Beyond Catoni: Sharper Rates for Heavy-Tailed and Robust Mean Estimation

Shivam Gupta
The University of Texas at Austin

Samuel B. Hopkins
Massachusetts Institute of Technology

Eric Price
The University of Texas at Austin

Editors: Shipra Agrawal and Aaron Roth

Abstract

We study the fundamental problem of estimating the mean of a d-dimensional distribution with covariance $\Sigma \preceq \sigma^2 I_d$ given n samples. When $d = 1$, Catoni (2012) showed an estimator with error $(1 + o(1)) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$, with probability $1 - \delta$, matching the Gaussian error rate. For $d > 1$, a natural estimator outputs the center of the minimum enclosing ball of one-dimensional confidence intervals to achieve a $1 - \delta$ confidence radius of $\sqrt{\frac{2d}{d+1}} \cdot \sigma \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \right)$, incurring a $\sqrt{\frac{2d}{d+1}}$ factor loss over the Gaussian rate. When the $\sqrt{\frac{d}{n}}$ term dominates by a $\sqrt{\log \frac{1}{\delta}}$ factor, Lee and Valiant (2022b) showed an improved estimator matching the Gaussian rate. This raises a natural question: Is the $\sqrt{\frac{2d}{d+1}}$ loss necessary when the $\sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ term dominates?

We show that the answer is no—we construct an estimator that improves over the above naive estimator by a constant factor. We also consider robust estimation, where an adversary is allowed to corrupt an ε-fraction of samples arbitrarily: in this case, we show that the above strategy of combining one-dimensional estimates and incurring the $\sqrt{\frac{2d}{d+1}}$-factor is optimal in the infinite-sample limit.

Keywords: Mean Estimation, Heavy-Tailed Estimation, Robust Estimation, High-Dimensional Statistics

1. **Introduction**

Mean estimation is perhaps the simplest statistical estimation problem: given samples $x_1, \ldots, x_n \sim D$ for some d-dimensional probability distribution D, estimate the mean μ of D. If x is Gaussian with covariance $\Sigma \preceq \sigma^2 I_d$, then the empirical mean is the optimal estimator. It satisfies

$$\|\bar{\mu} - \mu\| \leq \sigma \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \right)$$

with probability $1 - \delta$. Even if x is not Gaussian, for any fixed (D, d, δ), as $n \to \infty$ the central limit theorem shows that the empirical mean achieves the Gaussian rate (1). But when the distribution, dimension, or failure probability can vary with n, more sophisticated estimators are needed to get good rates. If the distribution has outliers—large, rare events—the empirical mean can perform very badly.

In one dimension, the Median-of-Means estimate (Nemirovsky and Yudin, 1983; Jerrum et al., 1986; Alon et al., 1996) is the classic way to get subgaussian rates with minimal assumptions on the distribution.
For any 1-dimensional distribution D of variance σ^2, the median (over $\Theta(\log \frac{1}{\delta})$ batches) of means (of $\Theta\left(\frac{n}{\log \frac{1}{\delta}}\right)$ samples per batch) satisfies

$$|\bar{\mu} - \mu| \leq O\left(\sigma \cdot \sqrt{\log \frac{1}{\delta}} \frac{1}{n}\right)$$

with $1 - \delta$ probability, i.e., it achieves the Gaussian rate (1) up to constant factors. But such constants are important in statistical estimation: statistics texts, for example (Maindonald and Braun, 2010; Wasserman, 2004; Wackerly et al., 2014; Casella and Berger, 2021), discuss asymptotic relative efficiency of the mean over the median (and asymptotic optimality of maximum-likelihood estimators in general) as an important consideration in choosing an estimator—in this case, the asymptotic efficiency of the mean results in a $\sqrt{\frac{2}{\pi}}$ factor smaller error bound in the Gaussian case, leading to $\approx 36\%$ lower sample complexity. As a result, many practitioners use the mean, and then are vulnerable to outliers. It is therefore important to have estimators that are as efficient as possible, while still working without strong assumptions on the data distribution.

To address this, Catoni (2012) developed a 1-dimensional mean estimator that is tight up to $1 + o(1)$ factors: for $n \gg \log \frac{1}{\delta}$, it gives error

$$|\bar{\mu} - \mu| \leq (1 + o(1)) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$

matching the Gaussian rate (1). Catoni’s estimator requires knowledge of the variance σ^2; this requirement was removed by Lee and Valiant (2022a), at a cost of a larger $o(1)$ term. Even the Median-of-Means-style $O(\sigma \cdot \sqrt{\log \frac{1}{\delta}/n})$ guarantee is information-theoretically impossible if $n \ll \log \frac{1}{\delta}$ (Devroye et al., 2016). It is open whether the Catoni-style $(1 + o(1))$ guarantee can be achieved when $n = \Theta(\log \frac{1}{\delta})$. We henceforth assume $n \gg \log \frac{1}{\delta}$.

High-dimensional mean estimation. In dimension $d > 1$, naively applying a 1-dimensional estimator to the coordinates independently leads to the suboptimal rate $O\left(\sigma \cdot \sqrt{\log \frac{1}{\delta}} \frac{d}{n}\right)$. Over the past few years, a number of works in statistics and theoretical computer science have developed better estimators (Lugosi and Mendelson, 2017; Hopkins, 2020; Cherapanamjeri et al., 2019), matching the Gaussian rate (1) up to constant factors. But as with $d = 1$, we can ask: what constant factors are achievable, and in particular, can the Gaussian rate (1) be matched up to $(1 + o(1))$?

There are two terms in (1), and so we will refer to two different constants: the optimal constant c_d on $\sqrt{\frac{d}{n}}$ whenever $d \gg \log \frac{1}{\delta}$ and the first term dominates, and the optimal constant c_δ on $\sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ when $\log \frac{1}{\delta} \gg d$ and the second term dominates. There is also a third regime—when $d \approx \log \frac{1}{\delta}$—but this regime is quite complicated to analyze. Even in the Gaussian case, the error bound (1) does not give the tight constant in this regime. For this paper we ignore the intermediate regime.

One can get a natural upper bound on these constants by lifting 1-dimensional estimators to d dimensions. Catoni and Giulini (2018) used a “PAC-Bayes” argument to show that if the Catoni estimator is applied to every direction u, then every estimate $\hat{\mu}_u$ of (μ, u) has error bounded by the Gaussian rate (1). The set of possible d-dimensional means μ that satisfy all these 1d constraints has diameter twice this error rate. One can then output the center $\bar{\mu}$ of the minimum enclosing ball of this set. Jung’s theorem (Jung, 1901) states that this loses just a constant factor: any set of diameter 2 is enclosed in a ball of radius
\[JUNG_d := \sqrt{\frac{2d}{d+1}} \leq \sqrt{2}. \] Therefore

\[
\|\hat{\mu} - \mu\| \leq JUNG_d \cdot (1 + o(1)) \sigma \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \right)
\] (2)

and so both \(c_d \) and \(c_\delta \) are at most \(JUNG_d \leq \sqrt{2} \). For very large dimension one can do better: Lee and Valiant (2022b) showed for \(d \gg \log^2 \frac{1}{\delta} \) that the Gaussian rate (1) can be matched precisely, so \(c_d = 1 \) for such large \(d \).

Our contributions: heavy-tailed estimation. Our main result gives an algorithm with a strictly better constant factor than in (2) when \(\log^2 \frac{1}{\delta} \gg d \) and \(d \geq 2 \)—that is, we show that \(c_\delta \) is strictly smaller than \(JUNG_d \) for all \(d \geq 2 \).

Theorem 1 There exists constants \(\tau, C > 0 \) such that the following holds. Let \(d \geq 2 \), and suppose \(n \geq C \log^2 \frac{1}{\delta} \geq C^2 d \). There is an algorithm that takes \(n \) samples from a distribution over \(\mathbb{R}^d \) with covariance \(\Sigma \preceq \sigma^2 I \), as well as \(\sigma^2 \) and \(\delta \), and outputs an estimate \(\hat{\mu} \) of the mean \(\mu \) that achieves

\[
\|\hat{\mu} - \mu\| \leq (1 - \tau) \cdot JUNG_d \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}
\]

with \(1 - \delta \) probability.

In particular, the limiting constant as \(d \to \infty \) is \(\sqrt{2} - \tau \) for some \(\tau > 0 \).

Our contributions: robust estimation. A related problem, also extensively studied in theoretical computer science over the past decade, is robust mean estimation (Diakonikolas and Kane, 2023). In robust mean estimation, the data is initially drawn from a covariance \(\Sigma \preceq I \) distribution, but an adversary can corrupt an arbitrary \(\epsilon \) fraction of the data points. In this model, estimation error remains even in the population limit as \(n \to \infty \). In one dimension, the optimal error bound is

\[
(1 + O(\epsilon))\sqrt{2\epsilon}.
\]

As with heavy-tailed estimation, one can lift the 1d estimator to higher dimensions: apply the one-dimensional estimator in every direction, take the intersection of their confidence intervals to get a set of candidate means, and output the center of the minimum enclosing ball. And as with heavy-tailed estimation, this loses a factor \(JUNG_d = \sqrt{\frac{2d}{d+1}} \). But, unlike with heavy-tailed estimation, this is tight:

Theorem 2 For every \(d \geq 1 \) and \(\epsilon \leq \frac{1}{2} \), every algorithm for robust estimation of \(d \)-dimensional distributions with covariance \(\Sigma \preceq \sigma^2 I \) has error rate

\[
\mathbb{E}[\|\hat{\mu} - \mu\|] \geq JUNG_d \cdot (1 + O(\epsilon)) \cdot \sqrt{2\sigma^2 \epsilon}
\]
on some input distribution, in the population limit.

As discussed above, this is matched by the (somewhat folklore) algorithm of estimating all 1d projections and taking the center of the minimum enclosing ball of feasible means:

Theorem 3 (Folklore + Jung’s theorem) For every \(d \geq 1 \) and \(\epsilon \leq \frac{1}{3} \), there is an algorithm for robust estimation of \(d \)-dimensional distributions of covariance \(\Sigma \preceq \sigma^2 I \) with error rate

\[
\mathbb{E}[\|\hat{\mu} - \mu\|] \leq JUNG_d \cdot (1 + O(\epsilon)) \cdot \sqrt{2\sigma^2 \epsilon}
\]
in the population limit.

We provide the full proof of Theorem 2 in Appendix C and Theorem 3 in Appendix D.
Summary. The mean estimation error bound has three terms, corresponding to the dependence on dimension d, on failure probability δ, and on robustness ε. Lee and Valiant (Lee and Valiant, 2022b) showed that the d-dependent term does not lose a constant factor relative to the Gaussian rate, for sufficiently large d. We show that the ε-dependent term loses exactly the constant $JUNG_{d}$ that arises when lifting 1-dimensional estimates to d-dimensional estimates, while the δ-dependent term is better than $JUNG_{d}$ times the Gaussian rate, for all $d \neq 1$. For the latter result, we construct a novel high-dimensional mean estimator which goes beyond lifting a one-dimensional estimator.

1.1. Related Work

Heavy-tailed and Robust Estimation. Both settings been extensively studied by the statistics and theoretical computer science communities; see for example, a recent survey (Lugosi and Mendelson, 2019) and book (Diakonikolas and Kane, 2023). For heavy-tailed estimation, several works have established asymptotic bounds matching the Gaussian rate for a variety of estimation tasks, including mean estimation (Lugosi and Mendelson, 2017; Catoni and Giulini, 2018), covariance estimation (Abdalla and Zhivotovskiy, 2023; Mendelson and Zhivotovskiy, 2018), and regression (Lecué and Mendelson, 2014). Similarly, robust estimation has been studied in a variety of settings, including mean estimation (Diakonikolas et al., 2019a, 2017a), covariance estimation (Cheng et al., 2019), list-decodable estimation (Diakonikolas et al., 2017b, 2020a), and regression (Diakonikolas et al., 2019b), (Diakonikolas et al., 2020b; Hopkins et al., 2020) study rigorous connections between robust and heavy-tailed estimation.

Despite the large body of work on both these models, the algorithms proposed have so far seen limited adoption in practice. One reason for this is suboptimal constants. Samples can be precious, and statistics texts often report “asymptotic relative efficiency” of various estimators (similar in spirit to the constant factors we study here). Since the empirical mean has optimal asymptotic efficiency, in some texts practitioners are taught to use the mean over the median (despite the robustness the median provides) if the data “looks” Gaussian via eyeballing (Maindonald and Braun, 2010), since using the median would require collecting $\approx 50\%$ more samples. In one dimension, this is unprincipled and error prone; in high dimensions, it is not even a viable strategy.

Towards optimal constants. To overcome the above issues and promote adoption, there has been a flurry of recent work attempting to achieve sharp rates (including constants) for a variety of statistical estimation (Lee and Valiant, 2022a,b; Minsker, 2023, 2022; Catoni, 2012; Catoni and Giulini, 2018; Devroye et al., 2016; Gupta et al., 2023b,a,c) and testing (Gupta and Price, 2022; Dang et al., 2023; Kipnis, 2023) tasks. Of these, for heavy-tailed estimation, Catoni (Catoni, 2012) showed an estimator matching the Gaussian rate in dimension $d = 1$ when the variance σ^2 is known. This was followed by work that achieved the same rate even when σ^2 is unknown (Lee and Valiant, 2022a).

