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Abstract
One of the most natural approaches to reinforcement learning (RL) with function approximation
is value iteration, which inductively generates approximations to the optimal value function by
solving a sequence of regression problems. To ensure the success of value iteration, it is typically
assumed that Bellman completeness holds, which ensures that these regression problems are well-
specified. We study the problem of learning an optimal policy under Bellman completeness in the
online model of RL with linear function approximation. In the linear setting, while statistically
efficient algorithms are known under Bellman completeness (e.g., (Jiang et al., 2017; Zanette et al.,
2020a)), these algorithms all rely on the principle of global optimism which requires solving a
nonconvex optimization problem. In particular, it has remained open as to whether computationally
efficient algorithms exist. In this paper we give the first polynomial-time algorithm for RL under
linear Bellman completeness when the number of actions is any constant.
Keywords: Reinforcement learning, Linear Bellman completeness, Optimism

1. Introduction
Reinforcement learning (RL) describes the problem of solving sequential decision-making problems
in a stochastically changing environment, and is typically studied using the formalism of Markov
Decision Processes (MDPs). In an MDP, a learning agent must choose a sequence of actions over
some number of time steps, each of which affects the state of the environment and potentially yields
some reward to the agent. The agent aims to find a policy, or a mapping that describes which
action to take at each state, that maximizes its expected total reward. In order for RL to yield
effective learning strategies in its various application domains, including robotics (Gu et al., 2017),
economics (Zheng et al., 2022), and healthcare (Yu et al., 2021), it is necessary to come up with
efficient strategies for exploring complex state spaces, which may be infinite or exponentially large.

A general approach to RL, which dates back decades (Bradtke and Barto, 1996; Melo and
Ribeiro, 2007; Sutton and Barto, 2018) and yet still forms the basis for many current empirical
approaches (Hasselt et al., 2016; Schulman et al., 2017), involves the use of value function approx-
imation. Recall that the optimal value function maps a state-action pair to the agent’s expected re-
ward under the optimal policy starting from that state-action pair. Then this approach posits that the
optimal value function belongs to some known function class F , such as a class of linear functions
or neural networks. A key question is: under what assumptions on the class F can we efficiently
learn a near-optimal policy, i.e., one with near-maximal expected reward?
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Value iteration and Bellman completeness. A popular and time-tested approach to finding a
near-optimal policy with value function approximation is value iteration. To explain this procedure,
we consider the finite-horizon setting, whereby interactions with the environment occur in episodes
lastingH time steps. Letting X denote the state space andA denote the action space, value iteration
computes mappings Q̂h : X × A → R in a backwards-inductive manner, i.e., for h = H,H −
1, . . . , 1. The values Q̂h(x, a) should be interpreted as estimates of the optimal value1 at step h
given that the state-action pair taken at step h is (x, a). Since the environment’s reward functions
and transitions are unknown, Q̂h must be estimated empirically. Given a dataset D consisting of
tuples (xh, ah, rh, xh+1) of states, actions, and rewards drawn from the environment at step h,
together with the subsequent state at step h + 1, Q̂h is typically chosen to be the function in F
which minimizes the following square-loss objective whose labels are defined in terms of Q̂h+1:

Q̂h := arg min
Qh∈F

∑
(xh,ah,rh,xh+1)∈D

(
Qh(xh, ah)−

(
rh + max

a′
Q̂h+1(xh+1, a

′)

))2

. (1)

The procedure defined by (1) is often known as least-squares value iteration (LSVI) (Bradtke and
Barto, 1996; Osband et al., 2016). A natural condition under which LSVI might yield good estimates
of the optimal value function, and thereby a near-optimal policy, is that the least-squares problem
(1) be well-specified. This requires that for any Q̂h+1 ∈ F , there is some Q′h ∈ F so that, for all
xh ∈ X , ah ∈ A,

Q′h(xh, ah) = E
[
rh + max

a′
Q̂h+1(xh+1, a

′) | (xh, ah)

]
. (2)

(2) is known to be necessary for LSVI to succeed, in the sense that without it, the value functions
computed by LSVI may be wildly divergent (Tsitsiklis and van Roy, 1996). Moreover, classical
results (Munos, 2005; Munos and Szepesvári, 2008) showed that if the dataset D is sufficiently
exploratory, then (2) is sufficient for LSVI to succeed. The requirement that (2) holds for any
Q̂h+1 ∈ F is often known as Bellman completeness; it is a property of the MDP and the value
function class F .

In this paper, our focus is on finding computationally efficient algorithms. Since regression
problems such as (1) can be computationally intractable for even relatively simple nonlinear classes
F such as shallow neural networks (Dey et al., 2020; Bakshi et al., 2019; Goel et al., 2020), we
focus on the case where F is simply the class of linear functions in φh(x, a), for some known
feature mappings φh : X × A → Rd. In this setting, the requirement of Bellman completeness
in (2) is known as linear Bellman completeness (see Definition 2.1 for a formal definition). In
the remainder of this section we discuss our results on computationally efficient learning of MDPs
satisfying linear Bellman completeness.

1.1. Exploration and linear Bellman completeness

The results of (Munos, 2005; Munos and Szepesvári, 2008) referenced above showing sufficiency
of Bellman completeness do not address the following central problem in RL: how can we find a
dataset D which is sufficiently exploratory to compute a near-optimal policy? More precisely, we
would like that for tuples (xh, ah, rh, xh+1) ∈ D, the feature vectors φh(xh, ah) span a “sufficient

1. I.e., the value of the optimal policy.
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number” of distinct directions in Rd. We adopt the standard online setting in RL, allowing the learn-
ing algorithm to formD by repeatedly sampling trajectories from the MDP using adaptively chosen
policies.2 We first note that this problem is known to be statistically tractable using a technique
known as global optimism (see Section 3.1). This technique has various instantiations as specific al-
gorithms in the setting of linear Bellman completeness, including ELEANOR (Zanette et al., 2020a),
GOLF (Jin et al., 2021), OLIVE (Jiang et al., 2017), and BilinUCB (Du et al., 2021). While
these algorithms require only polynomially many samples (i.e., rounds of interaction) to output a
near-optimal policy, all are computationally inefficient, even when specialized to the linear case,
since they require solving nonconvex optimization problems. Our goal is to find a computationally
efficient algorithm which achieves the same guarantee:

Question 1.1. Is there an algorithm which learns an ε-optimal policy in an unknown linear Bellman
complete MDP using poly(H, d, |A|, ε−1) samples and time?

A sizeable portion of the work on computationally efficient RL in the last several years has been
focused on answering Question 1.1 for settings which are strict special cases of linear Bellman com-
pleteness. The simplest such setting is the tabular setting, which describes the case that |X |, |A| are
finite and the goal is to obtain sample and computational complexities scaling as poly(H, |X |, |A|).
In this setting, there are several computationally efficient algorithms which can be viewed as vari-
ants of value iteration that are optimistic in the sense that they add bonuses to the rewards to induce
exploration: these include UCBVI (Azar et al., 2017) and Q-learning-UCB (Jin et al., 2018;
Zhang et al., 2020), which are known to obtain near-optimal rates. Tabular MDPs are generalized
by the linear MDP setting, in which feature vectors φh(x, a) ∈ Rd are given, and the state-action
transition probabilities are assumed to be linear in φh. Here too there are computationally efficient
algorithms, namely LSVI-UCB (Jin et al., 2020), an optimistic version of LSVI, as well as more
recent rate-optimal variants (Agarwal et al., 2022; He et al., 2023). Finally, in the setting of linear
Bellman completeness, which is a strict generalization of linear MDPs (Zanette et al., 2020a, Propo-
sition 3), the algorithm FRANCIS of (Zanette et al., 2020b) is computationally efficient and learns
a near-optimal policy in the special case that the MDP is reachable, meaning that any direction in
Rd can be reached under some policy.

Despite the above line of work, Question 1.1 in its full generality has remained open. Part of the
reason for this is that the two principal techniques to perform computationally efficient exploration
in RL both break down in the general setting of linear Bellman completeness:

1. The first technique is local optimism,3 which adds exploration bonuses to the reward at each
state which scale inversely with how often the state has been visited. It includes the UCBVI and
Q-learning-UCB algorithms for the tabular setting, and the LSVI-UCB algorithm for the linear
MDP setting, among others. Local optimism requires that the value function class be complete with
respect to the exploration bonuses, which is satisfied for linear MDPs but which fails more generally
(see Section 3).

2. The second technique is to construct a policy cover, which is a small set of policies which,
roughly speaking, covers all states to the maximum extent possible. This technique includes the
FRANCIS algorithm, as well as computationally efficient and oracle efficient algorithms for related

2. See Section 2.1 for a formal definition.
3. “Local” is used to distinguish this technique from global optimism, which, as discussed above, works in the setting

of linear Bellman completeness but is computationally inefficient.
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tasks in RL such as representation learning (Du et al., 2019; Misra et al., 2020; Mhammedi et al.,
2023b,a; Golowich et al., 2023) and learning in POMDPs (Golowich et al., 2022). In order for this
approach to work in the absence of reachability, it is necessary to analyze a truncated version of
the true MDP. But doing so seems impossible in our setting, since truncating the MDP breaks the
property of linear Bellman completeness.

Thus, in addition to generalizing a long line of work on computationally efficient learning of MDPs,
Question 1.1 captures exactly the point where known exploration paradigms in RL break down.

1.1.1. MAIN RESULT FOR THE ONLINE SETTING

Our main result is a positive answer to Question 1.1 in the case that |A| is any constant:

Theorem 1.1 (Informal version of Theorem D.10). Suppose the ground-truth MDP satisfies linear
Bellman completeness. Then for any ε > 0, there is an algorithm (PSDP-UCB; Algorithm 1) which
with high probability learns an ε-optimal policy using (Hd|A|ε−1)O(|A|) samples and time.

We remark that the exponential dependence of the sample and computational complexities on
|A| is somewhat unusual in RL. We are not aware of any prior work on an RL problem for which
poly(|A|) dependence is possible but for which a “natural” algorithm for even the |A| = 2 case
does not extend to the general case. Theorem 1.1 thus presents an intriguing challenge: to either
improve the guarantee to fully answer Question 1.1 in the affirmative, or to find a lower bound.

Organization of the paper. We discuss preliminaries in Section 2, and overview the proof of
Theorem 1.1 in Section 3, which is proved formally in Appendices C and D.

2. Preliminaries

A finite-horizon Markov Decision Process (MDP) is given by a tupleM = (H,X ,A, (PM
h )Hh=1, (r

M
h )Hh=1, d

M
1 ),

where H ∈ N, X is a measure space denoting the state set, A denotes the action set, PM
h (·|x, a) ∈

∆(X ) (for h ∈ [H]) denotes the probability transition kernels, rMh : X × A → [0, 1] (for h ∈ [H])
denotes the reward functions, and dM1 ∈ ∆(X ) denotes the initial state distribution. When the MDP
M is clear from context, we will drop the superscript M in these notations. We let A := |A| denote
the number of actions in the MDP.

A policy π consists of a tuple π = (π1, . . . , πH), where each πh : X → ∆(A) is a map-
ping from states to distributions over actions. Note that we allow policies to be nonstationary and
randomized; Π denotes the set of all such policies. A policy π ∈ Π defines a distribution over
trajectories (x1, a1, r1, . . . , xH , aH , rH) ∈ (X × A × [0, 1]H , as follows: first, x1 ∼ d1, and
then for each h ∈ [H], we draw ah ∼ πh(xh), observe rh(xh, ah), and transition to xh+1 ∼
Ph(·|xh, ah). Let HH denote the set of trajectories. For a function f : HH → Rk, we often write
EM,π[f(x1, a1, r1, . . . , xH , aH , rH)] to denote the expectation of f over trajectories drawn from M
under policy π. If M is clear from context, we will simply write Eπ[f(x1, a1, r1, . . . , xH , aH , rH)].
Given policies π = (π1, . . . , πH), π′ = (π′1, . . . , π

′
H) ∈ Π and a step h ∈ [H], we let π ◦h π′ ∈ Π

denote the policy (π1, . . . , πh−1, π
′
h, . . . , π

′
H), i.e., which acts according to π during the first h− 1

steps and thereafter acts according to π′.
For a function f : X ×A → R, a (randomized) policy π and h ∈ [H], we write f(x, πh(x)) :=

Ea∼πh(x)[f(x, a)]. The state-action value function (or Q-function) and state-value function (or V -
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function) of a policy π ∈ Π are then defined as follows: for h ∈ [H], x ∈ X , a ∈ A,

Qπh(x, a) := rh(x, a) + Eπ
 H∑
g=h+1

rg(xg, ag) | (xh, ah) = (x, a)

 , V π
h (x) := Qπh(x, πh(x)).

The optimal policy is defined as π? := arg maxπ∈Π E[V π
1 (x1)] (where expectation is over x1 ∼ d1).

It is known that there is always a deterministic optimal policy π? (i.e., so that π?h(x) is a singleton
for all x, h). We often abbreviate Q?h(x, a) := Qπ

?

h (x, a) and V ?
h (x) := V π?

h (x).

2.1. The online learning problem

We assume that the transitions, rewards, and initial state distribution of the ground-truth MDPM are
unknown to the algorithm. To learn information about the MDP, the algorithm interacts with M via
the episodic online learning model, as follows. The interaction proceeds over a series of T episodes.
In each step h ∈ [H] of each episode, the algorithm observes the current state xh, specifies an action
ah ∈ A to take, and observes a reward of rh = rh(xh, ah). Then the environment transitions to
a new state xh+1 ∼ Ph(·|xh, ah). We assume that the algorithm can query φh(x, a) ∈ Rd for any
x, a, h. We remark that our algorithm only needs to query φh(x, a) for states x which are visited at
some point in some episode.

The goal is as follows: for ε, δ ∈ (0, 1), to give an algorithm which interacts with the environ-
ment for T = T (ε, δ) episodes in the manner described above, and then to output a policy π̂ so that,
with probability 1− δ, E[V ?

1 (x1)− V π̂
1 (x1)] ≤ ε. Moreover, we wish the algorithm to be computa-

tionally efficient (both in terms of the computation required when interacting with the environment
over the course of T episodes and when outputting π̂ at termination).

2.2. Function approximation

In order for the above learning problem to be tractable, it is necessary to make some assump-
tions on the ground-truth MDP M being learned. While it is well-known that boundedness of
|X |, |A| implies efficient learning algorithms whose computational and statistical costs scale with
poly(|X |, |A|) (Azar et al., 2017; Jin et al., 2018), realistic RL environments typically have enor-
mous state spaces. Thus we aim for weaker function approximation assumptions: a common and
longstanding such assumption (Bradtke and Barto, 1996; Melo and Ribeiro, 2007; Sutton and Barto,
2018; Yang and Wang, 2020; Jin et al., 2020) is linearity of the value functions, with respect to some
known features. In particular, given d ∈ N, we assume that functions φh : X × A → Rd are given
for all h ∈ [H], mapping each state-action pair (x, a) to a collection of d features which should be
interpreted as capturing all relevant information about (x, a).

The weakest assumption on value function linearity is simply that Q?h is linear, i.e., for some
w?h ∈ Rd, we have Q?h(x, a) = 〈w?h, φh(x, a)〉 for all (x, a) ∈ X × A. Unfortunately, unless
NP = RP, it is not possible to computationally efficiently learn a near-optimal policy under this
assumption (Kane et al., 2022; Liu et al., 2023). Accordingly, we make a stronger assumption
known as linear Bellman completeness, which states, roughly speaking, that the Bellman backup of
all linear functions is linear. To formally state this assumption (in Definition 2.1 below), we need
to introduce the following notation: for h ∈ [H], define Bh := {θ ∈ Rd : |〈φh(x, a), θ〉| ≤
1 ∀(x, a) ∈ X ×A}. In words, Bh denotes the set of coefficient vectors inducing bounded (linear)
functions on X ×A.
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Definition 2.1 (Linear Bellman Completeness). The MDP M is defined to be linear Bellman
complete with respect to the feature mappings (φh)h∈[H] if, for each h ∈ [H], there is a map-
ping Th : Bh+1 → Bh so that, for all θ ∈ Bh+1 and all (x, a) ∈ X × A, 〈φh(x, a), Thθ〉 =
Ex′∼Ph(x,a) [maxa′∈A〈φh+1(x′, a′), θ〉]. Moreover, we require that for all h ∈ [H], (x, a) ∈ X×A,
the reward at (x, a) at step h is given by: rh(x, a) := 〈φh(x, a), θr

h〉 for some vectors θr
h ∈ Bh.

It is immediate from Definition 2.1 that if M is linear Bellman complete, then there are vectors
w?h ∈ H · Bh so that Q?h(x, a) = 〈w?h, φh(x, a)〉 for all x, a. In addition to linear Bellman com-
pleteness, we make the following standard boundedness assumptions on the coefficient and feature
vectors:

Assumption 2.1 (Boundedness). We assume the following:

1. For all h ∈ [H], x ∈ X , a ∈ A, we have ‖φh(x, a)‖2 ≤ 1.

2. For some parameter B ∈ R+: for all wh ∈ Bh, it holds that ‖wh‖2 ≤ B.

3. For all h ∈ [H], ‖θr
h‖2 ≤ 1 (and hence supx,a,h |rh(x, a)| ≤ 1).

We present additional preliminaries in Appendix A. Here we highlight the definition of a linear
policy, which is defined as follows: for w ∈ Rd and h ∈ [H], the associated linear policy at step h
is πh,w(x) := arg maxa∈A〈w, φh(x, a)〉 if the argmax is unique. We discuss in Appendix A how to
deal with the (typically measure-zero) situation that the argmax is not unique.

