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Abstract

Given many copies of an unknown quantum state ρ, we consider the task of learning a
classical description of its principal eigenstate. Namely, assuming that ρ has an eigenstate
|ϕ⟩ with (unknown) eigenvalue λ > 1/2, the goal is to learn a (classical shadows style)
classical description of |ϕ⟩ which can later be used to estimate expectation values ⟨ϕ|O|ϕ⟩
for any O in some class of observables. We consider the sample-complexity setting in which
generating a copy of ρ is expensive, but joint measurements on many copies of the state are
possible. We present a protocol for this task scaling with the principal eigenvalue λ and
show that it is optimal within a space of natural approaches, e.g., applying quantum state
purification followed by a single-copy classical shadows scheme. Furthermore, when λ is
sufficiently close to 1, the performance of our algorithm is optimal—matching the sample
complexity for pure state classical shadows.

Keywords: List of keywords

1. Introduction

A key principle of algorithm design is to never do more work than is needed for the task at
hand. Consider the problem of identifying some unknown quantum state ρ by measuring
several copies of it. It has long been known that obtaining a complete description of such a
state (say, by producing an estimate ρ̂ close in trace distance) requires a number of copies
which grows linearly (or more) with the dimension of the Hilbert space. Such a strong
requirement on the number of copies makes it nearly impossible to experimentally realize
such tomographic protocols on all but the smallest quantum systems.

Fortunately, a complete description of ρ is unnecessary for many applications, allowing
for dramatically simpler estimation protocols. Suppose, for example, you wish to estimate
the fidelity of a state ρ produced by an experimental quantum device with some target pure
state, say, to benchmark your device. In this case, the number of copies you must prepare
scales only with your desired precision, not with the dimension of the ambient space, making
the entire procedure much more practical.

The fidelity estimation protocol is a special case of a recent and enormously popular
framework for predicting properties of unknown quantum states called classical shadows
introduced by Huang et al. (2020). In this setting, many copies of the unknown state ρ are
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measured and condensed into a classical bit string. This classical description can later be
used to estimate Tr(Oρ) for any O in some class of Hermitian observables with very high
probability. The success of the classical shadows framework (Cerezo et al., 2021; Bharti
et al., 2022) motivates a deeper consideration into how it can be further improved to model
practical quantum learning tasks as well as how it can be made more sample efficient.

In many practical scenarios it is not properties of the state ρ that one wants to learn,
but rather those of its top eigenstate. A natural setting where principal eigenstates become
the focal object is when one only has access to noisy copies of a target state |ϕ⟩. In the
case of global depolarizing noise acting on a d-dimensional Hilbert space, the noisy state
is ρ = (1 − η)|ϕ⟩⟨ϕ| + η(I − |ϕ⟩⟨ϕ|)/(d − 1). For η < 1/2, the principal eigenstate remains
|ϕ⟩. Hence, in the case of global depolarizing noise, the target state can be recovered from
the principal eigenstate. In fact, this remains true for other practical noise models as well
(Koczor, 2021a; Huggins et al., 2021). Furthermore, settings where one only has access to
noisy copies are natural. For example, consider a scenario where copies of a noisy quantum
state ρ are prepared by a quantum sensor operating in non-ideal environmental conditions
and fed into a powerful quantum processor to extract data. Indeed Ref. Yamamoto et al.
(2022) considers such a scenario in the setting of unknown fluctuating noise. Other proposed
applications in related work include noise suppression for noisy intermediate-scale quantum
computation Koczor (2021b); Huggins et al. (2021); Czarnik et al. (2021); Seif et al. (2023);
Zhou and Liu (2022).

In this paper, we ask what happens when you combine classical shadows with principal
eigenstate estimation. Namely, what is the complexity of estimating observable expectation
values with respect to the dominant eigenvector of ρ rather than ρ itself? To this end, we
introduce the following “principal eigenstate classical shadows” task:

Principal eigenstate classical shadows

Learning
Input: Copies of ρ = (1 − η)ϕ+ ησ with principal

eigenstate ϕ = |ϕ⟩⟨ϕ|, η < 1/2, and Tr(ϕσ) = 0

Output: Classical description ϕ̂

Estimation
Input: Hermitian observable O with ∥O∥∞ ≤ 1 and

classical description ϕ̂
Output: Compute E such that |⟨ϕ|O|ϕ⟩ − E| ≤ ϵ

In this work, we focus on the goal of solving the principal eigenstate classical shadows
problem with the fewest copies of the input state ρ. That is, we want to determine the
sample complexity of this task since producing a copy of ρ is usually considered to be a
resource-intensive task.

One of the key parameters of this task is η—the principal deviation—which determines
how far ρ is from its principal eigenstate. Notice that it is this deviation that prevents
traditional classical shadow approaches from achieving a high degree of accuracy on this
task. That is, classical shadows protocols for the state ρ can only be accurate up to additive
error η on the state |ϕ⟩ since |Tr(Oρ) − ⟨ϕ|O|ϕ⟩| = η for O = |ϕ⟩⟨ϕ|.

Nevertheless, even if you were satisfied with an estimate to accuracy η—a setting in
which you could theoretically still use traditional classical shadows approaches—there is
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still reason to suspect that more sample-efficient algorithms exist. Intuitively, traditional
shadow estimation algorithms do not take advantage of the purity of the underlying state
|ϕ⟩ that we wish to measure. Indeed, in the noiseless setting (i.e., η = 0), any shadow
algorithm which does not take advantage of the purity of the underlying state is provably
suboptimal (Grier et al., 2022). Furthermore, the sample complexity may improve by using
joint measurements—i.e., measurements on multiple copies of ρ simultaneously (i.e., ρ⊗n

for some n) using a single entangling positive operator-valued measure (POVM).

We will show that this intuition is correct. That is, we give algorithms for the principal
eigenstate classical shadows problem that leverage these insights to be significantly more
sample-efficient than classical shadow protocols for generic states. One might quite natu-
rally wonder if our algorithm is simply the combination of other powerful subroutines for
processing quantum states, of which many are possibly relevant (Cirac et al., 1999; Keyl
and Werner, 2001; Fu, 2016; Childs et al., 2023; O’Donnell and Wright, 2016). For example,
it is true that we could design an algorithm for principal eigenstate classical shadows by
first de-noising (sometimes referred to as “purifying”) the state ρ into the state |ϕ⟩ (Cirac
et al., 1999; Keyl and Werner, 2001; Lloyd et al., 2014; Fu, 2016; Childs et al., 2023), and
then applying a classical shadows algorithm (Huang et al., 2020). We show that the sample
complexity of this approach is worse than the robust algorithm of this paper which solves
the principal eigenstate shadows problem directly. In other words, even though both of the
subroutines mentioned above are optimal for their respective subtasks, they are neverthe-
less doing more work than needed when combined to perform observable estimation on the
principal eigenstate.

1.1. Main result

Our classical shadows protocol is actually a suite of algorithms that depend on the principal
deviation η of the underlying state ρ = (1−η)ϕ+ησ. We do not require a priori knowledge
of η. We will see that there are three η regimes and as η decreases from 1/2 to zero,
sample complexity also decreases reaching a minimum at the optimal sample complexity
for learning pure states (Grier et al., 2022). Surprisingly, this occurs before η becomes zero.
These sample complexities are given in the following theorem:

Theorem 1 There exists a protocol (comprised of separate learning and estimation algo-
rithms) for solving the principal eigenstate classical shadows task with high probability that
has three regimes of sample complexity determined by the deviation η shown below

O(s∗) O(Bη+1
ϵ2 ) O(Bη

ϵ2 + η
ϵ5/2

)

0 1/s∗
√
ϵ 1/2

η

where B ≥ Tr(O2) is the squared-Frobenius norm of observable O and s∗ :=
√
B
ϵ + 1

ϵ2
is

the optimal sample complexity for classical shadows on pure states.1 Furthermore, in all

1. Technically, solely in the η ∈ (
√
ϵ, 1/2) regime, we invoke a purification procedure of Fu (2016); Childs

et al. (2023) that only works on depolarized states, i.e., ρ = (1−η)ϕ+ησ for σ = (I−ϕ)/(d−1). However,
based on ongoing/unpublished work, we claim that this purification procedure can be generalized to allow
for arbitrary σ.
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regimes, the protocol incurs a O(logM) factor in sample complexity to approximate M
observable expectation values (all to ϵ accuracy) with high probability.

These bounds may at first seem somewhat arbitrary, so let’s spend a few moments to put
them in context. First, it is worth noting that the optimal sample complexity in the zero-
deviation setting is Θ̃(ϵ−1

√
B + ϵ−2) as determined by Grier et al. (2022). In other words,

in the first regime where the deviation is quite small (i.e., η ≤ 1/s∗), the sample complexity
is identical to that of the optimal zero-deviation measurement protocol. Moreover, our
measurement protocol in this regime is actually the same measurement procedure as used
for zero deviation. However, this is not to say that the analysis of this protocol is trivial or
in any sense a black box reduction to the pure case. In fact, the bulk of the technical work
in this paper is spent addressing this setting.

The sample complexities in the remaining two settings are shown in some sense by a
reduction to the first setting. In the second regime, we measure independent blocks of
the unknown state, and post-process these measurement results with a simple averaging
procedure. In the third regime, when the noise is the most extreme, we must first pre-
process the input by an explicit purification protocol that uses multiple copies of ρ to distill
a new quantum state with smaller deviation. We then proceed by invoking the procedure
above. For this procedure, we determine the optimal choice of the number of copies to be
jointly measured, averaged, and purified. We also present an estimation protocol for η that
can be used to achieve an overall sample complexity which, up to big-O notation, matches
that of our procedure when using an optimal choice of parameters and a known η.

Finally, we note that we can always employ the standard median-of-means trick (Lugosi
and Mendelson, 2019; Lerasle, 2019; Huang et al., 2020) to amplify the success probability
of obtaining an accurate estimate. In this way, to estimate M distinct observables {Oi |
Tr(O2

i ) ≤ B}Mi=1, we incur a factor of log(M) in the sample complexity, as is typical with
shadow estimation protocols (Huang et al., 2020).

1.2. Technical challenges

One of the central tools used in tomographic protocols for pure states (Massar and Popescu,
1995; Wright, 2015; Grier et al., 2022) is a continuous POVM proportional to {|ψ⟩⟨ψ|⊗n}ψ
that we call the standard symmetric joint measurement (see Definition 5). Intuitively, this
POVM is more likely to output a measurement outcome ψ the closer |ψ⟩ is to the measured
unknown state ρ. Not only is this measurement optimal for pure state tomography (Massar
and Popescu, 1995), but it is also surprisingly easy to analyze in many cases due to its
tight connection with representation theory and the symmetric subspace (Harrow, 2013).
Indeed, it is this connection that allows for a simple analysis of the original classical protocol
(Huang et al., 2020; Mele, 2023).

The main conceptual bottleneck for our analysis is that the unknown state ρ may have
small overlap with the symmetric subspace, rendering the standard symmetric joint mea-
surement ineffective. Of course, there are more powerful representation-theoretic tools for
learning mixed states, but these tend to incur a factor of the Hilbert space dimension,
which is prohibitively large for many applications of classical shadows (Haah et al., 2016;
O’Donnell and Wright, 2016). That said, when the deviation η is small, ρ will still be close
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enough to the symmetric subspace that the standard symmetric joint measurement will suc-
ceed. The major technical contribution of this paper is showing that this measurement also
serves as a sample-efficient predictor for the principal eigenstate when used in the context
of classical shadows.

Theorem 2 Let ρ = (1−η)ϕ+ησ be an instance of principal eigenstate classical shadows.
The standard joint measurement on n copies of state ρ succeeds with probability at least
(1 − η)n−1. Conditioned on success of the measurement, there is an estimator ϕ̂ such that

E[Tr(Oϕ̂)] = Tr(Oϕ) +
ηTr(O(σ − ϕ))

n(1 − η)
+ O

(
η2/n

)
Var[Tr(Oϕ̂)] =

Tr(O2)

n2
+ O

(
η2 + 1/n

)
for observables O with ∥O∥∞ ≤ 1.

Notice that given Theorem 2, one can easily derive the sample complexity of the η ≤ 1/s∗

regime given in Theorem 1 by invoking Chebyshev’s inequality. Recall that the next two
regimes are obtained by averaging, purification, or a combination thereof. We describe
those procedures in Section 4. We give a detailed proof outline for Theorem 2 in Section 3,
with full proofs in the appendix.

1.3. Related Work

The task of approximately preparing the principal eigenstate (a.k.a. purification) has a
long history (Berthiaume et al., 1994; Barenco et al., 1997; Peres, 1999; Werner, 1998;
Cirac et al., 1999; Lloyd et al., 2014; Fu, 2016; Childs et al., 2023). However, this task
is costly achieving an η suppression that scales at most inversely in the number of copies
of ρ (Werner, 1998; Cirac et al., 1999). This task is distinct from our work which aims
to learn a classical description of the principal eigenstate to sufficient accuracy to permit
future estimates of many expectation values.

More recently, focus has shifted from physical to virtual purification schemes. This
more relevant body of previous work (Ekert et al., 2002; Cotler et al., 2019; Koczor,
2021b; Huggins et al., 2021; Czarnik et al., 2021), sometimes referred to as “virtual dis-
tillation”, is one that directly learns an expectation value of a given observable with respect
to ρt := ρt/Tr(ρt) for an unknown state ρ and an integer t. As t becomes large, ρt ap-
proaches the principal eigenstate of ρ connecting these techniques to our work. However,
in contrast to our work, in these protocols, the observable is a part of the measurement
circuit. So, for example, computing expected values for exponentially many observables
would require exponential overhead in sample complexity, whereas our procedure in Theo-
rem 1 requires only polynomial overhead. To be fair, there are certainly advantages to the
virtual distillation setting for practical applications, most notably the fact that the sample
complexity does not depend on properties of the observable such as its Frobenius norm.