For $d > 1$, a natural estimator outputs the center of the minimum enclosing ball of the intersection of one-dimensional confidence intervals. For covariance $\Sigma \preceq \sigma^2 I_d$, Catoni and Giulini (2018) showed a PAC-Bayes argument that implies a $\sqrt{\frac{2d}{d+1}} \cdot \sigma \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \right)$ rate for this estimator, incurring a $\sqrt{\frac{2d}{d+1}}$ factor over the Gaussian rate. When the $\sqrt{\frac{d}{n}}$ term dominates by a $\sqrt{\log \frac{1}{\delta}}$ factor, Lee and Valiant (2022b) showed an estimator with an improved rate of $\sigma \sqrt{\frac{d}{n}}$, matching the Gaussian rate in this regime. This work shows that the $\sqrt{\frac{2d}{d+1}}$ factor can be improved upon even when the $\sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ term dominates.
2. Proof Overview

2.1. Heavy-Tailed Estimator

High-level goal. In one dimension, the optimal error rate for $(1 - \delta)$-probability mean estimation is $\sigma \sqrt{\frac{2\log\frac{1}{\delta}}{n}}$, which we will call OPT_1. In d dimensions, one can apply the one-dimensional bound in every direction (with either a union bound, or more efficiently with PAC-Bayes (Catoni and Giulini, 2018)) to identify a set of candidate means of diameter $2OPT_1 + O(\sigma\sqrt{d/n})$; suppose $\log\frac{1}{\delta} \gg d$, so the high-probability term $2OPT_1$ dominates. Then, Jung’s theorem states that the minimum enclosing ball of this set has radius at most $\sqrt{\frac{2d}{d+1}} \cdot OPT_1 = JUNG \cdot OPT_1$. In Theorem 1 we show that a better constant factor is possible.

Our key technical result is a mean estimation algorithm for two dimensions, with error $(1 - \tau) \cdot JUNG_2 \cdot OPT_1 = (1 - \tau) \frac{2}{\sqrt{3}} \cdot OPT_1$ for a constant $\tau > 0$. Given this result, we can lift it to higher dimensions using a generalization of Jung’s theorem (Henk, 1992): for a dimension-d set S, if every dimension-k projection has length $2r_k$, then S is enclosed in a ball of radius $r_k \cdot JUNG_d \cdot JUNG_k$. So our $(1 - \tau)$ improvement for $d = 2$ yields a $(1 - \tau)$ improvement for all d, and in particular asymptotic error $(1 - \tau)\sqrt{2} \cdot OPT_1$ rather than $\sqrt{2} \cdot OPT_1$ for $d \to \infty$.

Variant of Catoni’s estimator for $d = 1$. To understand our $d = 2$ estimator, it’s helpful to understand how to get the optimal constant for $d = 1$. In Appendix A we give a simple, 2-page self-contained analysis of a variant of Catoni’s estimator (Catoni, 2012).

Define $T = \sigma \sqrt{\frac{2}{d+1}}$, and consider a ψ function satisfying

$$-\log \left(1 - x + \frac{x^2}{2}\right) \leq \psi(x) \leq \log \left(1 + x + \frac{x^2}{2}\right)$$

such as $\psi(x) = x - x^3/6$ for $|x| \leq \sqrt{2}$, and $\psi(x) = \frac{2\sqrt{3}}{3} \cdot \text{sign}(x)$ otherwise. We plot this function below, along with two other functions from (Catoni, 2012) satisfying the above bound.

![Figure 1: Some ψ functions satisfying Catoni’s constraints (3)](image-url)

Suppose we have an initial estimate μ_0 that has small big-O error, but with a large constant factor—say, the median-of-means estimate on an initial sample of ξn points for a small constant ξ. This will have error
\[O_\xi \left(\sigma \sqrt{\log \frac{\log \frac{1}{n}}{n}} \right), \] which we would like to drive down to \(OPT_1 = \sigma \sqrt{\frac{2 \log \frac{1}{n}}{n}} \). The final estimate is

\[\hat{\mu} = \mu_0 + \frac{1}{n} \sum_{i=1}^{n} T \psi \left(\frac{x_i - \mu_0}{T} \right), \tag{4} \]

Intuitively, \(T \) is the threshold for being an outlier: if \(|x| \ll T \) always, then Bernstein’s inequality will give that the empirical mean achieves \((1 + o(1))OPT_1 \). And indeed, \(T \psi(x/T) \approx x \) for \(|x| \ll T \), so the estimate (4) is close to the empirical mean in this case. On the other hand, elements \(|x| \gg T \) will only be sampled \(o(\log \frac{1}{n}) \) times by Chebyshev’s inequality, so the sample of such events is completely unreliable for \(1 - \delta \) failure probability; the influence of such elements on the estimator (4) is negligible. The challenge is to handle the cases of \(|x| = \Theta(T) \).

The error of the estimate \(\hat{\mu} \) concentrates about \(\mu \) to bound its moment generating function (MGF). The conditions (3) are precisely what are needed: \(\mathbb{E}[\exp(\frac{x}{T} \hat{\mu})] \) depends on \(\mathbb{E}[\exp(\psi((x - \mu)/T))] \), which is controlled by just the mean and variance of \(x \) through (3). As we show in Lemma 14, this leads to the concentration bound

\[|\hat{\mu} - \mu| \leq \left(1 + O \left(\log \frac{1}{T} \right) \right) OPT_1 \]

with probability \(1 - \delta \).

The estimator (4) we analyze in Appendix A is different from the original Catoni estimator in that Catoni finds a root of \(\psi(\frac{x-\mu}{T}) \), while our variant approximates this root with essentially one step of Newton’s method. Our analysis does not handle reuse of samples, so it requires the initial estimate \(\mu_0 \) to use a small initial sample. This makes our analysis simpler than (Catoni, 2012), which is helpful for the extension we need to get the better constant for \(d = 2 \).

A better constant for “inlier-light” distributions. The error of the estimate \(\hat{\mu} \) is bounded by the constraints (3). So with a better bound, the estimate would sharpen by a constant factor. In particular, if we could find a \(\psi \) with

\[-\log \left(1 - x + (1 - \eta) \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + (1 - \eta) \frac{x^2}{2} \right), \tag{5} \]

then the variance term which appears in the MGF argument above would have a leading \((1 - \eta)\) factor, giving a better constant. Unfortunately, (3) is not achieved by any function \(\psi \) for all \(x \) simultaneously: both the upper and lower constraints (3) were \(x - x^3/6 \pm \Theta(x^4) \), so for any \(\eta > 0 \) if \(x \) is small enough, shifting the constraints closer by \(\Theta(x^2) \) is impossible.

But, for any \(\beta > 0 \), if we restrict attention to \(x \) such that \(|x| > \beta \), the constraints of (3) do not exactly match, so there exists an \(\eta \) for which (5) is possible for all \(|x| > \beta \). We have already discussed one function satisfying tightened constraint: \(\psi(x) = x - x^3/6 \) for \(|x| \leq \sqrt{2} \) and \(\psi(x) = \left(\sqrt{2} - \frac{2 \sqrt{2}}{6} \right) \text{sign}(x) \) otherwise. This is plotted in Figure 1.

As a result of this improved analysis, the Catoni estimate (4) is a constant factor better at handling the variance caused by \(x \) whenever \(|x| \gtrsim T \).

To formalize this idea, for any constants \(\beta, L > 0 \), we say a distribution is “\((\beta, L)\)-inlier-light” if it has at most \((1 - L)\sigma^2\) variance from elements smaller than \(\beta T \). Catoni gets the tight constant on the \((1 - L)\sigma^2\) variance from inliers, and a better constant on the remaining at-most-\(L\sigma^2\) variance. Thus it gets error \((1 - \tau)OPT_1\) error on inlier-light distributions, for some constant \(\tau \) depending on \(\beta \) and \(L \).
An alternative to Catoni for outlier-light distributions. On the other hand, if a distribution is not inlier-light, it can have very few outliers: there’s at most $L\sigma^2$ variance remaining to come from outliers. If we trim at a threshold αT for $\alpha > \beta$, then the contribution to the mean from the trimmed outliers is small: the worst-case is when they are all at the threshold αT, in which case the contribution is $\frac{L\sigma^2}{\alpha T^2} \cdot \alpha T = \frac{L}{\alpha} OPT_1$. And for small α, Bernstein’s inequality says that the empirical mean of the untrimmed inliers will have accuracy $(1 + O(\alpha))OPT_1$. As a result, the trimmed mean, trimmed to αT, achieves $(1 + O(\alpha + L/\alpha))OPT_1$ on distributions that are not (β, L) inlier-light, for any $\alpha > \beta$.

Note also that the property of being inlier-light can be tested with $1 - \delta$ accuracy, since it involves measuring the variance from bounded entries, as long as $L \gtrsim \beta$. So for $L = \Theta(\beta)$, we can (1) test for inlier-lightness, and on non-inlier-light distributions (2) trim at $\alpha = \sqrt{\beta}$ to get $(1 + O(\sqrt{\beta}))OPT_1$ error.

Handling $d = 2$. Per the above, in one dimension either the Catoni estimate achieves a constant better than 1, or the trimmed mean achieves constant close to 1. The latter is promising because the empirical mean, in the subgaussian case where it works, gets error OPT_1 independent of the dimension.

Our $d = 2$ algorithm is as follows. We test whether the distribution is inlier-light in either direction e_1 or e_2: if it is, we run Catoni on every 1d projection in a fine net around the circle, and take the center of the minimum enclosing ball of the possible means. In general, this gets at most $JUNG_2 \cdot OPT_1$ error; but the tight instance for Jung is an equilateral triangle, and this error only happens if Catoni gets error bound OPT_1 in three directions approximately 120° apart. If the distribution is inlier-light in some direction e_i, then it is also inlier-light (with slight loss in parameters) in at least one of the triangle directions, so Catoni gets a better error in that direction and a more accurate estimate overall.

On the other hand, if the distribution is not inlier-light in either the e_1 or e_2 direction, we remove any element larger than $\sqrt{\beta} T$ in either direction and take the empirical mean of all other samples. This gets error $(1 + O(\sqrt{\beta}))OPT_1$, without any dependence on $JUNG_2$.

For small enough constant β and $L = \Theta(\beta)$, either situation will give a constant better than $JUNG_2$. Finally, as stated before, we can lift our two-dimensional estimate to higher dimensions using a generalization of Jung’s theorem (Theorem 28, Henk (1992)) to obtain a constant better than $JUNG_d$ in d-dimensions.

2.2. Robust Estimation, Lower Bound

Now, we discuss the ideas behind Theorem 2, showing that the naive strategy of combining one-dimensional estimates is optimal for the robust estimation setting.

![Figure 2](image-url) Figure 2: For $d = 2$, the algorithm sees as input the distribution on the left after the adversary corrupts ε-mass. The three distributions to its right are ones consistent with the input.

We first show the lower bound for $\varepsilon \leq \frac{1}{d+1}$. The hard instance is that the adversary hands over a distribution that puts ε mass on each vertex of the regular simplex. The true distribution is the same, but with one of the vertices reflected across the origin. These distributions are all consistent with the observed distribution – that is, they have total variation at most ε to the distribution handed to us by the adversary –
but have means at vertices of a simplex. A regular simplex is the setting where Jung’s theorem is tight, and
some calculation gives a $JUNG_d \cdot \sqrt{2\varepsilon}$ lower bound.

When $d > \frac{1}{\varepsilon} - 1$, we instead restrict to a lower-dimensional space of dimension $d' = \lfloor \frac{1}{\varepsilon} - 1 \rfloor$ and apply the same bound to get a $JUNG_{d'}$ lower bound. Since d' is large, both $JUNG_d$ and $JUNG_{d'}$ are $\sqrt{2} - O(\varepsilon)$.

3. Proof Details – Heavy-Tailed Estimator

Here, we provide a detailed description of our heavy-tailed estimator, along with key lemmas in the proof of our main result, Theorem 1. We will focus on our 2-dimensional estimator that achieves a constant better than $JUNG_2$; as stated earlier, we can “lift” it to high-dimensions to obtain a constant better than $JUNG_d$ in d dimensions. We begin with the formal definition of “inlier-light” and “outlier-light” distributions.

3.1. “Inlier-Light” and “Outlier-Light” Distributions

Definition 4 ((β, L)-Inlier-Light Distribution) A distribution x over \mathbb{R} with variance at most σ^2 is “(β, L)-inlier-light” if:

$$\mathbb{E} \left[(x - \mu)^2 1_{|x - \mu| \leq \beta T} \right] < (1 - L)\sigma^2$$

for $T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}}$.

That is, a distribution is (β, L)-inlier-light if at most $(1 - L)$ fraction of its variance comes from “inlier” points, points within βT of μ. We define outlier-light analogously:

Definition 5 ((β, L)-Outlier-Light Distribution) A distribution x over \mathbb{R} with variance at most σ^2 is “(β, L)-outlier-light” if:

$$\mathbb{E} \left[(x - \mu)^2 1_{|x - \mu| \geq \beta T} \right] < L\sigma^2$$

for $T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}}$.

