
Proceedings of Machine Learning Research vol 247:1–28, 2024 37th Annual Conference on Learning Theory

Stochastic Constrained Contextual Bandits via Lyapunov
Optimization Based Estimation to Decision Framework

Hengquan Guo GUOHQ@SHANGHAITECH.EDU.CN
ShanghaiTech University

Xin Liu* LIUXIN7@SHANGHAITECH.EDU.CN

ShanghaiTech University

Editors: Shipra Agrawal and Aaron Roth

Abstract
This paper studies the problem of stochastic constrained contextual bandits (CCB) under general re-
alizability condition where the expected rewards and costs are within general function classes. We
propose LOE2D, a Lyapunov Optimization Based Estimation to Decision framework with online
regression oracles for learning reward/constraint. LOE2D establishes Õ(T

3
4U

1
4 ) regret and con-

straint violation, which can be further refined to Õ(min{
√
TU/ε2, T

3
4U

1
4 }) when the Slater con-

dition holds in the underlying offline problem with the Slater “constant” ε = Ω(
√

U/T ), where U
denotes the error bounds of online regression oracles. These results improve Slivkins et al. (2023)
in two aspects: i) our results hold without any prior information while Slivkins et al. (2023) re-
quires the knowledge of Slater constant to design a proper learning rate; ii) our results hold when
ε = Ω(

√
U/T ) while Slivkins et al. (2023) requires a constant margin ε = Ω(1). These improve-

ments stem from two novel techniques: violation-adaptive learning in E2D module and multi-step
Lyapunov drift analysis in bounding constraint violation. The experiments further justify LOE2D
outperforms the baseline algorithm.

1. Introduction

Stochastic contextual bandits (CB) is a general online learning framework for interactive decision-
making in uncertain environments. It has been boasting many practical applications, including rec-
ommender systems Li et al. (2010), task scheduling in crowdsourcing Tran-Thanh et al. (2014), and
clinical trials Tewari and Murphy (2017). Specifically, in a contextual bandit problem, the learner,
upon observing a context xt in period t, takes an action at from the decision set and then receives a
stochastic reward rt. The objective is to maximize the expected cumulative rewards E[

∑T
t=1 rt(at)].

However, many real-world applications require to take operational constraints into account. For in-
stance, an online advertising system optimizes items display to improve click-through rates while
conforming to weekly or monthly budget limits; a crowdsourcing system maximizes its utility via
efficient task scheduling while satisfying fairness and laboring constraints; in clinical trials, it’s
crucial to design effective treatment plans according to patient conditions while adhering to scary
medical resources. For such applications, stochastic constrained contextual bandits (CCB) is a more
appropriate model.

Bandits with knapsacks (BwK) is a specialized class of CCB and has been extensively stud-
ied Agrawal and Devanur (2014, 2016); Badanidiyuru et al. (2014, 2018), where the interaction
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terminates once the budget is exhausted. By assuming linear rewards and costs (i.e., linear real-
izability assumption), the contextual version of BwK has been explored in Agrawal and Devanur
(2016); Badanidiyuru et al. (2018) where near-optimal regret bounds are achieved. Other categories
of CCB include fairness bandits where fairness is defined as a minimum rate at which an arm is
pulled Li et al. (2019); Xu et al. (2020); Patil et al. (2021) and conservative bandits Wu et al. (2016);
Kazerouni et al. (2017); Garcelon et al. (2020), where conservatism is defined as a minimum re-
quirement for anytime cumulative rewards. While most existing studies concentrate on concrete
constraints and specific realizability assumptions (such as the linear class), the exploration of CCB
under more general functional and constraint settings has received less attention. Han et al. (2023)
studied stochastic contextual bandits with knapsacks (CBwK) under general realizability assump-
tion, where a primal-dual framework with online regression oracles for learning rewards and costs
is proposed to achieve a vanishing regret. However, the proposed algorithms are dedicated to knap-
sack constraints (all costs are non-negative) and it is unclear if their framework is applicable into
other types of constraints. Slivkins et al. (2023) studies contextual bandits with more general con-
straints in the form that

∑T
t=1 ct(at)− B ≤ 0, where the costs {ct(at)} could be either positive or

negative, including both packing and covering constraints. The paper also developed a primal-dual
oracle-based framework similar to Han et al. (2023) and achieved a regret and constraint violation of
Õ(T

3
4U

1
4 ) in a general setting, where U is the estimation error of online regression oracles. When

the additional assumption of the Slater condition holds, the regret and violation bound can be im-
proved to Õ(

√
TU) by tuning a key trade-off factor with the Slater constant information. However,

these results in Slivkins et al. (2023) are only meaningful in the regime of “large budgets” with
B = Ω(T ) and a constant feasibility margin ε = Ω(1) (resemble Slater’s constant). Moreover, their
algorithm requires prior knowledge of the feasibility margin ε. In real-world scenarios, the system
may operate in the regime of “small budget” B = o(T ) with a vanishing margin ε = o(1), and
obtaining such “margin” information can be quite challenging (if not impossible). Therefore, an
open question remains:

Is there a single algorithm capable of achieving optimal performance in stochastic constrained
contextual bandits without any prior knowledge, regardless of the feasibility assumption or a poten-
tially vanishing feasibility margin?

We provide a positive answer to this question by introducing LOE2D, a Lyapunov Optimization
Based Estimation to Decision. Our contributions can be summarized as follows:

• Algorithm Design: The design of LOE2D is motivated by the primal-dual approach based
on online regression oracles in Han et al. (2023); Slivkins et al. (2023). However, we in-
troduce novel design and perspective through Lyapunov optimization. The (primal) decision
modular builds on a regression-based method for contextual bandits and inverse-gap weight-
ing technique in Foster and Rakhlin (2020) by taking constraints into account and a new
violation-adaptive exploration strategy. The decision modular can be interpreted to minimize
“Regret + Lyapunov/potential drift”. The dual modular includes a careful design of virtual
queue (resemble scaled dual variable) that updates in a gradient-descent manner to keep track
of cumulative constraint violation in each round. Note unlike the previous approaches Han
et al. (2023); Slivkins et al. (2023), we do not impose any upper bound on the virtual queue.
The violation-adaptive design in both modules are crucial to minimize regret and constraint
violation simultaneously and establish the strong theoretical performance.
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Table 1: Our results and two most related work. LOE2D achieves the universal results across
three scenarios, while LagrangeCBwLC in Slivkins et al. (2023) requires customizing
trade-off factors for different CCB instances (with ε information) under strict assump-
tion, thus we present them separately. For CBwK, LOE2D is slightly looses “1/ε” against
SquareCBwK in Han et al. (2023) and LagrangeCBWLC in Slivkins et al. (2023). How-
ever, SquareCBwK requires a dedicated learning module to learn the optimal value and set
a proper learning rate, and LagrangeCBWLC requires a large budget B = Ω(T ).

ALGORITHMS
CCB

REGRET&VIO
CCB (SLATER CONDITION)

REGRET&VIO
CBWK REGRET

LOE2D Õ(T
3
4U

1
4 ) Õ(min{

√
TU
ε2 , T

3
4U

1
4 }) Õ(min{

√
TU
ε2 , T

3
4U

1
4 })

LAGRANGECBWLC
(GENERAL SETTING) Õ(T

3
4U

1
4 ) Õ(T

3
4U

1
4 ) ×

LAGRANGECBWLC
(CONSTANT ε & ITS
PRIOR KNOWLEDGE)

× Õ(
√
TU) ×

LAGRANGECBWLC
(TAILORED LEARNING RATE) × × Õ(

√
TU
ε )

SQUARECBWK × × Õ(
√
TU
ε )

• Theoretical Analysis: LOE2D achieves both regret and violation within Õ(T
3
4U

1
4 ) under

the general realizability assumption of reward and constraint functions. When an additional
relaxed Slater’s condition holds, LOE2D can guarantee Õ(min{

√
TU/ε2, T

3
4U

1
4 }), interpo-

lating from Õ(
√
TU) to Õ(T

3
4U

1
4 ) depending on the feasibility margin ε. Our result is more

general than that in Slivkins et al. (2023), where Õ(
√
TU) is established assuming a constant

ε. Moreover, unlike LagrangeCBwLC algorithm in Slivkins et al. (2023), which requires the
knowledge of the Slater constant ε to determine the learning rate, LOE2D achieves these re-
sults without any prior information. Besides, LOE2D can be applied into CBwK without any
modification and achieve a similar result in Han et al. (2023). The detailed comparisons are
summarized in Table 1. We establish these strong results through a novel perspective and
analysis of the violation/virtual queue process. Specifically, we view the virtual queue as a
Markovian process and leverage a multiple-step Lyapunov drift analysis to establish its high
probability upper bound. These techniques can be independent of interests and potentially
applied to other constrained online learning scenarios.

