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Abstract
Consider a multi-class labelling problem, where the labels can take values in [k], and a predictor
predicts a distribution over the labels. In this work, we study the following foundational question:
Are there notions of multi-class calibration that give strong guarantees of meaningful predictions
and can be achieved in time and sample complexities polynomial in k? Prior notions of calibration
exhibit a tradeoff between computational efficiency and expressivity: they either suffer from having
sample complexity exponential in k, or needing to solve computationally intractable problems, or
give rather weak guarantees.

Our main contribution is a notion of calibration that achieves all these desiderata: we for-
mulate a robust notion of projected smooth calibration for multi-class predictions, and give new
recalibration algorithms for efficiently calibrating predictors under this definition with complexity
polynomial in k. Projected smooth calibration gives strong guarantees for all downstream decision
makers who want to use the predictor for binary classification problems of the form: does the label
belong to a subset T ⊆ [k]: e.g. is this an image of an animal? It ensures that the probabilities
predicted by summing the probabilities assigned to labels in T are close to some perfectly cali-
brated binary predictor for that task. We also show that natural strengthenings of our definition
are computationally hard to achieve: they run into information theoretic barriers or computational
intractability.

Underlying both our upper and lower bounds is a tight connection that we prove between
multi-class calibration and the well-studied problem of agnostic learning in the (standard) binary
prediction setting. This allows us to use kernel methods to design efficient algorithms, and also to
use known hardness results for agnostic learning based on the hardness of refuting random CSPs to
show lower bounds.
Keywords: Calibration, multi-class prediction, agnostic learning

1. Introduction

The ubiquitous use of machine learning for making consequential decisions has resulted in a re-
newed interest in the question what should probabilistic predictions mean? This question has a long
history going back at least as far as the literature on forecasting (Dawid, 1982, 1984). Calibration
is a classical interpretability notion for binary predictions originating in this setting that is widely
used in modern machine learning. In the binary classification setting, denoting the label y ∈ {0, 1}
and the predicted probability of 1 by v ∈ [0, 1], (perfect) calibration requires E[y|v] = v.

There has been renewed research interest both in the calibration of modern DNNs (Guo et al.,
2017) and in foundational questions about how best to define and measure calibration to ensure
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robustness and efficiency (Błasiok et al., 2023; Kleinberg et al., 2023) building on earlier work of
(Kakade and Foster, 2008). We study calibration notions in the context of multi-class classification,
where the goal is to assign one of k possible labels to each input. A predictor assigns to each
input a distribution over the labels, which allows it to convey uncertainty in its predictions. Values
of k in the thousands are increasingly common, especially for vision tasks (Deng et al., 2009), so
the efficiency in terms of the parameter k is increasingly relevant. In this setting, even the right
definition of calibration is not immediate. There are a multitude of existing definitions in theory and
practice, such as confidence (Guo et al., 2017), class-wise (Kull et al., 2019), distribution (Kull and
Flach, 2015) and decision (Zhao et al., 2021) calibration. However, existing notions either provide
only weak guarantees for meaningful predictions, are computationally hard to achieve, or are even
information theoretically hard to achieve, requiring exponential sample complexity in k.

In this work, we study the following foundational question:

Are there notions of multi-class calibration that give strong guarantees of meaningful predictions
and can also be achieved with time and sample complexities polynomial in k?

Our main contribution is answering this question in the affirmative: we formulate a robust notion
of projected smooth calibration for multi-class predictions, and give new recalibration algorithms1

for efficiently calibrating predictors under this definition (and variants of it). We also show that
natural strengthenings of this definition are computationally or information-theoretically hard to
achieve. An important ingredient in showing these new upper and lower bounds is a tight connection
between multi-class calibration and the well-studied problem of agnostic learning in the (standard)
binary prediction setting. We proceed to elaborate on the setting, prior work, and our contributions.

Multi-class calibration. In the k-class prediction setting, we have an underlying distribution over
instance-outcome pairs, where we view the outcome y as the one-hot encoding of a label from [k].
A prediction vector v ∈ ∆k describes a distribution in the k-dimensional simplex, where a perfect
prediction would describe the exact distribution of the outcome y for that instance. Canonical
calibration (Kull and Flach, 2015), also called distribution calibration, is the most stringent notion,
which requires that E[y|v] = v (the expectation averages over all instances for which the prediction
is v). The naive procedure for checking whether canonical calibration holds even approximately
requires (after suitable discretization) conditioning on exp(k) many possible predictions in ∆k.
Indeed, we show that even the easier problem of distinguishing a perfectly calibrated predictor from
one that is far from calibrated requires exp(k) samples. At the other extreme, class-wise calibration
(Kull et al., 2019) only requires that for every i ∈ [k], E[yi|vi] = vi. This notion can be achieved
efficiently, but we argue below that it is not sufficiently expressive.

Assume that we have a class-wise calibrated predictor and we wish to use it for downstream
binary classification tasks. For instance, we might want to classify images as being those of animals,
where animals is a subset of labels. Assume for simplicity that c for cat and d for dog are the only
animals in our k labels. Class-wise calibration ensures that the predicted probabilities vc,vd ∈
[0, 1] are each calibrated on their own: conditioned on, say, the predicted probability of cat being
0.2, the outcome should be a cat w.p. roughly 0.2. Suppose, however, that we want to predict
whether the image is a cat or a dog. The natural probability to predict is vc + vd, but this might

1. The exact notion of calibrating a predictor has to be defined carefully to avoid trivial solutions (for example, the
constant predictor that always outputs the empirical mean is perfectly calibrated). Following much of the literature,
our algorithms post-process a given predictor to make it calibrated while not increasing the squared loss.
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be far from calibrated w.r.t the actual probability that the outcome is a cat or a dog (even though
the predictor is class-wise calibrated). This reveals a weakness of class-wise calibration that is also
shared by other guarantees that we know how to achieve efficiently (such as confidence calibration
(Guo et al., 2017), see below): their calibration guarantees are rather fragile, and break down when
used in downstream tasks.

Aiming to achieve rigorous downstream guarantees, Zhao et al. (Zhao et al., 2021) introduced
decision calibration, which can be achieved in poly(k) sample complexity.2 However we show that
the algorithmic task they aim to solve is as hard as agnostically learning halfspaces, and hence is
unlikely to be achievable in time poly(k) by results of (Daniely, 2016).

To summarize, the state of the art for multiclass calibration notions:

• There are efficient notions, such as classwise and confidence calibration, but they are not very
expressive. In particular their calibration guarantees are rather fragile and do not imply good
guarantees for downstream tasks.

• There are expressive notions, such as canonical calibration and the recently proposed no-
tion of decision calibration, but they are inefficient. These notions run into information or
complexity theoretic barriers, which prevent them from being achievable in running time and
sample complexity poly(k).

This motivates our foundational question: is there an expressive and efficient notion of multi-
class calibration? Such a notion should give robust calibration guarantees for downstream tasks,
and should be achievable in poly(k) time and sample complexity. More broadly, is there a gen-
eral framework for understanding the complexity of various calibration notions? Ideally, such a
framework would let us identify broad classes of notions that are efficiently achievable and identify
computational and information-theoretic barriers to other notions.

These questions are motivated not only by the use of calibration as an notion of interpretability
for probabilistic predictions in machine learning, but also by the recent applications of calibration
to fairness (Hébert-Johnson et al., 2018), loss minimization (Gopalan et al., 2022a, 2023) and indis-
tinguishability (Dwork et al., 2021, 2022, 2023). In the multi-class setting with k labels, algorithms
for all of these notions become exponential in k, which stems from the fact that they try to achieve
canonical calibration or similarly expressive notions (see for example (Gopalan et al., 2022a; Dwork
et al., 2022)). We see formulating more efficient notions of calibration as a step towards more effi-
cient algorithms for these applications in the multiclass setting.

1.1. Our Contributions

We start by describing a unifying framework from (Gopalan et al., 2022b) for various notions of
multiclass calibration, for which we need some notation. Let ∆k ⊆ Rk denote the probability
simplex for k outcomes. Given a distribution D0 on (x,y) pairs where y ∈ {0, 1}k is the one-hot
encoding of a label and a predictor p, let v = p(x) ∈ ∆k be the prediction of p. Let D denote the
induced distribution of (v,y).

2. The paper claims the notion is both time and space efficient, but their main result (Zhao et al., 2021, Theorem 2) only
proves a bound on sample complexity. See the discussion in Sections 1.2 and A and D.
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Weighted calibration. As observed by various works (Dwork et al., 2021; Gopalan et al., 2022b;
Dwork et al., 2022; Błasiok et al., 2023), calibration is essentially a notion of indistinguishability
of distributions. For multiclass learning, perfect canonical calibration requires that for every v ∈
∆k, E[y|v] (which completely describes the distribution of y conditioned on v) equals v. If we
relax equality to expected closeness in ℓ1 distance Ev[|E[y|v]− v|], we arrive at the notion of the
expected calibration error or ECE. This notion requires exp(k) samples to estimate (see Theorem
15); it is also not robust to small perturbations of the predictor p (Kakade and Foster, 2008; Błasiok
et al., 2023). We aim for relaxed calibration notions that capture the same underlying principle that
E[y|v] and v are “close” under D, but which are efficient to estimate, and also do not suffer from
the same kind of non-robustness.

Following (Gopalan et al., 2022b), we work with the definition of weighted calibration, which
is general enough to capture all the aforementioned notions of calibration. For a hypothesis class
H := {h : ∆k → [−1, 1]}, we consider the family of weight functionsHk mapping ∆k → [−1, 1]k,
where for every i ∈ [k], coordinate i of the output is a function hi ∈ H of the input. Define the
weighted calibration error as

CEHk(D):= max
w∈Hk

∣∣∣∣ E
(v,y)∼D

[⟨w(v),y − v⟩]
∣∣∣∣ = max

w∈Hk

∣∣∣E
v
[⟨w(v),E[y|v]− v⟩]

∣∣∣ .
This can be seen as requiring closeness of the distributions of v and E[y|v] to the class of

distinguishers Hk in the spirit of pseudorandomness. Taking H to be all functions on ∆k bounded
by 1 in absolute value recovers the notion of ECE. Relaxing the space of distinguishers weakens
the definition. Are there distinguisher families where the calibration guarantee remains meaningful,
while simultaneously allowing for efficient auditing: deciding whether a given predictor satisfies
CEHk(D) ≤ α?

Projected smooth calibration. We now formulate projected smooth calibration, a weighted cal-
ibration notion that satisfies our desiderata. As discussed above, we want to ensure the following
subset calibration guarantee: for every subset T ⊆ [k] of labels, the probabilities assigned by our
predictor to the event that the label belongs to T should be calibrated. Let v ∈ ∆k denote the
prediction of our predictor. Letting 1T ⊆ {0, 1}k denote the indicator vector of T , the indicator
for the event that the outcome y is in T is 1T · y, whereas the predicted probability is 1T · v. Say
we want to enforce the calibration condition that when the predicted probability of belonging to T
exceeds v ∈ [0, 1], the label indeed lies in T with roughly the predicted probability. We can view
this as requiring a bound on∣∣∣E[I(1T · v ≥ v)(1T · y − 1T · v)]

∣∣∣ = ∣∣∣E[I(1T · v ≥ v)1T · (y − v)]
∣∣∣

where (I(1T · v ≥ v)1T ) ∈ {0, 1}k is a vector-valued function on ∆k, which takes the value
I(1T ·v ≥ v) for coordinates in T , and the value 0 for coordinates outside T . The good news is that
this setup fits the template of weighted calibration, where the classH contains all functions the form
I(1T · v ≥ v) for T ∈ {0, 1}k, v ∈ R. The bad news is that we will show this problem is as hard
as agnostically learning halfspaces. Daniely (Daniely, 2016) showed that, assuming the hardness of
refuting random Xor CSPs, this problem cannot be solved in polynomial time.

In projected smooth calibration, we replace the hard thresholds I(1T · v ≥ v) with the class
HpLip = {ϕ(a·v)}where ϕ : [−1, 1]→ [−1, 1] is a Lipschitz continuous function and a ∈ [−1, 1]k.
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In particular, this includes indicator vectors for subsets. Projected smooth calibration requires that
the weighted calibration error for the weight familyHk

pLip is bounded.

Definition 1 (Projected smooth calibration, informal statement of Theorem 11) For a joint dis-
tribution D on predictions v and true outcomes y, the projected smooth calibration error is

psCE(D) := sup
w∈Hk

pLip

∣∣∣∣ E
(v,y)∼D

[(y − v)w(v)]

∣∣∣∣ ,
where Hk

pLip is the class of functions w : ∆k → [−1, 1]k such that for every coordinate i in w’s
output, denoted by w(i), there are a 1-Lipschitz function ϕ(i) : [−1, 1] → [−1, 1] and a vector
ai ∈ [−1, 1]k s.t. w(i)(v) = ϕ(i)(ai · v) for every v ∈ ∆k.

A predictor satisfies projected smooth calibration if its error psCE is bounded. We show that
this definition satisfies all our desiderata:

Property (1): expressive power. Projected smooth calibration guarantees that for every subset
T ⊆ [k], the predicted probabilities for the binary classification task (namely, the outcome is in
T ) satisfy smooth calibration, a well-studied calibration notion with several desirable properties
(Kakade and Foster, 2008; Gopalan et al., 2022b; Błasiok et al., 2023). In particular, this implies
that the predicted probabilities 1T · v that the outcome will be in T are close to being perfectly
calibrated. The proof builds on the work of (Błasiok et al., 2023). In particular, for each such subset
T , there exists a perfectly calibrated predictor p∗T for the binary classification task of determining
whether the outcome will land in T , whose predictions are close to 1T · v in earthmover distance.
Thus, we get meaningful guarantees for a rich collection of downstream binary classification tasks
(including subset membership and more).

Property (2): Computational efficiency. We show an efficient algorithm for auditing whether the
projected smooth calibration error of a predictor is bounded. Here we state our result informally,
the formal statement is in Theorem 38.

Theorem 2 (Efficient auditing, informal statement of Theorem 38) There is an algorithm for
deciding whether the projected smooth calibration error is at most α, with sample complexity and
running time O(kO(1/α)).

