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Abstract
We revisit the classical problem of multiclass classification with bandit feedback (Kakade, Shalev-
Shwartz, and Tewari, 2008), where each input classifies to one of 𝐾 possible labels and feedback
is restricted to whether the predicted label is correct or not. Our primary inquiry is with regard to
the dependency on the number of labels 𝐾 , and whether 𝑇-step regret bounds in this setting can be
improved beyond the

√
𝐾𝑇 dependence exhibited by existing algorithms. Our main contribution

is in showing that the minimax regret of bandit multiclass is in fact more nuanced, and is of the
form Θ̃(min{|H | +

√
𝑇,

√︁
𝐾𝑇 log|H |}), where H is the underlying (finite) hypothesis class. In

particular, we present a new bandit classification algorithm that guarantees regret 𝑂 ( |H | +
√
𝑇),

improving over classical algorithms for moderately-sized hypothesis classes, and give a matching
lower bound establishing tightness of the upper bounds (up to log-factors) in all parameter regimes.

1. Introduction

Online multiclass classification is an important and fundamental learning problem, which has prac-
tical relevance in a variety of applications. This is a sequential problem, where in any given round
𝑡 = 1, 2, . . . 𝑇 the learner receives an example 𝑥𝑡 and is tasked with predicting a label 𝑦′𝑡 from a set
of 𝐾 possible labels, after which the true label 𝑦𝑡 is revealed to the learner who suffers a loss if
𝑦′𝑡 ≠ 𝑦𝑡 . The learner’s performance is measured with respect to an underlying hypothesis class H
of mappings from examples to labels, with the objective of minimizing the regret, that is, the total
loss of the learner compared to that of the best hypothesis in H .

In bandit multiclass classification (Kakade et al., 2008), rather than observing the true label after
each prediction (a setting which is often referred to as full information), the learner only observes
whether the prediction was correct or not (this is reminiscent of bandit information in the context of
online learning). As a practical example, consider a classification task over the ImageNet dataset,
where a learner is tasked with classifying images into one of 𝐾 > 10000 possible labels. After the
learner makes a prediction, the image and the prediction are shown to a human rater that is asked
whether or not the prediction is correct. If we consider the rater as a part of the environment, the
learner essentially faces a bandit multiclass classification problem. Notably, while a given image
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may have multiple correct labels, this number is usually small (say, at most 10) and does not scale
with 𝐾 .

The bandit multiclass classification problem has been extensively studied since the early work
of Kakade et al. 2008 (e.g., Daniely et al., 2011; Daniely and Helbertal, 2013; Long, 2020; Raman
et al., 2023), where the primary focus has been on characterizing the price of bandit information
as compared to the standard full-information setting. Several of these works placed a particular
focus on characterizing the properties of H under which regret minimization is at all possible (i.e.,
render the problem learnable), and have introduced refinements of the best known regret bound
of 𝑂 (

√︁
𝐾𝑇 log|H |) (that can be extracted from Auer et al., 2002) in terms of various structural

properties of the class H ; for instance, Daniely and Helbertal (2013) proved a bound which scales
with the Littlestone dimension of H rather than log|H |, while Raman et al. (2023) replaced the
dependence on 𝐾 by a quantity called the “Bandit Littlestone dimension” of H , which, for general
classes can be as large as |H |.

Despite this abundance of previous work on the fundamental bandit multiclass problem, it re-
mains unclear what is the correct dependence of the regret on the number of labels, 𝐾 , even for finite
hypothesis classes. Drawing analogy to the vast literature on bandit problems, one could conjecture
that the right dependence should be roughly

√
𝐾𝑇 , as is the case in stochastic and non-stochastic 𝐾-

armed bandit problems and their contextual counterparts (Auer et al., 2002; Lattimore and Szepes-
vari, 2020), which is indeed the case in all existing upper bounds for bandit multiclass. However,
a close inspection of the available lower bounds for bandit multiclass classification (Daniely and
Helbertal, 2013), reveals that they can only rule out bounds better than

√
𝐾𝑇 in the multi-label set-

ting, where each example may be labeled with a multitude of labels rather than just one or a few
(the lower bounds require that Θ(𝐾) correct labels are possible). When considering the canonical
single-label setting exclusively, which has a significant “sparsity” structure compared to a general
bandit problem, the only available lower bound becomes the Ω̃(

√
𝑇) rate of the full-information

case.
Thus, the following question remains unresolved: what is the real price of bandit information in

(standard, single-label) multiclass classification?1 In this work, we provide a complete answer to
this question by fully characterizing the minimax regret in single-label bandit multiclass classifica-
tion over finite hypothesis classes (up to logarithmic factors). Concretely, we show that the minimax
regret for this problem is of the form

Θ̃
(
min( |H | +

√
𝑇,

√︁
𝐾𝑇 log|H |)

)
.

In particular, this bound improves upon known algorithms (such as EXP4, Auer et al., 2002) for
hypothesis class of moderate size, that is, |H | ≲

√
𝐾𝑇 . Somewhat surprisingly, in the latter case

there is therefore no price for the bandit information: namely, the (leading 𝑇-dependent term in
the) minimax rate become identical, up to logarithmic factors, to the rate in the full-information
case of the problem. On the flip side, for larger classes, our main result shows that the price of
bandit information is fully pronounced (i.e., a

√
𝐾𝑇 dependence is unavoidable) despite the inherent

“sparsity” structure of the single-label setting.

1. Henceforth, we focus on the classical single-label setup where each example has a single, unique correct label, but
we note that all of our results are equally valid in the case where each example may have at most a constant number
of correct labels.
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1.1. Summary of contributions

In some more detail, our main results in this paper are the following:

• We describe and analyze an algorithm which is an instantiation of the follow-the-regularized-
leader framework with a regularization that combines negative entropy and log-barrier compo-
nents (see Section 3). Our analysis shows that this algorithm achieves the expected regret bound
stated above in general adversarial environments. In fact, our result holds in a more general 𝑠-
sparse contextual bandits setup (see Section 3 for a formal description of the problem setup) over
a finite policy class Π of mappings from contexts to actions, in which our algorithm obtains a
regret bound of

Õ
(
min{|Π | +

√
𝑠𝑇,

√︁
𝐾𝑇 log|Π |}

)
.

In the case of bandit multiclass, the sparsity is 𝑠 = 1 which yields the upper bound stated above.
(The same result holds true if the maximal number of correct labels is any other constant that does
not scale with 𝐾 .)

• We prove a lower bound establishing the fact that the regret guarantees provided by our algorithm
are essentially optimal (see Section 4). Our construction is of a stochastic i.i.d. bandit multiclass
classification instance, implying that this guarantee cannot be improved even when the environ-
ment is stochastic rather than adversarial. Specifically, we show that for any bandit multiclass
classification algorithm there exists a stochastic instance on which it must incur an expected re-
gret of at least

Ω̃
(
min{|H | +

√
𝑇,

√
𝐾𝑇}

)
.

This bound implies that our new bandit classification algorithm is tight for moderately-sized hy-
pothesis classes, while for larger classes the Õ(

√
𝐾𝑇) bound attained by EXP4 cannot be im-

proved, despite the inherent sparsity structure in the problem.

1.2. Overview of main ideas and techniques

One of the main challenges in obtaining improved regret bounds for bandit multiclass classification
comes in taking advantage of structural properties which are absent in more general bandit scenarios,
where regret bounds of the form

√
𝐾𝑇 are optimal. One basic observation is that bandit multiclass

classification is essentially a special case of contextual bandits (Auer et al., 2002; Beygelzimer et al.,
2011; Agarwal et al., 2014) with additional important structural properties of the loss functions.
Namely, the loss functions in bandit multiclass classification are given by the zero-one loss, that
is, a zero loss for the correct prediction and one otherwise. In the setting where each example
has a unique correct label, the losses exhibit a certain sparsity property. We are thus motivated to
investigate whether it is possible to take advantage of the sparse structure of the loss functions in
this setting in order to obtain guarantees that improve upon those given for contextual bandits in
general.

This type of sparsity in multi-armed bandits has been a topic of interest in several previous
works (Bubeck et al., 2018; Audibert et al., 2009), where it has been shown that the optimal regret
bound of Õ(

√
𝐾𝑇) can be improved to Õ(𝐾 +

√
𝑠𝑇) if the loss vectors are 𝑠-sparse, that is, every

loss vector is bounded in ℓ2-norm by 𝑠. These results motivated the investigation of whether or not

3



EREZ COHEN KOREN MANSOUR MORAN

such improvements are possible in the more general bandit multiclass classification setup. That is,
whether or not we can obtain regret bounds of the form Õ(𝐾 +

√︁
𝑇 log|H |), since in this case the

loss vectors are 1-sparse. Perhaps surprisingly, it turns out that achieving regret bounds of the form
𝐾 +

√
𝑠𝑇 is not possible in general in bandit multiclass classification. However, by applying an in-

stantiation of follow-the-regularized-leader (FTRL) with a log-barrier component in the contextual
bandit setting we can establish a regret bound of Õ(|Π | +

√
𝑠𝑇) when the losses are 𝑠-sparse, which

in turn implies a bound of Õ(|H | +
√
𝑇) for bandit multiclass classification. This turns out to be

optimal, up to logarithmic factors, when the hypothesis class is not too large, that is, |H | ≲
√
𝐾𝑇 .

The incorporation of log-barrier regularization in order to stabilize the FTRL iterates turns out
to be crucial for our approach. The reason stems from the fact that when working with a shifted
version of the zero-one loss functions (which is required for sparsity to hold), the loss values are
necessarily non-positive, which is notoriously more challenging compared to nonnegative losses
(Kwon and Perchet, 2016). Together with the fact that the learner observes bandit feedback, the
standard importance-weighted loss estimators become both negative and extremely large in magni-
tude, and as a result, existing algorithms for contextual bandits such as EXP4 (Auer et al., 2002)
become unstable. The addition of a log-barrier component to the regularization aims to resolve this
very problem, albeit with the penalty of incurring an additional additive term of |H | in the regret
bound.

1.3. Open problems and future work

In this work, we addressed the fundamental question of characterizing the optimal regret bound
in multiclass classification with bandit feedback for finite classes. Specifically, we provided a tight
bound that is expressed in terms of the class size |H | and the number of labels 𝐾 . This achievement,
however, can be seen as an initial step within a broader research context. Below, we detail several
open problems and natural avenues for future research.

