combining (13), (14), and (15) yields that with probability at least 1− δ

W <
2µ

εT
+

√(
8µ

εT
+

2σ2

(1− ε)2T 2

)
log(1/δ) +

3 log(1/δ)

2
(16)

Combining (11), (12), (16), and optimizing over ε ∈ (0, 1) yields the result.

Corollary 42 Using the same notation as in Lemma 29, we have with probability at least 1− δ

sup
s∈T

|{i ∈ [n] | |Zi,s| > T0}| < 8 log(1/δ),

where

T0 := 2max

{
µ

log(1/δ)
,

√
σ2

log(1/δ)

}
.
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Proof The result follows from taking ε = 1/2 in the bound of Lemma 29, replacing T by T0, and
straightforwardly bounding the resulting expression.

Lemma 43 Let δ ∈ (0, 1) be such that k := 8 log(2/δ) is an integer satisfying 1 ≤ k ≤ ⌊n/2⌋.
Assume that for all s ∈ T and i ∈ [n], E[Zi,s] = 0. Then with probability at least 1− δ

sup
s∈T

|{i ∈ [n] | |Zi,s| > T0}| < k,

and
sup
s∈T

φk(Zs) ≤ 50max
{
µ,
√
σ2 log(2/δ)

}
.

where

T0 := 2max

{
µ

log(1/δ)
,

√
σ2

log(1/δ)

}
.

Proof By Lemma 29, with probability at least 1− δ/2, we have for all s ∈ T

−T0 ≤ Z∗
1+k,s ≤ Z∗

n−k,s ≤ T0.

Therefore

sup
s∈T

φk(Zs) = sup
s∈T

n∑
i=1

ϕZ∗
1+k,s,Z

∗
n−k,s

(Zi,s)

= sup
s∈T

n∑
i=1

ϕ−T0,T0(Zi,s) + k(Z1+k,s + T0) + k(Z∗
n−k,s − T0)︸ ︷︷ ︸
≤ 0

≤ sup
s∈T

n∑
i=1

ϕ−T0,T0(Zi,s)− E[ϕ−T0,T0(Zi,s)]︸ ︷︷ ︸
Wi,s :=

+ sup
s∈T

n∑
i=1

E[ϕ−T0,T0(Zi,s)] + 2kT0.

(17)

We now bound the second term of (17) by

sup
s∈T

n∑
i=1

E[ϕ−T0,T0(Zi,s)] = sup
s∈T

n∑
i=1

E[Zi,s]︸ ︷︷ ︸
= 0

+E
[
(T0 − Zi,s)1(T0,∞)(Zi,s)

]︸ ︷︷ ︸
≤ 0

(18)

+ E
[
(−T0 − Zi,s)1(−∞,−T0)(Zi,s)

]
≤ sup

s∈T

n∑
i=1

E
[
Z2
i,s

]1/2 · P(Zi,s < −T0)1/2 ≤
σ2

T0
, (19)

where we used the Cauchy-Schwarz inequality and Markov’s inequality respectively. Denote the
first term of (17) by W , and note that E[Wi,s] = 0 and |Wi,s| ≤ 2T0, so by Lemma 28 we have with
probability at least 1− δ/2

W < E[W ] + 2T0 log(2/δ) +
√

2(4T0 E[W ] + α2) log(2/δ), (20)
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where α := sups∈T
∑n

i=1 E
[
W 2

i,s

]
. It remains to bound E[W ] and α2. The former is bounded by

E[W ] = E

[
sup
s∈T

n∑
i=1

ϕ−T0,T0(Zi,s)− E[ϕ−T0,T0(Zi,s)]

]

≤ 2E

[
sup
s∈T

n∑
i=1

εiϕ−T0,T0(Zi,s)

]
≤ 2E

[
sup
s∈T

n∑
i=1

εiZi,s

]
, (21)

where we used symmetrization and the contraction principle along with the 1-Lipschitzness of
ϕ−T0,T0 respectively. The latter is bounded by

α2 ≤ sup
s∈T

n∑
i=1

E
[
W 2

i,s

]
≤ sup

s∈T

n∑
i=1

E
[
ϕ2−T0,T0

(Zi,s)
]
≤ sup

s∈T

n∑
i=1

E
[
Z2
i,s

]
(22)

Combining (20), (21), (22), and using the definition of T0, we obtain with probability at least 1−δ/2

W < 16max
{
µ,
√
σ2 log(1/δ)

}
(23)

Combining (17), (19), (16), and the definition of T0 yields the result.

Appendix C. Proofs of Section 4

C.1. Proof of Theorem 13

By definition of the minimax risk, we have

R∗
δ(ℓ) = inf

d
Rδ(ℓ, d) = inf

d
sup
P∈P

Rδ(ℓ, P, d) = inf
d

sup
P∈P

Qℓ(P,d(O))(1− δ) = inf
d

sup
P∈P

F−
ℓ(P,d(O))(1− δ).

Applying the sixth item of Lemma 20 to the last expression yields

R∗
δ(ℓ) = inf

d

(
inf
P∈P

Fℓ(P,d(O))

)−
(1− δ).

Now let k ∈ N. Since infP∈P Fℓ(P,d(O)) ≤ EP∼πk

[
Fℓ(P,d(O))|P

]
= F πk

ℓ(P,d(O)), where O | P ∼ P
inside the expectation, we have by the second item of Lemma 20

R∗
δ(ℓ) ≥ inf

d

(
F πk

ℓ(P,d(O))

)−1
(1− δ) ≥

(
sup
d
F πk

ℓ(P,d(O))

)−
(1− δ) = p−ℓ,k(1− δ).

where the second inequality follows from the third item of Lemma 20, and the last by definition of
pℓ,k. Taking supremum over k, and combining our assumptions on the sequence (pℓ,k)k∈N with the
last item of Lemma 20 yields the result.
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C.2. Proof of Proposition 14

The first statement follows from the assumption on φ and Lemma 21. For the second statement,
define S := {Rδ(ℓ, P, d) |P ∈ P} ⊂ [−∞,∞) and x0 := supS. If x0 = −∞, then φ(x0) = −∞,
and φ(ℓ(P, d(O)))) = ℓ(P, d(O)) = −∞ with probability at least 1− δ for all P , so the statement
holds. Otherwise x0 ∈ R. Now for any x ∈ S, we have x ≤ x0, so φ(x) ≤ φ(x0), and hence
supx∈S φ(x) ≤ φ(x0). On the other hand, let (xk)k∈N be an increasing sequence in S such that
xk → x0 as k → ∞. Then by the left-continuity of φ, we obtain supx∈S φ(x) ≥ limk→∞ φ(xk) =
φ(x0), which proves the statement. For the last statement, suppose that d∗ ∈ argmindRδ(ℓ, d),
then by assumption Rδ(ℓ, d

∗) <∞, so that by the second statement Rδ(φ ◦ ℓ, d∗) = φ(Rδ(ℓ, d
∗)).

Now let d be any other decision rule. If Rδ(ℓ, d) < ∞, then by the minimality of d∗ we get
Rδ(ℓ, d

∗) ≤ Rδ(ℓ, d), and since φ is increasing and using the second statement again, Rδ(φ ◦
ℓ, d∗) = φ(Rδ(ℓ, d

∗)) ≤ φ(Rδ(ℓ, d)) = Rδ(φ ◦ ℓ, d). If Rδ(ℓ, d) = ∞ then there exists P0 ∈ P
such that Rδ(ℓ, P0, d) ≥ Rδ(ℓ, d

∗), but then since φ is increasing, Rδ(φ ◦ ℓ, d) = supP∈P Rδ(φ ◦
ℓ, P, d) ≥ φ(Rδ(ℓ, P0, d)) ≥ φ(Rδ(ℓ, d

∗)) = Rδ(φ ◦ ℓ, d∗). This proves the last statement.