The work of (Shalev-Shwartz et al., 2011) showed that agnostic learning halfspaces becomes tractable
if we replace the hard thresholds used in halfspaces with Lipschitz transfer functions. Building on
their techniques, and using Jackson’s Theorem on low-degree uniform approximations for Lips-
chitz functions, we show that auditing for projected smooth calibration is polynomial time solvable.
Moreover, our auditing algorithm is quite simple and does not need to solve a convex program,
generalizing results in (Kumar et al., 2018; Błasiok et al., 2023). Our algorithm in fact solves the
associated search problem (see Definition 21): if p is not calibrated, it finds a witness to the lack
of calibration, which can be used to post-process p and reduce its calibration error without increas-
ing the squared loss (see Theorem 22). Defining a recalibration algorithm correctly is subtle, see
Definition 21, Theorem 22 and the discussion around them.

Our algorithm has running time polynomial in k for every fixed constant α, in contrast with
previous results for expressive notions of calibration. If we only care about auditing using ϕ(w · v)
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for vectors w where ∥w∥22 ≤ m then the sample complexity can be bounded by mO(1/α). This
gives a running time fixed polynomial in k (but exponential in α) for subset calibration where we
only care about bounded size subsets. One can also get better run times by restricting the family of
Lipschitz functions ϕ. By restricting to auditors of the form tanh(w ·v) we get the weaker notion of
sigmoid calibration, for which the auditor runs in time kO(log(1/α)). This can be seen as a smooth
relaxation of the intractable notion of halfspace auditing. However, the improved efficiency comes
at the price of some expressivity, we do not get closeness to perfect calibration for downstream
subset classification tasks.

It is interesting to investigate whether the exponential dependence on 1/α in Theorem 2 can
be avoided. As a result in this direction, we show that the running time cannot be improved to
poly(k, 1/α):

Theorem 3 (Informal statement of Theorem 47) Under standard complexity-theoretic assumptions,
there is no algorithm that can decide whether the projected smooth calibration error is at most α
with sample complexity and running time kO(log0.99(1/α)).

We prove the theorem by showing a reduction from the task of refuting random XOR formulas.
Getting the right exponent for k as a function of 1/α is an interesting question for future work.

Property (3): Robustness. The works of (Kakade and Foster, 2008; Foster and Hart, 2018; Błasiok
et al., 2023) advocate the use of Lipschitz functions in defining calibration since it results in robust
measures that do not change drastically under small perturbations of the predictor. Since projected
smooth calibration is defined using Lipschitz functions, it is a robust calibration measure.

Lower bounds for stronger notions. The discussion above suggests possible strengthenings of
the notion of projected smooth calibration. The weight function family ϕ(w · v) is a subset of the
family fLip of all Lipschitz functions ψ : ∆k → [−1, 1]. We could imagine using fLipk as our
weight function family to get a stronger notion of calibration, which we call full smooth calibration.
We show in Theorem 17 that this notion is information-theoretically intractable and requires exp(k)
samples.

Theorem 4 (Informal statement of Theorem 17) Any algorithm to decide whether the full smooth
calibration error is 0 or exceeds a positive absolute constant requires exp(k) samples.

In our closeness to calibration guarantee, for every T ⊂ [k] there exists a binary predictor
p∗T whose predictions are close to 1T · v and which is perfectly calibrated. But the different p∗T
for various T s might not be consistent, meaning they need not arise as p∗T = 1T · p∗ where p∗

is a perfectly calibrated predictor (independent of the choice of T ). Could we instead measure
calibration error by comparing our predictions to those made by a single calibrated predictor p∗?
Put differently, projected smooth calibration guarantees that our predictions on each subset T are
locally close to the predictions of a calibrated binary predictor p∗T . We are now asking whether one
can measure global closeness to a single perfectly calibrated predictor p∗.

There is prior work that suggests measuring closeness to calibration in terms of distance of its
predictions from the nearest perfectly calibrated predictor v∗. This notion, called distance to cal-
ibration, was studied in the binary setting by (Błasiok et al., 2023), where it plays a central role
in their theory of consistent calibration measures. Such measures are ones that approximate the
distance to calibration within polynomial factors. They identified several efficiently computable
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consistent calibration measures in the binary setting, including smooth calibration and Laplace ker-
nel calibration.

We show a strong negative result for measuring or even weakly approximating the distance to
calibration in the multiclass prediction setting:

Theorem 5 (Informal statement of Theorem 15) Any algorithm to decide whether the distance
to calibration is 0 or exceeds a positive absolute constant requires exp(k) samples.

In contrast to the work of (Błasiok et al., 2023), Theorem 5 shows that in the multiclass setting,
any consistent calibration measure requires exp(k) samples.

These lower bounds stem from an indistinguishability argument that we sketch below. We
take V ⊂ ∆k of size exp(k) of predictions that are Ω(1) far from each other. We construct two
distributions D1 and D2 on predictions and labels. In either distribution, the marginal distribution
on predictions v is uniform on V . In D1, the distribution on labels y1 conditioned on v is perfectly
calibrated, so that E[y1|v] = v. InD2, for each v ∈ V , the label y2 is fixed to be some single value.
We imagine this label y2 being picked at random with E[y2|v] = v the very first time we predict
v. Every subsequent time we see the prediction v, we will see this same label y2|v. A sampling
algorithm cannot tell the difference between these distributions until it sees multiple samples with
the same value of v ∈ V , since until that point, samples from the two distributions are identically
distributed. By the birthday paradox, this requires Ω(

√
|V |) = exp(k) samples.

Equivalence between auditing and agnostic learning. Underlying our algorithms and hardness
results is a tight characterization of efficient auditing in terms of agnostic learning. We elaborate
on these two computational tasks. The auditing task for the class of weight functions Hk gets as
input a predictor p, and needs to decide whether it has large calibration error for Hk. If so, then
the auditor should also return a weight function w′ that has large calibration error (in the spirit of
weak agnostic learning (Ben-David et al., 2001; Kalai et al., 2008b), we allow for a gap between the
largest calibration error inHk and the error of the weight function found by the auditor). As noted in
the discussion following Theorem 2, solving the auditing task also allows us to efficiently recalibrate
a given predictor to achieve low weighted calibration error for the classHk. Weak agnostic learning
for a class H is a standard learning problem in the binary (not multi-class) classification setting,
where we have a distribution on ∆k × {±1} and the goal is to find a witness given the existence of
h ∈ H with correlation E(v,z)∼D[h(v)z] at least γ. We show that auditing forHk is efficient iff the
classH is efficiently weakly agnostically learnable.

Theorem 6 (Informal statement of Theorems 24 and 25) Auditing forHk and agnostic learning
for H reduce to each other efficiently.3 The calibration error parameter in auditing corresponds to
the correlation parameter in learning up to a constant factor.

Connections between auditing for calibration and agnostic learning have appeared in (Hébert-
Johnson et al., 2018) and subsequent works. The focus was on binary or scalar prediction tasks,
where the challenge is guaranteeing calibration for many different subsets of the feature vectors.
The challenge in our work is different: we aim to guarantee calibration w.r.t. the k-dimensional

3. We use an auditor for a slightly different class H̃k to solve the learning task for H, where H̃ is obtained from H by
taking a simple affine transformation of the input. In particular, the two classes are the same when H is the class of
halfspaces.

7



GOPALAN HU ROTHBLUM

multi-class outcome vector y, and to relate this task to agnostic learning with binary labels. As
we show in Appendix C.1, applying a learning algorithm to an auditing task in a coordinate-wise
manner would result in losing a factor of k in the calibration error. This loss of k would result
in auditing algorithms that do not run in time poly(k) even for constant α. We show that this
loss can always be avoided by applying the learning algorithm on carefully constructed conditional
distributions, giving a tight connection up to constant factors in the calibration error.

The equivalence between auditing and learning allows us to apply a rich set of techniques from
the literature for agnostic learning to show both hardness results and efficient algorithms for audit-
ing tasks. In particular, our hardness result for auditing decision calibration (Theorem 27) is based
on the hardness of agnostically learning halfspaces shown in previous work (Daniely, 2016). In
general, our auditing algorithms can be instantiated with weight functions that have bounded norm
in any reproducing kernel Hilbert space over ∆k, as long as the corresponding kernel can be evalu-
ated efficiently. We apply polynomial approximation theorems and the multinomial kernel used in
learning algorithms (Shalev-Shwartz et al., 2011; Goel et al., 2017, 2020) to give efficient auditors
for projected smooth calibration and sigmoid calibration.

1.2. Further Discussion of Related Work

As discussed above, many works have discussed notions of calibration for multi-class prediction.
These either offer limited expressiveness, or require super-polynomial runtime or sample complex-
ities. We further elaborate on two recent works (Zhao et al., 2021; Dwork et al., 2022) that achieve
polynomial sample complexity, but suffer from computational intractability. We also discuss the
work of (Gopalan et al., 2022b; Kleinberg et al., 2023; Noarov et al., 2023).

Perhaps the most closely related work to ours is Zhao et al.’s (Zhao et al., 2021) work on decision
calibration. They imagine a down-stream decision maker using the predictions to choose between a
finite set of actions, subject to a loss function that depends only on the action and on the outcome.
The predicted distribution should be indistinguishable from the true distribution in terms of the loss
experienced by the decision maker (and this should hold for any such decision maker and any loss
function). We view this as an expressive calibration notion: in particular, even if we only allow
for two possible actions, decision calibration (see Definition 9) guarantees a sharp flavor of subset
calibration: for any subset T ⊆ [k] and any threshold b ∈ [0, 1], conditioning on instances where the
predictor assigns total probability at least b to the set T , the probability that the outcome lands in T
is at least b (up to a small error).4 They showed that this strong guarantee can be obtained using only
poly(k) samples. We show, however, that the runtime complexity of obtaining decision calibration
cannot be poly(k) (assuming the hardness of refuting random CSPs). Intuitively, the hardness is due
to the “sharpness” of the guarantee: conditioning on the event that the probability of T is exactly
above the threshold b. This has the flavor of a halfspace learning guarantee, and this underlies
our intractability result. In contrast, our notion of projected smooth calibration (and our results
on sigmoids) enforces a “softer” Lipschitz condition, which makes the problem computationally
tractable and allows us to construct efficient algorithms. On a more technical level, Zhao et al.
(Zhao et al., 2021) require solving an optimization problem over the class of halfspaces. Noting that
the objective is not differentiable, they present a heuristic gradient-based algorithm after relaxing
the hard halfspace threshold using a differentiable sigmoid function. They allow the Lipschitz
constant of the sigmoid function to grow arbitrarily large in order to recover the halfspaces in the

4. The guarantee is even stronger: the conditional expectation of the predictions and the outcomes should be close.
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limit. However, they do not provide a provable guarantee on the correctness or efficiency of their
algorithm. We show that such guarantees are unlikely to be established due to inherent intractability
of the problem (see above and in Appendix D).

In their work on outcome indistinguishability “beyond Bernoulli”, Dwork et al. (Dwork et al.,
2022) also study meaningful predictions over non-Boolean outcome spaces. Their notion of Gen-
erative OI guarantees indistinguishability for a rich class of distinguishers that can examine the
prediction and also features of the particular instance. This is quite expressive, and in particular, by
formulating an appropriate class of distinguishers, their framework can capture all notions consid-
ered in this work. Their most general algorithm, for an outcome space of size k and a (finite) class
of distinguishers A, requires sample complexity that is logarithmic in k and in |A|. The runtime is
at least linear in the number of distinguishers |A|. Guaranteeing subset calibration would require
(at least) exp(k) distinguishers, so while their algorithm would be sample-efficient, its runtime is
exponential in k.

The work of (Gopalan et al., 2022b) formulated the general notion of weighted calibration that
we use. Their focus is on a particular instantiation of this notion they call low degree calibration,
where the weight family is P (d, 1)k, where P (d, 1) contains all degree d polynomials in v with
absolute values of coefficients summing to 1. They do not consider the downstream calibration
guarantees for binary classification tasks, rather their focus is on multicalibration and multigroup
fairness. They present an auditing algorithm that runs in time O(kd). We show that by using kernel
methods, one can obtain an auditor with running time poly(k, d) (Lemma 35).

Recently, (Kleinberg et al., 2023) and (Noarov et al., 2023) studied relaxations of canonical cali-
bration and gave algorithms for achieving them in the online setting. Similar to our work, they were
motivated by giving meaningful guarantees for downstream tasks while avoiding the inefficiency
inherent in canonical calibration. However, their goal is to make calibrated predictions, which is
challenging in the online setting, but becomes trivial in our offline setting (the constant predictor
that always outputs the expectation of D’s outcomes is calibrated). Therefore, we focus instead
on the auditing task of post-processing a given predictor. This auditing task is also considered in
(Noarov et al., 2023), which gives online algorithms with running time growing polynomially with
the size of the family of weight functions. We study the offline setting, where achieving running
time that is linear in the size of the family of weight functions follows from (Gopalan et al., 2022b),
and our focus is on achieving polynomial running time even when the family of weight functions is
exponential or infinite.

As in the standard setup of calibration, each prediction is a probability distribution over the
possible labels. This distribution conveys the uncertainty of the predictor about the true label, and
calibration can be viewed as a guarantee of accurate uncertainty quantification. Another common
method for uncertainty quantification is conformal prediction (see e.g. (Shafer and Vovk, 2008;
Angelopoulos and Bates, 2021)), where the predictor outputs prediction sets (sets of labels) aiming
to provide a coverage guarantee: the true label belongs to the prediction set with a certain, pre-
specified probability. A recent line of work applies techniques from multicalibration to get robust
conformal prediction algorithms that give coverage guarantees that hold not just on average, but
conditionally on every important subpopulation and beyond (Gupta et al., 2022; Bastani et al., 2022;
Jung et al., 2023).
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1.3. Organization

The rest of the paper is organized as follows. We start by defining old and new notions of multi-class
calibration and discussing the connections among them in Appendix A. We prove an exponential
sample complexity lower bound for canonical calibration in Appendix B. We define the auditing
task and show a tight connection to agnostic learning in Appendix C. We apply the connection
to show hardness of auditing for decision calibration and halfspaces in Appendix D. We describe a
general kernel method for auditing in Appendix E and apply it to give efficient auditors for projected
smooth calibration and sigmoid calibration in Appendix F. We show barriers to further improving
the efficiency of our algorithms by proving additional computational lower bounds in Appendix G.
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Appendix A. Multi-Class Calibration

In this section, we discuss prior notions of multi-class calibration as well as their relationships,
strengths, and drawbacks. We show that prior notions lack either expressivity or efficiency, and we
introduce new notions to achieve a better balance between the two desiderata.

For a classification task with k categories, we use Ek = {e1, . . . , ek} to denote the set of one-hot
encodings of the categories. Here each ei is the unit vector in Rk with the i-th coordinate being 1.