1. Structured (possibly infinite) hypothesis classes. A logical extension of our work is to refine
these bounds by including dependencies on more refined class properties. This methodology
has a solid foundation in learning theory; a classical example is the role of the VC dimension
(Blumer et al., 1989) in PAC learning, which refines the dependence on |H | and yields optimal
bounds in terms of sample complexity that are applicable also to infinite classes.

In fact, our lower bound in terms of |H | reveals a natural candidate for such a combinatorial
parameter. For an integer 𝜅, define the 𝜅-list star number of a hypothesis class H as the
maximal 𝑠 for which there exist 𝑠 examples 𝑥1, . . . , 𝑥𝑠 and a pivot hypothesis ℎ0 ∈ H such
that, for each 𝑥𝑖 , there are 𝜅 hypotheses ℎ𝑖,1, . . . , ℎ𝑖,𝜅 that coincide with ℎ0 on every 𝑥 𝑗 ≠ 𝑥𝑖
and diverge on 𝑥𝑖 , with all labels ℎ0(𝑥𝑖), ℎ𝑖,1(𝑥𝑖), . . . , ℎ𝑖,𝜅 (𝑥𝑖) being distinct. When 𝜅 = 1 this
parameter specializes to the star-number which characterizes the optimal query complexity in
active learning (Hanneke and Yang, 2015). An adaptation of our lower bound for finite classes
shows an Ω̃(𝜅𝑠+

√︁
𝑇 log𝐾) lower bound for classes with 𝜅-list star number 𝑠, thus positioning

the 𝜅-list star number as a natural barrier. It remains an open question determine whether it
is the only barrier and in particular whether there exist a corresponding upper bound which
replaces |H | with the 𝜅-list star number, offering tighter bounds on the regret which apply
also to infinite classes.
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2. Computationally efficient algorithms. Several previous works on contextual bandits (Lang-
ford and Zhang, 2007; Dudik et al., 2011; Agarwal et al., 2014) focus on the stochastic i.i.d.
setting and aim to achieve low regret with efficient algorithms based on various types of opti-
mization oracles. An interesting question for future research is whether or not we can utilize
the sparse nature of bandit multiclass classification in the stochastic setting and obtain more
efficient algorithms that guarantee optimal regret in this setting. In the simpler setting of
stochastic 𝐾-armed bandits, variants of optimistic algorithms such as UCB (Audibert et al.,
2009) that are adaptive to the “sparsity” of the rewards have been established, but it is not yet
clear to us if and how such techniques could be extended to the contextual setup.

3. Tight sample complexity bounds. Another possible learning objective in a stochastic mul-
ticlass classification setup is a PAC objective. In this setting, the learner does not incur any
loss during the learning process, but is tasked with outputting a hypothesis which is nearly
optimal with a low sample complexity. A straightforward application of an online-to-batch
reduction to our online algorithm gives a sample complexity guarantee of Õ

(
𝑁/𝜀 + 1/𝜀2)

in the PAC setting. Moreover, the construction of our lower bound can be used to show a
sample complexity lower bound of Ω(𝐾/𝜀), which does not preclude the possibility of hav-
ing an algorithm in this framework that guarantees finding an 𝜀-optimal hypothesis using
Õ(𝐾/𝜀 + 1/𝜀2) samples (suppressing dependence on log|H |) with bandit feedback, which
would yield a significant improvement over the bound obtained by the reduction from the
online setting when the number of labels is large. Such a result would show in particular
that there is a fundamental gap between the PAC and online objectives in bandit multiclass
classification.

1.4. Additional related work

Bandit multiclass classification. In the realizable setting, the optimal mistake bound under bandit
feedback is Θ̃(𝐾 log |H |) in the worst case. In fact, even more refined bounds exist where log |H |
is replaced by the Littlestone dimension of H , which equals the optimal mistake bound in the full
information setting (Auer and Long, 1999; Daniely and Helbertal, 2013; Long, 2020; Geneson,
2021). In the agnostic setting, the best known general upper bound is �̃� (

√︁
𝐾𝑇 log |H |); this bound

has been further refined by substituting log |H | with the Littlestone dimension of H (Daniely and
Helbertal, 2013), and by replacing 𝐾 with the effective number of labels, defined as sup𝑥∈X |{ℎ(𝑥) :
ℎ ∈ H}| (Raman et al., 2023). These aforementioned studies introduce additional refinements
in terms of the Bandit Littlestone Dimension, which characterizes the optimal mistake bound in
the realizable setting for deterministic learners (Daniely et al., 2011). However, to the best of our
knowledge, our work is the first to offer a general improvement in terms of 𝐾 in front of the dominant√
𝑇 term in the regret.

Contextual bandits. The bandit version of online multiclass classification is closely related to the
contextual bandit problem that has been studied extensively in the online learning literature. The
EXP4 algorithm by Auer et al. (2002) and other variants (McMahan and Streeter, 2009; Beygelz-
imer et al., 2011) obtain the optimal instance-independent regret bound of 𝑂 (

√︁
𝐾𝑇 log|Π |) in an

adversarial environment, however they are not computationally efficient if the underlying policy
class is exponentially large in the natural problem parameters (e.g., the dimension of the instance
space). Another line of work (Chu et al., 2011; Filippi et al., 2010; Li et al., 2017; Foster et al.,
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2018; Foster and Rakhlin, 2020; Foster et al., 2020b) investigates contextual bandit problems from
a different point of view, often referred to as a realizability-based approach. In this approach, in-
stead of an underlying policy class of mappings from contexts to actions, there is instead a function
class F ⊆ {X × A → ℝ} of mappings from context-action pairs to rewards, and it is assumed that
there exists 𝑓★ ∈ F which realizes the true expected reward of the actions given the context, an
assumption referred to as realizability. In this point of view, the learner’s goal is to compete against
the policy 𝜋★ which selects actions according to 𝑓★ via 𝜋★(𝑥) = arg max𝑎∈A 𝑓★(𝑥, 𝑎). In contrast,
we do not assume realizability in any form.

Log-barrier regularization. Enhancing the stability of Follow the Regularized Leader (FTRL)
and Online Mirror Descent (OMD) online algorithms using log-barrier regularization has been used
in various online learning scenarios. In multi-armed bandits, Wei and Luo (2018) used a log-barrier
regularizer with an optimistic OMD update in order to obtain variation-dependent regret bounds,
and and similar techniques (Anagnostides et al., 2022, 2023) have been used in order to obtain
improved regret in general sum games. Other works (Jin and Luo, 2020; Jin et al., 2021; Erez and
Koren, 2021) took advantage on the iterate stability provided by the log barrier regularization in
order to obtain best-of-both-worlds guarantees in RL and bandit scenarios. The use of log-barrier
in order to take advantage of sparsity of the loss vectors in 𝐾-armed bandits can be seen in Bubeck
et al. (2018), and in contextual bandits models a variant of log-barrier has been used in Foster et al.
(2020a) in order to obtain regret bounds for infinite action sets. For the upper bound we present in
Section 3 we utilize an approach most similar to that of Bubeck et al. (2018) in the sense the role of
the log-barrier is to make use of action-level sparsity properties of the loss vectors.

2. Problem setup

Bandit multiclass classification. We consider a learning setup involving classification of objects
from a set of examples X with one of 𝐾 possible labels from the set Y ≜ {1, . . . , 𝐾}. An instance
of bandit multiclass classification is specified by a hypothesis class H ⊆ {X → Y} of labeling
functions. Our focus in this paper is on finite classes, and we denote by 𝑁 ≜ |H | the number of
hypotheses in the class.

A learning algorithm operates in the bandit multiclass classification setting according to the
following protocol, over prediction rounds 𝑡 = 1, 2, . . .:

(i) The environment generates an example-label pair (𝑥𝑡 , 𝑦𝑡 ) ∈ X × Y and 𝑥𝑡 is presented to the
algorithm;

(ii) The algorithm classifies 𝑥𝑡 into one of the 𝐾 labels by choosing 𝑦′𝑡 ∈ Y;

(iii) The algorithm incurs loss ℓ(𝑦′𝑡 ; 𝑦𝑡 ) ≜ 𝕀[𝑦′𝑡 ≠ 𝑦𝑡 ], where 𝕀[·] is the indicator function;

(iv) The algorithm observes the loss value ℓ(𝑦′𝑡 , 𝑦𝑡 ) as feedback, but not the true label 𝑦𝑡 .

Note that the algorithm only observes bandit feedback at each round, namely, only whether its
prediction is correct or not, rather than full feedback as in standard classification settings where the
algorithm typically observes the true label 𝑦𝑡 . We also remark the the setting describe above is that
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of single-label multiclass, as opposed to the multi-label variant studied in some of the previous work
(e.g., Daniely and Helbertal, 2013).2

Learning objective. The goal of the online classification algorithm is to minimize its expected
regret over 𝑇 rounds compared to any hypothesis from the class H , defined by3

R𝑇 (H) ≜ sup
ℎ∗∈H

𝑇∑︁
𝑡=1

𝔼
[
ℓ(𝑦′𝑡 ; 𝑦𝑡 ) − ℓ(ℎ∗(𝑥𝑡 ); 𝑦𝑡 )

]
, (1)

where expectations are taken with respect to any randomization present in the environment and any
internal randomization in the algorithm.

Types of environments. We distinguish between two different types of environments with respect
to how the example-label pairs (𝑥1, 𝑦1), . . . (𝑥𝑇 , 𝑦𝑇 ) are generated.

• In the stochastic setting, it is assumed that there exists a distribution D over X ×Y such that
each example-label pair (𝑥𝑡 , 𝑦𝑡 ) is sampled i.i.d. from D.

• In the adversarial setting, we assume that the example-label pairs are generated by a (possibly
adaptive) adversary, which chooses (𝑥𝑡 , 𝑦𝑡 ) based on the entire history up to round 𝑡.

3. Main algorithm and upper bounds

In this section, we describe and analyze an online algorithm which obtains the optimal regret (up
to logarithmic factors) for bandit multiclass classification with finite hypothesis classes. In fact, we
design the algorithm in a more general setting of contextual bandits with adversarial sparse losses;
the algorithm thus applies to the adversarial variant of bandit multiclass classification and thereby
also to its stochastic variant. Below, we first detail a reduction from bandit multiclass classification
to sparse contextual bandits, and later describe an algorithm for the latter problem and its regret
analysis.