• Experiments: We evaluate LOE2D using classification and learning-to-rank datasets with
two different online regression oracles (linear regression and boosted regression trees). Our
experimental results demonstrate that LOE2D significantly outperforms LagrangeCBwLC al-
gorithm in Slivkins et al. (2023) by achieving a larger reward and smaller constraint violation.

Related works

Contextual Bandits: Multi-armed Bandits (MAB) is a classical online decision-making framework
Auer et al. (2002); Bubeck et al. (2012); Lattimore and Szepesvári (2020), where the learner aims
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to maximize the cumulative rewards in uncertain environments. Contextual bandits (CB) is a gen-
eralization of MAB where the contextual information is available when making decisions. There
exist extensive studies on CB under linear realizability assumption Rusmevichientong and Tsitsik-
lis (2010); Abbasi-Yadkori et al. (2011b); Li et al. (2010); Abeille and Lazaric (2017); Agrawal
and Goyal (2013). The classical exploration techniques such as Upper Confidence Bound (UCB)
Abbasi-Yadkori et al. (2011a), Thompson sampling Chapelle and Li (2011), and randomized explo-
ration Vaswani et al. (2020), have been proposed to design efficient algorithms for the contextual
bandit. To relax the strict realizability assumption, CB with classification oracles was discussed
in Dudik et al. (2011); Agarwal et al. (2014) where the algorithms assume access to cost-sensitive
classification oracles. While classification oracles improve the computational efficiency, such clas-
sification might be still intractable for even basic hypothesis classes Klivans and Sherstov (2009).
CB with regression oracles developed in Foster et al. (2018); Foster and Rakhlin (2020); Simchi-
Levi and Xu (2022) are more computationally efficient compared to that with classification oracles
and favorable for practical implementation.
Constrained Contextual Bandits: Constrained contextual bandits (CCB) includes various bandit
scenarios such as bandits with knapsacks (BwK) Badanidiyuru et al. (2014); Agrawal and Devanur
(2014); Wu et al. (2015); Agrawal and Devanur (2016); Badanidiyuru et al. (2018); Sivakumar et al.
(2022), where the interaction is terminated when the budget is exhausted, fairness bandits Li et al.
(2019); Xu et al. (2020); Patil et al. (2021), where each arm is required to be pulled at least a
predefined times, conservative bandits Wu et al. (2016); Kazerouni et al. (2017); Garcelon et al.
(2020), where learner should ensure that the cumulative rewards are not below a threshold induced
by a baseline algorithm. It is also worth mentioning that another class of CCB that imposes stage-
wise or anytime constraints in Amani et al. (2019); Moradipari et al. (2021); Pacchiano et al. (2021).
The objective is to maximize the cumulative rewards while ensuring the constraints are satisfied in
the expectation or high probability sense for each round. The proposed algorithms require solving a
complicated constrained optimization for each time, suffering from high computational complexity.

2. Problem Formulation

In this section, we introduce the problem formulation and performance metric for the stochastic
constrained contextual bandits.
Stochastic Constrained Contextual Bandits: We study stochastic constrained contextual bandits
denoted by {X ,A,F ,G}, where X is the context set, A is the action set (a finite set), F is the
reward function class, G is the cost function class. At period t, the learner observes a context xt
that is randomly generated from the context set X according to an (unknown) probability law P(·).
The learner takes an action at ∈ A, and then receives a random reward rt(at) ∈ [0, F ] and a
random cost ct(at) ∈ [−G,G], where we assume F,G ≥ 1. In this paper, we focus on the case of
single constraint for a simple presentation and our results can be easily extended to the case with
multiple-dimensional costs. We study a stochastic environment where the arrival of contexts and
the observations for reward and cost are all drawn from unknown i.i.d. distributions. We further
assume a key general realizability condition for the reward and cost functions.

Assumption 1 There exists functions f ∈ F and g ∈ G such that f(x, a) = E [rt(a)|x] and
g(x, a) = E [ct(a)|x] ,∀x ∈ X , a ∈ A.

We define a policy π : X → [0, 1]A, (A = |A|) which maps a context to a specific distribution
over action set A. The goal is to design a policy to optimize the cumulative rewards while satisfying
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the constraint as follows

max
π

E

[
T∑
t=1

f(xt, π(xt))

]
s.t. E

[
T∑
t=1

g(xt, π(xt))

]
≤ 0. (1)

The constraint functions in (1) are sufficiently general to cover a wide range of constraint settings.
{g(xt, ·)} could be either positive or negative for every round, allowing the formulation to capture
both covering and packing constraints. For example, it can represent the knapsack constraint when
g(xt, a) = c(xt, a) − B/T with c(x, a) ≥ 0, ∀x ∈ X , a ∈ A; the conservative constraint when
g(xt, a) = ξ · f(xt, πb(a)) − f(xt, a) with ξ ∈ (0, 1), where our policy should achieve at least
ξ fraction of a baseline algorithm πb or fairness constraint when g(xt, a) = ξa − I(at = a) for
ξa ∈ (0, 1), where the action/arm a required to be pulled at least ξa fraction times on average.
Regret: We consider the underlying offline and relaxed problem to (1) as the baseline problem

max
π

Ea∼π [f(x, a)] s.t. Ea∼π [g(x, a)] ≤ 0. (2)

Let π∗ and ν∗ be its optimal policy and value to (2), respectively. Note this offline problem serves
as an upper bound to (1) and the detailed proof can be found in Agrawal and Devanur (2016). For a
policy π, we define its (pseudo) regret against this baseline that

R(T ) := Tν∗ − E

[
T∑
t=1

f(xt, at)

]
.

Constraint Violation: The constraint violation is straightforward to be defined as

V(T ) := E

[
T∑
t=1

g(xt, at)

]
.

Note in CBwK, V(T ) ≡ 0 due to the “hard stopping” when the budget is exhausted.
Online Regression Oracles: We assume access to two online regression oracles Rr and Rc for
reward and cost functions, respectively, where the online supervised regression problem is to min-
imize cumulative errors for a given loss function. Specifically, we consider the squared regression
loss function that l(ŷ, y) := (ŷ − y)2, where ŷ denotes the prediction for y generated by the re-
gression oracles. Given an instance zt := (xt, at) ∈ X × A, the oracles calculate the estimated
functions f̂t and ĝt based on the historical observations ((z1, r1, c1), · · · , (zt−1, rt−1, ct−1)). Online
regression oracles can often be computationally efficient with provable strong theoretical guaran-
tees Foster and Rakhlin (2020). We make the following assumption for reward and cost regression
oracles.

Assumption 2 Let {xt, at} be the trajectory generated by a policy π. Let f̂t and ĝt calculated by
reward regression oracle Rr and cost regression oracle Rc, respectively, the following error bounds

T∑
t=1

(f̂t(xt, at)− f(xt, at))
2 ≤ Uf (p),

T∑
t=1

(g(xt, at)− ĝt(xt, at))
2 ≤ Ug(p),

hold with a probability 1− p. We further define U(p) = max(Uf (p), Ug(p)).
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The assumption characterizes the performance of regression oracles under the squared regression
errors. An online learning algorithm that attains sublinear square loss, i.e. U(p) = o(T ), for the
problem of predicting leads to a valid regression oracle. For example, for finite function classes,
there exist learning oracles such that Uf (p) = O(log(|F|/p)) and Ug(p) = O(log(|G|/p)) Foster
and Rakhlin (2023). We let p = 1/T 2 throughout the paper.

3. Lyapunov Optimization Based Estimation to Decision

In this section, we propose a general Lyapunov Optimization Based Estimation to Decision (LOE2D)
framework to minimize the regret and constraint violation simultaneously in constrained contextual
bandits. We summarize LOE2D algorithm and explain its underlying design principle and intuition.

LOE2D Framework

Initialization: Q1 = 0, V =
√
TU log T , γ = A

√
T/U and β1 = 1

For t = 1, · · · , T,

• Lyapunov Optimization Index Estimation: Estimate the reward function f̂t(xt, a) via Rr

and the cost function ĝt(xt, a) via Rc. Compute the Lyapunov optimization index

L̂t(xt, a) = f̂t(xt, a)−
Qt

V
ĝt(xt, a). (3)

• Estimation to Decision: Let ât = argmaxaL̂t(xt, a) and sample at according to the inverse
gap weighting distribution of πt that

πt(a) =
1

ηt + 2γβt(L̂t(xt, ât)− L̂t(xt, a))
, (4)

where ηt is a positive term to ensure
∑

a πt(a) = 1.