Throughout the paper, we use boldface letters to represent vectors in Rk. For a vector v ∈ Rk,
we use v(j) ∈ R to denote its j-th coordinate for every j = 1, . . . , k. We use ∆k to denote the set
of all vectors v ∈ Rk such that v(j) ≥ 0 for every j = 1, . . . , k and v(1) + · · ·+ v(k) = 1.

For a set X of individuals, a predictor is a function p : X → ∆k that assigns every individual
x ∈ X a prediction vector v = p(x) ∈ ∆k, where each coordinate v(j) is the predicted probability
that the label of x falls in the j-th category.

Canonical Calibration. For a ground-truth distribution D0 of labeled examples (x,y) ∈ X ×Ek,
we say a predictor p : X → ∆k satisfies (perfect) canonical calibration if

E
(x,y)∼D0

[y|p(x) = v] = v for every v ∈ ∆k.

A simple but important observation is that the above definition only depends on the distribution
of (p(x),y) ∈ ∆k × Ek. As a consequence, we obtain the following simplified but equivalent
definition:

Definition 7 We say a distributionD of (v,y) ∈ ∆k×Ek satisfies (perfect) canonical calibration if

E
(v,y)∼D

[y|v] = v.

In the definition above, we work with a distributionD of (v,y) ∈ ∆k without explicitly stating that
it is the distribution of (p(x),y) where (x,y) comes from the ground-truth distribution D0, and p is
a predictor. We will use this convention throughout the paper.

It is folklore that the sample complexity of determining whether a distributionD satisfies perfect
canonical calibration grows exponentially in k. In Appendix B, we prove a stronger result (Theo-
rem 15), showing that distinguishing whether a distribution D satisfies perfect canonical calibration
or it is Ω(1)-far from canonical calibration (in ℓ1 distance) requires sample complexity exponential
in k.
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Weighted Calibration. Due to the sample inefficiency of canonical calibration, many previous
works considered relaxations of canonical calibration such as confidence calibration and top-label
calibration. These notions can be framed as special cases of a general notion called weighted cali-
bration studied in Gopalan et al. (2022b):

Definition 8 (Weighted calibration (Gopalan et al., 2022b)) LetW : ∆k → [−1, 1]k be a family
of weight functions. We define theW-calibration error of a distribution D of (v,y) ∈ ∆k × Ek as

CEW(D) = sup
w∈W

∣∣∣∣ E
(v,y)∼D

[⟨y − v, w(v)⟩]
∣∣∣∣ .

We say that D is (W, α)-calibrated if CEW(D) ≤ α. 5

If a distribution D satisfies perfect canonical calibration, then it is (W, 0)-calibrated for any class
W . When the class W consists of all functions w : ∆k → [−1, 1]k, (W, 0)-calibration becomes
equivalent to perfect canonical calibration.

Class-wise, Confidence, and Top-label Calibration. The notion of weighted calibration is very
general. By choosing the classW appropriately, it recovers many concrete notions of calibration.

Class-wise calibration (Kull et al., 2019) is the following requirement:

E
(v,y)∼D

[y(ℓ)|v(ℓ)] = v(ℓ) for every ℓ = 1, . . . , k.

This is equivalent to (W, 0)-calibration where W consists of all functions w mapping v ∈ ∆k to
w(v) = ϕ(v(ℓ))eℓ for every ϕ : [0, 1]→ [−1, 1] and ℓ = 1, . . . , k.

Confidence calibration (Guo et al., 2017) is also a special case of weighted calibration. For any
v ∈ ∆k, let ℓv denote the coordinate ℓ ∈ {1, . . . , k} that maximizes v(ℓ). Confidence calibration is
the following requirement:

E
(v,y)∼D

[y(ℓv)|v(ℓv)] = v(ℓv).

This is equivalent to (W, 0)-calibration where W consists of all functions w mapping v ∈ ∆k to
w(v) = ϕ(v(ℓv))eℓv for every ϕ : [0, 1]→ [−1, 1].

Top-label calibration (Gupta and Ramdas, 2022) is defined to be the following requirement:

E
(v,y)∼D

[y(ℓv)|v(ℓv), ℓv] = v(ℓv).

This is equivalent to (W, 0)-calibration where W consists of all functions w mapping v ∈ ∆k to
w(v) = ϕ(v(ℓv), ℓv)eℓv for every ϕ : [0, 1]× {1, . . . , k} → [−1, 1].

Decision Calibration. A drawback of class-wise, confidence, and top-label calibration is that
they do not imply good calibration performance if the predictions are used for downstream tasks. To
improve the expressivity while avoiding the exponential sample complexity of canonical calibration,
(Zhao et al., 2021) introduced the notion of decision calibration, where they studied downstream
loss-minimization tasks of deciding which action to choose among a fixed set of actions based on the
predictions. We focus on the special case of two actions, where the definition of decision calibration
is as follows:

5. The original definition in (Gopalan et al., 2022b) was presented in the more general context of multicalibration. Their
definition allows for weight families whose range is [0, 1]k rather than [−1, 1]k, but this is a technical issue.
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Definition 9 (Decision Calibration (Zhao et al., 2021)) For a distributionD of (v,y) ∈ ∆k×Ek,
the decision calibration error of D is defined to be 6

decCE(D) := sup
a∈Rk,b∈R

∥(y − v)I(⟨a,v⟩ > b)∥2 + ∥(y − v)I(⟨a,v⟩ ≤ b)∥2.

Equivalently, this is the weighted calibration error CEW(D), whereW consists of functions map-
ping v to I(⟨a,v⟩ > b)g+I(⟨a,v⟩ > b)g′ ∈ Rk for every a ∈ Rk, b ∈ R, and g,g′ ∈ Rk satisfying
∥g∥2 ≤ 1, ∥g′∥2 ≤ 1.

The work of (Zhao et al., 2021) showed that decision calibration ensures a desirable indistin-
guishability property for downstream loss minimization tasks, demonstrating the expressivity of the
notion. However, we show that decision calibration is a computationally inefficient notion. Here,
efficiency is evaluated on the auditing task (defined formally in Appendix C), where the goal is to re-
calibrate a given mis-calibrated predictor while reducing its squared loss. (Zhao et al., 2021) showed
that auditing for decision calibration has sample complexity polynomial in k, improving over the
exponential sample complexity of canonical calibration, but they fell short of proving a computa-
tional efficiency guarantee. Instead, they provided a heuristic algorithm for the auditing task without
correctness or running time analyses. Our computational hardness results in Appendix D show that
under standard complexity-theoretic assumptions, there is no poly(k)-time algorithm for auditing
decision calibration.

Smooth Calibration. We now introduce new notions of multi-class calibration inspired by a re-
cent theory of Błasiok et al. (2023) on calibration measures in the binary setting.

Consider the downstream binary prediction task of predicting whether the true label belongs to
a set T ⊂ [k] of labels. Let a := 1T ∈ {0, 1}k denote the indicator of the subset T . Given the
distribution D of (v,y), the predicted probability of this event is ⟨1T ,v⟩ while the true label is
given by ⟨1T ,y⟩. A natural approach to defining calibration notions for the multi-class setting is to
seek good calibration guarantees for every such binary prediction tasks.

A well studied notion of calibration for binary classification is the notion of smooth calibration
(Kakade and Foster, 2008; Foster and Hart, 2018). A key advantage of this notion is that it is robust
to perturbations of the predictor, unlike notions such as ECE. More recently, it plays a central role in
the the work of (Błasiok et al., 2023) and their theory of consistent calibration measures for binary
classification. At a high level, these are calibration measures that are polynomially related to the
(earthmover) distance to the closest perfectly calibrated predictor. Applying the notion of smooth
calibration error to the downstream binary prediction tasks for subsets T ⊆ [k], we get the following
definition:

6. The original definition of decision calibration in (Zhao et al., 2021) takes a slightly different form:

decCE(D) := sup
r,r′∈Rk,b∈R

∥(y − v)I(⟨r,v⟩ > ⟨r′,v⟩)∥2 + ∥(y − v)I(⟨r,v⟩ ≤ ⟨r′,v⟩)∥2.

Here ⟨r,v⟩ (resp. ⟨r′,v⟩) is the expected loss of taking action 1 (resp. action 2) over the randomness in an outcome
ŷ ∈ Ek distributed with mean v. In fact Theorem 9 is equivalent to this definition. For any v ∈ ∆k, the sum
of the coordinates of v is 1, i.e., ⟨1,v⟩ = 1, where 1 is the all-ones vector. Therefore, in Theorem 9, we have
I(⟨a,v⟩ > b) = I(⟨a − b1,v⟩ > 0), and thus restricting b = 0 does not change Theorem 9. Under this restriction,
the equivalence between the two definitions follows by taking a = r− r′.
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Definition 10 (Subset Smooth Calibration) Let Lip be the class of 1-Lipschitz functions ϕ : R→
[−1, 1]. For a distribution D of (v,y) ∈ ∆k × Ek, we define the smooth calibration error of D on
the subset T to be

smCET (D) = sup
ϕ∈Lip

E
D
[(⟨1T ,y⟩ − ⟨1T ,v⟩)ϕ(⟨1T ,v⟩)]

= sup
ϕ∈Lip

E
D
[⟨1T ,y − v⟩ϕ(⟨1T ,v⟩)].

We define the subset smooth calibration error of D as

ssCE(D) = sup
T⊆[k]

smCET (D).

More generally, for m ≥ 0, we define the m-subset smooth calibration error of D as

ssCEm(D) = sup
T⊆[k],|T |≤m

smCET (D).

Note that we can define subset smooth calibration as a special case of weighted calibration. We
define Wm-ss to be the set of all functions w : ∆k → [−1, 1]k such that there exist T ⊆ [k] and
ϕ ∈ Lip satisfying |T | ≤ m and w(v) = 1Tϕ(⟨1T ,v⟩) for every v ∈ ∆k. Then

ssCEm(D) = CEWm-ss(D).

In the binary setting, a result of (Błasiok et al., 2023) shows that the smooth calibration error
is polynomially related to the (earthmover) distance to the nearest perfectly calibrated predictor.
Therefore, a small subset smooth calibration error in our multi-class setting implies that for every
subset T ⊆ [k], the prediction ⟨1T ,v⟩ is close to perfect calibration for the corresponding down-
stream binary prediction task.

Having demonstrated the expressivity of subset smooth calibration, we move on to establish its
efficiency. The main algorithmic result of our paper is that auditing for subset smooth calibration
can be achieved in time polynomial in k (for any fixed error parameter α, see Appendix C for formal
definition of auditing). That is, subset smooth calibration simultaneously achieves strong expressiv-
ity and computational efficiency. In fact, the efficiency of our auditing algorithm extends to a more
expressive notion which we call projected smooth calibration, where we generalize indicators of
sets that are vectors in {0, 1}k to allow vectors in [−1, 1]k.

Definition 11 (Projected Smooth Calibration) For m ≥ 0, letHm-pLip denote the set of all func-
tions h : ∆k → [−1, 1] such that there exist ϕ ∈ Lip and a ∈ [−1, 1]k with ∥a∥22 ≤ m satisfying

h(v) = ϕ(⟨a,v⟩) for every v ∈ ∆k.

Define the m-projected smooth calibration error as

psCEm(D) = CEHk
m-pLip

(D).

In measuring psCE, we audit each coordinate i ∈ [k] using a distinct function h(i) ∈ Hm-pLip.
We also consider a further strengthening of projected smooth calibration by allowing arbitrary ℓ1-
Lipshcitz functions in each coordinate:
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Definition 12 (Full Smooth Calibration) Let HfLip denote the set of all functions h : ∆k →
[−1, 1] such that

|h(v)− h(v′)| ≤
∥∥v − v′

∥∥
1

for every v,v′ ∈ ∆k.

Define the full smooth calibration error of a distribution D of (v,y) ∈ ∆k × Ek as

fsCE(D) = CEHk
fLip

(D).

Lemma 13 For any m ≥ 0, for any distribution D of (v,y) ∈ ∆k × Ek,

ssCEm(D) ≤ psCEm(D) ≤ fsCE(D).

Proof To prove the first inequality, let T ⊂ [k] be the set of size bounded by m that maximizes
smCET (D), and ϕ ∈ Lip the Lipschitz function that witnesses it, so that

ssCEm(D) = E
D
[⟨1T ,y − v⟩ϕ(⟨1T ,v⟩)] = E

D
[⟨ϕ(⟨1T ,v⟩)1T ,y − v⟩].

We define the auditor function w ∈ Hk
m-pLip where

w(i)(v) = 1Tϕ(⟨1T ,v⟩) =

{
ϕ(⟨1T ,v⟩) for i ∈ T
0 otherwise

Hence

psCEm(D) = max
w′∈Hk

m-pLip

E
D
[⟨y − v, w′(v)⟩]

≥ E
D
[⟨y − v, w(v)⟩]

= ⟨y − v,1T ⟩ϕ(⟨1T , v⟩)
= ssCEm(D).

The second inequality is implied by the inclusion Hm-pLip ⊆ HfLip. To prove this inclusion,
note that for any function h ∈ Hm-pLip, there exists ϕ ∈ Lip,a ∈ [−1, 1]k such that h(v) =
ϕ(⟨a,v⟩) for every v ∈ ∆k. We have

|h(v)− h(v′)| = |ϕ(⟨a,v⟩)− ϕ(⟨a,v′⟩)|
≤ |⟨a,v⟩ − ⟨a,v′⟩|
= |⟨a,v − v′⟩|
≤ ∥a∥∞

∥∥v − v′
∥∥
1

≤
∥∥v − v′

∥∥
1

where the first inequality uses the Lipschitz property of ϕ. This shows h ∈ HfLip, which completes
the proof.

In Appendix F we show that both subset smooth calibration and projected smooth calibration al-
low efficient auditing, whereas in Theorem 17 we show that full smooth calibration requires sample
complexity exponential in k.
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Appendix B. Sample Complexity of Canonical Calibration

The main goal of this section is to prove that distinguishing whether a distributionD of (v,y) satis-
fies perfect canonical calibration or D is far from canonical calibration requires sample complexity
exponential in k.

We use the following definition of distance to canonical calibration, generalizing the lower
distance to calibration in (Błasiok et al., 2023) from the binary setting to the multi-class setting.

Definition 14 (Distance to Canonical Calibration) Consider a distribution D of (v,y) ∈ ∆k ×
Ek. We define ext(D) to be the set of distributions Π of (u,v,y) where the marginal distribution
of (v,y) is D, and the marginal distribution of (u,y) satisfies perfect canonical calibration. We
define the distance to calibration, denoted by dCE(D), as follows:

dCE(D) := inf
Π∈ext(D)

E
Π
∥u− v∥1.

