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Abstract
This article presents a number of elementary observations and relations concerning commonly-
studied combinatorial dimensions from the learning theory literature on classification and rein-
forcement learning: namely, the star number, eluder dimension, VC dimension, Littlestone dimen-
sion, threshold dimension, and cardinality of the class. One theme of the work is understanding
how these dimensions may be re-expressed as natural dimensions of the convexity space of version
spaces. Specifically, we find that the star number is precisely the VC dimension of version spaces
(and of their disagreement regions), whereas the eluder dimension is precisely the threshold dimen-
sion of version spaces (and of their disagreement regions). We are also interested in understanding
direct relations among these dimensions. For instance, we show that there is no infinite concept
class with both finite Littlestone dimension and finite star number. Moreover, any infinite concept
class must have infinite eluder dimension. In both cases, we also provide quantitative relations to
the cardinality of the class. For the latter result, we also show an analogous relation for real-valued
functions, where the cardinality of the class is replaced by the L∞ covering number. As another
relation between star numbers and VC dimension, we provide a simple, precise, and general charac-
terization of the VC dimension of the minimal intersection-closed class containing a given concept
class: namely, the 1-centered star number of the original class. Moreover, we generalize this result
to provide a unifying approach to the design of certain sample compression schemes, along with
a simple combinatorial dimension characterizing its compression size: the minimum star number.
We also discuss a number of implications of many of these observations. Though the proofs of the
above observations are actually all incredibly simple, it is interesting that such fundamental rela-
tions among these well-known quantities appear to have heretofore gone unnoticed in the literature.
Keywords: Star number, VC dimension, Eluder dimension, Littlestone dimension, Threshold di-
mension, Sample compression schemes, Active learning, Online learning, Differentially private
learning, Reinforcement learning, Version spaces, Convexity spaces

1. Introduction

One of the major themes of statistical learning theory is the study of abstract combinatorial dimen-
sions, which characterize various aspects of any given learning problem. For instance, in classical
supervised learning, perhaps the most well-studied fundamental quantities are the VC dimension
(Vapnik and Chervonenkis, 1971, 1974) and Littlestone dimension (Littlestone, 1988). These pro-
vide precise characterizations of learnability in supervised learning, for statistical learning and on-
line learning, respectively, for (binary) classification. In the case of the Littlestone dimension, it
is known that this quantity is also fundamentally related to a combinatorial dimension known as
the threshold dimension (Shelah, 1978), and in particular, finiteness of either implies finiteness of
the other. Other combinatorial dimensions arise in the context of other learning settings, beyond
traditional supervised learning. For instance, in the context of active learning, the advantages of
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active label queries over traditional supervised (passive) learning are precisely characterized by a
combinatorial dimension known as the star number (Hanneke and Yang, 2015). As another exam-
ple, in the problem of (adversarial) reinforcement learning (or contextual bandits), a combinatorial
dimension known as the eluder dimension plays a central role (Russo and Van Roy, 2013; Osband
and Van Roy, 2014; Foster, Rakhlin, Simchi-Levi, and Xu, 2021).

While there are already a number of known relations among the above combinatorial dimensions
(Shelah, 1978; Hanneke and Yang, 2015; Li, Kamath, Foster, and Srebro, 2022), in this article we
present several new general observations about these commonly-studied quantities. Our results will
be valid for any concept class C of functions X → Y for discrete classification (i.e., where the
dimensions are defined under the 0-1 loss, as discussed below). A common theme in several of the
results is understanding these quantities in relation to the set of possible version spaces (Mitchell,
1977): that is, the collection of all subsets of C of the form

{h ∈ C : h(S) = h⋆(S)},

where S ranges over all data sets (finite subsets of X ), and h⋆ is a fixed target concept in C. We
will also find interesting relations involving the regions of disagreement of version spaces: that is,
the collection of all subsets of X of the form

{x : ∃h ∈ C with h(S) = h⋆(S), h(x) ̸= h⋆(x)} ,

where S again ranges over all finite subsets of X and h⋆ is a fixed target concept in C. Specifically,
we establish the following elementary facts, stated informally for now (formal definitions and theo-
rems will follow below); for simplicity, we only state results for finite Y for now (we discuss infinite
Y where appropriate below).

1. The star number of C is equal the VC dimension of its version spaces, and also equal the VC
dimension of regions of disagreement of its version spaces.

2. The eluder dimension of C is equal the threshold dimension of its version spaces, and also
equal the threshold dimension of regions of disagreement of its version spaces.

3. There is no infinite concept class with both finite Littlestone dimension L and finite star
number s. Moreover, for finite classes C, we prove sL = Ω(log(|C|)).

4. The eluder dimension is never smaller than Ω(log(|C|)). Moreover, any infinite concept
class admits an infinite eluder sequence. The result also extends to R-valued functions with
ε-approximate eluder dimension, which is then never smaller than Ω̃(log(N (3ε,C,L∞))),
where N (·,C,L∞) denotes the L∞ covering number.

5. The (unique) minimal intersection-closed concept class C̄ containing C has VC dimension
equal the 1-centered star number of C.

6. There exists a (stable, unlabeled) sample compression scheme of size equal the minimum
(over h) of the h-centered star number of C. This compression scheme is based on a new
general principle for sample compression called the Generalized Closure Algorithm, which
unifies certain existing sample compression schemes in the literature.
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7. The ∅-centered star number of regions of disagreement of version spaces equals the star num-
ber of the concept class. A similar claim is also true for the eluder dimension.

Though the proofs of these observations are all actually incredibly simple, it appears that such
fundamental relations among these well-studied quantities have heretofore gone unnoticed in the
literature.

These observations have immediate implications when combined with the known roles of these
quantities in characterizing various learning settings. For instance, the fact that every infinite class
has either infinite Littlestone dimension or infinite star number (contribution 3) implies that approx-
imate differentially private learning and active learning are fundamentally incompatible for infinite
concept classes, since private learning requires finite Littlestone dimension (Alon, Livni, Malliaris,
and Moran, 2019; Bun, Livni, and Moran, 2020; Alon, Bun, Livni, Malliaris, and Moran, 2022)
while any significant advantages of active learning over passive supervised learning would require
finite star number (Hanneke and Yang, 2015). As another implication of the above results, the result
giving a new bound on the size of sample compression schemes (contribution 6) provides a uni-
fied approach to defining bounded-size sample compression schemes for several families of concept
classes, for which previous works presented specialized constructions for each case (e.g., it unifies
the compression schemes for classes of VC dimension 1 and for intersection-closed classes). We
state a number of other implications of the above results in Section E, including a new proof of a
result of Hanneke (2016) giving a high-probability bound on the probability in the region of dis-
agreement of a version space. We also provide a number of new tangential related results. As one
example, along the way toward establishing contribution 3, we also prove a new result for the query
complexity of Exact learning with membership queries in terms of the Littlestone dimension (via a
slight modification of an existing proof).

Going beyond discrete classification settings, the above dimensions all have known natural ex-
tensions to the regression problem (Y = R) under the squared loss (y, y′) 7→ (y− y′)2. In this case,
we extend the log(|C|) lower bound on the eluder dimension to this alternative definition (which is,
in fact, the more-commonly studied variant of the eluder dimension in this literature), where |C| is
replaced by the L∞ covering numbers of C.

1.1. Notation

Throughout, we let X and Y be arbitrary non-empty sets, called the instance space and label space,
respectively. BothX and Y may generally be infinite, though some results will be stated specifically
for finite Y . We always suppose |Y| ≥ 2 (to focus on non-trivial cases). We refer to any function
h : X → Y as a concept. We let C be any non-empty set of concepts (possibly infinite), called the
concept class (or concept space). A data set S is any finite sequence {(x1, y1), . . . , (xn, yn)} ∈
(X × Y)n, for any n ∈ N ∪ {0}. Such a sequence S is said to be realizable by C if ∃h ∈ C with
∀i ≤ n, h(xi) = yi.

Outline of the paper: We summarize the main results of this work in the following sections,
presenting the formal definitions of the associated combinatorial dimensions as we go. Section 2
presents the definitions and formal theorems relevant to contribution 1, regarding the star number
and VC dimension. Section 3 presents the definitions and results relevant to contribution 3, es-
tablishing that the Littlestone dimension and star number cannot both be small for large concept
classes. Section 4 presents contribution 2 relating the eluder dimension and threshold dimension,
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and the formal theorems relevant to contribution 4 establishing a lower bound on the eluder dimen-
sion in terms of the cardinality of the concept class. Section 5 presents the extension of results to
real-valued function classes. Section A presents additional results on the star number, including the
first claim in contribution 7, and other observations about the centered star numbers, their duals,
and relations to the dual VC dimension. Section B presents the definitions and results comprising
contribution 5 on the minimal dimension of embedding into intersection-closed concept classes,
followed by Section C presenting the definitions and formal statement of contribution 6, providing
a new general sample compression scheme. Section D presents additional remarks and observa-
tions about the eluder dimension, including the second claim in contribution 7. Finally, Section E
presents several implications of these results, including a new relation between the star number and
a dimension from the literature on selective classification.

2. The Star Number and VC Dimension

We begin by introducing the classic Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervo-
nenkis, 1971, 1974).

Definition 1 (Vapnik and Chervonenkis, 1971, 1974) For any non-empty setZ , and anyD ⊆ 2Z

(where 2Z is the set of all subsets of Z), the VC dimension, denoted by VC(D), is defined as the
largest n ∈ N ∪ {0} such that ∃x1, . . . , xn ∈ Z for which

{D ∩ {x1, . . . , xn} : D ∈ D} = 2{x1,...,xn}.

Such a set {x1, . . . , xn} is said to be shattered byD. If no largest such n exists, define VC(D) =∞.
Additionally, in the case of Y = {0, 1}, the definition naturally extends to concept classes C,

defining VC(C) = {{x : h(x) = 1} : h ∈ C} (i.e., equating indicator functions and sets in the
natural way).

The VC dimension plays a fundamental role in determining which classes of binary functions
satisfy uniform convergence (i.e., for i.i.d. samples, their empirical averages and expectations con-
verge uniformly, at a distribution-independent rate; Vapnik and Chervonenkis, 1971). It also char-
acterizes which binary-valued concept classes are PAC learnable or agnostically PAC learnable
(Vapnik and Chervonenkis, 1974; Ehrenfeucht, Haussler, Kearns, and Valiant, 1989; Blumer, Ehren-
feucht, Haussler, and Warmuth, 1989; Haussler, 1992). These connections together are known as
the fundamental theorem of PAC learning (Shalev-Shwartz and Ben-David, 2014).

A second combinatorial dimension of interest in this work is the star number (Hanneke and
Yang, 2015).

Definition 2 (Hanneke and Yang, 2015) For any concept class C, for any concept h (not neces-
sarily in C), the star number of C centered at h, denoted by sh = sh(C), is defined as the largest
n ∈ N ∪ {0} such that ∃x1, . . . , xn ∈ X satisfying

∀i ∈ {0, . . . , n},∃hi ∈ C with ∀j ∈ {1, . . . , n}, hi(xj) = h(xj) ⇐⇒ j ̸= i.

Such a set {x1, . . . , xn} is called a star set centered at h. If no largest such n exists, define sh =∞.
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In other words, a star set x1, . . . , xn centered at h satisfies that {(x1, h(x1)), . . . , (xn, h(xn))}
is realizable by C, and for any i ∈ {1, . . . , n}, there exists yi ̸= h(xi) such that even if we replace
(xi, h(xi)) by (xi, yi) the data set remains realizable by C. Also define the star number of C:

s = s(C) := sup
h∈C

sh.

Equivalently, s is the size of the largest star set for C (allowing any center concept). It will some-
times be useful to consider an extension of this definition to allow non-realizable centers. Namely,
for any concept h, define the extended star number centered at h denoted by s̄h = s̄h(C), identi-
cally to Definition 2 except replacing “∀i ∈ {0, . . . , n}” with “∀i ∈ {1, . . . , n}”. In other words, the
definition is the same, except that we drop the requirement that {(x1, h(x1)), . . . , (xn, h(xn))} be
realizable by C; we refer to such a {x1, . . . , xn} as an extended star set).1 The extended star number
of C is then defined as s̄ = s̄(C) := suph s̄h. Defining s̄ will allow us to state certain results more
precisely. However, it is an easy exercise to verify that every concept h satisfies sh ≤ s̄h ≤ sh + 1,
and every h ∈ C satisfies s̄h = sh.

The star number was introduced by Hanneke and Yang (2015) who also proved that (in combi-
nation with the VC dimension) it characterizes the optimal query complexity of active learning in
the PAC setting (for binary classification2): that is, the problem where there is an unknown target
concept h⋆ ∈ C, and given i.i.d. unlabeled samples from a distribution P on X , the algorithm may
interactively request to observe labels of selected examples, and thereby aims to produce a concept
ĥ close to h⋆ (in L1(P )) with high probability. Later works have since found that the star number
plays fundamental roles in lower-order factors for traditional supervised learning with noisy labels
(satisfying Massart noise; Hanneke, 2016; Zhivotovskiy and Hanneke, 2018). The star number can
also be viewed as describing the maximum possible degree of the one-inclusion graph of Haussler,
Littlestone, and Warmuth (1994); Daniely and Shalev-Shwartz (2014) (whereas the VC dimension
is the maximum possible dimension of a cube in the one-inclusion graph).

2.1. The Star Number is the VC Dimension of Version Spaces

Our first result reveals an equivalence between these two fundamental dimensions, via a change
in perspective to the set of version spaces and disagreement regions thereof. Formally, for any
n ∈ N ∪ {0} and any data set S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n, define

CS := {h ∈ C : ∀i ∈ {1, . . . , n}, h(xi) = yi},

the version space induced by S (Mitchell, 1977). In particular, CS is non-empty if and only if S is
realizable by C.

1. This is related to a notion of hollow star set, studied by Bousquet, Hanneke, Moran, and Zhivotovskiy (2020a) (see
Section A below). An extended star set may be either hollow or non-hollow, and s̄ is the size of the largest such set.

2. It is a straightforward exercise to show that the proofs of Hanneke and Yang (2015); Hanneke (2016) also establish
that the star number characterizes the query complexity of active learning for general Y spaces, replacing the VC
dimension by the DS dimension (Brukhim, Carmon, Dinur, Moran, and Yehudayoff, 2022; Daniely and Shalev-
Shwartz, 2014). Specifically, Hanneke (2016) shows that the CAL active learner identifies the target labels of n i.i.d.
examples using a number of queries Õ(s log(n)), in which case any passive supervised learner may be applied to
these labeled examples. Applying the multiclass learner of Brukhim, Carmon, Dinur, Moran, and Yehudayoff (2022)
then suffices to learn any class of finite DS dimension, with n polynomial in the relevant learning parameters.
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For any C′ ⊆ C, the region of disagreement of C′ (Cohn, Atlas, and Ladner, 1994), denoted by
DIS(C′), is defined as

DIS(C′) := {x ∈ X : ∃h, h′ ∈ C′ with h(x) ̸= h′(x)}.

Define

V(C) :=

CS : S ∈
⋃
n≥0

(X × Y)n
 ,

the set of all version spaces of C, and define

D(C) := {DIS(V ) : V ∈ V(C)} ,

the set of all regions of disagreement of version spaces of C. Also, for any concept h, let

Vh(C) := {CS : S = {(x1, h(x1)), . . . , (xn, h(xn)) ∈ (X × Y)n, n ∈ N ∪ {0}}
and Dh(C) := {DIS(V ) : V ∈ Vh(C)}

denote the set of version spaces of C and regions of disagreement of version spaces of C induced
by data sets S consistent with the concept h.

Our first formal result of this work is the following simple observation.

Theorem 3 For any concept class C, we have VC(V(C)) = s̄, and for any concept h ∈ C,
VC(Dh(C)) = VC(Vh(C)) = sh. Moreover, for any concept h ∈ YX , VC(Vh(C)) = s̄h.

We present a simple proof of this observation in Section F.1. While the proof itself is rather
straightforward, it is noteworthy that this connection between such fundamental quantities was not
previously noticed in the literature. Moreover, we present a number of implications below, in Sec-
tion E, including a further relation between the star number and a dimension studied by El-Yaniv
and Wiener (2010), as well as a new proof of a bound from Hanneke (2016) on the probability in
the region of disagreement of a version space.

Given that Theorem 3 establishes that VC(Dh(C)) = VC(Vh(C)) = sh and VC(V(C)) = s̄,
it is natural to ask whether the latter fact extends to VC(D(C)) = s̄. However, the technique in
the proof of Theorem 3 does not seem sufficient to establish this, and we leave open the question
of whether VC(D(C)) = s̄ in general. That said, we are able to establish the following weaker
relation. Its proof is included in Section F.1.

Proposition 4 For any concept class C, we have VC(D(C)) ≤ 2s log2(e|Y|).

We present several useful additional results, relating the star number, dual VC dimension, and
dual star number, in Section A, along with an interesting discussion of a relation to abstract convex-
ity theory.
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3. There Does Not Exist an Infinite Concept Class With Both Finite Littlestone
Dimension and Finite Star Number

The results of this section reveal a kind of tension between the star number and the Littlestone
dimension, another fundamental quantity of interest in learning theory. In particular, we find there
cannot exist an infinite concept class with both finite star number and finite Littlestone dimension.
Formally, the Littlestone dimension is defined as follows.

Definition 5 (Littlestone, 1988; Daniely, Sabato, Ben-David, and Shalev-Shwartz, 2015) A Lit-
tlestone tree is a rooted binary tree, where each node is labeled by an associated point x ∈ X , and
the two edges to its children are each labeled by distinct values y ∈ Y . The tree is said to be
shattered by a concept class C if, for every branch in the tree, there exists a concept h ∈ C which
is consistent with the edges of the branch (in the sense that for each edge on the branch, if y is its
label and it eminates from a node labeled x, then h(x) = y; this should hold for all edges on the
branch). The Littlestone dimension of a concept class C, denoted by L = L(C), is defined as the
largest n ∈ N∪{0} for which there exists a perfect Littlestone tree of depth n shattered by C (where
perfect means that all internal nodes have 2 children and all leaves have depth n). If no such largest
n exists, define L =∞.

The Littlestone dimension was originally introduced by Littlestone (1988) as a characteriza-
tion of the optimal mistake bound in realizable-case online learning for binary classification. It
was later found by Ben-David, Pál, and Shalev-Shwartz (2009); Alon, Ben-Eliezer, Dagan, Moran,
Naor, and Yogev (2021) to also characterize the optimal regret in agnostic online learning for binary
classification. It was extended by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015) to the
above definition for general Y spaces, which they show still provides the optimal mistake bound
for realizable-case multiclass online learning. This was recently shown to again remain the case for
agnostic multiclass online learning (Hanneke, Moran, Raman, Subedi, and Tewari, 2023a), where
L characterizes agnostic learnability and the optimal regret. The Littlestone dimension has also
been found to play a fundamental role in several other learning settings. Notably, finiteness of Lit-
tlestone dimension was shown to be both necessary and sufficient for approximately differentially
private learnability (Alon, Livni, Malliaris, and Moran, 2019; Bun, Livni, and Moran, 2020; Alon,
Bun, Livni, Malliaris, and Moran, 2022). The Littlestone dimension also plays fundamental roles in
characterizing query learning (Chase and Freitag, 2020), transductive online learning (Ben-David,
Kushilevitz, and Mansour, 1997; Hanneke, Moran, and Shafer, 2023b), adversarially robust learn-
ing with an attack oracle (Montasser, Hanneke, and Srebro, 2021), and (in an extended definition
allowing infinite ordinal values) universal learning rates (Bousquet, Hanneke, Moran, van Handel,
and Yehudayoff, 2021).

As our next result, we establish a fundamental relation between the Littlestone dimension, star
number, and cardinality of the concept class. In particular, the result implies that there cannot exist
an infinite concept class with both finite Littlestone dimension and finite star number. As discussed
above, both the Littlestone dimension and star number play fundamental roles in characterizing
various learning settings. In light of this, this result is quite interesting, as it shows that these
settings are in some sense incompatible. For instance, it reveals that for infinite concept classes,
we should not expect significant savings in the number of labeled examples sufficient for active
learning compared to traditional supervised learning if we require that the learning algorithm be
approximately differentially private (since such savings in were shown by Hanneke and Yang, 2015
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to require finite star number, whereas approximate differentially private learning was shown by
Alon, Bun, Livni, Malliaris, and Moran, 2022 to require finite Littlestone dimension). Formally:

Theorem 6 For finite Y and any concept class C, if |C| =∞, then either L =∞ or s =∞. This
also holds for infinite Y if every x ∈ X has |{h(x) : h ∈ C}| < ∞ (not necessarily of uniformly
bounded size). Moreover, if |Y| <∞ and |C| <∞, then sL ≥ log|Y|(|C|).

The proof of this result follows from new upper and lower bounds for the problem of Ex-
act Learning with Membership Queries (Angluin, 1987, 2004; Hegedüs, 1995; Hellerstein, Pil-
laipakkamnatt, Raghavan, and Wilkins, 1996). In this setting , there is an unknown target concept
h⋆ ∈ C, and a learning algorithm may choose any x1 ∈ X , query to observe h⋆(x1) (called a
membership query), then choose another x2, query for h⋆(x2), and so on, up to some Q times total,
at which point it must return h⋆. For simplicity, we will require that the algorithm be determin-
istic. Define QCMQ(C), the query complexity of Exact Learning C with Membership Queries, as
the minimum Q ∈ N such that there exists a learning algorithm (as described above) such that, for
every h⋆ ∈ C, the algorithm successfully returns h⋆ while making at most Q membership queries.
Define QCMQ(C) =∞ if no such Q exists.

