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Abstract
The logistic regression model is one of the most popular data generation model in noisy binary
classification problems. In this work, we study the sample complexity of estimating the parameters
of the logistic regression model up to a given ℓ2 error, in terms of the dimension and the inverse
temperature, with standard normal covariates. The inverse temperature controls the signal-to-noise
ratio of the data generation process. While both generalization bounds and asymptotic performance
of the maximum-likelihood estimator for logistic regression are well-studied, the non-asymptotic
sample complexity that shows the dependence on error and the inverse temperature for parameter
estimation is absent from previous analyses. We show that the sample complexity curve has two
change-points in terms of the inverse temperature, clearly separating the low, moderate, and high
temperature regimes.
Keywords: logistic regression, parameter estimation, sample complexity, normal design

1. Introduction

This paper studies the sample complexity of estimating the parameter vector in the logistic regres-
sion model under a normal design, with particular attention paid to the dependence on the dimension
d, the inverse temperature β ≥ 0, and the target error ϵ ∈ (0, 1). We show how the form of the sam-
ple complexity changes depending on the particular relationship between the inverse temperature
and the target error.

Our statistical model is as follows. The parameter space is the unit sphere Sd−1 = {θ ∈ Rd :

∥θ∥ = 1}, where ∥·∥ denotes the ℓ2 norm on Rd. The covariate vector x is a d-dimensional standard
normal random vector. Conditional on x, the response y is a binary {−1, 1}-valued (Bernoulli)
random variable. If the parameter vector in our model is θ ∈ Sd−1, then y = 1 with probability
g′(βxTθ), where g′ is the standard logistic function g′(η) = 1/(1 + e−η), which is the derivative
of the log partition function g(η) = ln(1 + eη). The inverse temperature β, which is the norm of
the coefficient vector on x appearing in the mean parameter, is regarded as a model hyperparameter,
and it governs the signal-to-noise ratio of this data generation process. In particular, when β = 0,
the response is pure noise—a fair coin flip—with no dependence on the covariates. When β = +∞,
the response is fully determined by a homogeneous linear classifier, simply denoting the side of the
hyperplane {x ∈ Rd : xTθ = 0} that x lies on.

We assume the observed data (x1,y1), . . . , (xn,yn) are independent copies of (x,y), with
distribution determined by the unknown parameter vector θ⋆ ∈ Sd−1 (and inverse temperature β).
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For a given ϵ ∈ (0, 1), the goal is to find an estimate θ̂ = θ̂((xi,yi)
n
i=1) ∈ Sd−1 based on these data

(and possibly also β) such that θ̂ satisfies

∥θ̂ − θ⋆∥ ≤ ϵ

(either in expectation or with high probability over the realization of the data).
The sample complexity n⋆(d, β, ϵ) is the smallest sample size n such that the above task is

achievable by some estimator. Intuitively, the estimation error for the maximum likelihood estimator
here is asymptotically normal; leading one to believe that the sample complexity must scale as d/ϵ2.
However, as β increases to +∞, the estimation problem gradually becomes a noiseless halfspace
learning problem. The sample complexity for the latter problem is known to be d/ϵ. This means
that the inverse temperature β should play a crucial role in the sample complexity; going from small
β to large β, the sample complexity curve must have one or more change-points. In this paper, we
coarsely determine this dependence on β. In particular, we show that, up to logarithmic factors in d
and 1/ϵ in the expressions below, the sample complexity satisfies

n⋆(d, β, ϵ) ≍



d

β2ϵ2
if β ≲ 1 (high temperatures);

d

βϵ2
if 1 ≲ β ≲ 1/ϵ (moderate temperatures);

d

ϵ
if β ≳ 1/ϵ (low temperatures).

1.1. Motivation

Our original motivation for studying this problem comes from the application to noisy one-bit
(compressive) sensing, in which only a single bit is retained per linear measurement of a sig-
nal (Boufounos and Baraniuk, 2008). In that context, Plan and Vershynin (2012) proposed a robust
linear estimator that is well-behaved under a variety of observation models, including the logistic
regression model that we consider. This estimator (which in the present context is essentially the
same as the “Average” algorithm of Servedio (1999)) was shown by Plan et al. (2017) to have sample
complexity

O

(
d

min{β2, 1}ϵ2

)
,

improving on an earlier analysis of Plan and Vershynin (2012) that had a worse dependence on
ϵ; note that here we do not assume that θ⋆ is sparse. The optimality of this estimator in the high-
temperature regime (β ≲ 1) is readily established as a standard application of Fano’s inequality (see,
e.g., Chen et al., 2016, Appendix C.1). However, it was unclear whether this sample complexity is
optimal in other regimes. In particular, in the zero-temperature regime (i.e., β = +∞), the yi

are determined by the sign of xT
i θ

⋆, so the problem becomes equivalent to that of PAC learning
homogeneous linear classifiers under spherically symmetric distributions on x. For that problem,
the sample complexity is Θ(d/ϵ), as established by Long (1995, 2003); note that the dependence
on ϵ is considerably reduced.1 Jacques et al. (2013) also gives a statement of the lower bound in the
context of one-bit compressive sensing.

1. Servedio (1999) studied the “Average” algorithm in this context, allowing for the possibility that each observed label
is independently flipped with some fixed probability η ∈ [0, 1/2), and obtains a sample complexity upper bound of
O(d/((1− 2η)ϵ)2).
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Lower bounds on the sample complexity in our setting do not directly follow from standard
lower bounds from statistical learning theory for homogeneous linear classifiers (e.g., Devroye and
Lugosi, 1995), as the distributions exhibiting the lower bounds generally do not conform to our
statistical model. In particular, the support of x in these lower bounds is typically taken to be a
shattered finite set of points, and the conditional distribution of y given x may not be of the form
in logistic regression. The exceptions, as mentioned above, are those based on Fano’s inequality for
the high temperature regime, and the lower bound in the zero temperature regime of Long (1995).

Our upper and lower bounds resolve the dependence of the sample complexity on the inverse
temperature (up to logarithmic factors in 1/ϵ and d), particularly in the regime where 1 ≲ β < +∞.