C.3. Proof of Proposition 15

Proof We present here the proof for the case φ(x) = x. The general statement follows from
Proposition 14. Our aim is to apply Theorem 13. We select πk := N (0,Σ/λk) for a decreasing
strictly positive sequence (λk)k∈N satisfying λk → 0 as k → ∞. We want to compute, for all t ∈ R,

pℓ,k(t) = sup
µ̂

P(e(µ̂((Xi)
n
i=1 − µ)) ≤ t),

where µ ∼ πk andXi | µ ∼ N (µ,Σ) for all i ∈ [n] independently. A classical Bayesian calculation
shows that µ | (Xi)

n
i=1 ∼ N

(
Xk,Σk

)
where Xk := n

n+λk
X and Σk := 1

n+λk
Σ, where X :=

n−1
∑n

i=1Xi is the sample mean. Now we compute, for Zk ∼ N (0,Σk),

pℓ,k(t) = sup
µ̂

P(e(µ̂((Xi)
n
i=1 − µ)) ≤ t)

= E

[
sup
a∈Rd

P(e(µ− a) ≤ t | (Xi)
n
i=1)

]

= E

[
sup
a∈Rd

P
(
µ− a ∈ e−1((−∞, t]) | (Xi)

n
i=1

)]
= E

[
P
(
µ−Xk ∈ e−1((−∞, t] | (Xi)

n
i=1

)]
= P(e(Zk) ≤ t) = Fe(Zk)(t)

The second line follows from conditioning on (Xi)
n
i=1 and the symmetry of e. The fourth line

follows from combining the assumptions on e with the first item of Lemma 26, as well as an ap-
plication of Lemma 29, known as Anderson’s Lemma. The last line follows from the fact that
µ − Xk | (Xi)

n
i=1

d
= Zk. To conclude it remains to prove the needed properties for the sequence

(pℓ,k)k∈N . The right-continuity follows directly from the fact that Fe(Zk) is a CDF. To see that the
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sequence is decreasing, define nk := n+ λk and note that nk ≥ nk+1. Then, for all t ∈ R

Fe(Zk)(t) = P(e(Zk) ≤ t) = P
(
Zk ∈ e−1((−∞, t])

)
= P

(√
nk+1

nk
· Zk+1 ∈ e−1((−∞, t])

)
= P

(
Zk+1 ∈

√
nk
nk+1

· e−1((−∞, t])

)
≥ P

(
Zk+1 ∈ e−1((−∞, t])

)
= Fe(Zk+1)(t),

where the inequality follows from the fact that
√
nk/nk+1 ≥ 1, e−1((−∞, t] is convex and sym-

metric, and Lemma 23. Finally, let Z ∼ N (0,Σ/n). We compute

lim
k→∞

Fe(Zk)(t) = lim
k→∞

P
(
Zk ∈ e−1((−∞, t])

)
= lim

k→∞
P

(
Z ∈

√
nk
n

· e−1((−∞, t])

)
= P

(
Z ∈

∞⋂
k=1

{√
nk
n

· e−1((−∞, t])

})
= P

(
Z ∈ e−1((−∞, t])

)
= Fe(Z)(t),

Finally, the worst-case risk of the sample mean is given by Qe(Z)(1 − δ) as can be checked with a
simple explicit calculation. An application of Theorem 13 concludes the proof.

C.4. Proof of Proposition 16

Proof We aim at applying Theorem 13. We select πk := Inv-Gamma(λk, λk) for a decreasing
strictly positive sequence (λk)

∞
k=1 satisfying λk → 0 as k → ∞. We need to compute

pℓ,k(t) = sup
σ̂

P

(
log

(
σ2

σ̂2((Xi)ni=1)

)
≤ t

)
,

where σ2 ∼ πk and Xi | σ2 ∼ N (µ, σ2) for all i ∈ [n] independently. A classical Bayesian
calculation shows that σ2 | (Xi)

n
i=1 ∼ Inv-Gamma(αk, βk), where αk := n/2 + λk and βk :=

λk +
∑n

i=1(Xi − µ)2/2. Recalling the definition of the fucntion pα from the statement, we obtain

sup
σ̂

P

(
log

(
σ2

σ̂2((Xi)ni=1)

)
≤ t

)
= E

[
sup

b∈(0,∞)
P

(
log

(
σ2

b

)
≤ t

∣∣∣∣ (Xi)
n
i=1

)]
= E[pαk

(t)] = pαk
(t)

where the last equality follows from Lemma 34. It is straightforward to check that pα is continuous
for all values of α ∈ (0,∞). Furthermore, by Lemma 35, the sequence (pαk

)k∈N is decreasing
with limit pn/2. This provides us with the first part needed for Theorem 13. Now note that, for any
σ2 ∈ (0,∞) and Xi ∼ N (µ, σ2) for all i ∈ [n] and independently, we have (n · σ2)/

∑n
i=1(Xi −

µ)2 ∼ Inv-Gamma(n/2, n/2), so that for the estimator σ̂2 defined in the theorem, we have

P
(∣∣log(σ2/σ̂2((Xi)

n
i=1))

∣∣ ≤ p−1
n/2(1− δ)

)
= P

(
exp(−p−1

n/2(1− δ)) ≤ σ2

σ̂2((Xi)ni=1)
≤ exp(p−1

n/2(1− δ))

)
= P

(
1− exp(−2p−1

n/2(1− δ))

2p−1
n/2(1− δ)

≤ n · σ2∑n
i=1(Xi − µ)2

≤
exp(2p−1

n/2(1− δ))− 1

2p−1
n/2(1− δ)

)
= pn/2(p

−1
n/2(1− δ))

= 1− δ
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and therefore the worst-case risk of this estimator is equal to p−1
n/2(1 − δ). Applying Theorem 13

proves the minimaxity of this estimator. An explicit calculation of the worst-case risk of the sample
variance combined with the uniqueness of the minimizer in Lemma 34 shows that it is not minimax.

Appendix D. Proofs of Section 2

D.1. Proof of Theorem 3

Before we proceed with the proof, we start with a simple lemma.

Lemma 44 Under the setup of Theorem 3, the functions Ẽ , Ẽ are strictly convex and symmetric
with unique minimizer 0. Furthermore, if (X,Y ) ∼ P ∈ PGauss(PX , σ

2) so that Y = ⟨w∗, X⟩+ η,
then E(v) = Ẽ(v − w∗) for all v, and w∗ is the unique minimizer of E(w).

Proof We prove the convexity and symmetry of Ẽ first. We start with the symmetry.

Ẽ(−∆) = E[e(−⟨∆, X⟩+ η)] = E[e(⟨∆, X⟩ − η)] = E[e(⟨∆, X⟩+ η)] = Ẽ(∆),

where the second equality follows from the symmetry of e, and the fourth equality follows from
η

d
= −η. For the strict convexity, let t ∈ (0, 1) and ∆,∆′ ∈ Rd. Then

Ẽ((1− t)∆ + t∆′) = E
[
e
(
(1− t){⟨∆, X⟩+ η}+ t

{
⟨∆′, X⟩+ η

})]
< (1− t)Ẽ(∆) + tẼ(∆′),

where the inequality follows from the strict convexity of e. Therefore Ẽ is strictly convex and
symmetric, and since Ẽ and Ẽ differ by a constant, the same holds for Ẽ .

For the second statement, notice that, by symmetry of η,

E(v) = E[e(⟨v,X⟩ − Y )] = E[e(⟨v − w∗, X⟩ − η)] = E[e(⟨v − w∗, X⟩+ η)] = Ẽ(v − w∗).

After routine calculations and an application of the chain rule, this also shows that E is strictly
convex, symmetric, and differentiable at w∗ with ∇E(w∗) = ∇Ẽ(0). We compute

∇E(w∗) = ∇Ẽ(0) = E[∇e(η)] = E
[
e′(η)X

]
= E

[
e′(η)

]
E[X],

where η ∼ N (0, σ2) and the last equality follows from the independence of η and X . Now

E
[
e′(η)

]
=

1

σ2
E[e(η)η] =

1

σ2
E[e(−η) · (−η)] = − 1

σ2
E[e(η)η] = −E

[
e′(η)

]
where the first and last equalities are by Stein’s lemma, the second since η d

= −η, and the third by
the symmetry of e. This proves that E[e′(η)] = 0, and hence that w∗ is the unique minimizer of E
by strong convexity.

We now present the main proof of the theorem.
Proof [Proof of Theorem 3] Our strategy is to use Theorem 13 with a properly chosen sequence of
distributions (πk)k∈N. Notice that, associated to each P ∈ PGauss(PX , σ

2) is a unique minimizer
w∗ ∈ Rd of the expected error E(w). So putting a distribution on the set of the latter, Rd, induces a
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distribution on the set of the former, PGauss(PX , σ
2). Specifically, let (λk)k∈N be a strictly positive

sequence converging to 0, and define πk := N (0, λ−1
k · (σ2/n) · Id×d). With the goal of applying

Theorem 13, we need to compute

pk(t) := sup
ŵ

P(E(ŵ((Xi, Yi)
n
i=1)) ≤ t),

where w∗ ∼ πk, (Xi)
n
i=1 ∼ Pn

X , and Yi | (w∗, Xi) ∼ N (⟨w∗, Xi⟩, σ2) for all i ∈ [n], and
independently. A basic calculation shows that w∗ | (Xi, Yi)

n
i=1 ∼ N (wk, (σ

2/n)Σ−1
k ), where

wk := Σ−1
k

(
1

n

n∑
i=1

YiXi

)
, Σk := Σ̂n + λkId, Σ̂n :=

1

n

n∑
i=1

XiX
T
i

Therefore, using Lemma 44,

pk(t) = sup
ŵ

P(E(ŵ) ≤ t) = sup
ŵ

P
(
Ẽ(ŵ − w∗) ≤ t

)
= sup

ŵ
E
[
P
(
Ẽ(ŵ − w∗) ≤ t

∣∣∣ (Xi, Yi)
n
i=1

)]
= E

[
sup
v∈Rd

P
(
w∗ − v ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi, Yi)
n
i=1

)]
= E

[
P
(
w∗ − wk ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi, Yi)
n
i=1

)]
= P

(
Ẽ(Zk) ≤ t

)
= FẼ(Zk)

(t)

where Zk | (Xi)
n
i=1 ∼ N (0, (σ2/n)Σ−1

k ). The fifth equality is obtained by combining the first item
of Lemma 44 with the first item of Lemma 26, and an application of Lemma 29. With the goal of
applying Theorem 13, we verify the needed properties on the sequence (pk)k∈N.