A distribution x over \mathbb{R}^d is (β, L)-outlier-light if $\langle x, w \rangle$ is (β, L)-outlier-light for all unit vectors w.

3.2. Estimator for One-Dimensional Inlier-Light Distributions

We first show that a variant of Catoni’s Estimator for one-dimensional distributions, when computed using an appropriate ψ function, achieves a rate strictly better than $\sigma \sqrt{\frac{2 \log \frac{2}{n}}{n}}$, the Gaussian rate, when the distribution is inlier-light. CATONIESTIMATORLOCAL takes an initial estimate μ_0 of the mean μ as input, such that $|\mu_0 - \mu| \leq O \left(\sigma \sqrt{\frac{\log \frac{2}{\delta}}{n}} \right)$, typically computed using the median-of-means estimator (Darzentas, 1983).
Algorithm 1 \textsc{CatoniEstimatorLocal}

Input parameters:
- Failure probability δ, One-dimensional iid samples x_1, \ldots, x_n, Initial estimate μ_0, ψ function, Scaling parameter T.

1. Compute
 \[r(\mu_0) = \frac{T}{n} \sum_{i=1}^{n} \psi \left(\frac{x_i - \mu_0}{T} \right) \]
2. Return mean estimate $\hat{\mu} = r(\mu_0) + \mu_0$

We will suppose that our ψ function satisfies the following.

Assumption 6 ψ satisfies that for all x,
\[-\log \left(1 - x + \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + \frac{x^2}{2} \right) \]

Additionally, for constants $0 < \beta, \eta < 1$, for all $|x| \geq \frac{\beta}{2}$,
\[-\log \left(1 - x + (1 - \eta) \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + (1 - \eta) \frac{x^2}{2} \right) \]

Recall that the “$x - \frac{x^3}{6}$, Clipped” function from Figure 1 satisfies that there exists an η such that the above is satisfied for every β. We show that for (β, L)-inlier-distributions, \textsc{CatoniEstimatorLocal} improves upon the Gaussian rate by an $\approx \left(1 - \frac{\eta L}{4} \right)$-factor when using a ψ function satisfying the above, given an initial estimate μ_0 of the mean.

Lemma 7 (Improved Rate for One-Dimensional Inlier-Light Distributions) For every constant $0 < \beta, L < 1$, $C_1 > 1$ there exists constant $C_2 > 1$ such that the following holds. Suppose ψ satisfies Assumption 6, $n > C_2 \log \frac{1}{\delta}$, and we have an initial estimate μ_0 with $|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$. We let $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$.

Given n one-dimensional iid samples x_1, \ldots, x_n with mean μ and variance at most σ^2, if x_i is (β, L)-inlier-light, then, with probability $1 - \delta$, the output $\hat{\mu}$ of Algorithm \textsc{CatoniEstimatorLocal} satisfies
\[|\hat{\mu} - \mu| \leq \left(1 - \frac{\eta L}{4} + C_2 \frac{\log \frac{1}{\delta}}{n} \right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \]

3.3. Testing Inlier-Light vs. Outlier-Light

Our strategy will be to first test whether our two-dimensional samples come from a distribution that is inlier-light, or outlier-light, and use an appropriate estimator accordingly. Our tester (Algorithm \textsc{2DInlierOutlierLightTesting}, described in Appendix B.2) takes in n samples along with initial estimates $\mu_0^{e_1}, \mu_0^{e_2}$ of the mean in directions e_1, e_2 respectively, and either identifies a direction e_j in which the distribution is inlier-light, or certifies that the distribution is outlier-light in every direction. Formally,
Lemma 8 (Two-dimensional Inlier-Light vs. Outlier-Light Test) For every constant $\beta < \frac{1}{8}$, $L > 8\beta$, and $C_1 > 1$, there exists constant $C_2 > 1$ such that the following holds. Suppose $n > C_2 \log \frac{1}{\delta}$ and suppose our initial estimates $\mu_0^{e_j}$ satisfy $|\mu_0^{e_j} - \langle e_j, \mu \rangle| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$ for $j \in \{1, 2\}$. We let $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$.

Given n two-dimensional iid samples x_1, \ldots, x_n with mean μ and covariance $\Sigma \preceq \sigma^2 I_2$, with probability $1 - \delta$, Algorithm $2D\text{INLIEROUTLIERLIGHTESTER}$ satisfies the following.

- If the output is e_j, $\langle e_j, x_i \rangle$ is (β, L)-inlier-light
- If the output is \perp, x_i is $(16\beta, 16L)$-outlier-light. (That is, $\langle x_i, w \rangle$ is $(16\beta, 16L)$-outlier-light for all unit vectors w.)

3.4. Catoni-Based Estimator for Two-Dimensional Inlier-Light Distributions

We recall the standard definition of a ρ-net of vectors over \mathbb{R}^2:

Assumption 9 U is a ρ-net of $O(1/\rho)$ unit vectors such that for every $v \in S^1$, there exists a vector $u \in U$ with $\|v - u\| \leq \rho$.

If our distribution over \mathbb{R}^2 is determined to be inlier-light in some direction e_j, we will make use of the following 2-dimensional estimator.

Algorithm 2 $2D\text{INLIERLIGHTESTIMATOR}$

Input parameters:
- Failure probability δ, Two-dimensional iid samples x_1, \ldots, x_n, ψ function, Scaling parameter T, Inlier-Outlier-Lightness parameters β, L, Approximation parameters $0 < \xi, \tau < 1$, Set of unit vectors U, Initial estimates μ_0^u for $u \in U$.

1. For every $u \in U$, run Algorithm $1D\text{INLIEROUTLIERTESTER}$ with samples $\langle u, x_1 \rangle, \ldots, \langle u, x_n \rangle$, Failure probability $\frac{\delta}{4|U|}$, initial estimate μ_0^u, and Lightness parameters $\beta/32, L/32$. If the output is “INLIER-LIGHT”, let $\alpha_u = 1 - \Theta(\tau)$. Otherwise, let $\alpha_u = 1 + \xi$.

2. For every $u \in U$, run Algorithm $\text{CATONIESTIMATORLOCAL}$ with samples $\langle u, x_1 \rangle, \ldots, \langle u, x_n \rangle$, initial estimate μ_0^u, and failure probability $\frac{\delta}{4|U|}$ and let the mean estimate obtained be $\hat{\mu}_u$.

3. For each $u \in U$, define set $S_u = \left\{w : |\langle u, w \rangle - \hat{\mu}_u| \leq \alpha_u \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \right\}$. Let S be the convex set given by $S := \bigcap_{u \in U} S_u$.

4. Consider the minimum enclosing ball of set S and return its center as the mean estimate $\hat{\mu}$.

$2D\text{INLIERLIGHTESTIMATOR}$ takes in a ρ-net U, in addition to the iid samples $x_1, \ldots, x_n \in \mathbb{R}^2$ and failure probability δ. For each net vector $u \in U$, it tests whether the distribution of the $\langle u, x_i \rangle$ is inlier-light, computes an estimate of the mean in direction u using our 1-d estimator for inlier-light distributions, and assigns a confidence interval accordingly. The final estimate $\hat{\mu}$ is the center of the minimum enclosing ball of the points that satisfy all $|U|$ confidence intervals. We show:

Lemma 10 (Two-Dimensional Estimator for Inlier-Light Distributions) For every constant $0 < \beta < 1/32, L > 32\beta$, and $C > 1$, there exist constants $\xi, \tau < 1$ such that the following holds. Suppose $n > \ldots$
Given \(n \) two-dimensional iid samples \(x_1, \ldots, x_n \) with mean \(\mu \) and covariance \(\Sigma \preceq \sigma^2 I_2 \) such that \(\langle e_k, x_i \rangle \) is \((\beta, L)\)-inlier-light, with probability \(1 - \delta \), Algorithm 2DINLIERLIGHTESTIMATOR returns a mean estimate \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

3.5. Trimmed-Mean-Based Estimator for Two-Dimensional Outlier-Light Distributions

Algorithm 3 2DOUTLIERLIGHTESTIMATOR

Input parameters:

- Failure probability \(\delta \), Two-dimensional samples \(x_1, \ldots, x_n \), Initial estimates \(\mu_0^{e_1}, \mu_0^{e_2} \). Scaling parameter \(T \), Approximation parameters \(0 < \beta, \xi < 1 \).

1. Consider the subset of samples \(X' \) obtained by throwing out any sample \(x_i \) with \(|\langle e_j, x_i \rangle - \mu_0^{e_j}| > \sqrt{\beta T} \) for either \(e_1 \) or \(e_2 \). Return estimate \(\hat{\mu} = \frac{1}{n} \sum_{i \in X'} x_i \).

For outlier-light distributions, 2DOUTLIERLIGHTESTIMATOR computes a simple trimmed-mean estimate, throwing out any point more than \(\sqrt{\beta T} \) away from the initial mean estimate in the \(e_1, e_2 \) directions.

Lemma 11 (Two-Dimensional Estimator for Outlier-Light Distributions) Define \(T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}} \). For any constant \(\beta < 1 \), let \(x_1, \ldots, x_n \) be iid samples from a two-dimensional \((\beta, O(\beta))\)-outlier-light distribution with mean \(\mu \) and covariance \(\Sigma \preceq \sigma^2 I_2 \). Then, the output of Algorithm 2DOUTLIERLIGHTESTIMATOR when given as input initial estimates \(\mu_0^{j} \) satisfying \(|\mu_0^{j} - \langle e_j, \mu \rangle| \leq O\left(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right) \) outputs estimate \(\hat{\mu} \) satisfying with probability \(1 - \delta \),

\[
\| \hat{\mu} - \mu \| \leq \left(1 + O\left(\sqrt{\beta} \right) \right) \cdot OPT_1
\]

3.6. Final Two-Dimensional Estimator

Finally, we put together the previous parts to obtain our final Algorithm 2DHEAVYTAILEDESTIMATOR.
Algorithm 4 2DHeavyTailedEstimator

Input parameters:

- Failure probability δ, Two-dimensional samples x_1, \ldots, x_n, ψ function, Scaling parameter T, Inlier-Outlier-Lightness parameters β, L, Approximation parameters $0 < \xi, \tau < 1$, set of unit vectors U

1. Using $\Theta(\xi)n$ samples, compute Median-of-Means estimates μ_{0j}^e of the one-dimensional samples $\langle e_j, x_i \rangle$ with failure probability $\frac{\delta}{4(|U|+2)}$ for each $j \in \{1, 2\}$.

2. Using $\Theta(\xi)n$ samples, compute Median-of-Means estimates μ_{0u}^u of the one-dimensional samples $\langle u, x_i \rangle$ with failure probability $\frac{\delta}{4(|U|+2)}$ for each $u \in U$.

3. Let the set of the remaining $(1 - \Theta(\xi))n$ samples be X'. Run Algorithm 2DInlierOutlierLightTester using failure probability $\delta/4$, the samples in X' and initial estimates μ_{01}^e, μ_{02}^e.

4. If the output of 2DInlierOutlierLightTester is some e_j, run 2DInlierLightEstimator using failure probability $\delta/8$, the samples in X', and the initial estimates μ_{0j}^e, and output its mean estimate $\hat{\mu}$.

5. If instead the output of 2DInlierOutlierLightTester is \perp, run 2DOutlierLightEstimator using failure probability $\delta/4$, the samples in X' and initial estimates μ_{01}^e, μ_{02}^e. Return its output $b\mu$.

Theorem 12 (Final Two-Dimensional Estimator) For any sufficiently small constant $\tau > 0$, there exist constants $0 < \xi, \beta, L < 1$ such that the following holds. Suppose $n > O(\xi) (\log \frac{1}{\delta})$ and $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$.

Suppose the set U is a ρ-net, satisfying Assumption 9 for $\rho = \delta^{\Theta(\xi)}$.

Given n two-dimensional samples x_1, \ldots, x_n with mean μ and covariance $\Sigma \leq \sigma^2 I_2$, with probability $1 - \delta$, Algorithm 2DHeavyTailedEstimator returns an estimate $\hat{\mu}$ with

$$\|\hat{\mu} - \mu\| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$$

Proof First note that by classical results on Median-of-Means (Darzentas, 1983) and a union bound, for every vector $v \in U \cup \{e_1, e_2\}$, we have with probability $1 - \delta/4$,

$$|\mu_{0v}^v - \langle v, \mu \rangle| \leq O\left(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}\right)$$

since $n > O(\xi) (\log \frac{1}{\delta})$. For the remaining proof, we condition on the above. Now, by a union bound, there exist constants $0 < \beta, L < 1$, such that by Lemmas 8, 10 and 11, the following events happen with probability $1 - 3\delta/4$.