Building on the virtual distillation program, Refs. Zhou and Liu (2022); Seif et al.
(2023) consider learning non-linear functions of ρ such as Tr(Oρt); however, like our work,
Refs. Zhou and Liu (2022); Seif et al. (2023) take a classical shadows style approach where
measurements of the copies of ρ can be implemented without knowing the observables of
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interest. Ref. Zhou and Liu (2022) shows that their sample complexities depend on B, the

squared-Frobenius norm of the observable, achieving a sample complexity of O
(
(B+1)t
ϵ2

)
for

the sub-procedure of estimating Tr(Oρt) to additive error ϵ. A straightforward calculation
shows that solving the principal eigenstate classical shadows problem using these techniques
for the estimator Tr(Oρt)/Tr(ρt) results in much higher sample complexities for all regimes
in which B is somewhat large (in particular, when B > η/

√
ϵ). Consequently, our protocol

is better for all regimes which do not rely on purification (i.e., η ≤
√
ϵ). A more involved

calculation shows that our protocol is still preferable in all but a handful of regimes, but
they are harder to characterize (e.g., B = 1, ϵ = η3, and η sufficiently small). We leave a
more thorough comparison of these techniques (including possible ways to combine them)
to future work. We note that Ref. Zhou and Liu (2022) also considers the setting where

O is a k-local observable. There, the sample complexity of estimating Tr(Oρt) is O
(
4kt
ϵ2

)
.

Hence, for k-local observables where B = 4n ≫ 4k, this protocol is preferable in several
parameter regimes of interest.

Another related body of work surrounds classical shadows that are robust to noise in
the measurement process itself (Chen et al., 2021; Koh and Grewal, 2022). In other words,
those procedures work well when given a state that has been prepared with high fidelity, but
are using low-fidelity measurements. Our procedure works well when given a low-fidelity
state, but have measurements that can be performed with high fidelity.

1.4. Open Problems

Our work leaves open several new directions. Perhaps the most interesting is to explore
variations of the principal eigenstate classical shadows problem. How do shadow estimation
algorithms need to change to predict properties of the principal eigenstate, rather than the
state itself? There are many possible variants worthy of consideration: when the class of
observables is local (cf. Huang et al., 2020; Hakoshima et al., 2023); when the measurement
procedure itself is faulty (cf. Chen et al., 2021; Koh and Grewal, 2022); when a low memory
footprint is required (cf. Czarnik et al., 2021; Chen et al., 2022; Hakoshima et al., 2023);
etc.

Another possible direction for future work is to generalize the principal eigenstate clas-
sical shadows problem to the top k eigenstates, rather than just the top eigenstate. When
a complete description of the best rank-k approximator is needed, O(kd/ϵ2) samples are
sufficient by work of O’Donnell and Wright (2016) (where d is the dimension of the Hilbert
space and ϵ is a bound on the trace distance to the optimal rank-k approximation), but
once again, little is known in the classical shadows setting.

Finally, we ask whether or not our algorithm can be improved. When η ≤ 1/s∗ (recall
s∗ :=

√
B/ϵ + 1/ϵ2), our algorithm obtains the same sample complexity as the η = 0

algorithm of Grier et al. (2022), which is provably optimal up to log factors. Therefore,
our algorithm must also be optimal in that regime since we could always add noise in
η = 0 setting if that improved the sample complexity. In the regime where η > 1/s∗,
the optimality of our algorithm is unknown. However, one might suspect that there is the
possibility for improvement since our algorithm does not measure all (or almost all) copies
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of ρ at once, which is distinct from other optimal joint-measurement tomography algorithms
(Haah et al., 2016; O’Donnell and Wright, 2016; Grier et al., 2022).

2. Abbreviated Preliminaries

We start with a condensed version of the preliminaries section in the appendix (cf. Ap-
pendix A). Let Sn denote the symmetric group of permutations on n elements.

Definition 3 (permutation operator) Given a permutation π ∈ Sn (for n ≥ 1), define
a permutation operator Wπ ∈ Cdn×dn such that Wπ|x1⟩ · · · |xn⟩ =

∣∣xπ−1(1)

〉
· · ·
∣∣xπ−1(n)

〉
, and

extend by linearity. That is, Wπ acts on (Cd)⊗n by permuting the qudits, sending the qudit
in position i to position π(i).

Definition 4 (symmetric subspace) Define the symmetric subspace as the subspace of

(Cd)⊗n fixed by the projector Π
(n)
sym = 1

n!

∑
π∈Sn Wπ, where dn =

(
n+d−1
d−1

)
. Additionally, we

have that Π
(n)
sym = dn

∫
ψ(|ψ⟩⟨ψ|)⊗ndψ (e.g., Scott, 2006).

Definition 5 The standard symmetric joint measurement is a measurement on n qudits.
It is defined by the POVM Mn = {Fψ}ψ∪{F⊥} with elements Fψ := dn · |ψ⟩⟨ψ|⊗ndψ, for all
d-dimensional pure states ψ, proportional to the Haar measure dψ, plus a “failure” outcome

F⊥ := I− Π
(n)
sym for non-symmetric states.

The measurement fails if we get outcome F⊥, otherwise we say it succeeds. In what
follows, we will let Ψ be the random variable representing the outcome of measuring ρ⊗n

with Mn where Ψ is 0 when the measurement fails and |ψ⟩⟨ψ| for measurement outcome ψ.
Note that standard techniques (employing t-designs, see Bajnok (1992); Hayashi et al.

(2005); Bondarenko et al. (2013)) can be used to replace this measurement with a POVM
with finitely many outcomes. Subsequently, the finite POVM can be compiled to a projective
measurement Nielsen and Chuang (2010). See Ref. Grier et al. (2022) for more details
on how to realize this measurement. All our sample complexity bounds hold under this
replacement.

3. Outline of main theorem

We now give an outline of the proof of Theorem 2 to elucidate some of the key techniques.
We refer the reader to the appendix for full proofs and details.

Let’s begin with the most straightforward approach to proving Theorem 2—simply give
exact expressions for the first and second moments of the standard symmetric measurement
on ρ⊗n conditioned on a successful2 outcome:

Theorem 6 (Theorem 22 in Appendix B.1)

E[Ψ | success] =
I + nM1

d+ n
, (1)

E[Ψ⊗2 | success] =
2Π

(2)
sym

(d+ n)(d+ n+ 1)

(
(I + nM1)

⊗2 +

(
n

2

)
M2 − n2M⊗2

1

)
, (2)

2. As mentioned before, the fact that our measurement can fail (and output 0) is the consequence of our
state not necessarily being in the symmetric subspace.
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for mixed states M1 ∝ Tr1,...,n−1(Π
(n)
symρ⊗n) and M2 ∝ Tr1,...,n−2(Π

(n)
symρ⊗n).

Here, we are already forced to deviate from previous treatments (Huang et al., 2020;
Grier et al., 2022). Notice that the expected value is not related by scaling and shifting
by the identity to the unknown state ρ. Instead, the measurement’s expectation is related
to M1, the partial trace of the projection of ρ⊗n onto the symmetric subspace. As in
(Grier et al., 2022), the proof of Theorem 6 relies on representation theory and properties
of the symmetric subspace, but is considerably more streamlined by the use of Chiribella’s
theorem.

Ultimately, we will claim that M1 is close to the principal eigenstate ϕ of ρ. So, the
estimator ϕ̂ in Theorem 2 will be ((d+ n)Ψ− I)/n conditioned on successful measurement.
Two key challenges remain: first, we must show that M1 is actually close to the principal
eigenstate; second, we must bound the variance of our estimator. Unfortunately, the closed-
form expressions for M1 and M2 are quite unwieldy.

To tackle these challenges, we reinterpret ρ⊗n as a statistical mixture of states which
are easier to analyze individually. To describe this decomposition, first let us write the
unknown state as ρ =

∑d
i=1 λiΦi where λ1 ≥ · · · ≥ λd and Φi := |ϕi⟩⟨ϕi| are projectors onto

the eigenstates. In the expansion of ρ⊗n, we will use vectors e = (e1, . . . , ed) ∈ Nd with
e1 + · · · + ed = n to give counts for the different eigenstates of ρ. Now, we can define the
mixed state

σ(e) :=
1

n!

∑
π∈Sn

Wπ

(
Φ⊗e1
1 ⊗ · · · ⊗ Φ⊗ed

d

)
W †
π

to be a symmetrized3 version of the eigenstate Φ⊗e1
1 ⊗ · · · ⊗ Φ⊗ed

d . Using the short-hand
expressions: e! := e1! · · · ed!,

(
n
e

)
:= n!

e! , and λe := λe11 · · ·λedd , we obtain our desired nice
expansion of ρ⊗n:

Proposition 7 ρ⊗n =
∑

e

(
n
e

)
λeσ(e).

We now interpret ρ⊗n as statistical mixture of σ(e) states where e is selected at random
from the distribution with Pr[e] =

(
n
e

)
λe, which we recognize as the multinomial distribution

with n trials for d events with probabilities λ1, . . . , λd. However, the pertinent distribution
for our calculations, which we name D , is this multinomial conditioned on successful mea-
surement. We arrive at new expressions (c.f. Theorem 28) for the first and second moments
in Theorem 6 by expanding ρ⊗n with this interpretation. For example, the first moment
becomes

E[Ψ | success] =
I + nEe∼DM1(e)

d+ n

where mixed state M1(e) ∝ Tr1,...,n−1(Π
(n)
symσ(e)). This expansion has the potential to

greatly simplify the calculation since M1(e) and M2(e) turn out to have surprisingly clean
forms (c.f. theorems 30 and 31, respectively). Unfortunately, the distribution D is still quite
complicated.

To circumvent this issue, our key observation is that the true distribution D is close to
a distribution D ′ of independent geometric random variables. Technically, in D ′, each ei
with i ≥ 2 is chosen independently from the geometric distribution with mean λi/(λ1 − λi)
and e1 is set to n− (e2 + . . .+ ed).

3. To be clear, σ(e) is typically not in the symmetric subspace since it is in general a mixed state.
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Theorem 8 (Theorem 35 in Appendix B.5) ∥D − D ′∥TV ≤
(
1−λ1
λ1

)n+1
λ1

2λ1−1 .

In other words, we can substitute D for D ′ without significant loss.4 This geometric ap-
proximation dramatically simplifies many calculations, but nevertheless requires care to
show it does not significantly affect the variance of our estimator, involving a sort of hybrid
calculation where sometimes we assume the approximation and sometimes we do not. We
leave these details to Appendix B.6 and Appendix B.7 for the first and second moments,
respectively. Combining these pieces together completes the proof.

4. The compound estimation procedure

The full estimation procedure (to prove Theorem 1) uses our measurement in Theorem 2 as
a black box, which is combined with purification of ρ before measurement, and averaging
estimates from multiple measurements. We also require a step to estimate η from samples,
to decide the η-regime of Theorem 1 and balance the purification, measurement, and aver-
aging subroutines accordingly. Due to randomness in these subroutines, we will bound the
expected number of samples.

In the purification step, we assume the existence of a black box which takes copies of ρ
and creates a state ρ′ as output. The number of copies consumed in this sub-procedure is
a random variable with mean k but the output state is deterministic in the sense that for
identical inputs ρ, identical outputs ρ′ will be produced independent of the number of copies
consumed. The purification procedure reduces the principal deviation, i.e., the deviation of
ρ′ satisfies:

η′ = O(η/k), (3)

where η < 1/2 is the deviation of ρ. This result was shown to hold in the special case of
d = 2 (Werner, 1998; Cirac et al., 1999). This result was later shown to hold in the general
d setting in the special case where ρ is a convex combination of a pure quantum state and
the maximally mixed state (Fu, 2016; Childs et al., 2023). Based on unpublished work, we
claim that this result holds in greater generality: it applies to arbitrary mixed states in
arbitrary dimension subject to η < 1/2. In our estimation procedure, we employ this result
in the η ∈ (

√
ϵ, 1/2) regime.

In the measurement step, n copies of ρ′ are consumed and an estimator ϕ̂ is output.
This computation involves two steps. First, n copies of ρ′ are measured using the standard
symmetric joint measurement (cf. Definition 5) producing either a fail outcome or a classical
description of a pure state Ψ. If a fail outcome is observed, the execution of the measurement
sub-procedure fails on this instance resulting in n “wasted” copies of ρ′. We will be interested
in the regime where the measurement sub-procedure will be executed many times with each
having a constant probability of success hence, failures will at most contribute a constant
factor to sample complexity. If the measurement succeeds, the measurement outcome is a
classical description of a pure quantum state Ψ. An affine map is applied to produce ϕ̂, an
estimator for M1 and Φ1:

ϕ̂ =
(d+ n)Ψ − I

n
. (4)

4. This idea is similar, but not identical to a technique called “poissonization” (DasGupta, 2011).
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This process is probabilistic so each call produces a different ϕ̂ with mean M1 and variance
given by Corollary 24.