3.1. Reduction to Sparse Contextual Bandits

Our first step is in reducing the bandit multiclass problem into an instance of a Sparse Contextual
Bandits problem, defined as follows:

• The setup involves prediction over instance space X of contexts, a finite set of actions A with
|A| = 𝐾 and a finite policy class Π ⊆ {X → A} of size |Π | = 𝑁 .

• At each round 𝑡, the environment generates a context 𝑥𝑡 and a corresponding loss vector
ℓ𝑡 ∈ ℝ𝐾 that assigns losses to actions. The learning algorithm is given the context 𝑥𝑡 , chooses
an action 𝑎𝑡 ∈ A (possibly at random) and suffers loss ℓ𝑡 (𝑎𝑡 ), which is then observed by the
algorithm.

2. This does not imply that labels are necessarily consistent; e.g., in a stochastic setup the label 𝑦 might not be de-
terministic given the example 𝑥. Both the upper and lower bounds we will derive will be agnostic to this matter
(that is, upper bounds will apply in the more general setting, while lower bounds will hold in the specific setting of
deterministic labels).

3. The quantity defined in Eq. (1) is often referred to as pseudo-regret in the online learning literature.

7
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• The goal of the algorithm is to minimize the expected regret, given by

R𝑇 (Π) ≜ inf
𝜋∗∈Π

{
𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑎𝑡 )
]
−

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜋∗(𝑥𝑡 ))
}
,

• The instance is said to be 𝑠-sparse (with respect to the 𝐿2-norm), if the loss vectors satisfy
∥ℓ𝑡 ∥2

2 ≤ 𝑠 for all 𝑡.4

It is straightforward to frame bandit multiclass classification as a 1-sparse contextual bandits
problem, albeit with negative losses. Instances are treated as contexts and labels as possible actions;
for each incoming instance-label pair (𝑥𝑡 , 𝑦𝑡 ) at round 𝑡, the loss vector at round 𝑡 is set to ℓ𝑡 ∈
{−1, 0}𝐾 such that ℓ𝑡 (𝑎) = −𝕀(𝑎 = 𝑦𝑡 ) for all 𝑎 ∈ [𝐾]. This particular assignment of losses renders
the problem 1-sparse, since ∥ℓ2∥2

2 = 1 for all 𝑡. Importantly, minimizing regret in the contextual
problem is equivalent to minimizing regret in the original multiclass setting, since our losses are
such that ℓ𝑡 (𝑎) = −𝕀(𝑎 = 𝑦𝑡 ) = 𝕀(𝑎 ≠ 𝑦𝑡 ) − 1 and the latter is the zero-one classification loss at step
𝑡 shifted by 1 (note that shifting the losses of all actions by the same constant does not affect the
regret).

3.2. Algorithm for Sparse Contextual Bandits

The reduction described above is designed so as to make the contextual online problem 1-sparse, at
the cost of arriving at a problem with negative losses. In the literature on bandit problems, negative
losses (or equivalently, nonnegative rewards) are notorious to be significantly more challenging
technically compared to nonnegative losses (see, e.g., the discussion in Kwon and Perchet, 2016).
In particular, the standard EXP4 algorithm for the contextual setting fails with negative losses since
the exponential weights updates it employs become highly unstable in this case due to the loss-
estimates that become negative and prohibitively large in absolute value.5 Drawing inspiration from
related (non-contextual) bandit problems, our approach to address this is through the use of an
additional log-barrier regularization that promotes stability regardless of the sign of the losses (e.g.,
Wei and Luo, 2018; Bubeck et al., 2018; Jin and Luo, 2020; Jin et al., 2021).

Our algorithm for the Sparse Contextual Bandits problem is detailed in Algorithm 1. The algo-
rithm performs Follow-the-Regularized-Leader (FTRL) updates over the 𝜀-shrunk 𝑁-dimensional
probability simplex Δ𝜀

𝑁
, defined by

Δ𝜀𝑁 ≜ {𝑝 ∈ Δ𝑁 | 𝑝𝑖 ≥ 𝜀 ∀𝑖 ∈ [𝑁]}. (3)

for a parameter 0 ≤ 𝜀 < 1/𝐾 , where Δ𝑁 is the probability simplex in ℝ𝑁 containing probabil-
ity vectors over the policy class Π = {𝜋1, . . . , 𝜋𝑁 }. The FTRL regularizer 𝑅𝜂,𝜈 (·) in Eq. (2) is
parameterized by 𝜂, 𝜈 > 0 is defined by

𝑅𝜂,𝜈 (𝑝) = 𝐻𝜂 (𝑝) + 𝜓𝜈 (𝑝); where 𝐻𝜂 (𝑝) =
1
𝜂

𝑁∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 , 𝜓𝜈 (𝑝) = −1
𝜈

𝑁∑︁
𝑖=1

log 𝑝𝑖 . (4)

4. We refer to this as sparsity since the condition ∥ℓ𝑡 ∥2
2 ≤ 𝑠 is satisfied if ℓ𝑡 is an 𝑠-sparse binary vector (with entries in

{0, 1} and at most 𝑠 non-zero entries), but it allows for more general loss vectors that are not sparse per-se.
5. One common fix for using EXP4 with nonnegative rewards, that already appears in the original paper of Auer et al.

(2002), is to implement mixing with a uniform distribution that prevents the loss estimates from becoming too nega-
tive. However, this mixing hinders the algorithm from leveraging sparsity in the losses, and the regret accumulated
just due to the mixing is of order

√
𝐾𝑇 ; see also the discussion in Bubeck et al. (2018).
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Algorithm 1 Sparse Contextual Bandits
1: Input: policy class Π = {𝜋1, . . . , 𝜋𝑁 }, parameters 𝜂, 𝜈, 𝜀
2: Initialize 𝑝1,𝑖 = 1/𝑁 for all 𝑖 ∈ [𝑁]
3: for rounds 𝑡 = 1, 2, 3, . . . , 𝑇 do
4: Sample a policy 𝜋𝑖𝑡 ∼ 𝑝𝑡
5: Receive context 𝑥𝑡 and choose action 𝑎𝑡 = 𝜋𝑖𝑡 (𝑥𝑡 )
6: For all 𝑖 ∈ [𝑁] compute the importance-weighted loss estimate for policy 𝜋𝑖:

𝑐𝑡 ,𝑖 ≜
ℓ𝑡 (𝑎𝑡 )𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]∑𝑁
𝑗=1 𝑝𝑡 , 𝑗 𝕀

[
𝜋 𝑗 (𝑥𝑡 ) = 𝑎𝑡

]
7: Update 𝑝𝑡 via:

𝑝𝑡+1 = arg min
𝑝∈Δ𝜀

𝑁

{
𝑝 ·

𝑡∑︁
𝑠=1

𝑐𝑠 + 𝑅𝜂,𝜈 (𝑝)
}

(2)

8: end for

Here 𝐻𝜂 (·) is the negative entropy regularization and 𝜓𝜈 (·) is the log-barrier regularization. We
remark that allowing 𝜈 = ∞ amounts to 𝑅𝜂,𝜈 (𝑝) = 𝐻𝜂 (𝑝), in which case the algorithm reduces to
a version of the known EXP4 algorithm with an appropriate choice of 𝜂.

The main result of this section is given by the following theorem which provides a regret bound
for Algorithm 1 in the general 𝑠-sparse contextual bandit setup, under an appropriate choice of
parameters:

Theorem 1 Let Π ⊆ {X → A} be a finite policy class of size 𝑁 where |A| = 𝐾 , and let 𝑇 ≥ 1.
Then for any 𝑠-sparse contextual bandit instance over Π, the expected regret of Algorithm 1 with
𝜂 =

√︁
log(𝑁)/𝑠𝑇 , 𝜈 = 1/16 and 𝜀 = 1/𝑁𝑇 is at most

𝑂

(
𝑁 log(𝑁𝑇) +

√︁
𝑠𝑇 log 𝑁

)
.

Note that for the special case of bandit multiclass classification, setting 𝑠 = 1 provides a regret
bound of Õ(𝑁 +

√
𝑇). In the regime where 𝑁 ≪

√
𝐾𝑇 , the bound given in Theorem 1 improves

upon the guarantee of 𝑂 (
√︁
𝐾𝑇 log 𝑁) given by the EXP4 algorithm, which does not take advantage

of sparsity. Thus, we obtain the following immediate corollary which provides a regret upper bound
for bandit multiclass classification:

Corollary 2 Let H ⊆ {X → Y} be a finite hypothesis class with |H | = 𝑁 and |Y| = 𝐾 ≤ 𝑁 , and
let 𝑇 ≥ 1. Then there exists an algorithm which, for any bandit multiclass classification instance
over H , guarantees an expected regret bound of at most

𝑂

(
min

{√︁
𝐾𝑇 log 𝑁, 𝑁 log(𝑁𝑇) +

√︁
𝑇 log 𝑁

})
.

3.3. Regret analysis

We conclude this section by sketching the proof of Theorem 1.

