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Abstract
Consider the problem of predicting the next symbol given a sample path of length n, whose joint
distribution belongs to a distribution class that may have long-term memory. The goal is to com-
pete with the conditional predictor that knows the true model. For both hidden Markov models
(HMMs) and renewal processes, we determine the optimal prediction risk in Kullback-Leibler di-
vergence up to universal constant factors. Extending existing results in finite-order Markov models
(Han et al. (2023)) and drawing ideas from universal compression, the proposed estimator has a
prediction risk bounded by redundancy of the distribution class and a memory term that accounts
for the long-range dependency of the model. Notably, for HMMs with bounded state and observa-
tion spaces, a polynomial-time estimator based on dynamic programming is shown to achieve the
optimal prediction risk Θ( logn

n ); prior to this work, the only known result of this type is O( 1
logn )

obtained using Markov approximation (Sharan et al. (2018)). Matching minimax lower bounds are
obtained by making connections to redundancy and mutual information via a reduction argument.
Keywords: Prediction risk, Kullback-Leibler divergence, dependent data, universal compression.

1. Introduction

Consider the following “ChatGPT” style of problem: Observing a sample path Xn ≜ (X1, . . . , Xn)
of a random process, one is tasked to predict the next (unseen) symbol Xn+1. Mathematically,
this boils down to estimating the conditional distribution PXn+1|Xn

1
, which informs downstream

tasks such as finding the top few most likely realizations in autocomplete or text generation in
language models. This is a well-defined but non-standard statistical problem, in that the quantity to
be estimated is random and data-dependent, unless the data are i.i.d., in which case the problem is
nothing but density estimation and the optimal rate under, say, Kullback-Leibler (KL) divergence
loss, is the classical “parametric rate” k

n achieved by smoothed empirical distribution, where k and n
refers to the alphabet and sample size respectively. As such, the first non-trivial instance is Markov
model and of interest to applications such as natural language processing are large state spaces.

The study of this problem was initiated by Falahatgar et al. (2016) focusing on two-state Markov
chains, who showed, via a tour-de-force argument, the surprising result that the optimal KL predic-
tion risk is Θ( log lognn ), strictly slower than the parametric rate. Their ad hoc techniques are difficult
to extend to larger state space, unless extra conditions are assumed such as a large spectral gap (Hao
et al. (2018)). Although such mixing conditions are necessary for parameter estimation, they are not
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for prediction. Indeed, a chain that moves at a glacial speed is in fact easy to predict but estimat-
ing the transition probabilities is impossible. This is a significant conceptual distinction between
estimation and prediction, the latter of which can be studied meaningfully assumption-free without
even identifiability conditions.

Departing from conventional approaches based on concentration inequalities of Markov chains
which inevitably involves mixing conditions, a strategy based on universal compression is proposed
in Han et al. (2021, 2023) for prediction of Markov chains. They showed, by means of information-
theoretic arguments, that the optimal prediction risk is within universal constant factors of the so-
called redundancy, a central quantity in universal compression that measures the KL radius of the
model class. Furthermore, this reduction is also algorithmic: if there is a computationally efficient
probability assignment that achieves the redundancy, one can construct an efficient predictor with
guaranteed optimality. However, their method is limited to Markov models with a finite order.

The main goal of this work is to extend these techniques based on universal compression beyond
models with finite memory to those with infinite memory, in particular, hidden Markov models
(HMMs) and renewal processes. Along the way, we obtain new theoretical and computational
results for prediction HMM that improve the state of the art.

1.1. Main results

Let us begin with the formulation of the prediction risk for a general model class. For n ∈ N ≜
{1, 2, . . .}, let Pn+1 be a collection of joint distributions PXn+1 for Xn+1 ≜ (X1, . . . , Xn+1),
where each observation Xt takes values in some space X . The prediction risk of the next unseen
symbol Xn+1 based on the trajectory X1, . . . , Xn is the average KL risk of estimating the (ran-
dom, data-dependent) distribution PXn+1|Xn . Any such estimator can be written as a conditional
distribution QXn+1|Xn , whose worst-case prediction risk over the model class is

Risk(QXn+1|Xn ;Pn+1) ≜ sup
PXn+1∈Pn+1

EXn+1∼PXn+1

[
KL(PXn+1|Xn∥QXn+1|Xn)

]
(1)

where the KL divergence is KL(P∥Q) = EP [log
dP
dQ ] if P ≪ Q and ∞ otherwise. The minimax

prediction risk is then defined as

Risk(Pn+1) ≜ inf
QXn+1|Xn

Risk(QXn+1|Xn ;Pn+1), (2)

As exemplary applications, we consider two model classes with infinite memory: HMMs and re-
newal processes. Relevant notations are deferred to Appendix A.

Hidden Markov Models A hidden Markov process is obtained by passing a Markov process
through a memoryless noisy channel. It provides a useful tool for modeling practical data such as
natural language and speech signals. Specifically, fix k, ℓ ∈ N. Let {Zt : t ≥ 1} be a stationary
Markov chain on the state space [k] ≜ {1, . . . , k} with transition matrix M , which is a k × k
row-stochastic matrix. Let T denote a probability transition kernel from [k] to [ℓ], that is, a k × ℓ
row-stochastic matrix. Let {Xt : t ≥ 1} be an [ℓ]-valued process such that for any n, PXn|Zn =∏n

t=1 T (xt|zt). We refer to {Xt} as a hidden Markov process with transition probabilities M and
emission probabilities T , while {Zt} are called the hidden (or latent) states.

Let PHMM
n (k, ℓ) denote the collection of joint distributions of hidden Markov processes of

length n + 1 with state space [k] and observation space [ℓ]. This is a finite-dimensional para-
metric model (by M and T ) with a total of k(k − 1) + k(ℓ− 1) parameters. We note that over this
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class the parameters M and T are not identifiable since no further conditions such as full rank of
M are assumed cf. (Alexandrovich et al., 2016, Example 1). Yet, the prediction problem is both
well-defined and non-trivial. We define the optimal prediction risk of HMM as follows:

RiskHMM(n, k, ℓ) ≜ Risk(PHMM
n (k, ℓ))

Our main results on predicting hidden Markov processes are as follows.

Theorem 1.1 (Optimal prediction risk for HMM)

• There exists a universal constant C such that for all n ≥ Ck(k + ℓ),

RiskHMM(n, k, ℓ) ≤ C

(
kℓ

n
log

n

kℓ
+

k2

n
log

n

k2

)
, (3)

achieved by an nO(k2+kℓ)-time algorithm.

• Conversely, if either ℓ ≥ k and n ≥ kℓ, or n ≥ kC and k, ℓ ≥ 2, then

RiskHMM(n, k, ℓ) ≥ C−1

(
kℓ

n
log

n

kℓ
+

k2

n
log

n

k2

)
. (4)

We note that before this work even for the simplest case of binary-state binary-emission HMMs, the
best known result is O( 1

logn) by Sharan et al. (2018), who considered prediction in HMMs under a
somewhat different formulation than (2) (with further averaging over the sample size n and in the
weaker total variation loss than KL; see Appendix A.1 for a detailed comparison). In comparison,
Theorem 1.1 shows that for k, ℓ = O(1), the optimal rate in KL is Θ( lognn ) and attainable in
polynomial time. Furthermore, we point out that our results, both for the lower bound and the
upper bound, can be extended to HMMs with discrete state space but arbitrary observation space
(Corollary 3.3 and 4.3). For instance, as a side result, we determine optimal prediction risks for
HMM with Gaussian emissions in terms of the output dimension (Remark 3.4).

Since HMM has infinite memory, a natural idea is to first approximate it by a finite-order Markov
chain then invoke existing prediction risk bounds for Markov models; this was the key insight in
Sharan et al. (2018). However, this approach based on Markov approximation does not achieve
the optimal risk bound. Indeed, it was shown in Han et al. (2023) that the optimal prediction
risk for order-d Markov chains on [ℓ] scales as Θ( ℓ

d

n log n
ℓd
), already much larger than the risk

in Theorem 1.1 for moderate d. Instead, our approach in Section 2 applies ideas from universal
compression, in particular, the redundancy to control the complexity of HMMs, while introducing
an additional memory term to handle the long-range dependence of the HMM. The overall algorithm
is based on dynamic programming that averages state sequences of length n.

On the other hand, for large k or ℓ, the statistically optimal algorithm in Theorem 1.1 based
on dynamic programming is no longer efficient. Next we give a polynomial-time algorithm that
achieves a prediction risk vanishing at a suboptimal rate. In contrast to Theorem 1.1, this efficient
algorithm is built upon an order-O(log n) Markov approximation.

Theorem 1.2 (Computationally efficient algorithms) There exists a polynomial-time estimator
whose KL prediction risk over PHMM

n (k, ℓ) is O( log k log ℓ
logn ), provided that log k log ℓ = o(log n).
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A similar rate was also established in average TV loss using Markov approximation in Sharan et al.
(2018). However, their result uses empirical averages to estimate Markov transitions and applies
martingale concentration results, making it hard to generalize to e.g. KL. Here, our result applies a
much simpler approach via redundancy of the “add-one” code whose KL risk can be controlled.

We also complement the above upper bound with computational lower bounds in HMMs, show-
ing that the prediction risk for any poly(n)-time algorithm is Ω(1/ log logn) if log(kℓ) = Ω(logn).

Theorem 1.3 (Informal: Computational lower bounds) The following holds under certain cryp-
tographic hardness assumptions:

1. For any ε > 0, k ≥ log1+ε n, no poly(n) algorithm achieves o( log k
logn log logn) risk for ℓ ≥ 2.

2. For every α > 0 there exists kα ≥ 2, such that if k ≥ kα and ℓ ≥ nα, no poly(n) algorithm
can achieve o(1) risk.

Our lower bounds are proven by showing that certain cryptographic structures can be embedded
into an HMM with a limited number of states or emission space. Such embedding was studied
extensively in prior works (e.g. Mossel and Roch (2005); Sharan et al. (2018)).

Renewal processes As another application of our techniques, we turn to the class of renewal
processes. A natural example of predicting a renewal process may be described as follows: Suppose
that for a given driver the time (in days) between consecutive traffic accidents are random and i.i.d.
Given the driving records (safety or accident) for the past n days, the insurance company seeks to
predict the probability of an accident occurring on the next day, where the interarrival distribution
is unknown.

To give a formal definition of a renewal process, let T0, T1, T2, . . . denote a sequence of in-
dependent N-valued random variables, where Ti are iid drawn from some distribution µ with a
finite mean. A renewal process {Xt : t ≥ 1} is binary valued such that {t : Xt = 1} is exactly
{T0, T0 + T1, T0 + T1 + T2, . . . }. We refer to T0 and {Ti : t ≥ 1} as the initial wait time and the
interarrival times. It is known (Csiszár and Shields, 1996) that {Xt} is stationary if and only if T0

is distributed as P(T0 = t) = 1
Eµ[T1]

∑
s≥t µ(s), t ∈ N.

Let P rnwl
n denote the collection of joint distributions of a stationary renewal process of length

n+ 1 with a finite expected interarrival time. In contrast to the previously considered HMM, this is
a nonparametric (infinite-dimensional) model parameterized by the interarrival time distribution µ.
Particularizing (2), define the optimal prediction risk as Riskrnwl(n) ≜ Risk(P rnwl

n ). The following
result determines its sharp rate:

Theorem 1.4 (Prediction of renewal processes) There exists an absolute constant C, such that

C−1
√
n−1 ≤ Riskrnwl(n) ≤ C

√
n−1.

The proof of this result builds upon the redundancy bound Θ(
√
n) (Csiszár and Shields (1996); Fla-

jolet and Szpankowski (2002)) for renewal processes. Both a strength and a weakness of our theory,
the predictor attaining the optimal rate of 1/

√
n is not computationally efficient (see Section 3.4)

and it is unclear how to do so in polynomial time. One idea may be the following. For an oracle
who knows the true interarrival distribution µ, it can determine the true PXn+1|Xn by the hazard
rate:

PXn+1=1|Xn = µ(τ + 1)/
∑
t>τ

µ(t), (5)
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where τ is the time till the most recent renewal (or the origin of time). Thus a natural idea is to re-
place µ by its empirical version if sufficiently many renewals are observed, and predict PXn+1=1|Xn

by some small probability, e.g. 1
poly(n) , otherwise. The analysis of this algorithm, however, appears

challenging absent assumptions on the distribution µ.

1.2. Related works

The connections between compression and prediction are long studied dating back to e.g. Rissanen
(1984); Feder et al. (1992); Haussler et al. (1998). More recently, a line of works (Falahatgar et al.
(2016); Han et al. (2023)) determined the optimal prediction risk in KL for Markov models up to
constants and showed that it is near the “parametric rate” K

n , where K is the number of model
parameters, but is strictly slower by logarithmic factors. A key assumption of these results is the
finite memory of the true model, where the next observation may depend on only the most recent
few.

Turning to HMMs, the majority of works in the statistical learning literature focus on identifia-
bility (Alexandrovich et al., 2016; Huang et al., 2015) and parameter estimation, using algorithms
include moments or tensor methods (De Castro et al. (2017); Anandkumar et al. (2014); Sharan
et al. (2017); Abraham et al. (2022)) and penalized likelihood (De Castro et al. (2016) Lehéricy
(2021)). However, the success of those methods routinely requires extra assumptions on parameters
such as spectral properties (Huang et al. (2015); Abraham et al. (2022)) and sparsity (Sharan et al.
(2017)). For prediction, we need not and do not impose these assumptions. In terms of prediction,
the closest work we are aware of is Sharan et al. (2018), where the authors focus on algorithms via
Markov approximation. Finally, computational barriers (of various forms) are known to exist for
both prediction and estimation of HMMs (Mossel and Roch, 2005; Sharan et al., 2018).