3. Technical overview
In this section, we overview the proof of Theorem 1.1 (stated formally in Theorem D.10), which
shows how, in the online setting (Section 2.1), Algorithm 1 can efficiently learn a near-optimal
policy for an unknown MDP which is linear Bellman complete. To simplify our notation, we assume
in this section that the parameter B in Assumption 2.1 is bounded by B ≤ O(1). The bulk of the
challenge is to perform the task of exploration: how can we interact with the environment so as to
reach state-action pairs (x, a) for which φh(x, a) points in a new direction?

3.1. Prior work: exploration via optimism
A popular approach to exploration in RL involves the use of optimism, which describes, loosely
speaking, the technique of perturbing the algorithm’s estimates of the MDP’s value function, typi-
cally to increase the estimated values, so as to induce the algorithm to visit new directions in feature
space. Two distinct flavors of optimism have emerged in the literature: the first, global optimism,4

constructs a confidence set consisting of all possible vectors w = (w1, . . . , wH) which could be
consistent with the optimal value function given the data observed so far. The global optimism
procedure then chooses some w̄ in this confidence set which maximizes E[maxa〈w̄1, φ1(x1, a)〉].
It then executes the linear policy defined by w̄, namely the policy (π1,w̄1 , . . . , πH,w̄H ), uses the re-
sulting data to update the confidence sets, and repeats. Unfortunately, the optimization problem of
finding a maximizing w̄ is nonconvex, and seems unlikely to have an efficient algorithm.

The second type of optimism-based exploration technique in RL is a more local approach: at
each episode t, for some function B(t)

h : X × A → R≥0, an exploration bonus of B(t)
h (x, a) is

4. See, e.g., (Zanette et al., 2020a), which used global optimism to computationally inefficiently learn a near-optimal
policy under linear Bellman completeness; many other papers, including (Jin et al., 2021; Jiang et al., 2017; Du et al.,
2021), use global optimism in settings with more general nonlinear function approximation.
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added to the reward rh(x, a) for the pair (x, a) at step h. Then, the algorithm uses the data gathered
prior to episode t to estimate a policy π(t) which, roughly speaking, maximizes the expected sum of
rewards rh(xh, ah) and bonusesB(t)

h (xh, ah) over a trajectory. This technique has proved successful
for computationally efficient learning of tabular MDPs (i.e., the setting where |X |, |A| are finite)
(Azar et al., 2017; Jin et al., 2018), as well as linear MDPs (Jin et al., 2020), which constitute a
generalization of tabular MDPs and a strict subclass of linear Bellman complete MDPs.

Unfortunately, the local optimism approach fails in the more general setting of linear Bellman
completeness. At a high level, this failure of local optimism results from the fact that the explo-
ration bonuses B(t)

h (x, a) may not be linear. To illustrate, we consider the LSVI-UCB approach of
(Jin et al., 2020). This approach computes optimistic Q-function estimates, Q̂(t)

h , in a backwards-
inductive manner. In particular, it defines:

Q̂
(t)
h (x, a) := min{〈ŵ(t)

h , φh(x, a)〉+B
(t)
h (x, a), H}, (3)

where ŵ(t)
h is the solution to a least-squares objective function whose labels are given by maxa∈A Q̂

(t)
h+1(xi, a),

for various states xi.5 The bonus B(t)
h (x, a) is defined as follows: let Σ

(t)
h be the covariance matrix

of features at step h observed prior to episode t. Then B(t)
h is given by a scaling of the quadratic

bonus, i.e., for some scalar βh, B(t)
h (x, a) := βh ·Bquad

h (x, a; (Σ
(t)
h )−1), where the quadratic bonus,

Bquad
h (x, a; Σ), is defined for a general PSD matrix Σ, by

Bquad
h (x, a; Σ) := (φh(x, a)> · Σ · φh(x, a))1/2. (4)

The intuition behind the quadratic bonus is as follows: Bquad
h (x, a; (Σ

(t)
h )−1) will be particularly

large if φh(x, a) points in the direction of eigenvectors of Σ
(t)
h with small eigenvalues, i.e., directions

which have not been explored in prior episodes. Thus such unexplored states receive larger bonuses,
and should be explored more during later episodes. More formally, Bquad

h (·) takes the same form as
the standard error bound from least-squares regression (see Lemma D.7), meaning that by adding
it to the reward function, one can “cancel out” regression errors and thus show that Q̂(t)

h in (3) is
optimistic (see (Jin et al., 2020; Agarwal et al., 2022; Zhang et al., 2022; He et al., 2023)).

To ensure that ŵ(t)
h , used in the definition of Q̂(t)

h , is a good estimator of the future rewards and
bonuses, we certainly need the regression problem to be well-specified, i.e., the expectation of the
regression labels is a linear function in the features φh(x, a). In particular, this approach crucially
relies on the fact that, in a linear MDP, Ex′∼Ph(x,a)[maxa′ Q̂

(t)
h+1(x′, a′)], is a linear function of

φh(x, a). In fact, an even stronger statement holds for linear MDPs: for any function F : X → R,
its Bellman backup, namely Ex′∼Ph(x,a)[F (x′)], is linear in φh(x, a). Unfortunately, this fact fails
to hold under the weaker assumption of linear Bellman completeness. We provide an example in
Proposition F.1 for which Ex′∼Ph(x,a)[maxa′ Q̂

(t)
h+1(x′, a′)] is not linear, for some Q̂(t)

h+1 as in (3).

Our main innovation is to show that if the bonus B(t)
h (x, a) is carefully defined to be somewhat

different from a quadratic bonus, then a variant of (3) does have a linear Bellman backup. In the
remainder of this section, we discuss in detail how to execute this strategy: in Section 3.2, we first
discuss the overall structure of our algorithm, PSDP-UCB, which is a variant of the LSVI-UCB

5. The choice of the scalar H in the minimum in (3) results from the fact that the Q-function of any policy is bounded
above in absolute value by H , as the reward at each step has absolute value at most 1.
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algorithm discussed above but which lends itself to a simpler analysis for the setting of linear Bell-
man completeness. Then, in Sections 3.3 and 3.4, we discuss how to construct exploration bonuses
for use in PSDP-UCB which do have a linear Bellman backup.

3.2. Overview of PSDP-UCB

Algorithm 1 PSDP-UCB(T,H, λ, β, λ1): PSDP with upper confidence bounds
Require: Number of episodes T , horizon H , non-negative parameters λ, β, λ1.

1: for Round t = 1, . . . , T do
2: for Step h = H, . . . 1 do
3: For i ∈ [n], draw {(x(t,i,h)

k , a
(t,i,h)
k , r

(t,i,h)
k )}Hk=1 from unif({π̂(s)◦h π̃(s)◦h+1 π̂

(t)}t−1
s=1}).

4: Set Σ
(t)
h ← λI +

∑n
i=1 φh(x

(t,i,h)
h , a

(t,i,h)
h )φh(x

(t,i,h)
h , a

(t,i,h)
h )>.

5: For each g > h and i ∈ [n], define . F
(t)
g defined in (33).

r̂(t,i,h)
g := r(t,i,h)

g + F (t)
g (x(t,i,h)

g ). (5)

6: Set ŵ(t)
h ← (Σ

(t)
h )−1 ·

∑n
i=1 φh(x

(t,i,h)
h , a

(t,i,h)
h ) ·

(
r

(t,i,h)
h +

∑H
g=h+1 r̂

(t,i,h)
g

)
.

7: Define π̂(t)
h by π̂(t)

h (x) := arg maxa∈A〈φh(x, a), ŵ
(t)
h 〉. (If t = 1, let π̂(t) be arbitrary.)

8: Define (Σ′,Λ′) := truncσtr(
β
λ1
· (Σ(t)

h )−1/2) (per Definition D.2).

9: Define π̃
(t)
h : X → ∆(A) by, for all (x, a) ∈ X × A, π̃

(t)
h (x)(a) :=

Prw∼N (0,Σ′) (a = arg maxa′∈A〈w, φh(x, a′)).

Our algorithm, PSDP-UCB, is presented in Algorithm 1. For some T ∈ N, the algorithm pro-
ceeds over T rounds. In each round t ∈ [T ], PSDP-UCB constructs a policy π̂(t) = (π̂

(t)
1 , . . . , π̂

(t)
H ),

which may be interpreted as an estimate of the optimal policy. We will show that, for T sufficiently
large, with high probability there is some t ∈ [T ] so that E[V ?

1 (x1)− V π̂(t)

1 (x1)] is small.
In each round t ∈ [T ], the algorithm iterates through steps h = H,H − 1, . . . , 1: for each such

h, it will define the mapping π̂(t)
h : X → ∆(A). Thus, at step h, π̂(t)

h+1, . . . , π̂
(t)
H have already been

defined. At each step h, in Line 3, the algorithm samples some number n of trajectories from the
MDP according to a uniformly random policy from (roughly) the set {π̂(s) ◦h+1 π̂

(t)}s∈[t−1].6 Next,

in Line 4, the algorithm sets Σ
(t)
h to be the empirical covariance matrix of features at step h under

the n trajectories just sampled.
PSDP-UCB then modifies the rewards in each of these n trajectories by adding to the true

rewards an exploration bonus, denoted by F (t)
g (·) in Line 5. We call these modified rewards, denoted

by r̂(t,i,h)
h in Algorithm 1, optimistic rewards. The remainder of this section will be focused on

defining and explaining the intuition behind the bonus function F (t)
g (the formal definition is given

in (33)). Then, in Line 6, PSDP-UCB sets ŵ(t)
h to be the solution to a least-squares regression

6. Technically, this statement is slightly inaccurate: Algorithm 1 actually samples a uniform policy from the set {π̂(s)◦h
π̃

(s)
h ◦h+1 π̂

(t)}s∈[t−1], where π̃(s)
h is defined for each s to be a policy which performs a sort of “uniform” exploration

at each step h (Line 9). This choice is made to simplify the analysis and is immaterial for our present discussion.

8
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problem where the covariance matrix is Σ
(t)
h and the labels are the cumulative optimistic rewards

from step h to H . The algorithm then repeats this procedure for step h− 1, and so on.
We have omitted a description of Lines 8 and 9, in which a policy at step h, π̃(t)

h : X → ∆(A),
is defined. This policy plays a relatively minor role (see Footnote 6) and may be ignored for the
purpose of the present discussion.

Overview of the analysis of PSDP-UCB. To analyze PSDP-UCB, we define

Q
(t)
h (x, a) :=rh(x, a) + Eπ̂

(t)

 H∑
g=h+1

rg(xg, ag) + F (t)
g (xg) | (xh, ah) = (x, a)

 , (6)

and V (t)
h (x) := Q

(t)
h (x, π̂

(t)
h (x)). Q(t)

h represents the Q-value function corresponding to the pol-
icy π̂(t) and the optimistic rewards discussed above. Our main technical lemma is the following
statement showing that adding the exploration bonuses F (t)

h (·) to the rewards ensures that Q(t)
h is an

upper bound on Q?h:

Lemma 3.1 (Informal version of Lemma D.9). With high probability over the execution of PSDP-UCB
(Algorithm 1), for all x, a, h, t, we have Q(t)

h (x, a) ≥ Q?h(x, a) − o(1) and V (t)
h (x) + F

(t)
h (x) ≥

V ?
h (x)− o(1).

In light of Lemma 3.1, we can bound the average suboptimality of the policies π̂(t) as follows:

1

T

T∑
t=1

(
E[V ?

1 (x1)− V π̂(t)

1 (x1)]
)
≤ 1

T

T∑
t=1

(
E[V

(t)
1 (x1) + F

(t)
1 (x1)− V π̂(t)

1 (x1)]
)
− o(1)

=
1

T

T∑
t=1

Eπ̂
(t)

[
H∑
h=1

F
(t)
h (xh)

]
− o(1), (7)

where the inequality uses Lemma 3.1, and the equality uses the definition of V (t)
h . To upper bound

(7), we need to show, roughly speaking, the following: for states x which are likely to be vis-
ited by many of the policies π̂(t), the sum of exploration bonuses at x is sublinear in T , i.e.,
1
T

∑T
t=1 F

(t)
h (x) = o(T ). We show a version of this statement “in feature space”: in particular,

we first upper bound |F (t)
h (x)|, for all states x, as follows.

Lemma 3.2 (Informal version of Lemmas D.2, D.3 and D.5). For all x, h, t in the execution of

PSDP-UCB, it holds that |F (t)
h (x)| ≤ poly(d,H)A ·maxa∈A

(
φh(x, a)> · (Σ(t)

h )−1 · φh(x, a)
)1/2

.

Lemma 3.2 shows that for states x for which all actions a ∈ A point in directions of Σ
(t)
h

corresponding to eigenvectors with large eigenvalues (i.e., “well-explored” directions), |F (t)
h (x)|

must be small. Using Lemma 3.2, the quantity in (7) may be bounded by o(1) using a variant of
the elliptic potential lemma (Lemma E.4). The elliptic potential lemma formalizes the notion that
there are finitely many “different directions” in Rd, so if T is sufficiently large, all directions Rd

frequently explored by policies π̂(t) must correspond to large-eigenvalue directions for Σ
(t)
h .

Thus, it remains to discuss the proofs of Lemmas 3.1 and 3.2. Notice that the statements of these
two lemmas are in tension: Lemma 3.1 requires the bonuses F (t)

h be sufficiently large so that Q(t)
h

9
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is an upper bound on Q?h, while Lemma 3.2 requires that F (t)
h be sufficiently small, as controlled by

Σ
(t)
h . As discussed in the following subsections, by carefully defining F (t)

h , we can ensure that both
of these criteria are met.

3.3. Implementing local optimism via Bellman-linearity

Essentially any approach to proving Lemma 3.1 requires that Q(t)
h (x, a) be a linear function of

φh(x, a).7 In turn, as discussed in Section 3.1, this requires that the bonuses F (t)
h+1(·) have a Bellman

backup which is linear in φh(x, a). It will be useful to formalize the following notion of Bellman-
linearity, which describes those functions whose Bellman backup is linear in the features:

Definition 3.1. Fix h ∈ [H] with h > 1 and k ∈ N. We say that a function G : X → Rk is
Bellman-linear at step h if there exists WG ∈ Rk×d so that, for all (x, a) ∈ X × A, it holds that
WG · φh−1(x, a) = Ex′∼Ph−1(x,a)[G(x′)]. In particular, in the case that k = 1, G : X → R is
Bellman-linear at step h if there is wG ∈ Rd so that 〈wG, φh−1(x, a)〉 = Ex′∼Ph−1(x,a)[G(x′)].

If the value of h is clear, we will simply say the function G is Bellman-linear. The canonical
example of a Bellman-linear function is the mapping x 7→ maxa〈w, φh(x, a)〉, for any w ∈ Rd.
Given that such functions are Bellman-linear, we can construct additional Bellman-linear functions
by averaging, taking limits (Lemma C.1), and differentiating (Lemma C.2). The following lemma
shows that Bellman-linearity of the bonuses F (t)

h is indeed a sufficient condition for linearity of
Q

(t)
h :

Lemma 3.3 (Variant of Lemma D.1). Suppose that, in PSDP-UCB, for each h ∈ [H], t ∈ [T ],
F

(t)
h : X → R is Bellman-linear at step h. Then for all h, t, there is some w(t)

h ∈ Rd so that
Q

(t)
h (x, a) = 〈φh(x, a), w

(t)
h 〉 for all (x, a) ∈ X ×A.

The proof of Lemma 3.3 requires some work to show that the expectation of the bonuses F (t)
g

for g > h+ 1 is linear at step h: this fact crucially relies on the fact that the policies π̂(t) are linear
policies (see Lemma C.3).

A Bellman-linear approximation of Bquad
h . In light of our discussion pertaining to the quadratic

bonus Bquad
h around (4) above, a natural strategy is to show that maxaB

quad
h (·, a; Σ) is Bellman-

linear at step h for any Σ. Though this is not the case (Proposition F.2), Lemma 3.4 below suggests a
workaround: the quadratic bonusBquad

h (x, a; Σ) can be approximated by a Bellman-linear function.

Lemma 3.4 (Simplified version of Lemma D.3). Fix h ∈ [H] and a PSD matrix Σ, and define

F normal
h (x; Σ) := Ew∼N (0,Σ)

[
max
a∈A
〈w, φh(x, a)〉

]
. (8)

Then F normal
h (·; Σ) is Bellman-linear at step h, and for any x ∈ X ,

1√
2π

max
a,a′∈A

(
(φh(x, a)− φh(x, a′))>Σ(φh(x, a)− φh(x, a′))

)1/2 ≤ F normal
h (x; Σ) ≤

√
dmax

a∈A

(
φh(x, a)>Σφh(x, a)

)1/2
.

7. In particular, linearity of Q(t)
h establishes that the regression problem solved in Line 6 of Algorithm 1 is well-

specified, which allows us to show upper bounds on the prediction error
∣∣∣〈ŵ(t)

h , φh(x, a)〉 −Q(t)
h (x, a)

∣∣∣ and is in
turn used to establish optimism.

10
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The proof of Lemma 3.4 is straightforward: that x 7→ F normal
h (x; Σ) is Bellman-linear at step h

follows from the fact that F normal
h (x; Σ) is defined as an average of Bellman-linear functions. The

upper and lower bounds on F normal
h (x; Σ) follow from a direct computation.

Lemma 3.4 suggests the following approach: for some scalar βh, suppose we define

F
(t)
h (x) := βh · F normal

h (x; (Σ
(t)
h )−1). (9)

Since F normal
h (·; Σ) is Bellman-linear and approximates the quadratic bonus (Lemma 3.4), we might

hope that it acts similarly to the quadratic bonus in LSVI-UCB to induce an optimistic property of
the value functions Q(t)

h (x, a) in PSDP-UCB, thereby allowing us to establish Lemma 3.1. Unfor-
tunately, this argument encounters a few snags:

1. The lower bound on F normal
h (x; Σ) in Lemma 3.4 is not exactly a constant times Bquad

h (x; Σ),
but instead involves a difference between feature vectors at the state x. Thus, strictly speaking,
F normal
h (x; Σ) does not give a multiplicative approximation of the quadratic bonus Bquad

h (x; Σ).