First, since each pk is a CDF, it is right-continuous. To show that (pk)k∈N is decreasing, let
k ∈ N. Since λk ≥ λk+1 by assumption, Σk ⪰ Σk+1, and therefore Σ−1

k ⪯ Σ−1
k+1. We conclude

that Zk+1
d
= Zk + Yk where Yk ⊥⊥ Zk | (Xi)

n
i=1 and Yk | (Xi)

n
i=1 ∼ N (0, σ

2

n

{
Σ−1
k+1 − Σ−1

k

}
).

Now

FẼ(Zk+1)|(Xi)ni=1
(t) = P

(
Ẽ(Zk+1) ≤ t

∣∣∣ (Xi)
n
i=1

)
= P

(
Zk+1 ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1

)
= P

(
Zk + Yk ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1

)
= E

[
P
(
Zk + Yk ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1, Yk

)]
≤ E

[
sup
a∈Rd

P
(
Zk + a ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1, Yk

)]
= E

[
P
(
Zk ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1, Yk

)]
= FẼ(Zk)|(Xi)ni=1

(t),
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where the penultimate equality follows from Lemma 28 and the fact that, given ((Xi)
n
i=1, Yk), Zk

is a centred Gaussian vector. Taking expectation of both sides with respect to (Xi)
n
i=1 proves that

the sequence (pk)k∈N is decreasing. It remains to compute its limit.
By the monotone convergence theorem, we have

lim
k→∞

FẼ(Zk)
(t) = lim

k→∞
P
(
Ẽ(Zk) ≤ t

)
= lim

k→∞
E
[
P
(
Ẽ(Zk) ≤ t

∣∣∣ (Xi)
n
i=1

)]
= E

[
lim
k→∞

P
(
Ẽ(Zk) ≤ t

∣∣∣ (Xi)
n
i=1

)]
. (24)

Furthermore, letting Z ∼ N (0, Id×d), we have

lim
k→∞

P
(
Ẽ(Zk) ≤ t

∣∣∣ (Xi)
n
i=1

)
= lim

k→∞
P
(
Zk ∈ Ẽ−1((−∞, t])

∣∣∣ (Xi)
n
i=1

)
= lim

k→∞
P

(
Z ∈

√
n

σ
Σ
1/2
k Ẽ−1((−∞, t])

∣∣∣∣ (Xi)
n
i=1

)
= P

(
Z ∈

∞⋂
k=1

{√
n

σ
Σ
1/2
k Ẽ−1((−∞, t])

}
| (Xi)

n
i=1

)

= P

(
Z ∈

√
n

σ
Σ̂1/2
n Ẽ−1((−∞, t])

∣∣∣∣ (Xi)
n
i=1

)
, (25)

where the second line follows from the fact that Zk
d
= σ√

n
Σ
1/2
k Z and the third line from the conti-

nuity of probability and the fact that for all k ∈ N,
√
n

σ
Σ
1/2
k+1Ẽ

−1((−∞, t]) ⊂
√
n

σ
Σ
1/2
k Ẽ−1((−∞, t]).

Indeed, by the spectral theorem, there exists an orthogonal matrix Q and a diagonal matrix Λ such
that Σ̂n = QΛQT , so Σ

1/2
k = Q(Λ1/2 + λ

1/2
k I)QT . Now since λk+1 ≤ λk, we have by Lemma 23

(Λ1/2 + λ
1/2
k+1)Q

T Ẽ−1((−∞, t]) ⊂ (Λ1/2 + λ
1/2
k )QT Ẽ−1((−∞, t]),

Mapping the above sets through Q yields the desired statement. Now if rank(Σ̂n) < d, then
dim(Im(Σ̂

1/2
n )) < d and

0 ≤ P

(
Z ∈

√
n

σ
Σ̂1/2
n Ẽ−1((−∞, t])

∣∣∣∣ (Xi)
n
i=1

)
≤ P

(
Z ∈ Im(Σ̂1/2

n )
)
= 0 (26)

where the last equality follows since Z is a standard normal vector, so its distribution is absolutely
continuous with respect to Lebesgue measure on Rd, and Lebesgue measure assigns zero measure
to all hyperplanes. Otherwise, rank(Σ̂n) = d, and we get

P

(
Z ∈

√
n

σ
Σ̂1/2
n Ẽ−1((−∞, t])

∣∣∣∣ (Xi)
n
i=1

)
= P

(
Ẽ
(
σ√
n
Σ̂−1/2
n Z

)
≤ t

∣∣∣∣ (Xi)
n
i=1

)
(27)
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Combining (24), (25), (26), and (27) proves that

lim
k→∞

pk(t) = E

[
P

(
Ẽ
(
σ√
n
Σ̂−1/2
n Z

)
≤ t

∣∣∣∣ (Xi)
n
i=1

)
1{rank(Σ̂n)=d}((Xi)

n
i=1)

]
which can be interpreted as the CDF of the random variable

A((Xi)
n
i=1, Z) :=

Ẽ
(
σ√
n
Σ̂−1/2
n Z

)
if rank(Σ̂n) = d

∞ otherwise

so we write limk→∞ pk(t) = FA(t). It remains to show that the worst case risk of the procedures
defined in the theorem is QA(1 − δ). Let ŵ be a procedure satisfying the condition stated in the
theorem and fixw∗ ∈ Rd. Then, on the event that rank(Σ̂n) = d, and through an elementary explicit
calculation, we have ŵ − w∗ = Σ̂−1

n ( 1n
∑n

i=1 ηiXi) where ηi ∼ N (0, σ2) are i.i.d.. Therefore,
1
n

∑n
i=1 ηiXi | (Xi)

n
i=1 ∼ N (0, σ2/n · Σ̂n), and hence ŵ − w∗ | (Xi)

n
i=1 ∼ N (0, σ2/n · Σ̂−1

n ),
so the worst case risk of this procedure is upper bounded by QA(1 − δ). Applying Theorem 13
concludes the proof.

D.2. Proof of Proposition 4

The proof is a simple application of the second-order delta method. Let (Zn, (Xi)
n
i=1) be such that

(Xi)
n
i=1 ∼ Pn

X and Zn | (Xi)
n
i=1 ∼ N (0, σ

2

n Σ̂−1
n ) whenever Σ̂n is invertible and set Zn = 0

otherwise. The conclusion of Theorem 3 can then be rewritten as

R∗
n,δ(PGauss(PX , σ

2)) = QẼ(Zn)
(1− δ),

with the additional specification that Ẽ(Zn) := ∞ whenever (Xi)
n
i=1 is such that Σ̂n is singular.

Recall that Z ∼ N (0, Id×d). By a property of Gaussian vectors, we have that on the event that Σ̂n

is invertible, Zn
d
= σ√

n
Σ̂
−1/2
n Z. By the weak law of large numbers and the continuous mapping

theorem, we have Σ̂
−1/2
n

p→ Σ−1/2, so that an application of Slutsky’s theorem yields
√
n · Zn

d→
N (0, σ2Σ−1). Now by assumption, Ẽ is twice differentiable at 0 where its gradient vanishes by
Lemma 44, and where its Hessian is given by ∇2Ẽ(0) = E

[
e′′(η)XXT

]
= 2αΣ by independence

of η and X . Therefore, by an application of the delta method, we obtain

lim
n→∞

n · Ẽ(Zn)
d→ σ2α∥Z∥22

Since convergence in distribution implies the pointwise convergence of quantiles, we obtain the first
equality in the proposition. The second statement follows from Lemma 27.

D.3. Proof of Lemma 5

We start with the first statement. Let δ ∈ (εn, 1). By the monotone convergence theorem and the
fact that Ẽ(w) <∞ for all w ∈ Rd by assumption on PX , we have

lim
t→∞

FẼ(Z)
(t) = lim

t→∞
E
[
P
(
Ẽ(Z) ≤ t

∣∣∣ (Xi)
n
i=1

)
1{rank(Σ̂n)=d}((Xi)

n
i=1)

]
= 1− εn
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Therefore, since 1− δ < 1−εn there exists a t ∈ R, such that FẼ(Z)
(t) ≥ 1− δ, so QẼ(Z)

(1− δ) <
∞. On the other hand, for all t ∈ R, FẼ(Z)

(t) < 1− εn, so for any δ ∈ [0, εn], QẼ(Z)
(1− δ) = ∞.