2. Prediction risk bound based on universal compression

Having defined the prediction risk (2) for a general model class Pn+1, we introduce the closely
related redundancy problem which is at the heart of both theory theory and algorithms for universal
compression. The redundancy of a joint distribution QXn+1 (often referred to as a probability
assignment) is defined as the worst-case KL risk of fitting the joint distribution of Xn, namely

Red(QXn+1 ;Pn+1) ≜ sup
PXn+1∈Pn+1

KL(PXn+1∥QXn+1). (6)

Optimizing over the probability assignment QXn+1 , the minimax redundancy is defined as

Red(Pn+1) ≜ inf
QXn+1

Red(QXn+1 ;Pn+1), (7)

The role of a probability assignment in universal compression is a simultaneous approximation to a
class of models. It is known that the Shannon entropy H(PXn+1) is within 1 bit of the best average
code length for the optimal compressor that knows the source distribution PXn+1 . The goal of
universal compression is to design a compressor that simultaneously approaches the entropy for a
class of models. This can be achieved by applying the compressor (e.g. arithmetic coding) designed
for a probability assignment QXn+1 , whose excess code length over H(PXn+1) is at most within 1
bit of Red(QXn+1) for all PXn+1 in the class Pn+1. Thanks to this reduction, the design of universal
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compressor is largely reduced to choosing a good probability assignment and the redundancy is the
central quantity in universal compression.

The following result relates the redundancy and the prediction risk for any stationary data-
generating process. In the case of i.i.d. models, this type of reduction relating cumulative risks
and individual risks is known as online-to-batch conversion which, in the present context, dates
back at least to Yang and Barron (1999) for density estimation (see e.g. (Polyanskiy and Wu, 2024,
Proposition 32.7) for a summary).

Proposition 2.1 (Upper bound prediction risk by redundancy) Suppose that each PXn+1 ∈ Pn+1

is stationary, that is, PXt1 ,...,Xtk
= PXt1+t,...,Xtk+t for any shift t ≥ 1 and 1 ≤ t1, . . . , tk ≤ n+1−t.

Let QXn+1 be an arbitrary joint distribution factorizing as QXn+1 =
∏n+1

t=1 QXt|Xt−1 . Consider an
estimator Q̃Xn+1|Xn defined as

Q̃Xn+1|Xn(·|xn) ≜ 1

n

n∑
t=1

QXt+1|Xt(·|xnn−t+1) (8)

Then

Risk(Q̃Xn+1|Xn ;Pn+1) ≤
1

n
Red(QXn+1 ;Pn+1) +

1

n

n∑
t=1

I(Xn+1;X
n−t|Xn

n−t+1). (9)

Since the last term in (9) does not depend on the probability assignment Q, taking the supremum
over the worst-case P in class then optimizing over Q yields

Risk(Pn+1) ≤
1

n
Red(Pn+1) +mem(Pn+1) (10)

where the residual term

mem(Pn+1) ≜ sup
PXn+1∈Pn+1

1

n

n∑
t=1

I(Xn+1;X
n−t|Xn

n−t+1) (11)

measures the memory, in a average sense, of the data-generating process in the model class. Indeed,
recall that the conditional mutual information I(A;B|C) measures the conditional dependency be-
tween A and B given C, and is zero if they are conditional independent. Thus, for Markov models
of order m, I(Xn+1;X

n−t|Xn
n−t+1) = 0 for all t ≥ m and mem(Pn+1) is at most O(mH(Xn+1)

n ).
As a result, for bounded m we get Risk ≲ Red

n .1 For models with infinite memory, such as HMMs
and renewal processes, applying this redundancy-based risk bound requires bounding the memory
term uniformly, which we carry out in the subsequent sections.

We end this section with a couple of remarks. First, applying the risk bound in Proposition 2.1
relies on bounding the redundancy of a model class from above, which is often achieved by further
relaxing the redundancy, an approach known as individual sequences. Replacing the expectation
in KL(PXn+1∥QXn+1) = EP

[
log

PXn+1

QXn+1

]
by the maximum, one arrives at the so-called minimax

pointwise redundancy

Red(Pn+1) ≤ R̃ed(Pn+1) ≜ inf
QXn+1

sup
PXn+1∈Pn+1

max
xn+1∈Xn+1

log
PXn+1(xn+1)

QXn+1(xn+1)
. (12)

1. In fact, a slightly different argument in (Han et al., 2021, Lemma 6) avoids the additive error term and shows
Risk(Pn+1) ≤ 1

n+1−m
Red(Pn+1) for mth-order Markov models.
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The optimal probability assignment for (12) is known as Shtarkov’s normalized maximum likelihood
assignment Q∗

Xn+1(x
n+1) ∝ supPXn+1∈Pn+1

PXn+1(xn+1), leading to the following formula for
the minimax pointwise redundancy as a Shtarkov sum

R̃ed(Pn+1) = log
∑

xn+1∈Xn+1

sup
PXn+1∈Pn+1

PXn+1(xn+1). (13)

Most redundancy bounds, including those that we apply (Csiszár and Shields, 1996), are obtained
by either analyzing the pointwise redundancy or directly bounding the above Shtarkov sum. This
combinatorial approach avoids all probabilistic computation and is essentially the reason why one
can sidestep mixing conditions in HMMs.

Second, for i.i.d. models, say, distributions over k elements, the upper bound on the prediction
risk in Proposition 2.1 is in fact loose by a logarithmic factor, since we know that Risk ≍ k−1

n and
Red ≍ (k − 1) log n. Interestingly, the compression-prediction method seems particularly effective
for models with memory, which is tight up to constant factors for finite-order Markov chains (Han
et al., 2023) and, as we show in this paper, HMMs and renewal processes. Complementing Propo-
sition 2.1, we give a reduction argument that shows the prediction risk of a given class of HMMs is
lower bounded by the redundancy of a slightly smaller subclass – see Section 4.1 for details.

3. Proof of the upper bounds

In this section, we make use of Proposition 2.1 to upper bound the prediction risk for HMMs and
renewal processes. This entails upper bounding the minimax redundancy Red(P) in (7) and the
memory term mem(P) in (11), for both HMMs and renewal processes.

3.1. Bounding the memory term for HMMs

We start with a simple upper bound on the memory term in (10) for HMMs. Similar bounds have
appeared previously in the literature, see, e.g., (Birch, 1962, p. 932).

Proposition 3.1 Let {Xt} be a stationary hidden Markov process. Then

n∑
t=1

I(Xn−t;Xn+1|Xn
n−t+1) ≤ I(Z1;X

n+1).

Suppose there are at most k latent states. Then I(Z1;X
n+1) ≤ H(Z1) ≤ log k regardless of

the emissions. Applying Proposition 3.1 to (9) yields

Risk(Q̃Xn+1|Xn) ≤ 1

n
Red(QXn+1) +

log k

n
, (14)

where QXn+1 is any probability assignment and Q̃Xn+1|Xn is the predictor defined in (8). As we
show next, the memory term turns out to be negligible compared with the redundancy.

3.2. Redundancy bound for HMM

Next we upper bound the redundancy Red(PHMM
n (k, ℓ)) and prove the upper bound in Theo-

rem 1.1. To this end, it suffices to bound the redundancy of the joint state-emission sequence.
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Indeed, by definition (7), for any QXn+1,Zn+1 and any PXn+1,Zn+1 in the model class, we have
KL(PXn+1,Zn+1∥QXn+1,Zn+1) ≤ KL(PXn+1∥QXn+1). Let us define a joint probability assignment
by separately approximating the transition and emission probabilities using the probability assign-
ment designed for the Markov and i.i.d. class respectively:

QXn+1,Zn+1(xn+1, zn+1) = QZn+1(zn+1) ·QXn+1|Zn+1(xn+1|zn+1) (15)

=
1

k

n∏
t=1

Mt(zt+1|zt) ·
n+1∏
t=1

Tt(xt|zt),

where Mt and Tt are the add-one estimators (Krichevsky and Trofimov (1981)) for the transition
and emission probabilities, respectively:

Mt(z
′|z) =

1 +
∑t−1

i=1 1zi+1=z′ and zi=z

k +
∑t−1

i=1 1zi=z

, (16)

Tt(x|z) =
1 +

∑t−1
i=1 1zi=z and xi=x

ℓ+
∑t−1

i=1 1zi=z

. (17)

Finally, let QXn+1 be the marginal of (15). The following result bounds on the pointwise redundancy
of QXn+1,Zn+1 and thus that of QXn+1 . By (12), this also bounds their average-case redundancy.

Proposition 3.2 Let n ≥ k(k+ℓ). For any hidden transition matrix M (with stationary distribution
π) on state space [k] and emission matrix T from [k] to [ℓ],

max
xn+1,zn+1

log
π (z1)

∏n
t=1M (zt+1|zt)

∏n+1
t=1 T (xt|zt)

QXn+1,Zn+1(xn+1, zn+1)
≲ k2 log

n

k2
+ kℓ log

n

kℓ
.

Consequently, Red(QXn+1 ;PHMM
n (k, ℓ)) ≲ k2 log(n/k2) + kℓ log(n/kℓ).

Combining Propositions 2.1, 3.1, and 3.2, we have

Risk(PHMM
n (k, ℓ)) ≲

k2

n
log

n

k2
+

kℓ

n
log

n

kℓ
+

log k

n
,

which completes the upper bound proof of Theorem 1.1. In fact, the same program can be extended
to HMMs with general emissions. To this end, let X take value in a general space X , and Q be a
class of probability distributions over X . We use PHMM

n (k,Q) to denote the collection of stationary
HMMs of length n + 1, with hidden states in [k] and emissions in Q (i.e. PX|Z(·|z) ∈ Q for all
z ∈ [k]). The following corollary, proved in Appendix B.4, bounds the prediction risk:

Corollary 3.3 Suppose Red(Q⊗t) ≤ R(t) for all t for some concave R(·). Then for n ≳ k2,

Risk(PHMM
n (k,Q)) ≲

k2

n
log

n

k2
+

k

n
R

(
n+ 1

k

)
.

Remark 3.4 When Q is the set of Gaussian distributions N (w, Id) with w ∈ [−1, 1]d, one has
Red(Q⊗n) ≲ d log n by Gaussian channel capacity. Hence, Corollary 3.3 shows that the optimal
prediction risk for Gaussian HMM with k hidden states is O(k(k+d)

n log n). Furthermore, as we will
see in the next section (Corollary 4.3), this bound is tight.
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3.3. An optimal prediction algorithm

We show that the estimator in Theorem 1.1 can be computed in time nO(k2+kℓ), and it suffices to
prove that the marginal distribution QXn+1 can be efficiently computed based on the joint distribu-
tion QXn+1,Zn+1 in (15). Our idea relies on an equivalent expression of QXn+1,Zn+1 via sufficient
statistics: let M ∈ Rk×k, T ∈ Rk×ℓ be the transition and emission count matrices, formally defined
as Mz,z′ =

∑n
t=1 1zt=z,zt+1=z′ and Tz,x =

∑n+1
t=1 1zt=z,xt=x, then

QXn+1,Zn+1(xn+1, zn+1) =
1

k

∏
z∈[k]

(∏
z′∈[k]Mz,z′ !

kMz
·
∏

x∈[ℓ] Tz,x!

ℓTz

)
≜ F (M,T ),

where Mz, Tz denotes the row sums of M,T , and km = k(k + 1) · · · (k + m − 1) is the rising
factorial. Based on the above expression, to compute the marginal distribution QXn+1 it suffices to
enumerate over all possible matrices (M,T ) and compute the number A(M,T ;xn+1) of sequences
zn+1 that induce a given (M,T ). The following lemma, proved in Appendix D.1, shows that for
each (M,T ) this enumeration can be done in nO(k2+kℓ) time by dynamic programming.

Lemma 3.5 Given any sequence xn+1, the count A(M,T ;xn+1) can be computed in time nO(k2+kℓ).

Since the entries of (M,T ) take values in {0, 1, · · · , n+1}, the number of all possible matrices
is nO(k2+kℓ). This completes the proof of the computational upper bound in Theorem 1.1.

3.4. Renewal processes

For the class P rnwl
n of renewal processes defined in Section 1.1, we invoke a well-known result on

its redundancy:

Lemma 3.6 (Csiszár and Shields (1996)) Red(P rnwl
n ) = Θ(

√
n).

By Proposition 2.1 and Lemma 3.6, it remains to upper bound the memory term mem(P rnwl
n ). A

stationary renewal process {Xt} with interarrival distribution µ is represented by a stationary HMM
with a countably infinite state space as follows:

1. The hidden states {Zt} takes values in N represents the “countdown” until the next renewal,
where P(Zt+1 = i− 1|Zt = i) = 1 if i ≥ 2 and P(Zt+1 = j|Zt = 1) = µ(j) for j ≥ 1.