9
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Proof (sketch) It suffices to bound the regret of the algorithm compared to any fixed policy in
the truncated simplex, provided that 𝜀 is chosen sufficiently small (𝜀 = 1/𝑁𝑇 is a valid choice).
With that in mind, fix 𝑝★ ∈ Δ𝜀

𝑁
. Using the fact that, at any round 𝑡, the importance-weighted

loss estimators 𝑐𝑡 are conditionally unbiased given the randomness in previous rounds (that is,
𝔼𝑡 [𝑐𝑡 ] = 𝑐𝑡 , where 𝑐𝑡 ∈ [−1, 0]𝑁 is the loss vector induced over policies, with 𝑐𝑡 ,𝑖 = ℓ𝑡 (𝜋𝑖 (𝑥𝑡 )) for
all 𝑖), together with a standard regret bound for FTRL (see Lemma 4 in Appendix A), we can obtain
the following regret bound compared to 𝑝★:

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂
2
𝔼

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑧𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
,

where 𝑧𝑡 is a point on the line segment connecting 𝑝𝑡 and 𝑝𝑡+1 (crucially, it is a random variable
that depends on the randomness at round 𝑡, and thus is not conditionally independent of 𝑐𝑡 given the
history). Here, the first term comes from a bound over the magnitude of the log-barrier regularizer
inside the truncated simplex Δ𝜀

𝑁
, and the second term is an upper bound on the entropy component

over Δ𝑁 .
The next step in the analysis aims at removing 𝑧𝑡 from the above bound using stability properties

induced by the added log-barrier regularization. In a nutshell, using the fact that the algorithm min-
imizes at step 𝑡 a convex objective regularized by the log-barrier 𝜓𝜈 , we can show that the iterates it
produces are stable in the sense that ∥𝑝𝑡+1 − 𝑝𝑡 ∥2

∇2𝜓𝜈 (𝑝𝑡 ) ≤ 1/𝜈,6 for a suitable choice of the param-
eter 𝜈 (we show that setting 𝜈 = 1/16 is sufficient). Since ∇2𝜓𝜈 (𝑝) = 𝜈−1 diag(1/𝑝2

1, . . . , 1/𝑝
2
𝑁
),

this implies that

𝑁∑︁
𝑖=1

(𝑝𝑡+1,𝑖 − 𝑝𝑡 ,𝑖)2

𝜈𝑝2
𝑡 ,𝑖

≤ 1
𝜈

=⇒ ∀ 𝑖 ∈ [𝑁] :
(
𝑝𝑡+1,𝑖

𝑝𝑡 ,𝑖
− 1

)2
≤ 1.

Thus, we are guaranteed that 𝑝𝑡+1,𝑖/𝑝𝑡 ,𝑖 ≤ 2, which is the content of Lemma 5 in Appendix A. This
also implies that 𝑧𝑡 ,𝑖 ≤ 2𝑝𝑡 ,𝑖 for all 𝑡 and 𝑖, which can be used to eliminate 𝑧𝑡 ,𝑖 from the regret bound
above, resulting in

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂𝔼
[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
.

Finally, we bound the remaining second-order term in the right-hand side. For every round 𝑡 and
action 𝑎 denote by 𝑞𝑡 ,𝑎 ≜

∑𝑁
𝑖=1 𝑝𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ] the probability that Algorithm 1 takes action 𝑎 at

round 𝑡. We then use the definition of the loss estimators together with the 𝑠-sparsity assumption,
as follows:

𝔼

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
=

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝔼

[
𝑝𝑡 ,𝑖

ℓ2
𝑡 ,𝑎𝑡

𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]
𝑞2
𝑡 ,𝑎𝑡

]
=

𝑇∑︁
𝑡=1

𝔼

[
ℓ2
𝑡 ,𝑎𝑡

𝑞2
𝑡 ,𝑎𝑡

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]
]

6. The left-hand side is the “local norm” at 𝑝𝑡 with respect to 𝜓𝜈 ; here we use the notation ∥𝑥∥𝐴 =
√
𝑥𝑇 𝐴𝑥.

10
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=

𝑇∑︁
𝑡=1

𝔼

[
ℓ2
𝑡 ,𝑎𝑡

𝑞𝑡 ,𝑎𝑡

]
=

𝑇∑︁
𝑡=1

𝔼


∑︁

𝑎:𝑞𝑡,𝑎>0
𝑞𝑡 ,𝑎

ℓ2
𝑡 ,𝑎

𝑞𝑡 ,𝑎


≤

𝑇∑︁
𝑡=1

𝔼
[
∥ℓ𝑡 ∥2

2
]
≤ 𝑠𝑇 .

To summarize, we have the following regret bound compared to 𝑝★:

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂𝑠𝑇,

where 𝜈 is set to 1/16. Plugging in the values for 𝜀, 𝜈, 𝜂 given in the statement of the theorem, and
noting that the left-hand side is equal to the expected regret of the algorithm up to 𝑂 (𝜀𝑁𝑇), we
conclude the proof.

4. Lower bound

In this section we establish a regret lower bound for bandit multiclass classification which proves
that upper bound given in corollary 2 is tight, up to logarithmic factors. The lower bound is stated
formally in the following theorem:

Theorem 3 For any (possibly randomized) bandit multiclass online algorithm and for all integers
𝐾, 𝑁,𝑇 ≥ 1, there exists a stochastic bandit multiclass instance with 𝐾 + 1 labels over a hypothesis
class H of size 𝑁 , where the algorithm must incur an expected regret of at least

Ω̃
(
min

{
𝑁 +

√
𝑇,

√
𝐾𝑇

})
.

We note that the traditional Ω(
√
𝐾𝑇) lower bounds for 𝐾-armed bandits (Auer et al., 2002;

Lattimore and Szepesvari, 2020; Slivkins, 2020), that only needs a single example/context and 𝑁 =

𝐾 hypotheses, do not translate to our setting due to our “sparsity” constraint; namely, the sum
of rewards of all labels for a given instance must be one (rather than Θ(𝐾) as in the standard
lower bound constructions). Alternatively, it is straightforward to meet the sparsity constraint by
allowing 𝑁 to be exponential in 𝐾 , in which case the minimax rates become trivial (in this case
log 𝑁 = Θ(𝐾)). The challenge in proving the lower bound is in striking a balance between these
two extremes, taking advantage of multiple examples without exploding the number of hypotheses.

Let us give here a sketch of the proof, deferring the formal details to Appendix B.
Proof of Theorem 3 (sketch) Consider a bandit multiclass problem where there are a finite number
of 𝐶 possible examples and 𝐾 + 1 labels. The distribution over examples is uniform, and the con-
ditional distribution of the label given an example is designed as follows. One of the labels, 𝑦 = 0,
is a “default label” whose conditional probability is 1/3, regardless of the example 𝑥. In addition,
there is one “hidden” example-label pair, (𝑥∗, 𝑦∗), such that the conditional probability of the label
𝑦∗ given the example 𝑥∗ is 2/3. All other example-label pairs have zero probability of appearing.

11
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The hypothesis class is the set of functions that label all instances with the default label, except for
one example that may be labeled with any label 𝑦 ≠ 0; there are precisely 𝑁 = 𝐶𝐾 such functions.
Notice that the optimal hypothesis (which is in this class) is the one that labels 𝑥∗ with the label 𝑦∗,
and any other example 𝑥 ≠ 𝑥∗ with the default label 𝑦 = 0.

For the learning algorithm that tries to compete with the optimal hypothesis, there are intuitively
two different strategies to choose from. The first is to opt out of identifying the “hidden” pair (𝑥∗, 𝑦∗)
and simply choose the default label 𝑦 = 0 for all examples, receiving a reward of 1/3 in expectation.
This strategy incurs regret compared to optimal whenever the example 𝑥∗ appears (with prob. 1/𝐶),
in which case it receives expected reward 1/3 whereas optimal receives expected reward 2/3; the
overall regret here is therefore Ω(𝑇/𝐶) in expectation. The second strategy is to explore and try
to identify (𝑥∗, 𝑦∗). Once this hidden pair is found the algorithm stops incurring regret, however
the number of exploration rounds required for doing so is at least Ω(𝐶𝐾), and on each of them the
algorithm suffers constant regret (since its reward is zero while optimal receives 1/3); the overall
regret for this strategy is therefore Ω(𝐶𝐾) in expectation.

Balancing these two extreme choices for the algorithm, we set 𝐶 = Θ(
√︁
𝑇/𝐾) in which case

the algorithm suffers Ω(
√
𝐾𝑇) regret either way. Note that crucially, the hypothesis class in this

construction is therefore of size 𝑁 = 𝐶𝐾 = Θ(
√
𝐾𝑇), and in particular, polynomial in 𝐾 and 𝑇 .

In the regime where 𝑁 is smaller than Θ(
√
𝐾𝑇), we can adjust the parameters such that the lower

bound becomes Ω̃(𝑁 +
√
𝑇).

There is one issue with the construction above we neglected thus far: the conditional label
distributions for examples 𝑥 ≠ 𝑥∗ do not sum to one, or in other words, it allowed for the case
that some (in fact, most) examples are not labeled with any of the labels, whereas in the multiclass
setting there should always be a single correct label for every example. Our formal construction
and proof address this issue by allowing a small probability for all labels 𝑦 ≠ 0 given an example
𝑥 ≠ 𝑥∗, such that the sum of these probabilities is 2/3 which therefore makes the conditional label
distribution sum up to one. The analysis becomes more challenging due to this modification, since
there is now a small “information leakage” about (𝑥∗, 𝑦∗) whenever the algorithm sees an instance
𝑥 ≠ 𝑥∗ and chooses any label 𝑦 ≠ 0. Our formal argument in this case shows that this leakage is not
too harmful.

Another, more minor nuisance is that the lower bound we described does not directly apply
to the natural case where the true labels are determined deterministically given the examples (our
construction forms a case where there is a distribution over labels for each possible example). Nev-
ertheless, we can easily adapt our construction to use a deterministic mapping from example to
label by duplicating each example many times and setting the single label of each such copy ac-
cording to the label probabilities before duplication (while keeping the hypothesis class agnostic to
the duplication, and thus still of size 𝐶𝐾).

Acknowledgments

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant agreements No. 101078075;
882396). Views and opinions expressed are however those of the author(s) only and do not neces-
sarily reflect those of the European Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them. This project has also received

12



THE REAL PRICE OF BANDIT INFORMATION IN MULTICLASS CLASSIFICATION

funding from the Israel Science Foundation (ISF, grant numbers 2549/19; 2250/22), the Yandex
Initiative for Machine Learning at Tel Aviv University, the Tel Aviv University Center for AI and
Data Science (TAD), the Len Blavatnik and the Blavatnik Family foundation, and from the Adelis
Foundation.

Shay Moran is a Robert J. Shillman Fellow; supported by ISF grant 1225/20, by BSF grant
2018385, by an Azrieli Faculty Fellowship, by Israel PBC-VATAT, by the Technion Center for
Machine Learning and Intelligent Systems (MLIS), and by the European Union (ERC, GENERAL-
IZATION, 101039692). Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

References

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on
Machine Learning, pages 1638–1646. PMLR, 2014.

Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and Tuo-
mas Sandholm. Uncoupled learning dynamics with 𝑜(log 𝑡) swap regret in multiplayer games.
Advances in Neural Information Processing Systems, 35:3292–3304, 2022.