In the averaging step, b independent estimates of M1 are averaged to produce one
improved estimate ϕ̂(b). This has mean M1 and a variance 1

b times that of ϕ̂. The estimator

ϕ̂(b) is an unbiased estimator of M1 and a biased estimator of the principal eigenstate Φ1.
Using Theorem 2, for observables satisfying ∥O∥∞ ≤ 1 the bias can be bounded by:

β =
∣∣∣E[Tr(O(ϕ̂− ϕ))]

∣∣∣ = O
(
η′

n

)
. (5)

By ensuring that our estimator has bias O(ϵ) and variance O(ϵ2), we employ Chebyshev’s
inequality to prove Theorem 1.

Figure 1: Our three step estimation procedure depicting the purification, measurement and
averaging sub-procedures (from bottom to top). The purification procedure maps
k quantum states to one quantum state (depicted by atom logos). The measure-
ment procedure maps n quantum states to a classical description of an operator
(depicted by the “•” symbol). The averaging procedure maps b classical descrip-
tions to one classical description of an operator.

Figure 1 shows how these sub-procedures are combined to form our estimator ϕ̂(b).
For a given observable O, an expectation value can be estimated using Tr(Oϕ̂(b)). With
constant probability of failure (over the randomness of the measurement procedure), this
produces an estimate of Tr(Oϕ) up to additive error ϵ. By repeating this procedure and
taking the median value over all repetitions, the probability of failure can be exponentially
suppressed in the number of repetitions (Lugosi and Mendelson, 2019; Lerasle, 2019; Huang
et al., 2020). We omit this standard “median-of-means” sub-procedure from our analysis,
but note that it ensures that O(log t) repetitions suffice to estimate the expectation value
of t observables, O1, . . . , Ot, all to within additive error ϵ with high probability.

The remainder of this section will discuss the choice of parameters k, n and b and how
the performance of our procedure compares to alternative approaches.
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4.1. Choice of parameters

Three parameters (k, n, and b) define the algorithm, and control both the accuracy of
our estimate and the expected number of samples of ρ used. We select values for these
parameters based on the given values of B and ϵ, as well as η. Note that η is not given,
but let us suppose we know it for now and come back to the problem of estimating η from
samples after the theorem.

Theorem 9 Given B, ϵ and η, the expected number of samples is minimized for the choice
of k, n and b given in Table 1.

The expectation is over the randomness in the purification and measurement procedures.
The proof of Theorem 9 is given in Appendix E.

η O(1/s∗) Ω(1/s∗) ∩ O(
√
ϵ) Ω(

√
ϵ)

k 1 1 O
(
η√
ϵ

)
n O(s∗) O

(
1
η

)
O
(

1√
ϵ

)
b 1 O

(
Bη2+η
ϵ2

)
O
(
B
ϵ + 1

ϵ3/2

)
s O(s∗) O

(
Bη+1
ϵ2

)
O
(
Bη
ϵ2

+ η
ϵ5/2

)
Table 1: Choice of parameters k, n, b for the three regimes of η. Recall s∗ :=

√
B
ϵ + 1

ϵ2
.

Last, we need a way to estimate η, since the choice of k, n, b are functions of η, either
explicitly, or because they depend on the regime which is determined by η. Observe that a
multiplicative approximation for η suffices since (i) in all three regimes, the complexity is
linear in η hence any fixed multiplicative factor applied to η can be absorbed into the big-O
constants, and (ii) adjacent regimes have the same complexity (up to constant factors) near
the threshold, i.e., there is no “discontinuity” in the sample complexity with respect to η.
Hence incorrect categorization of η-regime due to a multiplicative error still assigns a sample
complexity that is equivalent to the sample complexity associated with the correct η-regime
up to big-O constants. Finally, once we establish η = O(1/s∗) is in the first regime, we
need no further estimate of η since k, n, b are functions of B and ϵ, not η.

Our information about η comes from joint measurements, specifically from when they
fail. In Appendix B.4, Theorem 33, we show that the success probability of an n-sample
measurement is bounded between (1 − η)n−1 and (1 − η)n−1(1 + O(η2)). However, for a
2-sample measurement, we can be more specific:

η ≤ η + η2/2 ≤ 1 − Pr[success] ≤ η + η2 ≤ 2η. (6)

In other words, 2-sample measurements fail with some probability p = Θ(η) which is a
multiplicative approximation for η. Hence, we can reduce to the problem of using many in-
dependent Bernoulli trials to estimate their failure probability. Indeed, we give an algorithm
that does exactly this.

11
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Theorem 10 Let r ≥ 1 be an integer. There is an algorithm which estimates the failure
probability p of a Bernoulli trial, such that the algorithm (i) outputs a constant-factor mul-
tiplicative approximation of p, and (ii) makes O(r/p) samples of the Bernoulli trial, except
with an exp(−Θ(r)) probability of failure.

See Appendix F for the proof. We can get an arbitrarily low failure probability δ by
taking r = O(log(1/δ)), though Theorem 1 is stated for δ = Ω(1) and hence r = O(1).

Finally, in the first regime of Theorem 1, η = O(1/s∗) can be small (or even zero!) and
the algorithm in Theorem 10 would use too many samples if run to completion. Instead, we
cut it off at Ω(r/p) = Ω(r/s∗) samples, confident (w.p. 1 − exp(−Θ(r))) that η = O(1/s∗),
and then (conveniently) the parameters k = b = 1 and n = O(

√
B/ϵ+ 1/ϵ2) do not require

an estimate of η.

4.2. Comparison to alternative approaches

There are two natural strategies to compare against. First, the original classical shadows
paper uses (Huang et al., 2020) uses single-copy measurements which coincide with our
single-copy measurement M1 (c.f. Definition 5). Below we give the optimal sample com-
plexity within our knb framework when constrained to single-copy (n = 1) measurements.

Theorem 11 With single-copy measurements and purification, we get sample complexity

s =

{
O(B

ϵ2
) if η ≤ ϵ,

O(Bη
ϵ3

) if η ≥ ϵ.

Second, we can turn to purification before repetition and averaging, i.e., set b = 1 in our
framework. Again, the result is somewhat worse.

Theorem 12 There is an algorithm which purifies and makes joint measurements (no
averaging), having sample complexity

s =

{
s∗ if η ≤ 1/s∗,

η(s∗)2 if η ≥ 1/s∗,
where s∗ =

√
B

ϵ
+

1

ϵ2
.

Since these fall within our knb framework, they cannot be any better than Theorem 1.
Theorem 11 matches the performance of (Huang et al., 2020) initially, thus performing
quadratically worse than Theorem 1 in the B = ω(1) regime. Theorem 11’s performance
then degrades by a factor of η/ϵ and compares poorly to the Bη+1

ϵ2
performance in the middle

regime of Theorem 1. Theorem 12 matches our performance for very small η, as expected,
but then picks up a O

(
1/ϵ4

)
term which compares unfavorably with either the O

(
1/ϵ2

)
or

O
(
1/ϵ5/2

)
terms in Theorem 1.
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Appendix A. Preliminaries

Let C be the set of complex numbers and Cd the space of d-dimensional complex vectors.

Definition 13 (Operator spaces) Given a Hilbert space V , let L(V ) denote the set of
linear operators from V to V . Let

Dens(V ) = {A ∈ L(V ) : Tr(A) = 1, A ⪰ 0}

be the set of density matrices which have trace 1 and are positive semidefinite.

A.1. Symmetric and exchangeable operators

Let Sn denote the symmetric group of permutations on n elements.

Definition 14 (permutation operator) Given a permutation π ∈ Sn (for n ≥ 1), define
a permutation operator Wπ ∈ Cdn×dn such that

Wπ|x1⟩ · · · |xn⟩ =
∣∣xπ−1(1)

〉
· · ·
∣∣xπ−1(n)

〉
,

and extend by linearity. That is, Wπ acts on (Cd)⊗n by permuting the qudits, sending the
qudit in position i to position π(i).

Definition 15 (symmetric and exchangeable) Let ρ ∈ L
(
(Cd)⊗n

)
. We say ρ is ex-

changeable if ρ = WπρW
−1
π for all π ∈ Sn, and ρ is symmetric if ρ = WπρWσ for all

π, σ ∈ Sn.

Put another way, exchangeable operators commute with Wπ or Π
(n)
sym, whereas symmetric

operators absorb Wπ and Π
(n)
sym. Naturally, an exchangeable state or symmetric state is a

state (i.e., a density matrix) which is also exchangeable or symmetric respectively.

Definition 16 (symmetric subspace) The symmetric subspace of a system of n qudits
of dimension d is the set of all symmetric operators.5 Let dn to denote the dimension of

the symmetric subspace and define Π
(n)
sym to be the projector onto it (notationally omitting

the dependence on d, the dimension of the qudit, which is typically fixed for our purposes).

It’s worth noting that states in the symmetric subspace are also exchangeable, but ex-
changeable are not necessarily in the symmetric subspace—take, for example, the maximally
mixed state. We have two characterizations of the symmetric subspace.

Fact 17 For all n ≥ 0, Π
(n)
sym = 1

n!

∑
π∈Sn Wπ, and dn =

(
n+d−1
d−1

)
.

The integral of |ψ⟩⟨ψ| over the Haar measure is known from, e.g., Scott (2006).

Lemma 18

dn

∫
ψ

(|ψ⟩⟨ψ|)⊗ndψ = Π(n)
sym =

1

n!

∑
π∈Sn

Wπ

where Π
(n)
sym is the projector onto the symmetric subspace and Wπ is the operator that per-

mutes n qudits by an n-element permutation π ∈ Sn.

5. One can check that symmetric operators are closed under addition and scalar multiplication, and thus
this is subspace.
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Recall that for a system V = VA ⊗ VB, the partial trace TrA : L(VA ⊗ VB) → L(VB) is
the unique superoperator such that

Tr
A

(ρA ⊗ ρB) = Tr(ρA)ρB

for all ρA ∈ L(VA) and ρB ∈ L(VB). We use the notation Trn→k to represent the map from
L
(
(Cd)⊗n

)
to L

(
(Cd)⊗k

)
given by

Tr
n→k

(A) := Tr
1,...,n−k

(Π(n)
symA) (7)

That is, Trn→k reduces an n-qudit state to k qudits symmetrically.

Appendix B. The Standard Symmetric Joint Measurement on
almost-pure states

Let us recall the measurement used in pure state classical shadows Grier et al. (2022) and
many other learning tasks.

Definition 19 The standard symmetric joint measurement is a measurement on n qudits.
It is defined by the POVM Mn = {Fψ}ψ ∪ {F⊥} with elements

Fψ := dn · |ψ⟩⟨ψ|⊗ndψ,

for all d-dimensional pure states ψ, proportional to the Haar measure dψ, plus a “failure”

outcome F⊥ := I− Π
(n)
sym for non-symmetric states.

The measurement fails if we get outcome F⊥, otherwise we say it succeeds. In what fol-
lows, we will let Ψ be a random variable over L

(
Cd
)

representing the outcome of measuring
ρ⊗n with Mn where

Ψ =

{
0 for outcome ⊥,

|ψ⟩⟨ψ| for outcome ψ.

When the measurement succeeds, we construct an estimator ϕ̂ = (d+n)Ψ−I
n from this

random variable. We quantify the performance of ϕ̂ in the theorem below, but it is close
enough to Φ1 to be useful in solving the Principal Eigenstate Classical Shadows problem.

Theorem 2 Let ρ = (1−η)ϕ+ησ be an instance of principal eigenstate classical shadows.
The standard joint measurement on n copies of state ρ succeeds with probability at least
(1 − η)n−1. Conditioned on success of the measurement, there is an estimator ϕ̂ such that

E[Tr(Oϕ̂)] = Tr(Oϕ) +
ηTr(O(σ − ϕ))

n(1 − η)
+ O

(
η2/n

)
Var[Tr(Oϕ̂)] =

Tr(O2)

n2
+ O

(
η2 + 1/n

)
for observables O with ∥O∥∞ ≤ 1.
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The proof of this theorem is one of the main technical contributions of this paper, and
we spend the rest of this section proving it. Before we begin, let us give a detailed outline
of the structure of the proof, to help orient the reader.

First, the strategy of measuring copies of a state and preparing a fixed state for each
outcome is known as a measure-and-prepare channel. Our particular case—measure with
Mn and prepare Ψ—is especially well studied. In Appendix C, we adapt a result of Chiri-
bella Chiribella (2011) (Theorem 48) about this channel to get formulas for E[Ψ], E[Ψ⊗2],
and Var[Ψ] (Theorem 22).

However, the formulas for E[Ψ], E[Ψ⊗2], and Var[Ψ] are in terms two linear operators,

M1 :=
Tr1,...,n−1(Π

(n)
symρ⊗n)

Tr(Π
(n)
symρ⊗n)

, M2 :=
Tr1,...,n−2(Π

(n)
symρ⊗n)

Tr(Π
(n)
symρ⊗n)

.

While it is easy to write, e.g., Tr(Π
(n)
symρ⊗n), it is not so easy to bound it in terms of the

principal eigenvalue (λ1) or the deviation (η). For instance, a natural approach is to expand

Π
(n)
sym as a sum of permutations (by Fact 17), and calculate Tr(Wπρ

⊗n) =
∏
C∈π Tr(ρ|C|)

where the product is over cycles C of π. This argument establishes that Tr(Π
(n)
symρ⊗n) is a

symmetric polynomial in the spectrum λ1, . . . , λn of ρ, but the dependence on η is difficult
to bound. We need a different approach.