1.2. Techniques

Lower bounds. Our lower bounds for the high and moderate temperature regimes (Theorem 1)
are proved using Fano’s inequality; for convenience, we use a Bayesian version due to Zhang (2006),
although the “Generalized Fano” approach of Han and Verdú (1994) would also work. The bound
in the high temperature regime is a “textbook” application that uses a uniform quadratic bound on
the Kullback–Leibler (KL) divergence between the distributions determined by nearby parameter
vectors. However, the moderate temperature regime requires a more refined analysis that does not
appear to be standard. To facilitate the required computation, we use the Bregman divergence form
of the KL divergence between Bernoulli distributions.

For the low temperature regime, this version of Fano’s inequality cannot be used, as the afore-
mentioned KL divergence becomes unbounded. The basic form of Fano’s inequality is applicable,
as the conditional entropy of the (randomly chosen) parameter given the data can be estimated.
However, we were not able to obtain the optimal lower bound this way in this low temperature
regime. Instead, we replicate the combinatorial argument of Long (1995) with modifications to
handle finite β (Theorem 3).

Upper bounds. To establish upper bounds on the sample complexity, it is natural to consider the
maximum likelihood estimator (MLE), which is equivalent to finding θ ∈ Sd−1 that minimizes
the empirical risk with respect to the logistic loss: (1/n)

∑n
i=1 g(−βyix

T
i θ). The convexity of the

logistic loss potentially makes the MLE computationally tractable (perhaps after extending the pa-
rameter space to the ball). The risk of a given θ is the expected value of this empirical risk, and the
excess risk relative to that of θ⋆ is the KL divergence between the distributions determined by θ and
θ⋆. This KL divergence can, in turn, be related to the parameter error ∥θ − θ⋆∥ using our analysis
from the lower bound. However, bounding the excess risk sharply enough appears to be challeng-
ing. A standard approach in statistical learning theory is to use techniques like Rademacher averages
from the theory of empirical processes to relate excess risks to the excess empirical risks. Unfortu-
nately, using such tools designed for smooth loss functions like the logistic loss (e.g., Srebro et al.,
2010) leads to a sample complexity with suboptimal dependences on ϵ and β. The distribution of
(x,y) satisfies the Tsybakov-Mammen margin condition Pr[|g′(βxTθ⋆)− 1/2| ≤ t] ≤ C0t

α/(1−α)

with C0 = O(1/β) and α = 1/2 (Mammen and Tsybakov, 1999), but this only improves excess
classification error bounds, not parameter estimation error.

A different approach is to directly analyze the MLE by computing tight Taylor expansions of
the estimation error, and using properties such as self-concordance of the logistic function, in a
way that keeps track of the dimension dependence (e.g., He and Shao, 2000; Portnoy, 1988; Bach,
2010; Ostrovskii and Bach, 2021), and, ideally, the inverse temperature. These analyses of the MLE
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match the performance guarantees in the leading order terms as predicted by classical asymptotic
analysis. However, they essentially treat β as a constant (resulting in suboptimal dependence on β
in lower order terms), which we cannot afford to do as the moderate and low temperature regimes
are defined by the comparison of β to 1/ϵ. Redoing the analysis entirely in our setting boils down
to showing (θ − θ⋆)T∇L(θ) > 0 for all θ that are ϵ away from the true parameter vector θ⋆, with L
being the negative log-likelihood function. At this point, we need a tight approximation of ∇L(θ)
around ∇L(θ⋆), which one may hope to obtain using the self-concordance property. However, in
our setting, the inner product depends on θ, and a uniform bound does not give the optimal scaling.

A very recent work of Kuchelmeister and van de Geer (2023) studies the estimation of the pa-
rameter vector in a probit regression model (under a normal design) by maximizing the likelihood
under a (misspecified) logistic regression model. They directly use techniques from empirical pro-
cess theory specialized to the normal design to provide upper bounds on the sample complexity
needed to estimate θ⋆ up to a given ℓ2 error (under certain assumptions on the signal-to-noise ratio
in the probit model; they are also concerned with estimation of the signal-to-noise ratio itself, which
is beyond the scope of our work). We leverage essential parts of their analysis to establish our sam-
ple complexity upper bound in the moderate and low temperature regimes of our problem, which
requires new moment bounds in the logistic regression observation model. We also give sample
complexity bounds based on empirical risk minimization (for zero-one loss) in the low temperature
regime, mostly using standard techniques. As mentioned above, an optimal estimator for the high
temperature regime was already known (Plan et al., 2017).

Some of estimators we study are applicable under other designs, but the analyses in this work
make heavy use of symmetry properties of the normal distribution. Bounds on various Gaussian
integrals essential in our proofs are collected in Appendix A.

1.3. Other related works

Improper learning. Several prior works analyze “improper learning” algorithms for (possibly
misspecified) logistic regression (e.g., Kakade and Ng, 2004; Zhang, 2006; Hazan et al., 2014;
Foster et al., 2018; Mourtada and Gaı̈ffas, 2022) that do not necessarily produce an estimate of
θ⋆, which may not be sensible anyway if the model is misspecified. Instead, the goal of these
algorithms is to achieve low prediction error guarantees. The lower bound of Hazan et al. (2014)
exploits misspecification to show that larger parameter norm is more detrimental to proper online
learning than it is to improper online learning. In our well-specified setting for parameter estimation,
the parameter norm has a very different effect.

High-dimensional proportional asymptotic analysis. Another line of work considers the per-
formance of MLE and regularized variants in the proportional asymptotic regime, where both d and
n increase to infinity with d/n tending to a constant δ > 0. In this setup, Sur and Candès (2019)
are able to precisely characterize the region in the plane of δ and β where the MLE exists. Salehi
et al. (2019) consider the various regularized variants of MLE and characterize their asymptotic
performance. Neither work directly reveals the dependence of the sample complexity on β.

1.4. Notations

For notational convenience, we assume that a Bernoulli distribution Bern(p) has support on {−1, 1},
with the “mean parameter” p being the probability of 1. We occasionally associate each θ ∈ Sd−1
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with a homogeneous linear classifier hθ : Rd → {−1, 1}, given by hθ(x) = 1 if xTθ > 0 and
hθ(x) = −1 otherwise. For any θ, θ′ ∈ Sd−1, let errθ(θ′) = Pr(hθ′(x) ̸= y) = Pr(yxTθ′ ≤ 0) be
the error rate of hθ′ when the distribution of (x,y) is specified by parameter θ.