2. Even if F normal
h (x; Σ) did give a multiplicative approximation of Bquad

h (x; Σ), we would need to
ensure that this multiplicative approximation is good enough for all arguments to go through.

3. Ignoring the previous two items, we still suffer from the following exponential blowup. Roughly
speaking, the proof of Lemma 3.1 proceeds by showing that the loss in value from any sub-optimal
action taken by π̂(t) at step h is canceled out by the bonus F (t)

h (xh). To show this, we need to show
that the exploration bonus βh · F normal

h (xh; (Σ
(t)
h )−1) is at least as large as the regression error in

our estimate of ŵ(t)
h from Line 6. But the labels in this linear regression involve the sum of bonuses

F
(t)
g (·) for h + 1 ≤ g ≤ H , and thus scale with βh+1 + · · · + βH . Working through standard

high-confidence bounds for linear regression (see Lemma D.7 for details) establishes that we would
need βh ≥ poly(d) · (βh+1 + · · ·+ βH). This recursion leads to β1 ≥ dO(H), which would require
exponentially many samples to cancel out exponentially large error terms.

Items 1 and 2 above turn out not to be major issues, as discussed in the proof of Lemma D.9.
The main technical challenge is dealing with Item 3 above, namely the exponential blowup of

βh. Typically, the solution to the above dilemma is to truncate the bonus, i.e., define F (t)
h (x) :=

min{β · F normal
h (x; (Σ

(t)
h )−1), F̄h(x)}, for some F̄h(x) � β which is a uniform upper bound on

V ?
h (x). (Note that, when using such an approach, the parameter β does not need any dependence on
h.) Indeed, this truncation is used in LSVI-UCB, where the Q̂(t)

h function in (3) is truncated by the
constant F̄h(x) ≡ H . Unfortunately, in the setting of linear Bellman completeness, truncation, in
general, breaks Bellman-linearity of F (t)

h (x). In the following section, we discuss how to implement
this truncation in a way that preserves Bellman-linearity.

3.4. Constructing truncated bonuses

Approximating (Σ
(t)
h )−1. For each h ∈ [H] and t ∈ [T ], the inverse covariance matrix (Σ

(t)
h )−1

captures which directions of feature space are explored by policies π̂(s) ◦h π̃(s), for s ≤ t − 1. We
split (Σ

(t)
h )−1 into matrices representing “well-explored directions” and “unexplored directions”,

as follows: for an appropriate threshold value σ, we let Σ′ denote the projection matrix onto the
subspace spanned by eigenvectors of (Σ

(t)
h )−1/2 with eigenvalues greater than σ, and Λ′ denote the

11
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projection matrix onto the subspace spanned by eigenvectors of (Σ
(t)
h )−1/2 with eigenvalues less

than σ. Formally, as defined in Definition D.2, we write (Σ′,Λ′) = truncσ((Σ
(t)
h )−1/2). We denote

subspaces onto which Σ′,Λ′ project by SΣ′ ,SΛ′ , respectively. Note that Σ′Λ′ = Λ′Σ′ = 0 and
Σ′ + Λ′ = Id; we call the pair (Σ′,Λ′) an orthogonal pair (Definition C.1).

If σ is chosen sufficiently small to be less than our desired error threshold, then the estimations
ŵ

(t)
h produced in Line 6 of Algorithm 1 are sufficiently accurate in directions spanned by SΛ′ .

Thus, we only have to add an exploration bonus at a state x which scales in proportion to the
width of the features φh(x, a), a ∈ A in directions spanned by the orthogonal complement of
SΛ′ , namely SΣ′ . This leads us to aim to construct an exploration bonus which scales roughly as
x 7→ min{β · F normal

h (x; Σ′), F̄h(x)}, for some parameter β > 1 and an appropriate choice of F̄h
which should (a) be uniformly upper bounded by a parameter which does not scale with β, and (b)
be an upper bound on V ?

h . It turns out that condition (b) can be relaxed to require only that F̄h(x) be
an upper bound on maxa∈AQ

?
h(x, a)−mina∈AQ

?
h(x, a) = maxa,a′∈A〈w?h, φh(x, a)−φh(x, a′)〉.

Thus, to summarize, we aim to find a bonus function which satisfies the following properties:

Problem 3.2 (Bonus function). Fix h, t (which determine (Σ′,Λ′) = truncσ((Σ
(t)
h )−1/2) as above),

and some β > 1. Can we find a Bellman-linear function F (t)
h : X → R≥0 which satisfies:

1. For all x ∈ X , F (t)
h (x) is lower bounded as

F
(t)
h (x) ≥BH · max

a,a′∈A
min

{
β · ‖Σ′ · (φh(x, a)− φh(x, a′))‖2, ‖Λ′ · (φh(x, a)− φh(x, a′))‖2

}
.

(10)

2. For all x ∈ X , F (t)
h (x) is upper bounded asF (t)

h (x) ≤ poly(d,H,B)·maxa∈Amin {β‖Σ′ · φh(x, a)‖2, ‖φh(x, a)‖2}.

The case d = A = 2. To proceed, we consider the special case in which d = 2. Let us suppose
that SΣ′ ,SΛ′ are each one dimensional, and are spanned by unit vectors u, v ∈ R2, respectively,
which are orthogonal. Let us consider the function

F tl
h (x;u, v) := max

a∈A
〈u, φh(x, a)〉+ max

a∈A
〈v, φh(x, a)〉 −max

a∈A
〈u+ v, φh(x, a)〉,

for some parameter β > 1. If we suppose that there are only 2 actions (i.e., |A| = 2), then
x 7→

∑
εu,εv∈{±1} F

tl
h (x;βεu · u, εv · v) (scaled by a poly(B,H) factor) satisfies the conditions of

Problem 3.2. To see this, let us writeA = {0, 1}, and set φ∆
h (x) := φh(x, 1)−φh(x, 0). Fix x ∈ X ,

and choose εu, εv ∈ {±1} so that 〈εu · u, φ∆
h (x)〉 and 〈εv · v, φ∆

h (x)〉 have opposite signs. Then

F tl
h (x;βεuu, εvv) =|〈βεuu, φ∆

h (x)〉|+ |〈εvv, φ∆
h (x)〉| − |〈βεuu+ εvv, φ

∆
h (x)〉|

≥min{|〈βu, φ∆
h (x)〉|, |〈v, φ∆

h (x)〉|}, (11)

where the inequality uses the property that for real numbers a, b with opposite signs, we have |a|+
|b| − |a + b| ≥ min{|a|, |b|}. By combining (11) with non-negativity of F tl

h (·), we obtain the first
property of Problem 3.2. The second property may be verified in a similar manner (see Lemma C.8).

The case of general d and A. A direct extension of the above argument for d = A = 2 runs
into some snags even in the case that d = 2 and A = 4. We discuss these issues and additional
techniques we introduce to overcome them in Appendix B.

12



EFFICIENT LEARNING OF LINEAR BELLMAN COMPLETE MDPS

Acknowledgements
NG is supported by a Fannie & John Hertz Foundation Fellowship and an NSF Graduate Fellowship.
AM is supported in part by a Microsoft Trustworthy AI Grant, an ONR grant and a David and Lucile
Packard Fellowship.

References
Alekh Agarwal, Yujia Jin, and Tong Zhang. Voql: Towards optimal regret in model-free rl with

nonlinear function approximation. 2022.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
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Appendix A. Additional preliminaries
In this section, we present several additional preliminaries that will be useful in our proofs.

Polytope of actions. We assume that A is finite and write A := |A|. Let Pd denote the space of
d-dimensional (bounded) polyhedra. For A ∈ N, let Pd

A ⊂Pd denote the space of d-dimensional
polyhedra Φ so that dim(SpanΦ) ≤ A. For each x ∈ X , we define Φh(x) := {φh(x, a) : a ∈
A} ⊂ Rd and Φ̄h(x) := co(Φh(x)) ∈Pd

A ⊂Pd.

Gaussian smoothing. For θ ∈ Rd and σ > 0, we write

Nσ(θ) := N (0, σ2 · Id)(θ) =
1

(2π)d/2σd
· exp

(
− 1

2σ2
‖θ‖22

)
to denote the probability density function of the standard normal distribution with covariance σ2Id.
Furthermore, for f : Rd → R, we write Sσf(θ) to denote the convolution of f with Nσ, namely

Sσf(θ) :=

∫
Rd
f(z)Nσ(θ − z)dz =

∫
Rd
f(θ − z)Nσ(z)dz = Ez∼N (0,σ2·Id)[f(θ − z)].

Miscellaneous notation. Given d ∈ N, we let Sd denote the space of symmetric d × d matrices,
Sd+ ⊂ Sd denote the space of positive semidefinite (PSD) matrices, and Sd++ ⊂ Sd+ denote the space
of positive definite matrices. For a PSD matrix T ∈ Sd+, we let T 1/2 denote the unique PSD matrix
whose square is T . Given a subset S ⊂ Rd and a matrix T ∈ Rd×d, we let T · S := {Tv : v ∈ S}.
For vectors v, v′ ∈ Rd, we let [v, v′] denote the segment [v, v′] := {λv + (1 − λ)v′ : λ ∈ [0, 1]}.
Let Sd−1 = {u ∈ Rd : ‖u‖2 = 1} denote the d-dimensional unit sphere. For a square matrix T ,
we let ‖T‖ denote its spectral norm.

A.1. Linear policies
Under the assumption of linear Bellman completeness, there is always an optimal policy with the
additional structure of being a linear policy. Roughly speaking, linear policies take an action defined
by the argmax with respect to some fixed coefficient vector: in particular, given w ∈ Rd and
h ∈ [H], the associated linear policy at step h is πh,w(x) := arg maxa∈A〈w, φh(x, a)〉 if the argmax
is unique. It requires some care to appropriately break ties for states x at which the arg max is not
unique.8 To do so, given w ∈ Rd, h ∈ [H], x ∈ X , defineAh,w(x) := arg maxa∈A〈w, φh(x, a)〉 ⊂
A, where arg max is interpreted as the set of all actions maximizing 〈w, φh(x, a)〉. Then we set, for
each a ∈ Ah,w(x),

Gh,w(x, a) :=

{
θ ∈ Rd : ‖θ‖2 = 1, 〈θ, φh(x, a) > max

a′∈Ah,w(x)\{a}
〈θ, φh(x, a′)

}
.

Let νd denote the spherical measure on Sd−1. It is straightforward to see that, for all w and x,
Sd−1\

⋃
a∈Ah,w(x) Gh,w(x, a) has measure 0 with respect to νd. We now define, πh,w : x → ∆(A)

to be the following randomized policy: for all w ∈ Rd, h ∈ [H], x ∈ X , a ∈ A,

πh,w(a|x) := 1{a ∈ Ah,w(x)} · νd(Gh,w(x, a)). (12)

It is straightfroward to see that πh,w(·|x) ∈ ∆(A). We say that a policy π is a linear policy if
it is of the form π = (π1,w1 , . . . , πH,wH ), for w1, . . . , wH ∈ Rd. We let Πlin

h := {πh,w : w ∈ Rd}
denote the space of linear policies at step h, and Πlin := {(π1, . . . , πH) : πh ∈ Πlin

h } denote the
space of linear policies.

8. In particular, an appropriate tie-breaking procedure is necessary for Lemma C.3 to hold.
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Appendix B. Additional technical overview
Recall that in Section 3.4 we gave an overview of the construction of truncated confidence bonuses
(namely, those satisfying the conditions of Problem 3.2) in the special case that d = A = 2. In this
section, we extend this argument to the case of general values of d,A.

The case d = 2 and general A. Let us try to extend the above argument (i.e., in Section 3.4) for
the case d = 2 and A = 2 to the case of general A (still keeping d = 2 fixed). Unfortunately, the
function x 7→

∑
εu,εv∈{±1} F

tl
h (x;βεu ·u, εv ·v) we used above no longer satisfies the first condition

of Problem 3.2. To see this, suppose that A = {0, 1, 2, 3} and the feature vectors at some state x
form a rectangle, i.e., φh(x, 0) = (0, 0), φh(x, 1) = (u, 0), φh(x, 2) = (u + v, u + v), φh(x, 3) =
(0, v). It is straightforward to see that F tl

h (x;u, v) = 0, whereas maxa,a′∈Amin{|〈βu, φh(x, a) −
φh(x, a′)〉|, |〈v, φh(x, a) − φh(x, a′)〉|} ≥ 1 for any β ≥ 1 (e.g., take a = 0, a′ = 2). Thus, (11)
cannot hold, even if we only wish for it to hold up to a poly(H,B, d) factor.

The above issue runs fairly deep: it can be shown that, under some mild conditions on F tl
h which

ensure that it be Bellman-linear,9 there is no function F (t)
h satisfying both conditions of Problem 3.2.

To rectify this issue, we will relax the first condition of Problem 3.2, as follows:

Problem B.1. In the setting of Problem 3.2, can we find a Bellman-linear function F (t)
h : X → R≥0

which satisfies the constraints of Problem 3.2 where Item 1 is replaced by the following constraint:

1. For all x ∈ X , F (t)
h (x) is lower bounded as

F
(t)
h (x) ≥BH · max

a,a′∈A
min
ψ∈Φ̄(x)

{
‖βΣ′ · (φh(x, a)− ψ)‖2 + ‖Λ′ · (ψ − φh(x, a′)‖2

}
, (13)

where Φ̄h(x) := co{φh(x, a) : a ∈ A} denotes the convex hull of the feature vectors
φh(x, a), a ∈ A.

Note that (13) is weaker than (11), as can be verified by considering the choices ψ = φh(x, a)
and ψ = φh(x, a′) for given a, a′ in the outer maximum. As we discuss in Appendix D.3, this
weaker lower bound on F (t)

h (x) is still sufficient to ensure optimism. Moreover, for the example
discussed above in which the feature vectors at a state x form a rectangle, the right-hand side of (13)
is 0: if a, a′ in the outer maximum are chosen to represent opposing corners of the rectangle, then
taking ψ to be one of the other two corners yields |〈βu, φh(x, a) − ψ〉| = |〈v, ψ − φh(x, a′)〉| =
0. For this example, we therefore have that x 7→

∑
εu,εv∈{±1} F

tl
h (x;βεu · u, εv · v) satisfies the

properties of Problem B.1.
In fact, this holds more generally in the d = 2 case, as can be seen by the following argument:

fix any a, a′ ∈ A, and choose

ψ? := arg min
ψ∈Φ̄h(x)

{
|〈βu, φh(x, a)− ψ〉|+ |〈v, ψ − φh(x, a′)〉|

}
. (14)

Moreover choose εu, εv ∈ {±1} so that 〈φh(x, a) − ψ?, εuu〉 ≥ 0 and 〈φh(x, a′) − ψ?, εvv〉 ≥ 0.
Note that (14) is a convex optimization problem; its KKT conditions tell us that 〈ψ? − ψ, βεuu +

9. Namely, that F tl
h (x;u, v) =

∫
w∈Rd f(w) · maxa∈A〈φh(x, a), w〉dµ(w), for some Borel measure µ and function

f : Rd → R.
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εvv〉 ≥ 0 for all ψ ∈ Φ̄h(x). Then, recalling that a, a′ ∈ A were fixed, we have

F tl
h (x;βεuu, εvv) ≥〈βεuu, φh(x, a)〉+ 〈εvv, φh(x, a′)〉 −max

ā∈A
〈βεuu+ εvv, φh(x, ā)〉

≥〈βεuu, φh(x, a)〉+ 〈εvv, φh(x, a′)〉 − 〈βεuu+ εvv, ψ
?〉

=〈βεuu, φh(x, a)− ψ?〉+ 〈εvv, φh(x, a′)− ψ?〉
=|〈βu, φh(x, a)− ψ?〉|+ |〈v, φh(x, a′)− ψ?〉|, (15)

where the second inequality uses the KKT conditions of (14) and the final equality uses the choices
of εu, εv. (15), combined with non-negativity of F tl

h (·), verifies the first property of Problem B.1, as
desired; the second property (namely, Item 2 of Problem 3.2) can be verified by a direct computation
(Lemma C.8).

The case of general d and general A. The argument presented above for d = 2 generalizes
to the case of arbitrary d ∈ N. In particular, we will aim to construct a bonus of the form
G

(t)
h (x) := O(BH) · Eu∼DΣ′ ,v∼DΛ′ [F

tl
h (x;u, v)], where DΣ′ ,DΛ′ are distributions supported on

SΣ′ ,SΛ′ , respectively. A key consideration is: how do we choose the distributions DΣ′ ,DΛ′? To
answer this question, it is instructive to consider how the above argument verifying Item 1 of Prob-
lem B.1 generalizes to higher dimensions. In particular, given arbitrary a, a′ ∈ A, in lieu of (14),
we define

ψ? := arg min
ψ∈Φ̄h(x)

{
‖βΣ′ · (φh(x, a)− ψ)‖2 + ‖Λ′ · (ψ − φh(x, a′))‖2

}
. (16)

Using the KKT conditions of (16), it can be verified that, for u = Σ′·(φh(x,a)−ψ?)
‖Σ′·(φh(x,a)−ψ?)‖2 and v =

Λ′·(φh(x,a′)−ψ?)
‖Λ′·(φh(x,a′)−ψ?)‖2 , we have that

F tl
h (x;βu, v) ≥ ‖βΣ′ · (φh(x, a)− ψ?)‖2 + ‖Λ′ · (φh(x, a′)− ψ?)‖2. (17)

Unfortunately these choices of u, v depend on the state x, and DΣ′ ,DΛ′ must be independent of x
in order to ensure Bellman-linearity of the bonus function.