Our solution is to expand ρ⊗n in the basis {Φa1 ⊗ · · · ⊗ Φan : a1, . . . , an ∈ [d]} where
Φ1, . . . ,Φn ∈ Dens

(
Cd
)

are the eigenvectors of ρ. Actually, since ρ⊗n is symmetric, we are
more concerned with the number of occurrences ei = #{j : aj = i} of each factor Φi, which
constitute a type e = (e1, . . . , ed) of basis state. We define σ(e) as the average of all states
of type e. Theorem 28 shows that M1 and M2 are expectations of Me

1 and Me
2 below, where

e is sampled from some distribution D .

Me
1 :=

Tr1,...,n−1(Π
(n)
symσ(e))

Tr(Π
(n)
symσ(e))

, Me
2 :=

Tr1,...,n−2(Π
(n)
symσ(e))

Tr(Π
(n)
symσ(e))

.

We have reduced the computation of M1 and M2 to the computation of Me
1 and Me

2

for a vast set of e, but is this really progress? Yes (!), because the following trace is either
0 or 1, depending on the permutation π, and similar facts are true of the partial traces we
need.

Fact 20

Tr(Wπ(Φa1 ⊗ · · · ⊗ Φan)) =

{
0 if aπ(j) ̸= aj for some j ∈ [n],

1 otherwise.

This transforms the computation of Me
1 and Me

2 into a combinatorial problem: we can

compute, e.g., Tr(Π
(n)
symσ(e)) by counting how many permutations contribute 1 (rather than

0). Using this approach, we compute a probability of success, Ze, in Theorem 29, and Me
1

and Me
2 in Theorems 30 and 31 respectively.

In principle, we now have concrete expressions for Me
1 and Me

2 in terms of e and {Φi}di=1,
and it only remains to compute expectations over e ∼ D . Here the distribution D puts
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weight on e proportional to λe11 · · ·λed . Despite the simplicity of this probability mass
function, we could find no closed form for Ee∈D [ei] or Ee∈D [eiej ]. This last technical hurdle
forces us to approximate: we introduce a distribution D ′ for which we can compute Ee∈D ′ [ei]
and Ee∈D ′ [eiej ], and show that is it close to D when η is sufficiently small.

We finish the proof by combining the pieces. The expectation of ρ̂, for example, is finally
completed in Corollary 39. The corollary uses various theorems to bound the distance to
the expectation under D ′, which is given by Theorem 38. Theorem 38 is derived from
Corollary 24 to claim the expectation of the estimator (called M̂1 rather than ρ̂ in that
section) is M1, Theorem 28 to expand M1 as a distribution over Me

1 , Theorem 30 to turn
Me

1 into actual ei and Φi terms, and Proposition 50 to evaluate those for the geometric
random variables defining D ′.

B.1. Chiribella’s Theorem: Moments from Partial Traces

The measurement we use (Mn) has applications to other pure state learning tasks, so
there is already a result characterizing the moments of the outcome (i.e., E[Ψ⊗k]), and in
particular the mean and variance. Specifically, in Appendix C, we take a result of Chiribella
Chiribella (2011) and repackage it into the following.

Theorem 21 Fix integers n, k ≥ 0, let A ∈ Dens
(
(Cd)⊗n

)
be an exchangeable n-qudit

state, and let Ψ be the outcome of measuring A with Mn.

E[Ψ⊗k | success] =
1

(d+ n)k
Π(k)

sym

(
k∑
s=0

(
n

s

)(
k

s

)(
Trn→s(A)

Trn→0(A)
⊗ I⊗k−s

))
Π(k)

sym (8)

In other words, to compute E[Ψ⊗k | success] we only need Trn→s(A) = Tr[n−s](Π
(n)
symA)

for 0 ≤ s ≤ k. More specifically, the important data about the state are M0(A), . . . ,Mk(A)
where we define the function6

Mk(A) :=
Trn→k(A)

Trn→0(A)
.

We further abbreviate Mk(A) to just Mk when the state is understood.
Since we aim to compute the mean and variance of Ψ, i.e., E[Ψ | success] and

Var[Ψ | success] = E[Ψ | success⊗2] − E[Ψ | success]⊗2,

we only apply Theorem 21 with k = 1, 2. Below, we specialize Theorem 21 to these two
cases, using our new M1, M2 notation.

Theorem 22 Let A be an exchangeable n-qudit state, and let Ψ be a random variable for
the outcome of measuring A with Mn.

E[Ψ | success] =
I + nM1

d+ n
, (9)

E[Ψ⊗2 | success] =
2Π

(2)
sym

(d+ n)(d+ n+ 1)

(
(I + nM1)

⊗2 +

(
n

2

)
M2 − n2M⊗2

1

)
, (10)

6. This is technically a partial function because of potential division by 0, but Trn→0(A) = Tr(Π
(n)
symA) =

Pr[success], so this is only a problem if the measurement always fails, and then we have bigger problems.

20



Principal eigenstate classical shadows

Var[Ψ | success] =
W(1 2)(I + nM1 ⊗ I + nI⊗M1)

(d+ n)(d+ n+ 1)
+
n(n− 1)M2 − n2M⊗2

1

(d+ n)(d+ n+ 1)
− (I + nM1)

⊗2

(d+ n)2(d+ n+ 1)
,

(11)

where the expectation and variance are over the randomness in the measurement.

Proof E[Ψ | success] and E[Ψ⊗2 | success] are immediate from Theorem 21. For the
variance, we start with the definition:

Var[Ψ | success] = E[Ψ⊗2 | success] − E[Ψ | success]⊗2

=
2Π

(2)
sym

(d+ n)(d+ n+ 1)

(
(I + nM1)

⊗2 +

(
n

2

)
M2 − n2M⊗2

1

)
−
(
I + nM1

d+ n

)⊗2

.

Recall that 2Π
(n)
sym = W(1)(2) + W(1 2), so first and foremost there is a near-cancellation of

two terms:

1

(d+ n)(d+ n+ 1)
W(1)(2)(I + nM1)

⊗2 −
(
I + nM1

d+ n

)⊗2

= − (I + nM1)
⊗2

(d+ n)2(d+ n+ 1)
.

The remaining terms are

1

(d+ n)(d+ n+ 1)

((
n

2

)
M2 − n2M⊗2

1

)
+

W(1 2)

(d+ n)(d+ n+ 1)

(
(I + nM1)

⊗2 +

(
n

2

)
M2 − n2M⊗2

1

)
.

Among the W(1 2) terms, (I + nM1)
⊗2 cancels with n2M⊗2

1 leaving

W(1 2)

(d+ n)(d+ n+ 1)
(I + nM1 ⊗ I + nI⊗M1).

Moreover, M2 is invariant under W(1 2) (i.e., M2 = W(1 2)M2), the two M2 terms combine

into n(n−1)
(d+n)(d+n+1)M2, which we group with the left over −n2M⊗2

1 term.
Altogether, the variance is

Var[Ψ | success] =
W(1 2)(I + nM1 ⊗ I + nI⊗M1)

(d+ n)(d+ n+ 1)
+
n(n− 1)M2 − n2M⊗2

1

(d+ n)(d+ n+ 1)
− (I + nM1)

⊗2

(d+ n)2(d+ n+ 1)
.

B.2. Estimator M̂1

Consider the mean of Ψ,

E[Ψ | success] =
I + nM1

d+ n
,

from Theorem 22. This is a convex combination of I/d, the maximally mixed state, and
M1, which we observe is also a state.

Lemma 23 For any exchangeable state A ∈ Dens
(
(Cd)⊗n

)
such that Trn→0(A) ̸= 0, we

have Mk(A) ∈ Dens
(
(Cd)⊗k

)
for all k ≥ 0.
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Proof If Mk(A) is not positive semi-definite, then there is a state σ that witnesses its nega-

tivity (i.e., Tr(Mk(A)σ) < 0). Then I⊗σ witnesses the negativity of Π
(n)
symA (Tr((Π

(n)
symA)(I⊗

σ)) < 0), a contradiction.
For the trace, observe that

Tr(Mk(A)) =
Tr(Tr[n−k](Π

(n)
symA))

Trn→0(A)
=

Tr(Π
(n)
symA)

Trn→0(A)
=

Trn→0(A)

Trn→0(A)
= 1.

In any case, clearly M1 is the part of the estimator that we are interested in, the “signal”
among the “noise”. It is standard practice in classical shadows protocols to “invert” the
channel to isolate the component of interest (in our case, M1). That is, define an estimator7

M̂1 := 1
n [(d+ n)Ψ − I] so that

E[M̂1] = 1
n [(d+ n)E[Ψ | success] − I] = M1.

It is important that we only define M̂1 when the measurement succeeds—we throw away
any failed measurements.8

Corollary 24 (Estimator mean and variance in terms of M1, M2) Suppose we mea-
sure a state A ∈ Dens

(
(Cd)⊗n

)
, the measurement succeeds, and we produce estimator M̂1

as described. Let O be a Hermitian observable. The expectation and variance over the
randomness of the measurement outcome,

E
meas

[M̂1] = M1 (12)

Var
meas

[Tr(OM̂1)] ≤
Tr(O2)

n2
+

2∥O∥2∞
n

+
n− 1

n
Tr(O⊗2M2) − Tr(OM1)

2, (13)

are functions of M1 := M1(A), M2 := M2(A).

Proof We have already seen E[M̂1], and

Var[M̂1] = Var
[
1
n [(d+ n)Ψ − I]

]
= Var[d+nn Ψ] = (d+n)2

n2 Var[Ψ].

We can substitute in (11) from Theorem 22 to get an expression for Varmeas[M̂1].

Var
meas

[M̂1] =
d+ n

d+ n+ 1

(
W(1 2)(I + nM1 ⊗ I + nI⊗M1)

n2
+
n− 1

n
M2 −M⊗2

1 − (I + nM1)
⊗2

n2(d+ n)2

)
We remind the reader that Var[M̂1] is a 2-qudit linear operator, and to get the variance of
Tr(OM̂1), we need to take the trace with O⊗2 since

Var[Tr(OM̂1)] = E[Tr(OM̂1)
2] − E[Tr(OM̂1)]

2

= Tr(O⊗2 E[M̂⊗2
1 ]) − Tr(O⊗2 E[M̂1]

⊗2)

= Tr
(
O⊗2 Var[M̂1]

)
.

7. Often this estimator would be called ρ̂, and later we will rename it ϕ̂, but within this section we will use
M̂1 since it is an unbiased estimator for M1.

8. It will be important later how often failure occurs, and this is explored in Theorem 33.
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We therefore take the trace with O⊗2 and make a few simplifications – dropping negative
terms, rounding d+n

d+n+1 up to 1, and so on.

Var[Tr(OM̂1)]

= Tr

(
O⊗2 d+n

d+n+1

(
W(1 2)(I + nM1 ⊗ I + nI⊗M1)

n2
+
n− 1

n
M2 −M⊗2

1 − (I + nM1)
⊗2

n2(d+ n)2

))
= d+n

d+n+1

(
Tr(O2)

n2
+

2 Tr(O2M1)

n
+
n− 1

n
Tr(O⊗2M2) − Tr(OM1)

2 −
(

Tr(O) + nTr(OM1)

n(d+ n)

)2
)

≤ Tr(O2)

n2
+

2 Tr(O2M1)

n
+
n− 1

n
Tr(O⊗2M2) − Tr(OM1)

2.

Last, we apply Hölder’s inequality for Schatten norms to bound Tr(O2M1) ≤ ∥O∥2∞∥M1∥1 =
∥O∥2∞, using the fact that ∥M1∥1 = 1 because M1 is a state (Lemma 23).

B.2.1. Pure State Classical Shadows

As a quick exercise, we can re-derive the mean and variance of the pure state classical
shadows estimator from Grier et al. (2022). When ρ is pure, it is not hard to see that
Trn→k(ρ

⊗n) = ρ⊗k and thus

M1 =
Trn→1(ρ

⊗n)

Trn→0(ρ⊗n)
=
ρ

1
= ρ, M2 =

Trn→2(ρ
⊗n)

Trn→0(ρ⊗n)
=
ρ⊗2

1
= ρ⊗2.

Thus M̂1 is an unbiased estimator for M1 = ρ (which is generally not the case when ρ is
mixed).

Lemma 25 Let O be a Hermitian observable. When ρ is pure, E[Tr(OM̂1)] = Tr(Oρ) and

Var
meas

[Tr(OM̂1)] ≤
Tr(O2)

n2
+

2∥O∥2∞
n

.

Proof Use Corollary 24. The expectation of Tr(OM̂1) follows immediately. For the vari-
ance, we observe that Tr(O⊗2M2) = Tr(O⊗2ρ⊗2) = Tr(Oρ)2, which is then more than
cancelled out by Tr(OM1)

2 = Tr(Oρ)2.

B.3. Classical mixture of orthogonal tensor products

Corollary 24 reduces the mean and variance calculation to computing M1 and M2. However,
even for n = 4, Tr4→1(ρ

⊗4) is the unwieldy polynomial

1

24

(
ρ(1 + 3 Tr(ρ2) + 2 Tr(ρ3)) + ρ2(3 + Tr(ρ2)) + 6ρ3 + 6ρ4

)
,

and Tr4→2(ρ
⊗4) is even worse. It is hard to say much about, e.g., the overlap of M1 with

the leading eigenvector (Φ1), beyond the fact that it is some symmetric polynomial in the
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eigenvalues of ρ. It is unclear how to bound it in terms of the deviation, η = 1 − λ1,
especially for arbitrary n. We need a different approach to compute M1 and M2 for ρ⊗n.