2. Lower bounds on the sample complexity

In this section, we give two lower bounds on the sample complexity.

2.1. Moderate and high temperatures

The following theorem establishes our sample complexity lower bound for moderate and high tem-
peratures.

Theorem 1 Fix ϵ ∈ (0, 1). Suppose θ̂ is an estimator that, for any θ⋆ ∈ Sd−1,

E
[
∥θ̂((xi,yi)

n
i=1)− θ⋆∥

]
≤ ϵ,

where the expectation is with respect to the data with distribution determined by θ⋆. Then the sample
size n must satisfy

n ≥ (d− 1) ln 2− ln 4

32ϵ2βmin{β, 2
√

2/π}
.

The proof of Theorem 1 uses the following information theoretic lower bound method due to
Zhang (2006).

Lemma 2 (Theorem 6.1 of Zhang, 2006) Let Π be a probability measure on a parameter space
Θ indexing a family of probability measures (Pθ)θ∈Θ on a data space Z , and let L : Θ×Θ → R be
a loss function. Let θ ∼ Π and Z | θ ∼ Pθ. For any (possibly randomized) estimator θ̂ : Z → Θ,

E
[
L(θ, θ̂(Z))

]
≥ 1

2
sup

{
ε : inf

θ∈Θ
− ln(Π(B(θ, ε))) ≥ 2κ+ ln 4

}
where B(θ, ε) = {θ′ ∈ Θ : L(θ, θ′) < ε} and κ = E(θ,θ′)∼Π⊗Π[KL(Pθ∥Pθ′)].

Proof of Theorem 1. We prove the contrapositive. Assume that

n <
(d− 1) ln 2− ln 4

32ϵ2βmin{β, 2
√

2/π}
.

Set δ = 4ϵ. Fix a unit vector u ∈ Sd−1, and let C = {θ ∈ Sd−1 : ∥θ − u∥ ≤ δ} be the spherical
cap of radius δ around u. Let Θ = Sd−1, Π be the uniform measure on C, and L(θ, θ′) = ∥θ− θ′∥.
For each θ ∈ Θ, we let Pθ denote the joint distribution of the data Z = ((x1,y1), . . . , (xn,yn)) as
determined by our model with parameter θ. Observe that Π(B(θ, ε)) ≤ (ε/δ)d−1 for any ε ≤ δ.
Therefore, provided that

(d− 1) ln 2 > 2κ+ ln 4,

we have E[∥θ − θ̂(Z)∥] > δ/4 = ϵ by Lemma 2. So it remains to establish the above displayed
inequality.
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Since the n data are i.i.d. in each of Pθ and Pθ′ , and the marginal distribution of x is the same
in both Pθ and Pθ′ , the chain rule for KL divergence implies

KL(Pθ∥Pθ′) = nE
[
KL(Bern(g′(βxTθ))∥Bern(g′(βxTθ′)))

]
.

Let z = xTθ and z′ = xTθ′, so each of z and z′ is a standard normal random variable, and the
correlation ρ between z and z′ satisfies

ρ = θTθ′ = 1− 1

2
∥θ − θ′∥2 ≥ 1− 1

2
(2δ)2 = 1− 2δ2,

where we have used the triangle inequality ∥θ − θ′∥ ≤ ∥θ − u∥ + ∥θ′ − u∥ ≤ 2δ. By Lemma 19
(see Appendix A),

E
[
KL(Bern(g′(βxTθ))∥Bern(g′(βxTθ′)))

]
= E

[
KL(Bern(g′(βz))∥Bern(g′(βz′)))

]
≤ β

2
(1− ρ)min

{
β, 2
√
2/π

}
≤ δ2βmin

{
β, 2
√
2/π

}
.

Therefore
2κ+ ln 4 ≤ 2nδ2βmin{β, 2

√
2/π}+ ln 4 < (d− 1) ln 2.

2.2. Low temperatures

The sample complexity lower bound from Theorem 1 tends to 0 as β → ∞. This appears to be
a limitation of the proof technique, which is only useful for β ≲ 1/ϵ. We next establish a lower
bound that improves on Theorem 1 for β ≫ 1/ϵ.

Theorem 3 Fix ϵ ∈ (0, 1). Assume β ≥ 4
√

2/π/ϵ. Suppose θ̂ is an estimator that, for any
θ⋆ ∈ Sd−1,

Pr(∥θ̂((xi,yi)
n
i=1)− θ⋆∥ < ϵ) ≥ 1

2
,

where the probability is with respect to the data with distribution determined by θ⋆. Then the sample
size n must satisfy

n ≥ d− 1

ϵ
· log(log(2e/ϵ))− log(16e)

(1 + o(1)) log(2e/ϵ)

where the o(1) term depends only ϵ and vanishes as ϵ → 0. If β = ∞, then the sample size must, in
fact, satisfy n ≥ (d− 1)/(8eϵ).

The proof of Theorem 3 essentially follows that of Long (1995) for a lower bound on the sample
complexity of PAC learning homogeneous linear classifiers under the uniform distribution on Sd−1.
In Long’s setting, the data distribution coincides with ours for β = ∞. We make a minor modifi-
cation to the argument to also handle finite (but large) β. The extra log log(1/ϵ)/ log(1/ϵ) factor in
the finite β case appears to be an artifact of the proof technique. We also note that the β = ∞ case
is directly implied by the main result of Long (1995).

Long’s proof, as well as ours, relies on the following bound on the shattering number of homo-
geneous linear classifiers.
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Lemma 4 (Winder, 1966, Corollary on page 816) Let H be the family of homogeneous linear
classifiers in Rd. For any x1, . . . , xn ∈ Rd,

|{(h(x1), . . . , h(xn)) : h ∈ H}| ≤ 2

(
ne

d− 1

)d−1

.

We also need the following well-known lower bound on the packing number for Sd−1; the proof
is given for completeness.