- If the output of Algorithm 2DInlierOutlierLightTester is e_j, $\langle e_j, x_i \rangle$ is (β, L)-inlier-light. On the other hand, if the output is \perp, x_i is $(8\beta, 8L)$-outlier-light.
• If \(\langle e_j, x_i \rangle \) is \((\beta, L)\)-inlier-light, Algorithm 2DINLIERLIGHTESTIMATOR returns \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq (1 - 2\tau + \Theta(\xi)) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

\[
\leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

• If \(x_i \) is \((8\beta, 8L)\)-outlier-light, for \(L = O(\beta) \), Algorithm 2DOUTLIERLIGHTESTIMATOR returns \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq \left(1 + O \left(\sqrt{\beta} \right) \right) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}
\]

So, with probability \(1 - \delta \) in total, for \(\beta \) small enough, Algorithm 2DHEAVYTailedESTIMATOR returns estimate \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

\[\blacksquare\]

4. Open Questions

Our work suggests a number of exciting avenues for future research. Some of these are:

• What is the sharp rate for heavy tailed estimation when \(\log \frac{1}{\delta} \gg d \)? Our work establishes that it is not achieved by the naive strategy of aggregating one-dimensional estimates. Is it possible to achieve the Gaussian rate?

• Our upper and lower bounds are statistical—what about polynomial-time estimation? What are the sharp constants achievable, and is there a computational-statistical tradeoff? In particular, for large \(d \) no estimator achieving even the \(JUNG_d \approx \sqrt{2} \) factor loss is known—current polynomial-time estimators (Hopkins, 2020; Cherapanamjeri et al., 2019) rely on the median-of-means framework, which loses constants even in one dimension.

• What are the sharp rates for other estimation problems under heavy-tailed noise? For instance, covariance estimation or regression?

References

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. Robustly learning a gaussian: Getting optimal error, efficiently, 2017a.

Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed distributions: A

Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 3 edition,
2010. doi: 10.1017/CBO9781139194648.

Shahar Mendelson and Nikita Zhivotovskiy. Robust covariance estimation under $l_4 \rightarrow l_2$ norm equiva-
60410055.

Stanislav Minsker. U-statistics of growing order and sub-gaussian mean estimators with sharp con-
247084018.

Stanislav Minsker. Efficient median of means estimator. In Gergely Neu and Lorenzo Rosasco, editors,
press/v195/minsker23a.html.

Arkadij Semenovič Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency

Cengage Learning, 2014.

Appendix A. Vanilla One-Dimensional Catoni Estimator

We first describe a variant of Catoni’s one-dimensional estimator Catoni (2012) for bounded variance distributions.

Algorithm 1 \textsc{CatoniEstimatorLocal}

\textbf{Input parameters:}

\begin{itemize}
 \item Failure probability δ, One-dimensional iid samples x_1, \ldots, x_n, Initial estimate μ_0, ψ function, Scaling parameter T.
\end{itemize}

1. Compute

$$r(\mu_0) = \frac{T}{n} \sum_{i=1}^{n} \psi \left(\frac{x_i - \mu_0}{T} \right)$$

2. Return mean estimate $\hat{\mu} = r(\mu_0) + \mu_0$

Assumption 13 ψ satisfies that for all x,

$$-\log \left(1 - x + \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + \frac{x^2}{2} \right)$$

Lemma 14 For every constant $C_1 > 1$ there exists constant $C_2 > 1$ such that the following holds. Suppose ψ satisfies Assumption 13, $n > C_2 \log \frac{1}{\delta}$, and we have an initial estimate μ_0 with $|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$. We let $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$. Given n one-dimensional iid samples x_1, \ldots, x_n with mean μ and variance at most σ^2, with probability $1 - \delta$, the output $\hat{\mu}$ of Algorithm \textsc{CatoniEstimatorLocal} satisfies

$$|\hat{\mu} - \mu| \leq \left(1 + C_2 \frac{\log \frac{1}{\delta}}{n} \right) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$$

Proof By Assumption 13, we have

$$\mathbb{E} \left[\exp \left(\frac{n}{T} r(\mu_0) \right) \right] = \prod_{i=1}^{n} \mathbb{E} \left[\exp \left(\psi \left(\frac{x_i - \mu_0}{T} \right) \right) \right]$$

$$\leq \prod_{i=1}^{n} \mathbb{E} \left[\left(1 + \frac{x_i - \mu_0}{T} + \frac{(x_i - \mu_0)^2}{2T^2} \right) \right]$$

$$= \left(1 + \frac{\mu - \mu_0}{T} + \frac{1}{2T^2} \cdot \left[\sigma^2 + (\mu - \mu_0)^2 \right] \right)^n$$

$$\leq \exp \left(\frac{n}{T} (\mu - \mu_0) + \frac{n}{2T^2} \cdot \left[\sigma^2 + (\mu - \mu_0)^2 \right] \right)$$
So, by Markov’s inequality, for $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, we have

$$
\Pr \left[r(\mu_0) \geq (\mu - \mu_0) + \sigma \cdot \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \left(1 + C_2 \frac{\log \frac{1}{\delta}}{n} \right) \right]
$$

$$
\leq \exp \left(\frac{n}{2 T^2} \left[\sigma^2 + (\mu - \mu_0)^2 \right] - \frac{n}{T} \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \left(1 + C_2 \frac{\log \frac{1}{\delta}}{n} \right) \right)
$$

$$
\leq \exp \left(- \log \frac{2}{\delta} \right)
$$

$$
= \delta/2
$$

since $|\mu - \mu_0| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$, for $C_2 \geq \Omega(C_1^2)$.

Similarly, for the lower tail, the MGF is given by

$$
\mathbb{E} \left[\exp \left(- \frac{n}{T} r(\theta_0) \right) \right] \leq \prod_{i=1}^{n} \mathbb{E} \left[\left(1 - \frac{x_i - \mu_0}{T} + \frac{(x_i - \mu_0)^2}{2T^2} \right) \right]
$$

$$
\leq \exp \left(- \frac{n}{T} (\mu - \mu_0) + \frac{n}{2T^2} \left[\sigma^2 + (\mu - \mu_0)^2 \right] \right)
$$

So, by Markov’s inequality, for $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, we have

$$
\Pr \left[r(\mu_0) \leq (\mu - \mu_0) - \sigma \cdot \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \left(1 + C_2 \frac{\log \frac{1}{\delta}}{n} \right) \right] \leq \delta/2
$$

Then, taking a union bound gives the claim.

Algorithm 5 CATONIEstimator

Input parameters:

- Failure probability δ, One-dimensional iid samples x_1, \ldots, x_n, ψ function, Scaling parameter T, Approximation parameter $0 < \xi < 1$.

1. Use the first $\Theta(\xi n)$ samples to compute the Median-of-Means estimate μ_0 with failure probability $\delta/2$.

2. Return the result $\hat{\mu}$ of Algorithm **CATONIEstimatorLocal** using initial estimate μ_0, and the remaining $(1 - \Theta(\xi))n$ samples, and failure probability $\delta/2$.

Theorem 15 For every constant $\xi > 0$, suppose $n > O_\xi \left(\log \frac{1}{\delta} \right)$, ψ satisfies Assumption 13, and consider $T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$. Given n one-dimensional iid samples x_1, \ldots, x_n with mean μ and variance at most σ^2, with probability $1 - \delta$, the output $\hat{\mu}$ of Algorithm **CATONIEstimator** satisfies

$$
|\hat{\mu} - \mu| \leq (1 + \xi) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{4}{\delta}}{n}}
$$
Proof First, by classical results on Median-of-Means Darzentas (1983), \(\mu_0 \) satisfies with probability \(1 - \delta/2 \),
\[
|\mu_0 - \mu| \leq C \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n \xi}}
\]
for some constant \(C > 0 \). Then, invoking Lemma 1 using the remaining \((1 - \Theta(\xi))n \) samples and failure probability \(\delta/2 \) gives the claim.

Appendix B. Improved Heavy-Tailed Estimator

We will make use of the following notions of “\((\beta, L)\)-inlier-light” and “\((\beta, L)\)-outlier-light” distributions throughout this section.

Definition 4 \(((\beta, L)\)-Inlier-Light Distribution) A distribution \(x \) over \(\mathbb{R} \) with variance at most \(\sigma^2 \) is “\((\beta, L)\)-inlier-light” if:
\[
\mathbb{E} [(x - \mu)^2 \mathbb{1}_{|x - \mu| \leq \beta T}] < (1 - L) \sigma^2
\]
for \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\xi}}} \).

Definition 5 \(((\beta, L)\)-Outlier-Light Distribution) A distribution \(x \) over \(\mathbb{R}^d \) with variance at most \(\sigma^2 \) is “\((\beta, L)\)-outlier-light” if:
\[
\mathbb{E} [(x - \mu)^2 \mathbb{1}_{|x - \mu| \geq \beta T}] < L \sigma^2
\]
for \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\xi}}} \).

A distribution \(x \) over \(\mathbb{R}^d \) is \((\beta, L)\)-outlier-light if \(\langle x, w \rangle \) is \((\beta, L)\)-outlier-light for all unit vectors \(w \).

B.1. Improved One-Dimensional Catoni-Based Estimator when Inlier-Light

The following assumption on \(\psi \) functions is stronger than the Catoni requirement, and allows for a more accurate estimate when a distribution is \((\beta, L)\)-inlier-light.

Assumption 6 \(\psi \) satisfies that for all \(x \),
\[
- \log \left(1 - x + \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + \frac{x^2}{2} \right)
\]

Additionally, for constants \(0 < \beta, \eta < 1 \), for all \(|x| \geq \frac{\beta}{2} \),
\[
- \log \left(1 - x + (1 - \eta) \frac{x^2}{2} \right) \leq \psi(x) \leq \log \left(1 + x + (1 - \eta) \frac{x^2}{2} \right)
\]

There exist \(\psi \) functions such that for every \(\beta > 0 \), there exists \(\eta > 0 \) such that Assumption 6 is satisfied. One such function is \(\psi(x) = x - x^3/6 \) for \(|x| \leq 1 \) and \(\psi(x) = \frac{5}{6} \text{sign}(x) \) for \(|x| > 1 \). For \(|x| \leq 1 \), there is \(\Theta(x^4) \) flexibility in the choice of \(\psi(x) \).

Lemma 7 (Improved Rate for One-Dimensional Inlier-Light Distributions) For every constant \(0 < \beta, L < 1 \), \(C_1 > 1 \) there exists constant \(C_2 > 1 \) such that the following holds. Suppose \(\psi \) satisfies Assumption 6, \(n > C_2 \log \frac{1}{\delta} \), and we have an initial estimate \(\mu_0 \) with \(|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n \xi}} \). We let \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\xi}}} \).
Given n one-dimensional iid samples x_1, \ldots, x_n with mean μ and variance at most σ^2, if x_i is (β, L)-inlier-light, then, with probability $1 - \delta$, the output $\hat{\mu}$ of Algorithm \textsc{CatoniEstimatorLocal} satisfies

$$|\hat{\mu} - \mu| \leq \left(1 - \frac{\eta L}{4} + C_2 \frac{\log \frac{1}{\delta}}{n}\right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{\eta}}{n}}$$

\textbf{Proof} By Assumption 6, we have

$$\mathbb{E} \left[\exp \left(\frac{n}{T} r(\mu_0) \right) \right]$$

$$= \prod_{i=1}^{n} \mathbb{E} \left[\exp \left(\psi \left(\frac{x_i - \mu_0}{T} \right) \right) \right]$$

$$= \prod_{i=1}^{n} \left(\mathbb{E} \left[\exp \left(\psi \left(\frac{x_i - \mu_0}{T} \right) \right) \mathbb{I}_{|x_i - \mu_0| \leq \beta T/2} \right] + \mathbb{E} \left[\exp \left(\psi \left(\frac{x_i - \mu_0}{T} \right) \right) \mathbb{I}_{|x_i - \mu_0| > \beta T/2} \right] \right)$$

$$\leq \prod_{i=1}^{n} \left(1 + \mathbb{E} \left[\frac{x_i - \mu_0}{T} \right] + \frac{1}{2T^2} \left(\mathbb{E} \left[(x_i - \mu_0)^2 \mathbb{I}_{|x_i - \mu_0| \leq \beta T/2} \right] + (1 - \eta) \mathbb{E} \left[(x_i - \mu_0)^2 \mathbb{I}_{|x_i - \mu_0| > \beta T/2} \right] \right) \right)$$

Now, since x_i is (β, L)-inlier-light, so that $\mathbb{E} \left[(x_i - \mu)^2 \mathbb{I}_{|x_i - \mu| \leq \beta T} \right] < (1 - L)\sigma^2$, we have

$$\mathbb{E} \left[(x_i - \mu)^2 \mathbb{I}_{|x_i - \mu| \leq \beta T/2} \right] \leq \mathbb{E} \left[(x_i - \mu)^2 \mathbb{I}_{|x_i - \mu| \leq \beta T} \right] \leq (1 - L)\sigma^2$$

since $|\mu - \mu_0| \leq O \left(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right) \leq \beta T/2$. So,

$$\mathbb{E} \left[(x_i - \mu_0)^2 \mathbb{I}_{|x_i - \mu_0| \leq \beta T/2} \right] + (1 - \eta) \mathbb{E} \left[(x_i - \mu_0)^2 \mathbb{I}_{|x_i - \mu_0| > \beta T/2} \right]$$

$$\leq (\mu - \mu_0)^2 + \mathbb{E} \left[(x_i - \mu)^2 \mathbb{I}_{|x_i - \mu| \leq \beta T/2} \right] + (1 - \eta) \mathbb{E} \left[(x_i - \mu)^2 \mathbb{I}_{|x_i - \mu| > \beta T/2} \right]$$

$$- 2\eta \mathbb{E} \left[(x_i - \mu)(\mu - \mu_0) \mathbb{I}_{|x_i - \mu_0| > \beta T/2} \right]$$

$$\leq \left(1 - \frac{\eta L}{2}\right) \sigma^2$$

since $n > C_2 \log \frac{1}{\delta}$. So,

$$\mathbb{E} \left[\exp \left(\frac{n}{T} r(\mu_0) \right) \right] \leq \prod_{i=1}^{n} \left(1 + \frac{\mu - \mu_0}{T} + \frac{\sigma^2}{2T^2} \left(1 - \frac{\eta L}{2}\right) \right)$$

$$\leq \exp \left(n \cdot \frac{\mu - \mu_0}{T} + \frac{n\sigma^2}{2T^2} \left(1 - \frac{\eta L}{2}\right) \right)$$

20
Then, by Markov’s inequality, for $T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}}$,

$$\Pr \left[r(\mu_0) \geq (\mu - \mu_0) + \left(1 - \frac{\eta L}{4} + \frac{C_2 \log \frac{1}{\delta}}{n} \right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \right]$$

$$\leq \exp \left(\frac{n \sigma^2}{2T^2} \left(1 - \frac{\eta L}{2} \right) - \frac{n}{T} \left(1 - \frac{\eta L}{4} + \frac{C_2 \log \frac{1}{\delta}}{n} \right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \right)$$

$$\leq \exp \left(- \log \frac{2}{\delta} \right)$$

$$= \frac{\delta}{2}$$

since $|\mu - \mu_0| \leq C_1 \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$, for $C_2 \geq \Omega(C_1^2)$.