Here is our sample complexity lower bound:

Theorem 15 Let A be an algorithm that takes examples (v1,y1), . . . , (vn,yn) ∈ ∆k × Ek drawn
i.i.d. from a distribution D as input, and outputs “accept”or “reject”. Assume that for any distri-
butionD satisfying perfect canonical calibration, algorithm A outputs “accept” with probability at
least 2/3. Also, for some α > 0, assume that for any distribution D satisfying dCE(D) ≥ α, algo-
rithm A outputs “reject” with probability at least 2/3. Then for some absolute constants k0 > 0
and c > 0, assuming k ≥ k0, we have n ≥ (c/α)(k−1)/2.

To prove Theorem 15, we use the following lemma to connect the distance to canonical calibra-
tion dCE(D) with the full smooth calibration error fsCE(D).

Lemma 16 For any distribution D over ∆k × Ek, fsCE(D) ≤ 4dCE(D).

Proof Consider any function w ∈ Hk
fLip and any distribution Π ∈ ext(D). By the definition of

Hk
fLip, for any u,v ∈ ∆k, we have

∥w(u)− w(v)∥∞ ≤ ∥u− v∥1. (1)

By the definition of ext(D), for (u,v,y) ∼ Π, the distribution of (u,y) satisfies perfect canonical
calibration, and thus

E
Π
[⟨y − u, w(u)⟩] = 0. (2)

Therefore,

E
D
[⟨v − y, w(v)⟩] ≤ |E

Π
[⟨v − y, w(v)− w(u)⟩]|+E

Π
[⟨v − y, w(u)⟩]

≤ 2E
Π
∥u− v∥1 +E

Π
[⟨v − y, w(u)⟩] (by (1))

= 2E
Π
∥u− v∥1 +E

Π
[⟨v − u, w(u)⟩] (by (2))

≤ 4E
Π
∥u− v∥1,

where the last inequality holds because ∥w(u)∥∞ ≤ 1. The proof is completed by taking supremum
over w ∈ Hk

fLip and infimum over Π ∈ ext(D).
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By Theorem 16, Theorem 15 is a direct corollary of the following theorem which gives a sample
complexity lower bound for distinguishing perfect canonical calibration from having a large full
smooth calibration error:

Theorem 17 Let A be an algorithm that takes examples (v1,y1), . . . , (vn,yn) ∈ ∆k × Ek drawn
i.i.d. from a distribution D as input, and outputs “accept”or “reject”. Assume that for any distri-
butionD satisfying perfect canonical calibration, algorithm A outputs “accept” with probability at
least 2/3. Also, for some α > 0, assume that for any distribution D satisfying fsCE(D) ≥ α, al-
gorithm A outputs “reject” with probability at least 2/3. Then for some absolute constants k0 > 0
and c > 0, for all k ≥ k0 we have n ≥ (c/α)(k−1)/2.

Our proof of Theorem 17 starts with the following lemma which can be proved by a standard
greedy algorithm:

Lemma 18 There exist absolute constants c > 0 and k0 > 0 with the following property. For any
positive integer k > k0 and any ε > 0, there exists a set V ⊆ ∆k with the following properties:

1. |V | ≥ (c/ε)k−1;

2. ∥v1 − v2∥1 ≥ ε for any distinct v1,v2 ∈ V ;

3. ∥v − ei∥1 ≥ 1/3 for any v ∈ V and i ∈ {1, . . . , k}.

Proof The lemma can be proved by a simple greedy algorithm. Let us start with V = ∅ and
repeat the following step: if there exists v′ ∈ ∆k such that ∥v′ − v∥1 ≥ ε for every u ∈ U and
∥v′ − ei∥1 ≥ 1/3 for every i = 1, . . . , k, we add v′ to V . We repeat the step until no such v′ exists
to obtain the final V . Clearly, V satisfies properties 2 and 3 required by the lemma. It remains to
prove that V also satisfies property 1.

Consider the final V in the process of the algorithm. For any v ∈ V , consider a set Sv consisting
of all points s ∈ Rk−1 such that ∥s − v|1,...,k−1∥1 ≤ ε. Similarly, for every i = 1, . . . , k, consider
a set Si consisting of all points s ∈ Rk−1 such that ∥s − ei|1,...,k−1∥1 ≤ 1/3. Also, consider the
set S consisting of all points s ∈ Rk−1

≥0 such that ∥s∥1 ≤ 1. If S \ ((
⋃

v∈V Sv) ∪ (
⋃k

i=1 Si)) is
non-empty, then we can take any s in that set and construct a vector v′ = (s(1), . . . , s(k−1), 1 −
s(1) − · · · − s(k−1)) ∈ ∆k. Since s /∈ Sv, it is easy to see that ∥v′ − v∥1 > ε for every v ∈ V .
Similarly, ∥v′ − ei∥ > 1/3 for every i = 1, . . . , k. Therefore, the iterative steps of the algorithm
can be continued. For the final V , it must hold that S \ ((

⋃
v∈V Sv) ∪ (

⋃k
i=1 Si)) is empty. The

volume of each Sv is (2ε)k−1 times the volume of S, and the volume of each Si is (2/3)k−1 times
the volume of S. Therefore,

(2ε)k−1|V |+ (2/3)k−1k ≥ 1.

When k is sufficiently large, we have (2/3)k−1k ≤ 1/2, in which case |V | ≥ (1/2)(1/(2ε))k−1 ≥
(c/ε)k−1, where the last inequality holds whenever k is sufficiently large and c > 0 is sufficiently
small.

In the lemma below, we use the set V from Theorem 18 to construct candidate distributions with
large full smooth calibration error. Later in Theorem 20 we combine these distributions to achieve
indistinguishability from a distribution with no calibration error, unless given at least exp(k) exam-
ples.
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Lemma 19 For a sufficiently large positive integer k and ε ∈ (0, 1/2), let V ⊆ ∆k be the set
guaranteed by Theorem 18. For a function w : V → Ek, define distribution Dw of (v,y) ∈ V × Ek
such that v is distributed uniformly over V and y = w(v). Then fsCE(Dw) ≥ ε/12.

Proof For any v ∈ V , by property 3 in Theorem 18 and the fact that w(v) ∈ {e1, . . . , ek}, we
have ∥v − w(v)∥1 ≥ 1/3. Since v ∈ ∆k and w(v) ∈ Ek, we can separately consider the unique
non-zero coordinate of w(v) and the other zero coordinates to get

1/3 ≤ ∥v − w(v)∥1 = (1− ⟨v, w(v)⟩) + ⟨v,1− w(v)⟩ = 2(1− ⟨v, w(v)⟩),

where 1 ∈ Rk is the all-ones vector. Therefore, ⟨w(v) − v, w(v)⟩ = (1 − ⟨v, w(v)⟩) ≥ 1/6, and
thus

E
(v,y)∼Dw

[⟨y − v, w(v)⟩] ≥ 1/6.

To complete the proof, it remains to show that w is (2/ε)-Lipschitz over V (we can then extend w
to a (2/ε)-Lipschitz function over ∆k by standard construction). For any distinct v,v′ ∈ V , we
have

∥w(v)− w(v′)∥∞ ≤ ∥w(v)− w(v′)∥1 ≤ 2 ≤ (2/ε)∥v − v′∥1,

where the last inequality uses property 2 in Theorem 18.

Lemma 20 Let A be any algorithm that takes (v1,y1), . . . , (vn,yn) ∈ V × Ek as input, and
outputs “accept” or “reject”. Let p1 be the acceptance probability when we first draw vi indepen-
dently and uniformly from V , and then draw each yi independently with E[yi] = vi. Let p2 be
the acceptance probability where we first draw w : V → Ek such that for every v ∈ V , w(v) is
distributed independently with mean v, and then draw each (vi,yi) independently from Dw. Then,

|p1 − p2| ≤ O(n2/|V |).

Proof Assume without loss of generality that n < |V |. Let p3 denote the acceptance probability
when we first draw v1, . . . ,vn uniformly from V without replacement, and then draw each yi ∈ Ek
independently with mean vi. We relate p1 and p2 to p3 as follows.

Suppose we first draw each vi independently and uniformly from V , and then draw each yi

independently with E[yi] = vi. The probability that v1, . . . ,vn are distinct is

p4 := (1− 1/|V |) · · · (1− (n− 1)/|V |) ≥ 1− 1/|V | − · · · − (n− 1)/|V | ≥ 1−O(n2/|V |).

Conditioned on that event, the acceptance probability is exactly p3. Conditioned on the complement
of that event, the acceptance probability is bounded in [0, 1]. Therefore,

p3p4 ≤ p1 ≤ p3p4 + (1− p4).

Similarly, we can show that
p3p4 ≤ p2 ≤ p3p4 + (1− p4).

Combining these inequalities, we get |p1 − p2| ≤ 1− p4 ≤ O(n2/|V |).

Proof [Proof of Theorem 17] Consider the set V from Theorem 18 where we choose ε to be 12α.
If D is the distribution of (v,y) ∈ V × Ek where v is chosen uniformly at random from V and
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E[y|v] = v, then algorithm A outputs “accept” with probability at least 2/3. If D is Dw for some
w : V → Ek, then by Theorem 19, algorithm A outputs “accept” with probability at most 1/3.

By Theorem 20, we have n ≥ Ω(
√
|V |). By Property 1 in Theorem 18, we get n ≥ Ω(

√
|V |) ≥

(c/α)(k−1)/2 for a sufficiently small absolute constant c > 0 assuming k is sufficiently large.

Appendix C. Auditing for Weighted Calibration and Agnostic Learning

In this section, we study the sample and computational complexity of weighted calibration (Theo-
rem 8), where the complexity is measured in an auditing task we define below. Specifically, for any
weight familyW , we show an equivalence between the auditing task and the well-studied agnostic
learning task in the learning theory literature. This equivalence allows us to establish both com-
putational lower bounds and efficient algorithms for specific weight families W in Appendices D
to G.

Auditing for weighted calibration. The notion of weighted calibration gives rise to a natural
decision problem, which we call the decision version of auditing calibration: given a predictor p,
can we decide whether or not it is (W, α) calibrated? In the event that p is not calibrated, we would
ideally like to post-process its predictions to get a new predictor κ(p) for κ : ∆k → ∆k, so that
κ(p) is (W, α)-calibrated. This post-processing goal needs to be formulated carefully, since one
can always get perfect calibration using a trivial predictor that constantly predicts E[y]. A natural
formulation that avoids such trivial solutions is to require that the post-processing does not harm
some measure of accuracy such as the expected squared loss of p.

One can achieve both these goals by solving a search problem which we call auditing with a
witness defined below.

Definition 21 (Auditing with a witness) An (α, β) auditor forW is an algorithm that when given
access to a distribution D where CEW(D) > α returns a function w′ : ∆k → [−1, 1]k (which need
not belong toW) such that

E
(v,y)∼D

[⟨y − v, w′(v)⟩] ≥ β. (3)

Concretely, the auditor takes i.i.d. examples (v1,y1), . . . , (vn,yn) drawn from D, and the output
function w′ should satisfy the inequality above with probability at least 1 − δ over randomness in
the examples and the auditor itself, where δ ∈ (0, 1/3) is the failure probability parameter.

As demonstrated in previous work (for instance (Hébert-Johnson et al., 2018; Gopalan et al.,
2022b)), a solution to this search problem allows us to solve both the decision problem of auditing
for calibration, and in the case when p is not (W, α)-calibrated, we can use the witness to post-
process p and produce a predictor κ(p) with lower squared loss, that is (W, α)-calibrated.

Lemma 22 Given a predictor p : X → ∆k and access to an (α, β)-auditor for W , there is an
algorithm that computes a post-processing function κ : ∆k → ∆k so that κ(p) is (W, α)-calibrated
and its squared loss is not larger than that of p. The algorithm uses at most O(k/β2) calls to the
(α, β)-auditor.
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Proof We start off with p0 = p. If p is not (W, α)-calibrated, then the auditor producesw′ satisfying
Equation (3). Following the proof of (Gopalan et al., 2022b, Lemma 33), we can now update p to
κ(p) using w′ so that we get a decrease in the expected squared loss:

E[∥κ(v)− y∥22] ≤ E[∥v − y∥22]− Ω(β2/k).

Note that the squared loss is bounded in the interval [0, 4] because ∥v− y∥2 ≤ ∥v∥2 + ∥y∥2 ≤
∥v∥1 + ∥y∥1 ≤ 2. Thus by repeatedly using the auditor and applying the update at most O(k/β2)
times, we can eventually achieve (W, α) calibration with decreased expected squared loss.

We make some observations about the role that the different parameters α, β andW play in the
complexity of auditing with a witness.

• Auditing becomes easier for smaller β. The β parameter affects the running time, but not the
final calibration guarantee. Thus an (α, β/10) auditor will result in the same guarantee as an
(α, β) auditor, but at the cost of more iterations. Since we are interested in the question of
whether auditing can be done in time poly(k) versus exp(k), we do not optimize too much
for β, and are fine with losing polynomial factors in it.

• In contrast, auditing gets harder for smaller α, since the auditor is required to detect smaller
violations of calibration. The final guarantee is also much more sensitive to α: a (2α, β)
auditor can only be used to guarantee (W, 2α) calibration, but not (W, α) calibration.

• The complexity of auditing increases as the the weight function family becomes larger. If
W1 ⊆ W2, then an (α, β)-auditor forW2 is also an (α, β)-auditor forW1, since CEW2(D) ≥
CEW1(D) so the auditor is guaranteed to produce a witness whenever p is not (W1, α)-
calibrated. It might happen that CEW1(D) ≤ α whereas CEW2(D) > α. In such a sce-
nario, an auditor forW2 will still find a witness to miscalibration. This is not required by our
definition of auditor forW1, but it is allowed.

Agnostic learning. We understand the complexity of auditing for multiclass calibration by con-
necting it to the well-studied problem of agnostic learning in the standard binary classification set-
ting. For a distribution U of (v, z) ∈ ∆k × [−1, 1] and a class H of functions ∆k → [−1, 1], we
define

Opt(H,U) := sup
h∈H
|E[h(v)z]|.

Definition 23 (Weak agnostic learner) (Ben-David et al., 2001; Kalai et al., 2008b) Let α ≥ β ∈
[0, 1]. An (α, β) agnostic learner for H is an algorithm that when given sample access to a distri-
bution U over ∆k × [−1, 1] such that Opt(H,U) ≥ α returns h′ : ∆k → [−1, 1] such that

E
(v,z)∼U

[h′(v)z] ≥ β.