Lemma 5 There exists an ϵ-packing of the unit sphere Sd−1 with respect to ℓ2 distance of cardi-
nality (1/ϵ)d−1.

Proof. Let W be a subspace of d-dimensional Euclidean space of dimension d − 1. By a standard
volume argument, there is an ϵ-packing p1, . . . , pM of the unit ball in W with M ≥ (1/ϵ)d−1. For
each point pi, there is a corresponding point p′i ∈ Sd−1 whose orthogonal projection to W is pi. For
any i ̸= j, we have ∥p′i − p′j∥ ≥ ∥pi − pj∥ ≥ ϵ, so p′1, . . . , p

′
M is an ϵ-packing of Sd−1.

Finally, we need the following bound on the error rate of the homogeneous linear classifier hθ⋆ .
(The lemma holds for all β ≥ 0, not just β ≳ 1/ϵ.)

Lemma 6 The error rate of hθ⋆ satisfies

errθ⋆(θ
⋆) ≤ 1

β

√
2

π
.

Proof. Since

errθ⋆(θ
⋆) = Pr(yxTθ⋆ ≤ 0) = E[g′(−β|xTθ⋆|)] = E[g′(−β|z|)]

for a normal random variable z, the claim now follows from Lemma 17 (see Appendix A).

Proof of Theorem 3. Assume without loss of generality that ϵ ≤ 1/2. Let x1, . . . ,xn be inde-
pendent standard normal random vectors. Let yθ

1, . . . ,y
θ
n for all θ ∈ Sd−1 be independent Bernoulli

random variables with yθ
i | (x1, . . . ,xn) ∼ Bern(g′(βxT

i θ)), and let Zθ = ((x1,y
θ
1), . . . , (xn,y

θ
n)).

So the data Zθ follows our model with parameter θ, but all {Zθ : θ ∈ Sd−1} share the same
x1, . . . ,xn. Let êrrθ(θ) = (1/n)

∑n
i=1 1{hθ(xi) ̸= yθ

i } be the empirical error rate of hθ (with
respect to Zθ).

Suppose Pr(∥θ̂(Zθ)− θ∥ < ϵ) ≥ 1/2 for all θ ∈ Sd−1. By Lemma 6, since β ≥ 4
√

2/π/ϵ, we
have

errθ(θ) ≤
ϵ

4
.

Let U be a 2ϵ-packing of Sd−1 with respect to ℓ2 of cardinality |U | ≥ (2ϵ)−(d−1), as guaranteed to
exist by Lemma 5. Let Gθ be the (indicator of) the event ∥θ̂(Zθ) − θ∥ < ϵ and êrrθ(θ) ≤ ϵ. By
Markov’s inequality,

Pr(êrrθ(θ) ≥ ϵ) ≤ 1

4
.

So

E

[∑
θ∈U

Gθ

]
=
∑
θ∈U

E[Gθ] ≥
∑
θ∈U

(
1− 1

2
− 1

4

)
=

|U |
4

≥ 1

4

(
1

2ϵ

)d−1

.

7



HSU MAZUMDAR

Consider any two θ, θ′ ∈ U . If Zθ = Zθ′ , then either ∥θ̂(Zθ)− θ∥ > ϵ or ∥θ̂(Zθ′)− θ′∥ > ϵ (since
∥θ − θ′∥ ≥ 2ϵ), so at least one of Gθ and Gθ′ is zero. Moreover, if Gθ = 1, then the labels yθ

i are
realized by the homogeneous linear classifier determined by θ—except for up to ⌊nϵ⌋ labels, which
could be flipped. Therefore E

[∑
θ∈U Gθ

]
is at most the number of ways of labeling (x1, . . . ,xn)

by homogeneous linear classifiers determined by weight vectors from U , multiplied by 2⌊nϵ⌋
(

n
⌊nϵ⌋
)
.

Hence, by Lemma 4,

E

[∑
θ∈U

Gθ

]
≤ 2

(
ne

d− 1

)d−1

·
(
2ne

nϵ

)nϵ

= 2

(
e

Mϵ
·
(
2e

ϵ

)1/M
)d−1

where M = (d− 1)/(nϵ). Combining the upper and lower bounds on E
[∑

θ∈U Gθ

]
gives

e

Mϵ
·
(
2e

ϵ

)1/M

≥ 1

81/(d−1)
· 1

2ϵ
≥ 1

16ϵ
.

Taking logarithms of both sides and simplifying gives the following inequality:(
M

16e

)
log

(
M

16e

)
≤ 1

16e
log

2e

ϵ
.

Let T (ϵ) = log(2e/ϵ)/(16e). Then, using asymptotic expansion of the product log function (Cor-
less et al., 1996), we have

M

16e
≤ T (ϵ)

log T (ϵ)
(1 + o(1)),

where the o(1) term vanishes as T (ϵ) → ∞ (i.e., ϵ → 0). This implies

n ≥ d− 1

16eϵ
· log T (ϵ)

(1 + o(1))T (ϵ)

as claimed.
If β = ∞, then Pr(êrrθ(θ) = 0) = 1, and hence we have

1

2

(
1

2ϵ

)d−1

≤ E

[∑
θ∈U

Gθ

]
≤ 2

(
ne

d− 1

)d−1

.

Therefore

n ≥ d− 1

8eϵ
.

3. Upper bounds on the sample complexity

In this section, we give upper bounds on the sample complexity based on three different estimators
for the three different regimes of β. Throughout this section, we fix a “ground truth” parameter
θ⋆ ∈ Sd−1 determining the distribution of (x,y).

8



ON THE SAMPLE COMPLEXITY OF PARAMETER ESTIMATION IN LOGISTIC REGRESSION WITH NORMAL DESIGN

3.1. High temperatures

The analysis of Plan et al. (2017, Corollary 3.5) implies, for any ϵ ∈ (0, 1), the “linear estimator”
θ̂linear of Plan and Vershynin (2012) (or the “Average” algorithm of Servedio (1999))

θ̂linear((xi,yi)
n
i=1) = argmax

θ∈Sd−1

1

n

n∑
i=1

yix
T
i θ

satisfies ∥θ̂linear((xi,yi)
n
i=1)− θ⋆∥ ≤ ϵ in expectation provided that

n ≥ Cmax

{
1

β2
, 1

}
d

ϵ2
, (1)

where C > 0 is a universal positive constant. This matches the lower bound from Theorem 1 (up to
constants) when β ≲ 1.