For the case |Y| = 2, Hegedüs (1995) proves log2(|C|) ≤ QCMQ(C) ≤ XTD(C) log2(|C|),
where XTD(C) is a combinatorial dimension defined by Hegedüs (1995) called the extended teach-
ing dimension (a variant of the teaching dimension of Goldman and Kearns, 1995): namely, XTD(C)
is the minimum t ∈ N such that, for every f : X → Y (not necessarily in C), there exists S ∈ X t

for which |{h ∈ C : h(S) = f(S)}| ≤ 1. Define XTD(C) = ∞ if no such t exists. In words,
XTD(C) is the number of examples needed to whittle down the version space to at most one func-
tion (which must be f , if f ∈ C), or possibly zero functions if f /∈ C. Related results were also
given by Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins (1996).

We extend the results of Hegedüs (1995) in two ways. First, we extend both the lower and
upper bounds to the case of general label spaces Y . Second, we replace the factor log(|C|) in the
upper bound by the Littlestone dimension L. These results are also of independent interest, though
the proofs merely represent a straightforward extension of the original proofs of Hegedüs (1995).
Formally, we establish the following result. Its proof is presented in Section G.

Theorem 7 For any concept class C, log|Y|(|C|) ≤ QCMQ(C) ≤ XTD(C)L. Moreover, even if
|Y| =∞, as long as every x ∈ X has {h(x) :h∈C} finite, if |C| =∞ then QCMQ(C) =∞.

Proof of Theorem 6 The theorem follows immediately from Theorem 7, in combination with a
result of Hanneke and Yang (2015) establishing XTD(C) ≤ s.3

4. The Eluder Dimension, Threshold Dimension, and Cardinality of the Class

Another well-studied combinatorial dimension is the eluder dimension (Russo and Van Roy, 2013;
Osband and Van Roy, 2014; Foster, Rakhlin, Simchi-Levi, and Xu, 2021). In the literature on
contextual bandits and reinforcement learning, the following definition is referred to as the policy
eluder dimension, to distinguish it from the eluder dimension for real-valued value functions, called

3. Though their result was stated for binary classification, we note that their proof remains valid for any label space Y .
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the value function eluder dimension (Foster, Rakhlin, Simchi-Levi, and Xu, 2021); we discuss the
latter in Section 5.

Definition 8 (Russo and Van Roy, 2013; Foster, Rakhlin, Simchi-Levi, and Xu, 2021) For any
concept class C and any concept h, the eluder dimension of C centered at h, denoted by eh =
eh(C),4 is defined as the largest n ∈ N ∪ {0} such that ∃x1, . . . , xn ∈ X satisfying

∀i ∈ {1, . . . , n},∃hi ∈ C with hi(xi) ̸= h(xi) and ∀j < i, hi(xj) = h(xj).

Such a sequence {(x1, h(x1)), . . . , (xn, h(xn))} is called an eluder sequence centered at h. If no
largest such n exists, then define eh =∞.

One useful interpretation of this is that the eluder dimension centered at some h ∈ C is the length
of the longest sequence xi such that, for each point xi in the sequence, even knowing all h(xj) labels
for all j ≤ i − 1, there is still uncertainty about the label h(xi). Equivalently (and revealingly, for
our purposes below), for h ∈ C, eh is the maximum length n of a sequence x1, . . . , xn such that

∀i ≤ n, xi ∈ DIS
(
C{(xj ,h(xj)):j<i}

)
.

Also define the eluder dimension of C, denoted e = e(C), as e = suph∈C eh. Equivalently, e
is the maximum length n of a sequence (x1, y1), . . . , (xn, yn) ∈ X × Y such that ∀i ≤ n, xi ∈
DIS

(
C(xj ,yj):j<i}

)
, or else e =∞ if there is no maximum such value. As in Definition 8, we refer

to any such sequence (x1, y1), . . . , (xn, yn) as an eluder sequence.
Also, we say an infinite sequence (x1, y1), (x2, y2), . . . in X × Y is an infinite eluder sequence

if ∀n ∈ N, the prefix Sn−1 = {(x1, y1), . . . , (xn−1, yn−1)} satisfies xn ∈ DIS(CSn−1). Note that
the existence of an infinite eluder sequence is, on its surface, stronger than having e =∞, since the
latter merely implies the existence of arbitrarily large eluder sequences, rather than a single infinite
eluder sequence. Nonetheless, our Theorem 11 below will imply that e = ∞ if and only if there
exists an infinite eluder sequence.

The eluder dimension was introduced by Russo and Van Roy (2013) and has been used exten-
sively in the literature on contextual bandits and reinforcement learning and other sequential inter-
active learning settings (Russo and Van Roy, 2013; Osband and Van Roy, 2014; Wen and Van Roy,
2017; Ayoub, Jia, Szepesvari, Wang, and Yang, 2020; Wang, Salakhutdinov, and Yang, 2020; Fos-
ter, Rakhlin, Simchi-Levi, and Xu, 2021; Agarwal, Jin, and Zhang, 2023; Sekhari, Sridharan, Sun,
and Wu, 2023; Zhu and Nowak, 2022) to upper bound the regret of certain learning algorithms, and
some of its combinatorial properties have been studied by Li, Kamath, Foster, and Srebro (2022). In
particular, it follows immediately from its definition that e ≥ max{s,L}: that is, any star set is an
eluder sequence, and similarly any branch in a shattered Littlestone tree is also an eluder sequence
(Li, Kamath, Foster, and Srebro, 2022).

Many works involving the eluder dimension have focused on a variant for real-valued functions
(value functions or Q-functions, in the context of contextual bandits and reinforcement learning)

4. To be fully parallel to the star number, we should refer to this as the extended eluder dimension, and denote it by ēh,
since this definition does not enforce that {(x1, h(x1)), . . . , (xn, h(xn))} is realizable by C. This distinction was
important for the star number, to give precise equivalences, such as in Theorems 3 and 19. However, since we do
not explore analogues of Theorems 19 or 23 for the eluder dimension, this distinction will not be important for our
purposes in this section, so for brevity we simply refer to this as the eluder dimension.
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which we discuss in Section 5 below. The version for discrete functions defined above (introduced
by Foster, Rakhlin, Simchi-Levi, and Xu, 2021) is referred to as the policy eluder dimension (where,
in contextual bandits and reinforcement learning, X is thought of as a state space and Y as an action
space, and a policy is a function X → Y; see e.g., Foster, Rakhlin, Simchi-Levi, and Xu, 2021).
In particular, Foster, Rakhlin, Simchi-Levi, and Xu (2021) provide a kind of lower bound for the
optimal regret in the adversarial contextual bandits problem in the realizable case with a value gap
assumption, based on the policy eluder dimension.5

4.1. The Eluder Dimension is the Threshold Dimension of Version Spaces and Disagreements

This section continues the theme (from Section 2.1) of revealing the fact that combinatorial param-
eters which characterize learning turn out to coincide precisely with natural and well-known dimen-
sions of convexity spaces. In the case of the eluder dimension, interestingly we find that it precisely
coincides with the threshold dimension of version spaces and of regions of disagreement thereof.
The threshold dimension itself is a well-known and important quantity in set theory. It quantifies
the length of the longest chain in a collection of sets (where a chain is a sequence D1 ⊊ D2 ⊊ · · · ).
Specifically, the threshold dimension is defined as follows.

Definition 9 (Shelah, 1978) For any non-empty set Z and any D ⊆ 2Z , the threshold dimension,
denoted by T(D), is defined as the largest n ∈ N ∪ {0} such that ∃D0, D1, . . . , Dn ∈ D with
D0 ⊊ D1 ⊊ · · · ⊊ Dn. Equivalently, ∃x1, . . . , xn ∈ Z for which, ∀t ∈ {0, 1, . . . , n}, ∃Dt ∈ D
such that Dt∩{x1, . . . , xn} = {x1, . . . , xt}. Such a sequence {x1, . . . , xt} is said to be a threshold
set for D. If no largest such n exists, define T(D) =∞.

The threshold dimension was introduced in the context of model theory by Shelah (1978). It
has recently entered the learning theory literature, playing significant roles in a number of works.
In most cases, this is due to its relation to the Littlestone dimension L, where it is known that, for
Y = {0, 1}, T(C) = Ω(log(L)) and L = Ω(log(T(C))) (Shelah, 1978; Hodges, 1997), where here
T(C) is defined by equating each h with its set {x : h(x) = 1} (i.e., T(C) := T({{x : h(x) =
1} : h ∈ C})). As discussed above, the Littlestone dimension is the combinatorial dimension
characterizing the optimal number of mistakes in realizable online classification (Littlestone, 1988)
and the optimal regret bound in agnostic online classification (Ben-David, Pál, and Shalev-Shwartz,
2009; Daniely, Sabato, Ben-David, and Shalev-Shwartz, 2015; Hanneke, Moran, Raman, Subedi,
and Tewari, 2023a). The Littlestone dimension is also known to characterize approximate differen-
tially private learnability (Alon, Livni, Malliaris, and Moran, 2019; Bun, Livni, and Moran, 2020),
and indeed, the proofs establishing the necessity of finite Littlestone dimension are directly based
on the threshold dimension (Alon, Livni, Malliaris, and Moran, 2019). The relation to the thresh-
old dimension also played an important role in establishing certain closure properties for classes of
finite Littlestone dimension (Alon, Beimel, Moran, and Stemmer, 2020). Moreover, in recent work
on online learning with only an ERM oracle (i.e., where there only access to the concept class is
via an optimization algorithm which returns a concept correct on a given realizable data set), Da-
gan, Daskalakis, Assos, Attias, and Fishelson (2023) directly use the threshold dimension in their

5. The actual statement of this result is somewhat nuanced (see Theorem 2.11 of Foster, Rakhlin, Simchi-Levi, and Xu,
2021). It essentially says that, for any policy class C and any h⋆ ∈ C, there exists a set of value functions inducing
C as the corresponding set of optimal policies, such that for any algorithm achieving regret of order T

eh⋆
, there exists

a sequence on which h⋆ is the optimal policy in C for which the regret is at least of order eh⋆ .
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analysis of the number of mistakes made by a particular online learning algorithm. As we discuss
in detail below, the threshold dimension (and star number) of the class C were also used in recent
work of Li, Kamath, Foster, and Srebro (2022) to provide upper and lower bounds on the eluder di-
mension. Additionally, an infinite variant of threshold sets (of the type in Definition 9) also played
a pivotal role in characterizations of binary games satisfying a minimax theorem by Hanneke, Livni,
and Moran (2021); Holzman (2023).

We now formally relate the eluder dimension and threshold dimension of version spaces and
regions of disagreement thereof, observing that the eluder dimension is precisely the threshold di-
mensions of such sets. A (simple) proof of this observation is included in Section J.

Theorem 10 For any C and any concept h, eh = T(Vh(C)). Moreover, ∀h ∈ C, eh = T(Dh(C)).

Unlike the analogous results for the star number (Theorem 3, with numerous implications in
Sections A, B, C, E.1), at this time it is not clear what implications the result in Theorem 10 might
have in learning-theoretic contexts. But it is nonetheless interesting to note such a precise relation
between such natural and well-studied combinatorial dimensions.

4.2. The Eluder Dimension is No Smaller than Log Cardinality of the Concept Class

Our next elementary observation about the eluder dimension relates this dimension to the cardinality
of the concept class. Specifically, we will argue that the eluder dimension is upper and lower
bounded in terms of the cardinality |C| of the concept class. An upper bound of |C|−1 is known (Li,
Kamath, Foster, and Srebro, 2022) (and can sometimes be sharp). Moreover, it follows immediately
from the relation e ≥ max{s,L} and Theorem 6 that e ≥

√
log|Y|(|C|), which is particularly

revealing, as it indicates the eluder dimension of infinite classes is always infinite. The following
result establishes a sharper lower bound of e ≥ log|Y|(|C|), and moreover finds that any infinite C
admits an infinite eluder sequence (when |Y| < ∞). Formally, we have the following result. Its
proof is presented in Section K.

Theorem 11 Suppose |Y| <∞. For any concept class C,

log|Y|(|C|) ≤ e ≤ |C| − 1.

Moreover, if |C| = ∞, then there exists an infinite eluder sequence for C. The latter also holds
when |Y| =∞ if every x ∈ X has {h(x) :h∈C} finite (not necessarily of uniformly bounded size).

The proof of the log|Y|(|C|) lower bound, presented in Section K, is in fact quite simple. We can
construct an eluder sequence of length log|Y|(|C|) inductively: take any x1 ∈ DIS(C), and by the pi-
geonhole principle there must exist some y1 ∈ Y with |C{(x1,y1)}| ≥

1
|Y| |C|; likewise, take any x2 ∈

DIS(C{(x1,y1)}), and choose y2 ∈ Y with |C{(x1,y1),(x2,y2)}| ≥
1
|Y| |C{(x1,y1)}|; we may continue this

construction for at least log|Y|(|C|) rounds before the first time n for which DIS(C{(xi,yi)}i≤n
) = ∅.

By construction, each xi ∈ DIS(C{(xj ,yj)}j<i
), so that (x1, y1), . . . , (xn, yn) is indeed an eluder se-

quence. While this proof is quite straightforward, this simple observation appears to have heretofore
gone unnoticed in the literature.

We discuss sharpness of this result, and relations to prior literature, in Section D, along with
additional remarks concerning the eluder dimension.
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5. Extension to Real-Valued Functions

The results above on the eluder dimension concern the case of discrete classification (equivalently,
policies, in a contextual bandit or reinforcement learning context). However, there are also many
works based on a variant of the eluder dimension for real-valued functions. Specifically, in this
section, we consider the case of Y = [0, 1], and we consider a scale-sensitive eluder dimension,
originally defined by Russo and Van Roy (2013) (the following is a slight refinement of the defini-
tion, due to Foster, Rakhlin, Simchi-Levi, and Xu, 2021).

Definition 12 For Y = [0, 1], for any concept class C, for any ε > 0 and n ∈ N, we say a sequence
(x1, y1), . . . , (xn, yn) in X × [0, 1] is an ε-eluder sequence for C if

∀i ∈ {1, . . . , n}, ∃hi ∈ C with |hi(xi)− yi| > ε and
∑
j<i

(hi(xj)− yj)
2 ≤ ε2.

For any concept h, an ε-eluder sequence is said to be centered at h if each yi = h(xi). The ε-eluder
dimension centered at h, denoted by eh(ε) = eh(ε,C), is defined as the largest n ∈ N ∪ {0} such
that ∃ε′ ≥ ε for which there exists an ε′-eluder sequence (for C) centered at h. If no largest such n
exists, then define eh(ε) =∞. Also define the ε-eluder dimension of C, denoted by e(ε), as

e(ε) = sup
h∈C

eh(ε).

Comparing with Definition 8, the main distinction is that we allow the functions hi to merely
approximate the values of h on the prefix x1, . . . , xi−1, rather than being strictly equal to h at these
points. Similarly to the discrete case, we say an infinite sequence (x1, y1), (x2, y2), . . . in X × [0, 1]
is an infinite ε-eluder sequence for C if every finite prefix (x1, y1), . . . , (xn, yn) is an ε-eluder
sequence.

The ε-eluder dimension has been used and studied extensively in the literatures on reinforcement
learning and contextual bandits and other sequential interactive learning settings (Russo and Van
Roy, 2013; Osband and Van Roy, 2014; Wen and Van Roy, 2017; Ayoub, Jia, Szepesvari, Wang,
and Yang, 2020; Wang, Salakhutdinov, and Yang, 2020; Foster, Rakhlin, Simchi-Levi, and Xu,
2021; Agarwal, Jin, and Zhang, 2023; Sekhari, Sridharan, Sun, and Wu, 2023; Zhu and Nowak,
2022).

Li, Kamath, Foster, and Srebro (2022) have investigated the expressiveness of the eluder dimen-
sion, aiming to identify which types of functions classes it would be finite for, and found that its
usefulness extends beyond classical analyses of generalized linear function classes for which it had
previously been shown to be finite. As discussed above, they found that the Littlesone and star num-
ber together determine whether the eluder dimension is finite in the case of discrete classification
(which we have shown, in Theorem 11, is also determined by finiteness of the even-simpler quan-
tity |C|). However, they left open the question of whether there is a familiar combinatorial notion
which determines which classes have finite ε-eluder dimension. We answer this question, finding
an answer analogous to Theorem 11 from the discrete case, but with the L∞ covering numbers of
C in place of the cardinality |C|. Qualitatively, we show that the ε-eluder dimension is finite if and
only if the L∞ covering numbers of the class are finite. We also give quantitative upper and lower
bounds in terms of the L∞ covering numbers, analogous to the quantitative relation to |C| in the
discrete case (Theorem 11). Formally, we recall the following standard definition.

12
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Definition 13 For Y = [0, 1], for any C and any ε > 0, define the L∞-covering number of C,
denoteN (ε,C,L∞), as the smallest n ∈ N such that, ∃h1, . . . , hn (not necessarily in C) such that,

∀h ∈ C, min
1≤i≤n

sup
x∈X
|hi(x)− h(x)| ≤ ε.

If no such finite n exists, define N (ε,C,L∞) =∞.

The following theorem shows that the scale-sensitive eluder dimension is finite if and only if the
corresponding L∞-covering numbers of the class are finite. Its proof is presented in Section M.

Theorem 14 For Y = [0, 1], for any concept class C, for any ε > 0, and δ ∈ (0, 1/2),

N (ε,C,L∞) =∞ =⇒ e(ε) =∞
and N (εδ,C,L∞) <∞ =⇒ e(ε) <∞.

Moreover, if N (ε,C,L∞) = ∞, then there exists an infinite ε-eluder sequence. Additionally, we
have the following quantitative relations:6⌊

2 ln(N (3ε,C,L∞))

ln
(

4
ε2

ln(N (3ε,C,L∞))
)⌋ ≤ e(ε) ≤

⌈
1

(1− 2δ)2

⌉
N (εδ,C,L∞).

The result is particularly interesting since many common function classes are known to have
infinite L∞-covering numbers (see Anthony and Bartlett, 1999).

Summary of Additional Results in the Appendices

In addition to the proofs of all results presented above, we present a number of additional results
in the appendices. Section A presents a discussion of a fascinating connection to the subject of
abstract convexity theory, which places these results in context as connected to a number of recent
findings on the importance to learning theory of various natural dimensions of the space of version
spaces. It additionally presents relations of the (centered) star numbers to the well-known dual VC
dimension, and further establishes relations between the star number of version spaces and their
regions of disagreement to the star number of the concept class, along with a result establishing that
the star number is nearly self-dual. Additionally, Section B provides a simple exact characterization
of the VC dimension of the unique minimal intersection-closed concept class C̄ containing a given
concept class C: namely, s1(C), the star number centered at the constant-1 function. In light of
the results of Section A, this has further implications relating VC(C̄) to the dual VC dimension
of C. Moreover, further reflection on this embedding result presented in Section C reveals a new
general compression scheme of size smin := infh∈YX sh, the minimum star number (in contrast to
the more well-known compression scheme of size s = suph∈C sh from Hanneke and Yang, 2015).
As discussed in Section C.1, smin is often significantly smaller than s, and moreover, this general
compression scheme unifies a number of existing compression schemes in the literature. Section D
presents a number of remarks about the eluder dimension, the sharpness of the upper and lower
bounds established in Theorem 11, and the relation of Theorem 11 to existing results in the literature.

6. For simplicity, we interpret 0
ln(0)

= 0 to handle the case N (3ε,C,L∞) = 1.
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Additionally, Section D.1 presents a precise relation between the eluder dimension of version spaces
and their disagreement regions to the eluder dimension of the concept class. Section E presents
further implications of the results of Sections 2.1 and A. Specifically, it presents a new proof of a
result of Hanneke (2016) bounding the probability in the region of disagreement of a version space
induced by i.i.d. samples, via classic generalization bounds for empirical risk minimization (largely
enabled by the relation between the star number and the VC dimension of disagreement regions,
established in Theorem 3). Finally, Section E.2 presents a new relation between the star number
and a complexity measure introduced by El-Yaniv and Wiener (2010, 2012) for the analysis of the
perfect selective classification, implied by Proposition 4 and Theorem 3.
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P. Assouad. Densité et dimension. Annales de l’Institut Fourier (Grenoble), 33(3):233–282, 1983.

P. Auer and R. Ortner. A new PAC bound for intersection-closed concept classes. Machine Learning,
66(2-3):151–163, 2007.

14



THE DIMENSIONS OF DISAGREEMENT

A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang. Model-based reinforcement learning
with value-targeted regression. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In Proceedings of the
23rd International Conference on Machine Learning, 2006.

M.-F. Balcan, S. Hanneke, R. Pukdee, and D. Sharma. Reliable learning in challenging environ-
ments. In Advances in Neural Information Processing Systems 36, 2024.

S. Ben-David. 2 notes on classes with Vapnik-Chervonenkis dimension 1. arXiv:1507.05307, 2015.

S. Ben-David and N. Eiron. Self-directed learning and its relation to the VC-dimension and to
teacher-directed learning. Machine Learning, 33:87–104, 1998.

S. Ben-David, E. Kushilevitz, and Y. Mansour. Online learning versus offline learning. Machine
Learning, 29(1):45–63, 1997.

S. Ben-David, D. Pál, and S. Shalev-Shwartz. Agnostic online learning. In Proceedings of the 22nd

Annual Conference on Learning Theory, 2009.