Ioannis Anagnostides, Gabriele Farina, and Tuomas Sandholm. Near-optimal 𝜙 -regret learning
in extensive-form games. In International Conference on Machine Learning, pages 814–839.
PMLR, 2023.
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Appendix A. Proof of Section 3

Theorem 1 mainly follows from following lemma which provides a regret bound for FTRL with
log-barrier regularization:

Lemma 4 Suppose we run Algorithm 1 on arbitrary loss vectors 𝑔𝑡 ∈ ℝ𝑁 where the parameters
𝜈, 𝜂 satisfy 0 < 𝜈 ≤ 1 and 𝜂 > 0. Then, for all 𝜀 > 0 and all 𝑝★ ∈ Δ𝜀

𝑁
,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑝𝑡 − 𝑝★) ≤
𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂
2

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑧𝑡 ,𝑖𝑔
2
𝑡 ,𝑖 ,

where 𝑧𝑡 ∈ [𝑝𝑡 , 𝑝𝑡+1] is some point on the line segment connecting 𝑝𝑡 and 𝑝𝑡+1.

We also rely on the following lemma, which provides a multiplicative stability property of the
FTRL iterates which follows from the log-barrier regularization. For a proof, see Section A.1.

Lemma 5 If 𝜈 ≤ 1
16 , then for every round 𝑡 and every 𝑖 ∈ [𝑁] it holds that 𝑝𝑡+1,𝑖 ≤ 1

8𝜈 𝑝𝑡 ,𝑖 .

We now have what we need in order to complete the proof of Theorem 1.
Proof [Proof of Theorem 1] We prove a regret bound of𝑂 (𝑁 log 𝑁 +

√︁
𝑆 log 𝑁) against any mixture

of policies 𝑝★ ∈ Δ𝜀
𝑁

. This will imply a regret bound of the same magnitude against the best
fixed policy for the following reason: Denote by 𝜋★ = 𝜋𝑖★ = arg max𝜋∈Π

∑𝑇
𝑡=1 𝔼[𝑟 (𝜋(𝑥𝑡 ) | 𝑥𝑡 )] the

benchmark policy. The regret of ALG is then given by

R𝑇 (Π) =
𝑇∑︁
𝑡=1

𝔼[𝑐𝑡 · (𝑝𝑡 − e𝑖★)],

where 𝑐𝑡 ,𝑖 = ℓ𝑡 , 𝜋𝑖 (𝑥𝑡 ) ∈ [−1, 0] are the policy cost vectors, and e𝑖 denotes the 𝑖’th standard basis
vector in ℝ𝑁 . Define 𝑝★ ∈ Δ𝑁 by

𝑝★ = 𝜀
∑︁
𝑖≠𝑖★

e𝑖 + (1 − (𝑁 − 1)𝜀)e𝑖★ .

It is straightforward to see that 𝑝∗ ∈ Δ𝜀
𝑁

, and using Hölder’s inequality it holds that

R𝑇 (Π) =
𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
+

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝★ − e𝑖★

) ]
≤

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
+ 𝑇 · ∥𝑝★ − e𝑖★∥1

=

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
+ 2𝜀(𝑁 − 1)𝑇

≤
𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
+ 2.
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Thus it suffices to bound the regret of Algorithm 1 compared to any fixed 𝑝★ ∈ Δ𝜀
𝑁

. With that in
mind, fix 𝑝★ ∈ Δ𝜀

𝑁
. Using the fact that the importance-weighted loss estimators are conditionally

unbiased together with Lemma 4, we obtain the following regret bound compared to 𝑝★:
𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
=

𝑇∑︁
𝑡=1

𝔼
[
𝔼𝑡 [𝑐𝑡 ] ·

(
𝑝𝑡 − 𝑝★

) ]
=

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂
2
𝔼

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑧𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
,

where 𝑧𝑡 is a point on the line segment connecting 𝑝𝑡 and 𝑝𝑡+1. Using Lemma 5, for every 𝑖 ∈ [𝑁]
it holds that 𝑧𝑡 ,𝑖 ≤ 2𝑝𝑡 ,𝑖 , and we thus obtain

𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂𝔼
[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
.

Next, for every round 𝑡 and action 𝑎 denote by 𝑞𝑡 ,𝑎 ≜
∑𝑁
𝑖=1 𝑝𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ] the probability

that Algorithm 1 performs action 𝑎 in round 𝑡. To bound the last term in the above equation, we use
the definition of the loss estimators together with the ℓ2-sparseness assumption as follows:

𝔼

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝑐
2
𝑡 ,𝑖

]
=

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝔼

[
𝑝𝑡 ,𝑖

ℓ2
𝑡 ,𝑎𝑡

𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]
𝑞2
𝑡 ,𝑎𝑡

]
=

𝑇∑︁
𝑡=1

𝔼

[
ℓ2
𝑡 ,𝑎𝑡

𝑞2
𝑡 ,𝑎𝑡

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]
]

=

𝑇∑︁
𝑡=1

𝔼

[
ℓ2
𝑡 ,𝑎𝑡

𝑞𝑡 ,𝑎𝑡

]
=

𝑇∑︁
𝑡=1

𝔼


∑︁

𝑎:𝑞𝑡,𝑎>0
𝑞𝑡 ,𝑎

ℓ2
𝑡 ,𝑎

𝑞𝑡 ,𝑎


≤

𝑇∑︁
𝑡=1

𝔼
[
∥ℓ𝑡 ∥2

2
]
≤ 𝑠𝑇 .

To summarize, we have the following regret bound compared to 𝑝★:
𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 𝑁

𝜈
log

1
𝜀
+ 1
𝜂

log 𝑁 + 𝜂𝑠𝑇,

and plugging in the values for 𝜀, 𝜈, 𝜂 given in the statement of the theorem we obtain
𝑇∑︁
𝑡=1

𝔼
[
𝑐𝑡 ·

(
𝑝𝑡 − 𝑝★

) ]
≤ 16𝑁 log(𝑁𝑇) + 2

√︁
𝑠𝑇 log 𝑁,

which concludes the proof.
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A.1. Proof of Lemma 4

For completeness, we provide a proof of the general regret bound for FTRL given in Lemma 4.
We consider here a general FTRL framework, in which an online algorithm generates predictions
𝑤1, 𝑤2, ..., 𝑤𝑇 ∈ W, given a sequence of arbitrary loss vectors 𝑔1, 𝑔2, ..., 𝑔𝑇 and a convex regular-
ization function 𝑅, via the update rule:

𝑤𝑡 = arg min
𝑤∈W

{
𝑤 ·

𝑡−1∑︁
𝑠=1

𝑔𝑠 + 𝑅(𝑤)
}
.

We first prove the following general first-order regret bound for FTRL, whose proof can be found
in the literature (see, e.g., Hazan et al., 2016; Orabona, 2019; Lattimore and Szepesvari, 2020).

Theorem 6 There exists a sequence of points 𝑧𝑡 ∈ [𝑤𝑡 , 𝑤𝑡+1] such that, for all 𝑤★ ∈ W,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡 − 𝑤★) ≤ 𝑅(𝑤★) − 𝑅(𝑤1) +
1
2

𝑇∑︁
𝑡=1

(∥𝑔𝑡 ∥∗𝑧𝑡 )
2.

Here ∥𝑤∥𝑧𝑡 =
√︁
𝑤T∇2𝑅(𝑧𝑡 )𝑤 is the local norm induced by 𝑅 at 𝑧𝑡 , and ∥·∥∗𝑧𝑡 is its dual.

Proof Denote Φ𝑡 (𝑤) = 𝑤 · ∑𝑡−1
𝑠=1 𝑔𝑠 + 𝑅(𝑤), so that 𝑤𝑡 = arg min𝑤∈W Φ𝑡 (𝑤). We first write

𝑇∑︁
𝑡=1

𝑔𝑡 · 𝑤𝑡+1 =

𝑇∑︁
𝑡=1

(Φ𝑡+1(𝑤𝑡+1) −Φ𝑡 (𝑤𝑡+1))

= Φ𝑇+1(𝑤𝑇+1) −Φ1(𝑤1) +
𝑇∑︁
𝑡=1

(Φ𝑡 (𝑤𝑡 ) −Φ𝑡 (𝑤𝑡+1)).

Since 𝑤𝑡 is the minimizer of Φ𝑡 over W, first-order optimality conditions imply

Φ𝑡 (𝑤𝑡 ) −Φ𝑡 (𝑤𝑡+1) = −∇Φ𝑡 (𝑤𝑡 ) · (𝑤𝑡+1 − 𝑤𝑡 ) − 𝐷Φ𝑡
(𝑤𝑡+1, 𝑤𝑡 )

≤ −𝐷Φ𝑡
(𝑤𝑡+1, 𝑤𝑡 )

= −𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ),

where 𝐷Φ(𝑤, 𝑤′) ≜ Φ(𝑤) − Φ(𝑤′) − ∇Φ(𝑤′) · (𝑤 − 𝑤′) denotes the Bregman divergence with
respect to Φ, and we have used the fact that the Bregman divergence is invariant to linear terms. On
the other hand, since 𝑤𝑇+1 is the minimizer of Φ𝑇+1, we have that

𝑇∑︁
𝑡=1

𝑔𝑡 · 𝑤★ = Φ𝑇+1(𝑤★) − 𝑅(𝑤★) ≥ Φ𝑇+1(𝑤𝑇+1) − 𝑅(𝑤★).

Combining inequalities and observing that Φ1(𝑤1) = 𝑅(𝑤1), we obtain

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡+1 − 𝑤★) ≤ 𝑅(𝑤★) − 𝑅(𝑤1) −
𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ).
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On the other hand, a Taylor expansion of 𝑅(·) around 𝑤𝑡 with an explicit second-order remainder
term implies that, for some intermediate point 𝑧𝑡 ∈ [𝑤𝑡 , 𝑤𝑡+1], it holds that

𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) = 1
2 (𝑤𝑡+1 − 𝑤𝑡 )T ∇2𝑅(𝑧𝑡 ) (𝑤𝑡+1 − 𝑤𝑡 ) = 1

2 ∥𝑤𝑡+1 − 𝑤𝑡 ∥2
𝑧𝑡
.