3.2. Moderate and low temperatures

When β ≳ 1, the sample size requirement of the linear estimator in (1) has a suboptimal dependence
on β. In particular, the sample size requirement does not become smaller as β becomes larger.

In this section, we analyze a different estimator, the empirical ReLU risk minimizer θ̂relu:

θ̂relu((xi,yi)
n
i=1) ∈ argmin

θ∈Sd−1

1

n

n∑
i=1

[−yix
T
i θ]+, (2)

where [x]+ = max{0, x} (the rectified linear function used in ReLUs). Notice that if [·]+ was
omitted in each summand of (2), then the estimator θ̂relu would be the same as θ̂linear. This estimator
is also related to the Perceptron algorithm (Rosenblatt, 1958), since the latter can be viewed as a
stochastic subgradient method for minimizing the empirical ReLU risk. However, we do not know
if such subgradient methods minimize the objective over the nonconvex domain Sd−1.

Theorem 7 Assume β ≥ 1+ c for some positive constant c > 0. Fix any ϵ, δ ∈ (0, 1), and suppose

n ≥ C

(
d log(d/ϵ) + log(1/δ)

βϵ2
+

d log(d/ϵ) + log(1/δ)

ϵ

)
where C > 0 is an absolute constant. Then with probability at least 1− δ, we have

∥θ̂relu((xi,yi)
n
i=1)− θ⋆∥ ≤ ϵ.

The main technical work in the proof of Theorem 7 is understanding the concentration properties
of random variables of the form

δθ := [−yxTθ]+ − [−yxTθ⋆]+, θ ∈ Sd−1.

This was studied by Kuchelmeister and van de Geer (2023) in the case of the probit regression
model. We obtain the necessary moment bounds for the logistic regression model. The following
lemma (proved in Appendix B) gives the required bounds.
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Lemma 8 For any θ ∈ Sd−1, and any integer q ≥ 2,

E[|δθ|q] ≤
q!v

2
bq−2

where

b = C∥θ − θ⋆∥ and v ≤ C∥θ − θ⋆∥2
(
1

β
+ ∥θ − θ⋆∥

)
and C > 0 is an absolute constant.

Given Lemma 8, the rest of the analysis is mostly standard. Lemma 8 and Bernstein’s inequality
implies that each random variable in the empirical process above is concentrated around its expec-
tation.

Lemma 9 For any θ ∈ Sd−1, define δiθ := [−yix
T
i θ]+− [−yix

T
i θ

⋆]+ for all i = 1, . . . , n. For any
δ ∈ (0, 1), with probability at least 1− δ, we have

E[δθ]−
1

n

n∑
i=1

δiθ ≤ C∥θ − θ⋆∥

√(
1

β
+ ∥θ − θ⋆∥

)
log(1/δ)

n
+ C∥θ − θ⋆∥ log(1/δ)

n
,

where C > 0 is an absolute constant.

To bound all random variables in the stochastic process simultaneously, we use a covering ar-
gument, again following Kuchelmeister and van de Geer (2023).

Lemma 10 (Kuchelmeister and van de Geer, 2023, Lemma 5.1.2) For any ε0 ∈ (0, 1) and any
A ⊆ Sd−1, let T (A, ε0) be an ε0-cover of A with respect to ℓ2 distance. Define δiθ := [−yix

T
i θ]+−

[−yix
T
i θ

⋆]+ for all i = 1, . . . , n and all θ ∈ A. For any δ ∈ (0, 1), with probability at least 1− δ,
we have

sup
θ∈A

{
E[δθ]−

1

n

n∑
i=1

δiθ

}
≤ max

θ∈T (A,ε0)

{
E[δθ]−

1

n

n∑
i=1

δiθ

}
+ ε0

(√
2 ln(1/δ)

n
+ 2

√
d

)
.

To relate E[δθ] to ∥θ − θ⋆∥, we use the following lemma.

Lemma 11 For any θ ∈ Sd−1, we have

E[δθ] ≥
1

8

√
2

π

(
1− 1

β2

)
∥θ − θ⋆∥2.

Proof. The expected KL divergence of Bern(g′(βxTθ)) from Bern(g′(βxTθ⋆)) is the expected ex-
cess logistic loss of w := βθ compared to w⋆ := βθ⋆:

E
[
KL(Bern(g′(βxTθ))∥Bern(g′(βxTθ⋆)))

]
= E

[
ln(1 + e−yxTw)

]
− E

[
ln(1 + e−yxTw⋆

)
]

(recalling that the conditional distribution of y given x = x is Bern(g′(xTw⋆))). Furthermore,
the logistic loss w 7→ ln(1 + e−yxTw) decomposes into the sum of a label-dependent part and a
label-independent part:

ln(1 + e−yxTw) = [−yxTw]+ + ln(1 + e−|xTw|).

10
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(This decomposition is the same as that from Kuchelmeister and van de Geer (2023), and a similar
decomposition was used by Bach (2010).) We can thus write the excess expected logistic loss as

E
[
ln(1 + e−yxTw)

]
− E

[
ln(1 + e−yxTw⋆

)
]
= E

[
[−yxTw]+

]
+ E

[
ln(1 + e−|xTw|)

]
− E

[
[−yxTw⋆]+

]
− E

[
ln(1 + e−|xTw⋆|)

]
= E

[
[−yxTw]+ − [−yxTw⋆]+

]
since xTw and xTw⋆ have the same distribution. Therefore, we have

E
[
[−yxTθ]+ − [−yxTθ⋆]+

]
=

1

β
E
[
KL(Bern(g′(βxTθ))∥Bern(g′(βxTθ⋆)))

]
.

The claim now follows by applying Lemma 19 (see Appendix A).