Similarly, for the lower tail, the MGF is given by

$$E \left[\exp \left(- \frac{n}{T} r(\mu_0) \right) \right] \leq \exp \left(-n \cdot \frac{\mu - \mu_0}{T} + \frac{n \sigma^2}{T^2} \left(1 - \frac{\eta L}{2} \right) \right)$$

so that by Markov’s inequality,

$$\Pr \left[r(\mu_0) \leq (\mu - \mu_0) - \left(1 - \frac{\eta L}{4} \right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \right] \leq \frac{\delta}{2}$$

for $T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}}$.

Taking a union bound gives the claim.

B.2. Testing Inlier-Light vs. Outlier-Light

Algorithm 6 1DINLIEROUTLIERLIGHTTESTER

Input parameters:

- Failure Probability δ, One-dimensional iid samples x_1, \ldots, x_n, Scaling parameter T, Inlier-Outlier-Lightness parameters β, L, Initial estimate μ_0.

1. Compute

$$B = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T}$$

2. If $B \leq (1 - 2L) \sigma^2$, return “INLIER-LIGHT”. Otherwise return “OUTLIER-LIGHT”.

Lemma 16 For every constant $\beta < 1/16$, $L > 16\beta$ and $C_1 > 1$, there exists constant $C_2 > 1$ such that the following holds. Suppose $n > C_2 \log \frac{1}{\delta}$, and we have that $|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log 2}{n}}$. We let $T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}}$.

Given n one-dimensional iid samples x_1, \ldots, x_n, with mean μ and variance at most σ^2, with probability $1 - \delta$, we have that
• If Algorithm 1DI\textsc{InlierOutlierLightTester} returns “INLIER-LIGHT”, then \(x_i \) is \((\beta, L)\)-inlier-light.

• If Algorithm 1DI\textsc{InlierOutlierLightTester} returns “OUTLIER-LIGHT”, then \(x_i \) is \((4\beta, 4L)\)-outlier-light

Proof First, note that the variance of \((x_i - \mu)^2\mathbb{1}_{|x_i - \mu| \leq \beta T}\) is at most \((\beta T \sigma)^2\), and it is bounded by \((\beta T)^2\).

Thus, by Bernstein’s inequality, since \(T = \sigma \sqrt{\frac{n}{2 \log n}} \) and \(L > 8\beta \), with probability \(1 - \delta \),

\[
\left| \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq \beta T} - \mathbb{E} \left[(x - \mu)^2 \mathbb{1}_{|x - \mu| \leq \beta T} \right] \right| \leq \beta T \sigma \sqrt{\frac{2 \log n}{n} + 2(\beta T)^2 \frac{\log n}{n}} = 2\beta \sigma^2 \leq L \sigma^2 / 4
\]

and

\[
\left| \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T} - \mathbb{E} \left[(x - \mu)^2 \mathbb{1}_{|x - \mu| \leq 4\beta T} \right] \right| \leq 4\beta T \sigma \sqrt{\frac{2 \log n}{n} + 8(\beta T)^2 \frac{\log n}{n}} = 8\beta \sigma^2 \leq L \sigma^2
\]

We condition on the above. Now, since \(|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log n}{n}} \leq \frac{\beta T}{2} \), we have

\[(x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu| \leq \beta T} \leq (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T} \]

So, since \(|\mu - \mu_0| \leq C_1 \sigma \sqrt{\frac{\log n}{n}} \), we have, by Cauchy-Schwarz,

\[
\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq \beta T} \leq \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T} + C_1^2 \sigma^2 \frac{\log n}{n} + 2C_1 \sigma \sqrt{\frac{\log n}{n}} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T}}
\]

So, if Algorithm 1DI\textsc{InlierOutlierLightTester} returns “INLIER-LIGHT” so that \(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T} \leq (1 - 2L) \sigma^2 \), then,

\[
\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq \beta T} \leq \left(1 - \frac{3L}{2} \right) \sigma^2
\]

for \(C_2 \) large enough. So, in this case

\[
\mathbb{E} \left[(x - \mu)^2 \mathbb{1}_{|x - \mu| \leq \beta T} \right] \leq (1 - L) \sigma^2
\]

so that \(x_i \) is \((\beta, L)\)-inlier-light, as claimed. For the other case, note that

\[(x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T} \geq (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T}\]
Again, by Cauchy-Schwarz, since $|\mu - \mu_0| \leq C_1 \sigma \sqrt{\frac{\log \frac{\delta}{n}}{n}}$,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 1_{|x_i - \mu| \leq 4\beta T} \geq \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 1_{|x_i - \mu_0| \leq 2\beta T} - C_1^2 \sigma^2 \frac{\log \frac{1}{\delta}}{n} - 2C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 1_{|x_i - \mu_0| \leq 2\beta T} \right)$$

So, when Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “OUTLIER-LIGHT” so that $\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 1_{|x_i - \mu_0| \leq 2\beta T} > (1 - 2L) \sigma^2$,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 1_{|x_i - \mu| \leq 4\beta T} > (1 - 3L) \sigma^2$$

for C_2 large enough. So,

$$\mathbb{E} \left[(x - \mu)^2 1_{|x - \mu| \leq 4\beta T} \right] > (1 - 4L) \sigma^2$$

So, since the variance is at most σ^2,

$$\mathbb{E} \left[(x - \mu)^2 1_{|x - \mu| > 4\beta T} \right] \leq 4L \sigma^2$$

so that x_i is $(4\beta, 4L)$-outlier-light, as claimed.

\[\square \]

\textbf{Lemma 17} \textit{For every constant $\beta < 1/16$, $L > 16\beta$, and $C_1 > 1$, there exists constant $C_2 > 1$ such that the following holds. Suppose $n > C_2 \log \frac{1}{\delta}$, and we have that $|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$. We let $T = \sigma \sqrt{\frac{n}{2 \log \frac{\delta}{\delta}}}$.

Given n one-dimensional iid samples x_1, \ldots, x_n with mean μ and variance at most σ^2, with probability $1 - \delta$, we have that

- If x_i is $(4\beta, 4L)$-inlier-light, then Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT”.

\textbf{Proof} \textit{The proof is similar to the proof of Lemma 16. First, note that the variance of $(x_i - \mu)^2 1_{|x_i - \mu| \leq 4\beta T}$ is at most $(4\beta T \sigma)^2$, and it is bounded by $(4\beta T)^2$. Thus, by Bernstein’s inequality, since $T = \sigma \sqrt{\frac{n}{2 \log \frac{\delta}{\delta}}}$ and $L > 16\beta$, with probability $1 - \delta$,}

$$\left| \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 1_{|x_i - \mu| \leq 4\beta T} - \mathbb{E} \left[(x - \mu)^2 1_{|x - \mu| \leq 4\beta T} \right] \right| \leq 4\beta T \sigma \sqrt{\frac{2 \log \frac{\delta}{\delta}}{n}} + 2(4\beta T)^2 \frac{\log \frac{\delta}{\delta}}{n}$$

$$\leq 4\beta \sigma^2 \leq Lo^2/4$$

We condition on the above. Now, since $|\mu_0 - \mu| \leq C_1 \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \leq \frac{\beta T}{2}$, we have

$$(x_i - \mu_0)^2 1_{|x_i - \mu_0| \leq 2\beta T} \leq (x_i - \mu_0)^2 1_{|x_i - \mu| \leq 4\beta T}$$
So, since $|\mu - \mu_0| \leq C_1\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$, we have, by Cauchy-Schwarz,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T} \leq 1 \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T} + C_1^2 \sigma^2 \mathbb{1}_{|e_{1}^j| T} + 2C_1\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T}}$$

So, if x_i is $(4\beta, 4L)$-inlier-light so that by the above

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu| \leq 4\beta T} \leq (1 - 3L) \sigma^2$$

we have

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \mathbb{1}_{|x_i - \mu_0| \leq 2\beta T} \leq (1 - 2L) \sigma^2$$

so that Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT” as claimed.

Algorithm 7 2DINLIEROUTLIERLIGHTTESTER

Input parameters:
- Two-dimensional iid samples x_1, \ldots, x_n, Scaling parameter T, Inlier-Outlier-Lightness parameters β, L, Initial estimates $\mu_0^e_1, \mu_0^e_2$.

1. For each $j \in \{1, 2\}$, run Algorithm 1DINLIEROUTLIERLIGHTTESTER using samples $(e_j, x_1), \ldots, (e_j, x_n)$ and initial estimate $\mu_0^e_j$.

2. If both j the output is “OUTLIER-LIGHT”, return ⊥. Otherwise, return e_j such that the output for run j was “INLIER-LIGHT”.

Lemma 18 Suppose x is a distribution over \mathbb{R}^2 with mean μ and covariance $\Sigma \preceq \sigma^2 I_d$ such that (v_j, x) is (β, L)-outlier-light for each $j \in [2]$. Suppose also that $|\langle v_1, v_2 \rangle| \leq 3/4$. Then x is $(4\beta, 4L)$-outlier-light.

Proof For any $w \in S^1$, there is some $j \in \{1, 2\}$ with $\langle w, e_j \rangle \geq \frac{1}{2}$. So,

$$\mathbb{E} \left[\langle w, x - \mu \rangle^2 \mathbb{1}_{|\langle w, x - \mu \rangle| > 4\beta T} \right] \leq 4 \mathbb{E} \left[\langle e_j, x - \mu \rangle^2 \mathbb{1}_{|\langle e_j, x - \mu \rangle| > \beta T} \right] \leq 4L \sigma^2$$

as required.

Lemma 8 (Two-dimensional Inlier-Light vs. Outlier-Light Test) For every constant $\beta < \frac{1}{8}$, $L > 8\beta$, and $C_1 > 1$, there exists constant $C_2 > 1$ such that the following holds. Suppose $n > C_2 \log \frac{1}{\delta}$ and suppose our initial estimates $\mu_0^e_j$ satisfy $|\mu_0^e_j - (e_j, \mu)| \leq C_1\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$ for $j \in \{1, 2\}$. We let $T = \sigma \sqrt{\frac{n}{2\log \frac{1}{\delta}}}$.

Given n two-dimensional iid samples x_1, \ldots, x_n with mean μ and covariance $\Sigma \preceq \sigma^2 I_2$, with probability $1 - \delta$, Algorithm 2DINLIEROUTLIERLIGHTTESTER satisfies the following.
• If the output is e_j, $\langle e_j, x_i \rangle$ is (β, L)-inlier-light.

• If the output is \perp, x_i is $(16\beta, 16L)$-outlier-light. (That is, $\langle x_i, w \rangle$ is $(16\beta, 16L)$-outlier-light for all unit vectors w.)

Proof By Lemma 16, with probability $1 - 2\delta$,

• If the output is e_j, then $\langle e_j, x_i \rangle$ is (β, L)-inlier-light as claimed.

• If the output is \perp, then both $\langle e_1, x_i \rangle$ and $\langle e_2, x_i \rangle$ are $(4\beta, 4L)$-outlier-light. Then, by Lemma 18, x_i is $(16\beta, 16L)$-outlier-light.

Reparameterizing δ gives the claim.

B.3. Properties of Inlier-Lightness

Lemma 19 Suppose x is a two-dimensional distribution with mean μ and covariance $\Sigma \leq \sigma^2 I_d$ such that $\langle e_i, x \rangle$ is (β, L)-inlier-light. Consider vectors v_1, v_2, v_3 such that for each $j \neq k$, $|\langle v_j, v_k \rangle| \leq \frac{3}{4}$. Then, for some j, $\langle v_j, x \rangle$ is $(\beta/8, L/8)$-inlier-light.