2. The emissions is binary and deterministic: Xt = 1Zt=1.

Furthermore, the stationary state distribution πµ is precisely the law of the initial wait time in Sec-

tion 1.1, given by πµ(t) =
∑

i≥t µ(i)∑
i≥1 iµ(i)

. This HMM representation allows us to apply Proposition 3.1
to bound the memory term

mem(P rnwl
n ) ≤ 1

n
I(Z1;X

n+1).

Although Z1 takes infinitely many values, we show that the above mutual information is still at most
O(log n): Let Z̃1 ≜ min{Z1, n+2}. Then Z1 → Z̃1 → Xn+1 is a Markov chain because Z̃1 = Z1

if Z̃1 < n+ 2, and Xn+1 = 0n+1 if Z̃1 = n+ 2. Therefore, by the data processing inequality:

I(Z1;X
n+1) ≤ I(Z̃1;X

n+1) ≤ H(Z̃1) ≤ log(n+ 2).

9
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The upper bound of Theorem 1.4 then follows from Proposition 2.1 and Lemma 3.6.
Note that the redundancy upper bound in Lemma 3.6 is obtained by analyzing the pointwise

redundancy (12) and bounding the Shtarkov sum (13) by the partition number whose asymptotics
yields the

√
n term (Hardy and Ramanujan, 1918). Thanks to Proposition 2.1, averaging of the

conditionals of the Shtarkov distribution (normalized maximum likelihood) yields a predictor that
attains the optimal rate 1√

n
. As discussed in Section 1.1, finding a computationally efficient optimal

predictor is an interesting open question.

4. Proof of the lower bounds

This section proves the lower bounds of the prediction risk for HMMs with further technical results
deferred till Appendix C. We first present a generic embedding idea to lower bound the prediction
risk using the redundancy of a slightly smaller class of HMMs; this reduction essentially shows the
tightness of the compression-prediction program in Section 2 when a (hidden) Markov structure is
available. Next we lower bound the redundancy Red(PHMM

n (k, ℓ)). For renewal processes we use
an explicit prior and lower bound the Bayes prediction risk directly (see Appendix E).

4.1. Reduction from redundancy to prediction risk

Complementing the upper bound in Proposition 2.1, the following result lower bounds the prediction
risk by the redundancy of HMMs with one fewer states and observations.

Proposition 4.1 (Lower bd. prediction risk by redundancy) For PHMM
n (k, ℓ) with k ≥ 2, ℓ ≥ 3,

RiskHMM(n, k, ℓ) ≳
1

n
(Red(PHMM

n+1 (k − 1, ℓ− 1))− log ℓ).

For k ≥ 2, ℓ ≥ 3, combining this result with the redundancy lower bound in Theorem 4.5 proves
the lower bound in Theorem 1.1. (Note that for k = 2, PHMM

n+1 (k−1, ℓ−1) is in fact an i.i.d. process
over [ℓ] and has redundancy Θ(ℓ log(n/ℓ)) for n ≳ ℓ (Davisson, 1973)).

The proof of Proposition 4.1 relies on a reduction from redundancy to prediction risk. Given
an arbitrary instance Q of the HMM parameters with hidden alphabet [k − 1] and emission [ℓ− 1],
we seek to construct another instance P for the HMM parameters with hidden alphabet [k] and
emission [ℓ]. The main idea is to add a “lazy” state k that slows down the chain. This uninformative
state has a heavy self loop such that with constant probability, the chain only explores the original
state space [k− 1] for a period of time that is approximately uniform in [n], effectively reducing the
sample size from n to Unif([n]). As such, the prediction risk can then be related to the cumulative
risk, that is, the redundancy. Specifically, define

1. Emission probabilities: P (X = ℓ|Z = k) = 1 and PX|Z=z = QX|Z=z for all z ∈ [k − 1]. In
other words, state k always emits ℓ, while the emissions of other states are the same as Q.

2. Transition: let πQ be the stationary distribution over the state space [k − 1] under Q:

P (Z2 = j|Z1 = i) =


1j=k(1− 1/n) + 1j ̸=kπQ(j)/n if i = k,

1/n if i ̸= k, j = k,

(n− 1)Q(Z2 = j|Z1 = i)/n if i ̸= k, j ̸= k.

(18)

10
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One can verify that the stationary state distribution of the HMM P is πP (k) = 1/2 and πP (i) =
πQ(i)/2. For 0 ≤ t ≤ n − 1, define the event Et = {xn : xt = ℓt, xnt+1 ∈ [ℓ − 1]n−t}. A simple
computation shows that P(Et) = Θ

(
1
n

)
for all 1 ≤ t ≤ n− 1, and P(E0) = Θ(1).

Next we consider a general prior distribution of Q, which induces a prior of P . Note that condi-
tioned on the event Et, the Bayes prediction risk of PXn+1|Xn (or equivalently I(P ;Xn+1|Xn, Et))
equals to the Bayes prediction risk of QXn+1|Xn

t+1
(or equivalently I(Q;Xn+1|Xn

t+1)) times 1−1/n,
the scaling factor between the transition probabilities under Q and P on [k − 1].
Therefore, the overall Bayes prediction risk of PXn+1|Xn is lower bounded by

n−1∑
t=0

P(Et)I(P ;Xn+1|Xn, Et) =

n−1∑
t=0

P(Et) ·
(
1− 1

n

)
I(Q;Xn+1|Xn

t+1)

≳
1

n

n−1∑
t=0

I(Q;Xn−t+1|Xn−t)

=
1

n

(
I(Q;Xn+1)− I(Q;X1)

)
≥ 1

n

(
I(Q;Xn+1)− log ℓ

)
.

Maximizing over the prior distributions of Q leads to redundancy and proves Proposition 4.1.
The simple embedding above is a bit wasteful as it designates a special emission symbol to

signify the lazy state. As such, the case of ℓ = 2 is out of reach. Applying more delicate reductions,
the next result (proved in Appendix C.1) gives a risk lower bound based on the redundancy of HMMs
with the same observation space, with the additional constraint that the stationary state distribution
is uniform, which, for large k, has the same redundancy within constant factors. Thus this result is
applicable to the case of binary and even continuous emissions such as Gaussians (Remark 3.4).

Proposition 4.2 In the context of Corollary 3.3, for all k ≥ 2 it holds that

Risk(PHMM
n (k,Q)) ≳

1

n
Red(PHMM

n+1,U(k − 1,Q))− log(nk) + Red(Q)

n
,

where PHMM
n,U (k,Q) is the set of all stationary HMMs with hidden states in [k], emission distribu-

tions in Q, and a uniform stationary distribution for the hidden states.

Corollary 4.3 Suppose that there are constants 0 ≤ c1 < c2 ≤ 1 and a map f : X → {0, 1} such
that for all c ∈ [c1, c2], there exists Qc ∈ Q such that f#Qc = Bern(c). Then

Risk(PHMM
n (k,Q)) ≳

k2 log n

n
+

k

n
Red(Q⊗⌊n/k⌋)

as long as k ≥ C and n ≥ kD, where (C,D) are absolute constants.

4.2. Lower bounding the redundancy of HMM

The general idea of lower bounding the redundancy is via the variational representation Red(P) =
supµ I(θ;X), where θ ∼ µ is a random element of P according to the distribution (prior) µ, and
conditioned on this element, the random variable X follows the distribution θ. Following Davisson
et al. (1981), lower bounding the mutual information I(θ;X) requires us to construct an estimator
of θ that achieves small error on a sufficiently rich sub-model class (that we also need to construct),
leading to high mutual information. For the challenging case of overcomplete HMM (e.g. ℓ = 2),
this estimator is based on tensor decomposition.

11
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Large ℓ. We start with the easy case of ℓ ≥ k, where the redundancy of the HMM mainly comes
from the emission probabilities. The prior distribution µ is constructed as follows: the transition
of the hidden states is a deterministic cycle Ck (i.e. 1 → 2 → · · · → k → 1), and the emission
distributions are drawn independently: (θz)z∈[k] ≜ (PX|Z(·|z))z∈[k] ∼ µ⊗k

0 , where µ0 is some prior
distribution over P([ℓ]), the collection of all probability measures on [ℓ]. Therefore,

I(θ;Xn) = I(θ;Zn, Xn)− I(θ;Zn|Xn)
(a)

≥ I(θ;Xn|Zn)−H(Zn)

(b)

≥
∑
z∈[k]

I(θz; (Xi : Zi = z)|Zn)− log k

(c)

≥
∑
z∈[k]

I(θz;Y
⌊n/k⌋
z )− log k = kI(θ1;Y

⌊n/k⌋
1 )− log k,

where (a) is due to I(θ;Zn) = 0, (b) follows from the mutual independence of (θz, (Xi : Zi =
z))z∈[k] given Zn, (c) introduces an auxiliary sequence of i.i.d. random variables Yz,1, Yz,2, · · · ∼
θz , and uses that the sample size of Yz is at least ⌊n/k⌋ for each z ∈ [k]. Consequently,

Red(PHMM
n (k, ℓ)) = sup

µ
I(θ;Xn) ≥ k · sup

µ0

I(θ1;Y
⌊n/k⌋
1 )− log k ≳ kℓ log

n

kℓ
− log k

for n ≳ kℓ, where we use the classical redundancy bound of i.i.d. model Red(P([ℓ])⊗m) =
Ω(ℓ log(m/ℓ)) if m ≳ ℓ (Davisson, 1973).

Large k. The analysis for the overcomplete case of large k is far more challenging. Without
loss of generality consider ℓ = 2. The lower bound on mutual information crucially relies on the
following lemma, which shows that an estimator on tensor decomposition succeeds provided that
the transition matrices are close to a deterministic cycle.

Lemma 4.4 (Estimating the transition) Let 0 ≤ t1 < t2 ≤ 1 be fixed constants. There exist
positive constants c0, c1, c2, c3 and fixed p1, · · · , pk ∈ (t1, t2) such that when k ≥ c0, n ≥ kc1 and:

1. the transition matrix Q of the hidden states is doubly stochastic and ∥Q− Ck∥max ≤ k−c2;

2. the emission probabilities are fixed as P(X = 1|Z = i) = pi for all i = 1, 2, · · · , k,

then there exists an estimator Q̂k (X
n) such that

PXn|Q

[∥∥∥Q̂k (X
n)−Q

∥∥∥2
F
≤ n−c3

]
≥ 0.99. (19)

The constraints imposed on Q in Lemma 4.4 still result in a sufficiently rich model: one can
show that there is a prior distribution µ supported on this set such that h(Q) ≳ −k2 log k for Q ∼ µ,
where h(·) is the differential entropy (Lemma C.8). For Q ∼ µ, a direct consequence of Lemma
4.4 is h(Q|Q̃k(X

n)) ≲ −k2 log n (Lemma A.1). Therefore, under this prior µ we have

I(Q;Xn) = h(Q)− h(Q|Xn) ≥ h(Q)− h(Q|Q̃k(X
n)) ≳ k2 log n (20)

as long as n ≥ kD for a large constant D > 0. The above two cases lead to the following theorem.
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Theorem 4.5 (Lower bound on the redundancy) There exist universal constants c0, c1, c2, D >
0 such that

Red(PHMM
n (k, ℓ)) ≥ c0

(
k2 log

n

k2
+ kℓ log

n

kℓ

)
,

if either k ≥ max{ℓ, c1} and n > kD, or n ≥ c2kℓ and ℓ ≥ k.

Combined with the reduction in Section 4.1, we conclude the proof of the lower bounds.
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Élisabeth Gassiat. Universal Coding and Order Identification by Model Selection Methods.
Springer, 2018.

Yanjun Han, Soham Jana, and Yihong Wu. Optimal prediction of markov chains with and without
spectral gap. Advances in Neural Information Processing Systems, 34:11233–11246, 2021.

Yanjun Han, Soham Jana, and Yihong Wu. Optimal prediction of Markov chains with and without
spectral gap. IEEE Transactions on Information Theory, 69(6):3920–3959, 2023.

Yi Hao, A. Orlitsky, and V. Pichapati. On learning Markov chains. In Advances in Neural Informa-
tion Processing Systems, pages 648–657, 2018.

Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulaæ in combinatory analysis. Pro-
ceedings of the London Mathematical Society, 2(1):75–115, 1918.

David Haussler, Jyrki Kivinen, and Manfred K Warmuth. Sequential prediction of individual se-
quences under general loss functions. IEEE Transactions on Information Theory, 44(5):1906–
1925, 1998.

Qingqing Huang, Rong Ge, Sham Kakade, and Munther Dahleh. Minimal realization problems for
hidden markov models. IEEE Transactions on Signal Processing, 64(7):1896–1904, 2015.

Pravesh K Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower bounds
for refuting any csp. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 132–145, 2017.

R. Krichevsky and V. Trofimov. The performance of universal encoding. IEEE Transactions on
Information Theory, 27(2):199–207, 1981. doi: 10.1109/TIT.1981.1056331.

Luc Lehéricy. Nonasymptotic control of the mle for misspecified nonparametric hidden markov
models. Electronic Journal of Statistics, 15(2):4916–4965, 2021.

14



PREDICTION FROM COMPRESSION

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quarterly Journal of Math-
ematics, 11:50–59, 1960. URL https://api.semanticscholar.org/CorpusID:
120585992.
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Appendix A. Preliminaries and technical lemmas

Recall the following information-theoretic quantities. For probability distributions PX and QX on
the space X , the KL divergence is KL(PX∥QX) = EP

[
log dPX

dQX

]
if PX ≪ QX and ∞ otherwise.