Recall that ρ =
∑d

i=1 λiΦi where Φi := |ϕi⟩⟨ϕi| are projectors onto the eigenvectors, |ϕi⟩,
which form an orthonormal basis. It follows that we can expand ρ⊗n in a basis of n-fold
tensor products, Φa := ⊗n

i=1Φai , where a = (a1, . . . , an) ∈ [d]n. That is,

ρ⊗n =
∑
a∈[d]

(
n∏
i=1

λai

)
Φa

Since ρ⊗n is exchangeable, we can express the right hand side as a sum of exchangeable
operators. Specifically, we group the terms by type, where the type of Φa is a vector
e = (e1, . . . , ed) where ei := #{j : aj = i} is the number of occurrences of Φi. The grouped
states we call σ(e).

Definition 26 Fix a basis |ϕ1⟩, . . . , |ϕd⟩, and let Φi = |ϕi⟩⟨ϕi| for all i = 1, . . . , d. Given
e = (e1, . . . , ed) ∈ Nd such that e1 + · · · + ed = n, define a mixed state

σ(e1, . . . , ed) :=
1

n!

∑
π∈Sn

Wπ

 d⊗
j=1

Φ
⊗ej
j

W †
π ∈ Dens

(
(Cd)⊗n

)
.

Let us define some shorthand notation with e for later use.

e! := e1! · · · ed!,
(
n

e

)
:=

n!

e!
, λe := λe11 · · ·λedd ,

We can now succinctly write ρ⊗n as a convex combination of σ(e).

Proposition 27

ρ⊗n =
∑
e

(
n

e

)
λeσ(e)

A mixture of this form is indistinguishable from a σ(e) selected at random from the
distribution with mass Pr[e] =

(
n
e

)
λe, which we recognize as a multinomial distribution with

n trials for d events with probabilities λ1, . . . , λd. However, the pertinent distribution for our
calculations, which we name D , is this multinomial conditioned on successful measurement,
since M̂1 is conditional on a successful measurement outcome. That is, the probability mass
function for for D is

Pr[e | success] =
Pr[success | e] Pr[e]

Pr[success]
∝ Pr[success | e] ·

(
n

e

)
λe.

We will calculate shortly (Theorem 29), the probability of success for a given e, to make
this distribution more explicit.

Recall that the purpose of decomposing ρ⊗n as a mixture (Proposition 27) was to give
another path to compute M1 and M2. To this end, we define

Me
k :=

Trn→k(σ(e))

Trn→0(σ(e))
,

for all k ≥ 1, and prove the following connection to the original Mks.
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Theorem 28 Fix 0 ≤ k ≤ n, and then Mk(ρ
⊗n) = Ee∼D [Mk(σ(e))], i.e., Mk(ρ

⊗n) is the
expectation of Mk(σ(e)) over e sampled from D .

Proof

Mk(ρ
⊗n) =

Trn→k(ρ
⊗n)

Trn→0(ρ⊗n)
definition

=
Trn→k(ρ

⊗n)

Pr[success]
because Pr[success] = Tr

n→0
(ρ⊗n)

=
1

Pr[success]

∑
e

Pr[e] · Tr
n→k

(σ(e)) linearity of trace

=
∑
e

Pr[e]

Pr[success]
· Tr
n→k

(σ(e)) · Pr[success | e]

Trn→0(σ(e))
since Pr[success | e] = Tr

n→0
(σ(e))

=
∑
e

Pr[success | e] Pr[e]

Pr[success]
· Trn→k(σ(e))

Trn→0(σ(e))
rearrange

=
∑
e

Pr[e | success] ·Mk(σ(e)) Bayes’ rule

= E[Mk(σ(e)) | success].

That is, Mk = E[Me
k ]. We stress that there are now two sources of randomness affecting

our estimator: mixture randomness arising from a random choice of initial state σ(e), and
measurement randomness caused by the inherent randomness of measuring a quantum state.

B.4. M1 and M2 for σ(e)

Section B.1 and Section B.2 showed that moments of Ψ and M̂1 can be calculated from M1

and M2, then Section B.3 expressed M1 and M2 as expectations of Me
1 and Me

2 . In this
section, we calculate

Ze = Pr[success | e] = Tr
n→0

(σ(e)),

as well as Me
1 , and Me

2 .
As a starting point for all three calculations, we have that

Tr
n→k

(σ(e)) = Tr
[n−k]

(Π(n)
symσ(e)) = Tr

[n−k]
(Π(n)

symΦe) =
1

n!

∑
π∈Sn

Tr
[n−k]

(WπΦe)

where we define Φ⊗e =
⊗d

i=1 Φ
⊗ej
j .

We claim that expressions like Tr[n−k](WπΦ⊗e) can be evaluated combinatorially — the
permutation will loop through various Φi tensor factors of Φ⊗e, and if any two adjacent Φi

and Φj are orthogonal (we call this mixing eigenstates in the theorems that follow), then
the entire term vanishes. If not, then many of the Φi are traced out, and those that remain
appear in the result.

The following proofs may be a bit opaque if the reader cannot visualize Tr[n−k](WπΦ⊗e)
in the language of tensor networks. Tensor networks are a graphical model of linear operators
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where, e.g., the permutation operator Wπ is drawn as a literal permutation of legs, and
partial trace is achieved by looping the output legs for the traced-out qudits back to the
input legs. We cannot include a full introduction to tensor networks here, but refer the
reader to either Roberts and Yoshida (2017) or Grier et al. (2022) to see examples of these
ideas in action on very similar problems.

With that, we begin by calculating the full trace. Since Π
(n)
sym is the sum of the successful

measurement outcomes, it also represents the probability of success.

Theorem 29 For all n ≥ 1 and e such that e1 + · · · + ed = n,

Ze := Tr
n→0

(σ(e)) = Tr(Π(n)
symσ(e)) =

(
n

e

)−1

.

Proof Expand σ with the definition and Π
(n)
sym as an average over permutations:

Tr
(

Π(n)
symσ(e)

)
=

1

(n!)2

∑
π,σ∈Sn

Tr

Wπ

 d⊗
j=1

Φ
⊗ej
j

W †
πWσ

 =
1

n!

∑
π∈Sn

Tr
(
Φ⊗e1
1 · · ·Φ⊗ed

d Wπ

)
.

Any permutation π which mixes eigenstates by having a cycle which involves Φi and Φj for
i ̸= j may be ignored, since the trace factor for that cycle will be zero. If a permutation
does not mix eigenstates, then we have Tr

(
Φ⊗e1
1 · · ·Φ⊗ed

d Wπ

)
= 1, since it is a product of

traces of the form Tr(Φk
i ), each of which is 1 because Φi is pure.

In other words, it suffices to count permutations which do not mix eigenstates. Clearly
there are ei! ways to permute the Φ⊗ei

i factors among themselves, and we make this choice
independently for each i for a total of e! permutations which give unit trace. Therefore,

Tr
(

Π(n)
symσ(e)

)
=

e!

n!
=

(
n

e

)−1

,

completing the proof.

Next, we find that Me
1 has a surprisingly clean form.

Theorem 30 For all n ≥ 1 and e such that e1 + · · · + ed = n,

Me
1 :=

Trn→1(σ(e))

Trn→0(σ(e))
=

Tr1,...,n−1(Π
(n)
symσ(e))

Ze
=

1

n

d∑
i=1

eiΦi.

Proof For any exchangeable A ∈ Dens
(
(Cd)⊗n

)
, we have

Tr
[n−1]

(A) = Tr
−1

(A) = Tr
−i

(WπAWπ−1) = Tr
−i

(A)

for any π ∈ Sn such that π(i) = n. Therefore, we can expand Π
(n)
sym as an average over

permutations, and also average over the indices which are traced out to obtain

Tr
n→1

(σ(e)) = Tr
[n−1]

(Π(n)
symσ(e)) =

1

n

n∑
i=1

1

n!

∑
π∈Sn

Tr
−i

Wπ

d⊗
j=1

Φ
⊗ej
j
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As before, if π mixes eigenstates Φi and Φj in the same cycle (for i ̸= j), then that term
contributes 0. There are e1! · · · ed! permutations which do not mix eigenstates. Suppose
index i corresponds to Φj . In each of the non-mixing permutations, the partial trace is Φj .
Since there are ej indices where there is a Φj , it follows that

Tr
n→1

(σ(e)) =

(
n

e

)−1 1

n

d∑
i=1

eiΦi.

Dividing through by Ze = Trn→0(σ(e)) =
(
n
e

)−1
finishes the proof.

Theorem 31 For all n ≥ 1 and e such that e1 + · · · + ed = n,

Me
2 =

Trn→1(σ(e))

Trn→0(σ(e))
=

Tr1,...,n−1(Π
(n)
symσ(e))

Ze
=

2Π
(2)
sym

n(n− 1)

∑
i ̸=j

eiejΦi ⊗ Φj +
∑
k

(
ek
2

)
Φ⊗2
k

.
Proof Expand Π

(n)
sym as an average over permutations π, and average over an ordered pair

of distinct indices, a and b.

Tr
[n−2]

(Π(n)
symσ(e)) =

1

n(n− 1)

∑
a̸=b

1

n!

∑
π∈Sn

Tr
−a,−b

(
Wπ

d⊗
k=1

Φ⊗ek
k

)

For each a, b, divide the permutations into those where a, b are in separate cycles (type I),
and those where a, b are in the same cycle (type II). We note that composing a permutation
with the transposition (a b) also changes the type, and since this operation is clearly in-
vertible, it is a bijection between the two types of permutations. That is, there are equally
many type I and type II permutations. In fact, we can pair up the permutations π, π′ (one
of each type) matched by the bijection, factor (W(a)(b) + W(a b)) out of Wπ + Wπ′ and out

of the partial trace where it becomes 2Π
(2)
sym. In other words, it suffices to analyze type I

permutations and then multiply by 2Π
(2)
sym.

Let us say a position a is incident to state Φi if Φi is the ath term of the tensor product.
The first case we are interested in is when a and b are incident to the same state, Φi. We
observe that there are e1! · · · ed! non-mixing permutations total, but this includes both type
I and type II permutations. There are ei(ei − 1) ways to pick a and b from Φ⊗ei

i , but we
divide this in half to get those of type I. Hence, when a and b are incident to the same Φi,
we have ∑

π∈Type I

Tr
−a,−b

(
Wπ

d⊗
k=1

Φ⊗ek
k

)
= e!

(
ei
2

)
Φi ⊗ Φi.

The second case is a incident to Φi and b incident to Φj for i ̸= j. There are e1! · · · ed!
type I permutations which do not mix eigenstates, and thus have a nonzero partial trace to
contribute to the sum. Note that e! over n! from the average over permutations gives the
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(
n
e

)−1
we’ve come to expect in these calculations. There are ei indices a within Φ⊗ei

i , and

ej indices b within Φ
⊗ej
j . To summarize, we get

∑
π∈Type I

Tr
−a,−b

(
Wπ

d⊗
k=1

Φ⊗ek
k

)
= e! · eiejΦi ⊗ Φj .

Altogether, this leads to

Tr
[n−2]

(Π(n)
symσ(e)) =

1

n(n− 1)

∑
a̸=b

1

n!

∑
π∈Sn

Tr
−a,−b

(
Wπ

d⊗
k=1

Φ⊗ek
k

)

=
2Π

(2)
sym

n(n− 1)

∑
a̸=b

1

n!

∑
π∈Type I

Tr
−a,−b

(
Wπ

d⊗
k=1

Φ⊗ek
k

)

=
2Π

(2)
sym

n(n− 1)
· e!

n!

∑
i

(
ei
2

)
Φi ⊗ Φi +

∑
i ̸=j

eiejΦi ⊗ Φj

,
and dividing by Ze = Trn→0(σ(e)) =

(
n
e

)−1
yields the stated result.

Let us combine and summarize Theorems 29, 30, and 31 in one result.

Corollary 32 For all n ≥ 1,

Z := Tr
(

Π(n)
symρ

⊗n
)

=
∑
e

λe,

M1 =
1

Z

∑
e

λe
1

n

(
d∑
i=1

eiΦi

)
,

M2 =
1

Z

∑
e

λe
2Π

(2)
sym

n(n− 1)

∑
i ̸=j

eiejΦi ⊗ Φj +
1

2

∑
k

ek(ek − 1)Φk ⊗ Φk

,
where all three outer sums are over e ∈ Nd such that e1 + · · · + ed = n.

Proof For all k we have,

Tr
n→k

(ρ⊗n) =
∑
e

(
n

e

)
λe Tr

n→k
(σ(e)) =

∑
e

λe
Trn→k(σ(e))

Trn→0(σ(e))
=
∑
e

λeMe
k ,

and then dividing through by Z gives the results for M1 and M2.

Since Ze = Pr[success | e] =
(
n
e

)−1
, and Z = Pr[success] we can now see that the

probability mass function for D is

Pr[e | success] =
Pr[success | e] Pr[e]

Pr[success]
=
λe

Z
.

In light of this, the expressions in the corollary appear to be expectations over e ∼ D , which
is precisely what Theorem 28 proves, so everything squares up nicely. It is a good time to
also bound the probability the measurement is successful in terms of λ1.
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Theorem 33 The probability of a successful measurement is Z and

λn−1
1 ≤ Z ≤ λn+1

1

2λ1 − 1
= λn−1

1 (1 + O
(
η2
)
) (14)

Proof Recall that Z is the probability of success and Z =
∑

e λ
e over e totaling n. On the

one hand, it is lower bounded by the terms where e1 = n (i.e., λn1 ) and e1 = n − 1 (i.e.,
λn−1
1 (λ2 + · · · + λd)). It follows that

Z ≥ λn1 + λn−1
1 (λ2 + · · · + λd) = λn−1

1 (λ1 + · · · + λd) = λn−1.