As for the lower bound on εn, El Hanchi and Erdogdu (2023, Lemma 1) proved that there exists a
w0 ∈ Sd−1 such that ρ(PX) = supw∈Rd\{0} P(⟨w,X⟩ = 0) = P(⟨w0, X⟩ = 0) < 1. Therefore

εn = P
(
λmin(Σ̂n) = 0

)
≥ P

(
n⋂

i=1

{⟨w0, Xi⟩ = 0}

)
= ρ(PX)n.

The upper bound on εn follows from the proof of (El Hanchi and Erdogdu, 2023, Theorem 4).

D.4. Proof of Proposition 7

Proof In this proof we will let Z ∼ N (0, σ
2

n Σ̃−1
n ), so that the minimax risk is given by Q∥Z∥22(1−

εn − δ)/2. Define the random variables

M((Xi)
n
i=1) :=

{
E[∥Z∥2 | (Xi)

n
i=1] if rank(Σ̂n) = d

∞ otherwise

R((Xi)
n
i=1) :=

λmax

(
σ2

n
Σ̃−1
n

)
if rank(Σ̂n) = d

∞ otherwise

To simplify notation, we will write M and R only, and leave the dependence on (Xi)
n
i=1 implicit.

Upper bound. We have, for all r ∈ R,

F∥Z∥22(r
2) = E

[
P(∥Z∥2 ≤ r | (Xi)

n
i=1)1{rank(Σ̂n)=d}((Xi)

n
i=1)

]
= E

[
{1− P(∥Z∥2 > r | (Xi)

n
i=1)}1{rank(Σ̂n)=d}((Xi)

n
i=1)

]
≥ E

[{
1− exp

(
−|r −M |2

2R

)}
1[M,∞)(r)1{rank(Σ̂n)=d}((Xi)

n
i=1)

]
= E

[{
1− exp

(
−|r −M |2

2R

)}
1[0,r](M)

]
= P(M ≤ r)− E

[
exp

(
−|r −M |2

2R

)
1[0,r](M)

]
=: L(r)

where the inequality follows from the Gaussian concentration (Lemma 32), and where the expres-
sion inside the expectation is defined to be 0 whenever rank(Σ̂) < d. The penultimate equality
follows from the fact that 1[M,∞)(r)1rank(Σ̂)=d

((Xi)
n
i=1) = 1[0,r](M). Now let 0 < c ≤ 1 and
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define q := QM (1− εn − cδ). Then, recalling the definition of W from the statement,

L(r + q) ≥ P(M ≤ q) + P(M ∈ (q, r + q])

− E

[
exp

(
− r2

2R

)
1[0,q](M)

]
− E

exp
(
−|r −M |2

2R

)
︸ ︷︷ ︸

≤ 1

1(q,r+q](M)


≥ P(M ≤ q)− E

[
exp

(
− r2

2R

)
1[0,q](M)

]
≥ 1− εn − cδ − E

[
exp

(
− r2

2R

)
1
rank(Σ̂)=d

((Xi)
n
i=1)

]
= E

[{
1− exp

(
− r2

2R

)}
1
rank(Σ̂)=d

((Xi)
n
i=1)

]
− cδ

= P

(√
2σ2

n
W ≤ r

)
− cδ

hence taking r =
√

2σ2

n QW (1− εn − cδ) and c = 1/2 in the last display yields

L

(
QM (1− εn − δ/2) +

√
2σ2

n
QW (1− εn − δ/2)

)
≥ 1− εn − δ

And since F∥Z∥22 ◦ φ ≥ L where φ(r) = r2, we get by the second item of Lemma 20 that φ−1 ◦
Q∥Z∥22 ≤ L−. Applying φ to both sides yields and using Lemma 21 we obtain,

Q∥Z∥22(1− εn − δ) ≤ (L−(1− εn − δ))2

≤

(
QM (1− εn − δ/2) +

√
2σ2

n
QW (1− εn − δ/2)

)2

≤ 2

[
QM2(1− εn − δ/2) +

2σ2

n
QW (1− εn − δ/2)

]
≤ 2σ2

n

(
Q

Tr(Σ̃−1)(1− εn − δ/2) + 2QW (1− εn − δ/2)
)

≤ 4 · σ
2

n

(
Q

Tr(Σ̃−1)(1− εn − δ/2) +QW (1− εn − δ/2)
)
,

where in the penultimate inequality, we used the fact that M2 ≤ Tr
(
Σ̃−1
n

)
by Jensen’s inequality.
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Lower bound. For any (Xi)
n
i=1, define v((Xi)

n
i=1) to be the eigenvector corresponding to the

smallest eigenvalue of Σ̃n. Then we have.

F∥Z∥22(r
2) = E

[
P(∥Z∥2 ≤ r | (Xi)

n
i=1)1rank(Σ̂)=d

((Xi)
n
i=1)

]
≤ E

[
P(|⟨v((Xi)

n
i=1), Z⟩| ≤ r | (Xi)

n
i=1)1rank(Σ̂)=d

((Xi)
n
i=1)

]
≤ E

[√
1− exp

(
−2r2

πR

)
1
rank(Σ̂)=d

((Xi)
n
i=1)

]

≤ E

[{
1− 1

2
exp

(
−2r2

πR

)}
1
rank(Σ̂)=d

((Xi)
n
i=1)

]
=

1

2
(1− εn) +

1

2
E

[{
1− exp

(
−2r2

πR

)}
1
rank(Σ̂)=d

((Xi)
n
i=1)

]
=

1

2

(
1− εn + P

(√
πσ2

2n
W ≤ r

))
=: U1(r)

Where the third line follows from Lemma 27. Now let ε > 0 and define

r(ε) :=

√
πσ2

2n
QW (1− εn − 2δ)− ε

Then

U1(r(ε)) <
1

2
(1− εn + 1− εn − 2δ) = 1− εn − δ.

Since this holds for all ε > 0, we obtain U−
1 (1− εn − δ) ≥ r(0). Therefore,

Q∥Z∥22(1− εn − δ) ≥ (U−
1 (1− εn − δ))2 ≥ r2(0) =

πσ2

2n
QW (1− εn − 2δ)

This finishes the proof of the first part of the lower bound. For the second part of the lower bound,
we also have by Gaussian concentration, and in particular Lemma 32,

F∥Z∥22(r
2) = E

[
P(∥Z∥2 ≤ r | (Xi)

n
i=1)1rank(Σ̂)=d

((Xi)
n
i=1)

]
≤ E

[
exp

(
−|M − r|2

πM2

)
1[0,M ](r)1rank(Σ̂)=d

((Xi)
n
i=1) + 1(M,∞)(r)1rank(Σ̂)=d

((Xi)
n
i=1)

]
= E

[
exp

(
−|M − r|2

πM2

)
1[r,∞)(M) + 1[0,r)(M)

]
= P(M < r) + E

[
exp

(
−|M − r|2

πM2

)
1[r,∞)(M)

]
=: U2(r)
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Let a ∈ (0, 1), c > 1, and q := QM (1− εn − cδ). Then we have,

U((1− a)q) = E

exp
(
−|M − (1− a)q|2

πM2

)
︸ ︷︷ ︸

≤ 1

1[(1−a)q,q)(M)

+ E

[
exp

(
−|M − (1− a)q|2

πM2

)
1[q,∞)(M)

]

+ P(M < q)− P((1− a)q ≤M < q)

≤ P(M < q) + E

[
exp

(
−|M − (1− a)q|2

πM2

)
1[q,∞)(M)

]
≤ P(M < q) + exp

(
−a

2

π

)
P(q ≤M <∞)

≤ P(M < q) + exp

(
−a

2

π

)
(1− εn − P(M < q))

≤
(
1− exp

(
−a

2

π

))
P(M < q) + exp

(
−a

2

π

)
(1− εn)

≤
(
1− exp

(
−a

2

π

))
(1− εn − cδ) + exp

(
−a

2

π

)
(1− εn)

= 1− εn −
(
1− exp

(
−a

2

π

))
cδ

< 1− εn − δ

where the last line follows from taking a = 0.96, and c = 4, and noticing that with these choices
c
(
1− exp

(
−a2

π

))
> 1. Now since F∥Z∥22 ◦ φ ≤ U2 where φ(r) = r2, we get by the second item

of Lemma 20 and an application of Lemma 21,

Q∥Z∥22(1− εn − δ) ≥ (U−(1− εn − δ))2

≥
(

1

25
QM (1− εn − 4δ)

)2

=
1

625
QM2(1− εn − 4δ)

≥ 1

625(1 + π/2)

σ2

n
Q

Tr(Σ̃−1)(1− εn − 4δ).

Averaging the two lower bounds yields the result.