The conditional KL divergence is KL(PX|Y ∥QX|Y |PY ) = Ey∼PY
[KL(PX|Y=y∥QX|Y=y)]. The

mutual information between random variables X and Y is defined as I(X;Y ) = KL(PXY ∥PX ⊗
PY ) = KL(PX|Y ∥PX |PY ) and the conditional mutual information is defined similarly I(X;Y |Z) =
KL(PX|Y,Z∥PX|Z |PY,Z).

We use o,O, ω,Ω,Θ following the common big-O notations, where an added (̃·) denotes ig-
noring log factors. We also use ≲,≳,≍ to denote comparison ignoring universal constants. We
shorthand N = {1, 2, . . . } and [t] = {1, 2, . . . , t}.

A.1. Comparison with the formulation in Sharan et al. (2018)

Recall that our prediction risk with respect to a true model PXn+1 is defined as

Risk(QXn+1|Xn ;PXn+1) = EPXn+1 [KL(PXn+1|Xn∥QXn+1|Xn)] (21)

which compares a prediction algorithm QXn+1|Xn to the oracle prediction PXn+1|Xn . Maximizing
PXn+1 in a given model class, e.g., HMM, leads to the worst-case risk in (2).

In Sharan et al. (2018), the authors formulated the prediction problem differently as follows.
First, it is assumed that observed sample path can be extended to a double-sided process (Xt)t∈Z.
Then, for a sequence of predictors QXt+1|Xt indexed by the sample size t = 1, . . . , n they consider
the prediction loss in TV with respect to the respective oracle PXt+1|Xt

−∞
and define:

Risk′({QXt+1|Xt}nt=1;PXn+1) = EXn+1
−∞

[
1

n

n∑
t=1

TV(PXt+1|Xt
−∞

, QXt+1|Xt)

]
. (22)

It is not straightforward to compare results under this formulation to our results partly due to this
averaging over t, which means the prediction guarantee is not made for a given sample size n by on
average for a random sample size drawn uniformly from 1 to n. Nevertheless, a firm comparison
one can make is the following. In the spirit of (22), consider the following variant of (21):

Risk′′(QXn+1|Xn ;PXn+1) = EPXn+1 [KL(PXn+1|Xn
−∞

∥QXn+1|Xn)]. (23)

In other words, the goal is to compete with an oracle who only knows the true model parameters but
also has access to infinite historical data. While this appears to be a more difficult task, for HMM
the difference of these two risks is in fact negligible. Indeed, by the chain rule, we have for any
predictor Q and any model P ,

Risk′′ − Risk = I(X0
−∞;Xn+1|Xn) ≤ I(Z1;Xn+1|Xn)

which, for HMM with k hidden states, is at most log k/n, thanks to (24). As a result, all of our
results proved in Risk (which is more natural in our settings) apply immediately to Risk′′.
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A.2. Technical lemmas

Lemma A.1 Let U → X → Û be a Markov chain with U being a continuous random variable
with a density function fU taking values in [0, t]d, and ∥Û − U∥22 ≤ dε2 with probability at least
0.99. Let h(U) ≜

∫
fU (u)du log

1
fU (u) denote the differential entropy of U . Then

I(U ;X) ≥ h(U) + d log
1

ε
√
2πe

− 0.01d log
1

t
− log 2.

Proof Let E be the event that ∥Û − U∥22 ≤ dε2. Then

I(U ;X) ≥ I(U ; Û) = h(U)− h(U |Û)

= h(U)− h(U |Û ,1E)− I(U ;1E |Û)

≥ h(U)− h(U |Û , E)P(E)− h(U |Û , Ec)P(Ec)− log 2

(a)

≥ h(U)− h(U − Û |Û , E)P(E)− 0.01d log
1

t
− log 2

≥ h(U)− h(U − Û |E)− 0.01d log
1

t
− log 2

(b)

≥ h(U) + d log
1

ε
√
2πe

− 0.01d log
1

t
− log 2,

where (a) and (b) apply the fact that the differential entropy is maximized by the uniform (resp. Gaus-
sian) distribution subject to a support (resp. second moment) constraint.

The following lemma bounds the change of the prediction risk when certain auxiliary informa-
tion is observed.

Lemma A.2 For a generic prior on θ, the model parameters, and an auxiliary random variable U ,
it holds that

inf
P̂Xn+1|Xn,U

E[KL(PXn+1|Xn,θ,U∥P̂Xn+1|Xn,U )]

≤ inf
P̂Xn+1|Xn

E[KL(PXn+1|Xn,θ∥P̂Xn+1|Xn)] + I(U ;Xn+1|Xn, θ).

where the expectation is taken with respect to both the model parameters θ according to the prior
and the observations Xn, U

Proof By the mutual information representation of the prediction risk (cf. (Han et al., 2023, Ap-
pendix A)), the statement is equivalent to

I(θ;Xn+1|Xn, U) ≤ I(θ;Xn+1|Xn) + I(U ;Xn+1|Xn, θ).

This is obvious since

I(θ;Xn+1|Xn, U) = I(θ;Xn+1|Xn) + I(U ;Xn+1|Xn, θ)− I(U ;Xn+1|Xn)

by the chain rule of mutual information.

18
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Lemma A.3 (Mirsky’s theorem, Mirsky (1960)) For matrices A,E ∈ Rm×k with m ≥ k, it
holds that

k∑
i=1

(σi(A+ E)− σi(A))2 ≤ ∥E∥2F,

where σi(i ∈ [k]) are the sorted singular values.

Appendix B. Deferred proofs of upper bounds

B.1. Proof of Proposition 2.1

It holds that

KL
(
PXn+1|Xn∥Q̃Xn+1|Xn |PXn

)
(a)
= E

[
KL

(
PXn+1|Xn (·|Xn)

∥∥∥∥ 1n
n∑

t=1

QXt+1|Xt

(
·|Xn

n−t+1

))]
(b)

≤ 1

n

n∑
t=1

E

[
log

PXn+1|Xn (Xn+1|Xn)

QXt+1|Xt

(
Xn+1|Xn

n−t+1

)]

=
1

n

n∑
t=1

E

[
log

PXn+1|Xn
n−t+1

(
Xn+1|Xn

n−t+1

)
QXt+1|Xt

(
Xn+1|Xn

n−t+1

) ]
+ E

[
log

PXn+1|Xn (Xn+1|Xn)

PXn+1|Xn
n−t+1

(
Xn+1|Xn

n−t+1

)]
(c)
=

1

n

n∑
t=1

E

[
log

PXt+1|Xt

(
Xt+1|Xt

)
QXt+1|Xt (Xt+1|Xt)

]
︸ ︷︷ ︸
KL

(
PXt+1|Xt∥QXt+1|Xt |PXt

)
+I
(
Xn+1;X

n−t|Xn
n−t+1

)

(d)
=

1

n

(
KL (PXn+1∥QXn+1)− KL (PX1∥QX1) +

n∑
t=1

I
(
Xn+1;X

n−t|Xn
n−t+1

))

where (a) applies the definition (8); (b) is due to the convexity of the KL divergence; (c) uses the
crucial fact that due to stationarity, (Xn−t+1, . . . , Xn+1)

law
= (X1, . . . , Xt+1) and PXn+1|Xn

n−t+1
=

PXt+1|Xt for all t; (d) applies the chain rule of KL divergence. Using KL (PX1∥QX1) ≥ 0 and
taking the supremum over PXn+1 , the proposition follows. ■

B.2. Proof of Proposition 3.1

By the hidden Markov structure, Xn−t → (Xn
n−t+1, Zn−t+1) → Xn+1 forms a Markov chain, or

equivalently, Xn−t → Zn−t+1 → Xn+1 conditioned on Xn
n−t+1. Thus data processing inequality

yields
I(Xn−t;Xn+1|Xn

n−t+1) ≤ I(Zn−t+1;Xn+1|Xn
n−t+1).

By stationarity, we have I(Zn−t+1;Xn+1|Xn
n−t+1) = I(Z1;Xt+1|Xt

1) and, furthermore

n∑
t=1

I(Xn−t;Xn+1|Xn
n−t+1) ≤

n∑
t=1

I(Z1;Xt+1|Xt
1) = I(Z1;X

n+1),
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by the chain rule of mutual information. ■
Furthermore, since (Z1, X2) → Z2 → Xn+1

3 is a Markov chain, one has that:

H(Xn+1|Z1, X
n
2 ) ≥ H(Xn+1|Z2, X

n
3 ) = H(Xn|Z1, X

n−1
2 )

where the last equality follows from stationarity. Moreover, clearly

H(Xn+1|Xn
1 ) ≤ H(Xn+1|Xn

2 ) = H(Xn|Xn−1
1 ).

Taking the difference of the two equations, one has that: I(Z1;Xn+1|Xn
1 ) ≤ I(Z1;Xn|Xn−1

1 ).
Therefore applying the chain rule

∑n
t=1 I(Z1;Xt+1|Xt

1) = I(Z1;X
n+1) and I(Z1;X

n+1) ≤
H(Z1) ≤ log k, we obtain

I(Z1;Xn+1|Xn
1 ) ≤

1

n
I(Z1;X

n+1) ≤ 1

n
log k. (24)

B.3. Proof of Proposition 3.2

The following result on Markov estimators was proven in (Han et al., 2021, Lemma 7):

Lemma B.1 (Markov redundancy) For n ≥ 2k2, any initial distribution π, and Markov transi-
tion matrix M , the marginal distribution QZn+1 defined in (15) and (16) satisfies

max
zn+1

log
π (z1)

∏n
t=1M (zt+1|zt)

QZn+1 (zn+1)
≲ k2 log

n

k2
.

Now for the joint distribution QXn+1,Zn+1 ,

log
π(z1)

∏n
t=1M(zt+1|zt)

∏n+1
t=1 T (xt|zt)

QXn+1,Zn+1(xn+1, zn+1)
= log

π(z1)
∏n

t=1M(zt+1|zt)
QZn+1(zn+1)

+log

∏n+1
t=1 T (xt|zt)

QXn+1|Zn+1(xn+1|zn+1)
.

The upper bound of the first term is stated in Lemma B.1. For the second term, let Ni be the number
of appearances of i in zn+1, and Nij be the number of appearances of (i, j) in the state-emission
pairs (zt, xt)n+1

t=1 . Then (15) and (17) imply that

QXn+1|Zn+1(xn+1|zn+1) =
k∏

i=1

∏ℓ
j=1Nij !

ℓNi
,

where am = a(a+ 1) · · · (a+m− 1) is the rising factorial. Therefore,

log

∏n+1
t=1 T (xt|zt)

QXn+1|Zn+1(xn+1|zn+1)
= log

k∏
i=1

ℓNi

ℓ∏
j=1

T (j|i)Nij

Nij !

(a)

≤
k∑

i=1

log
ℓNi

Ni!

(b)

≤
k∑

i=1

(
(ℓ− 1) log

(
1 +

Ni

ℓ− 1

)
+Ni log

(
1 +

ℓ− 1

Ni

))
(c)

≲ kℓ log
n

kℓ
,
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where (a) follows from the multinomial theorem
(

Ni
Ni1 ··· Nik

)∏ℓ
j=1 T (j|i)Nij ≤ 1, (b) is due to

log
ℓm

m!
=

m∑
i=1

log

(
1 +

ℓ− 1

i

)
≤
∫ m

0
log

(
1 +

ℓ− 1

x

)
dx

= (ℓ− 1) log

(
1 +

m

ℓ− 1

)
+m log

(
1 +

ℓ− 1

m

)
,

and (c) uses the concavity of x → log x, log(1 + x) ≤ x, and
∑k

i=1Ni = n + 1. The above two
terms then complete the proof of the first statement. The second statement (marginalization) simply
follows from

Red(QXn+1) ≤ max
xn+1

log

∑
zn+1 π(z1)

∏n
t=1M(zt+1|zt)

∏n+1
t=1 T (xt|zt)∑

zn+1 QXn+1,Zn+1(xn+1, zn+1)

≤ max
xn+1,zn+1

log
π(z1)

∏n
t=1M(zt+1|zt)

∏n+1
t=1 T (xt|zt)

QXn+1,Zn+1(xn+1, zn+1)

≲ k2 log
n

k2
+ kℓ log

n

kℓ
.

■

B.4. Proof of Corollary 3.3

By Propositions 2.1 and 3.1, it suffices to construct QXn+1 such that

Red(QXn+1 ;PHMM
n (k,Q)) ≲ k2 log

n

k2
+ kR((n+ 1)/k).

To this end, let QXn+1 be the marginal distribution of QXn+1,Zn+1 , where QZn+1(zn+1) is again
given by (15) and (16). For the conditional distribution QXn+1|Zn+1(xn+1|zn+1), let Iz(zn+1) =
{t ∈ [n+ 1] : zt = z} be the time indices where zt = z, we construct

QXn+1|Zn+1(xn+1|zn+1) =
∏
z∈[k]

Q⋆
|Iz(zn+1)|(xIz(zn+1)),

where Q⋆
m is the joint distribution such that Red(Q⋆

m;Q⊗m) ≤ R(m). Then for any HMM
in PHMM

n (k,Q) with transition matrix M , stationary distribution π, and emission distributions
(Qz)z∈[k] ⊆ Q, one has

log
π(z1)

∏n
t=1M(zt+1|zt)

∏n+1
t=1 Qzt(xt)

QXn+1,Zn+1(xn+1, zn+1)

= log
π(z1)

∏n
t=1M(zt+1|zt)

QZn+1(zn+1)
+
∑
z∈[k]

log

∏
t∈Iz(zn+1)Qz(xt)

Q⋆
|Iz(zn+1)|(xIz(zn+1))

.