An application of Holder’s inequality then gives

𝑔𝑡 · (𝑤𝑡 − 𝑤𝑡+1) ≤ ∥𝑔𝑡 ∥∗𝑧𝑡 ∥𝑤𝑡 − 𝑤𝑡+1∥𝑧𝑡
≤ 1

2 (∥𝑔𝑡 ∥
∗
𝑧𝑡
)2 + 1

2 ∥𝑤𝑡 − 𝑤𝑡+1∥2
𝑧𝑡

= 1
2 (∥𝑔𝑡 ∥

∗
𝑧𝑡
)2 + 𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ).

The proof is finalized by summing over 𝑡 = 1, . . . , 𝑇 and adding to the inequality above.

We can now prove Lemma 4.
Proof Using Theorem 6, the fact that 𝜓𝜈 (·) is nonnegative and 𝐻𝜂 (·) is non-positive, we obtain
that for any 𝑝★ ∈ Δ𝜀

𝑁
:

𝑇∑︁
𝑡=1

𝑔𝑡 ·
(
𝑝𝑡 − 𝑝★

)
≤ 𝜓𝜈 (𝑝★) − 𝐻𝜂 (𝑝1) +

1
2

𝑇∑︁
𝑡=1

(∥𝑔𝑡 ∥∗𝑧𝑡 )
2.

The proof is now concluded once we make use of the fact that 𝜓𝜈 (·) ≤ 𝑁
𝜈

log 1
𝜀

over Δ𝜀
𝑁

, 𝐻𝜂 (𝑝1) =
− 1
𝜂

log 𝑁 and the fact that ∇2𝑅𝜂,𝜈 (·) ⪰ ∇2𝐻𝜂 (·).

A.2. Proof of Lemma 5

Finally, we provide a proof of Lemma 5 that establishes a crucial stability property of the FTRL
iterates when employing log-barrier regularization. This lemma is analogous, e.g., to Lemma 12
of Jin and Luo (2020) and the proof is along similar lines. Throughout the proof, we suppress the
subscripts 𝜂, 𝜈 of 𝑅𝜂,𝜈 (·), 𝐻𝜂 (·) and 𝜓𝜈 (·) as they are clear from the context.
Proof [Proof of Lemma 5] For any 𝑡 denote

𝐹𝑡 (𝑝) = 𝑝 ·
𝑡−1∑︁
𝑠=1

𝑐𝑠 + 𝑅(𝑝),

i.e., 𝐹𝑡 is the potential function minimized by Algorithm 1 at round 𝑡. Note that

∇2𝜓(𝑝) = 1
𝜈

diag
(
𝑝2

1, . . . , 𝑝
2
𝑁

)
∀𝑝 ∈ Δ𝜀𝑁 .

Thus for all 𝑝, 𝑝′, 𝑝′′ ∈ Δ𝜀
𝑁

it holds that

∥𝑝′ − 𝑝′′∥2
∇2𝜓 (𝑝) =

1
𝜈

𝑁∑︁
𝑖=1

(
𝑝′
𝑖
− 𝑝′′

𝑖

)2

𝑝2
𝑖

.

Denote 𝛼 = 1
8𝜈 . To complete the proof, it suffices to show that ∥𝑝𝑡+1 − 𝑝𝑡 ∥2

∇2𝜓 (𝑝𝑡 ) ≤
(𝛼−1)2

𝜈
. It then

suffices to show that for any 𝑝′ ∈ Δ𝜀
𝑁

with ∥𝑝′ − 𝑝𝑡 ∥2
∇2𝜓 (𝑝𝑡 ) = (𝛼 − 1)2/𝜈 it holds that 𝐹𝑡+1(𝑝′) ≥
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𝐹𝑡+1(𝑝𝑡 ), the reason being that the latter implies that 𝑝𝑡+1, which minimizes the convex function
𝐹𝑡+1, must be contained in the convex set {𝑝 ∈ Δ𝜀

𝑁
: ∥𝑝 − 𝑝𝑡 ∥2

∇2𝜓 (𝑝𝑡 ) ≤ (𝛼 − 1)2/𝜈)}. With that in

mind, fix 𝑝′ ∈ Δ𝜀
𝑁

with ∥𝑝′ − 𝑝𝑡 ∥2
∇2𝜓 (𝑝𝑡 ) = (𝛼 − 1)2/𝜈. We lower bound 𝐹𝑡+1(𝑝′) as follows:

𝐹𝑡+1(𝑝′) = 𝐹𝑡+1(𝑝𝑡 ) + ∇𝐹𝑡+1(𝑝𝑡 ) · (𝑝′ − 𝑝𝑡 ) +
1
2
∥𝑝′ − 𝑝𝑡 ∥2

∇2𝑅 ( �̃�)

= 𝐹𝑡+1(𝑝𝑡 ) + ∇𝐹𝑡 (𝑝𝑡 ) · (𝑝′ − 𝑝𝑡 ) + 𝑐𝑡 · (𝑝′ − 𝑝𝑡 ) +
1
2
∥𝑝′ − 𝑝𝑡 ∥2

∇2𝑅 ( �̃�)

≥ 𝐹𝑡+1(𝑝𝑡 ) + 𝑐𝑡 · (𝑝′ − 𝑝𝑡 ) +
1
2
∥𝑝′ − 𝑝𝑡 ∥2

∇2𝜓 ( �̃�) ,

where the first equality is a Taylor expansion of 𝐹𝑡+1 about 𝑝𝑡 , with 𝑝 being a point on the line
segment connecting 𝑝𝑡 and 𝑝′, and the last inequality follows from a first-order optimality condition
as 𝑝𝑡 is the minimizer of 𝐹𝑡 , and the fact that ∇2𝑅(𝑝) ⪰ ∇2𝜓(𝑝). Note that since ∥𝑝′ − 𝑝𝑡 ∥2

∇2𝜓 (𝑝𝑡 ) =

(𝛼 − 1)2/𝜈, using the same argument as in the start of the proof we can conclude that 𝑝′
𝑡 ,𝑖

≤ 𝛼𝑝𝑡 ,𝑖
for all 𝑖 ∈ [𝑁]. Since 𝑝 lies between 𝑝𝑡 and 𝑝′ we also conclude that 𝑝𝑖 ≤ 𝛼𝑝𝑡 ,𝑖 for all 𝑖 ∈ [𝑁].
Thus we can lower bound the final term as follows:

1
2
∥𝑝′ − 𝑝𝑡 ∥2

∇2𝜓 ( �̃�) =
1
2𝜈

𝑁∑︁
𝑖=1

(
𝑝′
𝑖
− 𝑝𝑡 ,𝑖

)2

𝑝2
𝑖

≥ 1
2𝜈𝛼2

𝑁∑︁
𝑖=1

(
𝑝′
𝑖
− 𝑝𝑡 ,𝑖

)2

𝑝2
𝑡 ,𝑖

=
1

2𝛼2 ∥𝑝
′ − 𝑝𝑡 ∥2

∇2𝜓 (𝑝𝑡 )

=
1
2𝜈

(
𝛼 − 1
𝛼

)2
.

To conclude the proof, we need to show that 𝑐𝑡 · (𝑝′ − 𝑝𝑡 ) ≥ − 1
2𝜈

(
𝛼−1
𝛼

)2
. For 𝑎 ∈ A denote by 𝑞𝑡 ,𝑎

the probability that Algorithm 1 picks action 𝑎 at round 𝑡. We then have,

𝑐𝑡 · (𝑝′ − 𝑝𝑡 ) =
ℓ𝑡 (𝑎𝑡 )
𝑞𝑡 ,𝑎𝑡

𝑁∑︁
𝑖=1

(
𝑝′𝑡 ,𝑖 − 𝑝𝑡 ,𝑖

)
𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]

≥ ℓ𝑡 (𝑎𝑡 )
𝑞𝑡 ,𝑎𝑡

𝑁∑︁
𝑖=1

𝑝′𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]

≥ 𝛼ℓ𝑡 (𝑎𝑡 )
𝑞𝑡 ,𝑎𝑡

𝑁∑︁
𝑖=1

𝑝𝑡 ,𝑖𝕀[𝜋𝑖 (𝑥𝑡 ) = 𝑎𝑡 ]

= 𝛼ℓ𝑡 (𝑎𝑡 ) ≥ −𝛼,

where the first inequality follows from the fact that the losses are non-positive, the second inequality
by the fact that 𝑝′

𝑡 ,𝑖
≤ 𝛼𝑝𝑡 ,𝑖 and the last inequality by the fact that ∥ℓ𝑡 ∥∞ ≤ 1. The proof is concluded

once we show that 𝛼 ≤ 1
2𝜈

(
𝛼−1
𝛼

)2
which clearly holds if 𝛼 − 1 ≥ 𝛼/2, i.e. 𝛼 ≥ 2.
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Appendix B. Proofs of Section 4

B.1. Construction of the hard instances

Consider instances with label set Y = {0, 1, . . . , 𝐾} and a finite set of examples X = {1, 2, . . . , 𝐶},
where the first label 𝑦 = 0 is a “default label” and has an expected reward of 1

3 across all the
instances we construct, independently of the example. The instances we consider are each labeled
with a specific example-label pair (𝑥, 𝑦) with 𝑦 ≠ 0, and are denoted by I𝑥,𝑦 . The underlying policy
class H will be of size 𝐶𝐾 + 1, defined via

H = {ℎ0} ∪
{
ℎ𝑥,𝑦 | 𝑥 ∈ X, 𝑦 ∈ Y \ {0}

}
,

where ℎ0 is the hypothesis which always predicts the default label 𝑦 = 0, and ℎ𝑥,𝑦 are given by

ℎ𝑥,𝑦 (𝑥′) =
{
𝑦 𝑥′ = 𝑥,

0 𝑥′ ≠ 𝑥.

Definition of I𝑥,𝑦 . At every round 𝑡, An example 𝑥𝑡 is sampled uniformly at random from X. The
reward vectors 𝑟𝑡 (· | 𝑥𝑡 ) are sampled via

For 𝑥𝑡 ≠ 𝑥: 𝑟𝑡 ( · | 𝑥𝑡 ) =
{
𝑒0 w.p. 1

3 ;
𝑒𝑦′ , 𝑦′ ≠ 0 w.p. 2

3𝐾 ,

For 𝑥𝑡 = 𝑥: 𝑟𝑡 ( · | 𝑥𝑡 ) =


𝑒0 w.p. 1

3 ;
𝑒𝑦 w.p. 2

3 − 𝐾−1
𝐾2 ;

𝑒𝑦′ , 𝑦′ ∉ {0, 𝑦} w.p. 1
𝐾2 ,

where 𝑒 𝑗 denotes the 𝑗’th standard basis vector in ℝ𝐾+1. We also define an additional instance I0
in which the reward vector is sampled independently of the example via

𝑟𝑡 ( · | 𝑥𝑡 ) =
{
𝑒0 w.p. 1

3 ;
𝑒𝑦 , 𝑦 ≠ 0 w.p. 2

3𝐾 .