A. Blum, S. Hanneke, J. Qian, and H. Shao. Robust learning under clean-label attack. In Proceed-
ings of the 34th Annual Conference on Learning Theory, 2021.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):929–965,
1989.

O. Bousquet, S. Hanneke, S. Moran, and N. Zhivotovskiy. Proper learning, Helly number, and an
optimal SVM bound. In Proceedings of the 33rd Conference on Learning Theory, 2020a.

O. Bousquet, S. Hanneke, S. Moran, and N. Zhivotovskiy. Proper learning, Helly number, and an
optimal SVM bound. arXiv:2005.11818, 2020b.

O. Bousquet, S. Hanneke, S. Moran, R. van Handel, and A. Yehudayoff. A theory of universal
learning. In Proceedings of the 53rd Annual ACM Symposium on Theory of Computing, 2021.

N. Brukhim, D. Carmon, I. Dinur, S. Moran, and A. Yehudayoff. A characterization of multiclass
learnability. In Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer
Science, 2022.

M. Bun, R. Livni, and S. Moran. An equivalence between private classification and online predic-
tion. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science,
2020.

H. Chase and J. Freitag. Bounds in query learning. In Proceedings of the 33rd Conference on
Learning Theory, 2020.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning,
15(2):201–221, 1994.

15



HANNEKE

T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications
in pattern recognition. IEEE Transactions on Electronic Computers, EC-14(3):326–334, 1965.

Y. Dagan, C. Daskalakis, A. Assos, I. Attias, and M. K. Fishelson. Online learning and solving
infinite games with an ERM oracle. In Proceedings of the 36th Annual Conference on Learning
Theory, 2023.

V. Dalmau and P. Jeavons. Learnability of quantified formulas. Theoretical Computer Science, 306
(1–3):485–511, 2003.

A. Daniely and S. Shalev-Shwartz. Optimal learners for multiclass problems. In Proceedings of the
27th Conference on Learning Theory, 2014.

A. Daniely, S. Sabato, S. Ben-David, and S. Shalev-Shwartz. Multiclass learnability and the ERM
principle. Journal of Machine Learning Research, 16(12):2377–2404, 2015.
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Appendix A. Relating the Star Number, Dual VC Dimension, and Dual Star Number

The set V(C) is an instance of an abstract convexity space, a general subject which has been studied
extensively in mathematics (see van De Vel, 1993). Formally, a convexity space is any set V ⊆ 2Z

(for a set Z) with {Z, ∅} ⊆ V such that V is closed under intersections and monotone unions.7

Various dimensions for the convexity space V(C) have been found to play important roles in
learning theory. In particular, when Y = {0, 1}, Bousquet, Hanneke, Moran, and Zhivotovskiy
(2020a) have found that the Helly number of the convexity space V(C) characterizes the sample
complexity of proper PAC learning (where the Helly number is a well-known quantity from ab-
stract convexity theory; see van De Vel, 1993). Interestingly, the Helly number of V(C) is (typi-
cally) equivalent to a slightly (though consequentially) modified variant of the star number, which
Bousquet, Hanneke, Moran, and Zhivotovskiy (2020a) term the hollow star number: namely, the
maximum n such that there exists S = {(x1, y1), . . . , (xn, yn)} ∈ (X ×Y)n which is not realizable
by C yet every i has a y′i for which replacing (xi, yi) by (xi, y

′
i) in S makes it realizable by C. In

other words, the only change in the definition compared to s is that the “center” classification of the
star should be non-realizable rather than realizable. Though only a small change to the definition,
this turns out to have a significant effect on its value. For instance, for the concept class of linear
classifiers on Rp, the star number is infinite yet the hollow star number is p+2 (Bousquet, Hanneke,
Moran, and Zhivotovskiy, 2020a). It is also worth noting that s̄ is precisely the maximum of the star
number and the hollow star number.

Moreover, when Y = {0, 1}, a (folklore) simple observation is that the well-known dual VC
dimension (Assouad, 1983), denoted VC∗(C), is (up to constants) equal the VC dimension of the
halfspaces of V(C), where a halfspace in a convexity space V is a set V such that {V, V c} ⊆ V
where V c = Z \ V denotes the complement (i.e., a halfspace is a convex set whose complement is
also convex). In the case of V(C), the set of halfspaces is precisely given by the set

HS(C) := {C{(x,y)} : (x, y) ∈ X × Y} ∪ {∅,C}

7. It is clear to see V(C) is a convexity space if X is finite, since intersections are achieved by concatenating the
corresponding data sets. For infinite X , it is strictly speaking not necessarily the case, since the finiteness of the data
sets S in the definition of V(C) only ensure closure under finite intersections, and moreover there may be chains
V1 ⊂ V2 ⊂ · · · whose limit is not in V(C) (e.g., this can occur for threshold classifiers 1[t,∞) on R, taking C{(xi,1)}
for xi a convergent increasing sequence). Such nuances are not important for our purposes in the present work, and
indeed all of the results about V(C) in this work remain valid if we take the closure under arbitrary intersections and
monotone unions. In contrast, these nuances were found to be quite consequential in the work of Bousquet, Hanneke,
Moran, and Zhivotovskiy (2020a) characterizing the sample complexity of proper learning.
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of version spaces C{(x,y)} specified by a single labeled example (x, y) ∈ X × Y (plus the trivial
halfspaces ∅ and C). Indeed, the classical definition of VC∗(C) is in fact equivalent to the VC
dimension of a further subset of HS(C), namely the sets C{(x,1)} (or equivalently, the sets C{(x,0)}).
In contrast, Theorem 3 characterizes the VC dimension of the entire convexity space V1(C), where
1 denotes the constant function x 7→ 1(x) := 1. From this fact, we may immediately observe that
s̄1, the extended star number centered at the constant-1 function, satisfies s̄ ≥ s̄1 ≥ VC∗(C). The
following corollary summarizes the above conclusions, and moreover extends this result to s̄h for
any concept h with only slight loss. It will have important implications in Sections B and C. Its
proof is given in Section F.2.

Corollary 15 In the caseY = {0, 1}, let VC∗(C) denote the dual VC dimension, namely VC∗(C) =
VC({C{(x,1)} : x ∈ X}). It holds that

• s̄ ≥ VC(HS(C)) ≥ VC∗(C).

• s̄1 ≥ VC∗(C).

• For any concept h, s̄h ≥ VC(HS(C))/2 ≥ VC∗(C)/2.

It is also interesting to consider the star numbers of Vh(C) and Dh(C). In the case of Y =
{0, 1}, these are moreover related to the dual star number (defined analogously to the dual VC
dimension). In particular, understanding these quantities will lead to concrete implications relevant
to active learning and the analysis of empirical risk minimization in Section E.1. Let us overload the
notation for the star number: for any non-empty set Z , for any D ⊆ Z and non-empty set D ⊆ 2Z ,
define sD(D), the star number ofD centered at D, as s1D({1D′ : D′ ∈ D}): that is, the star number
of the corresponding set of indicator functions 1D′ : Z → {0, 1} (where 1D′(x) = 1 iff x ∈ D′).
Similarly, define s(D) = supD∈D sD(D).

We are interested in the relation between the star number sh of the class C and the star num-
bers of Vh(C) (the version spaces induced by h) and Dh(C) (the regions of disagreement of these
version spaces). While, in general, the latter two quantities can be arbitrarily larger than sh (Propo-
sition 17 below), it turns out the definitions all coincide in the case of certain centers: namely, the
values s∅(Dh(C)) and sC(Vh(C)). Formally, we have the following result; its proof is presented
in Section F.3. While the proof is again quite simple, this observation nonetheless has interest-
ing implications regarding concentration inequalities for disagreement regions which we discuss in
Section E.1 below.

Theorem 16 For any C and concept h, sC(Vh(C)) = s̄h(C). Also, ∀h ∈ C, s∅(Dh(C)) = sh(C).

In particular, it also follows from Theorems 3 and 16 that any h ∈ C satisfies

sC(Vh(C)) = VC(Vh(C)) and s∅(Dh(C)) = VC(Dh(C)).

One might wonder whether the equivalence in Theorem 16 extends beyond merely the C- and
∅-centered star numbers for Vh(C) and Dh(C), respectively. The following proposition shows this
is not the case, and indeed there can be an infinite gap. Its proof is presented in Section F.3.
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Proposition 17 For Y = {0, 1}, there exists (X ,C) s.t. ∀h ∈ C, sh(C) = 2 but sX (Dh(C)) =∞:
namely, the class of homogeneous linear classifiers {x 7→ 1[w⊤x ≥ 0] : w ∈ R2, ∥w∥ = 1} on
X = {x ∈ R2 : ∥x∥ = 1}, the unit circle in R2.
Also, for Y = X = N, there exists C and h ∈ C such that s̄(C) = 2 but s∅(Vh(C)) = ∞: namely,
the class {x 7→ y : y ∈ Y} ∪ {x 7→ x} of all constant functions x 7→ y plus the identity function
x 7→ x, where h is the identity function.

It is also interesting to consider the dual star number, defined analogously to the dual VC
dimension. Specifically, let C∗ = {h 7→ fx(h) := h(x) : x ∈ X}, a space of dual functions
fx : C→ Y . Such dual functions have played a role in a number of recent works in learning theory,
such as sample compression schemes (Moran and Yehudayoff, 2016), online learning (Hanneke,
Livni, and Moran, 2021), and adversarially robust learning (Montasser, Hanneke, and Srebro, 2019).
In particular, for Y = {0, 1}, the dual VC dimension VC∗(C) discussed above can equivalently be
defined as VC∗(C) = VC(C∗). For general label spaces Y , we establish the following elementary
relation for the star number of the dual class C∗, revealing that the star number is nearly self-dual.

Let s̄const(C) = maxy s̄x 7→y(C) denote the maximum value of s̄h(C) among all constant func-
tions h (i.e., ∃y ∈ Y s.t. h(x) = y for all x ∈ X ). Also define s̄const(C∗) in this same way, but for
the dual class C∗. The proof of the following proposition is presented in Section F.3.

Proposition 18 For any concept class C, s̄(C∗) ≥ s̄const(C∗) = s̄const(C) ≥ 1
|Y| s̄(C) and more-

over s̄(C) ≥ s̄const(C) = s̄const(C∗) ≥ 1
|Y| s̄(C

∗).

Appendix B. The Minimal Dimension of Embedding into an Intersection-Closed
Class

In this section, focusing on the case of Y = {0, 1} (binary classification), we establish a new char-
acterization of the minimum VC dimension of embedding any concept class C into an intersection-
closed concept class. The minimal dimension turns out to be remarkably simple: namely s1, the
star number centered at the constant 1 function.

Formally, a concept class C is said to be intersection-closed if, for every finite non-empty set
C′ ⊆ C, the concept

x 7→ hC′(x) :=
∏
h∈C′

h(x)

satisfies hC′ ∈ C.8 A classic example of an intersection-closed concept class is interval classifiers
on X = R: that is, x 7→ 1[a,b], a, b ∈ R. In Rn, the natural generalization is the class of axis-
aligned rectangles (Helmbold, Sloan, and Warmuth, 1990). Intersection-closed concept classes have
been widely studied in learning theory, since they possess useful additional structure for specifying
learning algorithms with improved sample complexity, and for yielding simple sample compression
schemes (Helmbold, Sloan, and Warmuth, 1990; Haussler, Littlestone, and Warmuth, 1994; Floyd
and Warmuth, 1995; Ben-David and Eiron, 1998; Kuhlmann, 1999; Dalmau and Jeavons, 2003;
Auer and Ortner, 2007; Darnstädt, 2015; Hanneke, 2016; Blum, Hanneke, Qian, and Shao, 2021;
Rubinstein and Rubinstein, 2022).

8. Some works distinguish between concept classes closed under finite intersections, as defined here, and concept classes
closed under arbitrary intersections. This distinction will not be important for the results in this work: that is, all
theorems and proofs will be valid for either definition of “intersection-closed”.
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Due to these favorable structures in intersection-closed classes, a natural question arises: for
any given concept class C, what is the minimum VC dimension of an intersection-closed class
containing C? The unique minimal intersection-closed concept class containing C can be expressed
quite simply as (see e.g., Rubinstein and Rubinstein, 2022):

C̄ :=
{
hC′ : C′ ⊆ C, 1 ≤ |C′| <∞

}
.

It turns out that the VC dimension of C̄ is equally simple to state. Recall that x 7→ 1(x) = 1 denotes
the constant 1 function. The following theorem provides a simple characterization of VC(C̄). An
equally-simple proof of it is included in Section H.

Theorem 19 For any concept class C, it holds that VC(C̄) = s1(C).

An immediate implication of Theorem 19, which we will discuss in great detail in Section C,
is that any concept class admits a compression scheme of size s1. Indeed, Section C builds on this
idea, ultimately leading to a compression scheme of size minh sh. As another immediate corollary
of Theorem 19, together with Corollary 15 and the fact that s1 ≥ s̄1 − 1, we can infer a relation
between the intersection-closed embedding dimension and the dual VC dimension of C:

VC(C̄) ≥ VC∗(C)− 1.

This moreover implies that any intersection-closed class C satisfies VC∗(C) ≤ VC(C) + 1, which
is an exponential improvement over the inequality VC∗(C) ≤ 2VC(C)+1 − 1 for general classes C.

Remark 20 We remark that Rubinstein and Rubinstein (2022) have also given a description of (a
generalized variant of) VC(C̄) in terms of properties of C. However, we note that their description
is substantially more-involved. Theorem 19 is noteworthy for the surprising simplicity of s1 as a
characterization of VC(C̄), which moreover clarifies its relation to other contexts where variants of
the star number provide sharp characterizations.

We also remark that Lemma 1 of Kuhlmann (1999) effectively states that, for any intersection-
closed class C, VC(C) = s1(C). This implies that, for any concept class C, VC(C̄) = s1(C̄). In
this light, the novelty in Theorem 19 is in observing that s1(C̄) = s1(C): the 1-centered star number
of the original class C. This itself is a rather immediate observation. However, the expression of
VC(C̄) in terms of a simple dimension for the original class C renders the result more useful.
Moreover, as we will see in Section C, it provides strong insights which lead to more-powerful
techniques going well beyond intersection-closed classes.

Appendix C. A Sample Compression Scheme of Size Equal the Minimum Star
Number

In this section, continuing to focus on the case Y = {0, 1} (binary classification), we discuss a
new bound on the size of sample compression schemes, building from the insights of the previous
section.

Sample compression schemes are a general family of learning algorithms, typically studied in
the context of PAC learning, as they very easily yield generalization guarantees in that context. They
are specified by a pair of functions (κ, ρ), called the compression function and reconstruction func-
tion, respectively. Given any data set S realizable by a concept class C, κ(S) returns a subset (or

23



HANNEKE

subsequence) of S, and ρ(κ(S)) then evaluates to a concept which is required to be correct on the
entire data set S (not just the subset κ(S)). Together, S 7→ ρ(κ(S)) forms a PAC learning algorithm
for C (i.e., Probably Approximately Correct; see Valiant, 1984; Vapnik and Chervonenkis, 1974 for
background on PAC learning), with high probability error bounds scaling in the size of the com-
pression scheme, meaning |κ(S)|. Compression schemes and their PAC learning guarantees were
formally introduced in generality by Littlestone and Warmuth (1986) (though a number of specific
compression schemes were well known in prior work; e.g., Vapnik and Chervonenkis, 1964a,b,
1974; Rosenblatt, 1958; Novikoff, 1962). By now, this subject has accumulated a substantial lit-
erature (e.g., Floyd and Warmuth, 1995; Helmbold, Sloan, and Warmuth, 1990; Devroye, Györfi,
and Lugosi, 1996; Warmuth, 2003; Ben-David, 2015; Moran and Yehudayoff, 2016; Pálvölgyi and
Tardos, 2020; Zhivotovskiy, 2017; Moran and Warmuth, 2016; Hanneke, Kontorovich, and Sadig-
urschi, 2019; Hanneke and Yang, 2015; Hanneke, 2016; Bousquet, Hanneke, Moran, and Zhivo-
tovskiy, 2020a). Of particular interest in much of this literature is understanding the smallest pos-
sible size of compression schemes for a given concept class. In particular, Littlestone and Warmuth
(1986) asked the question of whether every concept class C admits a sample compression scheme
of size bounded as a function of the VC dimension VC(C), and later Floyd and Warmuth (1995)
and Warmuth (2003) refined this question to a conjecture that every C admits a compression scheme
of size VC(C) (or perhaps O(VC(C))), now known simply as the sample compression conjecture.
More recently, Moran and Yehudayoff (2016) resolved the original bounded compression ques-
tion of Littlestone and Warmuth (1986) positively, exhibiting a general compression scheme of size
Õ(VC∗(C)VC(C)), which is always at most 2O(VC(C)). However, the sharper question of Floyd
and Warmuth (1995); Warmuth (2003) regarding whether compression schemes of size O(VC(C))
always exist remains open, and has been the subject of much work.

In this section, we present a new bound on the achievable size of compression schemes, quanti-
fied by the minimum star number. Moreover, the corresponding compression scheme is unlabeled
and stable (defined below). While the bound we provide does not actually resolve the long-standing
conjecture of Floyd and Warmuth (1995); Warmuth (2003), it does serve to unify a few different
compression schemes from the literature, and greatly simplifies the verification of their compression
size. For instance, it renders completely trivial the implication that classes with VC(C) = 1 admit a
compression scheme of size 1, and unifies under a single theorem this fact and another well-known
compression scheme of size VC(C) for intersection-closed classes (namely, the Closure algorithm).
It also provides new results for compression schemes of size VC(C) for some families of concept
classes for which such results were not previously known (e.g., all classes of VC(C) = 2 containing
the subclass of singletons), and moreover provides the first known stable compression scheme for
some classes. Formally, we begin with the following definition.

Definition 21 (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) Let C be any con-
cept class. An unlabeled sample compression scheme is a pair of functions (κ, ρ), with ρ : X ∗ →
YX (called a reconstruction function) and with κ : (X×Y)∗ → X ∗ (called a compression function)
such that ∀n ∈ N ∪ {0} and S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n, κ(S) ∈ {x1, . . . , xn}∗.
(κ, ρ) is said to be sample-consistent for C if, for all data sets S ∈ (X × Y)∗ realizable by C,
ρ(κ(S))(x) = y for every (x, y) ∈ S. The size of (κ, ρ) is defined as maxS |κ(S)| (where S ranges
over data sets realizable by C).

A special type of sample compression scheme, known as stable, are of particular interest, as
they are known to yield improved sample complexity guarantees when used as a learning algorithm
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compared to general sample compression schemes (Bousquet, Hanneke, Moran, and Zhivotovskiy,
2020a). Formally, consider the following definition.

Definition 22 For any concept class C, a sample-consistent unlabeled sample compression scheme
(κ, ρ) is said to be stable if ∀n ∈ N ∪ {0}, ∀S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n realizable
by C, for any subsequence Sσ ⊆ S with κ(S) ⊆ {x : ∃y, (x, y) ∈ Sσ}, it holds that ρ(κ(Sσ)) =
ρ(κ(S)). That is, as long as Sσ contains the entire compression set κ(S), the resulting classifier
ρ(κ(Sσ)) will be the same as the classifier ρ(κ(S)) from the full original data set S.

A fundamental result of Hanneke and Yang (2015) establishes that there always exists a (labeled,
stable) sample compression scheme of size s = suph∈C sh. Specifically, for any S ∈ (X × Y)∗
realizable by C, there exists a subset S′ of size at most s such that CS′ = CS . For this reason, this
is sometimes referred to as a version space compression scheme (Wiener, Hanneke, and El-Yaniv,
2015; Hanneke and Yang, 2015). In particular, a compression function κ(S) which returns this S′

(in this case, allowing κ to include labels in its compression set) and ρ(S′) as returning any function
in CS′ , we immediately have a sample-consistent sample compression scheme (which can be made
stable as long as there is a fixed preference order on C determining which element of CS′ the learner
returns; see Bousquet, Hanneke, Moran, and Zhivotovskiy, 2020a).

However, since s can often be quite large (already being infinite for simple classes, such as
one-dimensional intervals), the above compression scheme is not ideal for most learning problems.
However, it turns out there is a simple modification of this compression scheme which yields a
dramatic reduction in the size. Indeed, we will propose a stable sample-consistent unlabeled com-
pression scheme equal the minimum star number, defined as follows.

smin := inf
h∈YX

sh.

It is immediate from its definition that VC(C) ≤ smin ≤ s, where the left inequality follows
from the fact that any shattered set is a star set centered at every function. We will see in a number
of examples presented in Section C.1 below that smin is sometimes (though not always) closer to
VC(C) than to s.

As alluded to, the compression scheme of this size smin is actually based on a simple modi-
fication of the above version space compression scheme. For reasons we discuss below (see Re-
mark 24), we refer to this general approach to sample compression as the Generalized Closure
Algorithm. Specifically, consider the case that smin is finite, and let h∗ = argminh sh (where h∗
is not restricted to be in the class C), breaking ties arbitrarily. For any n ∈ N ∪ {0} and any
S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n realizable by C, let us define κ(S) as any minimal-size
subset S′ of {x : (x, h∗(x)) ∈ S} such that

{x : (x, h∗(x)) ∈ S} ∩DIS
(
C(S′,h∗(S′))

)
= ∅.

In other words, all concepts h ∈ C with h(S′) = h∗(S
′) also agree with h∗ on every (x, y) ∈ S

with y = h∗(x). Let us then define a reconstruction function ρ, such that for such a set S′ (i.e., any
finite subset of X with (S′, h∗(S

′)) realizable by C),

x 7→ ρ(S′, x) :=

{
h(x), for any h ∈ C(S′,h∗(S′)), if x /∈ DIS(C(S′,h∗(S′)))

1− h∗(x), if x ∈ DIS(C(S′,h∗(S′)))
.
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The size of the above compression scheme turns out to be bounded in terms of the minimum
star number smin. Formally, we have the following theorem.