Fortunately, as shown in Lemma C.9, under some additional technical conditions, (17) holds up
to an additive term of O(ε) when the left-hand side is replaced by F tl

h (x;βu′, v′), for any vectors
u′, v′ which are ε-close in `2 norm to u, v, respectively. If we take DΣ′ ,DΛ′ to be the uniform
distributions on the unit sphere in the subspaces SΣ′ ,SΛ′ , respectively, then u′ ∼ DΣ′ , v

′ ∼ DΛ′

satisfy ‖u′ − u‖2 ≤ ε, ‖v′ − v‖2 ≤ ε with probability εO(d). With these choices of DΣ′ ,DΛ′ , the
bonus G(t)

h satisfies the constraint (13) up to a factor of ε−O(d). In fact, this can easily be improved
to a factor of ε−O(A) by using the fact that closeness of u, u′ and of v, v′ only needs to hold in the
subspace spanned by φh(x, a) (for a ∈ A), which has at most A dimensions – see Lemma C.10.

It turns out to simplify the analysis to take DΣ′ ,DΛ′ to be the distributions N (0,Σ′),N (0,Λ′),
respectively, which permit essentially the same analysis as described above. Moreover, to satisfy
certain technical conditions in Lemma C.9, we add a term to the bonus function which is propor-
tional to F normal

h (x; Σ′) = Ew∼N (0,Σ′)[maxa∈A〈w, φh(x, a)〉]. To sum up, we define the bonus
function as

F
(t)
h (x) :=β1 · Eu′∼N (0,Σ′)Ev′∼N (0,Λ′)

[
F tl
h (x;βu′, v′)

]
+ β2 · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
,

(18)
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where β1, β2, β are carefully chosen parameters bounded above by (BHD/ε)O(A), where ε is the
desired error level of the algorithm’s output policy. The precise values of these parameters appear
in the formal definition of F (t)

h in (33). We remark that, crucially, β2 � β1 · β – the entire point of
the truncation procedure we have just described is to ensure that the size of F (t)

h (x) (which may be
as large as O(β2)) does not scale with β.

In Appendices C.2 and C.3, we formally verify, per the arguments outlined above, that the bonus
F

(t)
h in (18) satisfies the properties laid out in Problem B.1. Then, in Appendices D.1 to D.3, we

show how this implies the statements of Lemmas 3.1 and 3.2, which suffices to prove our main
theorem (Theorem 1.1).

Appendix C. Bellman linear functions
Recall the definition of Bellman linearity in Definition 3.1. In this section, we discuss several
properties of Bellman linear functions.

Lemma C.1 (Limiting preserves Bellman-linearity). Fix h ∈ [H]. Suppose that for each i ∈ N, we
are given a functionGi : X → R which is Bellman-linear at step h and so that supx∈X ,i∈N |Gi(x)| ≤
C, for some C > 0. Furthermore suppose that, for some G : X → R, limi→∞Gi(x) = G(x) for
all x ∈ X . Then G is Bellman-linear at step h.

Proof. For each i ∈ N, we know that there is some wi ∈ Rd so that, for all (x, a) ∈ X × A,
〈φh−1(x, a), wi〉 = Ex′∼Ph−1(x,a)[Gi(x

′)]. For each i, a, x, we know that |Ex′∼Ph−1(x,a)[Gi(x
′)]| ≤

C by uniform boundedness of Gi, so |〈φh−1(x, a), wi〉| ≤ C for all i, a, x. By definition of Bh−1,
it follows that wi ∈ C · Bh−1, which gives ‖wi‖2 ≤ CB by Assumption 2.1. Hence we may
find a subsequence (wij )j∈N so that limj→∞wij = w?, for some w? ∈ C · Bh−1. Thus, for any
(x, a) ∈ X ×A, we have

〈φh−1(x, a), w?〉 = lim
j→∞
〈φh−1(x, a), wij 〉 = lim

j→∞
Ex′∼Ph−1(x,a)[Gij (x

′)]

=Ex′∼Ph−1(x,a)

[
lim
j→∞

Gij (x
′)

]
= Ex′∼Ph−1(x,a)[G(x′)],

where the second-to-last equality uses the dominated convergence theorem and uniform bounded-
ness of the functions Gi.

Lemma C.2 (Differentiation preserves Bellman-linearity). Fix any h, k ∈ N and consider an open
set U ∈ Rk as well as a function F : U × X → R so that F (u, x) is continuously differentiable
in u for all x ∈ X , and that maxx∈X ,u∈U max{F (u, x), ‖∇uF (u, x)‖2} ≤ C. Suppose that,
for all u ∈ U , the function F (u, ·) is Bellman-linear at step h. Then the function ∇uF (u, ·) is
Bellman-linear at step h, for all u ∈ U .

Proof. By Bellman-linearity, we know that for all u ∈ U , there is some wu ∈ Rd so that, for all
(x, a) ∈ X ×A, it holds that

〈φh(x, a), wu〉 = Ex′∼Ph−1(x,a)

[
F (u, x′)

]
.

By the dominated convergence theorem (which may be applied as a consequence of uniform
boundedness of ‖∇uF (u, x)‖2 over u ∈ U ), it holds that u 7→ 〈φh(x, a), wu〉 is continuously
differentiable for all x, a, and moreover,

∇u〈φh(x, a), wu〉 = Ex′∼Ph−1(x,a)[∇uF (u, x′)]. (19)
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Choose (x1, a1), . . . , (x`, a`) ∈ X×A so that {φh(xi, ai)}`i=1 is linearly independent and spans
{φh(x, a)}(x,a)∈X×A; then ` ≤ d. Let Wu ∈ Rd×d be any matrix satisfying

Wu · φh(xi, ai) = ∇u〈φh(xi, ai), wu〉 ∀i ∈ [`],

which is possible by linear independence of φh(xi, ai), i ∈ [`]. Now consider any (x, a) ∈ X ×A;
we can find α1, . . . , α` ∈ R so that φh(x, a) =

∑`
i=1 αi · φh(xi, ai). Then

Wu · φh(x, a) =
∑̀
i=1

αi · ∇u〈φh(xi, ai), wu〉 = ∇u
∑̀
i=1

αi · 〈φh(xi, ai), wu〉 = ∇u〈φh(x, a), wu〉,

which completes the proof by (19).

Lemma C.3. Suppose thatM is linear Bellman complete. Then for each h ∈ [H] and eachw ∈ Rd,
the mapping x′ 7→ φh+1(x′, πh+1,w(x′)) is Bellman-linear at step h+ 1, i.e., there is a linear map
Lh(w) : Rd → Rd so that, for all (x, a) ∈ X ×A,

Lh(w)> · φh(x, a) = Ex′∼Ph(x,a)[φh+1(x′, πh+1,w(x′))].

Proof. Fix h ∈ [H]. Define V (x′, θ) := maxa′∈A〈φh+1(x′, a′), θ〉 andQ(x, a, θ) = 〈φh(x, a), Thθ〉,
so that Q(x, a, θ) = 〈φh(x, a), Thθ〉 = Ex′∼Ph(x,a)[V (x′, θ)]. By Fubini’s theorem, for any σ > 0,
we have

SσQ(x, a, θ) = Ez∼N (0,σ2Id)[Q(x, a, θ − z)] = Ex′∼Ph(x,a)Ez∼N (0,σ2Id)[V (x′, θ − x)] = Ex′∼Ph(x,a)[SσV (x′, θ)].

Linear Bellman completeness ofM gives that for each θ ∈ Rd, the function x′ 7→ V (x′, θ), and thus
x′ 7→ SσV (x′, θ) is Bellman-linear at step h+1. The function SσV (x′, θ) is infinitely differentiable
as a function of θ, for all x′; moreover, since

∇SσV (x′, θ) = Ez∼N (0,σ2Id)[∇V (x′, θ − z)] = Ez∼N (0,σ2Id)[φh+1(x′, πh+1,θ−z(x
′))], (20)

we have that max{SσV (x′, θ), ‖∇SσV (x′, θ)‖2} is bounded uniformly over x′ in the neighborhood
of any θ. We remark that the first equality in (20) uses the dominated convergence theorem, and
the second equality uses that the V (x′, θ − z) is differentiable almost surely over z ∼ N (0, σ2Id).
Thus, by Lemma C.2, the function x′ 7→ ∇SσV (x′, θ) is Bellman-linear at step h, for all θ ∈ Rd.
But for x′ ∈ X and w ∈ Rd,

∇SσV (x′, w) = φh+1(x′, πh+1,w,σ(x′)),

where the equality above uses (20) together with Definition F.1. Next, (72) ensures that for each
x′ ∈ X , limσ→0+ φh+1(x′, πh+1,w,σ(x′) = φh+1(x′, πh+1,w(x′)). Then Lemma C.1 (applied
to each coordinate of the function x′ 7→ φh+1(x′, πh+1,w,σ(x′), for σ > 0) yields that x′ 7→
φh+1(x′, πh+1,w(x′)) is Bellman-linear at step h+ 1, for any w ∈ Rd.

Given any πh+1 ∈ Πlin
h+1 (so that πh+1 = πh+1,v for some v ∈ Rd) and w ∈ Rd, we define

T πh w := Lh(v) · w. Then by Lemma C.3, for all (x, a) ∈ X ×A,

〈φh(x, a), T πh w〉 = Ex′∼Ph(x,a)[〈φh+1(x′, πh+1(x′)), w〉]. (21)
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Note that T πh depends only on πh+1; thus with slight abuse of notation, we will sometimes write
T πh+1

h w in place of T πh w. We also remark that by linearity of expectation, for any π ∈ ΠPlin and
w ∈ Rd, there is a vector T πh w ∈ Rd so that (21) holds for the perturbed linear policy π.

As an immediate consequence of Lemma C.3, we can show that the Q-function for a linear
policy is linear.

Corollary C.4. Suppose that M is linear Bellman complete, and that π ∈ ΠPlin. Then for each h ∈
[H], there is a vector wπh ∈ H ·Bh ⊂ Rd so that for all (x, a) ∈ X ×A, Qπh(x, a) = 〈wπh , φh(x, a)〉.
Moreover, ‖wπh‖2 ≤ HB.

Proof. Since Qπh(x, a) = rh(x, a) + Ex′∼Ph(x,a)[Q
π
h+1(x, πh+1(x))], by induction and the fact

that rh(x, a) is linear, it suffices to show that for all v ∈ Rd, there is some w ∈ Rd so that
〈φh(x, a), w〉 = Ex′∼Ph(x,a)[〈φh(x, πh+1(x)), v〉]. We may write πh+1 = πh+1,y,σ for some
y ∈ Rd and σ ≥ 0; then by Lemma C.3, we may take w = Ez∼N (y,σ2)[Lh(z)] · v.

To see the upper bound on ‖wπh‖2, note that, by definition ofQπh, we have |〈wπh , φh(x, a)〉| ≤ H
for all x, a, h. Then it follows that ‖wπh‖2 ≤ HB by Assumption 2.1.

C.1. Construction of Bellman-linear functions for bonuses

A central component of the proof consists of the construction of functions, to be used as exploration
bonuses, which (a) are Bellman-linear and (b) approximate a truncated version of arbitrary norms
induced by PSD matrices. In this section, we establish Bellman linearity of certain functions which
form the building blocks of these bonuses.

Given orthogonal vectors u, v ∈ Rd, we let Πu,v := uu>

‖u‖2 + vv>

‖v‖2 . Note that if u, v are unit
vectors, then Πu,v is the projection matrix onto Span{u, v}.

Definition C.1 (Orthogonal pair). We define a tuple of d× d PSD matrices (Σ,Λ) to be an orthog-
onal pair if the following equalities hold:

Σ2 = Σ, Λ2 = Λ, ΣΛ = ΛΣ = 0, Σ + Λ = Id.

For an orthogonal pair (Σ,Λ), Σ,Λ are projections onto subspaces of Rd, which we denote by
SΣ := {Σv : v ∈ Rd},SΛ := {Λv : v ∈ Rd}, respectively. Since ΣΛ = ΛΣ = 0, the subspaces
SΣ,SΛ are orthogonal. Since Σ + Λ = Id, we have that dim(SΣ) + dim(SΛ) = d.

Definition C.2 (Truncated linear bonus). Consider orthogonal vectors u, v ∈ Rd. For Φ ∈Pd, we
define

F tl(Φ;u, v) = max
φ∈Φ
〈u, φ〉+ max

φ∈Φ
〈v, φ〉 −max

φ∈Φ
〈u+ v, φ〉.

For x ∈ X and h ∈ [H], we then define F tl
h (x;u, v) := F tl(Φ̄h(x);u, v).

The following lemma is immediate from the definition of F tl(·).

Lemma C.5 (Bellman-linearity of truncated linear bonus). Given any h > 1 and vectors u, v ∈ Rd,
the mapping x 7→ F tl

h (x;u, v) is Bellman-linear at step h.

We next record the following lemmas for future use, which follow as an immediate consequence
of the definition of F tl.
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Lemma C.6. Let Φ ∈ Pd. Suppose that u, u′, v, v′ ∈ Rd satisfy 〈u, φ〉 = 〈u′, φ〉 and 〈v, φ〉 =
〈v′, φ〉 for all φ ∈ Φ. Then

F tl(Φ;u, v) = F tl(Φ;u′, v′).

Proof. We have that maxφ∈Φ〈w, φ〉 = maxφ∈Φ〈w′, φ〉 for each pair (w,w′) ∈ {(u, u′), (v, v′), (u+
v, u′ + v′)}.

Lemma C.7. Let Φ ∈Pd. Suppose that u, v ∈ Rd are given and that αu, αv ≥ 0 are real numbers.
Then

F tl(Φ;αu · u, αv · v) ≥ min{αu, αv} · F tl(Φ;u, v).

Proof. Since F tl(Φ;αu, αv) = α · F tl(Φ;u, v) for any α ≥ 0, it suffices to consider the case that
min{αu, αv} = 1. Without loss of generality let us suppose that αu = 1 ≤ αv. Then

F tl(Φ;u, αv · v)− F tl(Φ;u, v) =(αv − 1) ·max
φ∈Φ
〈v, φ〉 −max

φ∈Φ
〈u+ αv · v, φ〉+ max

φ∈Φ
〈u+ v, φ〉 ≥ 0,

where the final inequality follows since u+ αv · v = (u+ v) + (αv − 1) · v.

C.2. An upper bound on the truncated linear bonus

Lemma C.8 below shows that the truncated linear bonus F tl(Φ;u, v) can be bounded above by the
length of the projection of Φ onto each of u and v.

Lemma C.8. Suppose u, v ∈ Rd and Φ ∈Pd. Then

0 ≤ F tl(Φ;u, v) ≤ 2 ·min

{
max
φ,φ′∈Φ

〈u, φ− φ′〉, max
φ,φ′∈Φ

〈v, φ− φ′〉
}
.

Proof. For any fixed φ, we have

〈u+ v, φ〉 ≤ max
φ′∈Φ
〈u, φ′〉+ max

φ′∈Φ
〈v, φ′〉,

which implies F tl(Φ;u, v) ≥ 0.
To upper bound F tl(Φ;u, v), we first note that

F tl(Φ;u, v) ≤F tl(Φ;u, v) + F tl(Φ;−u,−v)

= max
φ,φ′∈Φ

〈u, φ− φ′〉+ max
φ,φ′∈Φ

〈v, φ− φ′〉 − max
φ,φ′∈Φ

〈u+ v, φ− φ′〉.

We will now upper bound F tl(Φ;u, v) + F tl(Φ;−u,−v) as follows. By symmetry, it is without
loss of generality to assume that maxφ,φ′∈Φ〈u, φ− φ′〉 ≤ maxφ,φ′∈Φ〈v, φ− φ′〉. Now we have

max
φ,φ′∈Φ

〈u+ v, φ− φ′〉 ≥ max
φ,φ′∈Φ

〈v, φ− φ′〉 − max
φ,φ′∈Φ

〈−u, φ− φ′〉

= max
φ,φ′∈Φ

〈v, φ− φ′〉 − max
φ,φ′∈Φ

〈u, φ− φ′〉.

Rearranging, we see that F tl(Φ;u, v) +F tl(Φ;−u,−v) ≤ 2 maxφ,φ′∈Φ〈u, φ− φ′〉, as desired.
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C.3. A lower bound on the modified truncated linear bonus

Given Φ ∈ Pd and a matrix Γ ∈ Rd×d, let SΦ ⊂ Rd denote the subspace SΦ := Span{φ :
φ ∈ Φ}, and SΦ,Γ ⊂ Rd denote the subspace SΦ,Γ := Span{Γ · φ : φ ∈ Φ} = Γ · SΦ. Let
ΠΦ,Γ ∈ Rd×d denote the matrix which projects onto SΦ,Γ. Recall that for an orthogonal pair (Σ,Λ)
(Definition C.1), we have SΣ = Σ · Rd,SΛ = Λ · Rd. Then for any Φ ∈ Pd, SΦ,Σ ⊂ SΣ and
SΦ,Λ ⊂ SΛ.

Moreover, given Φ ∈Pd and φ1, φ2 ∈ Φ, we define

µ?Φ,φ1,φ2
:= arg min

ξ∈Φ
{‖βΣ · (φ1 − ξ)‖2 + ‖Λ · (ξ − φ2)‖2} . (22)

The point µ?Φ,φ1,φ2
can be thought of as a sort of “midpoint” between φ1 and φ2 in Φ, where the

distance between φ1 and µ?Φ,φ1,φ2
is measured with respect to βΣ and the distance between µ?Φ,φ1,φ2

and φ2 is measured with respect to Λ. As it turns out, this particular notion of midpoint will be
useful in proving that our exploration bonuses induce optimistic value functions.

Finally, we introduce some notation regarding the normal cone of a convex body. For a convex
subset C ⊂ Rd and z ∈ C, the normal cone of C at z, denoted NC(z) is defined as NC(z) := {y ∈
Rd : 〈y, z − z′〉 ≥ 0 ∀z′ ∈ C}.