D.5. Proof of Lemma 8

We start with the bounds onQ
Tr(Σ̃−1

n )
(1−δ), and in particular the lower bound. If (ai)di=1 is a finite

sequence of non-negative real numbers, then twice applying the AM-GM inequality we obtain

d∑d
i=1

1
ai

≤

(
d∏

i=1

ai

)1/d

≤
∑n

i=1 ai
d

=⇒
d∑

i=1

1

ai
≥ d2∑d

i=1 ai
.
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Using this, we have

Tr
(
Σ̃−1
n

)
=

d∑
i=1

λi(Σ̃
−1
n ) =

d∑
i=1

1

λi(Σ̃n)
≥ d2

Tr(Σ̃n)
.

Now, since E[Tr(Σ̃n)] = d, we have

P

(
d2

Tr(Σ̃n)
≤ t

)
= P

(
Tr(Σ̃n) ≥

d2

t

)
≤ E[Tr(Σ̃n)]

d2/t
=
t

d
.

Applying the second item of Lemma 20, we obtain the desired lower bound

Q
Tr(Σ̃−1

n )
(1− δ) ≥ Q

d2/Tr(Σ̃n)
(1− δ) ≥ d · (1− δ).

The upper bound follows from the simple observation Tr(Σ̃−1
n ) ≤ d · λmax(Σ̃

−1
n ). We now move to

bounds on QW (1− δ), and we start with the lower bound. By definition, we have

1− δ ≤ P(W ≤ QW (1− δ)) = 1− E
[
exp(−QW (1− δ) · λmin(Σ̃n))

]
,

hence, by Jensen’s inequality

δ ≥ E
[
exp(−QW (1− δ) · λmin(Σ̃n))

]
≥ exp

(
−QW (1− δ) · E

[
λmin(Σ̃n)

])
,

and using the variational characterization of the smallest eigenvalue we get, for any v ∈ Sd−1,

E
[
λmin(Σ̃n)

]
= E

[
inf

v∈Sd−1

1

n

n∑
i=1

⟨v,Σ−1/2Xi⟩2
]
≤ E

[
⟨v,Σ−1/2X⟩2

]
= 1.

Therefore QW (1 − δ) ≥ log(1/δ) as desired. For the upper bound, let q := Q
λmax(Σ̃

−1
n )

(1 − δ/2)

and define the event A :=
{
λmax(Σ̃

−1
n ) ≤ q

}
which satisfies P(A) ≥ 1− δ/2. Notice that

P(W ≤ t) ≥ E

[{
1− exp

(
− t

λmax(Σ̃
−1
n )

)}
1A((Xi)

n
i=1)

]
≥ (1− δ/2)(1− exp(t/q)).

Taking t ≥ q · log(2/δ) ensures that the above probability is at least 1 − δ. By the minimality of
the quantile, we get that QW (1− δ) ≤ Q

λmax(Σ̃
−1
n )

(1− δ/2) · log(2/δ), which is the desired upper
bound.

D.6. Proof of Corollary 9

Proof We claim that for all the allowed sample sizes,

Q
λmax(Σ̃n))

(1− δ/2) ≤ 2.

Indeed, the restriction on the sample size n is chosen in such a way that by the upper bound in
Proposition 17, we have

Q
1−λmin(Σ̃n)

(1− δ/2) ≤ 1

2
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Now if 1− λmin(Σ̃n) ≤ 1/2, then λmin(Σ̃n) ≥ 1/2 and λmax(Σ̃
−1
n ) = λ−1

min(Σ̃n) ≤ 2. Therefore

P
(
λmax(Σ̃

−1
n ) ≤ 2

)
≥ P

(
λmin(Σ̃n) ≤ 1/2

)
≥ P

(
λmin(Σ̃n) ≤ Q

1−λmin(Σ̃n)
(1− δ/2)

)
≥ 1−δ/2.

which finishes the proof of the bound on Q
λmax(Σ̃n))

(1 − δ/2). Now appealing to Lemma 8 proves
the result.

D.7. Proof of Proposition 10

Using Lemma 2.5 in Adil et al. (2023), we have for the p-th power error e(t) = |t|p/[p(p− 1)],

Ẽ(∆) = E[e(⟨∆, X⟩+ η)]− E[e(η)] ≥ 1

8(p− 1)
∆T E

[
e′′(η)XXT

]
∆.

Since e′′(t) = |t|p−2, and η and X are independent,

Ẽ(∆) ≥ 1

8(p− 1)
·m(p− 2)σp−2∆TΣ∆.

Therefore, by Theorem 3,

Rn,δ(PGauss(PX , σ
2)) = QẼ(Z)

(1− δ) ≥ m(p− 2)σp−2

8(p− 1)
· σ

2

n
Q∥A∥22(1− δ)

where A ∼ N (0, Σ̃−1
n ). Now noting that σ2

n Q∥A∥22(1 − δ) is the minimax risk under the square
error, applying Proposition 7 and Lemma 8, and using the constraint on δ, we obtain the desired
lower bound.

Appendix E. Proofs of Section 3

E.1. Proof of Theorem 11

Fix a distribution P ∈ P2(PX , σ
2). We will prove an upper bound on the risk of the proposed

procedure under P . We follow the approach developed by Lugosi and Mendelson (2019a). Define

ϕ(w) = max
v∈Rd

ψk(w, v),

and note that by definition of ŵn,δ, we have

ψk(ŵn,k, w
∗) ≤ ϕ(ŵn,k) ≤ ϕ(w∗). (28)

The key idea of the proof is to show that ∥ŵn,k − w∗∥Σ is small, by simultaneously showing that

• For all w ∈ Rd, if ∥w − w∗∥Σ is large, then so is ψk(w,w
∗),

• ϕ(w∗) is small.
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The combination of these statements combined with (28) will show that ∥ŵn,k − w∗∥Σ is indeed
small. Define

∆(δ) := 50

√
σ2[d+ log(4/δ)]

n

All the following lemmas are stated under the conditions of Theorem 11. The first step of the proof
is a simple application of Lemma 43.

Lemma 45

P

(
sup

∥v∥Σ≤1
n−1φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1] > ∆(δ)

)
≤ δ/2

Proof For v ∈ Rd such that ∥v∥Σ ≤ 1 and i ∈ [n], define

Zi,v :=
1

n
⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩ =

1

n
ξi⟨Xi, v⟩

Our aim is to apply Lemma 43, so we make the necessary computations here. We have

E[Zi,v] =
1

n
⟨E[∇e(⟨w∗, Xi⟩ − Yi)], v⟩ =

1

n
⟨∇E(w∗), v⟩ = 0,

sup
∥v∥Σ≤1

n∑
i=1

E
[
Z2
i,v

]
=

1

n
sup

∥v∥Σ=1
E
[
ξ2⟨X, v⟩2

]
≤ σ2

n
.

where the last inequality follows from the assumption E
[
ξ2 | X

]
≤ σ2. Now, for independent

Rademacher variables (εi)ni=1, we have

E

[
sup

∥v∥Σ=1

n∑
i=1

εiZi,v

]
= E

[
sup

∥v∥Σ=1

〈
1

n

n∑
i=1

εiξiXi, v

〉]

= E

[∥∥∥∥∥ 1n
n∑

i=1

εiξiXi

∥∥∥∥∥
Σ−1

]

≤ E

∥∥∥∥∥ 1n
n∑

i=1

εiξiXi

∥∥∥∥∥
2

Σ−1

1/2

=

√
E[ξ2∥X∥2

Σ−1 ]

n
≤
√
σ2d

n
.

Where again we have used the assumption E
[
ξ2 | X

]
≤ σ2. Recalling that k = 8 log(2/(δ/2))

from the statement of the theorem, and applying Lemma 43 with the above constants yields the
result.

From this result, we can deduce the following estimate, which will help us bound ϕ(w∗) later on.

Corollary 46 For any r ∈ (0,∞),

P

(
sup

∥v−w∗∥Σ<r
ψk(w

∗, v) > r ·∆(δ)

)
≤ δ/2.
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Proof We have

sup
∥v−w∗∥Σ<r

ψk(w
∗, v) = sup

∥v−w∗∥Σ<r
φk[(e(⟨w∗, Xi⟩ − Yi)− e(⟨v,Xi⟩ − Yi))

n
i=1]

= sup
∥v−w∗∥Σ<r

φk

[(
−⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩ − 1

2
⟨Xi, v − w∗⟩2

)n

i=1

]
≤ sup

∥v−w∗∥Σ<r
φk[(−⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩)ni=1]

= sup
∥v−w∗∥Σ<r

r · φk

[(〈
∇e(⟨w∗, Xi⟩ − Yi),

v − w∗

r

〉)n

i=1

]
= r · sup

∥v∥Σ<1
φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1]

where the first line is by definition, the second holds since e is quadratic so its second order Taylor
expansion is exact, the third by the third item of Lemma 38, and the fourth by the first item of
Lemma 38. Applying Lemma 45 to the last line yields the result.

The key technical novelty of this proof is the following lemma, which uses our new results
Proposition 18 and Lemma 39.