Theorem 23 For any concept class C with smin < ∞, the (κ, ρ) defined by the Generalized
Closure Algorithm is a stable sample-consistent unlabeled sample compression scheme of size at
most smin.

Remark 24 (The Generalized Closure Algorithm is the Closure algorithm) We remark that the
compression scheme (κ, ρ) defined by the Generalized Closure Algorithm has another natural in-
terpretation as implementing the well-known Closure algorithm for intersection-closed concept
classes, under a re-definition of the labels of each point x ∈ X . Recall that Theorem 19 expresses
the minimum VC dimension of an intersection-closed class C̄ containing C as precisely s1: the star
number centered at the all-1 function. Intersection-closed concept classes C admit a well-known
stable sample-consistent unlabeled compression scheme of size equal their VC dimension: namely,
the Closure algorithm (Helmbold, Sloan, and Warmuth, 1990). For any data set S realizable by C,
the Closure algorithm returns a concept hS =

∏
h∈CS

h: that is, a concept which is 1 precisely on
the examples for which all concepts in the version space CS agree the label should be 1. Moreover,
it turns out there always exists a subset S′ ⊆ S (called a minimum spanning set; Helmbold et al.
(1990); Auer and Ortner (2007)) of size at most the VC dimension of C, such that hS′ = hS , and fur-
thermore, such that every (x, y) ∈ S′ has y = 1. Thus, the set of x values such that (x, 1) ∈ S′ may
be viewed as an unlabeled compression set, from which hS can be reconstructed. It is also not hard
to see this compression scheme is stable as well, from the definition of hS′ (see Bousquet, Hanneke,
Moran, and Zhivotovskiy, 2020a; Helmbold, Sloan, and Warmuth, 1990; Haussler, Littlestone, and
Warmuth, 1994; Auer and Ortner, 2007).

Now, to connect to the Generalized Closure Algorithm in Theorem 23, it is worth noting that
there is nothing special about the all-1 function in this context. We can choose any function h∗ and
simply re-define the labels, mapping h∗(x) to 1 and 1 − h∗(x) to 0, for every x ∈ X , so that h∗
becomes the all-1 function. Formally, this defines a concept class Ch∗ = {x 7→ 1[h(x) = h∗(x)] :
h ∈ C}. We may then construct the minimal intersection-closed concept class C̄ for this Ch∗ , and
by Theorem 19 its VC dimension will be the star number centered at the all-1 function, which, if we
map the labels back to their original values, is precisely sh∗ . Thus, the Closure algorithm for this
C̄ class is a stable sample-consistent unlabeled sample compression scheme of size sh∗ (and can
be easily converted to such a compression scheme for the original unmodified class C by reversing
the re-mapping of the labels). We can then simply take h∗ as the minimizer of sh∗ to get the same
guarantee as in Theorem 23. The expression of the sample compression scheme (κ, ρ) given above
(the Generalized Closure Algorithm) is merely a direct statement of this compression scheme, since
C̄ is itself based on taking intersections of concepts in Ch∗ . But these two definitions of compression
schemes are in fact perfectly equivalent.

C.1. Implications and Further Discussion of Theorem 23

Theorem 23 unifies a few different compression schemes from the literature, and moreover provides
a much simpler way to calculate the achievable compression size for these classes. To start, we
show this trivially implies that classes C with VC(C) = 1 admit compression schemes of size 1, by
showing smin = 1 for such classes.
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Example 1 For any C with VC(C) = 1, it is quite easy to observe that smin = 1. Consider any
h ∈ C, and let h∗ = 1 − h. For the sake of contradiction, suppose {(x1, h∗(x1)), (x2, h∗(x2))} is
a star set for C. By definition, we have that (x1, x2) may be realizably labeled as (h∗(x1), h∗(x2)),
(1−h∗(x1), h∗(x2)), and (h∗(x1), 1−h∗(x2)). But since h∗ = 1−h for some h ∈ C, we also have
that (h(x1), h(x2)) = (1 − h∗(x1), 1 − h∗(x2)) is a realizable labeling. Together, these labelings
witness that (x1, x2) is shattered by C, which contradicts VC(C) = 1. Therefore 1 ≥ smin ≥
VC(C) = 1, hence we conclude that smin = 1.

Compression schemes of size 1 for such classes are already known to exist (Ben-David, 2015).
Indeed, a careful examination reveals that the Generalized Closure Algorithm coincides precisely
with the compression scheme of Ben-David (2015). Thus, we see that Theorem 23 effectively pro-
vides a unifying perspective, which expresses this compression scheme as a special case of a general
principled approach to sample compression. It also provides by-far the simplest argument for the
existence of such compression schemes for classes of VC dimension 1.

Example 2 Any C which is intersection-closed has smin = VC(C). This is clear from Theorem 19,
from which we have VC(C) = s1 ≥ smin ≥ VC(C).

The next example is a new family of concept classes, for which compression schemes of size
VC(C) were not previously known (nor were any bounded-size stable compression schemes).

Example 3 For every class C with VC(C) = 2 such that X is a star set for C, we have smin = 2.
To see this, take h0 ∈ C such that X is a star set centered at h0, and let h∗ = 1 − h0, and we
will argue sh∗ = 2, as follows. For every 3 distinct points S = {x1, x2, x3}, since S is a star
set centered at h0, it cannot be the case that S is also a star set centered at h∗, since otherwise
the 4 classifications witnessing S being a star set centered at h0 and the (disjoint) 4 classifications
witnessing S being a star set centered at h∗, would together comprise 8 distinct classifications of
S, contradicting VC(C) = 2. Indeed, this shows smin = 2 also for any class C with VC(C) = 2
for which ∃h ∈ C such that every set of 3 distinct points {x1, x2, x3} is a star set centered at h.

A natural question arises: How does smin compare with the size O(VC(C)) from the sample
compression conjecture of Warmuth (2003)? Is it always true that smin = O(VC(C))? This turns
out not to be the case. Indeed, the following corollary is immediate from Corollary 15.

Corollary 25 For any concept class C, smin ≥ VC∗(C)/2− 1.

Since the dual VC dimension VC∗(C) can sometimes be as large as 2VC(C)+1− 1 (e.g., dictator
functions on {0, 1}p), we see that there can at least be exponential gaps between smin and VC(C).
Moreover, there exist classes, even with VC dimension 3, such that smin = ∞. We will provide
such an example based on the following simple result.

Proposition 26 For any finite Y , for any concept class C, let sall-const denote the largest n such
that there exists {x1, . . . , xn} ∈ X n which is a star set centered at every constant function x 7→
hy(x) := y, y ∈ Y , or sall-const =∞ if there is no largest such n. Then smin ≥ sall-const/|Y|.

Proof Let {x1, . . . , xn} be a star set centered at every constant function hy. For any concept h,
there exists y such that |{xi : h(xi) = y}| ≥ n/|Y|. Since any subset of a star set centered at hy
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is also a star set centered at hy, and since h agrees with hy on the set {xi : h(xi) = y}, we may
conclude that sh ≥ |{xi : h(xi) = y}| ≥ n/|Y|.

As a simple example of a class with VC(C) = 3 for which the above implies smin = ∞,
consider the following.

Example 4 LetY = {0, 1}, letX be an infinite set, and let C = {1{t} : t ∈ X}∪{1X\{t} : t ∈ X},
the class of singletons (which are 1 on exactly one point) and their complements (which are 0 on
exactly one point). Then X is a star set centered at both constant functions x 7→ 0 and x 7→ 1, so
that Proposition 26 implies smin =∞. It is an easy exercise to verify that VC(C) = 3.

Moreover, Proposition 26 reveals smin = ∞ even for many natural concept classes, such as
linear classifiers in Rp.

Example 5 Let p ≥ 2,X = Rp and let C be the class of linear classifiers on Rp: that is, C = {x 7→
1[w⊤x+ b ≥ 0] : w ∈ Rp, b ∈ R}. Then VC(C) = p+ 1 (Cover, 1965; Vapnik and Chervonenkis,
1974) but smin =∞. To see that smin =∞, consider any number n of points x1, . . . , xn positioned
as the vertices of a convex polytope. These points are a star set centered at both constant functions
x 7→ 0 and x 7→ 1, so that Proposition 26 implies smin ≥ n/2. Since such points can be constructed
for any n ∈ N (e.g., positioning them on a circle), we have that smin =∞.

Interestingly, for classes C of VC(C) = 2, the situation is less clear, and indeed we leave open
the question of whether smin = O(1) when VC(C) = 2. However, we can show at least a mild gap
between smin and VC(C) for such classes.

Example 6 Pálvölgyi and Tardos (2020) construct an example of a concept class9 C with VC(C) =
2 but for which there does not exist a sample-consistent unlabeled compression scheme of size 2.
Specifically, |X | = 5 and C consists of the “rotations” of the patterns 00101 and 00111 (we refer
the reader to the original work for the details). Since the Generalized Closure Algorithm provides
a sample-consistent unlabeled compression scheme of size smin, we may conclude that smin ≥ 3.

Another family of concept classes known to have favorable properties for sample compression
is extremal classes (see Moran and Warmuth, 2016, for definitions). Rubinstein and Rubinstein
(2022) recently showed that any intersection-closed concept class C can be embedded in an extremal
class of VC dimension at most 11VC(C). As discussed in Remark 24, smin may be viewed as the
dimension of embedding any C into a generalized intersection-closed class (where h∗(x) functions
as “1” would in a traditional intersection-closed class). Moreover, extremal classes remain extremal
under such transformations (i.e., changing every h(x) to 1−h(x) for some x’s). Therefore, together
with the result of Rubinstein and Rubinstein (2022), we also have the following corollary.

Corollary 27 For any C with smin <∞, there is an extremal class C̃ ⊇ C with VC(C̃) ≤ 11smin.

9. This is sometimes known as “Warmuth’s example,” as Warmuth had previously studied this as an example of a
maximal class which is not maximum.
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Appendix D. Further Remarks About the Eluder Dimension

In this section, we provide a number of additional remarks concerning the eluder dimension, sharp-
ness of Theorem 11, relations to to existing results, and a result concerning the eluder dimension
of version spaces as their disagreement regions. We begin with a remark concerning the relation of
Theorem 11 to results of Li, Kamath, Foster, and Srebro (2022).

Remark 28 As mentioned previously, it follows immediately from its definition that e ≥ max{s,L},
since every star set is an eluder sequence and every branch in a shattered Littlestone tree is an eluder
sequence. Indeed, this also implies eh ≥ s̄h for any h. Moreover, in the case of Y = {0, 1}, every h
realizes some branch in any shattered Littlestone tree, so eh ≥ L in this case.

In the case of Y = {0, 1}, Li, Kamath, Foster, and Srebro (2022) have shown a complemen-
tary relation between the eluder dimension eh, star number sh, and threshold dimension Th :=
T({DIS({h′, h}) : h′ ∈ C}) of the concept class (and therefore also the Littlestone dimension L).
Specifically, they have shown that for h ∈ C, max{sh,Th} ≤ eh ≤ 4max{sh,Th}. Since it is also
known that log2(L) ≤ Th < 2L+1 (Shelah, 1978; Alon, Bun, Livni, Malliaris, and Moran, 2022), it
follows that max{sh,L} ≤ eh ≤ 4max{sh,2L+1}. This alone still does not provide a relation between
these quantities and the cardinality |C|. However, by combining their result with either our Theo-
rem 6 or our Theorem 11, implications relating to the other can be reached. Specifically, combining
the relation e ≥ max{s̄,L} with our Theorem 6 immediately implies (for general label spaces Y)
a lower bound e ≥

√
log|Y|(|C|), and hence that the eluder dimension is infinite for infinite con-

cept classes (for |Y| < ∞). However, Theorem 11 provides a sharper relation between e and |C|
compared to this simple application of Theorem 6, and additionally establishes the existence of an
infinite eluder sequence for all infinite concept classes.

Conversely, in the case Y = {0, 1}, combining the relation e ≥ log2(|C|) from our Theorem 11
with the result of Li, Kamath, Foster, and Srebro (2022), we can also derive a relation between s,
L, and |C|, analogous to Theorem 6. This would result in a relation of the form max{s, 2L+1} ≥
log4(log2(|C|)), which would still provide the conclusion that there is no infinite class C with both
finite Littlestone dimension L and finite star number s. However, the direct analysis in Theorem 6
still provides the sharper relation sL ≥ log2(|C|) and moreover extends the result to any finite label
space Y , with the relation sL ≥ log|Y|(|C|).10

Remark 29 It is easy to observe the claim in Theorem 11 for infinite classes is not always true
when |Y| = ∞, if there exist points x with an infinite number of possible labels: for instance,
consider the class of constant functions x 7→ hy(x) = y (y ∈ Y = N), which is infinite yet has
eluder dimension 1.

We can also argue that either side of the inequalities in Theorem 11 can be sharp for some
classes C. Formally, we have the following result.

10. It is straightforward to observe that the result max{sh,Th} ≤ eh ≤ 4max{sh,Th} (h ∈ C) of Li, Kamath, Foster,
and Srebro (2022) remains valid for general Y spaces, since all of sh, Th, and eh are only concerned with the
classes of binary loss-composed functions {x 7→ 1[h′(x) ̸= h(x)] : h′ ∈ C}, so that applying their result to this
class (with center function the all-0 function) extends their result to any Y space. Thus, combining Theorem 11
with this generalization of the result of Li, Kamath, Foster, and Srebro (2022) generally implies max{s,T} ≥
log4(log|Y|(|C|)). Moreover, for finite Y , there remains a quantitative relation between L and T (a relation L ≥
⌊log2(log|Y|(T/|Y|))⌋ can be inferred from results of Hanneke, Moran, and Shafer, 2023b), so that in this case we
may recover a result in a similar spirit to Theorem 6. However, Theorem 6 remains quantitatively much sharper, and
applies even when we merely have that every x has |{h(x) : h ∈ C}| < ∞.
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Theorem 30 For any n, k ∈ N \ {1}, for Y = {0, . . . , k − 1}, there exists X , and concept classes
C and C′ with |C| = |C′| = n such that (supposing n is a power of k) e(C) = logk(|C|) and
e(C′) = |C′| − 1.

Specifically, for X = {1, . . . , n − 1}, the class C′ witnessing the above (as already found by
Li, Kamath, Foster, and Srebro, 2022) is the set of singletons, x 7→ 1{i}(x), i ∈ X , along with the
all-zero function x 7→ 0. On the other hand, the class C witnessing the logk(|C|) eluder dimension
is simply the set Y{1,...,logk(n)} × {0}{logk(n)+1,...,n−1}.

D.1. Eluder Dimension of Version Spaces and Disagreement Regions

Analogously to Theorem 16 and Proposition 17, we may also study the eluder dimension of the
sets Vh(C) and Dh(C) themselves: that is, the eluder dimension of version spaces and their dis-
agreement regions. Let us again overload the notation, this time for the eluder dimension: for any
D ⊆ X and any non-empty setD ⊆ 2X , define eD(D), the eluder dimension ofD centered at D, as
e1D({1D′ : D′ ∈ D}): that is, the eluder dimension of the corresponding set of indicator functions
1D′ : X → {0, 1}. Similarly, e(D) = supD∈D eD(D). The following theorem is analogous to
Theorem 16. Its proof is presented in Section L

Theorem 31 For any concept class C and concept h, eC(Vh(C)) = eh(C). Also ∀h ∈ C,
e∅(Dh(C)) = eh(C).

Similarly to Proposition 17, one might wonder whether there can be large gaps between e(Dh(C))
and e(C). However, unlike the star number in Proposition 17, this is not the case for the eluder di-
mension. In light of Theorem 11, we may immediately note that finite e(C) implies finite e(Dh(C))
and e(Vh(C)), since the latter two may be upper bounded by the number of distinct possible version
spaces, which is clearly less than 2|C|. While it seems likely that significant quantitative gaps are
possible, we leave the exploration of this issue for future work.

Appendix E. Implications and Further Discussion of the Results

In this section, we present a number of implications of the above results. Specifically, we pro-
vide a new proof of a bound (originally due to Hanneke, 2016) on the probability in the region
of disagreement of a version space, via classic VC-based generalization bounds for empirical risk
minimization. We complement this with a lower bound, showing such bounds are sharp. We also
establish a relation between the star number and a complexity measure proposed by El-Yaniv and
Wiener (2010, 2012) in their analysis of the perfect selective classification problem.

E.1. A New Proof Bounding the Probability in the Region of Disagreement of a Version Space

As a direct implication of the results of Sections 2.1 and A (relating the star number and VC dimen-
sion of disagreement regions), we may state a new proof of a bound (originally proven by Hanneke,
2016) on the probability measure of the region of disagreement of a version space induced by an
i.i.d. sample. Specifically, fix any concept class C, any marginal distribution PX over X , and any
target concept h⋆ ∈ C, and let P denote a distribution over X × Y such that (X,Y ) ∼ P has
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X ∼ PX and Y := h⋆(X).11 Fix any δ ∈ (0, 1) and let Sn ∼ Pn be an i.i.d. data set of size n ∈ N
with n ≥ 2sh⋆ .

Using arguments based on sample compression schemes (Littlestone and Warmuth, 1986; Floyd
and Warmuth, 1995), an argument of Hanneke and Yang (2015) establishes that, with probability at
least 1− δ,

PX(DIS(CSn)) = O

(
1

n

(
sh⋆ log

(
n

sh⋆

)
+ log

(
1

δ

)))
. (1)

Such a bound plays a crucial role in the analysis of so-called disagreement-based active learning
methods (Cohn, Atlas, and Ladner, 1994; Hanneke and Yang, 2015; Hanneke, 2016), and has fur-
ther implications for refined generalization bounds for supervised learning with empirical risk min-
imization (Hanneke, 2016). By using monotonicity properties of the set DIS(CSn) (i.e., DIS(CSn)
is non-increasing with adding more data to Sn), an argument of Hanneke (2016) refines this bound,
again using sample compression arguments: with probability at least 1− δ,

PX(DIS(CSn)) = O

(
1

n

(
sh⋆ + log

(
1

δ

)))
. (2)

The leading constant factor in the bound of Hanneke (2016) is 21. This constant has since been
refined to 2 ln(4) by Bousquet, Hanneke, Moran, and Zhivotovskiy (2020a,b) using a stronger gen-
eralization bound they prove for stable compression schemes (and by noting that the compression
scheme of Hanneke and Yang, 2015; Hanneke, 2016, for DIS(CSn), is indeed stable).

One immediate implication of Theorem 3 is a new proof of (1), which, rather than being based
on sample compression arguments, instead relies on the classic analysis of generalization bounds
for empirical risk minimization in PAC learning (Vapnik and Chervonenkis, 1974; Blumer, Ehren-
feucht, Haussler, and Warmuth, 1989). Specifically, Blumer, Ehrenfeucht, Haussler, and Warmuth
(1989) prove that, for any non-empty set Z and any set D ⊆ 2Z , for any probability measure P
over Z , any n ∈ N with n ≥ VC(D), and any δ ∈ (0, 1), for Sn ∼ Pn, with probability at least
1− δ,12 every D ∈ D with D ∩ Sn = ∅ satisfies

P (D) ≤ 2

n

(
VC(D) log2

(
en

VC(D)

)
+ log2

(
2

δ

))
. (3)

In particular, for the distribution P defined based on marginal PX and target concept h⋆, if we
let Z = X × Y and D = {D × Y : D ∈ Dh⋆(C)}, then Theorem 3 implies VC(D) = sh⋆ (noting
that VC(D) = VC(Dh⋆(C)) since the Y component of D × Y is the same for all D × Y ∈ D).
Thus, for any n ∈ N with n ≥ sh⋆ , and any δ ∈ (0, 1), for Sn ∼ Pn, since every h ∈ CSn have
∀(x, y) ∈ Sn, h(x) = y (by definition of CSn), we have (DIS(CSn) ∩ Y) ∩ Sn = ∅, and therefore,
with probability at least 1− δ, (3) implies

PX(DIS(CSn)) = P (DIS(CSn)× Y) ≤
2

n

(
sh⋆ log2

(
en

sh⋆

)
+ log2

(
2

δ

))
.

11. It is straightforward to generalize this analysis to any P with infh∈C P ((x, y) : h(x) ̸= y) = 0, in which case a
slight modification of the argument below holds for h⋆ defined as any element of C with, say, P ((x, y) : h⋆(x) ̸=
y) < δ/(2n). By a slightly more involved analysis, the result can in fact be stated with h⋆ defined as any measurable
function (not necessarily in C) with P ((x, y) : h⋆(x) ̸= y) = 0 and infh∈C PX(x : h(x) ̸= h⋆(x)) = 0 (which
necessarily exists for any class with s < ∞; see Hanneke, 2012). For simplicity, we omit these details.

12. Here, and throughout this section, we do not discuss nuances arising from measurability considerations. Such issues
have been thoroughly discussed in the literature, such as by Blumer, Ehrenfeucht, Haussler, and Warmuth (1989);
van der Vaart and Wellner (1996); van Handel (2013); in particular, if Z is countable, or D satisfies certain topological
conditions, then the stated events will indeed be measurable.
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Thus, we have recovered the bound (1) of Hanneke and Yang (2015); Hanneke (2016) by a new
proof: that is, via the classic PAC bound (3), rather than via generalization bounds for sample
compression schemes. This is not to say that there is anything wrong with the latter; on the contrary,
the proof of the compression scheme generalization bound is considerably simpler than the proof
of VC-based generalization bounds. Nonetheless, it is often valuable to have multiple proofs of
results, and understanding these different perspectives may lead to further insights in the future,
such as in contexts where compression-based analysis has so-far not yielded sharp guarantees (such
as, perhaps, in active learning with classification noise; see the discussion in Wiener, Hanneke, and
El-Yaniv, 2015).