Our aim is to show that any online algorithm 𝐴𝑙𝑔 must incur the desired regret lower bound on
one of the 𝐶𝐾 + 1 instances constructed above.

B.2. Proof of Theorem 3

We turn to proving Theorem 3 based on the construction detailed above. First, let us establish
some additional notation. Given a deterministic algorithm 𝐴𝑙𝑔 we denote by ℙ𝑥,𝑦 [·] the probability
distribution over length-𝑇 sequences of example-reward pairs induced by the instance I𝑥,𝑦 and the
decisions of 𝐴𝑙𝑔, and similarly ℙ0 [·] for I0. We also denote by 𝔼𝑥,𝑦 [·] and 𝔼0 [·] expectations taken
with respect to ℙ𝑥,𝑦 [·] and ℙ0 [·] respectively. Let the random variable 𝑁𝑥,𝑦 denote the number of
times the example 𝑥 was sampled and 𝐴𝑙𝑔 predicted the label 𝑦. Additionally, denote the history up
to round 𝑡 by

𝜏𝑡 B (𝑥1, 𝑟1, . . . , 𝑥𝑡 , 𝑟𝑡 ),
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where we define 𝜏0 B ∅. We emphasize that the algorithm’s predictions 𝑦𝑡 are not included in the
definition of a history, since 𝑦𝑡 is deterministic given 𝜏𝑡−1 and 𝑥𝑡 .

The first step in the proof of Theorem 3 is in establishing the following key lemma, whose proof
can be found in Section B.3:

Lemma 7 Fix a deterministic algorithm 𝐴𝑙𝑔. For any (𝑥, 𝑦) ∈ X × Y with 𝑦 ≠ 0 it holds that

∥ℙ𝑥,𝑦 − ℙ0∥1 ≤ 2
√√
𝔼0 [𝑁𝑥,𝑦] +

log𝐾
𝐾

∑︁
𝑦′∉{0,𝑦}

𝔼0 [𝑁𝑥,𝑦′],

where ∥·∥1 denotes the total variation distance between distributions.

Informally, Lemma 7 states that for distinguishing between the instances I𝑥,𝑦 and I0 (equiva-
lently, between the distributions ℙ𝑥,𝑦 and ℙ0), any algorithm would either need a constant number
of samples from the reward at (𝑥, 𝑦), or roughly 𝐾 samples of the rewards at (𝑥, 𝑦′) for 𝑦′ ≠ 𝑦 (in
both cases, in expectation over ℙ0). As our analysis will show, in each of these cases (and in any
combination of the two), the regret incurred while collecting samples is significant.
Proof [Proof of Theorem 3] In the case when 𝑁 ≤

√
𝑇 , it is straightforward to construct a 2-

armed bandit instance in which 𝐴𝑙𝑔 must incur Ω(
√
𝑇) regret. We therefore focus on the case

when 𝑁 ≥
√
𝑇 . We begin by making the observation that by Yao’s principle, it suffices to consider

deterministic algorithms since the instances we defined do not depend on the algorithm’s decisions.
With that in mind, fix a deterministic algorithm 𝐴𝑙𝑔 and denote by 𝐺𝐴𝑙𝑔 its total reward. Given
an instance I𝑥,𝑦 , denote by 𝐺∗

𝑥,𝑦 the total reward of the optimal policy in the instance I𝑥,𝑦 . Also
denote by 𝐺∗ the total reward of the policy that always predicts 𝑦 = 0, i.e., the optimal policy in the
instance I0. We separate the analysis into two cases according to the behavior of 𝐴𝑙𝑔. The first case
is relatively straightforward, where we assume that 𝔼0 [𝑁0] ≤ 𝑇 − 𝑇/𝐶. In this case, we claim that
the regret that 𝐴𝑙𝑔 suffers in the instance I0 is at least 𝑇/6𝐶. Indeed, we have:

𝔼0 [R𝑇 (H)] = 𝔼0
[
𝐺∗ − 𝐺𝐴𝑙𝑔

]
=
𝑇

3
−

(
1
3
· 𝔼0 [𝑁0] +

2
3𝐾

(𝑇 − 𝔼0 [𝑁0])
)

=
𝑇

3
−

(
1
3
− 2

3𝐾

)
𝔼0 [𝑁0] −

2𝑇
3𝐾

≥ 𝑇

3
−

(
1
3
− 2

3𝐾

) (
𝑇 − 𝑇

𝐶

)
− 2𝑇

3𝐾

=
𝑇

𝐶

(
1
3
− 2

3𝐾

)
≥ 𝑇

6𝐶
,

where the last inequality holds for 𝐾 ≥ 4. Setting 𝐶 = min{𝑁/𝐾,
√︁
𝑇/𝐾} we obtain the desired

regret lower bound for 𝐴𝑙𝑔 in the instance I0:

𝔼0 [R𝑇 (H)] ≥ 1
6

min{𝑁,
√
𝐾𝑇}.
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Assume now that 𝔼0 [𝑁0] ≥ 𝑇 − 𝑇/𝐶. In this case, we show that there exists (𝑥, 𝑦) ∈ X × Y
with 𝑦 ≠ 0 such that 𝐴𝑙𝑔 suffers sufficiently large regret on I𝑥,𝑦 . Denote by 𝐺∗

𝑥,𝑦 the total reward of
ℎ𝑥,𝑦 which is the optimal hypothesis in the instance I𝑥,𝑦 , and the total reward of 𝐴𝑙𝑔 by 𝐺𝐴𝑙𝑔. Note
that ℎ𝑥,𝑦 always predicts the default label 𝑦′ = 0 as long as 𝑥𝑡 ≠ 𝑥, and otherwise predicts 𝑦′ = 𝑦.
Therefore:

𝔼𝑥,𝑦 [𝐺∗
𝑥,𝑦] =

(
2
3
− 𝐾 − 1

𝐾2

)
𝑇

𝐶
+

(
1 − 1

𝐶

)
𝑇

3
≥ 1

2
𝑇

𝐶
+

(
1 − 1

𝐶

)
𝑇

3
=
𝑇

3
+ 𝑇

6𝐶
, (5)

where the inequality uses the fact that 𝐾 ≥ 5. The expected reward of the algorithm 𝐴𝑙𝑔 in I𝑥,𝑦 is
bounded by

𝔼𝑥,𝑦 [𝐺𝐴𝑙𝑔]

=
1
3
𝔼𝑥,𝑦 [𝑁0] +

(
2
3
− 𝐾 − 1

𝐾2

)
𝔼𝑥,𝑦 [𝑁𝑥,𝑦] +

1
𝐾2

∑︁
𝑦′≠0

𝔼𝑥,𝑦 [𝑁𝑥,𝑦′] +
2

3𝐾

∑︁
𝑥′≠𝑥

∑︁
𝑦′≠0

𝔼𝑥,𝑦 [𝑁𝑥′ ,𝑦′]

≤ 1
3
𝔼𝑥,𝑦 [𝑁0] +

2
3
𝔼𝑥,𝑦 [𝑁𝑥,𝑦] +

2
3𝐾

(
𝑇 − 𝔼𝑥,𝑦 [𝑁0] − 𝔼𝑥,𝑦 [𝑁𝑥,𝑦]

)
=

2𝑇
3𝐾

+
(
1
3
− 2

3𝑘

)
𝔼𝑥,𝑦 [𝑁0] +

(
2
3
− 2

3𝐾

)
𝔼𝑥,𝑦 [𝑁𝑥,𝑦],

(6)

where in the inequality we have used the fact that 𝑁0 +𝑁𝑥,𝑦 +
∑
𝑦′≠0 𝑁𝑥,𝑦′ +

∑
𝑥′≠𝑥

∑
𝑦′≠𝑦 𝑁𝑥′ ,𝑦′ = 𝑇 .

Denote by ℙ[·] the distribution induced by sampling an instance among the instances I𝑥,𝑦 uniformly
at random, i.e., ℙ[·] = 1

𝐶𝐾

∑
𝑥,𝑦 ℙ𝑥,𝑦 [·] (where the sum over 𝑦 doesn’t include the default label),

and let 𝔼[·] denote the expectation with respect to this distribution. Averaging the above over the
pairs (𝑥, 𝑦) and using the fact that 𝑁0 is bounded by 𝑇 , the total reward of 𝐴𝑙𝑔 on the average
instance is bounded by

𝔼[𝐺𝐴𝑙𝑔] ≤
2𝑇
3𝐾

+
(
1
3
− 2

3𝐾

)
1
𝐶𝐾

∑︁
𝑥,𝑦

𝔼𝑥,𝑦 [𝑁0] +
2

3𝐶𝐾

∑︁
𝑥,𝑦

𝔼𝑥,𝑦
[
𝑁𝑥,𝑦

]
≤ 2𝑇

3𝐾
+

(
1
3
− 2

3𝐾

)
𝑇 + 2

3𝐶𝐾

∑︁
𝑥,𝑦

𝔼𝑥,𝑦
[
𝑁𝑥,𝑦

]
=
𝑇

3
+ 2

3𝐶𝐾

∑︁
𝑥,𝑦

𝔼𝑥,𝑦
[
𝑁𝑥,𝑦

]
.

We now define the random variable 𝑁𝑥,𝑦 by

𝑁𝑥,𝑦 =
∑︁
𝑡

𝔼𝑥,𝑦
[
1(𝑦𝑡 = 𝑦) | 𝑥𝑡 = 𝑥, 𝜏𝑡−1] ,

(this is a random variable that depends on the randomness in the histories 𝜏𝑡−1). Now, observe that
𝑁𝑥,𝑦 and 𝑁𝑥,𝑦 are related as follows:

𝔼𝑥,𝑦 [𝑁𝑥,𝑦] =
∑︁
𝑡

ℙ𝑥,𝑦 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦]

=
∑︁
𝑡

ℙ𝑥,𝑦 [𝑥𝑡 = 𝑥]ℙ𝑥,𝑦 [𝑦𝑡 = 𝑦 | 𝑥𝑡 = 𝑥]
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=
1
𝐶

∑︁
𝑡

ℙ𝑥,𝑦 [𝑦𝑡 = 𝑦 | 𝑥𝑡 = 𝑥]

=
1
𝐶

∑︁
𝑡

𝔼𝑥,𝑦
[
𝔼𝑥,𝑦 [1(𝑦𝑡 = 𝑦) | 𝑥𝑡 = 𝑥, 𝜏𝑡−1]

]
=

1
𝐶
𝔼𝑥,𝑦

[
𝑁𝑥,𝑦

]
.