Lemma C.9. Consider an orthogonal pair (Σ,Λ) and β ≥ 1, ζ > 0. Suppose that Φ ∈ Pd

satisfies

max

{
max

φ1,φ2∈Φ
‖βΣ · (φ1 − φ2)‖2, max

φ1,φ2∈Φ
‖Λ · (φ1 − φ2)‖2

}
≤ ζ. (23)

Fix any φ1, φ2 ∈ Φ. Then there are unit vectors u ∈ SΦ,Σ and v ∈ SΦ,Λ (depending on Φ, φ1, φ2)
so that for all unit vectors u′ ∈ SΣ, v

′ ∈ SΛ satisfying

‖u− u′‖2 ≤ ε, ‖v − v′‖2 ≤ ε, 〈u′, u〉 ≥ η, 〈v′, v〉 ≥ η, (24)

it holds that

F tl(Φ;βu′, v′) ≥ η‖βΣ · (φ1 − µ?Φ,φ1,φ2
)‖2 + η‖Λ · (µ?Φ,φ1,φ2

− φ2)‖2 − 2εζ.

Proof. Fix Φ ∈Pd satisfying (23) and φ1, φ2 ∈ Φ.

Step 1: Choosing u, v. The KKT conditions for optimality of µ?Φ,φ1,φ2
(as defined in (22)) give

that, for all z ∈ Φ̄,

β2Σ · (φ1 − µ?Φ,φ1,φ2
)

‖βΣ · (φ1 − µ?Φ,φ1,φ2
)‖2

+
Λ · (φ2 − µ?Φ,φ1,φ2

)

‖Λ · (φ2 − µ?Φ,φ1,φ2
)‖2
∈ NΦ(µ?Φ,φ1,φ2

), (25)

where NΦ(ξ) denotes the normal cone of Φ at ξ.We now set

u :=
Σ · (φ1 − µ?Φ,φ1,φ2

)

‖Σ · (φ1 − µ?Φ,φ1,φ2
)‖2

, v :=
Λ · (φ2 − µ?Φ,φ1,φ2

)

‖Λ · (φ2 − µ?Φ,φ1,φ2
)‖2

.

Then (25) states that for all z ∈ Φ, 〈βu+ v, µ?Φ,φ1,φ2
− z〉 ≥ 0. Moreover, since µ?Φ,φ1,φ2

∈ Φ, we
certainly have that u ∈ SΦ,Σ ⊂ SΣ, v ∈ SΦ,Λ ⊂ SΛ.
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Step 2: Relating u, v to u′, v′ satisfying (24). Now consider any unit vectors u′ ∈ SΣ, v
′ ∈ SΛ

satisfying (24). Choose

ξ′ := arg max
ξ∈Φ

〈βu′ + v′, ξ〉. (26)

Next, we compute

〈βu′ + v′, ξ′ − µ?Φ,φ1,φ2
〉 =〈(βu′ + v′)− (βu+ v), ξ′ − µ?Φ,φ1,φ2

〉+ 〈βu+ v, ξ′ − µ?Φ,φ1,φ2
〉

≤β|〈u− u′, ξ′ − µ?Φ,φ1,φ2
〉|+ |〈v − v′, ξ′ − µ?Φ,φ1,φ2

〉|
=β|〈u− u′,Σ · (ξ′ − µ?Φ,φ1,φ2

)〉|+ |〈v − v′,Λ · (ξ′ − µ?Φ,φ1,φ2
)〉|

=β|〈ΠΦ,Σ · (u− u′),Σ · (ξ′ − µ?Φ,φ1,φ2
)〉|+ |〈ΠΦ,Λ · (v − v′),Λ · (ξ′ − µ?Φ,φ1,φ2

)〉|
≤β‖ΠΦ,Σ · (u− u′)‖2 · ‖Σ · (ξ′ − µ?Φ,φ1,φ2

)‖2 + ‖ΠΦ,Λ · (v − v′)‖2 · ‖Λ · (ξ′ − µ?Φ,φ1,φ2
)‖2

≤2εζ, (27)

where the first inequality uses the triangle inequality and the fact that 〈βu + v, ξ′ − µ?Φ,φ1,φ2
〉 ≤ 0

since ξ′ ∈ Φ; the second equality uses the fact that u− u′ ∈ SΣ and v − v′ ∈ SΛ; the third equality
uses the fact that Σ · (ξ′ − µ?Φ,φ1,φ2

) ∈ SΦ,Σ and Λ · (ξ′ − µ?Φ,φ1,φ2
) ∈ SΦ,Λ; the second inequality

uses Cauchy-Schwarz; and the third inequality uses (24) and (23).
We then have

〈φ1 − ξ′, βu′〉+ 〈φ2 − ξ′, v′〉
=〈Σ · (φ1 − ξ′), βu′ + v′〉+ 〈Λ · (φ2 − ξ′), v′ + βu′〉
=〈Σ · φ1 + Λ · φ2 − ξ′, βu′ + v′〉
≥〈Σ · φ1 + Λ · φ2 − µ?Φ,φ1,φ2

, βu′ + v′〉 − 2εζ

=〈Σ · (φ1 − µ?Φ,φ1,φ2
), βu′〉+ 〈Λ · (φ2 − µ?Φ,φ1,φ2

), v′〉 − 2εζ

≥ηβ‖Σ · (φ1 − µ?Φ,φ1,φ2
)‖2 + η‖Λ · (φ2 − µ?Φ,φ1,φ2

)‖2 − 2εζ, (28)

where the first equality uses that Σu′ = u′,Σv′ = v′, and Σv′ = Λu′ = 0 since (Σ,Λ) is an
orthogonal pair, the second equality uses that Σ + Λ = Id, the first inequality uses (27), the third
equality again uses Σ + Λ = Id and the fact that Σv′ = Λu′ = 0, and the second inequality uses
(24) and the definition of u, v.

Step 3: wrapping up. Finally, we may write

F tl(Φ;βu′, v′) = max
φ∈Φ
〈φ, βu′〉+ max

φ∈Φ
〈φ, v′〉 −max

φ∈Φ
〈φ, βu′ + v′〉

= max
φ∈Φ
〈φ, βu′〉+ max

φ∈Φ
〈φ, v′〉 − 〈ξ, βu′ + v′〉

≥〈φ1, βu
′〉+ 〈φ2, v

′〉 − 〈ξ, βu′ + v′〉
≥ηβ‖Σ · (φ1 − µ?Φ,φ1,φ2

)‖2 + η‖Λ · (φ2 − µ?Φ,φ1,φ2
)‖2 − 2εζ,

where the second equality uses the definition of ξ in (26), and the second inequality uses (28).

By averaging over u′, v′ drawn randomly from appropriate subspaces, we have the following
consequence of Lemma C.9.
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Lemma C.10. There is a constant CC.10 so that the following holds. Fix A ∈ N, an orthogonal
pair (Σ,Λ), β ≥ 1, ζ > 0, Φ ∈ Pd

A, φ1, φ2 ∈ Φ, and suppose that Φ satisfies (23). Then for any
ε > 0, (

CC.10

ε

)2A

· Eu′∼N (0,Σ)Ev′∼N (0,Λ)

[
F tl(Φ;βu′, v′)

]
≥‖βΣ · (φ1 − µ?Φ,φ1,φ2

)‖2 + ‖Λ · (µ?Φ,φ1,φ2
− φ2)‖2 − 4εζ.

Proof. Note that if dim(SΦ,Σ) = 0, then we could choose µ?Φ,φ1,φ2
= φ2 in (22), and thus the lemma

statement becomes immediate. A symmetric argument applies to the case that dim(SΦ,Λ) = 0. Thus
we may assume for the remainder of the proof that dim(SΦ,Σ), dim(SΦ,Λ) ≥ 1.

Note that the subspace SΦ,Σ ⊆ SΣ satisfies dim(SΦ,Σ) ≤ A, and similarly, dim(SΦ,Λ) ≤ A.
Note that Eu′∼N (0,Σ)[(ΠΦ,Σu

′) · (ΠΦ,Σu
′)>] = ΠΦ,Σ · Σ · ΠΦ,Σ = ΠΦ,Σ, meaning that ΠΦ,Σu

′ ∼
N (0,ΠΦ,Σ). Similarly, we have that ΠΦ,Λv

′ ∼ N (0,ΠΦ,Λ).

Therefore, we have that ΠΦ,Σu
′

‖ΠΦ,Σu′‖2 ∼ unif(Sd−1 ∩ SΦ,Σ). Since Sd−1 ∩ SΦ,Σ may be covered

with (3/ε)A balls of radius ε, it follows that, for any u ∈ Sd−1 ∩ SΦ,Σ, we have

Pru′∼N (0,Σ)

(∥∥∥∥ ΠΦ,Σu
′

‖ΠΦ,Σu′‖2
− u
∥∥∥∥

2

≤ ε
)
≥ (ε/3)A.

Moreover, we have that Pru′∼N (0,Σ)(‖ΠΦ,Σu
′‖2 ≥ 1/2) ≥ 1/2: this holds because ‖ΠΦ,Σu

′‖22
is a chi-squared random variable with dim(SΦ,Σ) ≥ 1 degrees of freedom. Using the fact that
‖ΠΦ,Σu

′‖2 and ΠΦ,Σu
′

‖ΠΦ,Σu′‖2 are independent random variables, it follows that

1

2
· (ε/3)A ≤Pru′∼N (0,Σ)

(∥∥∥∥ ΠΦ,Σu
′

‖ΠΦ,Σu′‖2
− u
∥∥∥∥

2

≤ ε and ‖ΠΦ,Σu
′‖2 ≥ 1/2

)
.

In a symmetric manner, we obtain that

1

2
· (ε/3)A ≤Prv′∼N (0,Λ)

(∥∥∥∥ ΠΦ,Λv
′

‖ΠΦ,Λv′‖2
− v
∥∥∥∥

2

≤ ε and ‖ΠΦ,Λv
′‖2 ≥ 1/2

)
.

Let us define the random variables u′′ :=
ΠΦ,Σu

′

‖ΠΦ,Σu′‖2 and v′′ :=
ΠΦ,Λv

′

‖ΠΦ,Λv′‖2 . Let u ∈ SΦ,Σ

and v ∈ SΦ,Λ be chosen according to the statement of Lemma C.9 given Φ, φ1, φ2. Then with
probability at least (1/4) · (ε/3)2A over the independent draws of u′ and v′ (which induce values of
u′′, v′′), we have that:

‖u′′ − u‖2 ≤ ε, ‖v′′ − v‖2 ≤ ε, 〈u′′, u〉 ≥ 1/2, 〈v′′, v〉 ≥ 1/2, ‖ΠΦ,Σu
′‖2 ≥ 1/2, ‖ΠΦ,Λv

′‖2 ≥ 1/2,
(29)

where we have used that ε ≤ 1 and that for unit vectors y, y′, we have 〈y, y′〉 =
2−‖y−y′‖22

2 .
For any φ ∈ Φ ⊂ SΦ, we have

〈u′, φ〉 = 〈u′,Σφ〉 = 〈ΠΦ,Σu
′,Σφ〉 = 〈ΠΦ,Σu

′, φ〉,

25



GOLOWICH MOITRA

where the first equality uses that u′ ∈ SΣ, the second equality uses that Σφ ∈ SΦ,Σ, and the
third equality uses that ΠΦ,Σu

′ ∈ SΦ,Σ ⊆ SΣ. In a similar manner, we have that, for all φ ∈ Φ,
〈v′, φ〉 = 〈ΠΦ,Λv

′, φ〉. It then follows from Lemma C.6 that

F tl(Φ;βu′, v′) = F tl(Φ;β ·ΠΦ,Σu
′,ΠΦ,Λv

′). (30)

Under the event that ‖ΠΦ,Σu
′‖2 ≥ 1/2 and ‖ΠΦ,Λv

′‖2 ≥ 1/2, we have by Lemma C.7 that

F tl(Φ;βΠΦ,Σu
′,ΠΦ,Λv

′) ≥ 1

2
· F tl(Φ;βu′′, v′′). (31)

Combining Eqs. (30) and (31), we see that

Eu′∼N (0,Σ)Ev′∼N (0,Λ)

[
F tl(Φ;βu′, v′)

]
≥1

2
Eu′∼N (0,Σ)Ev′∼N (0,Λ)

[
F̃ tl(Φ;βu′′, v′′)

]
≥1

4
· 1

4
·
(ε

3

)2A
·
(
‖βΣ · (φ1 − µ?Φ,φ1,φ2

)‖2 + ‖Λ · (µ?Φ,φ1,φ2
− φ2)‖2 − 4εζ

)
,

where the second inequality uses the fact that (29) holds with probability at least (1/4) · (ε/3)2A

together with Lemma C.9 with η = 1/2, u′ set to u′′, and v′ set to v′′. Rearranging and using that
A ≥ 2, we obtain that(

6

ε

)2A

· Eu′∼N (0,Σ)Ev′∼N (0,Λ)

[
F̃ tl(Φ;βu′, v′)

]
≥‖βΣ · (φ1 − µ?Φ,φ1,φ2

)‖2 + ‖Λ · (µ?Φ,φ1,φ2
− φ2)‖2 − 4εζ,

as desired. (In particular, we may take CC.10 = 6.)

Appendix D. The algorithm
The algorithm. Algorithm 1 presents our algorithm for learning linear Bellman complete MDPs.
For some T ∈ N, the algorithm proceeds for T rounds. In each round t ∈ [T ], the algorithm
computes two policies π̂(t)

h , π̃
(t)
h : X → A at step h, in order of decreasing h. For each step h,

trajectories are gathered from the uniform mixture over π̂(s) ◦h π̃(s) ◦h+1 π̂
(t), for s ∈ [t − 1]

(Line 3). These trajectories are then used, together with a procedure to construct an optimism-based
upper confidence bonus, to define a policy π̂(t)

h (Lines 6 and 7), which represents the algorithm’s
current optimistic estimate of the optimal policy. Finally, π̃(t)

h is defined to be a sort of uniform
policy (Line 9), with respect to the current covariance matrix of features Σ

(t)
h .

Parameter definitions. Below, we specify the parameters λ1, β used in the definition of the
bonuses F (t)

h (in (33) below), the parameters λ, n, T used in Algorithm 1, as well as several other
parameters used in the analysis of this section:

Definition D.1 (Parameter definitions). Fix δ ∈ (0, 1), εfinal ∈ (0, 1), as well as parametersA,H,B, d
of the MDP. We define the following parameters, which are used in Algorithm 1 as well in the re-
mainder of this section:

• λ = CE.3d log(2THn/δ), where CE.3 is a constant chosen sufficiently large in Lemma E.3.
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• T = d ·
(
CD.10H

4B3dA1/2 log1/2(HABd/(εfinalδ))
εfinal

)6A+2
, where CD.10 is a constant chosen suffi-

ciently large in the proof of Theorem D.10.

• n = 3T .

• ι = log
(
TH(λd+n)

δ

)
.

• λ1 = BH .

• εbkup = εfinal
2H .

• σtr =
εbkup

4λ1
.

• εapx =
εbkup

128
√

2πCD.7λ
2
1HBd

√
ι
, whereCD.7 is chosen sufficiently large in the proof of Lemma D.7

holds.

• β = 4CD.7HB
√
dι · 5λ1

√
d ·
(
CC.10
εapx

)2A
.

• ξ = β

4CD.7HB
√
dι·2
√

2πλ1

√
d

. (Note that ξ ≥ 1.)

Definition of bonuses. Next we define the exploration bonus function F (t)
g : X → R used in the

construction of the rewards r̂(t,i,h)
h in Line 5. The key component in F (t)

g is a linear combination
of truncated linear bonuses F tl

h (x;u, v), over various values of u, v. The vectors u, v are chosen to
belong to the subspaces SΣ,SΛ, for matrices Σ,Λ forming an orthogonal pair which are obtained
from the covariance matrix Σ

(t)
h via a certain truncation procedure, defined below:

Definition D.2. Let Γ ∈ Rd×d be a PSD matrix, and suppose that Γ may be diagonalized as Γ =
UDU>, for a diagonal matrix D and an orthogonal matrix U . Given σ > 0, we define the σ-
truncated pair of Γ, denoted (Σ′,Λ′) := truncσ(Γ), as Σ′ = UD+U

>,Λ′ = UD−U
>, where

D+, D− are diagonal matrices whose entries are given by:

(D+)ii =

{
1 : Dii ≥ σ
0 : Dii < σ

, (D−)ii =

{
0 : Dii ≥ σ
1 : Dii < σ

. (32)

In words, for (Σ′,Λ′) = truncσ(Γ), Σ′ contains the large components of Γ (as parametrized
by σ), and Λ′ contains the small components of Γ. Note that the definition of truncσ(Γ) does not
depend on the choice of diagonalization. Moreover, note that (Σ′,Λ′) = truncσ(Γ) is an orthogonal
pair.

The bonus function F (t)
h used in Algorithm 1 is defined as follows: for each t ∈ [T ], h ∈ [H],

F
(t)
h (x) :=λ1 ·

(
CC.10

εapx

)2A

· Eu′∼N (0,Σ′)Ev′∼N (0,Λ′)

[
F tl
h (x;βu′, v′)

]
+ 2
√

2πλ1ξ · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
(33)

for (Σ′,Λ′) := truncσtr((β/λ1) · (Σ(t)
h )−1/2).
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Q- and V -function definitions. For each h ∈ [H], t ∈ [T ], we make the following definitions:

Q
(t)
h (x, a) :=rh(x, a) + Eπ̂

(t)

 H∑
g=h+1

rg(xg, ag) + F (t)
g (xg) | (xh, ah) = (x, a)

 (34)

V
(t)
h (x) :=Q

(t)
h (x, π̂

(t)
h (x)) (35)

Q̂
(t)
h (x, a) :=〈ŵ(t)

h , φh(x, a)〉

V̂
(t)
h (x) :=Q̂

(t)
h (x, π̂

(t)
h (x)) = max

a∈A
Q̂

(t)
h (x, a).