Proof of Theorem 7. Fix some ε0, r0 ∈ (0, 1) and let rj = 2jr0 for 1 ≤ j ≤ J := ⌈log2(2/r0)⌉.
Define A0 = {θ ∈ Sd−1 : ∥θ − θ⋆∥ ≤ r0} and Aj = {θ ∈ Sd−1 : rj−1 < ∥θ − θ⋆∥ ≤ rj} for
all j ≥ 1. Let Tj = T (Aj , ε0(rj/2)

3/2) be an ε0(rj/2)
3/2-cover of Aj with respect to ℓ2 distance

of cardinality at most (2(2/rj)3/2ε−1
0 )d−1 (cf. Lemma 5). Fix δ0 ∈ (0, 1/(J +

∑J
j=0|Tj |)), and

apply Lemma 10 to each Aj for 1 ≤ j ≤ J , and Lemma 9 to each θ ∈ T . By a union bound, with
probability at least 1− (J +

∑J
j=0|Tj |)δ0, we have for all θ ∈ Sd−1,

E[δθ] ≤
1

n

n∑
i=1

δiθ + 2C ′∆r0(θ)

√(
1

β
+∆r0(θ)

)
log(1/δ0)

n
+ 2C ′∆r0(θ)

log(1/δ0)

n

+ ε0∆r0(θ)
3/2

(√
2 ln(1/δ0)

n
+ 2

√
d

)

where ∆r0(θ) := max{r0, ∥θ− θ⋆∥}, C ′ > 0 is some absolute constant, and δiθ are as in Lemma 9.
We condition on the event that these inequalities hold for all θ ∈ Sd−1. Since θ̂relu minimizes
1
n

∑n
i=1[−yix

T
i θ]+, it follows that 1

n

∑n
i=1 δ

i
θ̂relu

≤ 0. Therefore, together with Lemma 11 to

lower-bound E[δθ] for θ = θ̂relu, we have

1

8

√
2

π

(
1− 1

β2

)
∥θ̂relu − θ⋆∥2 ≤ 2C ′∆r0(θ̂relu)

√
log(1/δ0)

βn
+ 2C ′∆r0(θ̂relu)

3/2

√
log(1/δ0)

n

+ 2C ′∆r0(θ̂relu)
log(1/δ0)

n
+ ε0∆r0(θ̂relu)

3/2

(√
2 ln(1/δ0)

n
+ 2

√
d

)
.

Let r0 = ϵ, and suppose that ∥θ̂relu − θ⋆∥ > ϵ, in which case we have ∆r0(θ̂relu) = ∥θ̂relu − θ⋆∥.
Then, the display above has ∥θ̂relu − θ⋆∥ on both sides of the inequality, and it simplifies to an
inequality in x = ∥θ̂relu − θ⋆∥1/2 of the form x − b

√
x − c ≤ 0 for some b, c ≥ 0, which in turn

implies x ≤ 1.5(b2 + c). Therefore

∥θ̂relu − θ⋆∥ ≤ C ′′

(
ε20

(
log(1/δ0)

n
+ d

)
+

√
log(1/δ0)

βn
+

log(1/δ0)

n

)

11



HSU MAZUMDAR

for some absolute constant C ′′ > 0. (Recall that we have assumed β ≥ 1 + c for some absolute
constant c > 0, and hence 1 − 1/β2 ≥ c(2 + c)/(1 + c)2.) Plug-in ε0 =

√
ϵ/(4C ′′d), δ0 =

δ/(J +
∑J

j=0|Tj |), and

n ≥ 16 log(1/δ0)

βϵ2
+

4C ′′ log(1/δ0)

ϵ

to conclude that ∥θ̂relu − θ⋆∥ ≤ ϵ. The lower bound n comes from the assumption in the theorem
statement, and the fact that J = O(log(1/ϵ)) and

∑J
j=0|Tj | = O(d/ϵ)O(d).

3.3. Low temperatures

The objective function minimized by θ̂relu in (2) uses the magnitude of the inner product xT
i θ when-

ever its sign differs from that of yi. At sufficiently low temperatures (β ≳ 1/ϵ), this magnitude
information can be safely ignored. Specifically, we show that the empirical (zero-one loss) risk
minimizer

θ̂ERM((xi,yi)
n
i=1) ∈ argmin

θ∈Sd−1

1

n

n∑
i=1

1{yix
T
i θ ≤ 0}

achieves near-optimal sample complexity in this regime.

Theorem 12 Fix any ϵ, δ ∈ (0, 1), and assume

β ≥ 4
√
2π

ϵ

and

n ≥ C(d log(1/ϵ) + log(1/δ))

ϵ

where C > 0 is an absolute constant. Then with probability at least 1− δ, we have

∥θ̂ERM((xi,yi)
n
i=1)− θ⋆∥ ≤ ϵ.

Note that the sample size requirement given in Theorem 12 removes a log(d) factor from that
in Theorem 7 in the low temperature regime.

The proof of Theorem 12 is largely based on the following standard performance guarantee
for empirical risk minimization, combined with the fact that the VC dimension of the class of
homogeneous linear classifiers is d.2

Lemma 13 (Vapnik and Chervonenkis, 1971) There is a universal constant C > 0 such that the
following holds. Let opt = minθ∈Sd−1 errθ⋆(θ). For any ε ∈ (0, 1) and δ ∈ (0, 1), if

n ≥ C

(
d log(1/ε) + log(1/δ)

ε2
opt+

d log(1/ε) + log(1/δ)

ε

)
,

2. Note that Lemma 13 is true under every distribution for (x,y); it does not rely on specific properties of our model.
In the special case of where x is the d-dimensional standard normal (or any other spherically symmetric distribution)
and β = ∞ (which implies opt = 0), the log(1/ε) can be removed (Long, 1995). So, in this case, the sample size
requirement is C(d+ log(1/δ))/ε.

12
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then the empirical risk minimizer θ̂ERM satisfies

errθ⋆(θ̂ERM)− opt ≤ ε

with probability at least 1− δ over the realization of the data.

The following lemma (proved in Appendix C) relates ∥θ̂ERM−θ⋆∥ to errθ⋆(θ̂ERM)−errθ⋆(θ
⋆).

Lemma 14 For any θ ∈ Sd−1,

∥θ − θ⋆∥ ≤ π(errθ⋆(θ)− errθ⋆(θ
⋆)) +

2
√
2π

β
.