On the other hand, since λ1 is the dominant eigenvalue, it also makes sense to expand
around it.

Z =
∑

e1+···+ed=n
λe =

n∑
e1=0

∑
e2+···+ed=n−e1

λe.

We can then insert multinomial coefficients to simplify the λ2, . . . , λd part.

Z ≤
n∑

e1=0

∑
e2+···+ed=n−e1

(
n− e1

e2, . . . , ed

)
λe =

n∑
e1=0

λe11 (λ2 + · · · + λd)
n−e1

Re-indexing and letting the sum extend to infinity, we have

Z ≤
n∑
j=0

λn−j1 (1 − λ1)
j = λn1

∞∑
j=0

(
1 − λ1
λ1

)j
=

λn+1
1

2λ1 − 1
.

Finally, η = 1 − λ1 and we note that

λ21
2λ1 − 1

=
(1 − η)2

1 − 2η
= 1 + η2 + O

(
η3
)
,

so the (multiplicative) gap between the two bounds is only 1 + η2 + O
(
η3
)
.

B.5. Geometric approximation

We now have expressions for the mean and variance of M̂1 in terms of M1 and M2 (Corol-
lary 24), expressions for M1 and M2 as expectations over Me

1 , Me
2 (Theorem 28), expressions

for Me
1 and Me

2 in terms of e (Theorem 30, Theorem 31), and the distribution D for the
expectation. There is one last obstacle to overcome: we would like to compute Ee∈D [ei] and
Ee∈D [eiej ], since those appear in M1 and M2. Exact expressions for these expectations have
eluded us,9 so we define an approximation, D ′, of the true distribution such that Ee∈D ′ [ei]
is straightforward.

Suppose the first eigenvalue is much larger than the rest, i.e., λ1 ≫ λ2 ≥ · · · ≥ λd.
Hence, the e vectors with highest probability in D have e1 close to n, as large as possible.

9. Also Z, which we could only upper and lower bound in Theorem 33.
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Let us rewrite the probability mass using the fact that e1 = n − e2 − · · · − ed. As long as
e1, . . . , ed ∈ N, we have

f(e) =
1

Z
λn−e2−...−ed1

d∏
i=2

λeii =
λn1
Z

d∏
i=2

(
λi
λ1

)ei
.

It appears that D factors as a product distribution on e2, . . . , ed, i.e., it is proportional to
f2(e2) · · · fd(ed) where fi(ei) = ( λiλ1 )ei(1 − λi

λ1
) is the p.d.f. of a geometric random variable

with mean λi
λ1−λi . We know e2, . . . , ed are not independent in D , so there is a catch: in

the very unlikely event that e2 + . . .+ ed exceeds n, the condition e1 = n− (e2 + · · · + ed)
requires us to set e1 < 0. In fact, this is the only difference between the distributions.

Lemma 34 The distribution D is exactly D ′ conditioned on e1 ≥ 0.

Proof For e with e1 ≥ 0 (the full support of D) we have already seen that the p.d.f. f
factors as a product of fi (times a constant).

f(e) =
1

Z
λn−e2−...−ed1

d∏
i=2

λeii =
λn1
Z

d∏
i=2

(
λi
λ1

)ei
=
λn1
Z

d∏
i=2

fi(ei)

1 − λi
λ1

That is, whenever e1, . . . , ed ≥ 0, the two distributions are proportional. The only other e
with any support in D ′ are those with e1 < 0, therefore if we condition on e1 ≥ 0 then D ′

becomes D .

The two distributions are very close to each other. We have consigned the proofs to
Appendix D, but we quote the highlights below. First, the probability that e1 < 0 is indeed
very small, which in turn bounds the total variation distance, ∥D − D ′∥TV .

Theorem 35

Pr
e∼D ′

[e1 < 0] ≤ ∆ :=

(
1 − λ1
λ1

)n+1 λ1
2λ1 − 1

.

It follows that ∥D − D ′∥TV = ∆.

When we rewrite ∆ in terms of η ≤ 1
3 ,

∆ =

(
η

1 − η

)n+1 1 − η

1 − 2η
≤ 2 ·

(
3
2η
)n+1

,

we see that ∆ = O
(
η2
)
, even if n = 1. More realistically, we will have n ≈ 1

η , and then ∆
vanishes even more quickly, as shown in the plot Figure 2.

We separately bound the change in E[e] for D versus D ′.

Theorem 36 The difference between D and D ′ for first-order expectations is at most∥∥∥∥ED [e] − E
D ′

[e]

∥∥∥∥
1

=
∑
i

∣∣∣∣ED [ei] − E
D ′

[ei]

∣∣∣∣ ≤ 2∆

1 − ∆

(
n+

1

2λ1 − 1

)
.

Last, the variance difference is quantified with covariance matrices.

Lemma 37 The covariance matrices of D and D ′ are related as follows:

ΣD ′ ⪰ ΣD(1 − ∆)2.
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1 × 10−20
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Figure 2: An upper bound on the mass of D ′ outside the support of D (as in Theorem 35)
as a function of η := 1 − λ1, assuming n = 1/η, semilog scale.

B.6. Mean of the estimator

In this section, we find the mean of the estimator M̂1 conditioned on the success of the
measurement (on state ρ). Recall that E[M̂1] = M1 by Corollary 24, and Theorem 28
expands this into

M1 := M1(ρ
⊗n) = E

e∼D
[M1(σ(e))] = E

e∼D
[Me

1 ].

Below we approximate this expectation, except with the geometric random variable distri-
bution D ′ in place of D

Theorem 38 (Mean with D ′)

E
e∈D ′

[Me
1 ] = E

e∈D ′

[
1

n

(
d∑
i=1

eiΦi

)]
= Φ1 +

1

n

d∑
j=2

λj
λ1−λj (Φj − Φ1)

Proof We rewrite with e1 = n−e2−· · ·−ed and use that Ee∈D ′ [ei] = λi
λ1−λi for all 2 ≤ i ≤ d

(by Proposition 50).

E
e∈D ′

[
1

n

(
d∑
i=1

eiΦi

)]
=

1

n

(
nΦ1 +

d∑
i=2

E
e∈D ′

[ei](Φi − Φ1)

)
= Φ1 +

1

n

d∑
i=2

λi
λ1 − λi

(Φi − Φ1).

Corollary 39 ∥∥∥∥∥∥M1 − Φ1 −
1

n

d∑
j=2

λj
λ1−λj (Φj − Φ1)

∥∥∥∥∥∥
tr

= O
(
η2
)
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Proof This result is about comparing M1 = Ee∈D [Me
1 ] with

E
e∈D ′

[Me
1 ] = E

e∈D ′

[
1

n

(
d∑
i=1

eiΦi

)]
= Φ1 +

1

n

d∑
j=2

λj
λ1−λj (Φj − Φ1)

from the previous theorem. That is, we are bounding the difference in M1 due to our
approximation of D with D ′. Since the operators are diagonal in the Φi basis, the trace
norm simplifies:

1

n

(∥∥∥∥∥
d∑
i=1

( E
e∈D

[ei] − E
e∈D ′

[ei])Φi

∥∥∥∥∥
tr

)
=

1

n

d∑
i=1

∣∣∣∣ Ee∈D
[ei] − E

e∈D ′
[ei]

∣∣∣∣.
Theorem 36 upper bounds this by

1

n

2∆

1 − ∆

(
n+

1

2λ1 − 1

)
= O(∆) ⊆ O

(
η2
)
.

B.7. Variance of the estimator

Recall that there are two sources of variance for Tr(OM̂1): mixture randomness (from ρ⊗n

being a mixture of pure states σ(e)), and the inherent randomness of quantum measurement.
These two sources of randomness are responsible for variance of Tr(OM̂1), as formalized by
the law of total variance.

Theorem 40 (Law of total variance)

Var
e∼D ,meas

(Tr(OM̂1)) = Var
e∼D

[ E
meas

(Tr(OM̂1) | e)] + E
e∼D

[Var
meas

(Tr(OM̂1) | e)].

We go on to bound these terms individually. Since the expressions for variance get somewhat
unwieldy, we introduce shorthand common terms involving O and Φi: let Oi := Tr(OΦi)
and Oij := Tr(OΦiOΦj). In general OiOj ̸= Oij , but it will be important that

Okk = Tr(OΦkOΦk) = Tr(OΦk)
2 = O2

k

for all 1 ≤ k ≤ d. We also introduce M̂e
1 to represent the estimator conditioned on σ(e)

being the input state.

B.7.1. Variance due to mixture randomness

Theorem 41 The variance in Tr(OM̂1) due to ρ⊗n being a mixture of σ(e) is

Var
e∈D

[ E
meas

(Tr(OM̂1) | e)] = Var
e∈D

[ E
meas

(Tr(OM̂e
1 )] ≤

4∥O∥2∞
n2(1 − ∆)2

λ1(1 − λ1)

(2λ1 − 1)2
.
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Proof First, Emeas(Tr(OM̂e
1 ) | e) = Tr(OEmeas(M̂

e
1 )) = Tr(OMe

1 ) by Corollary 24 — the
corollary is for a general state A, so it applies with σ(e).

Theorem 30 gives an expression for Me
1 :

Tr(OMe
1 ) =

1

n

d∑
i=1

ei Tr(OΦi) =
1

n

d∑
i=1

eiOi =
v⊤e

n
,

where v = (O1, . . . , Od) is the vector of Ois. The variance is thus

Var
e∼D

[Tr(OMe
1 )] =

1

n2
Var
e∼D

[v⊤e] =
v⊤ΣDv

n2
,

where ΣD is the covariance matrix for D . By Lemma 37, ΣD ⪯ 1
(1−∆)2

ΣD ′ , and thus

Var
e∼D

[Tr(OMe
1 )] =

v⊤ΣDv

n2
≤ v⊤ΣD ′v

n2(1 − ∆)2
=

1

(1 − ∆)2
Var
e∼D ′

[
1

n

d∑
i=1

eiOi

]
.

Since e2, . . . , ed are independent under D ′, we rewrite with e1 = n−e2−· · ·−ed and simplify
as much as possible.

Var
e∼D ′

[
1

n

d∑
i=1

eiOi

]
= Var

e∼D ′

[
O1 +

1

n

d∑
i=2

ei(Oi −O1)

]
=

1

n2

d∑
i=2

Var
e∼D ′

[ei](Oi −O1)
2

Since (Oi −O1)
2 ≤ 4∥O∥2∞ and Vare∼D ′ [ei] ≤ λ1λi

λ1−λi ≤
λ1λi
2λ1−1 , the variance is bounded by

Var
e∼D

[Tr(OMe
1 )] ≤ 1

n2(1 − ∆)2

d∑
i=2

Var
e∼D ′

[ei](Oi −O1)
2 ≤

4∥O∥2∞
n2(1 − ∆)2

λ1(1 − λ1)

(2λ1 − 1)2
.

We note that the variance due to mixture randomness is small in all the ways we want:
it is a function of ∥O∥2 rather than Tr(O2), it is quadratic (rather than linear) in 1

n , and it
is multiplied by a factor of η = 1−λ1. We proceed with the analysis of the other (dominant)
term in the variance.

B.7.2. Variance due to measurement randomness

Lemma 42

Var
meas

[Tr(OM̂1) | e] ≤ Tr(O2)

n2
+

2∥O∥2∞
n

+
1

n2

∑
i ̸=j

eiejOij (15)

Proof Recall that Corollary 24 already gives

Var
meas

[Tr(OM̂e
1 )] ≤ Tr(O2)

n2
+

2∥O∥2∞
n

+
n− 1

n
Tr(O⊗2Me

2 ) − Tr(OMe
1 )2,
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by applying it to σ(e). The first two terms match the goal, so we focus on bounding the
last two terms, using the expressions for Me

1 and Me
2 from Theorem 30 and Theorem 31.

n(n− 1) Tr(O⊗2Me
2 ) = Tr

O⊗22Π(2)
sym

∑
i ̸=j

eiejΦi ⊗ Φj +
∑
k

(
ek
2

)
Φ⊗2
k


=
∑
i ̸=j

eiej(OiOj +Oij) + 1
2

∑
k

(e2k − ek)(O
2
k +Okk)

=
∑
i ̸=j

eiejOiOj +
∑
i ̸=j

eiejOij +
∑
k

e2kO
2
k −

∑
k

ekO
2
k

=
∑
i,j

eiejOiOj +
∑
i ̸=j

eiejOij −
∑
k

ekO
2
k

= n2 Tr(OMe
1 )2 +

∑
i ̸=j

eiejOij −
∑
k

ekO
2
k

We can drop the negative term, and then it follows that

n− 1

n
Tr(O⊗2Me

2 ) − Tr(OMe
1 )2 ≤

∑
i ̸=j

eiejOij ,

from which we get the result.

Now let us separately bound the last term of (15).

Lemma 43

1

n2
E

e∼D

∑
i ̸=j

eiejOij

 ≤ 2

n

1 − λ1
2λ1 − 1

∥O∥2∞ + O(∆)

Proof First, observe that

Oij = Tr(OΦiOΦj) = ⟨ϕi|O|ϕj⟩⟨ϕj |O|ϕi⟩ = |⟨ϕi|O|ϕj⟩|2 ≤ ∥O∥2∞.