The functions Q(t)
h (·) and V (t)

h (·) represent the Q- and V -value functions for the policy π̂(t), with
respect to the rewards r̂(t)

g defined in (5). In Lemma D.1 below, we show that Q(t)
h is a linear

function, i.e., for some w(t)
h ∈ Rd, Q(t)

h (x, a) = 〈φh(x, a), w
(t)
h 〉 for all (x, a) ∈ X ×A. The vector

ŵ
(t)
h computed in Algorithm 1 may be viewed as an empirical approximation to w(t)

h , so that Q̂(t)
h (·)

and V̂ (t)
h (·) represent empirical approximations to Q(t)

h , V
(t)
h , respectively.

Lemma D.1. For all t ∈ [T ], h ∈ [h], there is some w(t)
h ∈ Rd so that Q(t)

h (x, a) = 〈φh(x, a), w
(t)
h 〉

for all (x, a) ∈ X ×A.

Proof. For all x, a, h, t, we have

Q
(t)
h (x, a) = rh(x, a) + Ex′∼Ph(x,a)

[
F

(t)
h+1(x′) +Q

(t)
h+1(x′, π̂

(t)
h+1(x′)))

]
.

For fixed t ∈ [T ], we will use reverse induction on h to establish the stated claim. The base case
h = H follows sinceQ(t)

H (x, a) = rH(x, a) = 〈w(t)
H , φH(x, a)〉 for some wH ∈ Rd, by assumption.

Now, assume for the inductive hypothesis that for all (x, a) ∈ X×A,Q(t)
h+1(x, a) = 〈w(t)

h+1, φh+1(x, a)〉
for some w(t)

h+1 ∈ Rd. Then Lemma C.3 gives that there is some θ1 ∈ Rd so that for all (x, a) ∈
X ×A,

〈θ1, φh(x, a)〉 = Ex′∼Ph(x,a)

[
〈φh+1(x′, π̂

(t)
h+1(x′)), w

(t)
h+1〉

]
= Ex′∼Ph(x,a)

[
Q

(t)
h+1(x′, π̂

(t)
h+1(x′))

]
.

Next, note that it is immediate from the definition (33) that, with probability 1 over u′ ∼ N (0,Σ′)
and v′ ∼ N (0,Λ′), the function F tl

h+1(·;u′, v′, βΣ′,Λ) is Bellman-linear at step h + 1. Note that
the function x 7→ maxa∈A〈w, φh+1(x, a)〉 is also Bellman-linear at step h + 1, for all w ∈ Rd.
Since the sum of Bellman-linear functions is Bellman-linear, the definition of F (t)

h+1 in (33) gives

that F (t)
h+1 is Bellman-linear at step h+ 1. Thus, there is some θ2 ∈ R2 so that

〈φh(x, a), θ2〉 = Ex′∼Ph(x,a)

[
F

(t)
h+1(x′)

]
for all (x, a) ∈ X ×A.

Finally, by assumption, there is some θ3 ∈ Rd so that rh(x, a) = 〈θ3, φh(x, a)〉 for all (x, a) ∈
X × A. Hence, writing w(t)

h = θ1 + θ2 + θ3, we have that Q(t)
h (x, a) = 〈w(t)

h , φh(x, a)〉 for all
(x, a) ∈ X ×A.
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D.1. Boundedness of the bonuses
Next, we prove some lemmas which establish bounds on the magnitude of the bonus functions
F

(t)
h (·), and thereby on the magnitude of the optimistic Q-functions Q(t)

h (·).

Lemma D.2. For a PSD matrix Γ and σ > 0, writing (Σ′,Λ′) := truncσ(Γ), we have that Σ′ �
1
σ · Γ.

Proof. We write Γ = UDU> and Σ′ = UD+U
>, where D+ is as defined in (32). Certainly

0 = (D+)ii ≤ Dii if Dii < σ; otherwise, we have 1 = (D+)ii ≤ 1
σ · Dii, which implies that

D+ � D
σ , as desired.

Lemma D.3. Let Φ ∈Pd be a given polyhedron. Consider any PSD matrix Σ ∈ Rd×d. Then

1√
2π
· max
φ,φ′∈Φ

((φ− φ′)>Σ(φ− φ′))1/2 ≤ Ew∼N (0,Σ)

[
max
φ∈Φ
〈w, φ〉

]
≤
√
d · Ew∼N (0,Σ)

[
φ>wΣφw

]1/2
,

where φw := arg maxφ∈Φ〈w, φ〉.

Proof. Define Ψ = {Σ1/2 · φ : φ ∈ Φ}, and, for v ∈ Rd, write ψv := arg maxψ∈Ψ〈v, ψ〉. Then

Σ1/2 · φΣ1/2v = Σ1/2 · arg max
φ∈Φ

〈v,Σ1/2φ〉 = arg max
ψ∈Ψ

〈v, ψ〉 = ψv.

We then have the following equalities:

max
φ,φ′∈Φ

((φ− φ′)>Σ(φ− φ′))1/2 = max
ψ,ψ′∈Ψ

‖ψ − ψ′‖2 (36)

Ew∼N (0,Σ)

[
φ>wΣφw

]1/2
=Ev∼N (0,Id)

[
φ>

Σ1/2v
ΣφΣ1/2v

]1/2
= Ev∼N (0,Id)

[
‖ψv‖22

]1/2
(37)

Ew∼N (0,Σ)

[
max
φ∈Φ
〈w, φ〉

]
=Ev∼N (0,Id)

[
max
φ∈Φ
〈Σ1/2v, φ〉

]
= Ev∼N (0,Id)

[
max
ψ∈Ψ
〈v, ψ〉

]
.

(38)

It therefore suffices to show that

1√
2π
· max
ψ,ψ′∈Ψ

‖ψ − ψ′‖2 ≤ Ev∼N (0,Id)

[
max
ψ∈Ψ
〈v, ψ〉

]
≤
√
d · Ev∼N (0,Id)[‖ψv‖22]1/2. (39)

To show the first inequality in (39), pick ψ0, ψ1 ∈ Ψ maximizing ‖ψ0 − ψ1‖2. Then

Ev∼N (0,Id)

[
max
ψ∈Ψ
〈v, ψ〉

]
≥Ev∼N (0,Id) [max{〈v, ψ0〉, 〈v, ψ1〉}]

=Ev∼N (0,Id) [〈v, (ψ0 + ψ1)/2〉+ max{〈v, (ψ0 − ψ1)/2〉, 〈v, (ψ1 − ψ0)/2〉}]
=Ev∼N (0,Id)[|〈v, (ψ0 − ψ1)/2〉|]

=

√
2

2
√
π
‖ψ0 − ψ1‖2,

where the second equality uses that Ev∼N (0,Id)[〈v, (ψ0 +ψ1)/2〉] = 0, and the final inequality uses
that 〈v, (ψ0 − ψ1)/2〉 ∼ N (0, ‖(ψ0 − ψ1)/2‖22).
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To show the second inequality in (39), note that

Ev∼N (0,Id)

[
max
ψ∈Ψ
〈v, ψ〉

]
=Ev∼N (0,Id) [〈v, ψv〉]

≤Ev∼N (0,Id)[‖v‖22]
1/2 · Ev∼N (0,Id)[‖ψv‖22]1/2

=
√
d · Ev∼N (0,Id)[‖ψv‖22]1/2,

where the inequality uses Cauchy-Schwarz.

Lemma D.4. Suppose that Γ ∈ Rd is a PSD matrix, and let σ > 0 be given. Let (Σ′,Λ′) :=
truncσ(Γ). Then for all h ∈ [H], x ∈ X , a, a′ ∈ A, and v ∈ Φ̄h(x), it holds that

‖Γ · (φh(x, a)− v)‖2 + ‖v − φh(x, a′)‖2

≤‖Γ‖ · ‖Σ′ · (φh(x, a)− v)‖2 + ‖Λ′ · (v − φh(x, a′))‖2 +
√

2π · Ew∼N (0,Σ′)

[
max
ā∈A
〈w, φh(x, ā)

]
+ 2σ.

Proof. Note that Γ2 � ‖Γ‖2 · Σ′ + σ2 · Id, so that

‖Γ · (φh(x, a)− v)‖2 ≤‖Γ‖ · ‖Σ′ · (φh(x, a)− v)‖2 + σ · ‖φh(x, a)− v‖2 ≤ ‖Σ′ · (φh(x, a)− v)‖2 + 2σ
(40)

where the final inequality uses that maxφ∈Φ̄h(x) ‖φ‖2 ≤ 1 (Assumption 2.1). Next, the fact that
Λ′ + Σ′ = Id gives that

‖v − φh(x, a′)‖2 ≤‖Λ′ · (v − φh(x, a′))‖2 + max
a1,a2∈A

‖Σ′ · (φh(x, a1)− φh(x, a2))‖2

≤‖Λ′ · (v − φh(x, a′))‖2 +
√

2π · Ew∼N (0,Σ′)

[
max
ā∈A
〈w, φh(x, ā)

]
, (41)

where the second inequality uses Lemma D.3. The conclusion of the lemma statement follows by
adding Eqs. (40) and (41).

Lemma D.5 (Bound on bonuses in terms of Σ′). There is a sufficiently large constant CD.5 so that
the following holds. Fix t ∈ [T ], h ∈ [H], and let (Σ′,Λ′) := truncσtr((β/λ1) · (Σ(t)

h )−1/2). Then
for all x ∈ X ,

|F (t)
h (x)| ≤

√
dβλ1 ·

(
CD.5
εapx

)2A

· Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
.

Proof. Fix any u′ ∈ SΣ′ , v
′ ∈ SΛ′ . Then

F tl
h (x;βu′, v′) ≤2‖u′‖2 · max

a,a′∈A
‖βΣ′ · (φh(x, a)− φh(x, a′))‖2

≤2
√

2πβ‖u′‖2 · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
,
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where the first inequality uses Lemma C.8 with u = βu′, v = v′ as well as the fact that Σu′ = u′,
and the second inequality uses Lemma D.3. Using the definition of F (t)

h (·) in (33), it follows that,
for a sufficiently large constant C > 0,

|F (t)
h (x)| ≤λ1 ·

(
CC.10

εapx

)2A

· Eu′∼N (0,Σ′)

[
4
√

2πβ‖u′‖2 · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]]
+ 2
√

2πλ1ξ · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
≤

(
4
√

2π
√
dβλ1 ·

(
CC.10

εapx

)2A

+ 2
√

2πλ1ξ

)
· Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]

≤
√
dβλ1 ·

(
C

εapx

)2A

· Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
,

where the final inequality uses that ξ ≤ β (Definition D.1).

Lemma D.6 (Absolute bound on bonuses). For all h, t, x, it holds that |F (t)
h (x)| ≤ β

2CD.7HB
√
dι

,

and that ‖w(t)
h ‖2 ≤

β

CD.7
√
dι

.

Proof. Fix t ∈ [T ], h ∈ [H], and set (Σ′,Λ′) := truncσtr((β/λ1) · (Σ(t)
h )−1/2), as per (33). For any

fixed u′, v′ ∈ Rd with u′ ∈ SΣ′ , v
′ ∈ SΛ′ , we have

F tl
h (x;βu′, v′) ≤2‖v′‖2 · max

φ,φ′∈Φ̄h(x)
‖Λ′ · (φ− φ′)‖2 ≤ 4‖v′‖2,

where the first inequality uses Lemma C.8 and the fact that Λv′ = v′, and the second inequality uses
that maxh,x,a ‖φh(x, a)‖2 ≤ 1. Then, by the definition of F (t)

h in (33), we have

|F (t)
h (x)| ≤λ1 ·

(
CC.10

εapx

)2A

· Ev′∼N (0,Λ)[4‖v′‖2] + (2
√

2πλ1ξ) · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
≤4λ1

√
d ·
(
CC.10

εapx

)2A

+ 2
√

2πλ1ξ ·
√
d ≤ β

2CD.7HB
√
dι
,

where the second inequality uses Lemma D.3, and the final inequality is derived as follows:

4λ1

√
d ·
(
CC.10

εapx

)2A

+ (2
√

2πλ1ξ) ·
√
d ≤4λ1

√
d ·
(
CC.10

εapx

)2A

+
β

4CD.7HB
√
dι
≤ β

2CD.7HB
√
dι
,

where we have used the fact that 2
√

2πλ1

√
d · ξ ≤ β

4CD.7HB
√
dι

and that β

4CD.7HB
√
dι
≥ 4λ1

√
d ·(

CC.10
εapx

)2A
(by Definition D.1).

The definition of w(t)
h (per (34) and Lemma D.1), combined with the fact that |rh(x, a)| ≤ 1

for all h, x, a (Assumption 2.1), gives that |〈w(t)
h , φh(x, a)〉| ≤ H + H ·maxh,x{|F

(t)
h (x)|}, from

which it follows that w(t)
h ∈ (H +H ·maxh,x{|F

(t)
h (x)|}) · Bh. Since maxw∈Bh ‖w‖2 ≤ B (again

by Assumption 2.1), we have as a consequence that ‖w(t)
h ‖2 ≤

β

CD.7
√
dι

.
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D.2. Linear regression lemma

We will need the following lemma which establishes a standard concentration statement regarding
closeness of ŵ(t)

h to w(t)
h .

Lemma D.7. There is a sufficiently large constantCD.7 (which is used in the definitions of εapx, β, ξ
in Definition D.1) so that the following holds. There is an event E which occurs with probability at
least 1− δ/2 so that, for all h ∈ [H], t ∈ [T ], φ ∈ Rd, it holds that

|〈φ, ŵ(t)
h − w

(t)
h 〉| ≤ β ·

(
φ>(Σ

(t)
h )−1φ

)1/2
. (42)

Proof of Lemma D.7. Fix any h ∈ [H], t ∈ [T ]. Note that, by definition of Σ
(t)
h in Line 4 of

Algorithm 1,

w
(t)
h = (Σ

(t)
h )−1Σ

(t)
h w

(t)
h = (Σ

(t)
h )−1 ·

(
λw

(t)
h +

n∑
i=1

φh(x
(t,i,h)
h , a

(t,i,h)
h ) · 〈φh(x

(t,i,h)
h , a

(t,i,h)
h ), w

(t)
h 〉

)
.

Also recall that the definition of ŵ(t)
h in Line 6 gives

ŵ
(t)
h = (Σ

(t)
h )−1 ·

n∑
i=1

φh(x
(t,i,h)
h , a

(t,i,h)
h ) ·

r(t,i,h)
h +

H∑
g=h+1

r̂(t,i,h)
g

 .

Thus,

w
(t)
h − ŵ

(t)
h =(Σ

(t)
h )−1 ·

(
λw

(t)
h +

n∑
i=1

φh(x
(t,i,h)
h , a

(t,i,h)
h )

·

〈φh(x
(t,i,h)
h , a

(t,i,h)
h ), w

(t)
h 〉 −r

(t,i,h)
h −

H∑
g=h+1

r̂(t,i,h)
g

 . (43)

For each i ∈ [n], we have, by (34), that

Eπ̂
(t)

r(t,i,h)
h +

H∑
g=h+1

r̂(t,i,h)
g | (xh, ah) = (x

(t,i,h)
h , a

(t,i,h)
h )

 = Q
(t)
h (x

(t,i,h)
h , a

(t,i,h)
h ) = 〈φh(x

(t,i,h)
h , a

(t,i,h)
h ), w

(t)
h 〉.

(In particular, note that by definition of the sampling procedure in Line 3, the trajectory (xh, ah, . . . , xH , aH)
is indeed drawn from the MDP with policy π̂(t).)

Let us write Y := β

CD.7
√
dι

. The definition of β in Definition D.1 together with Lemma D.6

ensures that Y ≥ 2H · max
{

1,maxh,x |F
(t)
h (x)|

}
≥
∣∣∣r(t,i,h)
h +

∑H
g=h+1 r̂

(t,i,h)
g

∣∣∣ with probability

1. We also have from Lemma D.6 that Y ≥ ‖w(t)
h ‖2 with probability 1.

Thus, by Corollary E.2 with Γ0 = λI , φi = φh(x
(t,i,h)
h , a

(t,i,h)
h ) and εi = 〈φh(x

(t,i,h)
h , a

(t,i,h)
h ), w

(t)
h 〉−

r
(t,i,h)
h −

∑H
g=h+1 r̂

(t,i,h)
g (so that we may take σ = 2Y ), under some event E(t,h) which holds with
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probability at least 1− δ/(2TH), we have∥∥∥∥∥∥
n∑
i=1

φh(x
(t,i,h)
h , a

(t,i,h)
h ) ·

〈φh(x
(t,i,h)
h , a

(t,i,h)
h ), w

(t)
h 〉 − r

(t,i,h)
h −

H∑
g=h+1

r̂(t,i,h)
g

∥∥∥∥∥∥
(Σ

(t)
h )−1

≤8Y ·

√√√√log

(
TH · det(Σ

(t)
h )1/2 det(λI)−1/2

δ/2

)

≤8Y
√
d ·

√
log

(
TH · λd+ n

λd · δ/2

)
, (44)

where the final inequality follows since

det(Σ
(t)
h ) ≤

(
1

d
Tr Σ

(t)
h

)d
≤

(
1

d
·

(
λd+

n∑
i=1

‖φh(x
(t,i,h)
h , a

(t,i,h)
h )‖22

))d
≤
(
λd+ n

d

)d
.