Taking expectation over xn+1 conditioned on zn+1 gives that

E

[
log

∏
t∈Iz(zn+1)Qz(xt)

Q⋆
|Iz(zn+1)|(xIz(zn+1))

]
≤ Red(Q⋆

|Iz(zn+1)|;Q
⊗|Iz(zn+1)|) ≤ R(|Iz(zn+1)|),
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so the concavity of R leads to

E

∑
z∈[k]

log

∏
t∈Iz(zn+1)Qz(xt)

Q|Iz(zn+1)|(xIz(zn+1))

 ≤
∑
z∈[k]

R(|Iz(zn+1)|) ≤ kR((n+ 1)/k).

A combination of the above inequality and Lemma B.1 completes the proof of the desired redun-
dancy upper bound.

Remark B.2 As discussed after Corollary 3.3, for Gaussian location model Q = {N (w, Id) : w ∈
[−1, 1]d}, one has2 Red(Q⊗n) ≲ d log n and thus Red(PHMM

n (k,Q)) ≲ k2 log n
k2

+ d log n. This
is also implied by the pointwise redundancy bound of HMM with Gaussian emissions in (Gassiat,
2018, Sec. 4.2.3).

Appendix C. Deferred proofs of lower bounds

C.1. Improved redundancy-based risk lower bound

In this section we prove Proposition 4.2 which improves over Proposition 4.1. Let Q be an arbitrary
collection of distributions on the observation space X . Let PHMM

n,U (k,Q) denote the class of all
stationary HMMs of length n with hidden states in [k], emissions in X with emission probabilities
chosen in Q. In addition, let PHMM

n,U (k,Q) denote the subclass of HMMs whose stationary distribu-
tion over the states is uniform. Let Red(Q) denote the redundancy of the distribution class Q in the
same sense as (7), namely,

Red(Q) ≜ inf
Q′

sup
Q∈Q

KL(Q∥Q′)

which, by the capacity-redundancy theorem (see, e.g., (Polyanskiy and Wu, 2024, (13.10))), equals

Red(Q) = sup I(θ;X) (25)

where PX|θ ∈ Q and the maximization is taken over the distribution (prior) of θ. Proposition 4.2
lower bounds the prediction risk of PHMM

n (k,Q) using the redundancy of the (slightly smaller)
class PHMM

n,U (k,Q), which is the set of all stationary HMMs in PHMM
n (k,Q) with uniform stationary

distribution for the hidden states.

Proof [Proof of Proposition 4.2] Given a HMM configuration Q (comprising the transition prob-
ability QX2|X1

and emission probability QX1|Z1
) in PHMM

n+1,U(k − 1,Q), we construct an HMM P

in PHMM
n (k,Q) as follows. in a similar way as that in Section 4.1. The emission probabilities for

states i ∈ [k − 1] are identical, namely PX1|Z1=i = QX1|Z1=i and PX1|Z1=k is any fixed distribu-
tion in Q. The transition probabilities PX2|X1

is defined based on QX2|X1
using (18). Hence, both

HMM configurations P and Q are parameterized by the transition matrix QX2|X1
and the emission

probability matrix QX1|Z1
. Let θ denote the collection of these parameters.

Let T ∈ {1, 2, · · · , n,⊥} be the smallest t ∈ [n] such that Zt ̸= k (if Zn = kn then T = ⊥).
In the later proof we will condition on T ; a subtlety here is that T is determined by the states Zn

but it may not be measurable with respect to Xn. Nevertheless, we will consider the setting where

2. For sharp asymptotic bounds of both average and pointwise redundancy in Gaussian models, see Xie and Barron
(2000).

22



PREDICTION FROM COMPRESSION

both the estimand PXn+1|Xn and the estimator P̂Xn+1|Xn have access to the extra information T .
While replacing P̂Xn+1|Xn by P̂Xn+1|Xn,T is valid for the sake of lower bound, replacing PXn+1|Xn

by PXn+1|Xn,T requires further justification. By Lemma A.2, this increases the prediction risk by at
most I(T ;Xn+1|Xn) which we bound below.

Lemma C.1 For any fixed θ, we have

I(T ;Xn+1|Xn) ≲
log(kn)

n
.

Proof Let Ut = 1T=t for t ∈ [n], then T is determined by Un. Then

I(T ;Xn+1|Xn) ≤ I(Un;Xn+1|Xn)

=
n∑

t=1

I(Ut;Xn+1|Xn, U t−1)

(a)

≤ I(U1;Xn+1|Xn) +
n∑

t=2

I(Ut;Xn+1|Xn, U t−1 = 0t−1)

= I(U1;Xn+1|Xn) +

n∑
t=2

I(Ut;Xn+1|Xn, Zt−1 = kt−1)

(b)
= I(U1;Xn+1|Xn) +

n∑
t=2

I(Ut;Xn+1|Xn
t , Zt−1 = k)

(c)
= I(U1;Xn+1|Xn) +

n∑
t=2

I(U2;Xn+3−t|Xn+2−t
2 , Z1 = k)

= I(U1;Xn+1|Xn) + I(U2;X
n+1
3 |X2, Z1 = k)

(d)

≤ H(Z1)

n
+H(U2|Z1 = k)

(e)

≲
log(nk)

n
,

where (a) uses the fact that Ut = 0 deterministically if any entry of U t−1 is one so that

I(Ut;Xn+1|Xn, U t−1) = I(Ut;Xn+1|Xn, U t−1 = 0t−1)P(U t−1 = 0t−1|Xn);

(b) is due to the Markov structure (Xt−1, Zt−2) → (Xm
t , Zt−1) → Ut given Zt−1 = kt−1 for m ∈

{n, n+1}; (c) is due to stationarity, and (d) follows from I(U1;Xn+1|Xn) ≤ I(Z1;Xn+1|Xn) ≤(24)
H(Z1)/n; (e) is because by definition (18), conditioned on Z1 = k, U2 ∼ Bern( 1n).

Next we assume an arbitrary prior on θ and use this Bayesian setting to lower bound the pre-
diction risk. Similar to the analysis in Section 4.1, it is clear that for every t ∈ [n], it holds that
P(T = t) = Ω(1/n). Conditioned on the event T = t, the random distribution PXn+1|Xn,θ,T=t

shares the same law as PYn−t+2|Y n−t+1,θ, where Y m is a sample path of length m from the same k-
state HMM, but with the initial hidden state Z1 drawn uniformly from [k−1]. Similarly, conditioned
on T = t, the posterior distribution of θ given Xn has the same law as the posterior distribution of
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θ given Y n−t+1. Consequently, the Bayes prediction risk satisfies

inf
P̂Xn+1|Xn,T

E[KL(PXn+1|Xn,θ,T ∥P̂Xn+1|Xn,T )]

≥
n∑

t=1

P(T = t) · inf
P̂Xn+1|Xn,T

E[KL(PXn+1|Xn,θ,T ∥P̂Xn+1|Xn,T )|T = t]

=

n∑
t=1

P(T = t) · inf
P̂Yn+2−t|Y n+1−t

E[KL(PYn+2−t|Y n+1−t,θ∥P̂Yn+2−t|Y n+1−t)]

≳
1

n

n∑
t=1

I(θ;Yn+2−t|Y n+1−t) =
I(θ;Y n+1)− I(θ;Y1)

n
.

To deal with the above terms, for the second mutual information we have

I(θ;Y1) ≤ I(θ;Y1, Z1) = I(θ;Y1|Z1) + I(θ;Z1)
(a)
= I(θ;Y1|Z1)

(b)

≤ Red(Q),

where (a) uses that the distribution of Z1 is uniform regardless of θ by definition of the model class
PHMM
n+1,U, and (b) is because for any state i ∈ [k], I(θ;Y1|Z1 = i) ≤ Red(Q) by the capacity-

redundancy representation (25), since the emission probabilities PY1|Z1=i,θ are chosen from Q.
For the first mutual information I(θ;Y n+1), let (Y n+1, Zn+1) be the observations and hidden

states in the HMM with k states (starting from Z1 ∼ Unif([k − 1])), and Xn+1
Q be the observations

in the reduced HMM (with k − 1 states and model parameters Q). Let E be the event that Zt ̸= k
for all t ∈ [n+ 1], by chain rule I(θ;Y n+1) = I(θ,1E ;Y

n+1)− I(1E ;Y
n+1|θ), we have

I(θ;Y n+1) ≥ I(θ;Y n+1|1E)− log 2 ≥ P(E)I(θ;Y n+1|E)− log 2.

We note that P(E) = (1 − 1/n)n = Ω(1), and the joint distribution Pθ,Y n+1|E is the same as
Pθ,Xn+1

Q
. Therefore,

I(θ;Y n+1) ≳ I(θ;Xn+1
Q )− log 2.

Using Lemmas A.2, C.1, as well as the above inequalities yields a lower bound on the Bayes (and
hence minimax) prediction risk:

Risk(PHMM
n (k,Q)) ≳

1

n
I(θ;Xn+1

Q )− log(nk) + Red(Q)

n
.

Finally, taking the supremum over the prior of the model parameter θ and invoking the capacity-
redundancy identity (25) complete the proof of Proposition 4.2.

C.2. The case of ℓ = 2 and proof of Corollary 4.3

When ℓ = 2, we distinguish into two cases: k = 2, and k ≥ C for a large absolute constant C > 0.
In the first case we establish an Ω(log n/n) lower bound for the prediction risk of PHMM

n (2, 2),
and in the second case we prove Corollary 4.3 when n ≥ kD, which implies the lower bound in
Theorem 1.1 for RiskHMM(n, k, 2).
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C.2.1. k = 2

Let us first consider the case k = ℓ = 2. Note that we cannot directly apply Proposition 4.2 as the
remainder term log(nk)/n is too large. Instead, similar to the general reduction in Section 4.1, we
consider a specific transition matrix for the hidden states:

M =

[
n−1
n

1
n

1
n

n−1
n

]
.

For the emission probabilities, we set P(X = 1|Z = 0) = 1 and P(X = 1|Z = 1) = θ, where the
prior distribution of θ is Unif([0.1, 0.9]). We show that the Bayes prediction risk is Ω(log n/n).

For t ∈ [n− 1], let Et be the event Zt = 0t, Zn
t+1 = 1 and Xn = 0. Clearly

P(Et) ≥
1

2
·
(
1− 1

n

)t−1

· 1
n
·
(
1− 1

n

)n−t−1

· (1− 0.9) ≥ 1

60n
.

We investigate the Bayes prediction risk conditioned on Et. For the true distribution PXn+1|Xn,θ,
the event Et implies Xn = 0 (observable from Xn) and consequently Zn = 1, so that PXn+1|Xn,θ =

Bern(n−1
n θ + 1

n). For the estimator QXn+1|Xn , the posterior distribution of θ given (Xn, Et) is the
same as the posterior distribution of θ given Y n−t ∼ Bern(θ)⊗(n−t). Consequently,

inf
Q(·|Xn)

E
[
log

P (Xn+1|Xn, θ)

Q(Xn+1|Xn)

∣∣∣∣Et

]
≥ inf

Q(·|Xn,Et)
E
[
log

P (Xn+1|Xn, θ)

Q(Xn+1|Xn, Et)

∣∣∣∣Et

]
≥ inf

p̂(Xn,Et)
E
[
KL

(
Bern

(
n− 1

n
θ +

1

n

)
∥Bern(p̂(Xn, Et))

) ∣∣∣∣Et

]
= inf

p̂(Y n−t)
E
[
KL

(
Bern

(
n− 1

n
θ +

1

n

)
∥Bern(p̂(Y n−t))

)]
≥ 2

(
n− 1

n

)2

inf
θ̂(Y n−t)

E
[
(θ − θ̂(Y n−t))2

]
≳

1

n− t
,

where we have used Pinsker’s inequality and the Ω(1/(n − t)) Bayes mean squared error of esti-
mating θ under Y n−t ∼ Bern(θ)⊗(n−t). Therefore, the overall Bayes prediction risk is

inf
Q(·|Xn)

E
[
log

P (Xn+1|Xn, θ)

Q(Xn+1|Xn)

]
≥

n−1∑
t=1

P(Et) · inf
Q(·|Xn)

E
[
log

P (Xn+1|Xn, θ)

Q(Xn+1|Xn)

∣∣∣∣Et

]

≳
n−1∑
t=1

1

n
· 1

n− t
≳

log n

n
,

completing the proof of RiskHMM(n, 2, 2) = Ω(log n/n).

C.2.2. COROLLARY 4.3: k ≥ C AND n ≥ kD

Since Corollary 4.3 implies the lower bound of Theorem 1.1 in this case, it suffices to prove Corol-
lary 4.3. In fact, by Proposition 4.2, the final step in proving Corollary 4.3 is to lower bound the
redundancy. This can be divided into two steps:
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1. That Red(PHMM
n,U (k,Q)) ≳ k2 log n. This follows immediately from Lemma 4.4 and the

construction therein (Lemma C.8). Indeed, let Q the transition matrix be sampled according
to Lemma C.8 and plug in t1 < t2 in Lemma 4.4 be according to c1 < c2 in Corollary 4.3.
Let f be the map pushing Q ∈ Q to Bernoulli’s in Corollary 4.3. Then one has that:

I(Xn
Q; θ) ≥ I(f(Xn

Q); θ) ≳ k2 log n.