Proof Under the constraints provided, there exists two $j \in [3]$ with $|\langle v_j, e_i \rangle| \geq \frac{1}{2}$. Then, there are two cases:

• $\text{Var}(\langle e_i, x \rangle) \leq (1 - \frac{L}{2}) \sigma^2$. In this case,

$$\text{Var}(\langle v_j, x \rangle) \leq \frac{3}{4} \sigma^2 + \frac{1}{2} \left(1 - \frac{L}{2}\right) \sigma^2 \leq \left(1 - \frac{L}{4}\right) \sigma^2$$

so that $\langle v_j, x \rangle$ is $(\beta/4, L/4)$-inlier-light.

• $\text{Var}(\langle e_i, x \rangle) > (1 - \frac{L}{2}) \sigma^2$. In this case, since $\langle e_i, x \rangle$ is (β, L)-inlier-light,

$$\mathbb{E} \left[(\langle e_i, x - \mu \rangle)^2 1_{|\langle e_i, x - \mu \rangle| > \beta T} \right] \geq \left(1 - \frac{L}{2}\right) \sigma^2 - \mathbb{E} \left[(\langle e_i, x - \mu \rangle)^2 1_{|\langle e_i, x - \mu \rangle| \leq \beta T} \right] \geq \frac{L}{2} \sigma^2$$

so that $\langle e_i, x \rangle$ is $(\beta/2, L/2)$-outlier-heavy. Then, by (the contrapositive of) Lemma 18, one of the two $\langle v_j, x \rangle$ is $(\beta/8, L/8)$ outlier-heavy, and hence $(\beta/8, L/8)$-inlier-light.

\blacksquare
B.4. Two-Dimensional Catoni-Based Estimator when Inlier-Light

Algorithm 2 2DINLIERLIGHTESTIMATOR

Input parameters:

• Failure probability \(\delta \), Two-dimensional iid samples \(x_1, \ldots, x_n \), \(\psi \) function, Scaling parameter \(T \), Inlier-Outlier-Lightness parameters \(\beta, L \), Approximation parameters \(0 < \xi, \tau < 1 \), Set of unit vectors \(U \), Initial estimates \(\mu_n^0 \) for \(u \in U \).

1. For every \(u \in U \), run Algorithm 1DINLIEROUTLIERLIGHTTESTER with samples \(\langle u, x_1 \rangle, \ldots, \langle u, x_n \rangle \), Failure probability \(\delta/|U| \), initial estimate \(\mu_n^0 \), and Lightness parameters \(\beta/32, L/32 \). If the output is “INLIER-LIGHT”, let \(\alpha_u = 1 - \Theta(\tau) \). Otherwise, let \(\alpha_u = 1 + \xi \).

2. For every \(u \in U \), run Algorithm CATONIESTIMATORLOCAL with samples \(\langle u, x_1 \rangle, \ldots, \langle u, x_n \rangle \), initial estimate \(\mu_n^0 \), and failure probability \(\delta/|U| \) and let the mean estimate obtained be \(\hat{\mu}_u \).

3. For each \(u \in U \), define set \(S_u = \left\{ w : |\langle u, w \rangle - \hat{\mu}_u| \leq \alpha_u \cdot \sigma \sqrt{2 \log \frac{1}{\delta}} \right\} \). Let \(S \) be the convex set given by \(S := \cap_{u \in U} S_u \).

4. Consider the minimum enclosing ball of set \(S \) and return its center as the mean estimate \(\hat{\mu} \).

Assumption 9 \(U \) is a \(\rho \)-net of \(O(1/\rho) \) unit vectors such that for every \(v \in \mathbb{S}^1 \), there exists a vector \(u \in U \) with \(\|v - u\| \leq \rho \).

This assumption is satisfied by a standard \(\rho \)-net in two-dimensions. Then, we have the main result of this section - that if our distribution is inlier-light in some direction \(e_j \), then, Algorithm 2 outputs an estimate that has error smaller than \(JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \) by a constant factor.

Lemma 10 (Two-Dimensional Estimator for Inlier-Light Distributions) For every constant \(0 < \beta < 1/32, L > 32\beta, \) and \(C > 1 \), there exist constants \(\xi, \tau < 1 \) such that the following holds. Suppose \(n > O_\xi \left(\log \frac{1}{\delta} \right) \), and we have that \(|\mu_n^0 - \langle u, \mu \rangle| \leq C \sigma \sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}} \) for all \(u \in U \). Suppose further that \(\psi \) satisfies Assumption 6 for parameter \(\beta/8 \) and that \(U \) satisfies Assumption 9 for \(\rho = \delta^{\Theta(\xi)} \), Let \(T = \sigma \sqrt{\frac{n \log \frac{1}{\delta}}{2 \log \frac{1}{8}}} \).

Given \(n \) two-dimensional iid samples \(x_1, \ldots, x_n \) with mean \(\mu \) and covariance \(\Sigma \preceq \sigma^2 I_2 \) such that \(\langle e_k, x_i \rangle \) is \((\beta, L) \)-inlier-light, with probability \(1 - \delta \), Algorithm 2DINLIERLIGHTESTIMATOR returns a mean estimate \(\hat{\mu} \) with

\[
\|\hat{\mu} - \mu\| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

Proof First, by Lemma 17 and a union bound, with probability \(1 - \delta/4 \), for any \(u \in U \) such that \(\langle u, x_i \rangle \) is \((\beta/8, L/8) \)-inlier-light, Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT”, so that \(\alpha_u = 1 - \Theta(\tau) \) for all such \(u \).
By Theorem 1 and the union bound, with probability $1 - \frac{\delta}{4}$, since $|U| = O(1/\rho) = \delta^{-\Theta(\xi)}$, we have that for every $u \in U$,
\[
|\hat{\mu}_u - \langle u, \mu \rangle| \leq (1 + O(\xi)) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{1}{\rho} + 2 \log \frac{2}{3}}{n}}
\]
\[
\leq (1 + \xi) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{3}}{n}}
\]
Similarly, for every u such that $\langle u, x_i \rangle$ is $(\beta/8, L/8)$-inner-light, by Theorem 15 and a union bound, with probability $1 - \frac{\delta}{4}$,
\[
|\hat{\mu}_u - \langle u, \mu \rangle| \leq \left(1 - \frac{\eta L}{4} + \xi\right) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{3}}{n}}
\]
So, for constant ξ sufficiently small, there is a constant $\tau > 0$ with
\[
|\hat{\mu}_u - \langle u, \mu \rangle| \leq (1 - \Theta(\tau)) \cdot \sigma \cdot \sqrt{\frac{2 \log \frac{2}{3}}{n}}
\]
With probability $1 - \delta$, all the above conditions hold, so that for any $u \in U$ that has $\langle u, x_i \rangle$ that is $(\beta/8, L/8)$-inner-light, we have that $\hat{\mu}_u$ has smaller error than in the general case, and α_u captures this error. We condition on this event.

Then, if R is the circumradius of the set S in Algorithm \textsc{2DInlierLightEstimator}, its center $\hat{\mu}$ satisfies for every $u \in U$,
\[
|\langle u, \hat{\mu} - \mu \rangle| \leq R
\]
since by definition, the true mean μ lies in S. So,
\[
||\hat{\mu} - \mu|| = \sup_{u : ||u|| = 1} \langle u, \hat{\mu} - \mu \rangle \leq \sup_{v \in U \cup \{e_j\}} \langle v, \hat{\mu} - \mu \rangle + \rho ||\hat{\mu} - \mu|| \leq R + \rho ||\hat{\mu} - \mu||
\]
so that
\[
||\hat{\mu} - \mu|| \leq (1 + O(\rho))R = (1 + \xi)R
\]
since $\rho = \delta^{\Theta(\xi)} \leq \xi$. So, it suffices to bound R by $(1 - \Theta(\tau)) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{3}}{n}}$, since for τ a small enough constant, this would imply
\[
||\hat{\mu} - \mu|| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{3}}{n}}
\]
as required.

To do this, note that if we consider the set S along with its circumcircle, since S is convex, there must be a triangle contained in S whose vertices touch the circumcircle. Let v_1, v_2, v_3 be the unit vectors aligned with the sides of this triangle. There are two cases:
There exists a pair \(i \neq j \) such that \(|\langle v_i, v_j \rangle| > \frac{3}{4} \). In this case, \(R \) must be small. In particular, since the diameter of \(S \) is at most \(2 \cdot (1 + \xi) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \) each side length corresponding to \(v_i, v_j \), say \(a_i, a_j \) must be at most this quantity. But by law of cosines, the other side must have length at most \(\frac{2}{\sqrt{2}} (1 + \xi) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \). But for a triangle with sides \(a, b, c \), the circumradius is equal to \(\frac{abc}{2 \cdot \text{area}} \). This means that \(\frac{1}{2} \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-c)} \), which is monotonic in \(a, b, c \). So, we have

\[
R \leq \frac{2 \sqrt{2}}{\sqrt{7}} (1 + \xi) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \leq (1 - \Theta(\tau)) \cdot \sqrt{\frac{4}{3} \cdot \sigma \frac{2 \log \frac{2}{\delta}}{n}} = (1 - \Theta(\tau)) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]
as required.

For every pair \(i \neq j, |\langle v_i, v_j \rangle| \leq \frac{3}{4} \). Then, since \(\langle e, x_i \rangle \) is \((\beta, L)\)-inlier-light, by Lemma 19, there exists an \(l \in [3] \) such that \(v_i \) is \((\beta/8, L/8)\)-inlier-light. Then, by the above, we have that \(\alpha v_l = 1 - \Theta(\tau) \) so that the side of the triangle corresponding to \(v_l \) has length at most \((1 - \Theta(\tau)) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \).

But this means that \(R \), the circumradius of a triangle with all two side lengths bounded by \((1 + \xi) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \), and the third bounded by \((1 - \Theta(\tau)) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \) has

\[
R \leq (1 - \Theta(\tau)) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]
as required.

B.5. Two-Dimensional Trimmed Mean Estimator when Outlier-Light

Algorithm 3 2DOUTLIERLIGHTESTIMATOR

Input parameters:
- Failure probability \(\delta \), Two-dimensional samples \(x_1, \ldots, x_n \), Initial estimates \(\mu_0^{\epsilon_1}, \mu_0^{\epsilon_2} \), Scaling parameter \(T \), Approximation parameters \(0 < \beta, \xi < 1 \).

1. Consider the subset of samples \(X \) obtained by throwing out any sample \(x_i \) with \(|\langle e_j, x_i \rangle - \mu_0^{\epsilon_j} | > \sqrt{\beta} T \) for either \(\epsilon_1 \) or \(\epsilon_2 \). Return estimate \(\hat{\mu} = \frac{1}{n} \sum_{i \in \mathcal{X}} x_i \).

Lemma 20 For any constants \(\beta, L < 1 \), suppose \(x \) is a \((\beta, L)\)-outlier-light distribution with mean \(\mu \) and variance at most \(\sigma^2 \). Then, for \(T = \sigma \sqrt{\frac{n}{2 \log \frac{2}{\delta}}} \), we have the following.

\[
\left| \mathbb{E} \left[x \mathbb{I}_{|x - \mu| \leq \sqrt{\beta} T} \right] - \mu \right| \lesssim \frac{L}{\sqrt{\beta}} \cdot OPT_1
\]

Proof We have

\[
\left| \mathbb{E} \left[x \mathbb{I}_{|x - \mu| \leq 2 \sqrt{\beta} T} \right] - \mu \right| \leq \left| \mathbb{E} \left[x \mathbb{I}_{|x - \mu| > 2 \sqrt{\beta} T} \right] \right| \\
\leq \mathbb{E} \left[|x| \mathbb{I}_{|x - \mu| > 2 \sqrt{\beta} T} \right] \\
= \int_{2 \sqrt{\beta} T}^{\infty} \Pr \left[|x - \mu| \geq t \right] dt
\]
Note that
\[
\Pr \left[|x - \mu| \geq t \right] \leq \frac{L \sigma^2}{t^2}
\]
for \(t > 2 \sqrt{\beta T} \) since \(x \) is \((\beta, L)\)-outlier-light, so that

\[
\mathbb{E} \left[(x - \mu)^2 \mathbb{1}_{|x - \mu| > 2 \sqrt{\beta T}} \right] \leq \mathbb{E} \left[(x - \mu)^2 \mathbb{1}_{|x - \mu| > \beta T} \right] < L \sigma^2
\]

So,

\[
|\mathbb{E} \left[x \mathbb{1}_{|x - \mu| \leq 2 \sqrt{\beta T}} \right] - \mu| \leq \int_{2 \sqrt{\beta T}}^{\infty} \frac{L \sigma^2}{t^2} \, dt \leq \frac{L \sigma^2}{\sqrt{\beta T}} \leq \frac{L}{\sqrt{\beta}} \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{2 \sigma^2}}
\]

\[\blacksquare\]

Lemma 21 Define \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}} \). Let \(x \) be a one-dimensional distribution supported in \([-2 \sqrt{\beta T}, 2 \sqrt{\beta T}]\). Let \(w \in \{0, 1\} \) be jointly distributed with \(x \) such that:

