Proceedings of Machine Learning Research vol 247:1-5, 2024 37th Annual Conference on Learning Theory

Open problem: Direct Sums in Learning Theory

Steve Hanneke STEVE.HANNEKE @ GMAIL.COM
Department of Computer Science, Purdue University

Shay Moran SMORAN @ TECHNION.AC.IL
Departments of Mathematics, Computer Science, and Data and Decision Sciences, Technion, and Google Research

Tom Waknine TOM.WAKNINE @ CAMPUS.TECHNION.AC.IL
Department of Mathematics, Technion

Editors: Shipra Agrawal and Aaron Roth

1. Introduction

In computer science, the term ’direct sum’ refers to fundamental questions about the scaling of computa-
tional or information complexity with respect to multiple task instances. Consider an algorithmic task 7'
and a computational resource C'. For instance, 7" might be the task of computing a polynomial, with C'
representing the number of arithmetic operations required, or 7' could be a learning task with its sample
complexity as C'. The direct sum inquiry focuses on the cost of solving k separate instances of T, particu-
larly how this aggregate cost compares to the resources needed for a single instance. Typically, the cost for
multiple instances is at most k times the cost of one, since each can be handled independently.

However, there are intriguing scenarios where the total cost for k instances is less than this linear re-
lationship. These cases suggest more efficient methods for simultaneously handling multiple instances of
a task than addressing them one by one. As an example, consider an n X n matrix A and the objective of
calculating its product with an input column vector z, where the computational resource C' is the number
of arithmetic operations. For a single vector z, it is easy to see that ©(n?) operations are necessary and
sufficient. However, if instead of one input vector z, there are n input vectors 1, ..., T, then one can do
better than n x ©(n?) = O(n?). Indeed, by arranging these n vectors as columns in an n x n matrix B,
computing the product A - B is equivalent to solving the n products A - z;. This task can be accomplished
using roughly n® < n?37 arithmetic operations with fast matrix multiplication algorithms. Direct sum
questions are well-studied in information theory and complexity theory. For more background we refer the
reader to the thesis by Pankratov (2012) or the books by Wigderson (2019) and Rao and Yehudayoft (2020).

Direct Sum in Learning Theory. Natural direct sum questions can also be posed in learning theory. To
formalize these, we use the notion of cartesian product of concept classes: consider two concept classes, Cy
and Co, defined over domains X} and X%, and label spaces); and), respectively. Their product, C; ® Co,
has domain X} ® X> and label space)1 ®)». Each concept ¢ in C; ® Cs is parameterized by a pair of
concepts ¢; € C; and ¢z € Co, and is defined as ¢((z1,x2)) = (c1(x1), c2(z2)). Thus, learning c effectively
means learning both ¢; and ¢ simultaneously. This definition naturally extends to direct sums of multiple
concept classes allowing us to define §J);_; C; where each C; is a concept class. For a concept class C we
denote C" =);_, C its direct sum with itself 7 times.

© 2024 S. Hanneke, S. Moran & T. Waknine.

HANNEKE MORAN WAKNINE

2. Technical Background

We now present basic definitions from supervised classification in the PAC model. These definitions are
stated in the slightly more general context of list learning, which will be useful later on. Let X’ denote the
domain and Y denote the label space. A k-list function (or k-list concept) is a function ¢ : X — (%),

where (¥) denotes the collection of all subsets of Y of size k. A k-list concept class C C N+ is a set of
k k

k-list functions. Note that by identifying sets of size one with their single elements, 1-list concept classes

correspond to standard concept classes.

A k-list learning rule is a map A : (X x V)* — Gf))X, i.e. it gets a finite sequence of labeled examples

as input and outputs a k-list function. A learning problem D is a distribution over X x). The population
loss of a k-list function ¢ with respect to D is defined by Lp(c) = E(z4)~p[lygc(z))-

We quantify the learning rate of a given learning rule on a given learning problem using learning curves:
The learning curve of a learner A with respect to a learning problem D is the sequence {e,(D|A)}5° ,
where

D) = B [Lo(AS))].

In words, &,,(D|.A) is the expected error of the learner A on samples of size n drawn from the distribution D.
For a sequence S of labeled examples, the empirical loss of a k-list function ¢ with respect to S is Lg(c) =
|—é| Z(Ly)es Lyge(z)- A sequence S € (X x V)" is realizable by a k-list function c if y € c(z) for every
(z,y) € S. Itis realizable by a concept class C if it is realizable by some concept ¢ € C. A learning problem
D is realizable by a concept class C if for any n € N, a random sample S ~ D" is realizable by C with
probability 1. We say that a concept class C is agnostically k-list learnable if there exists a k-list learning rule
A and a sequence &, ——— () such that for every learning problem D, (¥n) : £,(D|A) < infece Lp(c)+&n.
If the latter only holds for C-realizable distributions then we say that C is k-list learnable in the realizable
case. The k-list realizable PAC learning curve of a concept class C is defined as follows:

£(n|C) = inf sup e, (D|A),
A D

where the infimum is taken over all k-list learning rules A and the supremum over all distributions D that
are realizable by C.