• Feedback and Online Regression Update: Observe noisy reward rt(at) and cost ct(at) and
feed them into the oracles Rr and Rc, respectively.

• Virtual Queue Update: Update the virtual queue and exploration parameter

Qt+1 =max (Qt + ct(xt, at), 0) , βt+1 = V/(V +Qt+1). (5)

LOE2D first incorporates the Lyapunov drift optimization framework into SquareCB Foster and
Rakhlin (2020), a randomization strategy that adeptly transforms the estimated values of actions
into a distribution. To optimally balance exploration and exploitation within these two frameworks,
we have enhanced and restructured both, introducing novel analysis techniques that ensure optimal
guarantees. In detail, the LOE2D framework includes the following components:

• Lyapunov optimization index estimation: Upon a context xt arrives, LOE2D estimates
rewards f̂t(xt, ·) and costs ĝt(xt, ·) from the regression oracles Rr and Rc, respectively. The
algorithm then utilizes Lyapunov optimization to calculate “Reward − Lyapunov drift” i.e.,
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V f̂t(xt, ·) − 1
2(Q

2
t+1 − Q2

t ), where the drift term is approximated by Qtĝt(xt, ·) according
to the virtual queue update in (5), resulting in the Lyapunov optimization index L̂t(xt, a)
as given in (3). Note the design in (3) can also be interpreted as an approximation of the
Lagrange function L(xt, a) := f(xt, a)− λg(xt, a), where the reward and cost functions are
approximated by estimated ones and the dual variable is approximated by the scaled virtual
queue term Qt/V. However, our design neither imposes any upper bound on the virtual queue
Qt in (5) nor requires any information on the knowledge of optimal cumulative rewards or
Slater’s constant. These are different from Han et al. (2023); Slivkins et al. (2023), where
the dual variables are constrained in a probability simplex and either the knowledge of the
optimal cumulative rewards or Slater constant is required to scale the dual variances such that
the reward and constraint violation can be balanced.

• Inverse-gap weighting decision: Upon estimating the Lyapunov optimization index L̂t(xt, ·)
we employ the inverse-gap weighting technique Abe and Long (1999); Foster and Rakhlin
(2020) to translate the weights into the action probabilities. Specifically, LOE2D computes
the probability πt(a) that is inversely proportional to the gap L̂(xt, â) − L̂(xt, a) between
the greedy one â and any given action a, and then sample at ∼ πt. Intuitively, when the
estimated weight of an action is large, the algorithm tends to choose it with a high probabil-
ity. The probabilistic design is to maintain a good tradeoff between information acquisition,
reward maximization, and constraint violation minimization. In the inverse-gap weighting
distribution in (4), we introduce a violation-adaptive (virtual queue related) exploration pa-
rameter βt in (5) to avoid exploring too much when the constraint violation (Qt) is large. Our
design is again different with Han et al. (2023); Slivkins et al. (2023), where the exploration
parameters are fixed.

• Regression oracles and virtual queue update: Once rt(at) and ct(at) are observed, they
are used to update regression oracles and the virtual queue term in (5). Note that the (scaled)
virtual queue Qt plays a similar role with the dual price in the Lagrange function in regulating
the decision. Intuitively, when the virtual queue becomes large, it would encourage a conser-
vative decision in (3) and (4) to prevent further constraint violations; otherwise, the algorithm
is optimistic in maximizing rewards. Moreover, it is worth emphasizing we provide a new
perspective and analysis on the virtual queue: we treat it as a Markov process and leverage a
multi-step Lyapunov drift analysis to establish its high probability upper bound.

In summary, LOE2D provides a new perspective on algorithm design and theoretical analysis for
constrained contextual bandits. The Lyapunov optimization guided design in (3), violation-aware
inverse-gap weighting decision in (4), and multi-step Lyapunov drift analysis on the virtual queue
process are essential to establish the strong theoretical performance under mild assumption and
without any prior information of the underlying offline problem.

4. Theoretical Results

In this section, we present the theoretical analysis of LOE2D framework. To state our results, we
first introduce a relaxed Slater condition.

Assumption 3 There exists a policy π0 such that for a positive value ε ≥ 4
√
U/T , Ea∼π0 [g(x, a)] ≤

−ε holds.
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The assumption commonly refers to the Slater condition and quantifies the degree of constraint
slackness, which is standard in the optimization literature. However, rather than assuming a constant
slackness (i.e., ε = Ω(1)) as in Slivkins et al. (2023), we allow a relaxed Slater’s condition (or a
tighter problem instance) with ε = Ω(

√
U/T ). Now we are ready to present the following main

results for LOE2D in terms of regret and constraint violation and formally answer the question
raised in the introduction.

Theorem 1 Under Assumptions 1 and 2, LOE2D achieves the following regret and constraint
violation that

R(T ) = Õ(T
3
4U

1
4 ), V(T ) = Õ(T

3
4U

1
4 ).

Given the additional Slater’s condition in Assumption 3, LOE2D achieves that

R(T ) = Õ(min{
√
TU/ε2, T

3
4U

1
4 }), V(T ) = Õ(min{

√
TU/ε2, T

3
4U

1
4 }).

Moreover for CBwK, LOE2D achieves the following regret that

R(T ) = Õ(min{
√
TU/ε2, T

3
4U

1
4 }).

Remark 2 The known lower bound is only on stochastic (linear) contextual bandits with knap-
sacks, which is proved by reducing CBwK to unconstrained contextual bandits problem Agrawal
and Devanur (2016); Han et al. (2023). Specifically, the lower bound is Ω(

√
TU), as proven by

Han et al. (2023). However, no existing lower bound is characterized by the feasibility margin ε.
For the general CCB problem (without hard-stopping), the lower bound of CCB is even more subtle
because the regret R(T ) and constraint violation V(T ) can trade off against each other, where we
can achieve a small (even negative) regret by causing a large violation (e.g., overusing resources).
However, if we consider their maximum max(R(T ),V(T )), we conjecture the lower bound is very
likely to be Ω(min{

√
TU/ε, T

3
4U

1
4 }) and we defer the formal proof to the future study.

Remark 3 The theorem shows that LOE2D achieves sublinear regret and constraint violation:
i) when only realizability assumption holds, LOE2D guarantees both regret and violation within
Õ(T

3
4U

1
4 ), consistent with the results in Slivkins et al. (2023); ii) when an additional relaxed

Slater’s condition holds in Assumption 3, LOE2D guarantees Õ(min{
√
TU/ε2, T

3
4U

1
4 }), which

interpolates between Õ(
√
TU) and Õ(T

3
4U

1
4 ) depending on the feasibility margin ε. Our result is

more general than that in Slivkins et al. (2023), where Õ(
√
TU) is established assuming a constant

ε and the regime of “large budgets” where B = Ω(T ). Moreover, unlike the algorithm (named
LagrangeCBwLC) in Slivkins et al. (2023), which requires the knowledge of the Slater constant ε
to determine the learning rate, LOE2D achieves these results without any prior information of the
environment. Besides, LOE2D can be applied into CBwK without any modification and achieve a
similar result in Han et al. (2023). Finally, it’s worth emphasizing that all these results are achieved
using a single LOE2D algorithm, without any customization for each specific scenario. This demon-
strates the flexibility and universality of the proposed framework.

Next, we illustrate the key techniques to prove Theorem 1. We first introduce a critical lemma that
bridges the regret and Lyapunov drift, which is the key to establish the constraint violation and
regret in Theorem 1. We also highlight the major steps in analyzing the “hard-stopping” CBwK.
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4.1. A Key Lemma of “Regret + Lyapunov Drift”

To provide a unified analysis in proving Theorem 1, we first establish the following key lemma that
upper bounds the “one-step regret + Lyapunov drift” in a whole. We define the Lyapunov function
as Lt =

1
2Q

2
t and its drift as ∆t = Lt+1 − Lt. Further let the filtration Ht = [xt, f̂t, ĝt, Qt].