- \(\Pr[w = 0] \leq O \left(\frac{\log \frac{1}{\delta}}{n} \right) \)

Then,

\[
|\mathbb{E}[wx] - \mathbb{E}[x]| \leq \beta \cdot \text{OPT}_1
\]

Proof Since \(w \in \{0, 1\} \),

\[
|\mathbb{E}[wx] - \mathbb{E}[x]| = |\mathbb{E}[x_1w=0]| \leq 2 \sqrt{\beta T} \cdot O \left(\frac{\log \frac{1}{\delta}}{n} \right) \leq \sqrt{\beta} \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}
\]

\[\blacksquare\]

Lemma 22 Define \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}} \). Let \(x \) be a one-dimensional \((\beta, L)\)-outlier-light distribution with mean \(\mu \) and variance at most \(\sigma^2 \). Let \(w \in \{0, 1\} \) be jointly distributed with \(x \) such that:

- \(\Pr[w = 0] \leq O \left(\frac{\log \frac{1}{\delta}}{n} \right) \)
- \(w = 0 \) if \(|x - \mu| > 2 \sqrt{\beta T} \)

Then with \(1 - \delta \) probability, given \(n \) independent samples \((x_i, w_i)\), we have

\[
\left| \frac{1}{n} \sum_{i=1}^{n} w_i x_i - \mu \right| \leq \left(1 + O \left(\sqrt{\beta} + \frac{L}{\sqrt{\beta}} \right) \right) \cdot \text{OPT}_1.
\]

29
Proof First, note that
\[|E[wx] - \mu| = |E[wx\mathbb{1}_{x-\mu|^2 \leq 2\sqrt{\beta}T}] - \mu| \]
\[\leq |E[wx\mathbb{1}_{x-\mu|^2 \leq 2\sqrt{\beta}T}] - E[x\mathbb{1}_{x-\mu|^2 \leq 2\sqrt{\beta}T}]| + |E[x\mathbb{1}_{x-\mu|^2 \leq 2\sqrt{\beta}T}] - \mu| \]
\[\leq \left(\sqrt{\beta} + \frac{L}{\sqrt{\beta}}\right)OPT_1 \]
by Lemma 20 and 21.

Now since \(|wx - \mu| \leq 2\sqrt{\beta}T\), and its variance is at most \(\sigma^2\), by Bernstein’s inequality,
\[\left| \frac{1}{n} \sum_{i=1}^{n} w_i x_i - E[wx] \right| \leq \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} + O \left(\sqrt{\beta}T \cdot \log \frac{1}{\delta} \right) \]
\[\leq \left(1 + O(\sqrt{\beta}) \right) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \]
So, the claim follows.

Lemma 11 (Two-Dimensional Estimator for Outlier-Light Distributions) Define \(T = \sigma \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}\). For any constant \(\beta < 1\), let \(x_1, \ldots, x_n\) be iid samples from a two-dimensional \((\beta, O(\beta))\)-outlier-light distribution with mean \(\mu\) and covariance \(\Sigma \asymp \sigma^2 I_2\). Then, the output of Algorithm 2DOUTLIERLIGHTESTIMATOR when given an input initial estimates \(\mu_0^2\) satisfying \(|\mu_0^2 - \langle e_j, \mu \rangle| \leq O(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}})\) outputs estimate \(\tilde{\mu}\) satisfying with probability \(1 - \delta\),
\[||\tilde{\mu} - \mu|| \leq \left(1 + O(\sqrt{\beta}) \right) \cdot OPT_1 \]

Proof We will let \(w \in \{0, 1\}\) be jointly distributed with \(x\) such that \(w = 1\) iff \(x\) would not be thrown out in Algorithm 2DOUTLIERLIGHTESTIMATOR.

- \(w = 0\) if \(|\langle u, x - \mu \rangle| \geq 2\sqrt{\beta}T\) for any \(u \in S^1\). Since \(|\mu_0^2 - \langle e_j, \mu \rangle| \leq O(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}) \leq \frac{\sqrt{\beta}T}{4}\), and since any sample with \(|\langle e_j, x_i \rangle - \mu_0^2| > \sqrt{\beta}T\) is thrown out, \(w = 0\) for any \(x\) with \(|\langle e_j, x \rangle - \langle e_j, \mu \rangle| > \frac{5\sqrt{\beta}T}{4}\).
 Furthermore, for any \(u \in S^1\), we have that if \(|\langle u, x \rangle - \langle u, \mu \rangle| > 2\sqrt{\beta}T\), then, for some \(j \in \{1, 2\}\),
 \[|\langle e_j, x \rangle - \langle e_j, \mu \rangle| \geq \frac{1}{\sqrt{2}} |\langle u, x \rangle - \langle u, \mu \rangle| > \frac{\sqrt{2}\beta T}{4} > \frac{5\sqrt{\beta}T}{4} \]
 so that \(w = 0\) for any such \(x\). So, \(w\) satisfies that \(w = 0\) if \(|\langle u, x - \mu \rangle| \geq 2\sqrt{\beta}T\).

- \(\Pr[w = 0] \leq O(\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}})\). Since \(x\) is \((\beta, O(\beta))\)-outlier-light, which means that \(E[|\langle u, x - \mu \rangle| \geq \beta T] \leq \beta \sigma^2\) for every \(u \in S^1\), we have that
 \[\Pr[|\langle u, x - \mu \rangle| \geq 2\sqrt{\beta}T] \leq \Pr[|\langle u, x - \mu \rangle| \geq \beta T] \leq \frac{\beta \sigma^2}{\beta^2 T^2} \leq \frac{\log \frac{1}{\delta}}{n} \]
So, since $|\mu_0^{e_j} - (e_j, \mu)| \leq O\left(\frac{\log \frac{1}{n}}{n}\right) \leq \sqrt{\beta} T$, we have

$$\Pr\left[|\langle e_j, x - \mu_0^{e_j}\rangle| \geq \sqrt{\beta} T\right] \leq \Pr\left[|\langle e_j, x - \mu\rangle| \geq 2\sqrt{\beta} T\right] \lesssim \frac{\log \frac{1}{n}}{n}$$

so that $\Pr[w = 0] \lesssim \frac{\log \frac{1}{n}}{n}$.

Now, let U be a ρ-net as in Assumption 9, for $\rho = \delta^{\Theta(\sqrt{\beta})}$. By Lemma 22 and union bound, with probability $1 - \delta$, for every $u \in U$ simultaneously, and the estimate $\hat{\mu}$ returned by Algorithm 2DOUERLIERLIGHTESTIMATOR,

$$|\langle u, \hat{\mu} - \mu\rangle| \leq \left(1 + O\left(\sqrt{\beta}\right)\right) \cdot \sigma \sqrt{\frac{2 \log \frac{2\|U\|}{\delta}}{n}}$$

$$= \left(1 + O(\sqrt{\beta})\right) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$$

Then, we have

$$\|\hat{\mu} - \mu\| = \sup_{v: \|v\| = 1} |\langle v, \hat{\mu} - \mu\rangle|$$

$$\leq \sup_{u \in U} |\langle u, \hat{\mu} - \mu\rangle| + \rho \|\hat{\mu} - \mu\|$$

$$\leq \left(1 + O\left(\sqrt{\beta}\right)\right) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} + \delta^{\Theta(\sqrt{\beta})} \|\hat{\mu} - \mu\|$$

so that

$$\|\hat{\mu} - \mu\| \leq \left(1 + O\left(\sqrt{\beta}\right)\right) \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$$

as claimed.
B.6. Final Improved Two-Dimensional Estimator

Algorithm 4 2DHEAVYTAILEDESTIMATOR

Input parameters:
- Failure probability δ, Two-dimensional samples x_1, \ldots, x_n, ψ function, Scaling parameter T, Inlier-Outlier-Lightness parameters β, L, Approximation parameters $0 < \xi, \tau < 1$, set of unit vectors U

1. Using $\Theta(\xi)n$ samples, compute Median-of-Means estimates μ_{0j}^e of the one-dimensional samples $\langle e_j, x_i \rangle$ with failure probability $\frac{\delta}{4(|U|+2)}$ for each $j \in \{1, 2\}$.

2. Using $\Theta(\xi)n$ samples, compute Median-of-Means estimates μ_{0u}^u of the one-dimensional samples $\langle u, x_i \rangle$ with failure probability $\frac{\delta}{4(|U|+2)}$ for each $u \in U$.

3. Let the set of the remaining $(1 - \Theta(\xi))n$ samples be X'. Run Algorithm 2DINLIEROUTLIERLIGHTTESTER using failure probability $\delta/4$, the samples in X' and initial estimates μ_{01}^e, μ_{02}^e.

4. If the output of 2DINLIEROUTLIERLIGHTTESTER is some e_j, run 2DINLIERLIGHTESTIMATOR using failure probability $\delta/8$, the samples in X', and the initial estimates μ_{0u}^u, and output its mean estimate $\bar{b}\mu$.

5. If instead the output of 2DINLIEROUTLIERLIGHTTESTER is \perp, run 2DOUTLIERLIGHTESTIMATOR using failure probability $\delta/4$, the samples in X' and initial estimates μ_{01}^e, μ_{02}^e. Return its output $\bar{b}\mu$.

Theorem 12 (Final Two-Dimensional Estimator) For any sufficiently small constant $\tau > 0$, there exist constants $0 < \xi, \beta, L < 1$ such that the following holds. Suppose $n > O_{\xi}(\log \frac{1}{\delta})$ and $T = \sigma \sqrt{n \frac{2 \log \frac{2}{\delta}}{n}}$.

Suppose the set U is a ρ-net, satisfying Assumption 9 for $\rho = \delta^{O(\xi)}$.

Given n two-dimensional samples x_1, \ldots, x_n with mean μ and covariance $\Sigma \leq \sigma^2 I_2$, with probability $1 - \delta$, Algorithm 2DHEAVYTAILEDESTIMATOR returns an estimate $\hat{\mu}$ with

$$||\hat{\mu} - \mu|| \leq \left(1 - \tau\right) \cdot JUNG2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}$$

Proof First note that by classical results on Median-of-Means (Darzentas, 1983) and a union bound, for every vector $v \in U \cup \{e_1, e_2\}$, we have with probability $1 - \delta/4$,

$$|\mu_{0u}^v - \langle v, \mu \rangle| \leq O \left(\sigma \sqrt{\log \frac{1}{\delta}}\right)$$

since $n > O_{\xi}(\log \frac{1}{\delta})$. For the remaining proof, we condition on the above. Now, by a union bound, there exist constants $0 < \beta, L < 1$, such that by Lemmas 8, 10 and 11, the following events happen with probability $1 - 3\delta/4$.

- If the output of Algorithm 2DINLIEROUTLIERLIGHTTESTER is e_j, $\langle e_j, x_i \rangle$ is (β, L)-inlier-light. On the other hand, if the output is \perp, x_i is $(8\beta, 8L)$-outlier-light.
• If \(\langle e_j, x_i \rangle \) is \((\beta, L)\)-inlier-light, Algorithm 2DINLIERLIGHTESTIMATOR returns \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq (1 - 2\tau + \Theta(\xi)) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \\
\leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

• If \(x_i \) is \((8\beta, 8L)\)-outlier-light, for \(L = O(\beta) \), Algorithm 2DOUTLIERLIGHTESTIMATOR returns \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq \left(1 + O\left(\sqrt{\beta}\right)\right) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}
\]

So, with probability \(1 - \delta \) in total, for \(\beta \) small enough, Algorithm 2DHEAVYTailedESTIMATOR returns estimate \(\hat{\mu} \) with

\[
\| \hat{\mu} - \mu \| \leq (1 - \tau) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]

B.7. Improved \(d \)-Dimensional Estimator

Notation. For \(x \in \mathbb{R}^d \) and subspace \(W \), we will let \(x_{\|W} \) mean the projection of \(x \) onto \(W \).

Assumption 23 \(V \subset (\mathbb{S}^{d-1})^2 \) is a set of size \(\left(\frac{1}{\zeta}\right)^{O(d)} \) of pairs of vectors \((v_1, v_2)\) with \(W \) the subspace spanned by vectors in pair \(j \). Let \(W^\perp \) be the subspace orthogonal to \(W \). Then, for any \(x \in \mathbb{R}^d \), there exists \((v_1, v_2) \in V \) such that for the subspace \(W \) spanned by \((v_1, v_2)\), \(\| x_{\|W^\perp} \| \leq \zeta \| x \| \).

Note that for every \(\zeta < 1 \) and \(d \), there exists a set \(V \) satisfying the above assumption. In particular, if we let \(Z \subset \mathbb{R}^d \) be a \(\zeta \)-net of size \(\left(\frac{1}{\zeta}\right)^{O(d)} \), and then let \(V \subset (\mathbb{R}^d)^2 \) be the set of pairs \((z, w)\) for each \(z \in Z \) and any vector \(w \) orthogonal to \(z \), then \(V \) satisfies Assumption 23.
Algorithm 8 HIGHDIMENSIONALHEAVYTAILEDESTIMATOR

Input parameters:

• Failure probability δ, d-dimensional samples x_1, \ldots, x_n, Covariance bound $\sigma^2 I_d$.