More concretely, the learner takes i.i.d. examples (v1, z1), . . . , (vn, zn) drawn from U , and the
output function h′ should satisfy the inequality above with probability at least 1−δ over randomness
in the examples and the learner itself, where δ ∈ (0, 1/3) is the failure probability parameter.
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Similarly to auditing, the strength of an agnostic learner is more sensitive to the α parameter
than the β parameter. Known results on agnostic boosting (Kalai et al., 2008b; Feldman, 2010; Kalai
and Kanade, 2009) show that the existence of an (α, β)-weak agnostic learner implies the existence
of an strong agnostic learner with polynomially increased time and sample complexity depending
on 1/β (see the citations for a precise statement).

In the rest of the section we present our main result connecting the agnostic learning task for a
classH and the auditing task forHk.

C.1. Auditing from Agnostic Learning

Theorem 24 Given an (α/3, β) weak agnostic learner for H with sample complexity n0, running
time T0 and failure probability parameter δ/2, we can construct an (α, αβ/6k) auditor for Hk

with sample complexity n = O(kn0/α+ k2α−2β−2 log(k/δ)), time complexity O(kT0 + kn), and
failure probability parameter δ.

A natural idea for proving the theorem above is to apply the agnostic learner on each coordinate of
the residual z := y − v in the auditing task. Specifically, in the auditing task, we assume

E[⟨z, w(v)⟩] = E[⟨y − v, w(v)⟩] > α

for some w ∈ Hk. Expressing w(v) as (w(1)(v), . . . , w(k)(v)) where each w(j) ∈ H, we have

k∑
j=1

E[z(j)w(j)(v)] > α,

which implies that there exists j ∈ {1, . . . , k} such that

E[z(j)w(j)(v)] > α/k. (4)

If we only use (4), we would need an (α/k, β) agnostic learner to prove Theorem 24, but we only
have an (α/3, β) agnostic learner.

To avoid the loss of a factor of k, we define z in a better way that leverages the fact that y,v ∈
∆k. Specifically, we note that the vector 1

2(y− v) has ℓ1 norm at most 1, and thus it is the mean of
a distribution over Ek ∪ (−Ek). Given y and v, we draw z randomly from that distribution. We have

E[⟨z, w(v)⟩] = E [⟨(y − v)/2, w(v)⟩] > α/2.

Given z ∈ Ek ∪ (−Ek), we use ℓz ∈ [k] to denote the unique index such that z(ℓz) ̸= 0. We have
⟨z, w(v)⟩ = z(ℓz)w(ℓz)(v) and thus

E[z(ℓz)w(ℓz)(v)] > α/2.

Therefore, there exists j ∈ {1, . . . , k} such that

E[z(j)w(j)(v)|ℓz = j] > α/2 > α/3.

This allows us to use an (α/3, β) agnostic learner.
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Proof [Proof of Theorem 24] In the auditing task, we assume that the input data points (vi,yi) are
drawn i.i.d. from a distribution D satisfying

E
(v,y)∼D

[⟨y − v, w(v)⟩] > α for some w ∈ Hk. (5)

Given (v,y) drawn fromD, we draw z randomly from Ek∪(−Ek) such that E[z|v,y] = (y−v)/2.
This is possible because ∥y−v∥1 ≤ 2. A concrete way to draw z is the following. With probability
1/2, we set z to be y ∈ Ek, and with the remaining probability 1/2, we draw z randomly from −Ek
with expectation −v.

Given z ∈ Ek ∪ (−Ek), we define a random variable ℓz ∈ {1, . . . , k} such that ℓz is the unique
index satisfying z(ℓz) ̸= 0. For any w ∈ Hk, there exists w(1), . . . , w(k) ∈ H such that w(v) =
(w(1)(v), . . . , w(k)(v)) for every v ∈ ∆k. We have ⟨z, w(v)⟩ = z(ℓz)w(ℓz)(v) and thus (5) implies

E[z(ℓz)w(ℓz)(v)⟩] = E[⟨z, w(v)⟩] = E [⟨(y − v)/2, w(v)⟩] > α/2.

Let Uj denote the conditional distribution of (v, z(j)) ∈ ∆k × Ek given ℓz = j. We have

k∑
j=1

Pr[ℓz = j] E
(v,z)∼Uj

[zw(j)(v)] > α/2. (6)

Now we show that there exists j ∈ {1, . . . , k} such that Pr[ℓz = j] ≥ α/6k and E(v,z)∼Uj [zw
(j)(v)] >

α/3. If this is not the case, then

k∑
j=1

Pr[ℓz = j] E
(v,z)∼Uj

[zw(j)(v)]

=
∑

j:Pr[ℓz=j]<α/6k

Pr[ℓz = j] E
(v,z)∼Uj

[zw(j)(v)] +
∑

j:Pr[ℓz=j]≥α/6k

Pr[ℓz = j] E
(v,z)∼Uj

[zw(j)(v)]

≤ α/6 + α/3

= α/2,

giving a contradiction with (6).
We have shown that there exists j∗ ∈ {1, . . . , k} and h ∈ H such that Pr[ℓz = j∗] ≥ α/6k

and E(z,v)∼Uj∗ [zh(v)] > α/3. To solve the auditing task given examples (v1,y1), . . . , (vn,yn),
we first draw z1, . . . , zn ∈ Ek ∪ (−Ek) independently such that E[zi|vi,yi] = yi − vi. Now
(v1,y1, z1), . . . , (vn,yn, zn) are distributed independently from the joint distribution of (v,y, z).
For every j, we define Ij := {i ∈ {1, . . . , n} : ℓzi = j}. If |Ij | ≥ n0, we run the agnostic
learner on the data points ((vi, z

(j)
i ))i∈Ij to obtain a function h(j) : ∆k → [−1, 1]. We define

wj : ∆k → [−1, 1]k such that (wj(v))
(j′) = 0 if j′ ̸= j and (wj(v))

(j′) = h(j)(v) if j′ = j.
When n = O(kn0/α + k2α−2β−2 log(1/δ)) is sufficiently large, with probability at least

1 − δ/4, we have |Ij∗ | ≥ n0. Conditioned on Ij∗ , the data points ((vi, z
(j)
i ))i∈Ij∗ are distributed

independently from Dj∗ , and thus by the guarantee of the agnostic learner, with probability at least
1− δ/2,

E
(v,z)∼Uj∗

[zh(j
∗)(v)] ≥ β,
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which implies

E
(v,y)∼D

[⟨y − v, wj∗(v)⟩] = 2Pr[ℓz = j∗] E
(v,z)∼Uj∗

[zh(j
∗)(v)] ≥ αβ/3k.

We have thus shown that with probability at least 1− 3δ/4, there exists j such that

E
(v,y)∼D

[(y − v)wj(v)] ≥ αβ/3k.

By estimating the values of E(v,y)∼D[⟨y − v, wj(v)⟩] using O(α−2β−2k2 log(k/δ)) fresh exam-
ples, we can make sure that with probability at least 1 − δ, we output a w̃ among the wj’s such
that

E
(v,y)∼D

[⟨y − v, w̃(v)⟩] ≥ αβ/6k.

C.2. Agnostic Learning from Auditing

Now we prove the reverse direction of the reduction by constructing an agnostic learner for a classH
using an auditor (Theorem 25). For the most general statement, instead of considering the auditing
task forHk as in Theorem 24, we need to consider a slightly different class H̃k. But as long asH is
closed under coordinate-wise affine transformations of the inputs, we can choose H̃ to be the same
as H. In particular, when H is the class of halfspaces, by our reduction, classic hardness results on
agnostically learning halfspaces implies hardness of auditing for halfspaces (Theorem 28).

For a vector v ∈ ∆k with k ≥ 2, define lift(v) ∈ ∆k by

lift(v) :=
1

3
v +

1

3
e1 +

1

3
e2. (7)

Theorem 25 For k ≥ 2, let H be a family of functions h : ∆k → [−1, 1] closed under negation.
Let H̃ be a family of functions h̃ : ∆k → [−1, 1] such that for every h ∈ H, there exists h̃ ∈ H̃
satisfying h̃(lift(v)) = h(v) for every v ∈ ∆k. Given any (2α/3, 2β/3) auditor for H̃k, we can
construct an (α, β) weak agnostic learner forH with the same sample complexity, time complexity,
and failure probability parameter.

We will in fact derive this result from a more general statement where the class of auditors is
not necessarily a product set.

Theorem 26 Let H be a family of functions h : ∆k → [−1, 1] and letW be a family of functions
w : ∆k → [−1, 1]k. Let λ be a positive real number. Assume that for every h ∈ H there exists
w ∈ W such that

w(lift(x))1 − w(lift(x))2 = λh(x) for every x ∈ ∆k. (8)

Given any (λα/3, 2β/3) auditor for W̃ , we can construct an (α, β) weak agnostic learner for H
with the same sample complexity, time complexity, and failure probability parameter.
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Proof We construct a weak agnostic learner forH using an auditor forW . Let (x1, z1), . . . , (xn, zn)
be the input data points in the weak agnostic learning task drawn i.i.d. from a distribution U . For
every input data point (xi, zi) ∈ ∆k × [−1, 1], the learner generates a corresponding data point
(vi,yi) ∈ ∆k × {e1, . . . , ek} for the auditing task by setting

vi = lift(xi),

yi ∼ v∗i :=vi +
1

3
zi(e1 − e2).

Note that v∗i ∈ ∆k, and thus it can be interpreted as a distribution over {e1, . . . , ek}. Let D denote
the distribution of (vi,yi). The intuition is that since v∗ favors either e1 or e2 over v depending on
z, telling the difference between vi and v∗i for an auditor requires learning z.

Formally, by our assumption, for any h ∈ H, there exists w ∈ W satisfying (8), and thus

E
D
[⟨y − v, w(v)⟩] = 1

3
E
U
[z⟨e1 − e2, w(lift(x))⟩] =

λ

3
E
U
[zh(x)].

Therefore, if EU [zh(x)] ≥ α for some h ∈ H, then ED[⟨y − v, w(v)⟩] ≥ λα/3 for some w ∈ W ,
and with high probability, the auditing algorithm will produce some w′ : ∆k → [−1, 1]k such that
ED[⟨y − v, w′(v)⟩] ≥ 2β/3. Defining h′ : ∆k → [−1, 1] such that

h′(x) =
1

2
(w(lift(x))|1 − w(lift(x))|2) for every x ∈ ∆k,

we have

E
D
[⟨y − v, w′(v)⟩] = 1

3
E
U
[z⟨e1 − e2, w

′(lift(x))⟩]

=
1

3
E
U
[z⟨w′(lift(x))|1 − w′(lift(x))|2⟩]

=
2

3
E
U
[zh′(x)].

Therefore, ED[⟨y − v, w′(v)⟩] ≥ 2β/3 implies EU [zh
′(x)] ≥ β. We have thus constructed an

(α, β)-weakly agnostic learning algorithm which returns h′ as output.

We now complete the proof of Theorem 25.
Proof [Proof of Theorem 25] By our assumption about H̃, for every h ∈ H there exist h̃1, h̃2 such
that

h̃1(lift(v)) = h(v), h̃2(lift(v)) = −h(v).

We consider any h̃ ∈ (H̃)k whose first two co-ordinates are h̃1 and h̃2, so that their difference is
2h(v). We now apply Theorem 26 withW = (H̃)k and λ = 2.

Appendix D. Hardness of Auditing for Decision Calibration

Our tight connection between auditing and learning established in the previous section allows us to
transfer hardness results from learning to auditing. We apply this machinery to show hardness of
auditing for specific function classes. Under standard complexity-theoretic assumptions, we show
that auditing for decision calibration (Theorem 9) cannot be solved in time poly(k).
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Theorem 27 (Hardness of Decision Calibration) For k ∈ Z>0, let Wk be the class W used in
the definition of decision calibration (Theorem 9). Under standard hardness assumption on refuting
random t-XOR (Theorem 29 below), for any C > 2 and any sufficiently large k, there is no (1/3−
1/C, 1/kC)-auditing algorithm for Wk that runs in time O(kC) and achieves success probability at
least 3/4.

We also prove a related result showing hardness of auditing for the product class of halfspaces. Let
Hhs be the class of half-spaces over ∆k. That is, Hhs consists of all functions h : ∆k → [−1, 1]
that can be written as h(v) = sign(a · v + b) for some a ∈ Rk and b ∈ R. We prove the following
theorem showing thatHk

hs does not allow poly(k)-time auditing:

Theorem 28 (Hardness of Halfspace Calibration) Under standard hardness assumption on re-
futing random t-XOR (Theorem 29 below), for any C > 2, there is no algorithm that, for every
sufficiently large k ∈ Z>0, solves (2/3− 1/C, 1/kC)-auditing forHk

hs in time O(kC) and achieves
success probability at least 3/4.

We combine reductions from Appendix C.2 with existing hardness results of agnostically learn-
ing halfspaces to prove the two theorems above. There are many results showing hardness of ag-
nostic learning for halfspaces under various assumptions, for instance see (Feldman et al., 2009;
Guruswami and Raghavendra, 2006). The strongest results for improper learning are due to Daniely
based on the hardness of refuting random t-XOR-Sat (Daniely, 2016).

Assumption 29 (Random t-XOR Assumption (Daniely, 2016)) There exist constants η ∈ (0, 1/2)
and c > 0 such that for any t ∈ Z>0, there is no poly(m)-time algorithm A that satisfies the fol-
lowing properties for any sufficiently large n ∈ Z>0 and m = ⌊nc

√
t log t⌋:

• given any size-m collection of t-XOR clauses on n variables where at least 1− η fraction of
the clauses are satisfiable, algorithm A outputs “accept” with probability at least 3/4;

• with probability at least q(n) = 1−o(1) over a uniformly randomly chosen size-m collection
of t-XOR clauses on n variables, given the collection as input, algorithm A outputs “reject”
with probability at least 3/4.

Theorem 30 ((Daniely, 2016)) Under Theorem 29, for any C > 2, there is no algorithm that, for
every sufficiently large k ∈ Z>0, solves (1 − 1/C, 1/kC)-agnostic learning for Hhs with success
probability at least 3/4 and runs in time O(kC).

The original result by Daniely (2016) was stated for the Boolean cube instead of ∆k, but the result
extends to ∆k by taking an affine injection from the Boolean cube {−1, 1}k−1 to ∆k.

We prove Theorem 27 and Theorem 28 by combining Theorem 30 with Theorem 25 and Theo-
rem 26 from Appendix C.2. The following simple claim is convenient for our proof and it follows
immediately from the definition of lift(·) in (7).