Lemma 4 Under LOE2D, we have for any policy π such that

Ea∼π [f(xt, a)|Ht]− Eat∼πt [f(xt, at)|Ht] +
1

V
Eat∼πt [∆t|Ht]

≤γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γ

Qt

V
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
+ Ea∼π

[
Qt

V
g(xt, a)|Ht

]
+

A

γβt
+

G2

2V
. (6)

Note the lemma above holds for any policy π, including the optimal static policy π∗. Therefore,
it implies that “one-step regret + Lyapunov drift” is bounded in (6) by the (weighted) regression
oracle errors, constraint satisfactory of the baseline policy π, and the remaining terms related to
(βt, γ, V ). Since it is a key lemma in proving our main results, we provide highlight the key steps.
It’s worth noting that our analysis is a refined version compared to Slivkins et al. (2023) because
we only introduce a linear form of virtual queue (dual variable) instead of a quadratic form of dual
variable Slivkins et al. (2023).
Proof Sketch: Let the error-free Lyapunov optimization index be Lt(xt, a) := f(xt, a)−Qt

V g(xt, a)

and recall its approximated version L̂t(xt, a) in (3), we have the following decomposition

Ea∼π[Lt(xt, a)|Ht]− Eat∼πt [Lt(xt, at)|Ht] (7)

= Eat∼πt

[
L̂t(xt, ât)− L̂t(xt, at)|Ht

]
+ Eat∼πt

[
L̂t(xt, at)− Lt(xt, at)|Ht

]
+ Ea∼π [Lt(xt, a)|Ht]− L̂t(xt, ât)

The first term represents the cost of exploration, which can be easily bounded according to the
definition of inverse gap weighting distribution in (4) that

Eat∼πt

[
L̂t(xt, ât)− L̂t(xt, at)|Ht

]
≤ A

2βtγ
. (8)

The second term follows by applying AM–GM inequality individually on the reward and constraint
function that

Eat∼πt

[
L̂t(xt, at)− Lt(xt, at)|Ht

]
≤ 1

2γ
+

γ

2
Eat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
(9)

+
Qt

V

1

2γ
+

Qt

V

γ

2
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
.

The last term can be further decomposed as

Ea∼π

[
Lt(xt, a)− L̂t(xt, ât)|Ht

]
(10)

=Ea∼π

[
Lt(xt, a)− L̂t(xt, a)|Ht

]
− Ea∼π

[
L̂t(xt, ât)− L̂t(xt, a)|Ht

]
9
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=Ea∼π

[
Lt(xt, a)− L̂t(xt, a)|Ht

]
− Ea∼π

[
1

2γβtπt(a)
− ηt

2γβt
|Ht

]
≤Qt

V

γ

2
Ea∼π

[
πt(a)(ĝt(xt, a)− g(xt, a))

2|Ht

]
+

γ

2
Ea∼π

[
πt(a)(f̂t(xt, a)− f(xt, a))

2|Ht

]
+ Ea∼π

[
1

2γπt(a)
(1 +

Qt

V
− 1

βt
)|Ht

]
+

ηt
2βtγ

≤Qt

V

γ

2
Eat∼πt

[
(ĝt(xt, at)− gt(xt, at))

2|Ht

]
+

γ

2
Eat∼πt

[
(f̂t(xt, at)− ft(xt, at))

2|Ht

]
+

A

2βtγ
,

where the second equality holds because L̂t(xt, ât) − L̂t(xt, a) = 1
2βtγπt(a)

− ηt
2βtγ

holds by (4);
the third inequality again follows from AM-GM inequality, and the last inequality holds by βt =
V/(V +Qt) and ηt ≤ A. Finally, in conjunction with the virtual queue update in (5), we have

1

V
Eat∼πt [∆t|Ht] ≤ Eat∼πt

[
Qt

V
g(xt, at)|Ht

]
+

G2

2V
. (11)

Now we substitute (11) into (7) and combine all inequalities (8)–(10), we complete the proof. □
Based on Lemma 4, we proceed to prove the constraint violation and regret in Theorem 1.

4.2. Constraint violation bound

According to the virtual queue update in (5), we immediately have

V(T ) := E

[
T∑
t=1

g(xt, at)

]
≤ E[QT+1]. (12)

Now we study “Lyapunov drift” in Lemma 4 to establish the upper bound on the virtual queue. The
Lyapunov drift analysis was widely used to study the stability property of the control policies in
stochastic queueing networks in Hajek (1982); Tassiulas and Ephremides (1992), where a policy
is called stable when its induced queue lengths are finite or bounded (a policy is usually better if
its queue lengths are small). The modern analytical framework with the high-probability bounds
of queue lengths can be found in Bertsimas et al. (2001); Eryilmaz and Srikant (2012). For a
more comprehensive introduction on the method, the readers can refer to Neely (2022); Srikant and
Ying (2014). When only the realizability assumption holds, we directly analyze the sample path
of the virtual queue and establish an upper bound of E[Qt] = Õ(T

3
4U

1
4 ). When Slater’s condition

holds in Assumption 3, we treat the virtual queue as a Markov process and study its upper bound
via multiple-step Lyapunov drift analysis, where the regression errors are amortized over multiple
time slots. Specifically, from Lemma 4, we establish a “multiple-step negative drift” of Lyapunov
function, implying a high probability upper bound on the virtual queue in the following lemma.

Lemma 5 Under Assumptions 1-3, there exists a positive quantity δ ≥ ε/4, a absolute constants
C0 and a positive integer K such that LOE2D establishes the following Lyapunov drift

E
[
Q2

t+K −Q2
t |Ht

]
≤ −2KδQt + C0(KV + γV U + γKU), (13)

and the virtual queue satisfies

P
(
Qt ≤

K2δ2 + C0(KV + γV U + γKU) + 12G2K2 log(1 + 16G2T )

Kδ

)
≥ 1− 1

T 2
, ∀t ∈ [T ].

(14)

10
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Intuitively, if the virtual queue process {Qt} already reaches the steady state, i.e., the mutiple-step
drift is zero E

[
Q2

t+K −Q2
t |Ht = h

]
= 0 in (13), we immediately establish an upper bound of

O(K log T/ε). This intuition is formally justified by (14) with slightly changing the “constant”.
Let V =

√
TU log T , γ = A

√
T/U, and K = 2γU/ε, we immediately prove that with a high

probability,

Qt = O(
√
TU log T/ε2), ∀t ∈ [T ].

In the current analysis, we need to choose K−step Lyapunov drift (with 1/ϵ dependent K multi-
step) that leads to a O(K/ε) upper bound of the virtual queue, resulting in the “O(1/ε)−gap”
compared with the existing optimal results. To close this gap, we might need to develop a new drift
lemma where the upper bound is refined to O(K) rather than O(K/ε), which we leave for future
work. We summarize these results in the following lemma.

Lemma 6 Under Assumptions 1 and 2, LOE2D achieves that

E[Qt] = Õ(T
3
4U

1
4 ), ∀t ∈ [T ].

Given the additional Slater’s condition in Assumption 3, LOE2D achieves that

Qt = Õ(
√
TU/ε2), ∀t ∈ [T ],

holds with a probability of at least 1− 1/T 2.

The constraint violation in Theorem 1 is then proved by directly applying Lemma 6 into (12).

4.3. Regret Bound

Let π = π∗ in Lemma 4, note Ea∼π∗

[
Qt

V g(xt, a)|Ht

]
≤ 0 holds in (6) because π∗ is a feasible

policy such that Ea∼π∗ [g(xt, a)|Ht] ≤ 0. Taking expectation w.r.t. Ht and summation of the
inequality from t = 1 to T in (6), we establish the following regret bound under the assumption that
the virtual queue is bounded (i.e., Qt ≤ Qmax):

R(T ) ≤−
E
[∑T

t=1∆t

]
V

+ γUf + γ
Qmax

V
Ug +

T∑
t=1

A

γβt
+

G2T

2V

≤γUf + γ
Qmax

V
Ug + (1 +

Qmax

V
)
AT

γ
+

G2T

2V
, (15)

where the first inequality holds by Assumption 2; and the second inequality holds because of Q1 = 0
and βt ≥ V/(V + Qmax), ∀t ∈ [T ]. The inequality in (15) indicates that the regret is bounded by
the value of the virtual queue and the regression oracles errors. Thus the key to proving CCB regret
in Theorem 1 involves determining the bound for the anytime virtual queue Qt, which has already
been shown in Lemma 5. Recall V =

√
TU log T and γ = A

√
T/U, we immediately prove the

regret bound according to the virtual queue bound of Qmax in Lemma 6.

11
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4.4. LOE2D for CBwK

In this section, we illustrate the key idea in analyzing LOE2D for contextual bandits with knapsack
constraints. Recall the interaction stops when the budget is depleted in CBwK (i.e., hard stopping).
Let b := B/T and π∗ and ν∗b be the optimal policy and value to the following offline problems:

max
π

Ea∼π [f(x, a)] s.t. Ea∼π [g(x, a)] ≤ b.