In other words, we can bound each Oij by ∥O∥2∞, and then it clearly suffices to bound∑
i ̸=j eiej . To start, we can look at the sum as being over all eiej – which totals n2 on the

basis that e1 + · · · + ed = n for all e – minus the “diagonal” terms, of which we claim only
e21 will be relevant. ∑

i ̸=j
E

e∈D
[eiej ] =

∑
i,j

E
e∈D

[eiej ] −
∑
k

E
e∈D

[e2k]

= E
e∈D

∑
i,j

eiej

−
∑
k

E
e∈D

[e2k]

≤ n2 − E
e∼D

[e21]
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Write e1 as n− e2 − · · · − ed, and we get

E
e∼D

[e21] = E
e∼D

(n−
d∑
i=2

ei

)2


= n2 − 2n
d∑
i=2

E
e∼D

[ei] +
d∑
i=2

d∑
j=2

E
e∼D

[eiej ]

≥ n2 − 2n
d∑
i=2

E
e∼D

[ei].

It follows that
∑

i ̸=j Ee∼D [eiej ] ≤ 2n
∑d

i=2 Ee∼D [ei]. Under the approximate distribution,
this is

d∑
i=2

E
e∼D ′

[ei] =

d∑
i=2

λi
λ1 − λi

≤ 1 − λ1
2λ1 − 1

,

and Theorem 36 bounds the difference from the true distribution by at most O(∆). The
result follows.

B.8. Conclusion

We finish the section by stating and proving a more formal version of Theorem 2.

Theorem 44 For unknown state with deviation η, the standard joint measurement on n
copies succeeds with probability at least (1 − η)n−1. Conditioned on success, there is an
estimator ϕ̂ such that

E[Tr(Oϕ̂)] = Tr(OΦ1) +
1

n
·
(

Tr(Oρ) − Tr(OΦ1)

1 − η
+ O

(
∥O∥∞η

2
))

Var[Tr(Oϕ̂)] =
Tr(O2)

n2
+

6∥O∥2∞
n

+
8∥O∥2∞
n2

+ O(∆)

Proof Take ϕ̂ = M̂1. Theorem 38 gives the mean under the approximate distribution

E
e∼D ′

[Me
1 ] = Φ1 +

1

n

d∑
j=2

λj
λ1−λj (Φj − Φ1).

First, expand
λj

λ1−λj as:

λj
λ1 − λj

=
λj
λ1

(
1 + O

(
λj
λ1

))
=
λj
λ1

(
1 + O

(
η

1 − η

))
=
λj
λ1

(1 + O(η)).

The first order term gives

d∑
j=2

λj
λ1

(Φj − Φ1) =
d∑
j=1

λj
λ1

(Φj − Φ1) = ρ− Φ1.
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The second order term is the same, but multiplied by O(η), and since

Tr(O(ρ− Φ1)) ≤ ∥O∥∞∥ρ− Φ1∥tr = O(∥O∥∞η),

the expectation is indeed

E
e∼D ′

[Tr(OMe
1 )] = Tr(OΦ1) +

1

n

(
Tr(Oρ) − Tr(OΦ1)

1 − η
+ O

(
∥O∥∞η

2
))
.

This is the expectation under D ′, but Corollary 39 proves the approximation changes
the trace distance by at most O(∆) ⊆ O

(
η2
)
, and thus affects the final expectation by

O
(
∥O∥∞η2

)
.

On the variance side, Theorem 40 divides the variance into a sum of mixture randomness
and measurement randomness. Theorem 41 bounds the mixture randomness:

Var
e∈D

[ E
meas

(Tr(OM̂1) | e)] ≤ 4∥O∥2

n2
λ1(1 − λ1)

(2λ1 − 1)2
+ O(∆).

A combination of Lemma 42 and Lemma 43 bounds the measurement randomness:

Var
meas

[Tr(OM̂1) | e] ≤ Tr(O2)

n2
+

2∥O∥2∞
n

+
2

n

1 − λ1
2λ1 − 1

∥O∥2∞ + O(∆).

The total is

Var[Tr(Oρ̂)2] ≤ Tr(O2)

n2
+

2∥O∥2∞
n

+
2∥O∥2∞
n

1 − λ1
2λ1 − 1

+
4∥O∥2∞
n2

λ1(1 − λ1)

(2λ1 − 1)2
+ O(∆)

≤ Tr(O2)

n2
+

6∥O∥2∞
n

+
8∥O∥2∞
n2

+ O(∆).

Appendix C. Chiribella’s Theorem

In this section we adapt Chiribella’s theorem Chiribella (2011) to get expressions for E[Ψ]
and Var[Ψ]. The subject of this theorem is the map MPn→k defined below.

Definition 45 For integers n, k ≥ 0, let MPn→k : L
(
(Cd)⊗n

)
→ L

(
(Cd)⊗k

)
be such that

MP
n→k

(A) =
dn
dn+k

Tr
[n]

(Π(n+k)
sym (A⊗ I⊗k)) =

dn
dn+k

Tr
n+k→k

(A⊗ I⊗k)

for all A ∈ L
(
(Cd)⊗n

)
. We remind the reader that Tr[n] is the partial trace over qudits

[n] = {1, . . . , n}.

This map is an example of a “measure and prepare map” because it is equivalent to mea-
suring the state with some POVM, and then preparing a state dependent on the outcome.
In particular, Proposition 46 below shows that this map measures with Mn, and prepares
|ψ⟩⟨ψ|⊗k if the outcome is ψ, or 0 if the measurement fails.
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Proposition 46 Let Ψ be the outcome of measuring an n-qudit state A with Ms (|ψ⟩⟨ψ|
or 0 for failure). Then the kth moment of Ψ is E[Ψ⊗k] = MPn→k(A) for all k ≥ 0.

Proof The expectation of Ψ⊗k is a straightforward calculation using definition of Mn

(Definition 19) and the Haar integral characterization of Π
(n)
sym (Lemma 18) as needed.

E[Ψ⊗k] = 0⊗k Tr(F⊥A) +

∫
|ψ⟩⟨ψ|⊗k Tr(FψA)

=

∫
|ψ⟩⟨ψ|⊗kdn Tr(|ψ⟩⟨ψ|⊗nA)dψ definition of Fψ

= dn Tr
[n]

((∫
|ψ⟩⟨ψ|⊗(n+k)dψ

)
(A⊗ I⊗k)

)
linearity of trace, integral

=
dn
dn+k

Tr
[n]

(
Π(n+k)

sym (A⊗ I⊗k)
)

= MP
n→k

(A). definition of MP

In addition to MPn→k, Chiribella’s theorem uses a “cloning map”, defined below.

Definition 47 (Optimal Cloning Map Werner (1998)) Let us define the superoper-
ator Cln→n+k : L

(
(Cd)⊗n

)
→ L

(
(Cd)⊗n+k

)
on input A ∈ L

(
(Cd)⊗n

)
as

Cl
n→n+k

(A) =
dn
dn+k

Π(n+k)
sym

(
A⊗ I⊗k

)
Π(n+k)

sym .

This map extends an n-qubit state to n+k qudits. The no-cloning theorem prohibits cloning
quantum states, but Werner Werner (1998) showed that it is the optimal with respect to
the fidelity of Cln→n+k(σ

⊗n) and σ⊗n+k.

This brings us to the key result of this section, due to Chiribella (2011).

Theorem 48 (Chiribella’s theorem) For A ∈ Π
(n)
sym((Cd)⊗n) (in the symmetric sub-

space)

MP
n→k

(A) =

(
d+ k + n− 1

k

)−1 k∑
s=0

(
n

s

)(
d+ k − 1

k − s

)
Cl
s→k

(
Tr

[n−s]
(A)

)
.

Before we get into the relevance of this theorem, let us quickly upgrade it from symmetric
states to exchangeable states.

Corollary 49 For exchangeable A ∈ L
(
(Cd)⊗n

)
,

MP
n→k

(A) =

(
d+ k + n− 1

k

)−1 k∑
s=0

(
n

s

)(
d+ k − 1

k − s

)
Cl
s→k

(
Tr
n→s

(A)
)
,

where Trn→s(A) = Tr[n−s](Π
(n)
symA) is taken from Section A.
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Proof Set A′ = Π
(n)
symA and observe that A′ is symmetric, since Π

(n)
sym clearly absorbs

permutations on the left, and

A′Wπ = Π(n)
symAWπ = Π(n)

symW
†
πA = Π(n)

symA = A′

on the left, using the exchangeability of A. It follows that we can plug A′ into Theorem 48,
to get that the right hand side of the claim equals MPn→k(A

′). Then we expand with

Definition 45 and see that the extra Π
(n)
sym can be absorbed into Π

(n+k)
sym :

MP
n→k

(A′) =
dn
dn+k

Tr
[n]

(Π(n+k)
sym (Π(n)

symA⊗ I⊗k)) =
dn
dn+k

Tr
[n]

(Π(n+k)
sym (A⊗ I⊗k)) = MP

n→k
(A).

The result follows.

The relevance of Chiribella’s theorem (or the corollary) is that it expresses MPn→k(A), and
thus E[Ψ⊗k] (by Proposition 46), in terms of a handful of partial traces. It distills the state
A down to ≤ k qudits by partial trace, then blows it back up to k qudits with the cloning
map. In other words, we can compute E[Ψ] and E[Ψ⊗2] entirely from 1-qudit and 2-qudit

summaries (i.e., Tr[n−1](Π
(n)
symA) and Tr[n−2](Π

(n)
symA)) of the full n-qudit state A.

We refactor Chiribella one more time to (i) explicitly link the calculation to E[Ψ⊗k],
(ii) simplify the binomial coefficients as much as possible, and (iii) expand Clk→s with its
definition so that it is not needed in the main text. This is the version of Chiribella’s
theorem we quote in Section B.1.

Theorem 21 Fix integers n, k ≥ 0, let A ∈ Dens
(
(Cd)⊗n

)
be an exchangeable n-qudit

state, and let Ψ be the outcome of measuring A with Mn.

E[Ψ⊗k | success] =
1

(d+ n)k
Π(k)

sym

(
k∑
s=0

(
n

s

)(
k

s

)(
Trn→s(A)

Trn→0(A)
⊗ I⊗k−s

))
Π(k)

sym (8)

Proof Start from the definition of MP, plug in the definition of Cl, and expand the binomials
to simplify.

MP
n→k

(A) =

(
d+ k + n− 1

k

)−1 k∑
s=0

(
n

s

)(
d+ k − 1

k − s

)
Cl
s→k

( Tr
n→s

(A))

=

(
d+ k + n− 1

k

)−1

Π(k)
sym

(
k∑
s=0

(
n

s

)(
d+ k − 1

k − s

)
ds
dk

(
Tr
n→s

(A) ⊗ I⊗k−s
))

Π(k)
sym

=
1

(d+ n)k
Π(k)

sym

 k∑
s=0

(
n

s

)
(d+ k − 1)!

(k − s)!(d+ s− 1)!

(d+s−1)!
(d−1)!s!

(d+k−1)!
(d−1)!k!

(
Tr
n→s

(A) ⊗ I⊗k−s
)Π(k)

sym

=
1

(d+ n)k
Π(k)

sym

(
k∑
s=0

(
n

s

)(
k

s

)(
Tr
n→s

(A) ⊗ I⊗k−s
))

Π(k)
sym.
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Recall that E[Ψ⊗k] = MPn→k(A) for exchangeable A by Theorem 49. Since

E[Ψ⊗k] = E[Ψ⊗k | success] Pr[success] + E[Ψ⊗k | ¬success] Pr[¬success]

= E[Ψ⊗k | success] Tr(Π(n)
symA),

we can divide through by Trn→0(A) := Tr(Π
(n)
symA) to get the expectation of Ψ⊗k conditioned

on success.

Appendix D. Approximating the distribution of e

This appendix is dedicated to results about the approximate distribution D ′, and how it
relates to D and the expectation values we wish to compute .

First, we recall the mean and variance of the geometric random variables composing
e ∼ D ′.

Proposition 50 Let e ∼ D ′. The mean and variance of ei for 2 ≤ i ≤ d is

E[ei] =
λi

λ1 − λi
, Var[ei] =

λiλ1
(λ1 − λi)2

,

Next, we want to bound the difference between D and D ′. To start, we bound the
probability ei = n− j for arbitrary j.

Lemma 51 When e ∼ D ′, we have Pr[e2 + · · · + ed = j = n− e1] ≤
(
1−λ1
λ1

)j
.

Proof From the definitions, we have

Pr[e2 + · · · + ed = j] =
∑

e2+···+ed=j

d∏
i=2

fi(ei) =
∑

e2+···+ed=j

d∏
i=2

( λiλ1 )ei(1 − λi
λ1

).

The factors (1 − λi
λ1

) are all ≤ 1 and can be neglected. Then we introduce multinomial

coefficients
(
j
e

)
≥ 1 into the sum, letting us apply the multinomial theorem.

Pr[e2 + · · · + ed = j] ≤
∑

e2+···+ed=j

(
j

e

) d∏
i=2

( λiλ1 )ei =

(
d∑
i=2

λi
λ1

)j
=

(
1 − λ1
λ1

)j
.

This leads to a bound on the probability e1 is negative, which then also bounds the distance
between the two distributions.

Theorem 35

Pr
e∼D ′

[e1 < 0] ≤ ∆ :=

(
1 − λ1
λ1

)n+1 λ1
2λ1 − 1

.