Claim 31 For a ∈ Rk, b ∈ R, define a′ = 3a, b′ = b− a(1) − a(2). Then for every v ∈ ∆k,

⟨a′, lift(v)⟩+ b′ = ⟨a,v⟩+ b.
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Proof [Proof of Theorem 27] Any function h ∈ Hhs can be expressed as h(v) = sign(⟨a,v − b⟩)
for a ∈ Rk and b ∈ R. Define a′ = 3a, b′ = b− a(1) − a(2),g = e1 and g = −e1. The function w
mapping v′ to I(⟨a′,v′⟩ > b′)g + I(⟨a′,v′⟩ ≤ b′)g′ belongs to Wk, and

w(lift(v))(1)−w(lift(v))(2) = I(⟨a′, lift(v)⟩ > b′)−I(⟨a′, lift(v)⟩ ≤ b′) = sign(⟨a′, lift(v)−b′⟩) = h(v).

Therefore, by Theorem 26, any (1/3 − 1/C, 1/kC)-auditing algorithm for Wk implies a (1 −
3/C, 3/2kC)-agnostic learning algorithm for Hhs with the same sample complexity, running time,
and failure probability. The proof is completed by Theorem 30.

Proof [Proof of Theorem 28] By Theorem 31, Hhs is closed under the lift operation, namely for
every h ∈ Hhs we can construct h′ ∈ Hhs which satisfies h′(lift(v)) = h(v) for every v ∈ ∆k.
Assume for the sake of contradiction that an auditing algorithm forHk

hs as described in the theorem
exists. By Theorem 25, such an algorithm implies a (1 − 3C/2, 3/2kC)-weak agnostic learner for
Hhs that runs in time O(kC) for any sufficiently large k, contradicting Theorem 30.

Appendix E. Kernel Algorithms for Auditing Calibration

In this section, we give efficient auditing algorithms for weighted calibration where the weight
familyW consists of functions from a reproducing kernel Hilbert space (RKHS). In Appendix E.1,
we discuss a special case using the multinomial kernel, which is important for our efficient auditors
for projected smooth calibration in Appendix F.

It is well known that learning for functions with bounded norm in an RKHS with convex losses
is feasible by solving a convex program. Here we observe that the simple structure of the correlation
objective E[zw(v)] in agnostic learning makes it possible to optimize, even without solving a con-
vex program, just using O(n2) kernel evaluations, via Algorithm 1. The algorithm and its analysis
are not novel and are similar in nature to the kernel ridge regression algorithm (see e.g. (Wainwright,
2009)). Based on our connection between auditing and learning shown in Appendix C, we give a
similar kernel evaluation based algorithm for multi-class auditing, which we present in Algorithm 2.

LetD be a distribution over ∆k×[−1, 1]. Consider a positive definite kernel ker : ∆k×∆k → R
and the corresponding RKHS Γ consisting of functions w : ∆k → R. We assume that the kernel
can be evaluated efficiently. Let φv ∈ Γ denote the function ker(v, ·). By the reproducing property,

w(v) = ⟨w,φv⟩Γ for every w ∈ Γ and v ∈ ∆k.

Define BΓ(r) to be the set of w ∈ Γ satisfying ∥w∥2Γ := ⟨w,w⟩Γ ≤ r2. For s > 0, assume
that ker(v,v) ≤ s2 for every v ∈ ∆k. That is, ∥φv∥Γ ≤ s. Under this assumption, for any
w ∈ BΓ(1/s) and v ∈ ∆k, we have

|w(v)| = |⟨w,φv⟩Γ| ≤ ∥w∥Γ∥φv∥Γ ≤ (1/s) · s ≤ 1.

The following theorems are proved in Appendix H.

Theorem 32 For n = O(r2s2α−2 log(1/δ)), Algorithm 1 is an (α, α/3rs) agnostic learner for
the class BΓ(r) with failure probability at most δ. Moreover, it always returns a function from
BΓ(1/s).

Theorem 33 For n = O(kr2s2α−2 log(1/δ)), Algorithm 2 is an (α, α/3rs) auditor for the class
BΓ(r)

k with failure probability at most δ. Moreover, it always returns a function from BΓ(1/s)
k.
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Algorithm 1: Kernel Algorithm for Weak Agnostic Learning
Input : Data points (v1, z1), . . . , (vn, zn) ∈ ∆k × [−1, 1].
Output: Function w2 : ∆k → [−1, 1].
begin

λ←
(∑n

i=1

∑n
j=1 zizj ker(vi,vj)

)1/2
w2(v)← 1

λs

∑n
i=1 zi ker(vi,v) for every v ∈ ∆k (in

the degenerate case where λ = 0, set w2(v)← 0) return w2

end

Algorithm 2: Kernel Algorithm for Auditing
Input : Data points (v1,y1), . . . , (vn,yn) ∈ ∆k × Ek.
Output: Function w2 : ∆k → [−1, 1]k.
begin

zi ← yi − vi for every i = 1, . . . , n For i = 1, . . . , n and ℓ = 1, . . . , k, let z(ℓ)i denote the

ℓ-th coordinate of zi λ(ℓ) ←
(∑n

i=1

∑n
j=1 z

(ℓ)
i z

(ℓ)
j ker(vi,vj)

)1/2
for every ℓ = 1, . . . , k

w
(ℓ)
2 (v) ← 1

λ(ℓ)s

∑n
i=1 z

(ℓ)
i ker(vi,v) for every ℓ = 1, . . . , k and v ∈ ∆k (in the degenerate

case where λ(ℓ) = 0, set w(ℓ)
2 (v)← 0) return w2 such that w2(v) =

(
w

(1)
2 (v), . . . , w

(k)
2 (v)

)
for every v ∈ ∆k

end

E.1. Auditing for the Multinomial Kernel

A kernel that will be of particular importance for us is the multinomial kernel. We follow the elegant
formulation from (Goel et al., 2017).

Definition 34 (Goel et al., 2017) For any vector v = (v1, . . . , vk) ∈ ∆k and tuple t = (t1, . . . , td) ∈
[k]d, define vt to be the product vt1 · · · vtd . Define ψ : ∆k → R1+k+···+kd such that ψ(v) is a vector
whose coordinate indexed by t ∈ Td := [k]0 ∪ [k]1 ∪ · · · ∪ [k]d is vt. The degree d multinomial
kernel is given by

kerd(v,v
′) =

d∑
i=0

(v · v′)i = ψ(v) · ψ(v′).

We denote its RKHS as Γ(d).

Instantiating Theorem 33 for the degree d multinomial kernel gives the following result.

Lemma 35 For all, r ≥ 0 and d ≥ 0, Algorithm 2 with n = O(kr2d log(1/δ)/α2) samples is
an (α, α/(3r

√
d))-auditor for the class (BΓ(d)(r))

k with failure probability at most δ. Moreover, it
always returns a function from (BΓ(d)(1/

√
d))k in time poly(n, k, d).

Proof Observe that for v ∈ ∆k,

∥φv∥2Γ(d) = kerd(v,v) =
d∑

i=0

(v · v)i ≤ d
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since ∥v∥22 ≤ 1 for v ∈ ∆k. We can thus apply Theorem 33 with s =
√
d to get the claimed bound.

This gives a faster auditor for the notion of low-degree calibration defined by (Gopalan et al.,
2022b).

Definition 36 (Gopalan et al., 2022b) Let P (d, 1) denote the set of multivariate degree d polyno-
mials

p(v1, . . . , vk) =
∑

e:deg(e)≤d

we

∏
i

veii

where ∀v ∈ ∆k, |p(v)| ≤ 1,∑
e:deg(e)≤d

|we| ≤ 1.

We say that a predictor p is α degree-d calibrated if CEP (d,1)k(D) ≤ α.

(Gopalan et al., 2022b) give an (α, α/kd)-auditor for P (d, 1)k which runs in time O(kd) by
enumerating over all kd monomials. Algorithm 2 implies a better auditor which is polynomial in
both k and d.

Corollary 37 There is an (α, α/3
√
d)-auditor for P (d, 1)k that with success probability at least

1− δ, sample complexity n = O(kd log(1/δ)/α2) and time complexity poly(n, k, d).

Proof Any polynomial p ∈ P (d, 1) can be written as p(v) =
∑

t∈Td
wtv

t for every v ∈ Rk,

where wt ∈ R for every t ∈ Td and
∑

t∈Td
|wt| ≤ 1. We define a vector ψp ∈ R1+k+···+kd whose

coordinate indexed by t ∈ Td is wt. It follows that

p(v) =
∑
t∈Td

wtv
t = ψp · ψ(v),

∥p∥2Γ(d) ≤ ∥ψ
p∥22 =

∑
t

w2
t ≤

(∑
t

|wt|

)2

≤ 1.

Hence P (d, 1) ⊆ BΓ(d)(1). Hence the claimed bound follows from Lemma 35 with r = 1.

Appendix F. Efficient Auditing for Projected Smooth Calibration

In this section, we prove the following theorem showing an efficient kernel-based auditing algorithm
for projected smooth calibration (Theorem 11).

Theorem 38 There exists c > 0 so that for any α, δ ∈ (0, 1/2) and m ∈ [2, k], there is an
(α, 1/mO(1/α)) auditor for m-projected smooth calibration (and hence also for m-subset smooth
calibration), with success probability at least 1−δ, sample complexity n = O(kmO(1/α) log(1/δ)),
and running time poly(n, k, 1/α).
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Even when we consider subset calibration over arbitrary subsets, which corresponds to taking m =
k, the running time of the auditor is kO(1/α), which is polynomial in k for every fixed α. In the next
section (Appendix G), we show that this running time cannot be improved to poly(k, 1/α) under
standard complexity-theoretic assumptions. At the end of this section, we show that the dependence
on α can be improved if we consider sigmoid functions instead of all 1-Lipschitz functions.

We prove Theorem 38 using Algorithm 2, together with polynomial approximations. Low de-
gree polynomial approximations have been used successfully for agnostic learning, starting with the
work of (Kalai et al., 2008a). The important work of (Shalev-Shwartz et al., 2011) showed that one
can improve the efficiency of such learning algorithms by kernelizing them.

Using results from (Goel et al., 2017) and (Sherstov, 2013), we will show the following bound
on multivariate polynomials obtained by composing bounded univariate polynomials with innner
products.

Lemma 39 Let p be a univariate polynomial of degree d so that |p(u)| ≤ 1 for u ∈ [−1, 1]. Let
pa(v) = p(a · v) where a ∈ [−1, 1]d and v ∈ ∆k. Then pa ∈ Γ(d) and

∥pa∥2Γ(d) ≤ max(4, 4∥a∥2)2d.

We prove Theorem 39 using the following two lemmas from the literature:

Lemma 40 (Goel et al., 2017, Lemma 2.7) Let p =
∑d

i=0 ηiu
i be a univariate polynomial of degree

d and pa(v) = p(a · v) for a ∈ [−1, 1]k and v ∈ ∆k. Then

∥pa∥2Γd ≤
d∑

i=0

η2i ∥a∥2i2 ≤ max(1, ∥a∥2)2d
d∑

i=0

η2i .

Lemma 41 (Sherstov, 2013, Lemma 4.1) For a degree d polynomial p(u) =
∑d

i=0 ηiu
i satisfying

|p(u)| ≤ 1 for u ∈ [−1, 1], it holds that
∑d

i=0 |ηi| ≤ 4d.

Proof [Proof of Lemma 39] By Lemma 41, we can bound

d∑
i=0

|ηi|2 ≤

(
d∑

i=0

|ηi|

)2

≤ 42d.

We plug this bound into Lemma 40 to get

∥pa∥2Γd ≤ max(4, 4∥a∥2)2d.

Let Lip denote the set of all bounded 1-Lipschitz functions ϕ : [0, 1] → [−1, 1]. We use an
approximation result for arbitrary Lipschitz functions using Jackson’s theorem (Cheney, 1966), to-
gether with a rescaling argument to ensure boundedness. A similar argument for the ReLU function
appears in (Goel et al., 2017, Lemma 2.12).

Lemma 42 There exists a constant c′ > 0 such that for any ϕ ∈ Lip and any ε > 0, there exists a
univariate polynomial p(t) with deg(p) ≤ c′/ε such that for t ∈ [−1, 1],
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• |ϕ(t)− p(t)| ≤ ε .

• p(t) ∈ [−1, 1].

Proof By Jackson’s theorem (Cheney, 1966), there exist a polynomial p(t) so that |ϕ(t)− p(t)| ≤
ε/2 for t ∈ [−1, 1] where deg(p) ≤ O(1/ϵ). Since |ϕ(t)| ≤ 1, |p(t)| ≤ 1 + ε/2. Now let
pϕ(t) = p(t)/(1 + ε/2) so that |pϕ(t)| ≤ 1. We then bound

|pϕ(t)− ϕ(t)| =
1

1 + ε/2
|(p(t)− (1 + ε/2)ϕ(t))|

≤ 1

1 + ε/2
(|p(t)− ϕ(t)|+ ε/2|ϕ(t)|)

≤ ε

1 + ε/2
≤ ε.

Combining Lemmas 42 and 39, we have the following corollary.

Corollary 43 For any ϕ ∈ Lip, and ε > 0, let p be as in Lemma 42. For a ∈ [−1, 1]k, let
pa(v) = p(a · v). Then pa ∈ Γ(d) for d = O(1/ε) and

•
∣∣∣pa(v)− ϕ(a · v)∣∣∣ ≤ ε, for every v ∈ ∆k.

• ∥pa∥Γ(d) ≤ c1max(1, ∥a∥2)c2/ε.

We now complete the proof of Theorem 38.
Proof [Proof of Theorem 38] We claim that if psCEm(D) ≥ α, then CE(BΓ(d)(r))

k(D) ≥ α/2 for

some r = mO(1/α). To see this, take ψ ∈ pLipk so that

E
D
[⟨y∗ − v, ψ(v)⟩ ≥ α.

For every i = 1, . . . , k, there exists ai ∈ [−1, 1]k and ϕ ∈ Lip such that ψ(i)(v) = ϕ(i)(⟨ai,v⟩) for
i ∈ [k] where ∥ai∥2 ≤

√
m. By Corollary 43, there exists p(i) ∈ Γ(d) where d = O(1/α) such that∥∥∥ψi(v)− p(i)(v)

∥∥∥
∞
≤ α/4,∥∥∥p(i)∥∥∥

Γ(d)
≤ (c1max(1, ∥ai∥2))

c2/α ≤ (c1
√
m)c2/α.