Let us define ω(t)
h := w

(t)
h − ŵ

(t)
h − (Σ

(t)
h )−1 · λw(t)

h , so that (43) and (44) give that, under E(t,h),

‖(Σ(t)
h )1/2ω

(t)
h ‖2 ≤ 8Y

√
d ·

√
log

(
TH · λd+ n

λdδ/2

)
. (45)

It follows that, under E(t,h), for all φ ∈ Rd,

|〈ŵ(t)
h − w

(t)
h , φ〉| =|λ〈(Σ(t)

h )−1w
(t)
h , φ〉|+ |〈ω(t)

h , φ〉|

=|λ〈(Σ(t)
h )−1w

(t)
h , φ〉|+ |〈(Σ(t)

h )1/2 · ω(t)
h , (Σ

(t)
h )−1/2 · φ〉|

≤

(
√
λ · Y + 8Y

√
d ·

√
log

(
TH · λd+ n

λdδ/2

))
·
√
φ> · (Σ(t)

h )−1 · φ, (46)

where the final inequality uses (45), Cauchy-Schwarz, and

|λ〈(Σ(t)
h )−1w

(t)
h , φ〉| =|〈w(t)

h , λ(Σ
(t)
h )−1φ〉|

≤‖w(t)
h ‖2 ·

√
φ> · λ2(Σ

(t)
h )−2 · φ

≤
√
λ · Y ·

√
φ> · (Σ(t)

h )−1 · φ,

where the final inequality above uses the fact that λ · (Σ(t)
h )−1 � Id. Finally, we note that (46) gives

that (42) holds under E(h,t) since we have

β = Y · CD.7
√
dι ≥Y ·

(√
CE.3d log(2THn/δ) + 8

√
d log

(
TH(λd+ n)

λdδ/2

))

=Y ·

(
√
λ+ 8

√
d

√
log

(
TH(λd+ n)

λdδ/2

))
, (47)
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where the above follows by the choices of λ = CE.3d log(2THn/δ), ι = log
(
TH(λd+n)

δ/2

)
≥

log(2THn/δ), and as long as CD.7 is chosen sufficiently large. The conclusion of the lemma fol-
lows by taking E =

⋂
h∈[H],t∈[T ] E(h,t) and noting that by a union bound, E occurs with probability

at least 1− δ/2.

D.3. Establishing optimism

In this section, we establish that that Q(t)
h (·) is (approximately) an upper bound on Q?h(·), in

Lemma D.9 below.
First, we prove Lemma D.8 below, which shows that for states x which satisfy a certain inequal-

ity (namely, (48)), V π
h (x) is approximately upper bounded by V (t)

h (x) for any linear policy π. It
is used to deal with one particular case in the proof of Lemma D.9. Recall that for any π ∈ Πlin,
Corollary C.4 guarantees the existence of a vector wπh ∈ Rd so that for all (x, a) ∈ X × A,
Qπh(x, a) = 〈wπh , φh(x, a)〉.

Lemma D.8. Consider an orthogonal pair of PSD matrices (Σ,Λ), and fix x ∈ X . For some ξ ≥ 1,
suppose that

max
a1,a2∈A

‖Λ · (φh(x, a1)− φh(x, a2))‖2 ≤ ξ · max
a1,a2∈A

‖Σ · (φh(x, a1)− φh(x, a2))‖2. (48)

Then for any π ∈ Πlin,

V
(t)
h (x) + 2ξ‖wπh‖2 · max

a1,a2∈A
‖Σ · (φh(x, a1)− φh(x, a2))‖2 ≥ V π

h (x) +
(
Q

(t)
h (x, π̂

(t)
h (x))−Qπh(x, π̂

(t)
h (x))

)
.

Proof. Note that, for any actions a, a′ ∈ A, we have

‖φh(x, a)− φh(x, a′)‖2 ≤‖Λ · (φh(x, a)− φh(x, a′))‖2 + ‖Σ · (φh(x, a)− φh(x, a′))‖2
≤2ξ · max

a,a′∈A
‖Σ · (φh(x, a)− φh(x, a′))‖2, (49)

where the second inequality uses (48) and the fact that ξ ≥ 1.
We compute

V
(t)
h (x)− V π

h (x)

=Q
(t)
h (x, π̂

(t)
h (x))−Qπh(x, πh(x))

=〈wπh , φh(x, π̂
(t)
h (x))− φh(x, πh(x))〉+

(
Q

(t)
h (x, π̂

(t)
h (x))−Qπh(x, π̂

(t)
h (x))

)
≥− ‖wπh‖2 · ‖φh(x, π̂

(t)
h (x))− φh(x, πh(x))‖2 +

(
Q

(t)
h (x, π̂

(t)
h (x))−Qπh(x, π̂

(t)
h (x))

)
≥− 2ξ‖wπh‖2 · max

a,a′∈A
‖Σ · (φh(x, a)− φh(x, a′))‖2 +

(
Q

(t)
h (x, π̂

(t)
h (x))−Qπh(x, π̂

(t)
h (x))

)
,

where the final inequality uses (49).

Lemma D.9 establishes that the functions Q(t)
h are an approximate upper bound on Q?h.

Lemma D.9 (Optimism). Under the event E of Lemma D.7, it holds that, for all x, a, h, t,

εbkup · (H − h) +Q
(t)
h (x, a) ≥Q?h(x, a) (50)

εbkup · (H + 1− h) + V
(t)
h (x) + F

(t)
h (x) ≥V ?

h (x). (51)
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Proof. Condition on the event E , and fix t ∈ [T ]. We prove the statement using reverse induction
on h. The base case h = H + 1 is immediate since Q(t)

H+1(x, a) = Q?H+1(x, a) = V
(t)
H+1(x) =

V ?
H+1(x) = 0 for all x, a, t.

Now suppose that the statement of the lemma holds at step h+ 1. For all x, a, we have

Q
(t)
h (x, a) =rh(x, a) + Ex′∼Ph(x,a)

[
F

(t)
h+1(x′) + V

(t)
h+1(x′)

]
(52)

Q?h(x, a) =rh(x, a) + Ex′∼Ph(x,a)

[
V ?
h+1(x′)

]
, (53)

where (52) uses the definition of Q(t)
h , V

(t)
h in Eqs. (34) and (35). The inductive hypothesis gives

that

εbkup · (H + 1− h− 1) + V
(t)
h+1(x′) + F

(t)
h+1(x′) ≥ V ?

h+1(x′) (54)

for all x′ ∈ X . Combining Eqs. (52) and (53), we see that

Q
(t)
h (x, a)−Q?h(x, a) =Ex′∼Ph(x,a)

[
F

(t)
h+1(x′) + V

(t)
h+1(x′)− V ?

h+1(x′)
]
≥ −εbkup · (H − h),

(55)

where the inequality uses (54). This verifies (50) at step h.
To establish (51) at step h, set (Σ′,Λ′) := truncσtr((β/λ1) · (Σ(t)

h )−1/2) (per Definition D.2),
so that (Σ′,Λ′) is an orthogonal pair (note that this is the same choice as is made in the definition of
F

(t)
h (·) in (33)).

Let ξ be defined as per Definition D.1, so that ξ ≥ 1. Now consider any x ∈ X and π ∈ Π. We
consider two cases based on the value of x.

Case 1. In the first case, we assume that

max
a,a′∈A

‖Λ′ · (φh(x, a)− φh(x, a′))‖2 ≤ ξ · max
a,a′∈A

‖Σ′ · (φh(x, a)− φh(x, a′))‖2. (56)

Then Lemma D.8 with (Σ,Λ) = (Σ′,Λ′) and π = π? gives that

V
(t)
h (x) + 2ξ‖w?h‖2 · max

a,a′∈A
‖Σ′ · (φh(x, a)− φh(x, a′))‖2 ≥V ?

h (x) +
(
Q

(t)
h (x, π̂

(t)
h (x))−Q?h(x, π̂

(t)
h (x))

)
≥V ?

h (x)− εbkup · (H − h),

where the second inequality uses (55). We may compute

2ξ‖w?h‖2 · max
a,a′∈A

‖Σ′ · (φh(x, a)− φh(x, a′))‖2 ≤2ξλ1 ·
√

2πEw∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
≤ F (t)

h (x),

where the first inequality uses Lemma D.3 and Corollary C.4 as well as the fact that (Σ′)2 = Σ′,
and the second inequality uses the definition of F (t)

h (·) in (33). It then follows that (51) holds at step
h.

35



GOLOWICH MOITRA

Case 2. In the second case, we assume that (56) does not hold, which implies that

max

{
ξ · max

a,a′∈A
‖Σ′ · (φh(x, a)− φh(x, a′))‖2, max

a,a′∈A
‖Λ′ · (φh(x, a)− φh(x, a′))‖2

}
≤ max
a,a′∈A

‖Λ′ · (φh(x, a)− φh(x, a′))‖2 ≤ max
a,a′∈A

‖φh(x, a)− φh(x, a′)‖2 ≤ 2. (57)

We will apply Lemma C.10 with (Σ,Λ) = (Σ′,Λ′), the value of β set to the present value of β
(defined in Definition D.1), ε = εapx, and Φ = Φ̄h(x). We need to check that (23) holds; indeed,
we have

max

{
β · max

a,a′∈A
‖Σ′ · (φh(x, a)− φh(x, a′))‖2, max

a,a′∈A
‖Λ′ · (φh(x, a)− φh(x, a′))‖2

}
≤8
√

2πCD.7λ1HBd
√
ι ·max

{
ξ · max

a,a′∈A
‖Σ′ · (φh(x, a)− φh(x, a′))‖2, max

a,a′∈A
‖Λ′ · (φh(x, a)− φh(x, a′))‖2

}
≤16
√

2πCD.7λ1HBd
√
ι,

where the first inequality uses the definition of ξ in Definition D.1 and the second inequality uses
(57). Thus we may apply Lemma C.10 with ζ = 16

√
2πCD.7λ1HBd

√
ι. For a, a′ ∈ A, let us write

µ?x,h,a,a′ as shorthand for µ?
Φ̄h(x),φh(x,a),φh(x,a′)

, which was defined in (22). Fix any a, a′ ∈ A; then
applying Lemma C.10 with φ = φh(x, a), φ′ = φh(x, a′), we have

1

λ1
· F (t)

h (x) ≥
(
CC.10

εapx

)2A

· Eu′∼N (0,Σ′)Ev′∼N (0,Λ′)

[
F tl
h (x;βu′, v′)

]
+
√

2π · Ew∼N (0,Σ′)

[
max
ā∈A
〈w, φh(x, ā)〉

]
≥‖βΣ′ · (φh(x, a)− µ?x,h,a,a′)‖2 + ‖Λ′ · (µ?x,h,a,a′ − φh(x, a′))‖2 − 64

√
2πCD.7λ1HBd

√
ι · εapx

+
√

2π · Ew∼N (0,Σ′)

[
max
ā∈A
〈w, φh(x, ā)〉

]
≥‖βΣ′ · (φh(x, a)− µ?x,h,a,a′)‖2 + ‖Λ′ · (µ?x,h,a,a′ − φh(x, a′))‖2 − εbkup/(2λ1)

+
√

2π · Ew∼N (0,Σ′)

[
max
ā∈A
〈w, φh(x, ā)〉

]
, (58)

where the first inequality follows from the definition of F (t)
h (x) in (33) and the fact that ξ ≥ 1, the

second inequality uses Lemma C.10 with the above parameter settings, and the final inequality uses
the definition of εapx in Definition D.1.

Write µ? := µ?
x,h,π̂

(t)
h (x),π?h(x)

. We now apply Lemma D.7 with φ = φh(x, π̂
(t)
h (x))− µ?. Then

Lemma D.7 ensures that∣∣∣〈w(t)
h − ŵ

(t)
h , φh(x, π̂

(t)
h (x))− µ?〉

∣∣∣ ≤β · ∥∥∥(Σ
(t)
h )−1/2 · (φh(x, π̂

(t)
h (x)− µ?)

∥∥∥
2
. (59)

Moreover, since µ? ∈ Φ̄h(x), we have from the fact that (50) holds at step h that

〈w(t)
h − w

?
h, µ

?〉 ≥ − εbkup · (H − h). (60)
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Finally, we have

〈w?h, µ? − φh(x, π?h(x))〉 ≥ − ‖w?h‖2 · ‖µ? − φh(x, π?h(x))‖2. (61)

We may now compute

V
(t)
h (x)− V ?

h (x) =Q
(t)
h (x, π̂

(t)
h (x))−Q?h(x, π?h(x))

≥Q(t)
h (x, π̂

(t)
h (x))−Q?h(x, π?h(x)) + 〈ŵ(t)

h , µ? − φh(x, π̂
(t)
h (x))〉

=〈w(t)
h − w

?
h, µ

?〉+ 〈ŵ(t)
h − w

(t)
h , µ? − φh(x, π̂

(t)
h (x))〉+ 〈w?h, µ? − φh(x, π?h(x))〉

≥ − εbkup · (H − h)− β ·
∥∥∥(Σ

(t)
h )−1/2 · (φh(x, π̂

(t)
h (x)− µ?)

∥∥∥
2
− ‖w?h‖2 · ‖µ? − φh(x, π?h(x))‖2,

(62)

where the first inequality uses that π̂(t)
h (x) = arg maxa′∈A Q̂

(t)
h (x, a′), and the second inequality

uses Eqs. (59) to (61). Moreover,

β ·
∥∥∥(Σ

(t)
h )−1/2 · (φh(x, π̂

(t)
h (x)− µ?)

∥∥∥
2

+ ‖w?h‖2 · ‖µ? − φh(x, π?h(x))‖2

≤β ·
∥∥∥(Σ

(t)
h )−1/2 · (φh(x, π̂

(t)
h (x)− µ?)

∥∥∥
2

+ λ1 · ‖µ? − φh(x, π?h(x))‖2

≤λ1 ·
(
‖(β/λ1) · Σ′ · (φh(x, π̂

(t)
h (x))− µ?)‖2 + ‖Λ′ · (µ? − φh(x, π?h(x)))‖2

+
√

2π · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
+ 2σtr

)
, (63)

where the first inequality uses that ‖w?h‖2 ≤ λ1 (Corollary C.4) and the second inequality uses
Lemma D.4 with Γ = (β/λ) · (Σ(t)

h )−1/2 and σ = σtr, as well as the fact that ‖(Σ(t)
h )−1/2‖ ≤ 1

(which follows by the choice of λ = 1 in Definition D.1), so that ‖Γ‖ ≤ β/λ1.
Combining Eqs. (58), (62) and (63) and the fact that λ1 ≥ 1, it follows that

V
(t)
h (x)− V ?

h (x)

≥− εbkup · (H − h)− ‖βΣ′ · (φh(x, π̂
(t)
h (x))− µ?)‖2 − λ1 · ‖Λ′ · (µ? − φh(x, π?h(x)))‖2

−
√

2πλ1 · Ew∼N (0,Σ′)

[
max
a∈A
〈w, φh(x, a)〉

]
− 2λ1σtr

≥− εbkup · (H − h)− F (t)
h (x)− εbkup/2− 2λ1σtr (64)

≥− εbkup · (H + 1− h)− F (t)
h (x), (65)

where the final inequality follows since εbkup/2 + 2λ1σtr ≤ εbkup by the choice of σtr in Defini-
tion D.1. This verifies that (51) holds at step h, completing the proof of the lemma.

Theorem D.10. For any εfinal, δ ∈ (0, 1), the policy π̂ := 1
T

∑T
t=1 π̂

(t) produced by Algorithm 1
has suboptimality bounded by V ?

1 (x1)− V π̂
1 (x1) ≤ εfinal after the algorithm has gathered

O

Hd2 ·

(
H4B3dA1/2 log1/2(HABd/(εfinalδ))

εfinal

)12A+4


samples and used (HBdA log(1/(εfinalδ)))
O(A) time.
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Proof. Using the fact that V π̂(t)

1 (x1) = Eπ̂(t)
[∑H

h=1 rh(xh, ah)
]

as well as the definition of V (t)
h in

Eqs. (34) and (35), we see that

V
(t)

1 (x1)− V π̂(t)

1 (x1) =
H∑
h=2

Eπ̂
(t)
[
F

(t)
h (xh)

]
. (66)

Set γ =
√
dβλ1 ·

(
CD.5
εapx

)2A
. For each h ∈ [H], t ∈ [T ], let us write ((Σ′h)(t), (Λ′h)(t)) :=

truncσtr((β/λ1) · (Σ(t)
h )−1/2). Then under the event E of Lemma D.9 (which satisfies Pr(E) ≥

1− δ/2),

V ?
1 (x1)− V π̂(t)

1 (x1) ≤H · εbkup + V
(t)

1 (x1) + F
(t)
1 (x1)− V π̂(t)

1 (x1)

=H · εbkup +

H∑
h=1

Eπ̂
(t)
[
F

(t)
h (xh)

]
≤H · εbkup + γ

H∑
h=1

Eπ̂
(t)

[
Ew∼N (0,(Σ′h)(t))

[
max
a∈A
〈w, φh(xh, a)〉

]]

≤H · εbkup + γ

H∑
h=1

Eπ̂
(t)

[√
d · Ew∼N (0,(Σ′h)(t))

[
φh(xh, πh,w(xh))>(Σ′h)(t)φh(xh, πh,w(xh))

]1/2
]

≤H · εbkup + γ
√
d

H∑
h=1

Eπ̂
(t)◦hπ̃(t)

[
φh(xh, ah)>(Σ′h)(t)φh(xh, ah)

]1/2

≤H · εbkup + γ
√
d · β

σtrλ1

H∑
h=1

Eπ̂
(t)◦hπ̃(t)

[
φh(xh, ah)>(Σ

(t)
h )−1φh(xh, ah)

]1/2
,

(67)

where the first inequality uses Lemma D.9, the second inequality uses Lemma D.5 together with the
definition of γ, the third inequality uses Lemma D.3, the fourth inequality uses Jensen’s inequality
as well as the definition of π̃(t)

h in Line 9 of Algorithm 1, and the final inequality uses the fact
that ((Σ′h)(t), (Λ′h)(t)) = truncσtr(

β
λ1
· (Σ(t)

h )−1/2) together with Lemma D.2, which implies that

((Σ′h)(t))2 = (Σ′h)(t) � β
σtrλ1

· (Σ(t)
h )−1/2.