Lemma 47 Let r ∈ [8∆(δ),∞). Then

P

(
inf

∥v−w∗∥≥r
ψk(v, w

∗) <
r2

8
− r∆(δ)

)
≤ δ

Proof We start with the case ∥v − w∗∥Σ = r. We have

inf
∥v−w∗∥Σ=r

ψk(v, w
∗) = inf

∥v−w∗∥Σ=r
n−1φk[(e(⟨v,Xi⟩ − Yi)− e(⟨w∗, Xi⟩ − Yi))

n
i=1]

= inf
∥v−w∗∥Σ=r

n−1φk

[(
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ 1

2
⟨v − w∗, Xi⟩2

)n

i=1

]
= inf

v∈Sd−1
n−1φk

[(
r · ⟨∇e(⟨w∗, Xi⟩ − Yi),Σ

−1/2v⟩+ r2

2
⟨v,Σ−1/2Xi⟩2

)n

i=1

]
.

Define X̃i = Σ−1/2Xi, and Zi,v := ⟨v, X̃i⟩2 for (i, v) ∈ [n]× Sd−1. Then we have by Lemma 39,

inf
∥v−w∗∥Σ=r

ψk(v, w
∗)

≥ r · inf
v∈Sd−1

n−1φk

[(
⟨∇e(⟨w∗, Xi⟩ − Yi),Σ

−1/2v⟩
)n
i=1

]
+ r2 · inf

v∈Sd−1
n−1

n−2k∑
i=1

Z∗
i,v

=
r2

2
· inf
v∈Sd−1

n−1
n−2k∑
i=1

Z∗
i,v − r · sup

∥v∥Σ=1
n−1φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1]

The second term is bounded with probability 1−δ/2 by r·∆(δ) by Lemma 45. For the first term, the
restriction on the sample size in Theorem 11 is chosen such that by Proposition 17, with probability
at least 1− δ2/2 ≥ 1− δ/2

inf
v∈Sd−1

n−1
n−2k∑
i=1

Z∗
i,v ≥ 1

4
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Therefore, with probability at least 1− δ

inf
∥v−w∗∥Σ=r

ψk(v, w
∗) ≥ r2

8
− r∆(δ).

We now extend this to all vectors w ∈ Rd such that ∥w − w∗∥Σ ≥ r. On the same event, if
∥w − w∗∥Σ = R > r, then v := w∗ + r

R(w − w∗) satisfies ∥v − w∗∥Σ = r, and

ψk(w,w
∗) = n−1φk

(
(⟨∇e(⟨w∗, Xi⟩ − Yi), w − w∗⟩+ 1

2
⟨w − w∗, Xi⟩2)ni=1

)
= n−1φk

[(
R

r
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ R2

r2
1

2
⟨v − w∗, Xi⟩2

)n

i=1

]
≥ n−1φk

[(
R

r
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ R

r

1

2
⟨v − w∗, Xi⟩2)ni=1

)n

i=1

]
=
R

r
· ψk(v, w

∗)

≥ ψk(v, w
∗)

where the first inequality follows from the fact that R/r > 1, ⟨v − w∗, Xi⟩2 > 0, and Lemma 38,
and the second inequality follows from the fact that by the condition on r, we have ψk(v, w

∗) ≥ 0
on the event we are considering.

We are now ready to state the proof of Theorem 11. Set r := 20∆(δ), and recall from (28) that

ψk(ŵn,k, w
∗) ≤ ϕ(w∗) = sup

v∈Rd

ψk(w
∗, v)

= max

{
sup

∥v−w∗∥Σ≥r
ψk(w

∗, v), sup
∥v−w∗∥Σ<r

ψk(w
∗, v)

}

= max

{
− inf

∥v−w∗∥≥r
ψk(v, w

∗), sup
∥v−w∗∥Σ<r

ψk(w
∗, v)

}
,

where the last line uses the fact that ψk(w, v) = −ψk(v, w). Now by combining Corollary 46 and
Lemma 47, we have with probability 1 − δ that the first term in the above maximum is negative,
while the second is bounded by r ·∆(δ) = 20∆2(δ). On the other hand, we have on the same event
by Lemma 47 that

inf
∥v−w∗∥Σ≥r

ψk(v, w
∗) ≥ r2

8
− r∆(δ) = 30∆2(δ)

Therefore, we conclude that with probability at least 1− δ

∥ŵn,k − w∗∥Σ ≤ 20∆(δ).

finally, noticing that this implies, with probability at least 1− δ

E(ŵn,k) =
1

2
∥ŵn,k − w∗∥2Σ ≤ 202∆2(δ),

finishes the proof.
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E.2. Proof of Theorem 12

The high-level idea behind the proof of Theorem 12 is similar to that of Theorem 11, but with a few
more challenges. Fix P ∈ Pp(PX , σ

2, µ). We prove an upper bound on the risk of ŵn,k under this
fixed P . Define H := ∇2E(w∗), c := ess inf(E

[
|ξ|p−2 | X

]
), C := ess sup(E

[
|ξ|2(p−1) | X

]
).

Note that

H = E
[
|ξ|p−2XXT

]
⪰ c · Σ (29)

Define

∆p(δ) := 50

√
m(2p− 2)

m(p− 2)
· σ

p[d+ log(4/δ)]

n

Our first statement is an analogue to Lemma 45.

Lemma 48

P

(
sup

∥v∥H≤1
n−1φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1] > ∆p(δ)

)
≤ δ/2

Proof For v ∈ Rd such that ∥v∥H ≤ 1 and i ∈ [n], define

Zi,v :=
1

n
⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩

Our aim is to apply Lemma 43, so we make the necessary computations here. We have

E[Zi,v] =
1

n
⟨E[∇e(⟨w∗, Xi⟩ − Yi)], v⟩ =

1

n
⟨∇E(w∗), v⟩ = 0

and

sup
∥v∥H≤1

n∑
i=1

E
[
Z2
i,v

]
=

1

n
sup

∥v∥H≤1
E
[
ξ2(p−1)⟨X, v⟩2

]
≤ 1

n
sup

∥v∥Σ=1

ess sup
(
E
[
ξ2(p−1) | X

])
ess inf(E[ξp−2 | X]))

E
[
⟨X, v⟩2

]
≤ m(2p− 2)

m(p− 2)

σp

n
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where the first inequality follows from (29), and the second from the assumption on the class of
distributions. Now, for independent Rademacher variables (εi)ni=1, we have

E

[
sup

∥v∥H=1

n∑
i=1

εiZi,v

]
= E

[
sup

∥v∥H=1

〈
1

n

n∑
i=1

εi∇e(⟨w∗, Xi⟩ − Yi), v

〉]

= E

[∥∥∥∥∥ 1n
n∑

i=1

εi∇e(⟨w∗, Xi⟩ − Yi)

∥∥∥∥∥
H−1

]

≤ E

∥∥∥∥∥ 1n
n∑

i=1

εi∇e(⟨w∗, Xi⟩ − Yi)

∥∥∥∥∥
2

H−1

1/2

=

√
E[ξ2(p−1)∥X∥2

H−1 ]

n

≤

√
ess sup

(
E
[
ξ2(p−1) | X

])
ess inf(E[ξp−2 | X]))

·
E
[
∥X∥2

Σ−1

]
n

≤

√
m(2p− 2)

m(p− 2)
· σ

pd

n

Where again we have used the assumption on the class of distributions, and where we used (29)
in the penultimate line. Recalling that k = 8 log(2/(δ/2)) from the statement of the theorem, and
applying Lemma 43 with the above constants yields the result.

The second statement is also similar to Corollary 46. The additional challenge here is that
second order Taylor expansion is not exact.

Corollary 49

P

(
sup

∥v−w∗∥H<r
ψk(w

∗, v) > r ·∆p(δ)

)
≤ δ/2.

Proof By Lemma 2.5 in Adil et al. (2023), we have that, for all t, s ∈ R,

e(t)− e(s)− e′(s)(t− s) ≥ 1

8(p− 1)
e′′(s)(t− s)2

Therefore,

sup
∥v−w∗∥H<r

ψk(w
∗, v) = sup

∥v−w∗∥H<r
φk[(e(⟨w∗, Xi⟩ − Yi)− e(⟨v,Xi⟩ − Yi))

n
i=1]

≤ sup
∥v−w∗∥H<r

φk

[(
−⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩ − |ξi|p−2

8(p− 1)
⟨Xi, v − w∗⟩2

)n

i=1

]
≤ sup

∥v−w∗∥H<r
φk[(−⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩)ni=1]

= sup
∥v−w∗∥H<r

r · φk

[(〈
∇e(⟨w∗, Xi⟩ − Yi),

v − w∗

r

〉)n

i=1

]
= r · sup

∥v∥H<1
φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1]
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where the second line is by the inequality cited above, and the third by dropping negative terms.
Applying Lemma 48 to the last line finishes the proof.