We can also use Theorem 3 to obtain the sharper bound (2) of Hanneke (2016), again via VC-
based generalization bounds rather than compression schemes. We present two proofs of this, based
on different results from Hanneke (2016). The first argument is based on the fact that DIS(CS) is
non-increasing in S: that is, for any S, T ∈

⋃
n≥0(X × Y)n, DIS(CS∪T ) ⊆ DIS(CS). Hanneke

(2016, Theorem 1) states a generalization bound for such monotone functions S 7→ D̂(S) ∈ D, for
any set D, in terms of VC(D). Specifically, (for any P , δ, n, as described above, and Sn ∼ Pn),
with probability at least 1− δ,

P (D̂(Sn)) ≤
4

n

(
17VC(D) + 4 ln

(
4

δ

))
.

In particular, taking P , PX , and h⋆ as above, and D = {D × Y : D ∈ Dh⋆(C)} as above, and
recalling that Theorem 3 implies VC(D) = sh⋆ , Theorem 1 of Hanneke (2016) implies that with
probability at least 1− δ,

PX(DIS(CSn)) = P (DIS(CSn)× Y) ≤
4

n

(
17sh⋆ + 4 ln

(
4

δ

))
. (4)

This recovers the form of the bound (2) proven by Hanneke (2016), again proven via VC general-
ization bounds rather than sample compression-based bounds.

We can also give yet another proof of this bound, with slightly sharpened numerical constant
factors, using Theorem 16, in conjunction with a generalization bound of Hanneke (2016, Corollary
12) for general empirical risk minimizers, which refines the classic PAC bound (3). Specifically
(continuing with any abstract space D, and any P , δ, n, and for Sn ∼ Pn), Theorem 11 of Hanneke
(2016) and Lemma 44 of Hanneke and Yang (2015) together imply13 that, with probability at least
1− δ, every D ∈ D with D ∩ Sn = ∅ satisfies

P (D) ≤ 8

n

(
VC(D) ln

(
49es∅(D)
VC(D)

+ 37

)
+ 8 ln

(
6

δ

))
. (5)

Returning to the definitions of P , PX , and h⋆ from (2), for n ∈ N and Sn ∼ Pn, with probability
one every (x, y) in Sn has h⋆(x) = y, which further implies DIS(CSn) ∈ Dh⋆(C). Thus, applying

13. In the context of Theorem 11 of Hanneke (2016), we are interpreting the “target concept” as ∅ (equivalently, the all-
zero function), so that the error rate of 1D is P (D). Theorem 11 of Hanneke (2016) then gives a bound of this form,
but with s∅(D) replaced by a quantity maxt≤n n̂t, where n̂t is the minimum size of a version space compression
set for the first t data points (Hanneke, 2007a; El-Yaniv and Wiener, 2010; Wiener, Hanneke, and El-Yaniv, 2015):
that is, the smallest size of a subset Ŝ of the first t data points St such that every D ∈ D with D ∩ Ŝ = ∅ also has
D ∩ St = ∅. Lemma 14 of Hanneke and Yang (2015) then implies that such a minimal-sized Ŝ is a star set centered
at ∅, and hence has size at most s∅(D).
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(5) to the set D = {D × Y : D ∈ Dh⋆(C)}, and recalling that Theorem 3 implies VC(D) = sh⋆ ,
while Theorem 16 implies s∅(D) = sh⋆ , for any δ ∈ (0, 1), we have that with probability at least
1− δ,

PX(DIS(CSn)) = P (DIS(CSn)× Y) ≤
8

n

(
sh⋆ ln(49e+ 37) + 8 ln

(
6

δ

))
.

This gives a numerical constant on the lead term (i.e., the sh⋆ factor) at most 42, slightly sharper than
the bound (4) above (which is 68), though still not as sharp as the factor 21 from the compression-
based bound from Hanneke (2016), or the factor 2 ln(4) from the stable compression bound of
Bousquet, Hanneke, Moran, and Zhivotovskiy (2020a,b). Therefore, again the contribution of this
result (as with (4)) is merely in that it presents a new proof of the form of the bound.

We conclude this subsection by noting that the above bound is sharp up to constant factors,
as implied by the following theorem; this result is new, though is related to known lower bound
arguments from Hanneke (2016).

Theorem 32 For any concept class C and any concept h⋆ with sh⋆ ≥ 2, for any δ ∈ (0, 1/2) and
any n ∈ N, there exists a marginal distribution PX over X such that, letting P denote the joint
distribution over X ×Y such that (X,Y ) ∼ P has X ∼ PX and Y := h⋆(X), P is realizable with
respect to C and for Sn ∼ Pn, with probability greater than δ,

PX(DIS(CSn)) ≥ max

{
sh⋆ − 1

4n
,
1

2n
log2

(
1

δ

)}
∧ 1

2
= Ω

(
min

{
1

n

(
sh⋆ + log

(
1

δ

))
,
1

2

})
.

(6)

Proof We establish the lower bound in four parts via a (simplified variant of a) standard argument
from PAC learning (Vapnik and Chervonenkis, 1974; Ehrenfeucht, Haussler, Kearns, and Valiant,
1989). The first two parts establish a lower bound min

{
1
2n log2

(
1
δ

)
, 12
}

. For these, we will let PX

be supported on any star set {x1, x2} centered at h⋆.
First consider the case n ≤ log2

(
1
δ

)
. In this case, set PX({x1}) = PX({x2}) = 1

2 , and let
P be constructed as in the theorem (with marginal PX on X , and target concept h⋆), noting that
Definition 2 implies P is realizable. Let Sn = {(X1, Y1), . . . , (Xn, Yn)} ∼ Pn, and note that the
probability that either every i ≤ n has (Xi, Yi) = (x1, h

⋆(x1)) or every i ≤ n has (Xi, Yi) =
(x2, h

⋆(x2)) is precisely 2
(
1
2

)n ≥ 2δ. On this event, we have |DIS(CSn) ∩ {x1, x2}| = 1, so that
PX(DIS(CSn)) =

1
2 .

Second, consider the case n > log2
(
1
δ

)
. In this case, set PX({x2}) = 1

2n log2
(
1
δ

)
and

PX({x1}) = 1−PX({x2}). Again let P be as described in the theorem (with marginal PX and tar-
get concept h⋆), noting that Definition 2 implies P is realizable. Let Sn = {(X1, Y1), . . . , (Xn, Yn)}
∼ Pn. We are again interested in the event that every i ≤ n has (Xi, Yi) = (x1, h

⋆(x1)): namely,

PX({x1})n =

(
1− 1

2n
log2

(
1

δ

))n

.

The right hand side is an increasing function of n in the range n > log2
(
1
δ

)
, and is therefore

greater than
(
1− 1

2

)log2(1/δ) = δ. On this event, we have DIS(CSn) ∩ {x1, x2} = {x2}, so that
PX(DIS(CSn)) =

1
2n log2

(
1
δ

)
.
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Next we prove a lower bound min
{

sh⋆−1
4n , 12

}
. Again, there will be two cases. First, consider the

case that n ≤ sh⋆−1
2 . Let {x1, . . . , x2n} be any star set centered at h⋆ (which must exist since 2n ≤

sh⋆). Define PX as uniform on {x1, . . . , x2n}, and note that for any X1, . . . , Xn ∈ {x1, . . . , x2n},
for Sn = {(X1, h

⋆(X1)), . . . , (Xn, h
⋆(Xn))}, DIS(CSn) ∩ {x1, . . . , x2n} = {x1, . . . , x2n} \

{X1, . . . , Xn}, which has size at least n and has PX probability mass at least 1
2 . Let P be as

in the theorem statement (i.e., marginal PX on X , and target concept h⋆), and note that Definition 2
implies P is realizable. For Sn = {(X1, Y1), . . . , (Xn, Yn)} ∼ Pn, since every Yi = h⋆(Xi), we
have (always)

PX(DIS(CSn)) = PX({x1, . . . , x2n} \ {X1, . . . , Xn}) ≥
1

2
.

To complete the proof, we consider the case that n > sh⋆−1
2 and establish a lower bound sh⋆−1

4n
holding with probability at least 1

2 > δ. Let x1, . . . , xsh⋆ be a star set centered at h⋆, and define
the marginal distribution PX by PX({xi}) = 1

2n for i ∈ {2, . . . , sh⋆} and PX({x1}) = 1− sh⋆−1
2n ,

noting that this is positive by the condition n > sh⋆−1
2 . Define P as in the theorem statement (i.e.,

marginal PX on X , and target concept h⋆), and note that Definition 2 implies P is realizable. Let
Sn = {(X1, Y1), . . . , (Xn, Yn)} ∼ Pn. Note that the number of i ≤ n with Xi ∈ {x2, . . . , xsh⋆} is

a Binomial
(
n, sh⋆−1

2n

)
random variable, which therefore has

⌊
sh⋆−1

2

⌋
as a median value. Thus, with

probability at least 1
2 , there are at most sh⋆−1

2 values i ≤ n with Xi ∈ {x2, . . . , xsh⋆}. In particular,
this also implies there are at most sh⋆−1

2 values i ∈ {2, . . . , sh⋆} with xi /∈ {X1, . . . , Xn}. Since
x1, . . . , xsh⋆ is a star set centered at h⋆, we have

DIS(CSn) = {x1, . . . , xsh⋆} \ {X1, . . . , Xn}.

Therefore, on the above event of probability at least 1
2 > δ, we have PX(DIS(CSn)) ≥

sh⋆−1
4n .

Altogether, we have established that, for all values of n, there exists a distribution P which is
realizable with target concept h⋆ such that, for Sn ∼ Pn, with probability greater than δ,

PX(DIS(CSn)) ≥ max

{
min

{
sh⋆ − 1

4n
,
1

2

}
,min

{
1

2n
log2

(
1

δ

)
,
1

2

}}
= max

{
sh⋆ − 1

4n
,
1

2n
log2

(
1

δ

)}
∧ 1

2
.

E.2. Additional Relations

The works of El-Yaniv and Wiener (2010, 2012) study the problem of perfect selective classification
and the related setting of active learning. They adopt the approach of disagreement-based learning,
as in other works on active learning and reliable prediction (e.g., Cohn, Atlas, and Ladner, 1994;
Balcan, Beygelzimer, and Langford, 2006; Hanneke, 2007b; Dasgupta, Hsu, and Monteleoni, 2007;
Rivest and Sloan, 1988; Balcan, Hanneke, Pukdee, and Sharma, 2024). Their analysis then boils
down to bounding the probability PX(DIS(CSn)) of the region of disagreement of the version space
induced by a data set Sn ∼ Pn, for realizable distributions P . However, rather than bounding this
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in terms of the disagreement coefficient (as in prior works of Hanneke, 2007b, 2009b,a, 2011; Das-
gupta, Hsu, and Monteleoni, 2007), they propose a novel analysis based on a quantity they introduce,
expressed as the VC dimension of regions of disagreement of certain version spaces.14 Specifically,
they introduce a quantity γ(k) which they call the order-k characterizing set complexity: namely,

γ(k) = VC
({

DIS(CS) : S ∈ (X × Y)k
})

,

the VC dimension of regions of disagreement of version spaces induced by data sets of size k.
Their bound on PX(DIS(CSn)) is then expressed in terms of γ(k), for a particular choice of k.
Specifically, for any n ∈ N and data set Sn = {(x1, y1), . . . , (xn, yn)} ∈ X × Y , they let n̂(Sn)
denote the version space compression set size: namely, the size of the minimal subsequence Ŝ ⊆ Sn

for which CŜ = CSn (also known as the empirical teaching dimension, or minimal specifying set
size, in the works of Hanneke (2007a,c, 2014); Hanneke and Yang (2015)). They then establish an
upper bound on PX(DIS(CSn)): for any realizable distribution P , for any n ∈ N and Sn ∼ Pn,
with probability at least 1− δ,

PX(DIS(CSn)) = O

(
1

n

(
γ(n̂(Sn)) log

(
n

γ(n̂(Sn))

)
+ log

(
1

δ

)))
. (7)

This analysis was later refined by Wiener, Hanneke, and El-Yaniv (2015), who showed that in
fact this same bound holds with n̂(Sn) in place of γ(n̂(Sn)), and indeed Hanneke (2016); Hanneke
and Kontorovich (2020) further refined this result by entirely removing the resulting log(n/n̂(Sn))
factor on the lead term. Nevertheless, it is interesting to consider the original bound (7) of El-Yaniv
and Wiener (2010, 2012) as expressed in terms of γ(n̂(Sn)), and attempt to relate it to other known
quantities, and in particular, compare it to the optimal distribution-free bound on PX(DIS(CSn)):
that is, Θ

(
1
n

(
s+ log

(
1
δ

))
∧ 1
)
; indeed, if h⋆ is the target concept for a realizable distribution P

(i.e., P ((x, y) : h⋆(x) ̸= y) = 0), then the results of Hanneke (2016); Hanneke and Yang (2015) and
Section E imply an optimal h⋆-dependent bound Θ

(
1
n

(
sh⋆ + log

(
1
δ

))
∧ 1
)

(see also Section E.1).
As one immediate observation, by Proposition 4, we have γ(k) = O(s), so that the bound

(7) implies a bound O
(
1
n

(
s log

(
n
s

)
+ log

(
1
δ

))
∧ 1
)
, which matches up to a log factor the optimal

target-independent bound Θ
(
1
n

(
s+ log

(
1
δ

))
∧ 1
)

(which follows from the upper bound of Han-
neke, 2016 and the lower bound from Theorem 32 of Section E). Moreover, we may further refine
the above bound to be target-dependent, noting that (by the same proof as in the original work of
El-Yaniv and Wiener, 2010, 2012) it is possible to replace γ(k) in (7) with

γh⋆(k) := VC
({

DIS(CS) : S ∈ {(x, h⋆(x)) : x ∈ X}k
})

for realizable distributions P with target concept h⋆ ∈ C. We may then note that Theorem 3
implies γh⋆(k) ≤ sh⋆ . Thus, this h⋆-dependent refinement of (7) implies an upper bound of
O
(

1
n

(
sh⋆ log

(
n
sh⋆

)
+ log

(
1
δ

))
∧ 1
)

, which matches up to a log factor the optimal target-dependent

bound Θ
(
1
n

(
sh⋆ + log

(
1
δ

))
∧ 1
)

(see Section E).
In light of our Theorem 32, significant further refinements of the inequality γh⋆(n̂(Sn)) ≤ sh⋆

are not generally possible. Indeed, examining the proof of Theorem 3, we may note that the proof
of the lower bound VC(Dh(C)) ≥ sh has a further implication that, for any finite n ≤ sh, the

14. Indeed, understanding the relation of this definition to the star number was a key inspiration for the present work.
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inequality VC(Dh(C)) ≥ n is witnessed by data sets of size at most n, which therefore implies
γh⋆(k) ≥ min{sh⋆ , k}. Moreover, ∀n ∈ N, the value ˆ̂nh⋆(n) := max{n̂(Sn) : Sn ∈ {(x, h⋆(x)) :
x ∈ X}n} is known to satisfy ˆ̂nh⋆(n) = min{sh⋆ , n} (Hanneke and Yang, 2015). It follows that

max{γh⋆(n̂h⋆(Sn)) : Sn ∈ {(x, h⋆(x)) : x ∈ X}n} ≥ min{sh⋆ , n}.

Appendix F. Proofs of Results from Section 2.1: The Star Number

F.1. Proof of Theorem 3 (Relating Star Number and VC Dimension)

This section presents the proofs of Theorem 3 and Proposition 4.
Proof of Theorem 3 We first argue that VC(Vh(C)) ≥ s̄h for any concept h. Specifically, consider
any extended star set x1, . . . , xn (for C) centered at h. Let h1, . . . , hn ∈ C be as in the definition
of s̄h: that is, ∀i, j ∈ {1, . . . , n}, hi(xj) = h(xj) iff i ̸= j. We will show that {h1, . . . , hn} is
shattered by Vh(C). For any I ⊆ {1, . . . , n}, letting S = {(xj , h(xj))}j∈{1,...,n}\I , we claim that
CS ∩ {h1, . . . , hn} = {hi : i ∈ I}. To see this, note that each i ∈ I has hi(xj) = h(xj) for every
j ̸= i, and therefore for every j ∈ {1, . . . , n}\I , so that hi ∈ CS ; moreover, every i ∈ {1, . . . , n}\I
has (xi, h(xi)) ∈ S, whereas hi(xi) ̸= h(xi), so that hi /∈ CS . Thus, {h1, . . . , hn} is shattered by
Vh(C), and hence VC(Vh(C)) ≥ n. Since such an extended star set exists for any finite n ≤ s̄h, we
conclude that VC(Vh(C)) ≥ s̄h. Moreover, since VC(V(C)) ≥ VC(Vh(C)) for any concept h, we
further conclude that VC(V(C)) ≥ suphVC(Vh(C)) ≥ suph s̄h = s̄.

Next we argue that every concept h has VC(Vh(C)) ≤ s̄h. Let {h1, . . . , hn} ⊆ C be any
set shattered by Vh(C). In particular, from the definition of shattering, this implies that for every
i ∈ {1, . . . , n}, there exists a data set Si consistent with h (i.e., a sequence of pairs (x, h(x))) such
that CSi ∩ {h1, . . . , hn} = {hj : j ∈ {1, . . . , n} \ {i}}. Since hi /∈ CSi , there must exist at least
one example (xi, h(xi)) in Si with hi(xi) ̸= h(xi). Moreover, since every j ̸= i has hj ∈ CSi , it
must also be that hj(xi) = h(xi) for this example. We thus have a sequence x1, . . . , xn ∈ X such
that, ∀i, j ∈ {1, . . . , n}, hi(xj) = h(xj) iff i ̸= j. Thus, x1, . . . , xn is an extended star set (for
C) centered at h, so that s̄h ≥ n. Since such a shattered set {h1, . . . , hn} ⊆ C exists for any finite
n ≤ VC(Vh(C)), we conclude that s̄h ≥ VC(Vh(C)).

Together with the fact that VC(Vh(C)) ≤ s̄h established above, we have that VC(Vh(C)) = s̄h.
Moreover, if h ∈ C, we can always take h0 = h to witness that any extended star set centered
at h is also a star set centered at h, so that s̄h = sh in this case. Therefore, for h ∈ C, we have
VC(Vh(C)) = sh.

We may argue that VC(V(C)) ≤ s̄ by a nearly-identical argument to the above. Consider
any set {h1, . . . , hn} ⊆ C shattered by V(C). In particular, this implies that ∀i ∈ {1, . . . , n},
there exists a data set Si such that CSi ∩ {h1, . . . , hn} = {hj : j ∈ {1, . . . , n} \ {i}}. Since
hi /∈ CSi , there must exist at least one example (xi, yi) in Si such that hi(xi) ̸= yi. Moreover,
for each j ̸= i, since hj ∈ CSi , it must be that hj(xi) = yi. We have therefore constructed
a sequence (x1, y1), . . . , (xn, yn) such that, ∀i, j ∈ {1, . . . , n}, hi(xj) = yj iff j ̸= i: that is,
an extended star set centered at some h with h(xi) = yi for all i (noting that the above property
implies every xi is necessarily distinct, so that such an h exists). Thus, we have that s̄ ≥ n. Since
such a shattered set {h1, . . . , hn} ⊆ C exists for every finite n ≤ VC(V(C)), we conclude that
s̄ ≥ VC(V(C)). Together with the above argument establishing that VC(V(C)) ≥ s̄, we conclude
that VC(V(C)) = s̄.
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Similarly to the above, we can argue that VC(Dh(C)) ≥ sh for any h ∈ C. Let {x1, . . . , xn}
be a star set (for C) centered at h, and let h0, . . . , hn be as in the definition of sh: that is, ∀i ∈
{0, . . . , n}, ∀j ∈ {1, . . . , n}, hi(xj) = h(xj) iff i ̸= j. We will argue that {x1, . . . , xn} is
shattered by Dh(C). For any I ⊆ {1, . . . , n}, again letting S = {(xj , h(xj))}j∈{1,...,n}\I , we
claim that DIS(CS) ∩ {x1, . . . , xn} = {xi : i ∈ I}. To see this, note that the definition of the
hi functions guarantees that, for each i ∈ I ∪ {0} and j ∈ {1, . . . , n} \ I , since j ̸= i we have
hi(xj) = h(xj), so that hi ∈ CS ; thus, since each i ∈ I has hi(xi) ̸= h0(xi), and we have argued
that {hi, h0} ⊆ CS , we have that {xi : i ∈ I} ⊆ DIS(CS). Also note that every h′ ∈ CS has
h′(xj) = h(xj) for all j ∈ {1, . . . , n}\I by definition of CS , so that any such j has xj /∈ DIS(CS).
Together, we have DIS(CS) ∩ {x1, . . . , xn} = {xi : i ∈ I}. Thus, {x1, . . . , xn} is shattered by
Dh(C), so that VC(Dh(C)) ≥ sh. Since such a star set exists for any finite n ≤ sh, we conclude
that VC(Vh(C)) ≥ sh.