Hence p(i) ∈ BΓ(d)(r) for each i for r = mO(1/α).
Define p(v) = (p(1)(v), . . . , p(k)(v)) ∈ Rk. By the triangle inequality∣∣∣E

D
[⟨y∗ − v, p(v)⟩ −E

D
[⟨y∗ − v, ψ(v)⟩]

∣∣∣ = ∣∣∣E
D
[⟨y∗ − v, p(v)− ψ(v)⟩]

∣∣∣
≤ E
D
[|⟨y∗ − v, p(v)− ψ(v)⟩|]

≤ E
D
[∥y∗ − v∥1 ∥p(v)− ψ(v)∥∞]

≤ 2 · α
4
≤ α

2
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where we use ∥y∗ − v∥1 ≤ 2. As a result we have

E
D
[⟨y∗ − v, p(v)⟩] ≥ E

D
[⟨y∗ − v, ψ(v)⟩]− α/2 ≥ α− α/2 = α/2.

We now apply Lemma 35 with the weight functions (BΓ(d)(r))k where d = O(1/α), r =

mO(1/α) to get an (α/2,Ω(α3/2/mc/α))-auditing algorithm.

Auditing for Sigmoids. We show additionally that the exponential dependence on 1/α in Theo-
rem 38 can be improved if we audit only for sigmoid functions. Formally we use the tanh function
rather then the sigmoid, since we want the range to be [−1, 1] in order to approximate the sign
function. Nevertheless, we refer to the family as the family of sigmoid functions.

Definition 44 For L ≥ 1, define ΣL = {g : R→ [−1, 1]} to be the family of functions of the form

g(v) = tanh(L⟨a,v⟩+ b) for a ∈ [−1, 1]k, b ∈ R.

In Theorem 46 below we show an efficient auditor for Σk
L whose running time is polynomial in

1/α for every fixed k and L.
Observe that ΣL increase monotonically with L, since for L′ < L, L′⟨a,v⟩ = L⟨a′, v⟩ where

a′ = L′a/L ∈ [−1, 1]k. The problem of agnostically learning ΣL over ∆k is given a distribution
U on ∆k × {±1}, find g ∈ ΣL that maximizes EU [g(v)z]. The problem of agnostically learning
sigmoids over the unit sphere (rather than ∆k) was considered in the influential work of (Shalev-
Shwartz et al., 2011). They work with the objective function ming∈ΣL

E |z − g(v)|, but this is seen
to be equivalent to maxg∈ΣL

[E[g(v)z] when z ∈ {−1, 1}. A more substantial difference is that they
work in the ℓ2 bounded setting where ∥v∥2 ≤ 1, ∥a∥2 ≤ 1, whereas we work with ℓ1/ℓ∞-bounded
setting where ∥v∥1 ≤ 1 and ∥a∥∞ ≤ 1. Thus we cannot directly use their results, although our
techniques are influenced by them.

Our algorithm will use the following results about univariate approximations to the tanh func-
tion was proved in the work of (Shalev-Shwartz et al., 2011), with subsequent proofs given by (Livni
et al., 2014; Goel et al., 2020). We use the following version from (Goel et al., 2020).

Lemma 45 (Goel et al., 2020) For ε ∈ (0, 1/2), L ≥ 1 and b ∈ R, there exists a univariate
polynomial p(t) with deg(p) ≤ O(L log(L/ε)) so that for t ∈ [−1, 1]

• |tanh(Lt+ b)− p(t)| ≤ ε .

• p(t) ∈ [−1, 1].

Following the same proof outline as Theorem 38 gives the following result.

Theorem 46 For anyα ∈ (0, 1/2), L > 1, there is an efficient (α, β)-auditor for (ΣL)
k calibration

for
β =

α

kO(L log(L/α))

which has time and sample complexity kO(L log(L/α)) and success probability at least 1− 2−k.

The same techniques also yield an algorithm for agnostically learning ΣL under any distribution
U on ∆k × [−1, 1] with similar parameters.
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Appendix G. Computational Lower Bound for Projected Smooth Calibration

The sample and time complexity of our auditing algorithm for projected smooth calibration in Ap-
pendix F is kO(1/α) (when setting m = k). In this section, we show that an improvement to
poly(k, 1/α) (or just to kO(log0.99(1/α))) would violate standard complexity-theoretic assumptions:

Theorem 47 Under a standard hardness assumption on refuting t-XorSat (Theorem 51), for any
C > 0, ε > 0, there is no algorithm solving (α, 1/kC) auditing for k-projected smooth calibration
for every sufficiently large k and every α ∈ (0, 1/3) with success probability at least 3/4 and
running time kO((log(1/α))1−ε).

We use the following connection between auditing projected smooth calibration and auditing for
sigmoids Σk

L.

Lemma 48 For α, β ∈ (0, 1) and L > 1, any (α/L, β)-auditing algorithm for Lipk is an (α, β)-
auditing algorithm for Σk

L.

Proof For a classW of functions h : ∆k → [−1, 1]k, recall the following notion in our definition
of auditing:

CEW(D) = sup
w∈W

∣∣∣∣ E
(v,y)∼D

[⟨y − v, w(v)⟩]
∣∣∣∣ .

It suffices to show that for any distribution D over ∆k × Ek,

CELipk(U) ≥
1

L
CEΣk

L
(U). (9)

Consider any function g ∈ ΣL. By definition, there exist a ∈ [−1, 1]k and b ∈ R such that
g(v) = tanh(L⟨a,v⟩+ b) for every v ∈ ∆k. It is easy to verify that tanh is 1-Lipschitz, and thus
for any v1,v2 ∈ ∆k,

|g(v1)− g(v2)| ≤ L|⟨a,v1⟩ − ⟨a,v2⟩| ≤ L∥v1 − v2∥1.

Therefore, the function g/L belongs to Lip, confirming (9).

Theorem 49 Under a standard hardness assumption on refuting t-XorSat (Theorem 51), for some
fixed α > 0, for any C > 0, ε > 0, c ∈ (0, 1), there is no algorithm that solves (α, 1/kC) auditor
for Σk

L for every sufficiently large k ∈ Z>0 and L := exp(logc k) with success probability at least
3/4 and running time k(logL)

1−ε
.

Proof [Proof of Theorem 47] Let α0 denote the fixed constant α in Theorem 49. Theorem 47 follows
immediately by combining Theorem 49 and Theorem 48, where we choose α in Theorem 47 to be
α0/L.
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G.1. Projected Smooth Calibration and Sigmoids

Now we prove Theorem 49. Our reduction from auditing to agnostic learning lets us focus on the
complexity of agnostic learning ΣL to understand auditing with weight functions Σk

L/3. This is
formally stated below.

Lemma 50 Given any (2α/3, 2β/3) auditor for Σk
L/3, we can construct an (α, β) weak agnostic

learner for ΣL over ∆k with the same sample complexity, time complexity, and failure probability
parameter.

Proof For g ∈ ΣL/3, we claim there exists g′ ∈ ΣL such that g′(lift(v)) = g(v). Indeed since
lift(v) = v/3 + e1/3 + e2/3,

tanh(L⟨w,v⟩/3 + b) = tanh(L⟨w, 3lift(v)⟩/3 + b− Lw(1)/3− Lw(2)/3)

= tanh(L⟨w, lift(v)⟩+ b′) ∈ ΣL

We now apply Theorem 25 to get the stated claim.

Our lower bound for agnostically learning sigmoids is obtained by tailoring Daniely’s (Daniely,
2016) reduction from refuting random XorSat to the ℓ∞/ℓ1 bounded setting.

An instance of t-XorSat consists of m clauses on n variables {z1, . . . , zn} each taking values
in {±1}. Each clause consists of exactly t literals which might be variables or their negations, we
assume that xi and−xi do not occur in the same clause. Thus each clause c can be arithmetized as a
vector in {0, 1}2n of weight exactly t, interpreted as a subset of literals. We will let C(t) ⊂ {0, 1}2n
denote the set of valid clauses. Similarly, assignments to z can be (redundantly) arithmetized as
vectors in Z ⊆ {±1}2n where |Z| = 2n. Given a clause ci ∈ C and z ∈ Z, ci · z ∈ {−t, . . . , t}
equals the sum of literals in the clause ci. An instance of t-XorSat is given by I = {(ci, bi)}mi=1

where ci ∈ C(t) and bi ∈ {±1}. For a clause c ∈ Ct, let Xorc(z) =
∏

i∈c zi. For an instance I and
z ∈ Z, we define

val(z, I) =
|i ∈ [m] : Xorci(z) = bi|

m

and val(I) = maxz∈Z val(z, I) to be the maximum fraction of satisfiable clauses.
A random instance of t-XorSat is one where ci ← C and bi ← {±1} are drawn uniformly

and independently at random. We let R denote the distribution on instances that this defines. An
algorithm A which maps t-XorSat instances to {0, 1} successfully refutes random t-XorSat if

Pr[A(I) = 1] ≥ 3

4
if val(I) ≥ 1− η

Pr[A(I) = 0]] ≥ 3

4
with probability 1− on(1) over I ∼ R.

We are interested in the asymptotics in both t and n. The best known algorithms for refutation
require m = Ω(nt/2) and it is conjectured that there are no algorithms with running time no(t).

Assumption 51 (Random t-XOR Assumption (Daniely, 2016)) There exist constants η ∈ (0, 1/2)
and γ > 0 such that for any s > 0, there is no poly(m)-time algorithm that refutes random t-XorSat
with m clauses for any sufficiently large n ∈ Z>0, m = ⌊nγt⌋, and t = ⌊logs(n)⌋.
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Theorem 52 Under Theorem 51, for some fixed α > 0, any C > 0, c ∈ (0, 1), and ε > 0, there
is no algorithm that solves (α, k−C)-weak agnostic learning for ΣL over ∆k for every sufficiently
large k ∈ Z>0 and L := exp(logc k) with success probability at least 3/4 and running time
kO(log1−ε L).

Proof [Proof of Theorem 49] Theorem 49 follows immediately by combining Theorem 52 and
Theorem 50.

In preparation for proving Theorem 52, we prove a few preliminary results. Given a set of
clauses c = {ci}i∈[m], define the function:

q(c) = max
z∈Z

1

m

∑
i∈[m]

(ci · z)2

The following lemma is implicit in (Daniely, 2016)

Lemma 53 There exists a constant a1 such that

Pr
c←Cm

[q(c) ≤ a1t log(t)] ≥ 1− om(1)

where the om(1) is exponentially small in m.
Proof Fix an assignment z ∈ Z. We view choosing ci ← C and first choosing a subset Ti ⊆ [n] of
variables, and then choosing their polarities pi ∈ {±1}t.

For every z and T , by a Chernoff bound (over the choice of p), there exists a constant a2 so that

Prpi←{±1}t [|ci · z| ≥ a2
√
t log(1/δ)] ≤ δ.

By a Chernoff bound over the choice of Ti (Motwani and Raghavan, 1995, Theorem 4.1), we have
that with probability exp(−a3δm) , the condition

|ci · z| ≤ a2
√
t log(1/δ)

holds for m(1− 2δ) clauses. For such a z, we can bound

1

m

∑
i∈[m]

((ci · z)2 − t) ≤
1

m

m∑
i=1

|ci · z|2

≤ (1− 2δ)a2t log(1/δ) + 2δt2 ≤ a1t log(t)

where we choose δ = log(t)/t.
By a union bound over all 2n choices of z, this holds for every z, and hence for q(c) with

probability 2n exp(−a2δm), which is exponentially small once m ≥ a3nt.

The next lemma is also proved in (Daniely, 2016). We use a different technique based on semi-
definite programming and Grothendieck’s inequality, which is more along the lines of the reduction
in Fiege’s work (Feige, 2002).

Lemma 54 There is an algorithm that accepts all c ∈ Cm such that q(c) ≥ a1t log(t) and rejects
instances such that q(c) ≤ 2a1t log(t).
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Proof We can write

q(c)− t = max
z∈Z

1

m

m∑
i=1

((ci · z)2 − t)

= max
z∈Z

1

m

∑
i∈[m]

∑
j ̸=j′∈ ci

zjzj′

We consider the semi-definite relaxation over vi which are unit vectors in a high-dimensional space
(with the constraint that the vectors assigned to a literal and its negation sum to 0).

q̃(c) = max
∥vj∥22=1

1

m

∑
i∈[m]

∑
j ̸=j′∈ ci

vjvj′

We solve the semi-definite program efficiently (up to small additive error which we will ignore) and
accept instances where

q̃(c) > KG(a1t log(t)− t).

Grothendieck’s inequality implies that the integrality gap of this relaxation is a constant; there
exist KG ∈ [1.5, 2] such that

q(c)− t ≤ q̃(c) ≤ KG(q(c)− t). (10)

For such instances, Equation (10) implies that q(c) > a1t log(t) since

q(c)− t ≥ q̃(c)

KG
> a1t log(t)− t.

For instances that we reject, it holds that

q(c)− t ≤ q̃(c) < KG(a1t log(t)− t)

Since KG ∈ [1.5, 2], we have q(c) ≤ 2a1t log(t).

We refer to instances rejected by the algorithm as pseudorandom. By Markov’s inequality
applied to the definition of q(c), we have the following claim:

Lemma 55 Given pseudorandom c ∈ Cm and z ∈ Z, for every δ > 0, there are at most δm
clauses such that |ci · z| ≥

√
a1t log(t)/δ.

We also have the following lemma which we state without proof

Lemma 56 Every functions g : {−d, . . . , d} → {±1} can be written as a polynomial in x of degree
2d with coefficients bounded by exp(d log(d)).

We now complete the proof of Theorem 52.
Proof Let η ∈ (0, 1/2) be the constant guaranteed to exist by Theorem 51. We define α =
1/4 − η/2 ∈ (0, 1/4). We fix an arbitrary constant ε ∈ (0, 1/3). Throughout the proof, we will
treat η, α, and ε as fixed constants (that can hide in big-O notations). Consider an algorithm A
for (α, k−C)-weak agnostic learning for ΣL over ∆k with running time k(log(L))

1−ε
and success
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probability at least 3/4 for any sufficiently large k and L := exp(logc k) for some c ∈ (0, 1). It
suffices to use A to efficiently refute random t-XorSat with parameter η for any sufficiently large n
and t = ⌊logs(n)⌋ in time no(t), where s = 2c/(1− c+ ε) > 0.