The regret is defined and decomposed as follows

R(T ) := Tν∗b − E

[
τ∑

t=1

f(xt, at)

]
= E

[
τ∑

t=1

f(xt, π
∗(xt))− f(xt, at)

]
+ E [(T − τ)ν∗b ] ,

where τ is the stopping time and the regret includes two parts: “regret before stopping” and “regret
after stopping”. For “regret before stopping”, we have already established an upper bound on the
difference between LOE2D and baseline algorithms in (15). For “regret after stopping”, we show it
can be bounded by the virtual queue. According to the virtual queue update in (5), we immediately
have Qτ+1 + τb ≥

∑τ
t=1 c(xt, at), in conjunction with the definition of stopping time, we know τ

satisfies Qτ+1 + τb ≥ B := Tb. It immediately implies “regret after stopping” is bounded by

E[(T − τ)ν∗b ] ≤
ν∗b
b
E[Qτ+1].

Since ν∗b = Θ(b), we apply Lemma 6 and prove Õ(min{
√
TU/ε2, T

3
4U

1
4 }) regret for CBwK.

5. Experiments

In this section, we run numerical experiments to justify our algorithm with two regression oracles
(including linear regression and gradient-boosted tree regression). We consider LagrangeCBwLC
Slivkins et al. (2023) as the benchmark because it is most related to ours. We design two sets of
experiments and plot the average reward

∑t
s=1 f(xs, as)/t and violation

∑t
s=1 g(xs, as)/t. All

results presented are the average of 50 trials and are reported within 95% confidence interval.
Classification dataset: We study online classification problems and customize them into stochastic
CCB setting, where each context/data is randomly drawn from the dataset, one of the classes (arms)
is chosen for the context, and then (noisy) reward and cost are observed. Our experiment is based
on the Pendigits dataset Keller et al. (2012), where the dimension of the contextual information is
16 and there exist 10 distinct classes, i.e., |A| = 10. When the chosen class (action) is correct, we
receive a reward corrupted with Gaussian noise rt ∼ N (1, 0.05) and rt ∼ N (0, 0.05) otherwise.
The constraint is imposed on the expected reward g(xt, at) := 0.5 − f(xt, at), where at least half
of the actions are required correct over the learning process. We plot the results in Figures 1(a)
and 1(b). It is shown that algorithms with a sophisticated regression oracle (gradient-boosted trees)
outperform those with a linear regression oracle. If we compare both algorithms w.r.t. the same
learning oracle, we observe that LOE2D outperforms LagrangeCBwLC in terms of both reward
and constraint violation, which justifies our LOE2D framework with violation-aware design has the
advantage in achieving a good balance between rewards and constraint violations.
Learning-to-rank dataset: We also test our algorithm on a large-scale learning-to-rank dataset
Microsoft MSLR-WEB30k Qin and Liu (2013). This dataset contains 31278 queries, where each

12
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(a) PENDIGITS: Reward (b) PENDIGITS: Violation

(c) MSLR: Reward (d) MSLR: Violation

Figure 1: LOE2D v.s. LagrangeCBwLC: Averaged reward and violation

query includes a varying number of documents-query contexts with each of which has a dimension
of 136 and there exists 20 documents/arms, i.e., |A| = 20. This ranking dataset possesses inherent
rewards (relevance). For each arm, we draw its expected cost uniformly randomly from [0, 1] and
the value remains fixed during a trial. The constraint is set g(x, a) ≤ 0.5. The observations are also
corrupted with Gaussian noise N (0, 0.05). We plot our results in Figures 1(c) and 1(d). It is shown
that that LOE2D outperforms LagrangeCBwLC in terms of average reward and constraint violation
when comparing them with the same learning oracle, respectively, and LOE2D with GB5 oracles
yield the best overall performance. Interestingly, it is observed that LOE2D with linear oracle
achieves the lowest constraint violation. The possible reason is that LOE2D with linear oracle has
relatively inaccurate reward/cost estimation, leading to a conservative approach.

6. Conclusion

In this paper, we propose LOE2D, a general Lyapunov optimization based estimation to decision
framework for stochastic constrained contextual bandits. LOE2D establishes near-optimal regret
and constraint violation bounds without any prior knowledge of underlying problems regardless of
the feasibility assumption or a potentially vanishing feasibility margin. These results are achieved
through violation-adaptive design and a multi-step Lyapunov drift analysis. The experiments further
justify our theoretical results.

13
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Appendix A. Proof of Lemma 4

Lemma 4 expands the inverse gap weighting technique from contextual bandits to CCB. We can take
Lt(xt, a) := f(xt, a)−Qt

V g(xt, a) as the surrogate reward function and decompose its instantaneous
regret as follows

Ea∼π

[
f(xt, a)−

Qt

V
g(xt, a)|Ht

]
− Eat∼πt

[
f(xt, at)−

Qt

V
g(xt, at)|Ht

]
=Eat∼πt

[
(f̂t(xt, ât)−

Qt

V
ĝt(xt, ât))− (f̂t(xt, at)−

Qt

V
ĝt(xt, at))|Ht

]
(16)

+ Eat∼πt

[
(f̂t(xt, at)−

Qt

V
ĝt(xt, at))− (f(xt, at)−

Qt

V
g(xt, at))|Ht

]
(17)

+ Ea∼π

[
f(xt, a)−

Qt

V
g(xt, a)|Ht

]
− (f̂t(xt, ât)−

Qt

V
ĝt(xt, ât)), (18)

The estimation-to-decision module in (4), based on inverse gap weighting distribution, facilitates
converting these terms into corresponding regression oracle errors. We begin with the first part
(16), which refers to the cost of exploration when the estimates for f and g are accurate. From the
computation of estimation-to-decision distribution in (4), we obtain that

Eat∼πt

[
L̂t(xt, ât)− L̂t(xt, a)|Ht

]
=
∑
at

E
[
πt(a)(L̂t(xt, ât)− L̂t(xt, at))|Ht

]
=
∑
at

E

[
(L̂t(xt, ât)− L̂t(xt, at))

ηt + 2γβt(L̂t(xt, ât)− L̂t(xt, a))
|Ht

]

≤
∑
at

E

[
(L̂t(xt, ât)− L̂t(xt, at))

2γβt(L̂t(xt, ât)− L̂t(xt, a))
|Ht

]
=

A

2βtγ
,
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the inequality holds since ηt is positive. The second term (17) directly relates to the estimation
errors of the reward and cost functions. These terms can be transformed into linear squared errors
as follows,

Eat∼πt

[
(f̂t(xt, at)−

Qt

V
ĝt(xt, at))− (f(xt, at)−

Qt

V
g(xt, at))|Ht

]
=Eat∼πt

[
(f̂t(xt, at)− f(xt, at)) +

Qt

V
(g(xt, at)− ĝt(xt, at))|Ht

]
,

≤ 1

2γ
+

γ

2
Eat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+

Qt

V

1

2γ
+

Qt

V

γ

2
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
,

the last inequality comes from the fact that ab ≤ (a2 + b2)/2. The last term (18) is equal to

Ea∼π

[
f(xt, a)−

Qt

V
g(xt, a)|Ht

]
− (f̂t(xt, ât)−

Qt

V
ĝt(xt, ât))

=Ea∼π

[
(f(xt, a)− f̂t(xt, a)) +

Qt

V
(ĝt(xt, a)− g(xt, a))− (L̂t(xt, ât)− L̂t(xt, a))|Ht

]
≤Ea∼π

[
γπt(a)

2
(f̂t(xt, a)− f(xt, a))

2 +
Qt

V

γπt(a)

2
(ĝt(xt, a)− g(xt, a))

2|Ht

]
− Ea∼π

[
L̂t(xt, ât)− L̂t(xt, a)|Ht

]
+ Ea∼π

[
1

2γπt(a)
(1 +

Qt

V
)|Ht

]
≤Ea∼π

[
γπt(a)

2
(f̂t(xt, a)− f(xt, a))

2 +
Qt

V

γπt(a)

2
(ĝt(xt, a)− g(xt, a))

2|Ht

]
+ Ea∼π

[
1

2γπt(a)
(1 +

Qt

V
− 1

βt
)|Ht

]
+

ηt
2βtγ

≤γ

2
Eat∼πt

[
(f̂t(at)− ft(at))

2|Ht

]
+

Qt

V

γ

2
Eat∼πt

[
(ĝt(xt, at)− gt(xt, at))

2|Ht

]
+

ηt
2βtγ

≤γ

2
Eat∼πt

[
(f̂t(at)− ft(at))

2|Ht

]
+

Qt

V

γ

2
Eat∼πt

[
(ĝt(xt, at)− gt(xt, at))

2|Ht

]
+

A

2βtγ

where the first inequality is by employing ab ≤ (a2+b2)/2 on both reward and cost estimate errors,
the second one comes from inverse gap weighting distribution (4) that satisfies

L̂t(xt, ât)− L̂t(xt, a) =
1

2βtγπt(a)
− ηt

2βtγ
,

the third inequality holds since

1 +
Qt

V
− 1

βt
= 1 +

Qt

V
− (1 +

Qt

V
) = 0,

and the last one comes from the simple fact that ηt ≤ A. This fact holds since the sum of the
distribution would not satisfy

∑
a πt(a) = 1 if ηt > A. Combine all these terms, we have

Ea∼π

[
f(xt, a)−

Qt

V
g(xt, a)|Ht

]
− Eat∼πt

[
f(xt, at)−

Qt

V
g(xt, at)|Ht

]
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≤
(
1 +

Qt

V

)
A

γ
+ γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γ

Qt

V
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
.