3. Direct Sum Questions
3.1. Direct Sum of Learning Rates

One of the most natural questions regarding direct sums of learning problems is the following question:
given two learning tasks, can we learn both of them in a faster way than learning each individuality? Perhaps
the simplest case is of multiple instances of the same learning task. Let C be a concept class and recall that
for r € N, the r’th power of C is denoted by C" =C®C--- ®C.

r times

How does the learning rate of C" scale in terms of the learning rate of C?

This problem can be investigated with respect to various formulations of ‘learning rate’, for example:

Open Question Let C C V7 be a concept class,with a realizable PAC learning curve £(n|C), By a union
bound, learning each component independently we have the following bound

e(n|C") <r-e(n|C).

Can this upper bound be asymptotically improved for some classes C?

OPEN PROBLEM: DIRECT SUMS IN LEARNING THEORY

Another natural version of the above is assuming a fixed marginal distribution D: Let D be a fixed distribu-
tion over the domain X" and let C be a concept class. For any ¢ : X — Y let D, be the distribution in which
(z,y) ~ D, satisfies z ~ D and y = ¢(z). Define the fixed-marginal learning curve ¢(n|D,C) by

e(n|D,C) = inf sup e, (D.|A)
A cec
where the infimum is taken over all learning rules .A. Note that for any ¢ € C we have that D, is a realizable

distribution, hence £(n|D,C) < e(n|C) always holds. For any r > 0, let D" be the product measure over
X,

Open Question 1 Similarly to the case of the PAC learning curve, a simple union bound will give the upper
bound €(n|D",C") < r - e(n|D,C). Can the upper bound be asymptotically improved for some concept
classes C and marginal distributions D?

One can ask similar questions about agnostic learning curves and uniform convergence. However, in
these cases the baseline additive upper bound does not apply. The reason is because these curves concern
relative quantities (indeed, the agnostic learning curve measures the excess loss and uniform convergence
curve measures the maximum difference between the empirical and population losses).

For instance, given a distribution D over the product space (X2 x))?) defined with marginal distributions
D1, Dy over (X x V) we have by the union bound that Lp(h; ® he) < Lp, (h1) +Lp, (h2). Similarly if S =
{((@i1,7i2), (Yi1, vi2)) iy, letting Sy = {(ip,Yip) }oy, We have Ls(h1 ® ha) < Lg, (h1) + Ls, (ha).
These bounds, however, do not allow us to bound the difference |Lp(h1 ® ha) — Lg(h1 ® hs)| as needed to
bound the uniform convergence rate. Define the uniform convergence rate of C by

euc(n|C) =sup E_[sup[Lp(h) —Ls(h)]]
D S~D" peC

where the supremum is over all distributions D.
Open Question 2 How does cyc(n|C") scale as a function of eyc(n|C) and r?

A similar phenomenon happens in the case of agnostic learning: define the agnostic learning curve of a
concept class C by

Saga(n|C) = inf sup(Lp n(A) ~ Lp(C)),

where the infimum is taken over all learning rules .A, the supremum is taken over all distributions, Lp ,,(A) =
Es~pn[Lp(A(S))], and Lp(C) = inf.c¢ Lp(c). Here again we do not have simple bounds to the agnostic
learning curve of C" in terms of the agnostic learning curve of C.

Open Question 3 Let £,gn(1|C) be the agnostic PAC learning curve of C. How does €ag,(n|C") scale as a
function of €agn(n|C) and r?

3.2. Direct Sum of Learnability Parameters

Another important resource in the context of list learning is the minimal list size k for which a given class C
is k-list PAC learnable. This raises the following questions:

Open Question 4 Let C1,Co be concept classes and assume k1 and ko are the minimal integers such that
Cy is ky-list PAC learnable and Cs is ko-list PAC learnable. What is the minimal integer k such that C; ® Co
is k-list PAC learnable? How does it scale as a function of k1 and ks.

HANNEKE MORAN WAKNINE

It is not hard to see that £ < k; - ko by just learning each component independently and taking all possible
pairs of labels in the marginal lists. We also show that k& > (k; — 1) - (k2 — 1) (see Equation (1) below).
However, it remains open to determine tight bounds on k.