2. That Red(PHMM
n,U (k,Q)) ≳ kRed(Q⊗⌊n/k⌋) − log k, where we ignore the k → k − 1 issue

since Red(Qt) grows at most linearly in t. To show this, consider the HMM whose latent
states evolve according to the cycle Ck, and each emission Pi = P(X|Z = i) is sampled
independently from some distribution µ supported on Q. Then:

sup
µ

I(P k;Xn) ≥ sup
µ

I(P k;Xn, Z1)− log k = kRed(Q⊗⌊n/k⌋)− log k

by optimizing the prior µ. Therefore Corollary 4.3 is proven.

Remark C.2 In fact, the risk from emission k
nRed(Q

⊗⌊n/k⌋) holds even for k = 2 and n ∈ O(1).
The constraint on k ≥ C, n ≥ kD is only used to show Risk ≳ k2

n log n via Lemma 4.4.

C.3. Proof of Lemma 4.4

The proof of Lemma 4.4 relies critically on the following Markov property:

PXL
−L

(xL−L) =
∑
z0∈[k]

PZ0(z0)PXL
−L|Z0

(xL−L|z0)

=
∑
z0∈[k]

PZ0(z0)PX0|Z0
(x0|z0)PXL

1 |Z0
(xL1 |z0)PX−1

−L|Z0
(x−1

−L|z0)

=
1

k

∑
z0∈[k]

PX0|Z0
(x0|z0)PXL

1 |Z0
(xL1 |z0)PX−1

−L|Z0
(x−1

−L|z0),

where the last step uses the fact that the stationary distribution is uniform when the transition matrix
is doubly stochastic. In a tensor form, we write PXL

−L
as a 2L × 2L × 2 tensor M , and express

PX0|Z0=z0 , PXL
1 |Z0=z0

, PX−1
−L|Z0=z0

as vectors oz0 ∈ R2, ez0 ∈ R2L , fz0 ∈ R2L , respectively. Then
we have the following tensor decomposition of the moment matrix (Huang et al., 2015):

M =
1

k

∑
z0∈[k]

ez0 ⊗ fz0 ⊗ oz0 . (26)

We also let E,F ∈ R2L×k be the matrices with column vectors ez0 and fz0 , respectively.
Based on the above tensor decomposition, the proof consists of several steps:

1. In the first step, we show that there exist constants C1, C2, d1, d2, d3 > 0 such that for L =
⌈d1 log k⌉, based on the HMM trajectory Xn one may construct an estimator M̂n such that

P(∥M̂n −M∥F ≥ n−d2) ≤ C1 exp(−C2n
d3). (27)
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2. In the second step, we show that based on the estimate M̂n and tensor decomposition, one
may construct estimators Ên, F̂n for matrices E,F such that (up to permutations of columns)

P(∥Ên − E∥F + ∥F̂n − F∥F ≥ n−d4) ≤ 0.01, (28)

where d4 > 0 is an absolute constant;

3. In the last step, we conclude the statement of Lemma 4.4 based on (28).

We break these steps into several subsections.

C.3.1. FIRST STEP: PROOF OF (27)

Note that if the transition matrix is precisely the cycle Ck, then X2L+1 and XT+2L
T are independent

if we choose a random time index T ∼ Unif({2L + 2, · · · , 2L + k + 1}). The following lemma
states that this is essentially the case whenever the transition matrix Q is close to Ck.

Lemma C.3 Consider a Markov chain (Zt) with transition matrix Q ∈ Rk×k such that ∥Q −
Ck∥max ≤ ε, and that the stationary distribution is uniform. Then for any m ∈ N, there exists a
distribution Pm supported on [mk] such that if T ∼ Pm (independent of the chain), then

max
z∈[k]

∥Unif([k])− PZT |Z0=z∥TV ≤ (2kε)m.

Proof Let T1, T2, · · · be i.i.d. from Unif([k]), and T =
∑m

i=1 Ti. Clearly T is supported on [mk].
Note that for any z, z′ ∈ [k], one has

P(ZT1 = z′|Z0 = z) ≥ 1

k
(1− ε)k,

where 1/k is the probability that the T1 equals to the time z travels to z′ under Ck, and (1 − ε)k

lower bounds the probability of following the path in Ck. This implies that

max
z∈[k]

∥Unif([k])− PZT1
|Z0=z∥TV ≤ 1− (1− ε)k ≤ kε.

Now the result follows from the standard mixing bound for the new chain (Z0, ZT1 , ZT1+T2 , · · · )
(cf. (Levin and Peres, 2017, Lemma 4.12)).

Now we choose m = ⌈
√
n⌉, and consider J = ⌈n1/3⌉ disjoint intervals Ij = [(j − 1)(mk +

2L)+Tj , (j−1)(mk+2L)+Tj +2L] ⊆ [(j−1)(mk+2L)+1, j(mk+2L)], where T1, · · · , TJ

are i.i.d. according to the distribution Pm in Lemma C.3. Note that I1, · · · , IJ ⊆ [n] for n ≥ k6.
By the HMM structure, for any j ∈ [J ] it holds that

E∥PX2L+1 − PXIj
|(XIi

)i<j
∥TV

(a)

≤ E∥PZ1 − PZtj−1+Tj
|(XIi

)i<j
∥TV

(b)

≤ E∥Unif([k])− PZtj−1+Tj
|Ztj−1

∥TV

(c)

≤ (2kε)m,
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where (a) follows from the data processing inequality for the TV distance (where tj is the end time
of Ij), (b) is due to the Markov structure (XIi)i<j → Ztj−1 → Ztj−1+Tj , and (c) follows from
Lemma C.3. Therefore, by the subadditivity of TV distance,

∥P⊗J
X2L+1 − P(XIj

)j∈J
∥TV ≤

J∑
j=1

E∥PX2L+1 − PXIj
|(XIi

)i<j
∥TV ≤ J(2kε)m = e−Ω̃(n), (29)

where the last inequality follows from the assumption ε ≤ k−c2 in Lemma 4.4, for c2 ≥ 2.
Using the near independence, we proceed to estimate the joint distribution PX2L+1 (or equiva-

lently the tensor M ) based on the empirical distribution M̂n of {XIj}j∈J . If {XIj}j∈J were indeed
i.i.d., by Hoeffding’s inequality and union bound we would have

P(∥M̂n −M∥F ≥ n−d2) ≤ P(∥M̂n −M∥max ≥ n−d2)

≤ 22L+1 · 2 exp(−2J(n−d2)2)

= exp(−Ω̃(n1/2−2d2)).

For weakly dependent {XIj}j∈J , we invoke (29) to conclude that

P(∥M̂n −M∥F ≥ n−d2) ≤ exp(−Ω̃(n1/2−2d2)) + e−Ω̃(n).

Consequently, (27) holds with d2 = d3 = 1/8.

C.3.2. SECOND STEP: PROOF OF (28)

Given the estimate M̂n of the tensor M , we aim to recover the matrices E and F (up to permutations
of columns). To this end we recall the following result in tensor decomposition.

Lemma C.4 (Stability of tensor decomposition, Theorem 2.3 in Bhaskara et al. (2013)) Let T =∑k
i=1 ui ⊗ vi ⊗ wi be a tensor satisfying the following conditions:

1. The condition numbers κ(U), κ(V ) ≤ κ, where U, V are m×k matrices with column vectors
ui and vi, respectively;

2. The vectors wi ∈ R2 are not close to parallel: mini ̸=j

∥∥∥ wi
∥wi∥ − wj

∥wj∥

∥∥∥
2
≥ δ > 0;

3. The decompositions are bounded: for all i, ∥ui∥2 , ∥vi∥2 , ∥wi∥2 ≤ 1.

Now given the noisy tensor T + E ∈ Rm×m×2 with the entries of E bounded by ε, there exists
an efficient algorithm that returns each rank one term in the decomposition of T (up to renaming),
within an additive error of ε · poly(m, k, κ, 1/δ).

Note that in our tensor decomposition (26), we have m = 2L = poly(k), and ε ≤ kn−d2 by (27)
with high probability. Consequently, if the conditions of Lemma C.4 hold with κ, 1/δ = poly(k),
then by choosing c1 > 0 large enough in the condition n ≥ kc1 in Lemma 4.4, Lemma C.4 will
imply (28). Hence it remains to verify the conditions of Lemma C.4.

The third condition is straightforward: a probability vector e must satisfy ∥e∥2 ≤ ∥e∥1 = 1.
To verify the first two conditions, we use a probabilistic argument and choose the vectors oi (i.e.
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emission probabilities PX|Z) randomly. Specifically, for fixed constants a1, a2 with 0 < a1 < a2 <
π/2, we generate i.i.d. angles θ1, · · · , θk ∼ Unif([a1, a2]), and set

pi = P(X = 1|Z = i) =
cos θi

cos θi + sin θi
, i ∈ [k].

Note that for appropriately chosen constants a1, a2, the condition pi ∈ (t1, t2) required in Lemma
4.4 holds almost surely. The reason behind the choice of pi is summarized by the following lemma.

Lemma C.5 If Q = Ck and k ≥ L, then for a large enough constant d1 > 0, there exist absolute
constants d5, d6 > 0 such that

P(max{κ(E), κ(F )} ≤ kd5) ≥ 1− 2k−d6 ,

where κ(E) denotes the condition number of E, i.e. the ratio between the largest and the kth
singular values of E.

Proof By symmetry we only prove the claim for E. If Q = Ck and k ≥ L, we have

ExL,i = PXL
1 |Z0

(xL|i) =
L∏

t=1

(cos θt+i)
1−xt(sin θt+i)

xt

cos θt+i + sin θt+i
,

where the indices of θ are understood modulo k. Consequently, for i, j ∈ [k],

(E⊤E)i,j =
L∏

t=1

cos(θt+i − θt+j)

(cos θt+i + sin θt+i)(cos θt+j + sin θt+j)
.

In matrix forms, E⊤E = DAD, where D ∈ Rk×k is a diagonal matrix with Dii =
∏L

t=1(cos θt+i+

sin θt+i)
−1 ∈ [2−L/2, 1], and Aij =

∏L
t=1 cos(θt+i − θt+j). Consequently,

λ1(E
⊤E) ≤ λ1(A), λk(E

⊤E) ≥ (2−L/2)2λk(A) ≥ 2−Lλk(A). (30)

Next we analyze the matrix A. Clearly the diagonal entries of A are all 1. For off-diagonal entries
Aij , as k ≥ L, we may pick N ≥ L/2 elements t1, · · · , tN ∈ [L] such that the set {i+ tr, j + tr :
r ∈ [N ]} contains 2N distinct elements. Then

logAij ≤
N∑
r=1

log cos(θi+tr − θj+tr),

where the RHS is the sum of N i.i.d. random variables. Since E[log cos(θ1 − θ2)] ≤ −c(a1, a2) for
some constant c(a1, a2) > 0, and | log cos(θ1−θ2)| ≤ | log cos(a1−a2)| almost surely, Hoeffding’s
inequality implies that logAij = −Ω(N) with probability at least 1−exp(−Ω(N)) = 1−k−Ω(d1).
By choosing d1 large enough, a union bound implies that with probability at least 1 − k−d6 , all
off-diagonal entries of A have magnitude at most 1/(2k). Then by Gershgorin circle theorem,

λ1(A) ≤ 1 + max
i∈[k]

∑
j ̸=i

|Aij | ≤ 1 +
1

2k
· (k − 1) ≤ 3

2
,

λk(A) ≥ 1−max
i∈[k]

∑
j ̸=i

|Aij | ≥ 1− 1

2k
· (k − 1) ≥ 1

2
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hold with high probability. A combination of (30) and the above result completes the proof.

The result of Lemma C.5 assumes Q = Ck, and we still need to generalize it to the case where
∥Q−Ck∥max ≤ k−c2 . To this end we apply a matrix perturbation analysis. Let E⋆ be the matrix E
with columns e⋆i under Q = Ck, then

∥e⋆i − ei∥1 = 2∥PXL|Z0=i,Q=Ck
− PXL|Z0=i,Q∥TV

(a)

≤ 2∥PZL|Z0=i,Q=Ck
− PZL|Z0=i,Q∥TV

(b)
= 2

(
1−

L∏
t=1

Qi+t−1,i+t

)
≤ 2

(
1− (1− k−c2)L

)
≤ 2Lk−c2 , (31)

where (a) follows from the data processing equality for the TV distance and that PXL|ZL does not
depend on Q, and (b) observes that PZL|Z0=i,Q=Ck

is supported on a single path zL = (i+1, · · · , i+
L − 1) (all indices are understood modulo k), and ∥P − Q∥TV =

∑
x:P (x)>Q(x)(P (x) − Q(x)).

Consequently,

∥E⋆ − E∥2F =
k∑

i=1

∥e⋆i − ei∥22 ≤
k∑

i=1

∥e⋆i − ei∥21 = Õ(k1−2c2), (32)

so Mirsky’s theorem (cf. Lemma A.3) shows that for a large enough constant c2 > 0, the condition
number of E is close to the condition number of E⋆. This shows that κ = poly(k) with probability
at least 1− 2k−d6 for the first condition in Lemma C.4.