Recall the virtual queue update Qt+1 = max(Qt + ct(xt, at), 0) and the definition that ∆t =
1
2Q

2
t+1 − 1

2Q
2
t , we have

Eat∼πt [∆t|Ht] =Eat∼πt

[
1

2
Q2

t+1|Ht

]
− Eat∼πt

[
1

2
Q2

t |Ht

]
=Eat∼πt

[
1

2
(max(Qt + ct(xt, at), 0))

2 |Ht

]
− Eat∼πt

[
1

2
Q2

t |Ht

]
≤Eat∼πt [Qtct(xt, at)|Ht] +

1

2
Eat∼πt [c

2
t (xt, at)|Ht]

≤Eat∼πt [Qtct(xt, at)|Ht] +
G2

2
,

where the first inequality holds since (Qt + ct(xt, at))
2 ≥ 0 and the second inequality comes from

Assumption 1. Take expectation w.r.t. the feedback function and rearrange these terms, we have

E [∆t|Ht]−
G2

2
≤ E [Qtg(xt, at)|Ht] .

Combining these facts and finally, we complete the proof that:

Ea∼π [f(xt, a)|Ht]− Eat∼πt [f(xt, at)|Ht]− Ea∼π

[
Qt

V
g(xt, a)|Ht

]
+

Eat∼πt [∆t|Ht]

V
− G2

2V

≤
(
1 +

Qt

V

)
A

γ
+ γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γ

Qt

V
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
,

Appendix B. Proof of Lemma 5

In this section, we establish a high probability bound for the virtual queue under the relaxed Slater
condition. Assumption 3 suggests the existence of more robust feasible points, thus leading to
an improved theoretical guarantee for cumulative violation of the CCB algorithms. However, La-
grangeCBwLC Slivkins et al. (2023) requires the exact information about the key parameter ε for
adjusting its learning rate. In contrast, LOE2D does not require any adjustments and can automati-
cally detect the presence of a strong feasible point through the virtual queue update. We will prove
it through the following multi-step Lyapunov drift analysis.

We first employ Lemma 4, which provides the single-step drift bound:

E [∆t|Ht]

≤V Eat∼π [f(xt, at)|Ht]− V Ea∼π [f(xt, a)|Ht] + Ea∼π [Qtg(xt, a)|Ht] +
G2

2
+

(
1 +

Qt

V

)
V A

γ

+ V γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γQtEat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
≤2FV + Ea∼π [Qtg(xt, a)|Ht] +

G2

2
+

(
1 +

Qt

V

)
V A

γ

+ V γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γQtEat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
,
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To calculate the multi-step drift bound, we begin by determining the conditional expectation of the
drift term after K rounds from the above inequality:

E [∆t+K |Ht]

=E [E [∆t+K |Ht+K ] |Ht]

≤2FV +
G2

2
+

V A

γ
+ E [Ea∼π [Qt+Kg(xt+K , a)|Ht+K ] |Ht]

+ γV E
[
E
[
(f̂t+K(xt+K , at+K)− f(xt+K , at+K))2|Ht+K

]
|Ht

]
+

A

γ
E[Qt+K |Ht] + γE

[
Qt+KE

[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

]
From Assumption 3, we know that there exists a policy distribution π0 that satisfies Ea∼π0 [g(x, a)] ≤
−ε. Let π = π0, we have

E [Ea∼π0 [Qt+Kg(ct+K , a)|Ht+K ] |Ht] ≤ −εE[Qt+K |Ht].

The virtual queue update rule indicates that

Qt+K = max(Qt+K−1 + ct+K−1(xt+K−1, at+K−1), 0) ≤ Qt+K−1 +G ≤ Qt +GK,

Integrating these two key facts back into the drift bound equation, we obtain:

E [∆t+K |Ht]

≤2FV +
G2

2
+

V A

γ
+ (

A

γ
− ε)E[Qt+K |Ht]

+ γV E
[
E
[
(f̂t+K(xt+K , at+K)− f(xt+K , at+K))2|Ht+K

]
|Ht

]
+ γE

[
Qt+KE

[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

]
≤2FV +

G2

2
+

V A

γ
+ (

A

γ
− ε)E[Qt +GK|Ht]

+ γV E
[
E
[
(f̂t+K(xt+K , at+K)− f(xt+K , at+K))2|Ht+K

]
|Ht

]
+ γE

[
(Qt +GK)E

[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

]
≤2FV +

V A

γ
+

G2

2
+ γV E

[
E
[
(f̂t+K(xt+K , at+K)− f(xt+K , at+K))2|Ht+K

]
|Ht

]
+

(
A

γ
− ε

)
GK + γGKE

[
E
[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

]
+

(
A

γ
− ε+ γE

[
E
[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

])
E[Qt|Ht]

≤2FV +
V A

γ
+

G2

2
+ γV E

[
E
[
(f̂t+K(xt+K , at+K)− f(xt+K , at+K))2|Ht+K

]
|Ht

]
+ γGKE

[
E
[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

]
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+

(
A

γ
− ε+ γE

[
E
[
(ĝt+K(xt+K , at+K)− g(xt+K , at+K))2|Ht+K

]
|Ht

])
E[Qt|Ht],

where the last inequality follows by the fact ε ≥
√
U/T = A/γ. Then we can get the multi-step

drift bound by summing the above inequality over the interval [t, t +K − 1] and multiplying both
sides by two, we obtain

E
[
Q2

t+K −Q2
t |Ht

]
≤
(
4FV +

2V A

γ
+G2

)
K + 2γV E

[
t+K−1∑
s=t

E
[
(f̂s(xs, as)− f(xs, as))

2|Hs

]
|Ht

]

+ 2γGKE

[
t+K−1∑
s=t

E
[
(ĝs(xs, as)− g(xs, as))

2|Hs

]
|Ht

]

+ 2

(
AK

γ
− εK + γE

[
t+K−1∑
s=t

E
[
(ĝs(xs, as)− g(xs, as))

2|Hs

]
|Ht

])
E[Qt|Ht]

≤(4FV +
2V A

γ
+G2)K + 2γV Uf + 2γGKUg − 2

[
(ε− A

γ
)K − γUg

]
E[Qt|Ht].

The first inequality is derived from the telescoping sum

t+K−1∑
s=t

∆s =
Q2

t+K

2
− Q2

t

2
,

the second one holds since [t, t+K − 1] falls within the total time horizon T , making these terms
smaller than the oracles error defined by Assumption 2. With δ = ε − A/γ − γU/K and let
C0 = 4F + 2A+G2 + 2 + 2G, we have

E
[
Q2

t+K −Q2
t |Ht

]
≤ −2KδQt + C0(KV + γV U + γKU).

By setting K = 2γU/ε, it follows that δ = ε − A/γ − γU/K = ε/2 −
√

U/T ≥ ε/4. Next, we
introduce a key lemma derived from Lemma 5 in Yu et al. (2017) to prove a high probability bound
for Qt.

Lemma 7 Let S(t) be a discrete-time stochastic process adapted to a filtration F(t). Suppose
there exists an integer K ≥ 0, real constant θ ∈ R, δmax ≥ 0 and 0 ≤ ζ ≤ δmax,

|S(t+ 1)− S(t)| ≤δmax,

E [S(t+K)− S(t)|F(t)] ≤

{
Kδmax, when S(t) < θ

−Kζ, when S(t) ≥ θ
,

hold ∀t ∈ [T ], Then the following holds,

• E[S(t)] ≤ θ +K 4δ2max
ζ log

(
1 + 8δ2max

ζ2
eζ/(4δmax)

)
, ∀t ∈ [T ].