For each h ∈ [H], t ∈ [T ], let us define

Γ
(t)
h := Eπ̂

(t)◦hπ̃(t)
[
φh(xh, ah)φh(xh, ah)>

]
.

Next, for each t ∈ [T ] and h ∈ [H], we will now apply Lemma E.3 with P given by the
distribution of φh(xh, ah) for (xh, ah) ∼ Punif({π̂s◦hπ̃(s)}t−1

s=1}). Write

Λ
(t)
h = Eunif({π̂(s)◦hπ̃(s)})t−1

s=1 [φh(xh, ah)φh(xh, ah)>],

so that for each i ∈ [n], E[φh(x
(t,i,h)
h , a

(t,i,h)
h )φh(x

(t,i,h)
h , a

(t,i,h)
h )>] = Λ

(t)
h . Then Lemma E.3 to-

gether with the definition of Σ
(t)
h in Line 4 of Algorithm 1 gives that, since λ ≥ CE.3d log(2THn/δ)
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(per Definition D.1),

Pr

(
1

3
(λI + nΛ

(t)
h ) � Σ

(t)
h �

5

3
(λI + nΛ

(t)
h )

)
≥ 1− δ/(2TH). (68)

Let E ′ denote the event that (68) holds for all h ∈ [H], t ∈ [T ], so that E ′ occurs with probability at
least 1 − δ/2. Since n ≥ 3T , we have that n3 Λ

(t)
h �

∑t
s=1 Γ

(s)
h , and therefore, under E ′, we have

Σ̃
(t)
h := λ

3 Id +
∑t

s=1 Γ
(s)
h � Σ

(t)
h . Next, we may compute, for each h ∈ [H],

T∑
t=1

Eπ̂
(t)◦hπ̃(t)

[φh(xh, ah)>(Σ
(t)
h )−1φh(xh, ah)] =

T∑
t=1

〈Γ(t)
h , (Σ

(t)
h )−1〉 ≤

T∑
t=1

〈Γ(t)
h , (Σ̃

(t)
h )−1〉 ≤ 2d log(2T ),

(69)

where the final inequality uses Lemma E.4 together with the fact that λ/3 ≥ 1. Combining (67) and
(69), and using Jensen’s inequality, we obtain that under E ∩ E ′ (which occurs with probability at
least 1− δ), for sufficiently large constants C,C ′,

T∑
t=1

(V ?
1 (x1)− V π̂(t)

1 (x1)) ≤THεbkup +
Hγβ

√
d

σtrλ1
·
√

2Td log(2T )

≤THεbkup +
4Hdβ2λ1

εbkup
·
(
CD.5
εapx

)2A

·
√

2Td log(2T )

≤THεbkup +
CH6B5d3ι

εbkup
·
(
CC.10

εapx

)4A

·
(
CD.5
εapx

)2A

·
√

2Td log(2T )

≤THεbkup +
CH6B5d3ι

εbkup
·
(
C ′H3B3d

√
ι

εbkup

)6A

≤Tεfinal/2 + CH3B2d2√ι
(

2C ′H4B3d
√
ι

εfinal

)6A+1

, (70)

where the second inequality uses the definition of γ, σtr, and the remaining inequalities use the
definitions of εapx, β, λ1, εfinal in Definition D.1. Next, we have the following claim:

Claim D.11. The choice of T, ι (in Definition D.1) ensures that T ≥ d ·
(
C

1/2
D.10H

4B3d
√
ι

εfinal

)6A+2

.

Claim D.11 is proved at the end of the section. By Claim D.11, as long as the constant CD.10

is chosen sufficiently large, the expression in (70) is bounded above by Tεfinal. Hence the policy
π̂ := 1

T

∑T
t=1 π̂

(t) satisfies V ?
1 (x1)− V π̂

1 (x1) ≤ εfinal.

Altogether, Algorithm 1 collects THn ≤ O(HT 2) ≤ O
(
Hd2 ·

(
H4B3dA1/2 log1/2(HABd/(εfinalδ))

εfinal

)12A+4
)

trajectories.
Finally, we analyze the computation time of Algorithm 1. It is straightforward to see that each

step of the algorithm can be implemented in poly(T ) time, with the exception of the computation
of F (t)

g (x
(t,i,h)
g ) in (5), which requires integrating a nonlinear function over a Gaussian (see (33)).

To handle this difficulty, we discuss a slight modification of our algorithm and its analysis which
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proceeds by approximating this integral. To efficiently approximate the result of each such integra-
tion, we useO(log(T/δ)/ε2

apx) draws from the appropriate Gaussian to approximate each integral to
within εapx. The error term of εapx that arises in this approximation leads to an additional error term
of εapx in (42) (Lemma D.7), which in turn leads to an additional term of−εapx in (64). By an appro-
priate choice of the constants in Definition D.1, we can ensure that εapx +εbkup/2+2λ1σtr ≤ εbkup,
which ensures that (65) still holds. The remaining details of the proof remain unchanged.

Proof of Claim D.11. Note that, since n = 3T and by the definition of T in Definition D.1, for suf-
ficiently large constants C,C ′ (independent of CD.10), we have ι ≤ C · (log(HBd/δ) + log(T )) ≤
C ′ ·A log

(
CD.10HBdA

εfinalδ

)
. Then

d ·

(
C

1/2
D.10H

4B3d
√
ι

εfinal

)6A+2

≤ d ·

(√
C ′ log1/2(CD.10) · C1/2

D.10H
4B3dA1/2 log1/2(HBdA/(εfinalδ))

εfinal

)6A+2

.

As long as CD.10 is chosen sufficiently large so that
√
C ′ log1/2(CD.10)C

1/2
D.10 ≤ CD.10, the right-

hand side of the above expression is bounded above by T , as desired.

Appendix E. Useful lemmas
E.1. Concentration
Lemma E.1 (Concentration for self-normalized process; e.g., Theorem D.3 of (Jin et al., 2020)). Fix
n ∈ N and let ε1, . . . , εn be random variables which are adapted to a filtration (Fi)0≤i≤n. Suppose
that for each i ∈ [n], E[εi|Fi−1] = 0 and E[eλεi |Fi−1] ≤ eλ

2σ2/2. Suppose that φ1, . . . , φn is a
sequence which is predictable with respect to (Fi)0≤i≤n, i.e., φi is measurable with respect to Fi−1

for all i ∈ [n]. Suppose that Γ0 ∈ Rd×d is positive definite, and let Γi = Γ0 +
∑i

j=1 φjφ
>
j . Then

for any δ > 0, with probability at least 1− δ,∥∥∥∥∥
n∑
i=1

φiεi

∥∥∥∥∥
2

Γ−1
i

≤ 2σ2 log

(
det(Γt)

1/2 det(Γ0)−1/2

δ

)
.

In the special case that the random variables εi are i.i.d., we obtain the following:

Corollary E.2 (Concentration for self-normalized process; i.i.d. data). Fix n ∈ N, and let ε1, . . . , εn
be independent real-valued random variables, so that for each i ∈ [n], E[εi] = 0 and E[eλεi ] ≤
eλ

2σ2/2 for all λ ∈ R. Let φ1, . . . , φn ∈ Rd be given. Suppose that Γ0 ∈ Rd×d is positive definite,
and let Γi = Γ0 +

∑i
j=1 φjφ

>
j . Then for any δ > 0, with probability at least 1− δ,∥∥∥∥∥

n∑
i=1

φiεi

∥∥∥∥∥
2

Γ−1
i

≤ 2σ2 log

(
det(Γt)

1/2 det(Γ0)−1/2

δ

)
.

Lemma E.3 (Lemma 39 of (Zanette et al., 2021)). There is a constant CE.3 > 0 so that the
following holds. Suppose P is a distribution supported on the unit Euclidean ball in Rd. Write
Σ = Eφ∼P [φφ>]. Suppose n ∈ N, δ > 0, λ are given so that λ ≥ CE.3d log(n/δ). Suppose
φ1, . . . , φn ∼ P are i.i.d. Then

Pr

(
1

3
(λI + nΣ) � λI +

n∑
i=1

φiφ
>
i �

5

3
(λI + nΣ)

)
≥ 1− δ.
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E.2. Elliptical potential
The below lemma generalizes the elliptical potential lemma.

Lemma E.4. Consider any sequence Γ1, . . . ,ΓT ∈ Rd×d of PSD matrices, and suppose that
Tr Γt ≤ 1 for all t ∈ [T ]. Define Σt = λI +

∑t
s=1 Γs, for some λ ≥ 1. Then

T∑
t=1

〈Γt,Σ−1
t−1〉 ≤ 2d log(2T ).

Proof. Write Σ0 = λI . Since λ ≥ 1, we have Σ−1
t−1 � Id and therefore 〈Γt,Σ−1

t−1〉 ≤ Tr Γt ≤ 1 for
all t ∈ [T ]. Thus 〈Γt,Σ−1

t−1〉 ≤ 2 log(1 + 〈Γt,Σ−1
t−1〉). Moreover, for each t ∈ [T ],

det(Σt) = det(Σt−1 + Γt)

= det(Σt−1) · det
(
I + Σ

−1/2
t−1 ΓtΣ

−1/2
t−1

)
≥det(Σt−1) · (1 + Tr(Σ

−1/2
t−1 ΓtΣ

−1/2
t−1 )) = det(Σt−1) · (1 + 〈Γt,Σ−1

t−1〉),

where the inequality uses that for any real numbers σ1, . . . , σd ≥ 0,
∏d
i=1(1 + σi) ≥ 1 +

∑d
i=1 σi,

which implies that det(I + A) ≥ 1 + Tr(A) for any PSD matrix A (by taking σ1, . . . , σd to be the
eigenvalues of A). Telescoping the above display, we obtain that

1

2

T∑
t=1

〈Γt,Σ
−1
t−1〉 ≤

T∑
t=1

log(1 + 〈Γt,Σ
−1
t−1〉) ≤ log

(
det(ΣT )

det(λI)

)
≤ log

((
1
d Tr(ΣT )

)d
det(λI)

)
≤ d log

(
λd+ T

λd

)
≤ d log(2T ).

E.3. Performance difference lemma
Lemma E.5 (Performance difference lemma (Kakade and Langford, 2002)). For any MDP M ,
policies π, π′ ∈ Π, it holds that

EM,π
[
H∑
h=1

rh(xh, ah)

]
− EM,π′

[
H∑
h=1

rh(xh, ah)

]
=

H∑
h=1

EM,π′
[
V M,π

h (xh)−QM,π

h (xh, ah)
]
.

E.4. Linear algebraic lemmas

Lemma E.6. Two symmetric matrices Σ,Γ ∈ Rd×d commute if and only if their eigenspaces coin-
cide.
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Appendix F. Proofs for Appendix C
F.1. Functions which are not Bellman-linear
Proposition F.1. There is an MDPM = (H,X ,A, (Ph)h, (rh)h, d1) with horizonH = 2 satisfying
linear Bellman completeness with respect to some feature mappings φh in dimension d = 1, together
with a vector w? ∈ Rd so that the function

Vh(x) := max
a∈A

min {〈w?, φh(x, a)〉, H}

is not Bellman-linear at step 2 (per Definition 3.1).
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Proof. We set H = 2, d = 1, X = {s1, s2,0, s2,1}, and A = {0, 1}, and define:

φ1(s1, 0) = 1, φ1(s1, 1) = 2,

φ2(s2,0, 0) = H,φ2(s2,0, 1) = −H, φ2(s2,1, 0) = 2H,φ2(s2,1, 1) = −2H.

The transitions are defined as follows: (s1, 0) transitions to s2,0, and (s1, 1) transition to s2,1. All
rewards are 0. By defining T1w := H · |w|, it is readily seen that M is linear Bellman complete
with respect to the above feature mappings.

Let us choose w? = 1. Then Bellman-linearity of V2(x) would require that there is some w̄ ∈ R
so that

φ1(s1, 0) · w̄ = H, φ1(s1, 1) · w̄ = H.

But since φ1(s1, 1) = 2 and φ1(s1, 0) = 1, there is no such w̄.

Proposition F.1 provides an example for which a function Q̂(t)
h as defined in (3), with B(t)

h ≡ 0,
is so that maxa∈A Q̂

(t)
h (·, a) is not Bellman-linear. We have considered that case that B(t)

h is 0 for
simplicity. Note that in an instantiation of LSVI-UCB, B(t)

h would not be identically 0, as it is
defined by (4). Nevertheless, the example in Proposition F.1 can be readily modified to account
for nonzero quadratic bonus functions B(t)

h . In a similar manner, by rescaling the features we may
modify the example to ensure that ‖φh(x, a)‖2 ≤ 1 for all h, x, a (so as to satisfy Assumption 2.1).

Proposition F.2. There is an MDPM = (H,X ,A, (Ph)h, (rh)h, d1) with horizonH = 2 satisfying
linear Bellman completeness with respect to some feature mappings φh in dimension d = 1, so that
the function

Fh(x) := max
a∈A
‖φh(x, a)‖2

is not Bellman-linear at step 2.

Proof. We set H = 2, d = 1,X = {s1, s2,0, s2,1, s2,2}, A = {0, 1}, and define:

φ1(s1, 0) = 1, φ1(s1, 1) = 1,

φ2(s2,0, 0) = 1, φ2(s2,0, 1) = −1, φ2(s2,1, 0) = 2, φ2(s2,1, 1) = 0, φ2(s2,2, 0) = −2, φ2(s2,2, 1) = 0.

The transition are defined as follows: (s1, 0) transitions to s2,0, and (s1, 1) transitions to each of
s2,1, s2,2 with probability 1/2. All rewards are 0. By defining T1w := |w|, it is readily seen that M
is linear Bellman complete with respect to the above feature mappings.

But Bellman-linearity of F2(x) would require that there is some w̄ ∈ R so that

φ1(s1, 0) · w̄ = 1, φ1(s1, 1) · w̄ = 2.

No such w̄ exists since φ1(s1, 0) = φ1(s1, 1).

Proposition F.2 establishes that, forBquad
h (x, a; Σ) defined as in (4), the mapping maxa∈AB

quad
h (·, a; Id)

is, in general, not Bellman-linear.

42



EFFICIENT LEARNING OF LINEAR BELLMAN COMPLETE MDPS

F.2. Perturbed linear policies
We begin by defining a perturbed version of linear policies.

Definition F.1 (Perturbed linear policies). For σ > 0, h ∈ [H] and w ∈ Rd, define πh,w,σ : X →
∆(A) by

πh,w,σ(x)(a) = Prθ∼N (w,σ2·Id) (a ∈ Ah,θ(x)) .

In words, to draw an action a ∼ πh,w,σ(x), we draw θ ∼ N (w, σ2·Id) and then play arg maxa′∈A〈φh(x, a′), θ〉.
Given σ > 0, we denote the set of all πh,w,σ′ , where w ∈ Rd, σ′ > 0 satisfy σ′/‖w‖2 ≥ σ,
by ΠPlin,σ

h , and ΠPlin,σ :=
∏H
h=1 ΠPlin,σ

h . As a matter of convention we write ΠPlin,0
h := Πlin

h and
ΠPlin,0 = Πlin. Moreover, we write ΠPlin

h :=
⋃
σ≥0 ΠPlin,σ

h and ΠPlin =
⋃
σ≥0 ΠPlin,σ.

Note that, for any c > 0, πh,cw,σ = πh,w,σ/c. Moreover, note that tie-breaking is not an issue
for perturbed linear policies, since the measure of all θ so that |Ah,θ(x)| > 1 is 0. The following
lemma provides another interpretation of linear policies, as a limit of perturbed linear policies:

Lemma F.3. For any w ∈ Rd, h ∈ [H], x ∈ X , we have

πh,w(a|x) = lim
σ→0+

πh,w,σ(a|x) = lim
σ→0+

Prθ∼N (w,σ2·Id) (a ∈ Ah,θ(x)) . (71)

Proof. It is straightforward to see that for any a 6∈ Ah,w(x), limσ→0+ Prθ∼N (w,σ2Id)(a ∈ Ah,θ(x)) =
0. This verifies (71) for a 6∈ Ah,w(x). Moreover, it also implies that for each a ∈ Ah,w(x), we have

lim
σ→0+

∣∣∣∣Prθ∼N (w,σ2Id)(a ∈ Ah,θ(x))− Prθ∼N (w,σ2Id)

(
〈θ, φh(x, a)〉 > max

a′∈Ah,w(x)\{a}
〈θ, φh(x, a′)〉

)∣∣∣∣ = 0.

Since 〈w, φh(x, a)〉 = 〈w, φh(x, a′)〉 for all a, a′ ∈ Ah,w(x), we have that

Prθ∼N (w,σ2Id)

(
〈θ, φh(x, a)〉 > max

a′∈Ah,w(x)\{a}
〈θ, φh(x, a′)〉

)
= Prθ∼N (0,σ2Id)

(
〈θ, φh(x, a)〉 > max

a′∈Ah,w(x)\{a}
〈θ, φh(x, a′)〉

)
= Prθ∼νd

(
〈θ, φh(x, a)〉 > max

a′∈Ah,w(x)\{a}
〈θ, φh(x, a′)〉

)
= νd(Gh,w(x, a)),

where the second equality follows by rescaling. Combining the two displays above gives the result.

For a randomized policy π and h ∈ [H], we use the shorthand

φh(x, πh(x)) := Ea∼πh(x)[φh(x, a)].

Then Lemma F.3 yields that, for any h ∈ [H], w ∈ Rd, f : X ×A → R, we have

φh(x, πh,w(x)) = lim
σ→0+

φh(x, πh,w,σ(x)), fh(x, πh,w(x)) = lim
σ→0+

f(x, πh,w,σ(x)). (72)
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