We view the clauses in a t-XorSat problem as a distribution over C ⊆ {0, 1}2n, with the cis
being points and bi their labels. Let d = Θ(

√
(t log t)/α) = Θ(

√
t log t) be such that at most αm

clauses fail to satisfy |ci ·z| ≤ d/2. We consider the low degree feature expansion ofC denotedC⊗d

which contains a monomial
∏

j∈T c
(j)
i for every T ⊆ [2n] of size at most d, so that C⊗d ⊆ {0, 1}k

for

k =

(
2n

≤ d

)
:=

d∑
j=0

(
2n

j

)
. (11)

Since every c ∈ C has weight exactly t, every c⊗d ∈ C⊗d has weightB1 =
(

t
≤d
)
= exp(O(d log(d))).

This lets us write c⊗di = B1vi where vi ∈ ∆k. Thus an instance I which gives a distribution on
(ci, bi) where ci ∈ C bi ∈ {±1} also gives a distribution over (vi, bi) ∈ ∆k × {±1}.

There exists a degree d polynomial

p(t) =

d∑
j=0

αjt
j

such that |αj | = exp(O(d log(d))) and p(ci · z) = Xorci(z) for |ci · z| ≤ d/2. If |ci · z| ≥ d/2 then
p(ci · z) ∈ R. Since ci ∈ {0, 1}n, we can multilinearize the terms of the form (ci · z)j as

(ci · z)j =
∑

T⊆[n],|T |≤j

wj
T

∏
i∈T

ci

for coefficients wj
T = exp(O(j log j)). So we can write

p(ci · z) =
2d∑
j=0

αj(ci · z)j

=

2d∑
j=0

αj

∑
T⊆[n],|T |≤j

wj
T

∏
i∈T

ci

=
∑

T⊆[n],|T |≤2d

∑
j≥|T |

αjw
j
T

∏
i∈T

ci

=
∑

T⊆[n],|T |≤2d

w′T
∏
i∈T

ci

= w′ · c⊗d

for coefficients w′T bounded in absolute value by |w′T | = exp(O(d log d)).
We renormalize w′ to be bounded in [−1, 1]k. We write w′ = wB1 for B1 = maxT |w′T | =

exp(O(d log d). We have

P (ci · z) = w′ · c⊗di = B1

(
t

d

)
w · vi.
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Hence if |ci · z| ≤ d/2, then the quantity above equals Xorci(z) ∈ {±1}, else it takes on values in
R.

By our choice of d = Θ(
√
t log t), we have

log

(
B1

(
t

d

))
= logB1 +O(log(d log t)) = O(d log d) ≤ t1/2+o(1).

By our choice of L := exp(logc k), we have

logL = (log k)c

= (d log n)c+o(1) (by (11))

= dc+o(1)(log n)c+o(1)

= tc/2+o(1)(log n)s(1−c+ε)/2+o(1) (by d = Θ(
√
t log t) and s = 2c/(1− c+ ε))

= tc/2+o(1)t(1−c+ε)/2+o(1) (by t = ⌊logs n⌋)
= t1/2+ε/2+o(1). (12)

Therefore, for sufficiently large n,

L ≥ aB1

(
t

d

)
,

for some constant a so that tanh(a) ≥ 1−α, where we use our choice of constant α := 1/4−η/2 >
0.

Consider the function g(v) = tanh(L′w ·v) ∈ ΣL. We can find a′ ≥ a such that L = a′B1

(
t
d

)
.

We have for each i ∈ [m],

g(vi) = tanh(Lw · vi)

= tanh

(
a′B1w ·

(
t

≤ d

)
vi

)
= tanh(a′w′ · c⊗di )

= tanh(a′p(ci · z)).

Therefore, g(vi) ≥ 1 − α if p(ci · z) = 1, and g(vi) ≤ −1 + α if p(ci · z) = −1. Moreover, it is
clear that g(vi) ∈ [−1, 1] always holds.

Recall our definition α := 1/4 − η/2 > 0. If val(I) ≥ 1 − η, then by taking the function g
derived from z such that val(z, I) ≥ 1− η = 1/2 + 2α, excluding the at most αm clauses that fail
to satisfy |ci · z| ≤ d/2, we get g ∈ ΣL such that

1

m

m∑
i=1

g(vi)bi ≥ (1/2 + α)× (1− α) + (1/2− α)× (−1) ≥ α.

Thus based on the methodology of (Daniely et al., 2014) (see e.g. Theorem 2.1 in (Daniely,
2016)), we can apply our weak agnostic learning algorithm A to efficiently distinguish the case
with val(I) ≥ 1 − η and the case with uniformly random clauses with success probability at least
3/4, solving the t-XorSat refutation problem.
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As long as the running time of algorithmA is bounded by klog(L)
1−ε

for some ε > 0, the running
time for t-XorSat refutation is bounded by

kO(log(L)1−ε) ≤ nO(d log(L)1−ε).

By (12), we have

d log(L)1−ε = t1/2+o(1)t(1−ε)(1/2+ε/2+o(1)) = t1−ε
2/2+o(1).

Thus the running time for t-XorSat refutation is bounded by no(t), as desired.

Appendix H. Proofs from Section E

H.1. Proof of Theorem 32

We break the proof in a sequence of lemmas, starting with simplifying the objective function.

Lemma 57 Let w0 = ED[zφv]. Then w0 ∈ BΓ(s) and for any w ∈ Γ we have

E
(v,z)∼D

[w(v)z] = ⟨w,w0⟩Γ. (13)

Proof For any w ∈ Γ we can write the correlation objective as

E
(v,z)∼D

[w(v)z] = E[⟨w,φv⟩Γz] = ⟨w,E[zφv]⟩Γ = ⟨w,w0⟩Γ.

To bound its norm, observe that

∥w0∥Γ = ∥E
D
[zφv]∥Γ ≤ max

v∈∆k,z∈{±1}
∥zφv∥Γ ≤ s.

Next we show that we can approximate w0 uniformly from samples by the function

w̃0 =
1

n

n∑
i=1

ziφvi .

Lemma 58 For any δ ∈ (0, 1/2), for some n0 = O(r2s2α−2 log(1/δ)), for any n ≥ n0 and any
(v1, z1), . . . , (vn, zn) drawn i.i.d. from D, with probability at least 1− δ,

∥w̃0 − w0∥Γ ≤
α

3r
. (14)

The proof uses McDiarmid’s inequality (see e.g. Lemma 26.4 of (Shalev-Shwartz and Ben-David,
2014)).
Proof We can write

∥w̃0 − w0∥Γ =

∥∥∥∥∥
n∑

i=1

ziφvi

n
− w0

∥∥∥∥∥
Γ

=
1

n

∥∥∥∥∥
n∑

i=1

(ziφvi − w0)

∥∥∥∥∥
Γ
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Since each term ziφvi − w0 has expectation 0, and the terms are independent, for i ̸= j

E[⟨ziφvi − w0, zjφvj − w0⟩Γ] = 0

Hence we can bound

E[∥w̃0 − w0∥2Γ] =
1

n2
E

 n∑
i=1

∥ziφvi − w0∥2Γ +
∑
i ̸=j

⟨ziφvi − w0, zjφvj − w0⟩


=

1

n
E[∥z1φv1 − w0∥2Γ]

≤ 4s2/n ≤ (α/(6r))2.

by our choice of n. By convexity,

E[∥w̃0 − w0∥Γ] ≤
α

6r
. (15)

Note that each i.i.d. term ziφvi in the definition of w̃0 has norm ∥ziφvi∥Γ ≤ s, so by McDiarmid’s
inequality, with probability at least 1− δ,∣∣ ∥w̃0 − w0∥Γ −E[∥w̃0 − w0∥Γ]

∣∣ ≤ α/(6r). (16)

Combining this with Equation (15) gives the desired claim.

We need the following simple helper lemma to finish proving Theorem 32:

Lemma 59 Let w, w̃ be elements of a Hilbert space Γ. If w̃ ̸= 0, define w̄ = w̃/∥w̃∥Γ. If w̃ = 0,
define w̄ to be an arbitrary element of BΓ(1). Then

⟨w, w̄⟩ ≥ ∥w̃∥Γ − ∥w − w̃∥Γ ≥ ∥w∥Γ − 2∥w − w̃∥Γ.

Proof We have

⟨w, w̄⟩ ≥ ⟨w̃, w̄⟩ − ∥w − w̃∥Γ = ∥w̃∥Γ − ∥w − w̃∥Γ ≥ ∥w∥Γ − 2∥w − w̃∥Γ.

Proof [Proof of Theorem 32] In the weak agnostic learning task, we assume that there exists w ∈
BΓ(r) so that

E
(v,z)∼D

[w(v)z] ≥ α.

Under this assumption, Theorem 57 tells us that ⟨w0, w⟩Γ ≥ α. Since w ∈ BΓ(r), we have
∥w∥Γ ≤ r, and by the Cauchy-Schwarz inequality, r ∥w0∥Γ ≥ ∥w0∥Γ∥w∥Γ ≥ ⟨w0, w⟩Γ. Therefore,
we can assume that ∥w0∥Γ ≥ α/r in the weak agnostic learning task.

Theorem 58 ensures that (14) holds with probability at least 1 − δ. As long as (14) holds, by
Theorem 59 we have 〈

w0,
w̃0

∥w̃0∥Γ

〉
≥ ∥w0∥Γ − 2∥w0 − w̃∥Γ ≥

α

3r
. (17)
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The output w2 of Algorithm 1 can be expressed as

w2 =
w̃0

s ∥w̃0∥Γ
. (18)

Combining (17) and (18), we know that with probability at least 1− δ,

⟨w0, w2⟩ ≥
α

3rs
.

By Theorem 57, the inequality above implies the weak learning guarantee, namely, E[w2(v)z] ≥
α/(3rs). Finally, it is clear that ∥w2∥Γ ≤ 1/s, so w2 ∈ BΓ(1/s), as desired.

H.2. Proof of Theorem 33

Consider a distribution D of (v,y) ∈ ∆k × Ek, and define z := y − v. Define w(j)
0 := E[z(j)φv],

where z(j) is the j-th coordinate of z. For n i.i.d. data points (v1,y1), . . . , (vn,yn), define zi :=

yi − vi. Define w̃(j)
0 := 1

n

∑n
i=1 z

(j)
i φvi .

Lemma 60 When n ≥ Ckr2s2ε−2 log(1/δ), with probability at least 1− δ,

k∑
j=1

∥w̃(j)
0 − w

(j)
0 ∥Γ ≤ α/(3r). (19)

Proof We first show that
k∑

j=1

E ∥w̃(j)
0 − w

(j)
0 ∥Γ ≤ α/(6r).

For every j,

E[∥w̃(j)
0 − w

(j)
0 ∥

2
Γ] = E

∥∥∥∥∥ 1n
n∑

i=1

z
(j)
i φvi − w

(j)
0

∥∥∥∥∥
2

Γ


=

1

n2

n∑
i=1

E ∥z(j)i φvi − w
(j)
0 ∥

2
Γ +

1

n2

∑
i ̸=i′

⟨z(j)i φvi − w
(j)
0 , z

(j)
i′ φvi′ − w

(j)
0 ⟩

=
1

n2

n∑
i=1

E ∥z(j)i φvi − w
(j)
0 ∥

2
Γ

=
1

n
E[∥z(j)1 φv1 − w

(j)
0 ∥

2
Γ]

≤ 1

n
E[∥z(j)1 φv1∥2Γ]

≤ s2

n
E[(z

(j)
1 )2]

By Cauchy-Schwarz,

k∑
j=1

√
E[(z

(j)
1 )2] ≤

√√√√k
k∑

j=1

E[(z
(j)
1 )2] ≤

√√√√k
k∑

j=1

E |z(j)1 | ≤
√
2k.
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Therefore,

k∑
j=1

E ∥w̃(j)
0 − w

(j)
0 ∥Γ ≤

k∑
j=1

√
E[∥w̃(j)

0 − w
(j)
0 ∥2Γ] ≤

s
√
2k√
n
≤ α/(6r).

Finally, we apply McDiarmid’s inequality to the following function of (z1,v1), . . . , (zn,vn):

k∑
j=1

∥w̃(j)
0 − w

(j)
0 ∥Γ =

k∑
j=1

∥∥∥∥∥ 1n
n∑

i=1

z
(j)
i φvi − w

(j)
0

∥∥∥∥∥
Γ

and get that with probability at least 1− δ,

k∑
j=1

∥w̃(j)
0 − w

(j)
0 ∥Γ ≤

k∑
j=1

E ∥w̃(j)
0 − w

(j)
0 ∥Γ + α/(6r) ≤ α/(3r).

Proof [Proof of Theorem 33] In the auditing task, we assume that there exists w ∈ BΓ(r)
k such

that
E[⟨y − v, w(v)⟩] ≥ α.

Using our definition of z := y − v and w(ℓ)
0 := E[z(ℓ)φv], by Theorem 57 we have

k∑
ℓ=1

∥w(ℓ)
0 ∥Γ ≥

1

r

k∑
ℓ=1

⟨w(ℓ)
0 , w(ℓ)⟩Γ =

1

r

k∑
ℓ=1

E[z(j)w(j)(v)] =
1

r
E[⟨y − v, w(v)⟩] ≥ α/r.

Theorem 60 ensures that (19) holds with probability at least 1 − δ. Define w̄0 := w̃0/∥w̃0∥Γ if
w̃0 ̸= 0, and define w̄0 := 0 if w̃0 = 0. As long as (19) holds, by Theorem 59,

k∑
ℓ=1

⟨w(ℓ)
0 , w̄

(ℓ)
0 ⟩ ≥

k∑
ℓ=1

∥w(ℓ)
0 ∥Γ − 2

k∑
ℓ=1

∥w̃(ℓ)
0 − w

(ℓ)
0 ∥Γ ≥ α/(3r).

In Algorithm 2, we have w(ℓ)
2 = w̄

(ℓ)
0 /s, and thus the inequality above implies

k∑
ℓ=1

⟨w(ℓ)
0 , w

(ℓ)
2 ⟩ ≥ α/(3rs).

Therefore by Theorem 57, with probability at least 1− δ,

E[⟨y − v, w2(v)⟩] =
k∑

ℓ=1

E[z(ℓ)w
(ℓ)
2 (v)] =

k∑
ℓ=1

⟨w(ℓ)
0 , w

(ℓ)
2 ⟩ ≥ α/(3rs).

This proves that the output w2 of Algorithm 2 satisfies the requirement of the auditing task. Finally,
it is clear that each w(ℓ)

2 has norm ∥w(ℓ)
2 ∥Γ ≤ 1/s, so w2 ∈ BΓ(1/s)

k, as desired.
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