Finally we check the second condition in Lemma C.4. Since θ1, · · · , θk are i.i.d. and uniformly
distributed on [a1, a2], it holds that

P(|θ1 − θ2| ≤ k−3) ≲ k−3.

By a union bound, with probability at least 1− 1/k, we have |θi − θj | ≥ 1/k3 for all i ̸= j. By the
definition of pi, this implies that for i ̸= j,∥∥∥∥∥∥ (pi, 1− pi)√

p2i + (1− pi)2
− (pj , 1− pj)√

p2j + (1− pj)2

∥∥∥∥∥∥
2

≳ |pi − pj | ≳ |θi − θj | ≥ k−3,

so that δ = Ω(1/k3) in Lemma C.4 with probability at least 1− 1/k.
In summary, for k ≥ c0 with a large enough constant c0 > 0, all conditions in Lemma C.4 are

satisfied for κ, 1/δ = poly(k) with probability at least 0.99. By the arguments under Lemma C.4
we arrive at (28), as desired.

C.3.3. THIRD STEP: PROOF OF LEMMA 4.4

Given accurate estimates of Ên, F̂n, we now seek to recover the transition matrix Q̂n with a small
error. To this end, we note the following lemma:
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Lemma C.6 (Tensor to Transition, Theorem 4 in Huang et al. (2015)) Given matrix E ∈ R2L×k

such that ExL,z0 = P
(
XL = xL|Z0 = z0

)
is the conditional forward moment. We marginalize the

conditional distribution to E
(L−1)

xL−1,z0
= P

(
XL−1 = xL−1|Z0 = z0

)
∈ R2L−1×k. If E has full col-

umn rank k, then the transition matrix (let O ∈ R2×k be the emission):

Q =
(
O ⊙ E(L−1)

)†
E ≜ B†E.

Specifically, the Khatri-Rao product O ⊙ E(L−1) ∈ R2L×k is exactly:

BxL−1
0 ,z0

=
(
O ⊙ E(L−1)

)
xL−1
0 ,z0

= P(XL−1
0 = xn−1

0 |Z0 = z0) (33)

and X† denotes the pseudo-inverse of a matrix X .

Firstly, we show that κ(B) ≥ k−O(1) whenever the emission is such that Lemma C.5 is satisfied and
that the perturbation from Q to Ck is not large. This is because when Q = Ck, the corresponding
B⋆ is exactly a column permutation of E⋆. In other words, for all emission matrices O one has that
κ(E⋆) = κ(B⋆). Following the exact same lines as (31) (replacing Z0 with Z1), we get that:

∥B −B⋆∥F = Õ(k1−2c2)

and hence by Mirsky’s theorem we know that the condition number for κ(B) = poly(k) with
probability at least 1− 2k−d6 .

Taking the union of such events, we now have κ(B), κ(E) all upper bounded by poly(k), and
we wish to show that for Q̂n = B̂†

nÊn, the error

Q− Q̂n = B†(E − Ên) + (B† − B̂†
n)Ên

has small norm. Note that

∥Q− Q̂n∥op ≤ ∥B†(E − Ên)∥op + ∥(B̂†
n −B†)Ên∥op

≤ ∥B†∥F∥E − Ên∥op + ∥Ên∥F∥B̂†
n −B†∥op

≤ 2Lk
(
∥E − Ên∥op + ∥B̂†

n −B†∥op
)
.

By (28), one only need to upper bound ∥B̂†
n −B†∥op ∈ O(n−c) for some constant c > 0. Note that

∥B − B̂n∥F ≤ ∥E(L−1) − Ê(L−1)
n ∥F ≤ 2∥E − Ên∥F

by (33) and therefore ∥B̂n − B∥F ∈ O(n−c′) for some c′ > 0 from (28). Our conclusion follows
from the following lemma:

Lemma C.7 (Theorem 4.3 in Stewart (1969)) Let A be an m × n matrix of rank n, and let the
error matrix be E. Let κ = ∥A∥op

∥∥A†∥∥
op

and H = (A+ E)† −A†. If
∥∥A†∥∥

op
∥E∥op < 1, then

∥H∥op
∥A†∥op

< (1 + γ)β,

where γ =
(
1− κ∥E∥op

∥A∥op

)−1
and β =

γκ∥E∥op
∥A∥op .

Plugging in H = B̂†
n −B† into the above lemma and using the fact that κ(B) is upper bounded by

a polynomial of k, whereas ∥B̂n −B∥op is upper bounded by n−c′ for some c′ > 0, we are done.
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C.4. Proof of (20)

As a final step, we present the following lemma on a high-entropy construction discussed in the
main text that guarantees estimation (19) indeed leads to redundancy lower bounds:

Lemma C.8 (Distribution on hidden states) For any constant c > 0, there exists a distribution
µ supported on the set {Q ∈ Rk×k : Q is double stochastic, ∥Q − Ck∥max ≤ k−c, Qi,i = 0} such
that h(µ) ≳ −k2 log k.

Proof Consider any pair (i, j) such that 0 < i < j − 2 < k. Consider the associated grids
{(i, j), (j− 1, i+1), (i, i+1), (j− 1, j)}. One can associate an independent random variable Xi,j

such that Qi,j = Xi,j = Qj−1,i+1 and Qi,i+1 = 1−
∑

j Xi,j−
∑

j Xj,i+1, Qj−1,j = 1−
∑

iXi,j−∑
iXj−1,i. This construction will always ensure that the resulting matrix is double stochastic (since

each X modifies a 2 × 2 grid). Furthermore, restricting 0 ≤ Xi,j < k−c−2 ensures that the max
offset from the default Ck (corresponding to all X = 0) is at most k−c as desired.

Finally, the entropy is guaranteed as we recover from Q exactly Θ(k2) independent random
variables that each has a range of k−O(1), when k > 5. The cases for small k can be verified easily
as when k = 3 there exists a trivial construction with constant entropy.

Appendix D. Computationally predicting HMMs

D.1. Algorithmic upper bound: small k, ℓ

We show that, for any given matrix M,T one can compute the number of satisfying trajectories
zn ∈ [k]n efficiently such that the counts matches exactly M,T .

Lemma D.1 (See Figure 1 and Lemma 3.5) The proposed algorithm A which runs according to
the recursion:

A(M,T ;xK) =
∑
i∈[k]

A(M (i), T (i);xK−1) (34)

computes exactly the count of zK ∈ [k]K with the given transition/emission counts in time KO(kℓ+k2).

Proof The proof is via induction on K, assuming that our computation returns the correct result
when K = 1 (in which case it is straightforward to check the count as either 0 or 1). From matching
the number of appearances, zK = i0 for any trajectory with (M,T ) in Figure 1. One thus sums
all trajectories with (zK−1, zK) = (i, i0), which is a trajectory counting problem on zK−1 corre-
sponding to (M (i), T (i)). Assuming that the count is consistent for K − 1, the count on K should
be consistent as well.

In terms of the runtime: one can simply create an empty array of size Kkℓ+k2 first and fill in an
item (count) corresponding to some (M,T ) at each time some trajectory count is computed. The
cost of filling a new item assuming O(1) access to the grid memory is at most O(k), and thus the
compute filling the entire grid is at most KO(kℓ+k2) assuming K ∈ Ω(k + ℓ). This concludes the
runtime.

Finally, given QXn,Zn(xn, zn) = F (M,T ) one has that:

QXn(xn) =
∑
zn

QXn,Zn(xn, zn) =
∑
M,T

F (M,T ) · A(M,T ;xn)
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Algorithm: Count the number of zK ∈ [k]K with given a transition and emission counts.

Input: Matrices T ∈ Zk×ℓ,M ∈ Zk×k with non-negative entries, where
∑

Tij = 1 +∑
Mrs = K. Emissions xK ∈ [ℓ]K .

1. If K = 1 and Tzx1 = 1 for some z, output 1 directly.

2. Check that
∑

j∈[k]Mij =
∑

j∈[ℓ] Tij = Ni for all except for exactly one i0 ∈ [k];
otherwise, output 0. In this case, zK = i0 since it is the only item that shows up
differently comparing rows of M,T .

3. For i ∈ [k] let M (i) ∈ Rk×k, T (i) ∈ Rk×ℓ be such that

M
(i)
ii0

= Mii0 − 1

T
(i)
i0xK

= Ti0xK − 1

and all other entries matching M,T otherwise. This i represents candidate zK−1’s.

4. Run algorithm on (M (i), T (i);xK−1) for all i ∈ [k], and sum the results over i according
to (34).

Output: The number of possible trajectories.

Figure 1: Algorithm for computing A(M,T ;xK), the number of satisfying hidden state sequences.

can be computed in nO(k2+kℓ)-time.

D.2. Algorithmic upper bound: Markov approximation

When k, ℓ are moderately large, the above algorithm via marginalization becomes intractable, and
we need efficient choices of QXn+1 to achieve a small redundancy in Proposition 2.1. The idea is to
drop the structure in Zn+1 (hence no marginalization) and apply a Markov approximation directly
to Xn+1. Specifically, (Han et al., 2023, Lemma 23) shows the existence of QXn+1 that

max
xn+1

log
PXd(xd)

∏n+1
t=d+1 PXt|Xt−1

t−d
(xt|xt−1

t−d)

QXn+1(xn+1)
≲ ℓd+1 log

n

ℓd+1
+ d log ℓ

for n ≥ ℓd+1, and QXn+1 can be evaluated in time poly(n, ℓd). Taking the expectation over xn+1 ∼
PXn+1 leads to the redundancy upper bound of QXn+1 :

Red(QXn+1 ;PHMM
n (k, ℓ)) ≲

n+1∑
t=d+1

I(Xt;X
t−d−1|Xt−1

t−d) + ℓd+1 log
n

ℓd+1
+ d log ℓ,

where the first term is further upper bounded by

(n+ 1)I(Xn+1;X
n−d|Xn

n+1−d)
(a)

≤ n+ 1

d+ 1

n∑
t=0

I(Xn+1;X
n−t|Xn

n−t+1)
(b)

≤ n+ 1

d+ 1
log k.

33



HAN JIANG WU

Here (a) is because of the decreasing property of t 7→ I(Xn+1;X
n−t|Xn

n−t+1), and (b) follows
from Proposition 3.1. Consequently, by Propositions 2.1 and 3.1, this choice of QXn+1 leads to the
prediction risk

Risk(Q̃Xn+1|Xn ,PHMM
n (k, ℓ)) ≲

log k

d
+

ℓd+1

n
log

n

ℓd+1
+

d log ℓ+ log k

n
.

Choosing d = log n/(2 log ℓ) leads to the risk upper bound in Theorem 1.2. The overall computa-
tional time is poly(n, ℓd) = poly(n), as desired.

D.3. Computational lower bounds

In the last part of our computational discussions we sketch two lower bounds, in contrast with our
O( log k log ℓ

logn ) upper bound. Our lower bounds will be based on cryptographic assumptions involving
the Learning Parity with Noise (LPN) problem (Blum et al. (2003)) and refutation of a class of Con-
straints Satisfying Problem (CSP) (Feldman et al. (2015)). In particular, the following assumptions
are observed.

Conjecture D.2 (Learning Parity With Noise, see e.g. Wiggers and Samardjiska (2021)) Let the
secret key s ∼unif Fk

2 and noise η = 0.05. Any polynomial-time algorithm on the Learning Parity
with Noise (LPN) problem with Ω(1)-time query access to a noisy observation y = ⟨s,x⟩⊕Bern(η)
for x ∼unif Fk

2 , requires 2Ω(k/ log k) computational complexity to decide between pure noise (y ∼
Bern(1/2)) and noisy parity (y = ⟨s,x⟩ ⊕ Bern(η)) correctly with probability 2/3.

Conjecture D.3 (Refuting CSP’s, see e.g. Kothari et al. (2017)) Let k > r be constants, Q be
any distribution over k-clauses with N variables of complexity r and 0 < η < 1. Any polynomial-
time algorithm that, given access to a distribution D that equals either the uniform distribution over
k-clauses Uk or a (noisy) planted distribution Qη

σ = (1 − η)Qσ + ηUk for some σ ∈ {0, 1}n and
planted distribution Qσ, decides correctly whether D = Qη

σ or D = Uk with probability 2/3 needs
Ω̃
(
N r/2

)
clauses. (Here Ω̃ ignores log factors.)

Given the above assumptions, our lower bounds are as follows:

Theorem D.4 (Computational lower bounds for HMM prediction) The following holds:

1. For any ε > 0, if k ≥ log1+ε n and ℓ ≥ 2, then there exists a distribution on HMMs where no
efficient algorithm can achieve o( log k

logn log logn) error, assuming Conjecture D.2.

2. For every α > 0 there exists kα ≥ 2, such that if k ≥ kα and ℓ ≥ nα, there exists a distribu-
tion on HMMs where no efficient algorithm can achieve o(1) error assuming Conjecture D.3.