• For any µ ∈ [0, 1], we have P(S(t) ≥ s) ≤ µ, where s = θ+K 4δ2max
ζ log

(
1 + 8δ2max

ζ2
eζ/(4δmax)

)
+

K 4δ2max
ζ log( 1µ).
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Based on the condition that E
[
Q2

t+K −Q2
t |Ht

]
≤ −2KδQt + C0(KV + γV U + γKU), we can

get the steady state of the drift process. We then convert this into a form suitable for analyzing the
virtual queue:

E
[
Q2

t+K |Ht

]
≤Q2

t − 2KδQt + C0(KV + γV U + γKU)

≤Q2
t −KδQt + (C0(KV + γV U + γKU)−KδQt)

Then we can set θ = Kδ
2 + C0(KV+γV U+γKU)

Kδ and assume Qt ≥ θ to get

E
[
Q2

t+K |Ht

]
≤Q2

t −KδQt −
K2δ2

2

≤(Qt −
Kδ

2
)2

From the fact that Qt ≥ θ ≥ Kδ
2 , we then prove the following multi-step virtual queue stability by

taking square root on both sides and applying Jensen’s inequality,

E [Qt+K |Ht] ≤
√
E
[
Q2

t+K |Ht

]
≤ E [Qt|Ht]−

δK

2
.

To get |∥Qt+1∥ − ∥Qt∥| ≤ G, recall the virtual queue update rule that

∥Qt+1∥ ≤ ∥Qt + ct(xt, at)∥ ≤ ∥Qt∥+ ∥ct(xt, at)∥ ≤ ∥Qt∥+G,

Meanwhile, from the fact that Qt ≥ 0, we have

∥Qt+1 −Qt∥ ≤ ∥ct(xt, at)∥ ≤ G,

which gives ∥Qt+1∥ ≥ ∥Qt∥ − G by the triangle inequality of norms. This directly leads to the
result that E [∥Qt+K∥ − ∥Qt∥] ≤ GK. By choosing K = 2γU/ε and considering ε ≥ 4

√
T/U ,

we ensure that ε ≥ δ ≥ ε/4 is non-negative. Then we can let µ = 1/T 2 and apply Lemma 7 to
show that with probability at least 1− 1/T 2,

Qt ≤
Kδ

2
+

C0(KV + γV U + γKU)

Kδ
+K

4G2

δ
log

(
1 +

8G2

δ2
eδ/(4G)

)
+ 2K

4G2

δ
log(T )

≤K2δ2 + C0(KV + γV U + γKU) + 12G2K2 log(1 + 16G2T )

Kδ

≤2A
√
TU + C0

(
4
√
TU log T

ε
+

A
√
TU log T

8
+

A
√
TU

4ε

)
+

96G2
√
TU log(1 + 16G2T )

ε2

≤2A
√
TU + (5C0A+ 96G2) log(1 + 16G2T )

√
TU/ε2

≤(2A+ (5C0A+ 96G2) log(1 + 16G2T ))
√
TU/ε2

≤C1(1 + log(1 + 16G2T ))
√
TU/ε2,

where the second inequality holds since eδ/(4G) ≤ 2 and δ ≥ ε/4 ≥
√
U/T , the third inequality

arises from the fact that V =
√
TU log T and γ = A

√
T/U , the last inequality is valid from the

constant definition where C1 = 2A+ 5C0A+ 96G2.
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Appendix C. Proof of Lemma 6

In this section, we establish the anytime virtual queue bound in two CCB cases: the general CCB
setting and CCB with the Slater condition. For the case without the Slater condition, the virtual
queue bound can be derived by analyzing the drift term through Lemma 4, which provides a uni-
fied “regret plus drift” analysis. This virtual length bound would ensure the worst-case theoretical
guarantee of LOE2D. Under a relaxed Slater condition, an improved bound for the virtual queue is
achievable through a multi-step Lyapunov drift analysis, as demonstrated in Lemma 5.
General CCB Setting We begin with the proof without the Slater condition. Multiply both sides
by V in Lemma 4 and set π = π∗, we have

E [∆t|Ht]

≤V Eat∼πt [f(xt, at)|Ht]− V Ea∼π∗ [f(xt, a)|Ht] + Ea∼π∗ [Qtg(xt, a)|Ht] +
G2

2
+

(
1 +

Qt

V

)
V A

γ

+ V γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γQtEat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
≤V Eat∼πt [f(xt, at)|Ht]− V Ea∼π∗ [f(xt, a)|Ht] +

G2

2
+

(
1 +

Qt

V

)
V A

γ

+ V γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γQtEat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
≤2FV +

G2

2
+

(
1 +

Qt

V

)
V A

γ
+ V γEat∼πt

[
(f̂t(xt, at)− f(xt, at))

2|Ht

]
+ γQtEat∼πt

[
(ĝt(xt, at)− g(xt, at))

2|Ht

]
, (19)

the second inequality comes from the optimal solution definition, the last inequality holds due to
Assumption 1. By summing this inequality over t and considering the fact that

∑t
s=1∆s = (Q2

t+1−
Q2

1)/2 = Q2
t+1/2, we have

E
[
1

2
Q2

t+1|Ht

]
≤2FV t+

G2t

2
+

V At

γ
+ γV

t∑
s=1

E

[
t∑

s=1

(f̂s(xs, as)− f(xs, as))
2|H1, . . . ,Ht

]

+ γE

[
t∑

s=1

Qs(ĝs(xs, as)− g(xs, as))
2|H1, . . . ,Ht

]
+

A

γ

t∑
s=1

Qs.

Recall the update rule of Qt and the upper bound G for costs, we can derive the worst-case bound
for Qt that

Qt+1 = max(Qt + ct(xt, at), 0) ≤ Qt + |ct(xt, at)| ≤ Qt +G ≤ tG.

Combine the above inequalities and take expectations with historical information, we have

E
[
1

2
Q2

t+1

]
≤2FV t+

G2t

2
+

V At

γ
+

A

γ
tTG+ γV E

[
t∑

s=1

(f̂s(xs, as)− f(xs, as))
2

]

+ γtGE

[
t∑

s=1

(ĝs(xs, as)− g(xs, as))
2

]
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≤2FV T +
G2T

2
+

V AT

γ
+

A

γ
T 2G+ γV E

[
T∑
t=1

(f̂t(xt, at)− f(xt, at))
2

]

+ γTGE

[
T∑
t=1

(ĝt(xt, at)− g(xt, at))
2

]

≤2FV T +
G2T

2
+

V AT

γ
+

A

γ
T 2G+ γV Uf + γTGUg,

where the second inequality comes from replacing t with T since t ≤ T , and the last one comes
from the assumption of regression oracles. Take V =

√
TU log T and γ =

√
T/U into the above

inequality, we have for any t ∈ [T ] such that

E
[
Q2

t+1

]
≤ B̂Q := (4FT

3
2U

1
2 + 2T + 2ATU)(log T )

1
2 +G2T + 2GT

3
2U

1
2 + 2AGT

3
2U

1
2 .

We can obtain that B̂Q = O(T
3
2U

1
2 (log T )

1
2 ). The above inequality provides an anytime bound that

E [Qt] = Õ(T
3
4U

1
4 ), ∀t ∈ [T ], which substantiates the Õ(T

3
4U

1
4 ) result of Lemma 6. Specifically,

we prove that

E [Qt+1] ≤
√
B̂Q ≤ C2T

3
4U

1
4 (log T )

1
4 ,

where C2 =
√
4F + 2 + 2A+G2 + 2G+ 2AG. This result ensures the worst-case virtual queue

bound of LOE2D.

Appendix D. Proof of CCB Regret and Violation in Theorem 1

In this section, we present a detailed version of the proof for both regret and violation in the general
CCB. In both cases, with and without the Slater condition, we offer a comprehensive analysis frame-
work for CCB. The following analysis will demonstrate that both regret and violation bounds can
be effectively determined through the Lyapunov drift virtual queue results discussed in the previous
section. We begin with the regret analysis:
Regret bound. Take expectation with historical information Ht and let π = π∗ in Lemma 4, we
can rearrange the inequality and sum it over T to obtain:

T∑
t=1

Ea∼π∗ [f(xt, a)]−
T∑
t=1

Eat∼πt [f(xt, at)]

≤γEat∼πt

[
T∑
t=1

(f̂t(xt, at)− f(xt, at))
2

]
+ γ

T∑
t=1

Qt

V
Eat∼πt

[
(ĝt(xt, at)− g(xt, at))

2
]

+
G2T

2V
−

E
[∑T

t=1∆t

]
V

+

T∑
t=1

(
1 +

Qt

V

)
A

γ

≤γEat∼πt

[
T∑
t=1

(f̂t(xt, at)− f(xt, at))
2

]
+ γ

Qmax

V
Eat∼πt

[
T∑
t=1

(ĝt(xt, at)− g(xt, at))
2

]
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+
G2T

2V
−

E
[∑T

t=1∆t

]
V

+

(
1 +

Qmax

V

)
AT

γ

≤
(
1 +

Qmax

V

)
AT

γ
+ γUf + γ

Qmax

V
Ug +

G2T

2V
−

E
[∑T

t=1∆t

]
V

≤AT

γ
+ γU +

G2T

2V
+ (

AT

γV
+

γU

V
)Qmax,

where the first inequality holds comes from the property of optimal policy distribution, the second
inequality follows by definition that Qmax = maxt∈[T ] [Qt], the third one directly use the regression
oracles assumptions and the last one holds since

−
T∑
t=1

∆t = (Q2
1 −Q2

T+1)/2 ≤ Q2
1/2 = 0.

