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Abstract
We introduce a novel concept of convergence for Markovian processes within Orlicz spaces, ex-
tending beyond the conventional approach associated with Lp spaces. After showing that Marko-
vian operators are contractive in Orlicz spaces, our technical contribution is an upper bound on
their contraction coefficient, which admits a closed-form expression. The bound is tight in some
settings, and it recovers well-known results, such as the connection between contraction and ergod-
icity, ultra-mixing and Doeblin’s minorisation. Moreover, we can define a notion of convergence
of Markov processes in Orlicz spaces, which depends on the corresponding contraction coefficient.

The key novelty comes from duality considerations: the convergence of a Markovian pro-
cess determined by K depends on the contraction coefficient of its dual K⋆, which can in turn be
bounded by considering appropriate nested norms of densities of K⋆ with respect to the stationary
measure. Our approach stands out as the first of its kind, as it does not rely on the existence of a
spectral gap. Specialising our approach to Lp spaces leads to a significant improvement upon clas-
sical Riesz-Thorin’s interpolation methods. We present the following applications of the proposed
framework:

1. Tighter bounds on the mixing time of Markovian processes: one can relate the contraction
coefficient of the dual operator to the mixing time of the corresponding Markov chain re-
gardless of the norm chosen. Consequently, our tighter bound on the contraction coefficient
implies a tighter bound on the mixing time. We offer a result that provides an intuitive
understanding of what it means to be close in a specific norm (relating the probability of
any event with the probability of the same event under the stationary measure π and a ψ-
Orlicz/Amemiya-norm). We then focus on Lp norms and show that asking for a bounded
norm with larger p guarantees a faster decay in the probability. This is particularly relevant
for exponentially decaying probabilities under π. Moreover, by exploiting the flexibility
offered by Orlicz spaces, we can tackle settings where the stationary distribution is heavy-
tailed, a severely under-studied setup.

2. Improved concentration bounds for MCMC methods leading to improved lower bounds on
the burn-in period: by leveraging Lp-norms with large p and our results on the contrac-
tion coefficient, similar to the approach undertaken for the mixing times, we can provide
improved exponential concentration bounds for MCMC methods.

3. Improved concentration bounds for sequences of Markovian random variables: we show
how our results can be used to outperform existing bounds based on a change of measure
technique for random variables with a Markovian dependence. In particular, we can prove
exponential concentration in new settings (inaccessible to earlier approaches) and improve
the rate in others.
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Krzystof Łatuszyński, Błażej Miasojedow, and Wojciech Niemiro. Nonasymptotic bounds on the
estimation error of mcmc algorithms. Bernoulli, 19(5A):2033–2066, 2013.

3