It follows that ∥D − D ′∥TV = ∆.
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Proof Recall that e1 = n− e2 − · · · − ed, so

Pr
e∼D ′

[e1 < 0] = Pr
e∼D ′

[e2 + · · · + ed > n] =
∞∑

j=n+1

Pr
e∼D ′

[e2 + · · · + ed = j].

Use Lemma 51 and sum a geometric series to get

Pr
e∼D ′

[e1 < 0] ≤
∞∑

j=n+1

(
1 − λ1
λ1

)j
=

(
1 − λ1
λ1

)n+1 λ1
2λ1 − 1

= ∆.

We know that where D has support, the mass is proportional to D ′, but necessarily larger
because D ′ has mass on e1 < 0 where D does not. Moreover, e1 < 0 is the only area where
D ′ has support and D does not. Thus, Pr[e1 < 0] is exactly the mass which must be moved
to transform D ′ into D , and hence ∥D − D ′∥TV = ∆.

We discuss in the main text that ∆ = O
(
η2
)
, and can be very small for practical values

of λ1 and n.

Recall that we need Ee∼D [ei] and Ee∼D [eiej ] to evaluate M1 and M2. The total variation
distance alone is insufficient to bound the difference in expectation, so we must separately
justify how much the approximation can distort expectations.

Theorem 36 The difference between D and D ′ for first-order expectations is at most∥∥∥∥ED [e] − E
D ′

[e]

∥∥∥∥
1

=
∑
i

∣∣∣∣ED [ei] − E
D ′

[ei]

∣∣∣∣ ≤ 2∆

1 − ∆

(
n+

1

2λ1 − 1

)
.

Proof For some small probability p := PrD ′ [e1 < 0] ≤ ∆, we have

E
D ′

[e] = Pr[e1 ≥ 0] E
D ′

[e | e1 ≥ 0] + Pr[e1 < 0] E
D ′

[e | e1 < 0]

= (1 − p)E
D

[e] + p E
D ′

[e | e1 < 0].

Rearranging, ED [e] = 1
1−p(ED ′ [e] − pED ′ [e | e1 < 0]), and thus∥∥∥∥ED [e] − E

D ′
[e]

∥∥∥∥
1

=
p

1 − p

∥∥∥∥ED ′
[e] − E

D ′
[e | e1 < 0]

∥∥∥∥
1

.

Since the sum of e is always n under any of these distributions, the expectations of e also
sum to n. The sum of the coordinate-wise differences is n − n = 0, and thus the absolute
difference on e1 is, by triangle inequality, bounded by the absolute differences on for the
other coordinates. That is,∥∥∥∥ED ′

[e] − E
D ′

[e | e1 < 0]

∥∥∥∥
1

≤ 2

∥∥∥∥ED ′
[e−1] − E

D ′
[e−1 | e1 < 0]

∥∥∥∥
1

≤ 2

∥∥∥∥ED ′
[e−1]

∥∥∥∥
1

+2

∥∥∥∥ED ′
[e−1 | e1 < 0]

∥∥∥∥
1

,

where e−1 = (e2, . . . , ed).
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Since e2, . . . , ed ≥ 0, these norms are both just the sum of the entries, i.e.,∥∥∥∥ED ′
[e−1]

∥∥∥∥
1

=
d∑
i=2

E
D ′

[ei].

For these geometric random variables, we have E[ei] = λi
λ1−λi ≤ λi

2λ1−1 , for all 2 ≤ i ≤ d.
This gives the following bound on the norm.∥∥∥∥ED ′

[e−1]

∥∥∥∥
1

=

d∑
i=2

E[ei] ≤
∑d

i=2 λi
2λ1 − 1

=
1 − λ1
2λ1 − 1

.

On the other hand,

Pr[e1 < 0] E
e∼D ′

[e2 + · · · + ed | e1 < 0] = Pr[e2 + · · · + ed > n] E
e∼D ′

[e2 + · · · + ed | e2 + · · · + ed > n]

=

∞∑
j=n+1

j · Pr[e2 + · · · + ed = j]

≤
∞∑

j=n+1

j

(
1 − λ1
λ1

)j
=

(
1 − λ1
λ1

)n+1 λ1
(2λ1 − 1)2

(n(2λ1 − 1) + λ1)

= ∆

(
n+

λ1
2λ1 − 1

)

∥∥∥∥ED [e] − E
D ′

[e]

∥∥∥∥
1

=
2p

1 − p

(∥∥∥∥ED ′
[e−1]

∥∥∥∥
1

+

∥∥∥∥ED ′
[e−1 | e1 < 0]

∥∥∥∥
1

)
≤ 2∆

1 − ∆

(
1 − λ1
2λ1 − 1

+ n+
λ1

2λ1 − 1

)
=

2∆

1 − ∆

(
n+

1

2λ1 − 1

)

Finally, we bound the variance by going through the covariance matrices.

Lemma 52 The covariance matrices of D and D ′ are related as follows:

ΣD ′ ⪰ ΣD(1 − ∆)2.

Proof An elegant way to write the covariance matrix is

ΣD ′ = E
e∼D ′
e′∼D ′

[(e− e′)(e− e′)⊤].
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Each (e − e′)(e − e′)⊤ is positive semidefinite, and therefore so is ΣD ′ . Now split the
expectation based on whether e1 and e′1 are nonnegative.

ΣD ′ = E
e∼D ′
e′∼D ′

[(e− e′)(e− e′)⊤ | e1 ≥ 0 ∧ e′1 ≥ 0] Pr
e∼D ′

[e1 ≥ 0]2 +

E
e∼D ′
e′∼D ′

[(e− e′)(e− e′)⊤ | e1 < 0 ∨ e′1 < 0]

(
1 − Pr

e∼D ′
[e1 ≥ 0]2

)

Recall that D is D ′ conditioned on e1 ≥ 0 (Lemma 34), so that first conditional expectation
is actually ΣD .

E
e∼D ′
e′∼D ′

[(e− e′)(e− e′)⊤ | e1 ≥ 0 ∧ e′1 ≥ 0] = E
e∼D
e′∼D

[(e− e′)(e− e′)⊤] = ΣD

It follows that

ΣD ′ ⪰ ΣD Pr
e∼D ′

[e1 ≥ 0]2 ⪰ ΣD(1 − ∆)2.

Appendix E. Optimal Parameter Choice

We now prove Theorem 9.

Theorem 9 Given B, ϵ and η, the expected number of samples is minimized for the choice
of k, n and b given in Table 1.

For convenience, we duplicate Table 1 below.

η O(1/s∗) Ω(1/s∗) ∩ O(
√
ϵ) Ω(

√
ϵ)

k 1 1 O
(
η√
ϵ

)
n O(s∗) O

(
1
η

)
O
(

1√
ϵ

)
b 1 O

(
Bη2+η
ϵ2

)
O
(
B
ϵ + 1

ϵ3/2

)
s O(s∗) O

(
Bη+1
ϵ2

)
O
(
Bη
ϵ2

+ η
ϵ5/2

)
Table 2: Choice of parameters k, n, b for the three regimes of η. Recall s∗ :=

√
B
ϵ + 1

ϵ2
.

Proof

The optimal choice of parameters k, n, b is essentially a mathematical program. The
objective is s, the expected number of samples of ρ. Figure 1 makes it clear that k, n, b
multiply, and since that only counts the successful measurements, we furthermore multiply
by a factor 1/Pr[success] in expectation. We recall that Pr[success] falls off exponentially
with n (cf. Equation (14)). It is therefore advisable to keep Pr[success] above a constant,
which is achieved by setting n = O(1/η′) = O(k/η). This gives us both our objective value,
s = knb/Pr[success] = Θ(knb), and first constraint, Equation (19).
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The remaining constraints come from correctness, i.e., the requirement to output an
estimator with error at most ϵ. The mean squared error of our estimate is split between
the bias squared and the variance. From Equation (3) and Equation (5), we deduce that
the bias β is at most O

( η
kn

)
. From Theorem 2, the total variance of our estimator satisfies:

Var(Tr(Oϕ̂(b))) = O( B
n2b

+ 1
nb). To ensure the mean squared error is at most O

(
ϵ2
)
, the

bias should be O(ϵ), and each term of the variance at most O
(
ϵ2
)

(or standard deviation
at most O(ϵ)). The variance terms translate directly to constraints (17), and (18), and the
bias condition gives (16). Last, we require k, n, b to be at least 1.

minimize knb

subject to
η

nk
= O(ϵ) (bias condition) (16)

B

n2b
= O

(
ϵ2
)

(variance condition 1) (17)

1

nb
= O

(
ϵ2
)

(variance condition 2) (18)

n = O(k/η) (success condition) (19)

k, n, b ≥ 1. (positivity condition) (20)

It remains to optimize this program for arbitrary B, ϵ, η.
Table 1 gives optimal values for k, n, and b in each of the three regimes. It is a calculation

to see that these solutions are feasible and achieve the claimed sample complexities. On the
other hand, optimality can be certified by the following products of constraints.√

(17) × (1 ≤
√
b) × (1 ≤ k) =⇒ knb = Ω(

√
B/ϵ) (21)

(18) × (1 ≤ k) =⇒ knb = Ω(1/ϵ2) (22)

(17) × (19) =⇒ knb = Ω(Bη/ϵ2) (23)√
(16) × (18) ×

√
(19) =⇒ knb = Ω(η/ϵ5/2) (24)

For example, if we multiply 1/nb = O(ϵ2) and 1 ≤ k we get 1/nb = O(kϵ2), which we can
rearrange to knb = Ω(1/ϵ2), (22). It is clear from these equations that the complexities
of the three regimes—O(

√
B/ϵ + 1/ϵ2), O((Bη + 1)/ϵ2), and O(Bη/ϵ2 + η/ϵ5/2)—arise

from (21) + (22), (22) + (23), and (23) + (24) respectively. Likewise, thresholds between
regimes are given by the crossover points of these inequalities, i.e.,

√
B/ϵ ≈ Bη/ϵ2 implies

η ≈ ϵ/
√
B = Θ(1/s∗) and 1/ϵ2 ≈ η/ϵ5/2 gives η ≈

√
ϵ.

Appendix F. Eigenvalue estimation

In this appendix, we prove the following theorem, as a component of estimating η from
samples of ρ.

Theorem 10 Let r ≥ 1 be an integer. There is an algorithm which estimates the failure
probability p of a Bernoulli trial, such that the algorithm (i) outputs a constant-factor mul-
tiplicative approximation of p, and (ii) makes O(r/p) samples of the Bernoulli trial, except
with an exp(−Θ(r)) probability of failure.
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The algorithm is simple: it performs/samples Bernoulli trials until it has seen r failures
total. Then it outputs r/T as an estimate for p, where T is the total number of trials.

Lemma 53 The number of trials T is bounded above and below with high probability, i.e.,

Pr[T = Θ(r/p)] ≥ 1 − exp(−Θ(r)).

Concretely, we have, e.g.,

Pr[ln(2) rp ≤ T ≤ ln(4) rp ] ≥ 1 − 2 · (12e ln 2)r ≥ 1 − 2 · 0.9421r.

Proof First, we argue that for any n ≥ r, if Y ∼ Bin(n, p) then Pr[T ≤ n] = Pr[Y ≥ r]. To
see this, imagine an infinite sequence of Bernoulli trials. The binomial distribution counts
the number of failures, Y , in the first n trials, whereas the algorithm scans down the list
to the rth failure at some position T . It is clear that the rth failure happens at or before
position n (T ≤ n) if and only if there are r or more failures among the first n trials (Y ≥ r).

Since the mean of the binomial is E[Y ] = np, a multiplicative Chernoff bound gives

Pr[Y ≥ (1 + x)np] ≤
(

ex

(1 + x)1+x

)np
.

Set n = r
(1+x)p so that r = (1 + x)np, and this becomes

Pr

[
T ≤ r

(1 + x)p

]
= Pr[Y ≥ r] ≤

(
ex/(1+x)

1 + x

)r
.

For instance, at x∗ = 1
ln 2 − 1, we have Pr[T ≤ r

p ln 2] ≤ (12e ln 2)r ≈ 0.9421r.
On the other side, Pr[T > n] = Pr[Y < r] ≤ Pr[Y ≤ r]. The other side of the Chernoff

bound gives

Pr[Y ≤ (1 − x)np] ≤
(

e−x

(1 − x)(1−x)

)np
.

Setting r = (1 − x)np, we translate this to

Pr

[
T ≥ r

(1 − x)p

]
≤

(
e−x/(1−x)

1 − x

)r
.

At x∗ = 1 − 1
ln 4 we get Pr[T ≥ r

p ln 4] ≤ (12e ln 2)r ≈ 0.9421r. Union bound over the two
tail bounds finishes the result.

44


	Introduction
	Main result
	Technical challenges
	Related Work
	Open Problems

	Abbreviated Preliminaries
	Outline of main theorem
	The compound estimation procedure
	Choice of parameters
	Comparison to alternative approaches

	Preliminaries
	Symmetric and exchangeable operators

	The Standard Symmetric Joint Measurement on almost-pure states
	Chiribella's Theorem: Moments from Partial Traces
	Estimator from joint symmetric measurement
	Pure State Classical Shadows

	Classical mixture of orthogonal tensor products
	M1 and M2 for sigma(e)
	Geometric approximation
	Mean of the estimator
	Variance of the estimator
	Variance due to mixture randomness
	Variance due to measurement randomness

	Conclusion

	Chiribella's Theorem
	Approximating the distribution of e
	Optimal Parameter Choice
	Eigenvalue estimation