We next argue that sh ≥ VC(Dh(C)) for any h ∈ C, as follows. Let {x1, . . . , xn} ⊆ X be a set
shattered by Dh(C). In particular, from the definition of shattering, for every i ∈ {1, . . . , n},
there must exist a data set Si consistent with h (i.e., a sequence of pairs (x, h(x))) such that
DIS(CSi) ∩ {x1, . . . , xn} = {xi}. Since xi ∈ DIS(CSi), there must exist some hi ∈ CSi with
hi(xi) ̸= h(xi). Moreover, since Si is consistent with h, and h ∈ C, we know that h ∈ CSi ; thus,
since every j ̸= i have xj /∈ DIS(CSi), and {hi, h} ⊆ CSi , it must be that hi(xj) = h(xj). Defining
h0 = h, we have thus found a sequence h0, . . . , hn such that, ∀i ∈ {0, 1, . . . , n}, ∀j ∈ {1, . . . , n},
hi(xj) = h(xj) iff j ̸= i: that is, x1, . . . , xn is a star set (for C) centered at h. Therefore,
we have that sh ≥ n. Since there exist sets {x1, . . . , xn} shattered by Dh(C) for every finite
n ≤ VC(Dh(C)), we conclude that sh ≥ VC(Dh(C)). Combining this with the above argument
that VC(Dh(C)) ≥ sh, we conclude that VC(Dh(C)) = sh for any h ∈ C.

Next we present the proof of Proposition 4.

Proof of Proposition 4 Suppose x1, . . . , xn ∈ X are shattered by D(C), and for each I ⊆
{1, . . . , n} let SI ∈ (X × Y)∗ be such that DIS(CSI

) ∩ {x1, . . . , xn} = {xi : i ∈ I}. We
first argue that, without loss of generality, we may take these SI sets to be labelings of subsets of
{x1, . . . , xn}. For each I ⊆ {1, . . . , n} with I ̸= ∅, it must be that CSI

̸= ∅, and hence for each
j ∈ {1, . . . , n}\I , there is a label yj ∈ Y such that every h ∈ CSI

has h(xj) = yj . Hence, denoting
by S′

I = {(xj , yj) : j ∈ {1, . . . , n} \ I}, we have CS′
I
⊇ CSI

, so that DIS(CS′
I
) ⊇ DIS(CSI

),
and yet clearly we still have xj /∈ DIS(CS′

I
) for each j ∈ {1, . . . , n} \ I (i.e., every h ∈ CS′

I

has h(xj) = yj , by definition). Thus, DIS(CS′
I
) ∩ {x1, . . . , xn} = {xi : i ∈ I}. Moreover, for

I = ∅, we can take any h0 ∈ C and define S′
I = {(x1, h0(x1)), . . . , (xn, h0(xn))} so that again

we have CS′
I
̸= ∅ and DIS(CS′

I
) ∩ {x1, . . . , xn} = ∅ = {xi : i ∈ I}. We therefore have that

D′ := {DIS(CS′
I
) : I ⊆ {1, . . . , n}} shatters {x1, . . . , xn}. In particular, since there are exactly

2n sets in this collection D′, this further implies that the CS′
I

version spaces are all distinct, and are
non-empty by definition.

We aim to show that n ≤ 2s log2(e|Y|). If n ≤ s, this is trivially satisfied. For the remaining
case, let n > s. By the above observation, we know |D′| = 2n. Moreover, recall that for any data
set S′

I , since CS′
I
̸= ∅, S′

I contains a subset S′′
I of size at most s for which CS′′

I
= CS′

I
: that is, a

version space compression set of size at most s (see Theorem 13 of Hanneke and Yang, 2015; as
remarked in footnote 3 of Section 3, though their result was stated for binary classification, their
proof also applies to general Y spaces). Thus, the number of distinct sets in D′ is at most the number
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of possible realizable labeled data sets S′′ of size at most s, which is at most
(
n
≤s

)
|Y|s ≤

(
en
s

)s |Y|s.
Together, we have that

2n ≤
(en

s

)s
|Y|s.

Taking log2 of both sides yields

n ≤ s log2

(en
s

)
+ s log2(|Y|).

Together with Lemma 4.6 of Vidyasagar (2003), this implies

n < 2s log2(e) + 2s log2(|Y|) = 2s log2(e|Y|).

Since such a set {x1, . . . , xn} shattered by D(C) exists for every finite n ≤ VC(D(C)), we con-
clude that VC(D(C)) ≤ 2s log2(e|Y|).

F.2. Proof of Corollary 15 (Relating Star Number and Dual VC Dimension)

The facts that s̄ ≥ VC(HS(C)) ≥ VC∗(C) and s̄1 ≥ VC∗(C) follow immediately from Theo-
rem 3, since s̄ = VC(V(C)) and V(C) ⊇ HS(C), whereas s̄1 = VC(V1(C)) and VC∗(C) =
VC({C{(x,1)} : x ∈ X}), while V1(C) ⊇ {C{(x,1)} : x ∈ X}. It also follows immediately from
HS(C) ⊇ {C{(x,1)} : x ∈ X} that VC(HS(C)) ≥ VC∗(C).

It only remains to establish the claim that, for any concept h, s̄h ≥ VC(HS(C))/2. Consider
any {h1, . . . , hn} ⊆ C shattered by HS(C). Since ∅ and C are contained in HS(C) by definition,
these may serve as the sets D,D′ ∈ HS(C) with D ∩ {h1, . . . , hn} = ∅ and D′ ∩ {h1, . . . , hn} =
{h1, . . . , hn}. However, for the remaining subsets, they must be witnessed by the non-trivial half-
spaces: that is, sets of the form C{(x,y)}, (x, y) ∈ X × Y . Thus, for every H ∈ 2{h1,...,hn} \
{∅, {h1, . . . , hn}}, there exists (x, y) ∈ X × Y such that C{(x,y)} ∩ {h1, . . . , hn} = H . Note that,
for each such (x, y), there must be a “mirror” point (x′, y′) such that C{(x′,y′)} ∩ {h1, . . . , hn} =
{h1, . . . , hn} \ H = C{(x,1−y)} ∩ {h1, . . . , hn}, and therefore without loss of generality we may
suppose (x′, y′) = (x, 1 − y). Thus, there exist 2n−1 − 1 points x1, . . . , x2n−1−1 ∈ X such that
{C{(xi,y)} : i ≤ 2n−1− 1, y ∈ Y}∪{∅,C} shatters {h1, . . . , hn}. Moreover, for each H and (x, y)
as above, either H = C{(x,h(x))}∩{h1, . . . , hn} or {h1, . . . , hn}\H = C{(x,h(x))}∩{h1, . . . , hn}.
Since we also have C = C∅ ∈ Vh(C), we see that

|{V ∩ {h1, . . . , hn} : V ∈ Vh(C)}| ≥ 2n−1.

We may also complement the above inequality with the well-known Sauer’s lemma (Sauer,
1972; Shelah, 1978; Vapnik and Chervonenkis, 1974), which states that if n ≥ VC(Vh(C)), then

|{V ∩ {h1, . . . , hn} : V ∈ Vh(C)}| ≤
VC(Vh(C))∑

i=0

(
n

i

)
.

Since
∑n

i=0

(
n
i

)
= 2n and each i satisfies

(
n
i

)
=
(

n
i−1

)
, we may observe that

∑⌈n/2⌉−1
i=0

(
n
i

)
<

2n−1, so that the above two inequalities for |{V ∩ {h1, . . . , hn} : V ∈ Vh(C)}| together imply
VC(Vh(C)) ≥ ⌈n/2⌉. Since Theorem 3 implies VC(Vh(C)) = s̄h, this completes the proof. ■
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F.3. Proofs of the Relation Between the Star Number of Disagreement Regions and the Star
Number of the Concept Class

This section presents the proofs of Theorem 16, Proposition 17, and Proposition 18. We begin with
the proof of Theorem 16, establishing that s∅(Vh(C)) = s∅(Dh(C)) = sh(C).
Proof of Theorem 16 Fix any C and any concept h. First consider any (extended) star set
{x1, . . . , xn} (for C) centered at h. By definition, there exist h1, . . . , hn ∈ C such that ∀i, j ∈
{1, . . . , n}, hi(xj) = h(xj) iff j ̸= i. Note that for any i ∈ {1, . . . , n}, we have C{(xi,h(xi)} ∩
{h1, . . . , hn} = {hj : j ∈ {1, . . . , n} \ {i}}. Moreover, we trivially have C ∩ {h1, . . . , hn} =
{h1, . . . , hn}. Since C ∈ Vh(C) and each i ∈ {1, . . . , n} has C{(xi,h(xi))} ∈ Vh(C), this estab-
lishes that {h1, . . . , hn} is a star set (for Vh(C)) centered at C. Thus, sC(Vh(C)) ≥ n. Since such
an (extended) star set {x1, . . . , xn} exists for every finite n ≤ s̄h, we have that sC(Vh(C)) ≥ s̄h.

Moreover, in the case h ∈ C, for any i ∈ {1, . . . , n}, letting Si = {(xj , h(xj)) : j ∈
{1, . . . , n} \ {i}}, by definition of hi we have {h, hi} ⊆ CSi , and hi(xi) ̸= h(xi), so that
xi ∈ DIS(CSi). Furthermore, since Si contains (xj , h(xj)) for every j ̸= i, we have that ev-
ery h′ ∈ CSi has h′(xj) = h(xj) for every j ̸= i, so that xj /∈ DIS(CSi). Altogether, we
have that every i ∈ {1, . . . , n} satisfies DIS(CSi) ∩ {x1, . . . , xn} = {xi}. Additionally, letting
S0 = {(x1, h(x1)), . . . , (xn, h(xn))}, every h′ ∈ CS0 has h′(xj) = h(xj) for all j ∈ {1, . . . , n},
and therefore DIS(CS0) ∩ {x1, . . . , xn} = ∅. Since CSi ∈ Vh(C) for every i ∈ {0, . . . , n}, we
have thus established that {x1, . . . , xn} is a star set (for Dh(C)) centered at ∅. Since such a star set
{x1, . . . , xn} (for C) centered at h exists for every finite n ≤ sh, we conclude that s∅(Dh(C)) ≥ sh.
It remains to complement these with the opposite inequalities.

Consider again any concept h, and consider any star set {h1, . . . , hn} ⊆ C (for Vh(C)) centered
at C. By definition, there exist data sets S1, . . . , Sn consistent with h (i.e., sequences of pairs
(x, h(x))) such that every i ∈ {1, . . . , n} has CSi ∩{h1, . . . , hn} = {hj : j ∈ {1, . . . , n}\{i}}. In
particular, there must exist at least one point (xi, h(xi)) in Si such that hi(xi) ̸= h(xi). Moreover,
since every j ̸= i has hj ∈ CSi , we also have that hj(xi) = h(xi). We have thus found a sequence
{x1, . . . , xn} such that ∀i, j ∈ {1, . . . , n}, hi(xj) = h(xj) iff i ̸= j. We have therefore established
that {x1, . . . , xn} is an extended star set (for C) centered at h, so that s̄h ≥ n. Since there exists
such a star set {h1, . . . , hn} (for Vh(C)) centered at C for every finite n ≤ sC(Vh(C)), we conclude
that s̄h ≥ sC(Vh(C)). Together with the fact that sC(Vh(C)) ≥ s̄h (established above), we further
conclude that s̄C(Vh(C)) = sh.

Next, consider the case h ∈ C, and consider any star set {x1, . . . , xn} (for Dh(C)) centered
at ∅. By definition, there exist data sets S1, . . . , Sn consistent with h (i.e., sequences of pairs
(x, h(x))), such that ∀i ∈ {1, . . . , n}, DIS(CSi) ∩ {x1, . . . , xn} = {xi}. In particular, this im-
plies there exists hi ∈ CSi with hi(xi) ̸= h(xi). Moreover, since every j ̸= i has xj /∈ DIS(CSi),
and since h ∈ CSi (Si being a sequence of (x, h(x)) pairs), it must be that every h′ ∈ CSi has
h′(xj) = h(xj), and therefore in particular, hi(xj) = h(xj). Letting h0 = h, we have thus found
a sequence h0, h1, . . . , hn such that, ∀i ∈ {0, . . . , n}, ∀j ∈ {1, . . . , n}, hi(xj) = h(xj) iff j ̸= i:
that is, {x1, . . . , xn} is a star set (for C) centered at h. It follows that sh ≥ n. Since there exists
such a star set {x1, . . . , xn} (for Dh(C)) centered at ∅ for every finite n ≤ s∅(Dh(C)), we conclude
that sh ≥ s∅(Dh(C)). Together with the fact that s∅(Dh(C)) ≥ sh (established above), we further
conclude that s∅(Dh(C)) = sh, which completes the proof.
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Next we present the proof of Proposition 17, establishing that in general there can be large gaps
between s(C) and the value s(Dh(C)).
Proof of Proposition 17 Consider the concept class C of homogeneous linear classifiers C = {x 7→
hw(x) := 1[w⊤x ≥ 0] : w ∈ R2, ∥w∥ = 1} on X = {x ∈ R2 : ∥x∥ = 1} the unit circle in R2.
Let h = hw ∈ C. Since any two distinct non-antipodal points x1, x2 are shattered by C (and are
therefore a star set centered at every concept), it is clear that sh ≥ 2. To see that sh < 3, consider any
three points x1, x2, x3 ∈ X (and without loss of generality, suppose they are distinct, or else clearly
they cannot be a star set). If two of the points, xa and xb are antipodal and h(xa) = h(xb) = 1, then
any h′ ∈ C with h′ ̸= h has either h′(xa) = 0 or h′(xb) = 0, so in particular, there does not exist
h′ ∈ C with h′(xc) ̸= h(xc) (for the third point xc) while h′(xa) = h(xa) and h′(xb) = h(xb),
so that x1, x2, x3 are not a star set centered at h. On the other hand, suppose no such xa, xb exist.
Consider the line (through the origin) corresponding to the decision boundary of h (i.e., the points
x ∈ R2 with w⊤x = 0). Note that we can view any h′ ∈ C with h′ ̸= h as a rotation of h. However,
among x1, x2, x3, there is a point xi such that rotating the line corresponding to h clockwise will
intersect xi first, and a point xj such that rotating the line counterclockwise will intersect xj first
(in either case, if there is a “tie”, it must be that there were two antipodal points, in which case we
choose the point whose h(x) value was 0). Thus, for any h′ ∈ C with h′(xk) ̸= h(xk) for the third
point xk (the remaining element in {x1, x2, x3}\{xi, xj}), the minimal-angle rotation transforming
h to h′ must cross one of xi or xj , so that either h′(xi) ̸= h(xi) or h′(xj) ̸= h(xj). Therefore,
x1, x2, x3 is not a star set.

Next consider sX (Dh(C)). For this, note that C ∈ Vh(C), and DIS(C) = X . On the other
hand, for any x ∈ X , DIS(C{(x,h(x))}) = X \ {x}. Thus, effectively all of X is a star set (for
Dh(C)) centered at X (and in particular, any finite subset X ′ ⊂ X is a finite star set centered at X ),
so that sX (Dh(C)) =∞.

Next we turn to the claim about Vh(C). Let Y = X = N, define x 7→ h(x) := x (the
identity function), and for each y ∈ N define x 7→ hy(x) = y (the constant functions), and let
C = {hy : y ∈ Y} ∪ {h}. Any distinct x, x′ ∈ X are a star set centered at h, as witnessed by
hx′ and hx, so s̄(C) ≥ sh(C) ≥ 2. On the other hand, for any x, x′, x′′ ∈ X , if we suppose (for
the sake of contradiction) that they are a star set centered at some h0, then since the 3 functions
witnessing this must all be distinct functions in C, it must be that at least two of them are constant
functions hy, hy′ , which (by definition of a star set) means hy and hy′ must agree with h0 on at
least one of x, x′, x′′, which implies y = y′: a contradiction (since they are distinct constant func-
tions). Thus, s̄(C) ≤ 2. On the other hand, for every y ∈ Y , {h, hy} = C{(y,y)} ∈ Vh(C), so that
C{(y,y)} ∩ {hy′ : y′ ∈ Y} = {hy}: that is, {hy : y ∈ Y} is an infinite star set for Vh(C) centered at
∅. Therefore, s∅(Vh(C)) =∞.

We conclude this section by presenting the proof of Proposition 18, establishing that the star
number is nearly self-dual.
Proof of Proposition 18 Noting that C∗∗ = C, the second claimed sequence of inequalities follows
immediately from the first claimed sequence of inequalities, so we need only establish the first
claim. The inequality s̄(C∗) ≥ s̄const(C∗) follows immediately from the definition of s̄(C∗): that
is, s̄(C∗) = supf s̄f (C∗) ≥ supy∈Y s̄h7→y(C∗).

Next we show that s̄const(C∗) = s̄const(C). Let {x1, . . . , xn} be an extended star set for C
centered at a constant function x 7→ y0 for some y0 ∈ Y: that is, ∃h1, . . . , hn ∈ C such that ∀i, j ∈
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{1, . . . , n}, hi(xj) = y0 iff i ̸= j. By definition, this can be stated equivalently as fxj (hi) = y0
iff i ̸= j, so that fx1 , . . . , fxn ∈ C∗ witness the fact that h1, . . . , hn are an extended star set for
C∗ centered at the constant function h 7→ y0. Since such an extended star set x1, . . . , xn centered
at some constant function exists for every finite n ≤ s̄const(C), we have s̄const(C∗) ≥ s̄const(C).
Moreover, applying this inequality to the concept class C∗, we have s̄const(C) = s̄const(C∗∗) ≥
s̄const(C∗) as well, so that s̄const(C∗) = s̄const(C).

Finally, we argue that s̄const(C) ≥ 1
|Y| s̄(C). Let x1, . . . , xn be an extended star set for C

centered at some function h : X → Y: that is, ∃h1, . . . , hn ∈ C such that ∀i, j ∈ {1, . . . , n},
hi(xj) = h(xj) iff i ̸= j. By the pigeonhole principle, there exists y0 ∈ Y such that |{xj : h(xj) =
y0, j ∈ {1, . . . , n}}| ≥ n

|Y| . By definition, the functions hi with h(xi) = y0 witness the fact that
{xj : h(xj) = y0, j ∈ {1, . . . , n}} is an extended star set for C centered at the constant function
x 7→ y0, so that s̄const(C) ≥ |{xj : h(xj) = y0, j ∈ {1, . . . , n}}| ≥ n

|Y| . Since such an extended
star set for C exists for every finite n ≤ s̄(C), we have that s̄const(C) ≥ 1

|Y| s̄(C). This completes
the proof.

Appendix G. Proof of Theorem 7 (Exact Learning with Membership Queries)

The proof follows closely the proofs of Hegedüs (1995), which established analogous results except
with log(|C|) in place of L, and only for the case of |Y| = 2. Both the generalization to any finite
Y , and replacing log(|C|) by L, require only minor adjustments to the proof. Most notably, whereas
the algorithm of Hegedüs (1995) was essentially based on the Halving algorithm (an online learning
algorithm guaranteeing mistake bound log(|C|)), we will instead substitute the Standard Optimal
Algorithm: SOA (defined below).

The Lower Bound: We begin with the lower bound, establishing that if |C| =∞ then QCMQ(C) =
∞, and if |C| < ∞, then QCMQ(C) ≥ log|Y|(|C|). The key observation is that, since the learning
algorithm is deterministic, the setting is equivalent to one in which an adversary may respond to the
learner’s queries xt with any label yt ∈ Y , as long as the entire sequence {(x1, y1), . . . , (xQ, yQ)}
in the end is realizable by C. Then, for the algorithm to guarantee success, it must guarantee that
even for such adversarial responses, it will always end up with |C{(x1,y1),...,(xQ,yQ)}| = 1 (otherwise,
for whichever concept the learner would return, an adversary can always choose the other as h⋆, so
that in this case the learner would fail to return h⋆ despite all queries being answered according to
h⋆(xi) as required). Based on this equivalent formulation, we have that any C with |C| = 1 has
QCMQ(C) = 0, whereas any C with |C| ≥ 2 satisfies

QCMQ(C) = 1 +min
x∈X

max
y∈Y

QCMQ(C{(x,y)}). (8)

Consider first the case of |C| < ∞ and |Y| < ∞. We proceed by induction. If |C| = 1, then
QCMQ(C) = 0 = log|Y|(|C|). This will serve as our base case. Now take as an inductive hypothesis
that, for some C with |C| ≥ 2, for any C′ ⊊ C, it holds that QCMQ(C′) ≥ log|Y|(|C′|). Let x̂ ∈ X
be such that maxy∈Y QCMQ(C{(x̂,y)}) = minx∈X maxy∈Y QCMQ(C{(x,y)}). In particular, note
that such an x̂ must have that C{(x̂,y)} ⊊ C for every y ∈ Y , or else (8) would imply QCMQ(C) =
∞ ≥ log|Y|(|C|). Moreover, for such an x̂, since C =

⋃
y∈Y C{(x̂,y)}, by the pigeonhole principle
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there must exist at least one ŷ ∈ Y with |C{(x̂,ŷ)}| ≥ 1
|Y| |C|. Therefore,

QCMQ(C) = 1 +max
y∈Y

QCMQ(C{(x̂,y)}) ≥ 1 + QCMQ(C{(x̂,ŷ)})

≥ 1 + log|Y|(|C{(x̂,ŷ)}|) ≥ 1 + log|Y|

(
1

|Y|
|C|
)

= log|Y|(|C|),

where the second inequality is by the inductive hypothesis. It follows that every finite C satisfies
QCMQ(C) ≥ log|Y|(|C|) by the principle of induction.