Then substitute the learning rate setup we have

R(T ) ≤
T∑
t=1

Ea∼π∗ [f(xt, a)]−
T∑
t=1

Eat∼πt [f(xt, at)]

≤
√
TU +A

√
TU +

G2

2

√
T

U log T
+ (A+ 1)

Qmax√
log T

≤(2A+G2)
√
TU + 2A

Qmax√
log T

.

Since we have already proven the anytime virtual queue bound in Lemma 6: in general CCB,
E[Qt] = Õ(T

3
4U

1
4 ), ∀t ∈ [T ]; in CCB with the relaxed Slater condition, we have the high proba-

bility bound that Qt = Õ(min(
√
TU/ε2, T

3
4U

1
4 )). We prove CCB regret bound in Theorem 1. For

the general setting, we have

R(T ) ≤ (2A+G2)
√
TU + 2AC2T

3
4U

1
4 .

Under the relaxed Slater condition, we have

R(T ) ≤(2A+G2)
√
TU + 2Amin

{
C1

(
1 + log(1 + 16G2T )

) √
TU

ε2
√
log T

,C2T
3
4U

1
4

}
.

Violation bound. Recall the virtual queue update Qt+1 = max(Qt + ct(xt, at), 0), we have

Qt+1 ≥ Qt + ct(xt, at),

Then we obtain that the bound of cumulative constraint violation can be directly achieved through
the length of the virtual queue:

T∑
t=1

ct(xt, at) ≤ QT+1
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Taking expectations on both sides, we have V(T ) = E
[∑T

t=1 g(xt, at)
]
≤ E[QT+1], for general

setting we have

V(T ) ≤C2T
3
4U

1
4 (log T )

1
4 .

Under the relaxed Slater condition, we have

V(T ) ≤min
{
C1(1 + log(1 + 16G2T ))

√
TU/ε2, C2T

3
4U

1
4 (log T )

1
4

}
.

Finally, we can derive the violation bound through the anytime virtual queue length bound we
proved before. Through the above analysis, we also establish the anytime violation bound V(t) ≤
E[Qt+1], which highlights the strong adaptability of LOE2D in recognizing constraint violations at
all times.

Appendix E. Proof of CBwK Regret in Theorem 1

As we discussed before, CBwK represents a specific variant of CCB with a hard-stopping. We
present the theoretical guarantees of LOE2D for CBwK. We denote a0 as the null arm in CBwK.
The total budget is B and the budget per round is b := B/T. The CBwK regret is defined as

R(T ) := Tν∗b − E

[
τ∑

t=1

f(xt, at)

]
,

where τ denotes the stopping time when the first
∑τ

t=1 c(xt, at) ≥ B holds. Let π∗
b and ν∗b be the

optimal policy and value for the relaxed problem that

max
π

Ea∼π [f(x, a)] s.t. Ea∼π [c(x, a)] ≤ b.

Intuitively, the CBwK regret can be decoupled as:

R(T ) =Tν∗b − E

[
τ∑

t=1

f(xt, at)

]
(20)

+ (T − τ)ν∗b . (21)

The first term (20) denotes the CCB regret within τ rounds and can be easily obtained following our
previous regret analysis. The second term (21) represents the loss incurred due to the hard stopping.
This can be proved through the virtual queue analysis, which distinguishes our work from Han et al.
(2023); Slivkins et al. (2023). We first explain the algorithm details for CBwK.

L̂t(xt, a) = f̂t(xt, a)−
Qt

V
ĝt(xt, a),

Qt+1 = max (Qt + ct(xt, at)− b, 0) .

Then we can establish the proof of the CBwK regret in Theorem 1.
Proof We first prove the CCB regret within τ rounds in (20). Based on Lemma 4, we can obtain
the following inequality by taking expectation w.r.t. Ht and let π = π∗

b :

τ∑
t=1

Ea∼π∗
b
[f(xt, a)]−

τ∑
t=1

Eat∼πt [f(xt, at)]
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≤γEat∼πt

[
τ∑

t=1

(f̂t(xt, at)− f(xt, at))
2

]
+ γEat∼πt

[
τ∑

t=1

Qt

V
(ĝt(xt, at)− g(xt, at))

2

]

+ Ea∼π∗
b

[
τ∑

t=1

Qt

V
g(xt, a)

]
+

Gτ

2V
−

E [
∑τ

t=1∆t]

V
+

τ∑
t=1

(
1 +

Qt

V

)
A

γ

≤γEat∼πt

[
τ∑

t=1

(f̂t(xt, at)− f(xt, at))
2

]
+ γEat∼πt

[
τ∑

t=1

Qt

V
(ĝt(xt, at)− g(xt, at))

2

]
+

Gτ

2V

−
E [
∑τ

t=1∆t]

V
+

τ∑
t=1

(
1 +

Qt

V

)
A

γ

≤γEat∼πt

[
τ∑

t=1

(f̂t(xt, at)− f(xt, at))
2

]
+

γQmax

V
Eat∼πt

[
τ∑

t=1

(ĝt(xt, at)− g(xt, at))
2

]
+

Gτ

2V

−
E [
∑τ

t=1∆t]

V
+

(
1 +

Qmax

V

)
Aτ

2γ

≤γUf +
γQmax

V
Ug +

GT

2V
−

E [
∑τ

t=1∆t]

V
+

(
1 +

Qmax

V

)
AT

2γ

≤γUf +
γQmax

V
Ug +

GT

2V
+

(
1 +

Qmax

V

)
AT

2γ
.

The first inequality is derived by summing up the inequality found in Lemma 4 across τ rounds;
the second inequality holds because of the definition of π∗

b ; the third one holds by the definition of
Qmax; and the last inequality is justified because

−
τ∑

t=1

∆t = (Q2
1 −Q2

τ+1)/2 ≤ Q2
1/2 = 0.

Then we can obtain that the CBwK regret of LOE2D satisfies:

R(T ) ≤γUf +
γQmax

V
Ug +

GT

2V
+

(
1 +

Qmax

V

)
AT

2γ
+ (T − τ)Ea∼π∗

b
[f(xt, a)]

=
AT

γ
+ γU +

G2T

2V
+ (

AT

γV
+

γU

V
)Qmax + (T − τ)v∗b ,

where the above equality comes from Assumption 1. Then the key to proving regret lies in deter-
mining the skipping rounds (T − τ). According to the virtual queue update in (5), we have

Qτ+1 + τb ≥
τ∑

t=1

c(xt, at),

in conjunction with the definition of stopping time, we know τ satisfies

Qτ+1 + τb ≥ B := Tb.

It immediately implies

E[(T − τ)ν∗b ] ≤
ν∗b
b
E[Qτ+1].
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The above inequality indicates that the skipping round length is bounded by the expected queue
length. Since the null arm a0 exists in CBwK, we can always construct a policy π∗

0 where π∗
0(a0) =

1 to satisfy the Slater condtion

Ea∼π∗
0
[g(xt, a)]− b ≤ −b,

indicating that Assumption 3 holds with ε = b. Now we are good to apply Lemma 6 to obtain that
with high probability

Qt ≤ O(min{
√
TU/ε2, T

3
4U

1
4 }), ∀t ∈ [T ],

which further guarantees the fact that (T − τ)ν∗b ≤ Õ(min{
√
TU/ε2, T

3
4U

1
4 }) because ν∗b = O(ε)

in CBwK. By combining the bounds on (20) and (21), we have

R(T ) ≤AT

γ
+ γU +

G2T

2V
+ (

AT

γV
+

γU

V
)Qmax + (T − τ)v∗b

≤AT

γ
+ γU +

G2T

2V
+ (

AT

γV
+

γU

V
+

v∗b
b
)Qmax

≤(2A+G2)
√
TU + (

2A√
log T

+
v∗b
b
)Qmax

≤(2A+G2)
√
TU + (2A+

v∗b
b
)Qmax

≤(2A+G2)
√
TU + (2A+

v∗b
b
)min

{
C1(1 + log(1 + 16G2T ))

√
TU/ε2, C2T

3
4U

1
4 (log T )

1
4

}
,

which completes the proof.
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