We raise the parallel question regarding compressibility:

Open Question 5 Ler C1,Csy be concept classes and assume k1 and ko are the minimal integers such that
Cy is ki-list compressible and Cs is ko-list compressible. What is the minimal integer k such that C1 ® Cs is
k-list PAC learnable? How does it scale as a function of k1 and ko.

A natural way to approach questions such as the ones above and in Section 3 is by analyzing combinatorial
parameters that capture the corresponding resources.

Open Question 6 Let F, G be concept classes, and let dim(-) be either the Graph dimension, the Natarajan
dimension, the Littlestone dimension, or the Daniely-Shwartz dimension. How does dim(F ® G) scale in
terms of dim(F) and dim(G)?

We next state some preliminary results whose proofs can be found in Hanneke, Moran, and Waknine (2024).

Proposition 1 Let dy(-) be the Natarajan dimension, and let F and G be concept classes. Then,
dy(F) +dn(9) —2 < dy(F®G) < dy(F) +du(9).
Proposition 2 Let LS(-) be the Littlestone dimension, then for any F,G concept classes we have
LS(F ®G) = LS(F) + Ls(G)

The following lemma utilizes the concept of the Daniely-Shwartz (DS) dimension, which character-
izes PAC learnability in the multiclass setting. This DS dimension-based characterization extends the VC
dimension-based characterization used in the binary case, see Brukhim et al. (2022); Charikar and Pabbaraju
(2022).

Proposition 3 Let F,G be partial function classes, and let k, k' > 1. Denote DSy(C) the k-Daniely-
Shwartz (DS) dimension of a concept class C. Then,

1. DSy (F ® G) > min (DSg(F), DSy (G)).
2. DSmin(k,k’)(‘F ® G) > DSy (F) + DSy (G)—1.

Note that Lemma 3 has direct implications relevant to Open Question 4. Specifically, it implies that if
F is not k-list learnable and G is not k’-list learnable then F ® G is not k - k’-list learnable. Conversely we
know that if F is k-list learnable and G is &’ list learnable then F ® G is k - k’-list learnable. Thus, letting
K (C) denote the minimal & such that a concept class C is k-list learnable (or infinity if there is no such k)
we can summarize the above as

(K(F)-1)(K(G) -1)<K(F®G) <K(F)-K(G) (1)

We may also ask similar questions about compressibility, an answer to which would be relevant to Open
Question 5.

Lemma 3 also has implications to Open Question 3.1 for (1-list) PAC learnable classes. Indeed, let C be
a PAC learnable class. Then, by Item 2 in Lemma 3, it follows that DS;(C") > rDS;(C). Hence, since the
Daniely-Shwartz dimension lower bounds the PAC learning curve (Charikar and Pabbaraju, 2022) we get
DSI(C’”) > T DSl(C)—T

e(nlC") >

n n

Thus, if it turns out that the realizable PAC learning curve is © (D%) then the above in combination with the

naive union bound argument mentioned in Open Question 3.1 would answer this question up to universal
multiplicative constants.

OPEN PROBLEM: DIRECT SUMS IN LEARNING THEORY

References

Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff. A characterization of
multiclass learnability. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 943-955. IEEE, 2022. doi: 10.1109/
FOCS54457.2022.00093. URL https://doi.org/10.1109/FOCS54457.2022.00093.

Moses Charikar and Chirag Pabbaraju. A characterization of list learnability. Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, 2022. URL https://api.semanticscholar.org/
CorpusID:253420830.

Steve Hanneke, Shay Moran, and Tom Waknine. List sample compression and uniform convergence. CoRR,
abs/2403.10889, 2024. doi: 10.48550/ARXIV.2403.10889. URL https://doi.org/10.48550/
arXiv.2403.108809.

Denis Pankratov. Direct sum questions in classical communication complexity. Master’s thesis, University
of Chicago, 2012.

Anup Rao and Amir Yehudayoff. Bibliography, page 244-249. Cambridge University Press, 2020.

A. Wigderson. Mathematics and Computation: A Theory Revolutionizing Technology and Science. Prince-
ton University Press, 2019. ISBN 9780691189130. URL https://books.google.co.il/
books?id=-WCgDwAAQBAJ.

https://doi.org/10.1109/FOCS54457.2022.00093
https://api.semanticscholar.org/CorpusID:253420830
https://api.semanticscholar.org/CorpusID:253420830
https://doi.org/10.48550/arXiv.2403.10889
https://doi.org/10.48550/arXiv.2403.10889
https://books.google.co.il/books?id=-WCqDwAAQBAJ
https://books.google.co.il/books?id=-WCqDwAAQBAJ

	Introduction
	Technical Background
	Direct Sum Questions
	Direct Sum of Learning Rates
	Direct Sum of Learnability Parameters