It remains to show the analogue of Lemma 47. This is the most technical part of the proof.

Lemma 50 Let r ∈ [32(p− 1)∆p(δ),∞). Then

P

(
inf

∥v−w∗∥H≥r
ψk(v, w

∗) <
r2

32(p− 1)
− r∆p(δ)

)
≤ δ

Proof We start with the case ∥v − w∗∥H = r. We have, using the quoted lemma in the proof of
Corollary 49,

inf
∥v−w∗∥H=r

ψk(v, w
∗)

= inf
∥v−w∗∥H=r

n−1φk[(e(⟨v,Xi⟩ − Yi)− e(⟨w∗, Xi⟩ − Yi))
n
i=1]

≥ inf
∥v−w∗∥H=r

n−1φk

[(
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ |ξi|p−2

8(p− 1)
⟨v − w∗, Xi⟩2

)n

i=1

]
= inf

v∈Sd−1
n−1φk

[(
r · ⟨∇e(⟨w∗, Xi⟩ − Yi), H

−1/2v⟩+ r2 · |ξi|p−2

8(p− 1)
⟨v,H−1/2Xi⟩2

)n

i=1

]
.

Now define the random vector W := |ξ|(p−2)/2 · X , whose (uncentered) covariance matrix is H .
Further define W̃i := H−1/2Wi, and Zi,v := ⟨v, W̃i⟩2 for (i, v) ∈ [n] × Sd−1. Then we have by
Lemma 39,

inf
∥v−w∗∥H=r

ψk(v, w
∗)

≥ r · inf
v∈Sd−1

n−1φk

[(
⟨∇e(⟨w∗, Xi⟩ − Yi), H

−1/2v⟩
)n
i=1

]
+

r2

8(p− 1)
· inf
v∈Sd−1

n−1
n−2k∑
i=1

Z∗
i,v

=
r2

8(p− 1)
· inf
v∈Sd−1

n−1
n−2k∑
i=1

Z∗
i,v − r · sup

∥v∥H=1
n−1φk[(⟨∇e(⟨w∗, Xi⟩ − Yi), v⟩)ni=1]

The second term is bounded with probability 1− δ/2 by r ·∆p(δ) by Lemma 48. For the first term,
we claim that the restriction on the sample size in Theorem 12 is chosen such that by Proposition
17, with probability at least 1− δ2/2 ≥ 1− δ/2

inf
v∈Sd−1

n−1
n−2k∑
i=1

Z∗
i,v ≥ 1

4
(30)
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Let us show why this is true. Let PW be the distribution of W , and notice that

λmax(S(PW )) + 1 = sup
v∈Sd−1

E
[
∥W∥2H−1⟨v,H−1/2W ⟩2

]
= sup

v∈Sd−1

E
[
|ξ|2(p−2) · ∥X∥2H−1⟨H−1/2v,X⟩2

]
≤ ess sup(E[|ξ|2(p−2) | X]) · sup

∥v∥H=1
E
[
∥X∥2H−1⟨v,X⟩2

]
≤ C(p−2)/(p−1)

c2
· sup
∥v∥Σ=1

E
[
∥X∥Σ−1⟨v,X⟩2

]
≤
(
m(2p− 2)σp

m(p− 2)

) p−2
p−1 1

µp/(p−1)
· [λmax(S(PX)) + 1]

where the fourth line follows by Jensen’s inequality, and the last line by the properties of the class
of distributions. Note that this upper bound holds uniformly over all members of Pp(PX , σ

2, µ).
Through a very similar argument, one may show

R(PW ) + 1 ≤
(
m(2p− 2)σp

m(p− 2)

) p−2
p−1 1

µp/(p−1)
· [R(PX) + 1]

It is then straightforward to apply Proposition 18 under the above bounds and the sample size re-
striction and conclude that the claim (30) is true.

Therefore, with probability at least 1− δ

inf
∥v−w∗∥H=r

ψk(v, w
∗) ≥ r2

32(p− 1)
− r∆p(δ).

We now extend this to all vectors w ∈ Rd such that ∥w − w∗∥H ≥ r. On the same event, if
∥w − w∗∥H = R > r, then v := w∗ + r

R(w − w∗) satisfies ∥v − w∗∥H = r, and

ψk(w,w
∗) ≥ n−1φk

[(
⟨∇e(⟨w∗, Xi⟩ − Yi), w − w∗⟩+ |ξi|p−2

8(p− 1)
⟨w − w∗, Xi⟩2

)n

i=1

]
= n−1φk

[(
R

r
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ R2

r2
|ξi|p−2

8(p− 1)
⟨v − w∗, Xi⟩2

)n

i=1

]
≥ n−1φk

[(
R

r
⟨∇e(⟨w∗, Xi⟩ − Yi), v − w∗⟩+ R

r

|ξi|p−2

8(p− 1)
⟨v − w∗, Xi⟩2

)n

i=1

]
=
R

r
·
(

r2

32(p− 1)
− r∆p(δ)

)
≥ r2

32(p− 1)
− r∆p(δ)

where the first inequality follows from the fact thatR/r > 1, ⟨v−w∗, Xi⟩2 > 0, and Lemma 38, and
the second inequality follows from the fact that by the condition on r, we have r2

32(p−1)−r∆p(δ) ≥ 0
on the event we are considering.
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Finally, we present the main proof. For the first step, we localize ŵn,k using the lemmas we just
proved. In particular, let r := 96(p − 1)∆p(δ). Then following the same argument as in the proof
of Theorem 11, we obtain that with probability at least 1− δ

ψk(ŵn,k, w
∗) ≤ r ·∆p(δ) = 96(p− 1)∆2

p(δ)

On the other hand, and on the same event,

inf
∥v−w∗∥H≥r

ψk(v, w
∗) ≥ r2

32(p− 1)
− r∆p(δ) = 192(p− 1)2∆2

p(δ).

Therefore,
∥ŵn,k − w∗∥H ≤ 96(p− 1)∆p(δ)

It remains to bound the excess expected error. By Lemma 2.5 in Adil et al. (2023), we have the
upper bound

e(t)− e(s)− e′(s)(t− s) ≤ 4e′′(s)(t− s)2 + 2pp−2|t− s|p

Integrating this bound we obtain

E(ŵn,k) ≤ 4∥ŵn,k − w∗∥2H + 2pp−2 E[|⟨ŵn,k − w∗, X⟩|p].

We have control over the first term. We need to control the second, in a noise-independent way. We
have, for any w ∈ Rd, by (29)

∥w∥H ≥
√
c · ∥w∥Σ ≥ √

µ · E
[
⟨w,X⟩2

]1/2
Therefore

sup
w∈Rd\{0}

E[|⟨w,X⟩|p]1/p

∥w∥H
≤ 1

√
µ

sup
w∈Rd\{0}

E[|⟨w,X⟩|p]1/p

E[⟨w,X⟩2]1/2
=
N(PX , p)√

µ
.

Using this we obtain

E(ŵn,k) ≤ 4∥ŵn,k − w∗∥2H + 2pp−2N
p(PX , p)

µp/2
· ∥ŵn,k − w∗∥pH

Under the restriction on the sample size stated in the theorem, in particular the second term, we have
on the same event

2pp−2N
p(PX , p)

µp/2
· ∥ŵn,k − w∗∥pH ≤ 4∥ŵn,k − w∗∥2H .

Hence with probability at least 1− δ

E(ŵn,k) ≤ 8 · [96(p− 1)∆p(δ)]
2

Replacing ∆p(δ) with its value we recover the desired bound.
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Appendix F. Proofs of Section 5

F.1. Proof of Proposition 17

Proof Asymptotic lower bound. By the central limit theorem, as n → ∞, and by the finiteness of
the fourth moments of PX , √

n(Σ̃n − I)
d→ G,

where G is a centred symmetric Gaussian matrix with covariance

E[gijgst] = E
[
(X̃iX̃j − Ii,j)(X̃sX̃t − Is,t)

]
,

for i, j, s, t ∈ [d]. Now since G is Gaussian and centred, we have G d
= −G. On the one hand, by

the continuous mapping theorem, this implies

√
n(1− λmin(Σ̃n)) =

√
nλmax(I − Σ̃n)

d→ λmax(G).

On the other, λmax(G)
d
= λmax(−G) = −λmin(G), and therefore for t ≥ 0,

P(∥G∥op > t) = P(λmax(G) > t or λmin(G) < −t)
≤ P(λmax(G) > t) + P(λmin(G) < −t) = 2P(λmax(G) > t).

so we conclude that

lim
n→∞

P

(
1− λmin(Σ̃n) ≤

t√
n

)
= P(λmax(G) ≤ t) ≤ 1

2
(1 + P(∥G∥op ≤ t)).