Remark D.5 This result, combined with Theorem 1.2, leaves the following cases of interest open
in terms of computational algorithms:

1. For k = nΩ(1) and ℓ = 2, can there be efficient algorithm achieving o(1) risk?

2. For k = O(1) and ℓ = polylog(n), can there be computational lower bounds of 1/polylog(n)
for prediction risk?
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PREDICTION FROM COMPRESSION

The embedding of cryptographically hard models into computational lower bounds in HMM has
been long observed in various prior literature (e.g. Mossel and Roch (2005); Sharan et al. (2018)).
Here we adopt these constructions into our setting.
Proof [Proof of Theorem D.4] We divide the two cases:

1. For the ℓ = 2 case. Let s = ⌊log2 k
r ⌋ − 2 for some r and let the k hidden states be labeled:

Z = {(i, b0, b1, b2, . . . bs); b ∈ {0, 1}, i = 1, 2, . . . , r + s}

and hence |Z| = (r+ s)2r+1 ≤ r2r+2 ≤ k. We will choose r = C log n log logn for a large
constant C, so that s ∈ Ω(log k) thanks to the assumption k ≥ log1+ε n.

Let (si,j)i∈[r],j∈[s] be independent Bern(1/2) secret keys, so that there are s secret keys in
total, each of length r. The transitions and emissions are defined as follows:

• Emission: state (i, bs0) emits b0 if i ≤ r, and bi−r ⊕ Bern(η) if i ∈ {r + 1, · · · , r + s};

• Transition: state (i, bs0) goes to (i+ 1, cs0) (as usual, r + s goes to 1), where:

(a) If i ∈ {r, r + 1, · · · , r + s− 1}, let cs0 = bs0;
(b) If i ∈ {r+ s, 1, · · · , r− 1}, sample c0 ∼ Bern(1/2), and let cj = bj ⊕ si+1,jc0 for

all j = 1, · · · , s (as usual, si+1,j = s1,j when i = r + s).

In other words, the transition runs in cycles of length r + s. During the first r rounds in each
cycle, the learner observes b0 = (b0,1, · · · , b0,r) ∼ Unif(Fr

2). For the (r + j)-th round with
j ∈ [s], under the current transition the learner observes

⟨b0, sj⟩ ⊕ Bern(η), where sj = (s1,j , · · · , sr,j).

In other words, each cycle consists of one query to each of s independent LPN instances.
Since there are ≤ n cycles in total, each LPN instance has sample size at most n.

Next we understand the prediction problem of the current HMM. Clearly, under the stationary
distribution we have i ∼ Unif([r+ s]), so that P(i ∈ {r+1, · · · , r+ s}) = s/(r+ s) for the
state at time n+ 1. Again, using Lemma A.2 and (24), we assume without loss of generality
that the starting state i at t = 0 is known to the learner, so that the learner knows the relative
location of time n + 1 in a given cycle. Suppose time n + 1 is the (r + j)-th round of some
cycle, then predicting Xn+1 is the same as predicting the distribution ⟨b0, sj⟩⊕Bern(η) with
observed b0 = (b0,1, · · · , b0,r) ∼ Unif(Fr

2) and a hidden secret sj . As n ≤ 2cr/ log r with
c → 0 as C → ∞, Conjecture D.2 implies that the KL prediction error is Ω(1) by choosing
C large enough. Consequently, the overall KL prediction risk is lower bounded by

Ω(1) · s

r + s
= Ω

(
log k

log n log log n

)
.

Now choosing the growth of ω in the definition of r arbitrarily slow gives the claim.

2. For the ℓ = nα case, this follows directly from plugging in the parameter correspondence
to Theorem 2 in Sharan et al. (2018) while leaking the first hidden state in the fashion of
Lemma A.23. In short, when r is a large enough constant in Conjecture D.3, there exists a

3. The results in Sharan et al. (2018) does not require this lemma as they assumed a slightly different loss; see Ap-
pendix A.1. Here we bypass this issue by leaking U = Z1 to both PHMM and Q and adjust the result via Lemma A.2.
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distribution on constant-size clauses such that detection is impossible on the CSP problem
which can be embedded with O(1) hidden states. Therefore, with constant probability, one
cannot distinguish the next bit from random.

Appendix E. Lower bound proof for renewal processes

In this section we prove the lower bound part of Theorem 1.4, namely, Riskrnwl(n) ≳
√
n−1. Similar

to the strategies proving lower bounds in Appendix C, we consider a Bayesian setting where the
model parameter (in this case the interarrival distribution µ) is random and drawn from some prior.
Then the Bayes prediction KL risk is given by the conditional mutual information I(µ;Xn+1|Xn),
which we aim to show is at least Ω(

√
n−1).

Let us first recall the equivalent HMM representation for renewal processes from Section 3.4
with state space N. The stationary distribution on the hidden states is the same as the distribution of
the initial wait time T0, given by:

πµ(i) =
1

m(µ)

∑
j>i

µ(j) (35)

where m(µ) =
∑

i≥1 iµ(i) is the mean of µ. Notably, Xn has the same law as its time reversal.
This reversibility will be exploited in our proof of the lower bound.

We will consider a prior under which µ is always finitely supported. Let the last appearance of
“1” in Xn be XK for K ≤ n, and let T ≜ 1n+1−K∈supp(µ). Note that T = 0 implies Xn+1 = 0

almost surely. Denote by p(Xn, µ) ≜ P(Xn+1 = 1|Xn, µ) the optimal predictor who knows the
model parameter µ. By (5), this is given by the hazard ratio of µ, namely

p(Xn, µ) =
µ(n+ 1−K)∑
d≥n+1−K µ(d)

. (36)

Without knowing µ, the predictor is the average of p(Xn, µ) over the posterior law of µ given the
data Xn. Let p(Xn) ≜ P(Xn+1 = 1|Xn) = Eµ|Xn [p(Xn, µ)].

Let E1 be some event measurable with respect to σ(Xn) to be specified. Let E2 be the event of
T = 0, which is measurable with respect to σ(Xn, µ). For any estimator Q, its average risk (with
expectations taken over both data Xn and µ according to the prior) satisfies

E[KL(PXn+1|Xn,µ∥QXn+1|Xn)] ≥ P(E1) · E[KL(PXn+1|Xn,µ∥QXn+1|Xn)|E1]

≥ P(E1) · E[KL(PXn+1|Xn,µ∥PXn+1|Xn)|E1]

= P(E1) · E[KL(Bern(p(Xn, µ))∥Bern(p(Xn)))|E1]

≥ P(E1 ∩ E2) · E[KL (Bern(0)∥Bern(p(Xn))) |E1 ∩ E2]

≥ P(E1 ∩ E2) · E[p(Xn)|E1 ∩ E2] (37)

where we used the fact that T = 0 implies p(Xn, µ) = 0. Furthermore:

p(Xn) = Eµ|Xn [p(Xn, µ)] = P(Ec
2|Xn)Eµ|Xn,Ec

2
[p(Xn, µ)]. (38)
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PREDICTION FROM COMPRESSION

We will choose a prior under which µ is always uniform over Θ(
√
n) integers. Therefore, by (36),

for all (µ,Xn) ∈ Ec
2, p(Xn, µ) ≳

√
n−1. Furthermore, suppose we can show that there exists

an event E1 and a constant c > 0 such that: (a) P(E1) > c and (b) for all Xn ∈ E1, one has
P(T = 0|Xn) = P(E2|Xn) ∈ (c, 1− c). Then the last line of (37) is lower bounded by the desired
Ω(n−1/2) rate. In the following, we show the construction and proof.

We consider a prior that was previously used for proving the redundancy lower bound in Csiszár
and Shields (1996). There the goal is to prove that I(µ;Xn) ≳

√
n as opposed to I(µ;Xn+1|Xn) ≳

1√
n

here. Let an = C
√
n be an even number for some large constant C. Let the interarrival distri-

bution µ to be the uniform distribution on an an-subset of [2an], with its support chosen uniformly
over all such sets where exactly half of its elements lies in [0, an]. In this way, for all (Xn, µ) ∈ Ec

2

one has that p(Xn, µ) ≥ µ(n+ 1−K) ≥ 1
an

≍
√
n−1.

Define E1 to be the intersection of the following events:

(1) The last appearance of XK = 1 satisfy K > n− an.

(2) There are at most distinct
√
n interarrival times in Xn (known as the renewal types Csiszár

and Shields (1996)). Denote this set of interarrivial times by A.

(3) The gap n+ 1−K has never appeared in the past
√
n interarrivals backwards from XK .

Clearly E1 is σ(Xn)-measurable. We show that P(E1) = Ω(1) for a large enough constant C. By
the time reversal property of the renewal process, the distribution of n + 1 − K is given by πµ in
(35). As m(µ) ≤ 2an and

an∑
i=1

∑
j>i

µ(j) ≥
2an∑

j=an+1

anµ(j) = anµ([an + 1, 2an]) =
an
2
,

event (1) happens with probability at least 1/4. As for (2), the expectation of the interarrival time is
≥ an/2 = C

√
n/2. Consequently, for C > 3, Hoeffding’s inequality shows that event (2) happens

with probability 1 − on(1). For (3), each interarrival time equals to n + 1 −K with probability at
most 1/an. By a union bound, event (3) happens with probability at least 1−

√
n/an = 1 − 1/C.

A union bound then gives that P(E1) ≥ 1/4−1/C−on(1), which is Ω(1) for large enough (n,C).
Next we show that P(T = 0|Xn) ∈ (c, 1 − c) whenever E1 holds. Let us first prove a simple

lemma:

Lemma E.1 For any µ1, µ2 supported in the prior and any k ∈ [a0], it holds that

1

8
≤ P(K = n+ 1− k|µ1)

P(K = n+ 1− k|µ2)
≤ 8.

Proof By the time-reversal property of the renewal process, the conditional distribution of n+1−K
conditioned on µ is given by πµ in (35). Consequently,

P(K = n+ 1− k|µ) = 1

m(µ)

∑
j>k

µ(j).

Since the support of µ has an/2 elements in [an] and an/2 elements in [an + 1, 2an], we have
m(µ) ∈ [an/2, 2an]. In addition, as k ∈ [a0], we have

∑
j>k µ(j) ∈ [1/2, 1]. This gives P(K =

n+ 1− k|µ) ∈ [1/(4an), 2/an] for all µ in the support of the prior, and the lemma follows.
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Now we show that for all Xn ∈ E1 with K = K(Xn) = n+ 1− k, the ratio

P(T = 1|Xn)

P(T = 0|Xn)
=

P(T = 1|Xn,K = n+ 1− k)

P(T = 0|Xn,K = n+ 1− k)

is bounded above and below by positive constants. Since E1 holds, k ≤ an. First of all,

P(T = 1|K = n+ 1− k)

P(T = 0|K = n+ 1− k)
=

P(k ∈ supp(µ)|K = n+ 1− k)

P(k /∈ supp(µ)|K = n+ 1− k)

=
P(k ∈ supp(µ))

P(k /∈ supp(µ))

P(K = n+ 1− k|k ∈ supp(µ))

P(K = n+ 1− k|k /∈ supp(µ))

=
P(K = n+ 1− k|k ∈ supp(µ))

P(K = n+ 1− k|k /∈ supp(µ))
= Θ(1), (39)

where the last step is due to Lemma E.1. Second, for the set A = A(Xn) consisting of distinct
interarrival times in Xn, the event E1 implies that k /∈ A and |A| ≤

√
n. Therefore,

P(A ⊆ supp(µ)|K = n+ 1− k, k ∈ supp(µ))

P(A ⊆ supp(µ)|K = n+ 1− k, k ̸∈ supp(µ))

=
P(K = n+ 1− k|k /∈ supp(µ))

P(K = n+ 1− k|k ∈ supp(µ))

P(K = n+ 1− k|k ∈ supp(µ), A ⊆ supp(µ))

P(K = n+ 1− k|k /∈ supp(µ), A ⊆ supp(µ))

· P(A ⊆ supp(µ), k ∈ supp(µ))

P(A ⊆ supp(µ), k /∈ supp(µ))

P(k /∈ supp(µ))

P(k ∈ supp(µ))

(a)
= Θ(1) ·

(an−|A∩[an]|−1
an/2

)(an−|A∩[an]|−1
an/2−1

) = Θ(1) · an/2− |A ∩ [an]|
an/2

(b)
= Θ(1), (40)

where (a) is due to Lemma E.1, and (b) uses |A ∩ [an]| ≤ |A| ≤
√
n ≤ an/3 as long as C ≥ 3.

Finally, by writing down the joint pmf of Xn after time reversal, it is clear that

P(Xn|K = n+ 1− k, T = 1, A ⊆ supp(µ))

P(Xn|K = n+ 1− k, T = 0, A ⊆ supp(µ))
= 1. (41)

Combining the above results leads to

P(T = 1|Xn)

P(T = 0|Xn)
=

P(T = 1|Xn,K = n+ 1− k)

P(T = 0|Xn,K = n+ 1− k)

=
P(T = 1|K = n+ 1− k)

P(T = 0|K = n+ 1− k)
· P(X

n|T = 1,K = n+ 1− k)

P(Xn|T = 0,K = n+ 1− k)

(39)
= Θ(1) · P(X

n|T = 1,K = n+ 1− k)

P(Xn|T = 0,K = n+ 1− k)

(41)
= Θ(1) · P(A ⊆ supp(µ)|T = 1,K = n+ 1− k)

P(A ⊆ supp(µ)|T = 0,K = n+ 1− k)

(40)
= Θ(1).

Therefore, both conditions P(E1) ≥ c and P(T = 0|Xn) ∈ (c, 1− c) for Xn ∈ E1 are established,
and the Ω(n−1/2) lower bound follows from (37) and (38).
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