1. Let $\beta, L, \xi, \tau, \zeta$ be sufficiently small universal constants as given by Theorem 1 and 12. Let ψ be a function Assumption 6. Let $T = \sigma \sqrt{\frac{\log \frac{2}{\delta}}{n}}$. Let $U \subseteq \mathbb{R}^2$ satisfy Assumption 9 for $\rho = \delta^\Theta(\xi)$, and let $V \subset (\mathbb{R}^d)^2$ satisfy Assumption 23.

2. For each pair of vectors $(v^1, v^2) \in V$, let W be the subspace spanned by them. Let $x_{\parallel W}$ be the projection of vector x onto W.

3. For each $(v^1, v^2) \in V$ with associated subspace W, run Algorithm 4 using samples $x_{\parallel W}$ with failure probability $\delta/|V|$, and approximation parameters $\xi, \Theta(\tau)$, and let the output be two-dimensional mean estimate $\widehat{\mu}_W$.

4. For each $(v^1, v^2) \in V$ with associated subspace W, consider the set $S_{(v^1, v^2)} = \left\{ w : \|w - \widehat{\mu}_W\| \leq (1 - \Theta(\tau)) \cdot JUNG_2 \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \right\}$. Let S be the convex set given by $S := \cap_{(v^1, v^2) \in V} S_{(v^1, v^2)}$.

5. Return the center $\widehat{\mu}$ of the minimum enclosing ball of the set S as the mean estimate.

Theorem 1 There exists constants $\tau, C > 0$ such that the following holds. Let $d \geq 2$, and suppose $n \geq C \log \frac{1}{\delta} \geq C^2 d$. There is an algorithm that takes n samples from a distribution over \mathbb{R}^d with covariance $\Sigma \preceq \sigma^2 I$, as well as σ^2 and δ, and outputs an estimate $\widehat{\mu}$ of the mean μ that achieves

$$\|\widehat{\mu} - \mu\| \leq (1 - \tau) \cdot JUNG_d \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$

with $1 - \delta$ probability.

Proof By Theorem 12 and a union bound, with probability $1 - \delta$,

$$\|\widehat{\mu}_W - \mu\| \leq (1 - \Theta(\tau) + \xi) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$

$$\leq O\left(\sqrt{\frac{d \log \frac{1}{\delta}}{n}}\right) + (1 - \Theta(\tau) + \xi) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$

$$\leq (1 - \Theta(\tau)) \cdot JUNG_2 \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$

since $n \geq C^2 d$. Thus, conditioned on the above, μ when projected onto any subspace W spanned by $(v^1, v^2) \in V$, lies in S projected onto W. So, by Theorem 28, for the center $\widehat{\mu}$ of the minimum enclosing ball of S, and any W spanned by $(v^1, v^2) \in V$,

$$\|\widehat{\mu} - \mu\|_W \leq (1 - \Theta(\tau)) \cdot JUNG_d \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$$
Then, by Assumption 23, there exists $(v^1v^2) \in V$ with associated subspace W such that
\[
\| (\bar{\mu} - \mu) \|_{W^\perp} \leq \zeta \| \bar{\mu} - \mu \|
\]
So,
\[
\| \bar{\mu} - \mu \| = \| (\bar{\mu} - \mu) \|_W + \| (\bar{\mu} - \mu) \|_{W^\perp}
\]
\[
\| (\bar{\mu} - \mu) \|_W + \zeta \cdot \| \bar{\mu} - \mu \|
\]
so that
\[
\| \bar{\mu} - \mu \| \leq (1 - \tau) \cdot JUNG_d \cdot \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}
\]
for τ sufficiently small.

Appendix C. Robust Lower bound

Let v_1, \ldots, v_{d+1} be the $d + 1$ vertices of a regular d-dimensional simplex centered at the origin, with $\|v_i\| = 1$. Then $\sum v_i = 0$ and $\langle v_i, v_j \rangle = -\frac{1}{d}$ for $i \neq j$.

For $\varepsilon \leq \frac{1}{d+1}$, define D^* be the distribution that is each v_i with probability ε, and 0 with the remaining probability $1 - \varepsilon(d + 1)$ probability. So D^* has mean 0 and an isotropic variance of
\[
\mathbb{E}_{x \sim D^*}[(v_1, x)^2] = \varepsilon \cdot 1 + (d \varepsilon) \frac{1}{d^2} = \frac{d + 1}{d} \varepsilon.
\]

For each $j \in [d + 1]$, let D_j be the same as D^* except replacing v_j with $-v_j$. Then D_j has mean $-2\varepsilon v_j$.

For every direction $u \perp v_j$, D_j has the same variance $\frac{d+1}{d} \varepsilon$ as D^*; and the variance in direction v_j is
\[
\mathbb{E}_{x \sim D^*}[(v_j, x)^2] - \mathbb{E}_{x \sim D^*}[(v_j, x)]^2 = \frac{d + 1}{d} \varepsilon - 4 \varepsilon^2 < \frac{d + 1}{d} \varepsilon.
\]

Thus each D_j has covariance $\Sigma \preceq \frac{d+1}{d} \varepsilon I$, and $TV(D^*, D_j) = \varepsilon$ for all j.

Informally, this means that robust mean estimation, on input $(D^*, \sigma, \varepsilon)$, needs to output a mean $\hat{\mu}$ that is good for each D_j; the best it can do is output 0, which has error 2ε for each i. Thus the error is
\[
2\varepsilon = \sqrt{\frac{2d}{d+1} \sqrt{2d} \| \Sigma \| \varepsilon}
\]
This constant, $\sqrt{\frac{2d}{d+1}}$, is $JUNG_d$. More formally, we start with this lemma:

Lemma 24 Let $v_1, \ldots, v_{d+1} \in \mathbb{R}^d$ be vertices of a regular simplex centered at the origin. Then for any vector $u \in \mathbb{R}^d$,
\[
\mathbb{E}_{i \in [d+1]} \| v_i - u \| \geq \| v_1 \|.
\]

Proof We can write u in barycentric coordinates, $u = \sum a_i v_i$ for $\sum a_i = 1$. Then for any permutation π of $[d + 1]$, we write $u_\pi := \sum a_\pi(v_i) v_i$. By symmetry, this satisfies
\[
\mathbb{E}_{i \in [d+1]} \| v_i - u_\pi \| = \mathbb{E}_{i \in [d+1]} \| v_i - u \|.
\]
By choosing π to be a uniform permutation,
\[
E_{i \in [d+1]}[||v_i - u||] = E_{\pi} E_{i \in [d+1]}[||v_i - u_\pi||] \geq E_{i \in [d+1]}[||v_i - E[\pi][u_\pi]||] = E_{i \in [d+1]}[||v_i||] = ||v_1||.
\]

Lemma 25 For every $d \geq 1$ and $\varepsilon \leq \frac{1}{d+1}$, every algorithm for robust estimation of d-dimensional distributions with covariance $\Sigma \preceq \sigma^2 I$ has error rate
\[
E[||\hat{\mu} - \mu||] \geq JUNG_d \cdot \sqrt{2\sigma^2 \varepsilon}
\]
on some input distribution.

Proof Take the distributions D^*, D_j described above, so $\sigma^2 = \frac{d+1}{d} \varepsilon$. Suppose the true distribution is D_j for a random $j \in [d+1]$, and the adversary perturbs each D_j into D^*, then gives the adversary samples from D^*. The algorithm’s output $\hat{\mu}$ is independent of j, and has expected error
\[
E[||\hat{\mu} - \mu||] = E_{\mu,j}[||\hat{\mu} - (-2\varepsilon v_j)||].
\]
By Lemma 24, this is at least 2ε. Thus
\[
E[||\hat{\mu} - \mu||] \geq 2\varepsilon = \sqrt{\frac{2d}{d+1}} \cdot \sqrt{2\sigma^2 \varepsilon} = JUNG_d \cdot \sqrt{2\sigma^2 \varepsilon}.
\]

Finally, we remove the restriction that $\varepsilon \leq \frac{1}{d+1}$ by applying the above lemma to $(1/\varepsilon - 1)$-dimensional space.

Theorem 2 For every $d \geq 1$ and $\varepsilon \leq \frac{1}{2}$, every algorithm for robust estimation of d-dimensional distributions with covariance $\Sigma \preceq \sigma^2 I$ has error rate
\[
E[||\hat{\mu} - \mu||] \geq JUNG_d \cdot (1 + O(\varepsilon)) \cdot \sqrt{2\sigma^2 \varepsilon}
\]
on some input distribution, in the population limit.

Proof If $d \leq \frac{1}{\varepsilon} - 1$, this is the same as Lemma 25. For $d > \frac{1}{\varepsilon} - 1$, we instead restrict to a $d' = \lfloor \frac{1}{\varepsilon} - 1 \rfloor$-dimensional space before applying Lemma 25. Thus
\[
E[||\hat{\mu} - \mu||] \geq JUNG_{d'} \cdot \sqrt{2\sigma^2 \varepsilon}
\]
Now,
\[
JUNG_{d'} = \sqrt{\frac{2d'}{d' + 1}} = \sqrt{\frac{2}{1 - \frac{1}{\lfloor 1/\varepsilon \rfloor}}} \geq \sqrt{2} \cdot (1 - \varepsilon) \geq JUNG_d \cdot (1 - \varepsilon).
\]
Appendix D. Robust Estimation, Upper Bound

The following result is folklore:

Lemma 26 If X, Y are real-valued variables with $\text{Var}(X), \text{Var}(Y) \leq \sigma^2$ and $TV(X, Y) \leq 2\varepsilon$, then

$$\mathbb{E}[X] - \mathbb{E}[Y] \leq \frac{2\sqrt{2\sigma^2\varepsilon}}{\sqrt{1 - 2\varepsilon}}$$

Proof Couple X and Y so that $\Pr[X \neq Y] \leq 2\varepsilon$. Then by Cauchy-Schwarz,

$$\mathbb{E}[(X - Y)^2] = \mathbb{E}[(X - Y)1_{X \neq Y}] \leq \mathbb{E}[(X - Y)^2] \mathbb{E}[1_{X \neq Y}] \leq (\text{Var}(X - Y) + \mathbb{E}[X - Y]^2) \cdot 2\varepsilon.$$

Canceling terms, and using that $\text{Var}(X - Y) \leq 2(\text{Var}(X) + \text{Var}(Y)) \leq 4\sigma^2$,

$$(1 - 2\varepsilon) \mathbb{E}[X - Y]^2 \leq 8\sigma^2 \varepsilon$$

giving the result. \[\square\]

Theorem 3 (Folklore + Jung’s theorem) For every $d \geq 1$ and $\varepsilon \leq \frac{1}{3}$, there is an algorithm for robust estimation of d-dimensional distributions of covariance $\Sigma \preceq \sigma^2 I$ with error rate

$$\mathbb{E}[\|\hat{\mu} - \mu\|] \leq \text{JUNG}_d \cdot (1 + O(\varepsilon)) \cdot \sqrt{2\sigma^2 \varepsilon}$$

in the population limit.

Proof Given the corrupted input distribution D', take the set of all possible distributions X with $TV(X, D) \leq \varepsilon$ and $\text{Var}(X) \leq \sigma^2$, and look at the corresponding means. Let S denote the set of these candidate means. We know that the uncorrupted distribution lies in the candidate set, so its mean lies in S.

For any two distributions X, Y in the candidate set, we have $TV(X, Y) \leq TV(X, D) + TV(D, Y) \leq 2\varepsilon$. Therefore the same holds for any 1-dimensional projections $\langle v, X \rangle$; in particular, by Lemma 26,

$$\|\mathbb{E}[X] - \mathbb{E}[Y]\| = \max_{\|v\|=1} \mathbb{E}[\langle v, X \rangle - \langle v, Y \rangle] \leq \frac{2\sqrt{2\sigma^2 \varepsilon}}{\sqrt{1 - 2\varepsilon}}$$

so S has diameter at most $\frac{2\sqrt{2\sigma^2 \varepsilon}}{\sqrt{1 - 2\varepsilon}}$.

Then Jung’s theorem states that the circumcenter of S has distance at most $\text{JUNG}_d \cdot \frac{2\sqrt{2\sigma^2 \varepsilon}}{\sqrt{1 - 2\varepsilon}}$ to each point in S, and in particular to the true mean. Finally, given that $\varepsilon \leq 0.3$, $\frac{1}{\sqrt{1 - 2\varepsilon}} < 1 + 2\varepsilon$. \[\square\]

Appendix E. Geometry Results

Theorem 27 (Jung’s Theorem (Jung, 1901)) Let $K \subset \mathbb{R}^d$ be a compact set and let $D = \max_{p, q \in K} \|p - q\|_2$ be the diameter of K. There exists a closed ball with radius

$$R \leq D \sqrt{\frac{d}{2(d + 1)}}$$

that contains K. The boundary case of equality is obtained by the d-simplex.
Theorem 28 (Generalized Jung’s Theorem (Henk, 1992)) Let $K \subset \mathbb{R}^d$ be a compact set, and let R_i be the maximum circumradius of any i-dimensional projection of K. Then, for any $1 \leq j \leq i \leq d$,

$$R_i \leq \sqrt{\frac{i(j+1)}{j(i+1)}} \cdot R_j$$