Proof of Theorem 12. Note that

min
θ∈Sd−1

errθ⋆(θ) = errθ⋆(θ
⋆).

Therefore, we can combine Lemma 13 (with ε = ϵ/(2π)) and Lemma 14 with the bound on opt =
errθ⋆(θ

⋆) from Lemma 6 to obtain the desired bound on ∥θ̂ERM − θ⋆∥.

3.4. Adaptivity

If the inverse temperature β is unknown, then we need to determine which of the aforementioned
estimators to use in a data-driven fashion. Notice that the estimators θ̂linear, θ̂relu, and θ̂ERM may be
computed without explicit knowledge of β. Therefore, it suffices to (coarsely) distinguish between
the high (β ≲ 1) and moderate-or-low (β ≳ 1) temperature regimes. This can be done using an
estimate of errθ⋆(θ⋆) (e.g., training error rate of θ̂ERM) and reasoning about its relationship to β.

4. Discussion

Our characterization of the sample complexity of estimation in logistic regression delineates the
high, moderate, and low temperature regimes. However, we are only aware of computationally effi-
cient estimators that achieve the (near) optimal sample complexities at high and zero temperatures:
e.g., the linear estimator of Plan and Vershynin (2012) for β ≲ 1, and the estimator based on solving
a linear feasibility program (or the algorithm of Balcan and Long (2013)) for β = ∞. Note that,
although the ReLU loss is convex, we need to minimize it over the sphere. It would be interesting to
determine if the MLE itself (i.e., minimizing the logistic loss), or its efficient approximations, can
shown to achieve optimal sample complexity.
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Appendix A. Bounds on Gaussian integrals

Lemma 15 (Feller, 1968, page 175) Let z ∼ N(0, 1). For any t > 0,(
1− 1

t2

)
1

t
√
2π

exp(−t2/2) ≤ Pr(z ≥ t) ≤ 1

t
√
2π

exp(−t2/2).

Recall that g(η) = ln(1 + exp(η)).

Lemma 16 Let z ∼ N(0, 1). For any β > 0,

1

4
E[exp(−β|z|)] ≤ E[g′′(βz)] ≤ min

{
1

2
, E[exp(−β|z|)]

}
(3)

and
1

β

(
1− 1

β2

)√
2

π
≤ E[exp(−β|z|)] ≤ 1

β

√
2

π
. (4)

Proof. First, observe that

g′′(η) =
1

(1 + exp(η))(1 + exp(−η))
=

1

(1 + exp(|η|))(1 + exp(−|η|))
≤ min

{
1

2
, exp(−|η|)

}
,

while
exp(|η|)

(1 + exp(η))(1 + exp(−η))
=

(
1

1 + exp(−|η|)

)2

≥ 1

4
.

Plugging in η = βz and taking expectations gives the upper- and lower-bounds on E[g′′(βz)]. For
the upper- and lower-bounds on E[exp(−β|z|)], we have

E[exp(−β|z|)] = 2

∫ ∞

0

1√
2π

exp(−βz − z2/2) dz

= 2 exp(β2/2)

∫ ∞

0

1√
2π

exp(−(z + β)2/2) dz

= 2 exp(β2/2)Pr(z ≥ β),

and therefore the conclusion follows by applying Lemma 15.

Lemma 17 Let z ∼ N(0, 1). For any β > 0,

E[g′(−β|z|)] ≤ min

{
1

2
,
1

2
− β

4

√
2

π

(
1− β2

6

)
,
1

β

√
2

π

}
.

Proof. First, observe that g′(η) ≤ 1/2 for all η ≤ 0. Furthermore, by Taylor’s theorem, for any
η ∈ R, there exists h ∈ R (between 0 and η) such that

g′(η) = g′(0) + g′′(η)η +
1

2
g′′′(η)η2 +

1

6
g′′′′(h)η3

≤ g′(0) + g′′(0)η +
1

2
g′′′(0)η2 +

1

48
|η|3

=
1

2
+

1

4
η +

1

48
|η|3,
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where the inequality uses the fact that |g′′′′(h)| ≤ 1/8 for all h ∈ R. Therefore

E[g′(−β|z|)] ≤ 1

2
− β

4
E[|z|] + β3

48
E[|z|3]

=
1

2
− β

4

√
2

π
+

β3

24

√
2

π

=
1

2
− β

4

√
2

π

(
1− β2

6

)
.

Finally, we also have

E[g′(−β|z|)] = E
[

1

1 + exp(β|z|)

]
≤ E[exp(−β|z|)] ≤ 1

β

√
2

π
,

where the final inequality follows by Lemma 16.

Lemma 18 Let z ∼ N(0, 1). For any β > 0 and any non-negative integer q,

E[exp(−β|z|)|z|q] ≤ q!

βq
.

We remark that the bound in Lemma 18 can be improved to O(q!/βq+1), which is tight up to
constants. This is because E[exp(−β|z|)|z|q] =

√
2/πµqmβ , where µq is the q-th uncentered

moment of the [0,∞)-truncated N(−β, 1) distribution, and mβ = (1 − Φ(β))/ϕ(β) is the Mills
ratio for N(0, 1) at β. However, we do not need this improved bound in the present work.
Proof of Lemma 18. The function f : R+ → R defined by f(x) = −βx+ q log(x) is maximized
at x = q/β. Therefore

E[exp(−β|z|)|z|q] = E[exp(−β|z|+ q ln|z|)]
≤ exp(−β(q/β) + q ln(q/β))

= exp(−q + q ln(q)− q ln(β))

≤ exp(ln(q!)− q ln(β))

=
q!

βq
.