We address the case of |C| = ∞ similarly. Here we only suppose that every x ∈ X has
|{h(x) : h ∈ C}| < ∞. Consider the execution of some learning algorithm, guaranteed to make
at most Q < ∞ queries. Let x1 be the algorithm’s first query point. By the pigeonhole principle,
there must exist at least one y1 ∈ {h(x1) : h ∈ C} with |C{(x1,y1)}| =∞. Supposing the adversary
replies with y1 to this query, let x2 be its next query point. Similarly, by the pigeonhole principle,
there exists at least one y2 ∈ {h(x2) : h ∈ C{(x1,y1)}} such that |C{(x1,y1),(x2,y2)}| = ∞. Let the
adversary reply with y2 to this second query, and let x3 be the algorithm’s third query point. This
continues inductively, so that after any number q ≤ Q of queries, we still have |C{(xi,yi)}i≤q

| =∞.
The algorithm will terminate after Q queries, and we will still have |C{(xi,yi)}i≤Q

| = ∞ > 1.
Thus, such a learning algorithm fails to be correct for this learning problem. Since this is true
of any learning algorithm guaranteeing any finite number Q < ∞ of queries, we conclude that
QCMQ(C) =∞.15

The Standard Optimal Algorithm: Before giving the proof of the upper bounds, we first for-
mally define a useful (for the purpose of the upper bound, and in general) online learning algorithm
known as the Standard Optimal Algorithm, or SOA. The SOA was proposed by Littlestone (1988)
for the special case Y = {0, 1}, and was extended to handle any label space Y by Daniely, Sabato,
Ben-David, and Shalev-Shwartz (2015). It implements a function SOA : (X × Y)∗ × X → Y ,
defined as follows: for any n ∈ N∪{0} and any data set S = {(x1, y1), . . . , (xn, yn)} ∈ (X ×Y)n
realizable by C, for any x ∈ X ,

SOA(S, x) = argmax
y∈Y

L(CS∪{(x,y)}),

where we interpret L(∅) = −1 for convenience. Littlestone (1988); Daniely, Sabato, Ben-David,
and Shalev-Shwartz (2015) make the elementary observation that, for any concept class C′ with
L(C′) < ∞, for any x ∈ X , there is at most one y ∈ Y with L(C′

{(x,y)}) = L(C′): otherwise
we could make x a root node, with two edges labeled by the y, y′ which witness a violation of this
property, and upon each of these edges we could hang a subtree of depth L(C′) shattered by C{(x,y)}
and C{(x,y′)} respectively, thus overall creating a shattered tree of depth L(C′)+1, contradicting the
definition of L(C′). Based on this fact, Littlestone (1988); Daniely, Sabato, Ben-David, and Shalev-
Shwartz (2015) immediately conclude that, for any sequence {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n
realizable by C,

n∑
t=1

1[SOA(x1, y1, . . . , xt−1, yt−1, xt) ̸= yt] ≤ L, (9)

15. We have in fact proven a stronger result: namely, that for every deterministic MQ-algorithm, there exist responses
y1, y2, . . . to its queries x1, x2, . . ., for which all q < ∞ have {(xi, yi)}i≤q realizable by C, such that there is no
finite number of queries Q for which the algorithm has “finished” learning. Thus, the negative result for MQ-learning
also extends to the universal quantification of learnability studied by Bousquet, Hanneke, Moran, van Handel, and
Yehudayoff (2021).
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since each “mistake” in the sequence reduces the Littlestone dimension:

L(C{(xi,yi)}i≤t
) ≤ L(C{(xi,yi)}i<t

)− 1.

This mistake bound guarantee in (9) (a seminal result in the theory of online learning) will be the
only property of SOA salient to our proof of Theorem 7.

The Upper Bound: To complete the proof, we prove the claimed upper bound, establishing that
QCMQ(C) ≤ XTD(C)L. This part of the proof applies to any label space Y . A key ingredient in
this proof is the notion of a minimal specifying set. Specifically, for any concept g (not necessarily
in C), a minimal specifying set for g is a set Sg ⊆ X of minimal cardinality such that |{h ∈
C : h(S) = g(S)}| ≤ 1. It follows from the definition of XTD(C) that, for any g, any minimal
specifying set Sg for g has |Sg| ≤ XTD(C).

We are now ready to show QCMQ(C) ≤ XTD(C)L. Consider the following learning algorithm
for the problem of Exact Learning with Membership Queries for concept class C. This algorithm
is identical to an algorithm of Hegedüs (1995) known as MEMB-HALVING-1, except that we
substitute the SOA in place of the Halving algorithm (which is another online learning algorithm
also proposed by Littlestone, 1988).

Algorithm: MEMB-SOA-1
0. Initialize S = {}
1. While |CS | ≥ 2
2. Let g(·) = SOA(S, ·)
3. Let Sg be a minimal specifying set for g
4. Query each x ∈ Sg (in any order) to observe h⋆(x)
5. Let S ← S ∪ {(x, h⋆(x)) : x ∈ Sg}
6. Return the sole remaining element ĥ ∈ CS

We claim that for any h⋆ ∈ C, MEMB-SOA-1 makes a total number of queries at most
XTD(C)L before terminating. Moreover, since it only terminates when |CS | < 2, and S is a data
set consistent with h⋆, we have h⋆ ∈ CS , so that it always returns ĥ = h⋆ (as required for correct-
ness). Since each execution of steps 2-5 only queries the elements of a minimal specifying set, the
total number of queries per execution of these steps is at most XTD(C). It therefore suffices to show
that the algorithm executes steps 2-5 at most L number of times. In particular, we will argue that
after each execution of steps 2-5, L(CS) is reduced by at least 1. To see this, note that on each exe-
cution of step 5, we append to S a data set {(x, h⋆(x)) : x ∈ Sg}, where g = SOA(S) (for the data
set S before Sg is appended). In particular, if at this time we have g(x) = h⋆(x) for every x ∈ Sg,
then by definition of the minimal specifying set we have |CS∪Sg | ≤ 1. For us to enter steps 2-5 we
must have |CS | ≥ 2 (before appending Sg), which implies L(CS) ≥ 1, whereas if |CS∪Sg | ≤ 1 we
have L(CS∪Sg) ≤ 0 (and indeed, it is equal 0 since we will in fact have CS∪Sg = {h⋆}). On the
other hand, if there exists x ∈ Sg such that g(x) ̸= h⋆(x), then by definition of SOA(S) and the
aforementioned property that any y ̸= SOA(S, x) has L(CS∪{(x,y)}) < L(CS), we conclude that
L(CS∪Sg) ≤ L(CS) − 1. Since we initialize S = ∅, and therefore L(CS) = L(C) at the start, and
since we always retain h⋆ ∈ CS so that L(CS) ≥ 0, it follows that the algorithm executes steps 2-5
at most L(C) number of times. This completes the proof. ■
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Appendix H. Proof of Theorem 19 (on the VC Dimension of Embedding in an
Intersection-Closed Class)

Consider any star set {x1, . . . , xn} (for C) centered at 1. By definition, there exist h0, h1, . . . , hn ∈
C such that, for every i, j ∈ {1, . . . , n}, h0(xj) = 1 and hi(xj) = 1[j ̸= i]: that is, h0 classifies
all n points as 1, whereas for every xi, the concept hi classifies all n − 1 other points 1 while
hi(xi) = 0. We will argue that {x1, . . . , xn} is shattered by C̄. For any I ⊆ {1, . . . , n}, let
hI =

∏
j∈{0,...,n}\I hj ∈ C̄. For each i ∈ I , since every j ∈ {0, . . . , n} \ I has hj(xi) = 1, we

have hI(xi) = 1. For each i ∈ {1, . . . , n} \ I (if the set is non-empty), since hi(xi) = 0, we also
have hI(xi) = 0. We therefore have that {hI : I ⊆ {1, . . . , n}} shatters {x1, . . . , xn}, so that C̄
does as well. Since such a star set {x1, . . . , xn} exists for every finite n ≤ s1, we conclude that
VC(C̄) ≥ s1.

Next we complement this with the opposite inequality. Let {x1, . . . , xn} be any set shattered by
C̄. In particular, since all 2n classifications are realizable by C̄ and every h ∈ C̄ can be expressed
as a function hC′ for some finite non-empty set C′ ⊆ C, there must exist finite non-empty sets
C′
0,C′

1, . . . ,C′
n ⊆ C such that ∀i ∈ {0, . . . , n}, ∀j ∈ {1, . . . , n}, hC′

i
(xj) = 1 iff i ̸= j. Letting h0

be any concept in C′
0, every j ∈ {1, . . . , n} has h0(xj) ≥ hC′

0
(xj) = 1, and therefore h0 classifies

all n points as 1. Moreover, for each i ∈ {1, . . . , n}, since hC′
i
(xi) = 0, there must exist some

hi ∈ C′
i with hi(xi) = 0. Furthermore, every j ∈ {1, . . . , n} \ {i} then has hi(xj) ≥ hC′

i
(xj) = 1,

so that hi(xj) = 1. We have thus found a sequence h0, . . . , hn ∈ C such that ∀i ∈ {0, . . . , n},
∀j ∈ {1, . . . , n}, hi(xj) = 1 iff i ̸= j: that is, we have established that {x1, . . . , xn} is a star set
(for C) centered at 1, so that s1 ≥ n. Since there exists such a set {x1, . . . , xn} shattered by C̄ for
every finite n ≤ VC(C̄), we conclude that s1 ≥ VC(C̄). Combining these two inequalities yields
that VC(C̄) = s1. ■

Appendix I. Proof of Theorem 23 (A Compression Scheme of Size Minimum Star
Number)

Consider any n ∈ N ∪ {0} and any data set S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n realizable
by C. In particular, the latter implies CS ̸= ∅, so that ∃hS ∈ C with hS(xi) = yi for every i ≤ n.
By definition of the compression set S′ = κ(S), we have that yi = h∗(xi) for every xi ∈ S′,
so that hS ∈ C(S′,h∗(S′)) as well. In particular, this means that for every xi /∈ DIS(C(S′,h∗(S′))),
ρ(S′, xi) = hS(xi) = yi. Moreover, by definition of S′, every xi with yi = h∗(xi) satisfies
xi /∈ DIS(C(S′,h∗(S′))). Therefore, for every xi ∈ DIS(C(S′,h∗(S′))), we have yi = 1 − h∗(xi),
so that ρ(S′, xi) = yi in this case as well. Altogether, we have established that (κ, ρ) is sample-
consistent.

Next we bound the size of the compression set. Let S∗ = {x : (x, h∗(x)) ∈ S}. By definition,
S′ = κ(S) is a minimal subset of S∗ for which S∗ ∩ DIS(C(S′,h∗(S′))) = ∅. Since the agreed-
upon label of any x ∈ S∗ by every h ∈ C(S′,h∗(S′)) must be h∗(x) (since again, hS ∈ C(S′,h∗(S′)),
and hS(xi) = yi = h∗(xi) for every xi ∈ S∗), this means S′ may be described equivalently as a
minimal S′ ⊆ S∗ such that C(S′,h∗(S′)) = C(S∗,h∗(S∗)). Such a set S′ is known as a minimal version
space compression set for (S∗, h∗(S∗)) (also known as a minimal empirical teaching set) (Hanneke,
2007a, 2014; Wiener, Hanneke, and El-Yaniv, 2015; El-Yaniv and Wiener, 2010, 2012; Hanneke
and Yang, 2015; Hanneke, 2016). It was shown by Hanneke and Yang (2015, Lemma 14) that a
minimal version space compression set for a realizable data set (S∗, h∗(S∗)) is necessarily a star set
centered at h∗. Indeed, this is clear from minimality of S′, since being a star set centered at h∗ can be
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expressed concisely by the condition that, ∀x ∈ S′, x ∈ DIS(C(S′\{x},h∗(S′\{x}))); if this condition
were not satisfied by S′, then some x ∈ S′ has x /∈ DIS(C(S′\{x},h∗(S′\{x}))), which (since hS ∈
C(S′\{x},h∗(S′\{x}))) implies the label agreed-upon for x by all h ∈ C(S′\{x},h∗(S′\{x})) must be
hS(x) = h∗(x) (since x ∈ S∗), and therefore C(S′\{x},h∗(S′\{x})) = C(S′,h∗(S′)) = C(S∗,h∗(S∗))

contradicting minimality of |S′| among subsets of S∗ satisfying C(S′,h∗(S′)) = C(S∗,h∗(S∗)). Thus,
since S′ is a star set centered at h∗, we have |S′| ≤ sh∗ = smin.

It remains only to argue that (κ, ρ) is also stable. Consider any subsequence Sσ ⊆ S such
that the set S′ = κ(S) satisfies S′ ⊆ {xi : (xi, yi) ∈ Sσ}. In this case, κ(Sσ) is some set
S′′ ⊆ S∗ ∩ {xi : (xi, yi) ∈ Sσ} such that

{x : (x, h∗(x)) ∈ Sσ} ∩DIS(C(S′′,h∗(S′′))) = ∅.

Since we still have hS ∈ C(S′′,h∗(S′′)) (since S′′ ⊆ S∗), it must be that for every xi with (xi, h∗(xi)) ∈
Sσ, we have that every h ∈ C(S′′,h∗(S′′)) satisfies h(xi) = hS(xi) = h∗(xi). In particular, since
S′ ⊆ {x : (x, h∗(x)) ∈ Sσ}, we have that every h ∈ C(S′′,h∗(S′′)) satisfies h(x) = h∗(x) for all
x ∈ S′. We therefore have that C(S′′,h∗(S′′)) = C(S′′∪S′,h∗(S′′∪S′)) = C(S∗,h∗(S∗)) = C(S′,h∗(S′)). It
then follows immediately from the definition that ρ(κ(Sσ)) = ρ(S′′) = ρ(S′) = ρ(κ(S)). Hence
(κ, ρ) is stable. This completes the proof. ■

Appendix J. Proof: The Eluder Dimension is the Threshold Dimension of Version
Spaces and Disagreements

Fix any concept class C and concept h. Consider an eluder sequence {(x1, h(x1)), . . . , (xn, h(xn))}
(for C) centered at h, and let h1, . . . , hn be as in the definition: that is, ∀i ∈ {1, . . . , n}, hi(xi) ̸=
h(xi) and ∀j < i, hi(xj) = h(xj). We will argue that {hn, . . . , h1} witness a threshold set for
Vh(C). Specifically, for each i ∈ {0, 1, . . . , n}, define Si = {(xj , h(xj))}j≤i. Since each hj has
hj(xj) ̸= h(xj), but every i > j has hi(xj) = h(xj), we have that, for each i ∈ {0, . . . , n}, CSi ∩
{h1, . . . , hn} = {hi+1, . . . , hn}. In particular, we have CS0 ∩{h1, . . . , hn} = C∩{h1, . . . , hn} =
{h1, . . . , hn}, and CSn ∩{h1, . . . , hn} = {}, and every i ∈ {1, . . . , n− 1} has CSi ∩{h1, . . . , hn}
equal to the set of the last n − i concepts: {hi+1, . . . , hn}. Thus, the sequence {hn, . . . , h1} is a
threshold set for Vh(C), so that T(Vh(C)) ≥ n. Since such an eluder sequence (for C) centered at
h exists for every finite n ≤ eh, we conclude that T(Vh(C)) ≥ eh.

In the other direction, consider any sequence {hn, . . . , h1} in C which is a threshold set for
Vh(C). By definition, for each i ∈ {0, . . . , n}, there exists a data set Si consistent with h (i.e., a
finite sequence of pairs (x, h(x))) such that CSi ∩ {h1, . . . , hn} = {hi+1, . . . , hn}. In particular,
for i ∈ {1, . . . , n}, there must exist at least one (xi, h(xi)) in Si with hi(xi) ̸= h(xi). Moreover,
for every i, j ∈ {1, . . . , n} with j < i, since hi ∈ {hj+1, . . . , hn}, we have that hi ∈ CSj , so
that hi(xj) = h(xj). We have thus found a sequence x1, . . . , xn such that, ∀i ∈ {1, . . . , n},
hi(xi) ̸= h(xi) and ∀j < i, hi(xj) = h(xj): that is, {(x1, h(x1)), . . . , (xn, h(xn))} is an eluder
sequence (for C) centered at h. We therefore have eh ≥ n. Since there exists such a threshold set
{hn, . . . , h1} for Vh(C) for every finite n ≤ T(Vh(C)), we conclude that eh ≥ T(Vh(C)). Together
with the fact T(Vh(C)) ≥ eh established above, we have that T(Vh(C)) = eh.

Next we turn to disagreement sets. In this case, we fix any h ∈ C. As above, consider an
eluder sequence {(x1, h(x1)), . . . , (xn, h(xn))} (for C) centered at h, and let h1, . . . , hn be as in
the definition: that is, ∀i ∈ {1, . . . , n}, hi(xi) ̸= h(xi) and ∀j < i, hi(xj) = h(xj). We will argue
that {xn, . . . , x1} is a threshold set for Dh(C). For each i ∈ {0, . . . , n}, let Si = {(xj , h(xj))}j≤i.
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By definition, every h′ ∈ CSi has h′(xj) = h(xj) for all j ≤ i, so that DIS(CSi) ∩ {xj : j ≤
i} = ∅. Moreover, for every j ∈ {i + 1, . . . , n}, since hj(xj′) = h(xj′) for all j′ < j, we have
hj ∈ CSi . Since we also always have h ∈ CSi (since h ∈ C and Si is consistent with h), and
hj(xj) ̸= h(xj), we conclude that every j ∈ {i + 1, . . . , n} satisfies xj ∈ DIS(CSi). Altogether,
we have DIS(CSi) ∩ {x1, . . . , xn} = {xi+1, . . . , xn}. Thus, {xn, . . . , x1} is a threshold set for
Dh(C), so that T(Dh(C)) ≥ n. Since such an eluder sequence (for C) centered at h exists for every
finite n ≤ eh, we conclude that T(Dh(C)) ≥ eh.

Turning to the other direction, let {xn, . . . , x1} be a threshold set for Dh(C). By defini-
tion, there exist data sets S0, . . . , Sn consistent with h (i.e., finite sequences of (x, h(x)) pairs)
such that ∀i ∈ {0, . . . , n}, DIS(CSi) ∩ {x1, . . . , xn} = {xi+1, . . . , xn}. We will argue that
{(x1, h(x1)), . . . , (xn, h(xn))} is an eluder sequence (for C) centered at h. For each i ∈ {1, . . . , n},
since xi ∈ DIS(CSi−1), there must exist at least one hi ∈ CSi−1 with hi(xi) ̸= h(xi). Moreover,
since DIS(CSi−1) ∩ {xj : j ≤ i − 1} = ∅, and h ∈ CSi−1 (since h ∈ C and Si−1 is consistent
with h), it must be that every h′ ∈ CSi−1 has h′(xj) = h(xj) for every j ≤ i − 1. In particular,
this means hi(xj) = h(xj) for all j < i. Altogether, we have found a sequence h1, . . . , hn ∈ C
such that, ∀i ∈ {1, . . . , n}, hi(xi) ̸= h(xi) and ∀j < i, hi(xj) = h(xj): that is, {x1, . . . , xn} is an
eluder sequence (for C) centered at h. We therefore have eh ≥ n. Since there exists such a thresh-
old set {xn, . . . , x1} for Dh(C) for every finite n ≤ T(Dh(C)), we conclude that eh ≥ T(Dh(C)).
Together with the fact that T(Dh(C)) ≥ eh established above, we conclude that T(Dh(C)) = eh.
■

Appendix K. Proof of Theorem 11 (Eluder Dimension Not Smaller Than Log
Cardinality)

The fact that e ≤ |C| − 1 follows immediately from the definition, since each hi, i ∈ {1, . . . , e}
must be distinct, and distinct from the center h ∈ C. The remainder of the proof focuses on the
lower bound on e.

For simplicity, we separate the case |C| <∞ from |C| =∞. We begin with the case |C| <∞.
Let N = ⌈log|Y|(|C|)⌉. We construct an eluder sequence (x1, y1), . . . , (xN , yN ) inductively, to
satisfy that, for any n ≤ log|Y|(|C|), the prefix Sn = {(x1, y1), . . . , (xn, yn)} satisfies |CSn | ≥
|Y|−n|C|. As a base case, S0 = {} is trivially an eluder sequence of length 0 satisfying |CS0 | =
|C|. This also trivially completes the proof for the case |C| = 1; for the remainder, we suppose
|C| ≥ 2. For n ≤ N , suppose (for the purpose of induction) we have constructed an eluder
sequence Sn−1 = {(x1, y1) . . . , (xn−1, yn−1)} such that |C|Sn−1 ≥ |Y|1−n|C|. Since |Y|1−n|C| >
1 (due to n ≤ N = ⌈log|Y|(|C|)⌉), we have that DIS(CSn−1) ̸= ∅. Let xn be any element of
DIS(CSn−1). Since CSn−1 =

⋃
y∈Y CSn−1∪{(xn,y)}, the pigeonhole principle implies there exists

yn ∈ Y with |CSn−1∪{(xn,yn)}| ≥
1
|Y| |CSn−1 | ≥ |Y|−n|C|. Defining Sn = {(x1, y1), . . . , (xn, yn)},

and recalling that xn ∈ DIS(CSn−1) by definition, this remains an eluder sequence, and satisfies
|CSn | ≥ |Y|−n|C| by the choice of yn. The existence of the eluder sequence (x1, y1), . . . , (xN , yN )
follows by the principle of induction.