Now since convergence in distribution implies the pointwise convergence of quantiles, we obtain

lim
n→∞

√
n ·Q

1−λmin(Σ̃n)
(1− δ) = Qλmax(G)(1− δ) ≥ Q∥G∥op(1− 2δ)

It remains to lower bound this last quantile. We do this by deriving two upper bounds on the CDF

of ∥G∥op. Let v∗ := argmaxv∈Sd−1 E

[(
⟨v, X̃⟩2 − 1

)2]
and note that vT∗ Gv∗ ∼ N (0, R(PX)).

Therefore by Lemma 27,

P(∥G∥op ≤ t) ≤ P
(∣∣vT∗ GvT∗ ∣∣ ≤ t

)
≤

√
1− exp

(
− 2t2

πR(PX)

)
On the other hand, it can be shown that ∥G∥op is a Lipschitz function of a standard normal vector
(see e.g. Van Handel (2017)), with Lipschitz constant

√
R(PX). Therefore by Gaussian concentra-

tion (Lemma 30)

P(∥G∥op ≤ t) = P(E[∥G∥op]− ∥G∥op > E[∥G∥op]− t) ≤ exp

(
−(E[∥G∥op]− t)2

2R(PX)

)
.

Now note that since vTGv is a Gaussian random variable for any v ∈ Rd,

E
[
∥G∥op

]
≥ sup

v∈Sd−1

E
[∣∣vTGv∣∣] =√ 2

π
E
[
(vTGv)2

]1/2
=

√
2

π

√
R(PX)
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where the first equality is an explicit calculation of the first absolute moment of a Gaussian random
variable. Bounding the right-most term in the previous display, we obtain

P
(
∥G∥op ≤ t

)
≤ exp

(
−(E[∥G∥op]− t)2

πE
[
∥G∥op

]2
)

Using the two bounds on the CDF of ∥G∥op and the second item of Lemma 20, we obtain the
following lower bound

Q∥G∥op(1− 2δ) ≥ 1

2
E
[
∥G∥op

](
1−

√
π log

(
1

1− 2δ

))
+

1

2

√
π

2

√
R(PX) log

(
1

4δ

)
using the restriction on δ ∈ (0, 0.1), we obtain

Q∥G∥op(1− 2δ) ≥ 1

20
E
[
∥G∥op

]
+

1

2

√
R(PX) log(1/4δ)

Finally by the Gaussian Poincare inequality (Lemma 30)

E
[
∥G∥2op

]
− (E

[
∥G∥op

]
)2 ≤ R(PX) ≤ π

2
(E
[
∥G∥op

]
)2

rearranging yields

E
[
∥G∥op

]
≥ 1√

1 + π/2
E
[
∥G∥2op

]1/2 ≥ ∥∥E[G2
]∥∥1/2

op√
1 + π/2

=

√
λmax(S)

1 + π/2

and therefore

Q∥G∥op(1− 2δ) ≥
√
λmax(S)

40
+

1

2

√
R(PX) log(1/4δ)

This concludes the proof of the lower bound.
Upper bound. We have the variational representation

1− λmin(Σ̃n) = λmax(I − Σ̃n) = sup
v∈Sd−1

n∑
i=1

1

n
(E
[
⟨v, X̃⟩2

]
− ⟨v, X̃i⟩2)︸ ︷︷ ︸

Zi,v :=

. (31)

Now the processes ({Zi,v}v∈Sd−1)di=1 are i.i.d., E[Zi,v] = 0, and Zi,v ≤ n−1 for all (i, v) ∈
[n]× Sd−1, so that by Bousquet’s inequality (Bousquet, 2002), with probability at least 1− δ

sup
v∈Sd−1

n∑
i=1

Zi,v < 2E

[
sup

v∈Sd−1

n∑
i=1

Zi,v

]
+

√
2R(PX) log(1/δ)

n
+

4 log(1/δ)

3n
(32)

It remains to bound the expectation in (32). We may rewrite it as

E

[
sup

v∈Sd−1

n∑
i=1

Zi,v

]
= E

[
sup

v∈Sd−1

vT

{
n∑

i=1

1

n
(I − X̃iX̃

T
i )

}
v

]
= E

[
λmax

(
n∑

i=1

1

n
(I − X̃iX̃

T
i )

)]
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Define the matrices Yi := 1
n(I − X̃iX̃

T
i ) and notice that they are i.i.d. and satisfy λmax(Yi) = n−1,

so that by the Matrix Bernstein inequality (Tropp, 2015b, Theorem 6.6.1) we obtain

E

[
λmax

(
n∑

i=1

Yi

)]
≤
√

2λmax(S) log(3d)

n
+

log(3d)

3n
. (33)

Combining (31), (32), and (33) yields the desired result.

F.2. Proof of Proposition 18

Proof Define S̃ := S(PX) + I = E
[
∥X̃∥22X̃X̃T

]
and R̃ := R(PX) + 1 = supv∈Sd−1 E

[
⟨v, X̃⟩4

]
.

Let

B :=

√
nλmax(S̃)

4(1 + 2⌈log(d)⌉)
,

and define XB := X̃ · 1[0,B)(∥X̃∥22), ΣB := E
[
XBX

T
B

]
, S̃B := E

[
(XBX

T
B)

2
]
, and R̃B :=

supv∈Sd−1 E
[
⟨v,XB⟩4

]
. Note that λmax(S̃B) ≤ λmax(S̃) and R̃B ≤ R̃. For (i, v) ∈ [n] × Sd−1,

define Zi,v := ⟨v,XB,i⟩2, and note that (Zi,v)
n
i=1 are i.i.d. with mean m(v) := E[⟨v,XB⟩2] and

Yi,v ≥ Zi,v. Now we have by Lemma 37

sup
v∈Sd−1

n−k∑
i=k+1

E
[
⟨v, X̃⟩2

]
−Y ∗

i,v ≤ (n−2k) sup
v∈Sd−1

E
[
⟨v, X̃⟩2

]
−E
[
⟨v,XB⟩2

]
+ sup

v∈Sd−1

n−k∑
i=k+1

E
[
⟨v,XB⟩2

]
−Z∗

i,v

The first term is bounded by

sup
v∈Sd−1

E
[
⟨v, X̃⟩2

]
− E

[
⟨v,XB⟩2

]
= sup

v∈Sd−1

E
[
⟨v, X̃⟩21[B,∞)(∥X̃∥22)

]
= sup

v∈Sd−1

E

[
⟨v, X̃⟩2∥X̃∥22

1

∥X̃∥22
1[B,∞)(∥X̃∥22)

]

≤ λmax(S̃)

B
=
√
4(1 + 2⌈log(d)⌉)

√
λmax(S̃)

n
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For the second term, define, for (i, v) ∈ [n] × Sd−1, Wi,v := E
[
⟨v,XB⟩2

]
− Zi,v, and note that

E[Wi,v] = 0, E
[
W 2

i,v

]
≤ R̃. Furthermore

2E

[
sup

v∈Sd−1

n∑
i=1

εiWi,v

]

= 2E

[
sup

v∈Sd−1

vT

{
n∑

i=1

εi(ΣB −XB,iX
T
B,i)

}
v

]

≤ 2E

∥∥∥∥∥
n∑

i=1

εi(ΣB −XB,iX
T
B,i)

∥∥∥∥∥
op


≤
√
4(1 + 2⌈log(d)⌉)

√
nλmax(S̃B) + 4(1 + 2⌈log(d)⌉) E

[
max
i∈[n]

∥XB,iX
T
B,i − ΣB∥2op

]1/2
≤
√
4(1 + 2⌈log(d)⌉)

√
nλmax(S̃) + 4(1 + 2⌈log(d)⌉) E

[
max

{
max
i∈[n]

∥XB,i∥22, λmax(ΣB)

}2
]1/2

≤
√

4(1 + 2⌈log(d)⌉)
√
nλmax(S̃) + 4(1 + 2⌈log(d)⌉)max{B, 1}

= 4
√
1 + 2⌈log(d)⌉

√
nλmax(S̃)

where the fourth line follows from the proof of the second item of Theorem 5.1 in Tropp (2015a),
the sixth line follows from the fact that ∥XB∥22 ≤ B, and the last line follows from the condition on
n and the fact that λmax(S̃) ≥ 1, which itself follows from the positive semi-definiteness of S(PX).
Defining Wv = (Wi,v)

n
i=1 for v ∈ Sd−1, and appealing to Lemma 43, we may therefore bound the

second term as follows, with probability at least 1− δ

sup
v∈Sd−1

n−k∑
i=k+1

E
[
⟨v,XB⟩2

]
− Z∗

i,v = sup
v∈Sd−1

n−k∑
i=k+1

W ∗
i,v

≤ sup
v∈Sd−1

φk(Wv) + sup
v∈Sd−1

k(|W1+k,v|+ |Wn−k,v|)

≤ 96 ·
(√

4(1 + 2⌈log(d)⌉)
√
nλmax(S̃) +

√
nR̃ log(2/δ)

)
Combining the bounds, and bounding

√
4(1 + ⌈log(d)⌉) ≤ 8 log(6d) yields the result.
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