Therefore the reward of 𝐴𝑙𝑔 on the average instance is bounded by

𝔼[𝐺𝐴] ≤
𝑇

3
+ 2

3𝐶2𝐾

∑︁
𝑥,𝑦

𝔼𝑥,𝑦
[
𝑁𝑥,𝑦

]
.

Using the fact that 𝑁𝑥,𝑦 are (deterministically) bounded by 𝑇 , it is straightforward to show that

𝔼𝑥,𝑦 [𝑁𝑥,𝑦] − 𝔼0 [𝑁𝑥,𝑦] ≤
𝑇

2
∥ℙ𝑥,𝑦 − ℙ0∥1,

We can use this fact together with Lemma 7 as follows:

𝔼[𝐺𝐴𝑙𝑔] ≤
𝑇

3
+ 2

3𝐶2𝐾

∑︁
𝑥,𝑦

𝔼0
[
𝑁𝑥,𝑦

]
+ 1

3
𝑇

𝐶2𝐾

∑︁
𝑥,𝑦

∥ℙ𝑥,𝑦 − ℙ0∥1

≤ 𝑇

3
+ 2𝑇

3𝐶𝐾
+ 2

3
𝑇

𝐶2𝐾

∑︁
𝑥,𝑦

√︄
log𝐾 · 𝔼0 [𝑁𝑥,𝑦] +

1
𝐾

∑︁
𝑦′≠𝑦

𝔼0 [𝑁𝑥,𝑦′]

≤ 𝑇

3
+ 2𝑇

3𝐶𝐾
+

2𝑇
√︁

log𝐾
3𝐶2𝐾

∑︁
𝑥,𝑦

√︄
𝔼0 [𝑁𝑥,𝑦] +

1
𝐾

∑︁
𝑦′≠𝑦

𝔼0 [𝑁𝑥,𝑦′]

where in the second line we have also used the fact that
∑
𝑗 𝑁𝑥, 𝑗 ≤ 𝑇 . Using the Cauchy-Schwarz

inequality, we further bound the reward of 𝐴𝑙𝑔 by

𝔼[𝐺𝐴𝑙𝑔] ≤
𝑇

3
+ 2𝑇

3𝐶𝐾
+

2𝑇
√︁

log𝐾
3𝐶3/2

√
𝐾

√︄∑︁
𝑥,𝑦

𝔼0 [𝑁𝑥,𝑦] +
1
𝐾

∑︁
𝑦

∑︁
𝑥

∑︁
𝑦′≠𝑦

𝔼0 [𝑁𝑥,𝑦′]

≤ 𝑇

3
+ 2𝑇

3𝐶𝐾
+

4𝑇
√︁

log𝐾
3𝐶3/2

√
𝐾

√︁
𝑇 − 𝔼0 [𝑁0],

where in the second line we used the fact that the second summand in the square root is an average
of terms bounded by 𝑇 −𝔼0 [𝑁0] each. We now use our assumption that 𝔼0 [𝑁0] ≥ 𝑇 −𝑇/𝐶 to obtain

𝔼[𝐺𝐴𝑙𝑔] ≤
𝑇

3
+ 2𝑇

3𝐶𝐾
+

4𝑇3/2√︁log𝐾
3𝐶2

√
𝐾

≤ 𝑇

3
+ 𝑇

9𝐶
+

4𝑇3/2√︁log𝐾
3𝐶2

√
𝐾

,

where we have used the assumption that 𝐾 ≥ 6. Using the probabilistic method argument we
conclude that there exists some instance labeled by a example-label pair (𝑥, 𝑦), I𝑥,𝑦 , in which the
total reward of 𝐴𝑙𝑔 is bounded by

𝔼𝑥,𝑦 [𝐺𝐴𝑙𝑔] ≤
𝑇

3
+ 𝑇

9𝐶
+

4𝑇3/2√︁log𝐾
3𝐶2

√
𝐾

.
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Putting this together with Eq. (5), we obtain the following regret lower bound for 𝐴:

𝔼𝑥,𝑦
[
𝐺∗
𝑥,𝑦 − 𝐺𝐴

]
≥ 𝑇

18𝐶
−

4𝑇3/2√︁log𝐾
3𝐶2

√
𝐾

.

Setting 𝐶 = 100 min{(𝑁/𝐾)
√︁

log𝐾,
√︁
(𝑇/𝐾) log𝐾}, we obtain the desired regret lower bound:

𝔼0 [R𝑇 (H)] ≥ 10−4√︁
log𝐾

min
{
𝑁,

√
𝐾𝑇

}
.

B.3. Proof of Lemma 7

The proof uses the following notation. Given two distributions 𝑃 and 𝑄 over a common discrete
domain W, the KL divergence between 𝑃 and 𝑄 is given by

KL(𝑃,𝑄) =
∑︁
𝑤∈W

𝑃(𝑤) log
𝑃(𝑤)
𝑄(𝑤) = 𝔼𝑤∼𝑃

[
log

𝑃(𝑤)
𝑄(𝑤)

]
,

and given a random variable 𝑍 with distribution D𝑍 , the conditional KL divergence between 𝑃 and
𝑄 conditioned on 𝑍 is given by

KL(𝑃(· | 𝑍), 𝑄(· | 𝑍)) = 𝔼𝑧∼D𝑍
[KL(𝑃(· | 𝑍 = 𝑧), 𝑄(· | 𝑍 = 𝑧))] .

Proof [Proof of Lemma 7] Using Pinsker’s inequality, the squared total variation distance is bounded
by the KL divergence:

∥ℙ𝑥,𝑦 − ℙ0∥2
1 ≤ 2 · KL

(
ℙ0,ℙ𝑥,𝑦

)
,

so it suffices to provide an upper bound on the latter. In what follows, given 𝑝, 𝑞 ∈ (0, 1) we denote
by KL(𝑝, 𝑞) the KL-divergence of two independent Bernoulli variables with parameters 𝑝 and 𝑞
respectively. Using the chain rule for relative entropy (e.g., Theorem 2.5.3 of Cover and Thomas,
1991), we have that

KL
(
ℙ0,ℙ𝑥,𝑦

)
=

∑︁
𝑡

KL
(
ℙ0

[
𝑟𝑡 | 𝜏𝑡−1, 𝑥𝑡

]
,ℙ𝑥,𝑦

[
𝑟𝑡 | 𝜏𝑡−1, 𝑥𝑡

] )
=

∑︁
𝑡

ℙ0 [𝑥𝑡 = 𝑥]KL
(
ℙ0

[
𝑟𝑡 | 𝜏𝑡−1, 𝑥𝑡 = 𝑥

]
,ℙ𝑥,𝑦

[
𝑟𝑡 | 𝜏𝑡−1, 𝑥𝑡 = 𝑥

] )
,

where in the second line we used the fact that the KL divergence terms are zero unless 𝑥𝑡 = 𝑥. To
further simplfy this expression, we note that the prediction of 𝐴 at round 𝑡, 𝑦𝑡 , is a deterministic
function of 𝜏𝑡−1 and 𝑥𝑡 , and also the distribution of the reward 𝑟𝑡 depends only on 𝑥𝑡 and 𝑦𝑡 , not on
the entire history before that. Therefore,

KL
(
ℙ0,ℙ𝑥,𝑦

)
=

∑︁
𝑡

ℙ0 [𝑥𝑡 = 𝑥]KL
(
ℙ0 [𝑟𝑡 | 𝑥𝑡 = 𝑥, 𝑦𝑡 ],ℙ𝑥,𝑦 [𝑟𝑡 | 𝑥𝑡 = 𝑥, 𝑦𝑡 ]

)
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=
∑︁
𝑡

∑︁
𝑦′

ℙ0 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦′]KL
(
ℙ0 [𝑟𝑡 | 𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦′],ℙ𝑥,𝑦 [𝑟𝑡 | 𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦′]

)
=

∑︁
𝑡

ℙ0 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦]KL
(

2
3𝐾 ,

2
3 − 𝐾−1

𝐾2

)
+

∑︁
𝑡

∑︁
𝑦′∉{0,𝑦}

ℙ0 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦′]KL
(

2
3𝐾 ,

1
𝐾2

)
, (7)

where in the second line we used the fact that the reward distribution whenever 𝑦𝑡 = 0 does not
depend on the instance. We now make use of the following upper bounds on the KL divergence
between Bernoulli random variables:

KL
(

2
3𝐾

,
2
3
− 𝐾 − 1

𝐾2

)
=

2
3𝐾

log

(
2

3𝐾
2
3 − 𝐾−1

𝐾2

)
+

(
1 − 2

3𝐾

)
log

(
1 − 2

3𝐾
1
3 + 𝐾−1

𝐾2

)
≤ log 3 ≤ 2,

and

KL
(

2
3𝐾

,
1
𝐾2

)
=

2
3𝐾

log
(
2𝐾
3

)
+

(
1 − 2

3𝐾

)
log

(
1 − 2

3𝐾

1 − 1
𝐾2

)
≤ 4

3𝐾
log𝐾 ≤ 2

log𝐾
𝐾

.

Plugging these two bounds into Eq. (7), we have

KL
(
ℙ0,ℙ𝑥,𝑦

)
≤ 2

∑︁
𝑡

ℙ0 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦] + 2
log𝐾
𝐾

∑︁
𝑦′∉{0,𝑦}

∑︁
𝑡

ℙ0 [𝑥𝑡 = 𝑥, 𝑦𝑡 = 𝑦′]

= 2 · 𝔼0 [𝑁𝑥,𝑦] + 2
log𝐾
𝐾

∑︁
𝑦′∉{0,𝑦}

𝔼0 [𝑁𝑥,𝑦′],

concluding the proof.
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