The case |C| = ∞ is constructed similarly. For this, we only require that for every x ∈ X ,
the set of possible labels Yx := {h(x) : h ∈ C} is finite (not necessarily of uniformly bounded
size). We construct an infinite eluder sequence (x1, y1), (x2, y2), . . . inductively, to satisfy that,
for any n ∈ N ∪ {0}, the prefix Sn = {(x1, y1), . . . , (xn, yn)} satisfies |CSn | = ∞. Again,
the base case S0 = {} is trivially an eluder sequence of length 0 satisfying |CS0 | = |C| =
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∞. For n ∈ N, suppose (for the purpose of induction) we have constructed an eluder sequence
Sn−1 = {(x1, y1) . . . , (xn−1, yn−1)} such that |C|Sn−1 = ∞. In particular, this implies we have
DIS(CSn−1) ̸= ∅. Let xn be any element of DIS(CSn−1). Since CSn−1 =

⋃
y∈Yxn

CSn−1∪{(xn,y)},
and we have assumed Yxn is finite, the pigeonhole principle implies there exists yn ∈ Yxn with
|CSn−1∪{(xn,yn)}| =∞. Defining Sn = {(x1, y1), . . . , (xn, yn)}, and recalling that xn ∈ DIS(CSn−1)
by definition, this sequence Sn remains an eluder sequence, and satisfies |CSn | =∞ by the choice
of yn. The existence of the infinite eluder sequence (x1, y1), (x2, y2), . . . follows by the principle
of induction. ■

Appendix L. Proof of Theorem 31 (The Eluder Dimension of Version Spaces and
Disagreement Regions)

One can show eC(Vh(C)) ≥ eh(C) by a simple direct argument constructing an eluder sequence
for Vh(C) centered at C based on any eluder sequence for C centered at h. However, we can argue
this even more simply via Theorem 10 as follows. consider any concept h and any threshold set
h1, . . . , hn ∈ C for Vh(C): that is, ∃V0, . . . , Vn ∈ Vh(C) such that, ∀t ∈ {0, 1, . . . , n}, Vt ∩
{h1, . . . , hn} = {h1, . . . , ht}. It follows immediately from this that {(h1, 1), . . . , (hn, 1)} is an
eluder sequence for {1V : V ∈ Vh(C)} centered at 1, so that eC(Vh(C)) ≥ n. Since such a
threshold set exists for every finite n ≤ T(Vh(C)), we have that eC(Vh(C)) ≥ T(Vh(C)). Moreover,
Theorem 10 implies T(Vh(C)) = eh(C), and therefore we also have eC(Vh(C)) ≥ eh(C).

For the other direction, consider any eluder sequence (h1, 1), . . . , (hn, 1) ∈ C× {1} for {1V :
V ∈ Vh(C)} centered at 1. By definition, there exist V1, . . . , Vn ∈ Vh(C) such that ∀i ∈ {1, . . . , n},
Vi ∩ {h1, . . . , hi} = {h1, . . . , hi−1}. By definition of Vh(C), for each i ∈ {1, . . . , n}, there
exists a finite sequence Si in X such that Vi = C(Si,h(Si)). In particular, since hi ∈ C and
C(Si,h(Si)) ∩ {h1, . . . , hi} = Vi ∩ {h1, . . . , hi} = {h1, . . . , hi−1}, there exists at least one point
xi ∈ Si such that hi(xi) ̸= h(xi), and since {h1, . . . , hi−1} ⊆ C(Si,h(Si)) ⊆ C{(xi,h(xi))}, ev-
ery j < i has hj(xi) = h(xi). Thus, (xn, h(xn)), . . . , (x1, h(x1)) is an eluder sequence for C
centered at h: that is, denoting by x′i = xn−i+1 and h′i = hn−i+1, we have ∀i ∈ {1, . . . , n},
h′i(x

′
i) = hn−i+1(xn−i+1) ̸= h(xn−i+1) = h(x′i) and ∀j < i, since n − j + 1 > n − i + 1,

h′i(x
′
j) = hn−i+1(xn−j+1) = h(xn−j+1) = h(x′j). Thus, eh(C) ≥ n. Since such an eluder se-

quence (h1, 1), . . . , (hn, 1) ∈ C × {1} for {1V : V ∈ Vh(C)} centered at 1 exists for every finite
n ≤ eC(Vh(C)), we have that eh(C) ≥ eC(Vh(C)). Combining these two parts, we conclude that
eC(Vh(C)) = eh(C).

Turning to Dh(C), consider any concept h ∈ C and any threshold set x1, . . . , xn ∈ X for
Dh(C): that is, ∃D0, . . . , Dn ∈ Dh(C) such that, ∀t ∈ {0, 1, . . . , n}, Dt ∩ {x1, . . . , xn} =
{x1, . . . , xt}. It immediately follows from this that {(xn, 0), (xn−1, 0), . . . , (x1, 0)} is an eluder
sequence for {1D : D ∈ Dh(C)} centered at 0, so that e∅(Dh(C)) ≥ n. Since such a threshold
set exists for every finite n ≤ T(Dh(C)), we have e∅(Dh(C)) ≥ T(Dh(C)). Since Theorem 10
implies T(Dh(C)) = eh(C), we have that e∅(Dh(C)) ≥ eh(C).

In the other direction, consider any eluder sequence (x1, 0), . . . , (xn, 0) for {1D : D ∈ Dh(C)}
centered at 0. By definition, there exist D1, . . . , Dn ∈ Dh(C) such that ∀i ∈ {1, . . . , n}, Di ∩
{x1, . . . , xi} = {xi}. By definition of Dh(C), for each i ∈ {1, . . . , n}, there exists a finite se-
quence Si in X such that Di = DIS(C(Si,h(Si))). In particular, since each i ∈ {1, . . . , n} has
DIS(C(Si,h(Si))) ∩ {x1, . . . , xi} = Di ∩ {x1, . . . , xi} = {xi}, there exists hi ∈ C(Si,h(Si)) with
hi(xi) ̸= h(xi), and moreover, since h ∈ C(Si,h(Si)) and DIS(C(Si,h(Si))) ∩ {x1, . . . , xi−1} = ∅, it
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must be that ∀j < i, hi(xj) = h(xj). Thus, h1, . . . , hn witness that (x1, h(x1)), . . . , (xn, h(xn))
is an eluder sequence for C centered at h, so that eh(C) ≥ n. Since such an eluder sequence
(x1, 0), . . . , (xn, 0) for {1D : D ∈ Dh(C)} centered at 0 exists for every finite n ≤ e∅(Dh(C)), we
have that eh(C) ≥ e∅(Dh(C)). Combining these two parts, we conclude that e∅(Dh(C)) = eh(C).
■

Appendix M. Proofs of Results on the Scale-Sensitive Eluder Dimension

This section presents the proof of Theorem 14. The proof is similar in spirit to the simple proof of
Theorem 11 (which relates e(C) to |C|), but is made significantly more complicated by the fact that
the hi(xj) values need only approximate the values yj for j < i, rather than matching them exactly.

Infinite Eluder Sequence: We begin with the necessity direction: that is, N (ε,C,L∞) =
∞ =⇒ e(ε) = ∞. Toward this end, suppose C and ε > 0 are such that N (ε,C,L∞) = ∞. We
construct an infinite ε-eluder sequence by induction. Let t ∈ N, and for the purpose of induction
(with t = 1 as a base case where this holds trivially) suppose we have already constructed an ε-
eluder sequence (x1, y1), . . . , (xt−1, yt−1) in X × [0, 1] with the further property that ∀ε′ > 0, the
set

Ct−1,ε′ :=

{
h ∈ C : max

1≤i≤t−1
|h(xi)− yi| < ε′

}
has

N (ε,Ct−1,ε′ ,L∞) =∞. (10)

Let εt−1 =
ε√
t−1

.

Claim 1: There exists xt ∈ X such that ∃h1, h2 ∈ Ct−1,εt−1 with |h1(xt)− h2(xt)| > 2ε.
Such a choice of xt must exist, since otherwise every x ∈ X has

sup
h∈Ct−1,εt−1

h(x)− inf
h∈Ct−1,εt−1

h(x) ≤ 2ε,

in which case the function

x 7→ h̄(x) =
1

2

(
sup

h∈Ct−1,εt−1

h(x) + inf
h∈Ct−1,εt−1

h(x)

)
,

which takes the midpoint between the sup and inf values for each x, would satisfy

sup
h∈Ct−1,εt−1

∣∣h̄(x)− h(x)
∣∣ ≤ ε,

meaning N (ε,Ct−1,εt−1 ,L∞) = 1, contradicting (10) for ε′ = εt−1. Thus, we have established
Claim 1. We will take this choice of xt to extend the sequence x1, . . . , xt−1.

It remains to specify the value yt to extend the inductive hypothesis. First note that, due to Claim
1, for any choice of yt ∈ [0, 1], the sequence (x1, y1), . . . , (xt, yt) will be an ε-eluder sequence. To
see this, recall that (x1, y1), . . . , (xt−1, yt−1) is an ε-eluder sequence (by the inductive hypothesis).
Moreover, by the definition of x1, h1, and h2 in Claim 1, both h1 and h2 are in Ct−1,εt−1 , which
implies both r ∈ {1, 2} satisfy∑

i<t

(hr(xi)− yi)
2 ≤ (t− 1)max

i<t
|hr(xi)− yi|2 < (t− 1)ε2t−1 = ε2.
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Finally, since |h1(xt) − h2(xt)| > 2ε, by the triangle inequality, for any yt ∈ [0, 1], at least one
b ∈ {1, 2} satisfies |hb(xt) − yt| > ε. Thus, we have established that any choice of yt suffices to
establish that (x1, y1), . . . , (xt, yt) is an ε-eluder sequence. All that remains is to specify a value yt
which also extends the additional property (10).

Claim 2: For each n ∈ N, there exists ỹ(n) ∈
{

k
2n : k ∈ {1, . . . , 2n− 1}

}
such that

N
(
ε,

{
h ∈ Ct−1,1/n :

∣∣∣h(xt)− ỹ(n)
∣∣∣ < 1

n

}
,L∞

)
=∞. (11)

Claim 2 essentially follows from the Pigeonhole principle. To see this, note that if Claim 2 were
not true, then since the intervals

(
k
2n −

1
n ,

k
2n + 1

n

)
, k ∈ {1, . . . , 2n − 1}, cover the interval [0, 1],

the sets
{
h ∈ Ct−1,1/n :

∣∣h(xt)− k
2n

∣∣ < 1
n

}
, k ∈ {1, . . . , 2n − 1} cover the set Ct−1,1/n, so that

if each of these 2n − 1 sets had a finite ε-cover (under L∞), we could construct a finite ε-cover of
Ct−1,1/n (under L∞) by a union of these 2n−1 finite covers. Thus, such a ỹ(n) satisfying (11) must
exist. Thus, we have established Claim 2.

Since [0, 1] is compact, there exists an increasing sequence nj in N and a value yt ∈ [0, 1] such
that limj→∞ ỹ(nj) = yt. This will be our choice of yt to extend the ε-eluder sequence.

It remains to argue that this choice of (xt, yt) indeed extends the inductive hypothesis. For any
ε′ > 0, let

Ct,ε′ =

{
h ∈ C : max

1≤i≤t
|h(xi)− yi| < ε′

}
.

By the definition of nj and yt, ∃j ∈ N such that 1
nj

< ε′

2 and
∣∣ỹ(nj) − yt

∣∣ < ε′

2 . In particular, any h

with
∣∣h(xt)− ỹ(nj)

∣∣ < 1
nj

has
∣∣h(xt)− ỹ(nj)

∣∣ < ε′

2 , which therefore also satisfies |h(xt)− yt| < ε′

by the triangle inequality. Together with monotonicity of Ct−1,ε′ in ε′, this implies

Ct,ε′ =
{
h ∈ Ct−1,ε′ : |h(xt)− yt| < ε′

}
⊇
{
h ∈ Ct−1,1/nj

: |h(xt)− yt| < ε′
}

⊇
{
h ∈ Ct−1,1/nj

:
∣∣∣h(xt)− ỹ(nj)

∣∣∣ < 1

nj

}
.

Since (11) implies this last set has infinite ε-covering number (under L∞), we conclude that we
have N (ε,Ct,ε′ ,L∞) = ∞ as well. Thus, we have extended the property (10). By the principle of
induction, this completes the proof of the existence of an infinite ε-eluder sequence. This further
implies e(ε) =∞.

Quantitative Lower Bound: Next we turn to establishing the quantitative lower bound in the
case N (3ε,C,L∞) <∞: we will show e(ε) ≥ n, where

n =

 2 ln(N (3ε,C,L∞))

ln
(
4 ln(N (3ε,C,L∞))

ε2

)
 .

Let G ⊆ C be a maximal subset of C such that for every distinct g, g′ ∈ G, supx∈X |g(x)−g′(x)| >
3ε: that is, a maximal 3ε-packing of C. As is well-known, G is also a 3ε-cover of C under L∞:
suph∈Cming∈G supx∈X |g(x)−h(x)| ≤ 3ε (otherwise, the h ∈ C violating this condition could be
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added to G while preserving the 3ε-packing property, contradicting maximality of G). Therefore,
|G| ≥ N (3ε,C,L∞).

If n = 0, we trivially have e(ε) ≥ n. To focus on the remaining case, let us suppose n ≥ 1. In
particular (in light of footnote 6) this also means we have |G| ≥ 2 and hence also ε ∈ (0, 1/3).

We construct an ε-eluder sequence of length n in two steps: first, we construct a sequence
(xt, yt) which is an ε-eluder sequence (with slightly larger than ε gaps, and a stronger constraint
on approximation of past values), but for which the yt values aren’t necessarily realized by some
h ∈ C, and second, we round these yt values to be equal to h(xt) for some particular h ∈ C (since
e(ε) = suph∈C eh(ε) requires that the eluder sequence be centered at some h ∈ C). We construct
the sequence (xt, yt) inductively. For the purpose of induction, suppose for some t ∈ {1, . . . , n}
(with a base case of t = 1, for which this holds trivially) we have already constructed a sequence
(x1, y1), . . . , (xt−1, yt−1) and g1, . . . , gt−1 ∈ G such that ∀i ≤ t−1, |gi(xi)−yi| > 3

2ε and ∀j < i,
|gi(xj)− yj | ≤ ε

2
√
n

, and moreover such that the set

Gt−1 :=

{
g ∈ G : max

i<t
|g(xi)− yi| ≤

ε

2
√
n

}
satisfies

|Gt−1| ≥
(

ε

2
√
n

)t−1

|G|. (12)

In particular, note that our choice of n guarantees

(t− 1) ln

(
2
√
n

ε

)
<

2 ln(|G|)

ln
(
4 ln(|G|)

ε2

) 1
2
ln

 1

ε2
8 ln(|G|)

ln
(
4 ln(|G|)

ε2

)
 < ln(|G|),

so that
(

ε
2
√
n

)t−1
> 1

|G| , and hence (12) implies |Gt−1| > 1. Since Gt−1 ⊆ G, there exist

g′, g′′ ∈ Gt−1 for which ∃xt ∈ X with |g′(xt)− g′′(xt)| > 3ε. We will choose the next point xt in
the ε-eluder sequence as any point satisfying this.

Next we define a corresponding yt value. By the pigeonhole principle, there exists yt ∈ [0, 1]
such that the set

Gt :=

{
g ∈ Gt−1 : |g(xt)− yt| ≤

ε

2
√
n

}
satisfies

|Gt| ≥
ε

2
√
n
|Gt−1| ≥

(
ε

2
√
n

)t

|G|. (13)

To see this, consider covering the interval [0, 1] by
⌈√

n
ε

⌉
≤ 2

√
n

ε closed intervals of width ε√
n

; the
pigeonhole principle implies at least one of these intervals contains at least an ε

2
√
n

-fraction of the
values g(x1), g ∈ Gt−1, in which case the yt value at the midpoint of such an interval satisfies the
claimed inequality. We will choose any such yt as the label of xt to extend the eluder sequence.
In particular, by definition, this extends the property (12) to t, so that it only remains to define gt
satisfying the other claimed properties.

By our choice of xt, the triangle inequality implies there must exist at least one gt ∈ {g′, g′′}
with |gt(xt) − yt| > 3

2ε; we will define gt as such a function, to extend the sequence g1, . . . , gt−1
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by one. In particular, since gt ∈ Gt−1, this further satisfies that ∀j < t, |gt(xj)− yj | ≤ ε
2
√
n

. Thus,
we have defined a sequence (x1, y1), . . . , (xt, yt) ∈ X × [0, 1] and g1, . . . , gt ∈ G such that ∀i ≤ t,
|gi(xi)−yi| > 3

2ε, and ∀j < i, |gi(xj)−yj | ≤ ε
2
√
n

, and moreover the set Gt defined above satisfies
(13): that is, we have extended the inductive hypothesis from t− 1 to t.

By the principle of induction, it follows that there exists sequences (x1, y1), . . . , (xn, yn) ∈
X × [0, 1] and g1, . . . , gn ∈ G with ∀i ≤ n, |gi(xi) − yi| > 3

2ε and ∀j < i, |gi(xj) − yj | ≤ ε
2
√
n

,
and such that the set

Gn :=

{
g ∈ G : max

i≤n
|g(xi)− yi| ≤

ε

2
√
n

}
satisfies

|Gn| ≥
(

ε

2
√
n

)n

|G|. (14)

Now we turn to the second step in the construction: identifying a suitable center function g0 ∈
G. Similarly to above, we note that

n ln

(
2
√
n

ε

)
≤ 2 ln(|G|)

ln
(
4 ln(|G|)

ε2

) 1
2
ln

 8

ε2
ln(|G|)

ln
(
4 ln(|G|)

ε2

)
 < ln(|G|).

Therefore, (14) implies |Gn| ≥ 1. Let g0 be any function in Gn. By the triangle inequality, we
have that ∀i ∈ {1, . . . , n}, |gi(xi) − g0(xi)| ≥ |gi(xi) − yi| − |g0(xi) − yi| > 3

2ε −
ε

2
√
n
≥ ε,

and ∀j < i, |gi(xj) − g0(xj)| ≤ |gi(xj) − yj | + |g0(xj) − yj | ≤ ε√
n

. This moreover implies that
∀i ∈ {1, . . . , n}, ∑

j<i

(gi(xj)− g0(xj))
2 ≤ (i− 1)

ε2

n
< ε2.

We have thus identified an ε-eluder sequence (for C) centered at g0 ∈ G ⊆ C of length n, which
completes the proof of the claimed lower bound on e(ε).

Upper Bound: To complete the proof of Theorem 14, we turn to establishing the sufficiency
direction: that is, N (εδ,C,L∞) < ∞ =⇒ e(ε) < ∞, for any δ ∈ (0, 1/2), and moreover, a
quantitative bound

e(ε) ≤
⌈

1

(1− 2δ)2

⌉
N (εδ,C,L∞).

Since the right hand side is non-increasing in ε, it will suffice to show that any ε-eluder sequence
has size at most equal the right hand side: that is, upon establishing this for every ε > 0, we may
in particular apply it, for any ε > 0, to the ε′ ≥ ε for which there is an ε′-eluder sequence of
length e(ε) , concluding e(ε) ≤

⌈
1

(1−2δ)2

⌉
N (ε′δ,C,L∞) ≤

⌈
1

(1−2δ)2

⌉
N εδ,C,L∞), to complete

the proof.
Let {f1, . . . , fN} be a set of N = N (εδ,C,L∞) functions fi : X → [0, 1] such that ∀h ∈ C,

min1≤i≤N supx∈X |fi(x) − h(x)| ≤ εδ. Such a set must exist by the definition of N (εδ,C,L∞).
For each i ∈ {1, . . . , N}, let Fi = {h ∈ C : supx∈X |fi(x)−h(x)| ≤ εδ}. Note that

⋃N
i=1 Fi = C.

Now consider any ε-eluder sequence (x1, y1), . . . , (xn, yn) for C, and let h1, . . . , hn ∈ C be
functions in C which witness this fact: that is,

∀i ∈ {1, . . . , n}, |hi(xi)− yi| > ε and
∑
j<i

(hi(xj)− yj)
2 ≤ ε2. (15)
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Claim 3: For every t ∈ {1, . . . , N}, |{h1, . . . , hn} ∩ Ft| ≤
⌈

1
(1−2δ)2

⌉
.

We prove this claim by contradiction. Let T =
⌈

1
(1−2δ)2

⌉
, and suppose there exists t ≤ N for

which there exist i1 < i2 < · · · < iT+1 with hi1 , . . . , hiT+1 ∈ Ft. For each k ∈ {1, . . . , T}, by
definition of hik , we have |hik(xik)−yik | > ε. By definition of Ft, we have |ft(xik)−hik(xik)| ≤ εδ
and |ft(xik)− hiT+1(xik)| ≤ εδ. By the triangle inequality, this implies |hiT+1(xik)− hik(xik)| ≤
2εδ. By another application of the triangle inequality, we have that |hiT+1(xik)−yik | ≥ |hik(xik)−
yik | − |hiT+1(xik)− hik(xik)| > ε− 2εδ ≥ (1− 2δ)ε. Since this holds for every k ≤ T , we have
that ∑

j<iT+1

(
hiT+1(xj)− yj

)2 ≥∑
k≤T

(
hiT+1(xik)− yik

)2
> T (1− 2δ)2ε2 ≥ ε2.

This contradicts (15), which therefore completes the proof of Claim 3.
The claimed upper bound on the length n of any ε-eluder sequence follows immediately from

Claim 3: that is, if each Ft contains at most T of the functions hi witnessing the eluder sequence,
and there are n such functions hi total, then it must be that n ≤ TN =

⌈
1

(1−2δ)2

⌉
N (εδ,C,L∞). ■
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