Recall that the Bernoulli distributions form an exponential family {pη : η ∈ R}, where

pη(y) = exp(η1{y = 1} − g(η))

and g(η) = ln(1+ exp(η)) is the log partition function for pη. The mean parameter—i.e., the mean
of 1{y = 1} under pη—is given by g′(η). In the proof of the following lemma, we use the fact that
the KL divergence KL(pη∥pη′) can be expressed as a Bregman divergence associated with g:

KL(pη∥pη′) = g(η′)−
(
g(η) + g′(η)(η′ − η)

)
.
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Lemma 19 Let z and z′ be N(0, 1) random variables with correlation ρ. Then

E
[
KL(Bern(g′(βz))∥Bern(g′(βz′)))

]
≤ β

2
(1− ρ)min

{
β, 2
√
2/π

}
and

E
[
KL(Bern(g′(βz))∥Bern(g′(βz′)))

]
≥ β

4
(1− ρ)

(
1− 1

β2

)√
2

π
.

Proof. For any η, η′ ∈ R, we have

KL(Bern(g′(η))∥Bern(g′(η′))) = g(η′)− g(η)− g′(η)(η′ − η).

Hence,

E[KL(Bern(g′(βz))∥Bern(g′(βz′)))] = E[g(βz′)− g(βz)− g′(βz)β(z′ − z)]

= E[g′(βz)β(z− z′)].

Since z and z′ have correlation ρ, we may write

z′ = ρz+
√
1− ρ2z⊥,

where z⊥ ∼ N(0, 1) is independent of z. Thus

E[g′(βz)β(z− z′)] = E
[
g′(βz)β

(
(1− ρ)z−

√
1− ρ2z⊥

)]
= β(1− ρ)E[g′(βz)z]
= β2(1− ρ)E[g′′(βz)],

where the final step follows by Stein’s identity. Now apply Lemma 16 to obtain the conclusion.

Appendix B. Proof of Lemma 8

The following lemma is implicit in the proofs of Lemma 5.2.1 and Lemma A.2.1 of Kuchelmeister
and van de Geer (2023).

Lemma 20 (Kuchelmeister and van de Geer, 2023) Fix θ⋆, θ ∈ Sd−1 and p : R → [0, 1] satis-
fying p(−t) = 1 − p(t) for all t ∈ R. Let x be a standard normal random vector in Rd; let the
conditional distribution of y given x be Bern(p(xTθ⋆)); and define

δθ := [−yxTθ]+ − [−yxTθ⋆]+.

For any integer q ≥ 2,

E[|δθ|q] ≤ 2q−1 1

π
√
2
Γ

(
q + 1

2

)(
π√
2
∥θ − θ⋆∥

)q+1

+ 2q−2∥θ − θ⋆∥2q E[p(−|z|)|z|q]

+ 22(q−1)∥θ − θ⋆∥q
(
1− 1

4
∥θ − θ⋆∥2

)q/2 2q/2√
π
Γ

(
q + 1

2

)
E[p(−|z|)].
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Proof. Using the identity [x]+ = (|x|+ x)/2, we have for any θ ∈ Sd−1,

δθ = [−yxTθ]+ − [−yxTθ⋆]+ =
|xTθ| − yxTθ

2
− sign(xTθ⋆)xTθ⋆ − yxTθ⋆

2

=
(sign(xTθ)− sign(xTθ⋆))xTθ

2
− (y − sign(xTθ⋆))xT(θ − θ⋆)

2
.

Therefore, for any q ≥ 2, Jensen’s inequality implies

|δθ|q ≤ 2q−1

(∣∣∣∣(sign(xTθ)− sign(xTθ⋆))xTθ

2

∣∣∣∣q + ∣∣∣∣(y − sign(xTθ⋆))xT(θ − θ⋆)

2

∣∣∣∣q)
= 2q−11{sign(xTθ) ̸= sign(xTθ⋆)}|xTθ|q + 2q−11{y ̸= sign(xTθ⋆)}|xT(θ − θ⋆)|q.

Kuchelmeister and van de Geer (2023, Corollary A.2.1) showed that

E[1{sign(xTθ) ̸= sign(xTθ⋆)}|xTθ|q] ≤ 1

π
√
2

Γ
( q
2 + 1

)
q + 1

(
π√
2
∥θ − θ⋆∥

)q+1

≤ 1

π
√
2
Γ

(
q + 1

2

)(
π√
2
∥θ − θ⋆∥

)q+1

where the latter inequality uses Γ(q/2 + 1)/(q + 1) ≤ Γ((q + 1)/2).
Using the conditional distribution of y given x,

E[1{y ̸= sign(xTθ⋆)}|xT(θ − θ⋆)|q] = E[p(−|xTθ⋆|)|xT(θ − θ⋆)|q]

= E
[
p(−|z|)|(ρ− 1)z+

√
1− ρ2z⊥|q

]
where ρ = θTθ⋆, and z and z⊥ are independent standard normal random variables. By Jensen’s
inequality,

|(ρ− 1)z+
√

1− ρ2z⊥|q ≤ 2q−1|ρ− 1|q|z|q + 2q−1(1− ρ2)q/2|z⊥|q.

Moreover, we have

1− ρ =
1

2
∥θ − θ⋆∥2 and 1− ρ2 = ∥θ − θ⋆∥2

(
1− 1

4
∥θ − θ⋆∥2

)
.

Therefore, using independence of z and z⊥,

E[1{y ̸= sign(xTθ⋆)}|xT(θ − θ⋆)|q]
≤ 2q−1|ρ− 1|q E[p(−|z|)|z|q] + 2q−1(1− ρ2)q/2 E[p(−|z|)]E[|z⊥|q]

=
1

2
∥θ − θ⋆∥2q E[p(−|z|)|z|q] + 2q−1∥θ − θ⋆∥q

(
1− 1

4
∥θ − θ⋆∥2

)q/2 2q/2√
π
Γ

(
q + 1

2

)
E[p(−|z|)].

Proof of Lemma 8. We use Lemma 20 with p(t) = g′(βt). Therefore we need to bound
E[g′(−β|z|)] and E[g′(−β|z|)|z|q] for all integers q ≥ 2. Since g′(−β|z|) ≤ exp(−β|z|) for
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all z ∈ R, we can use Lemma 16 for the former and Lemma 18 for the latter. We obtain

E[|δθ|q] ≤ 2q−1 · 1

π
√
2
Γ

(
q + 1

2

)(
π√
2
∥θ − θ⋆∥

)q+1

+ 2q−2 · ∥θ − θ⋆∥2q · q!
βq

+ 22(q−1) · ∥θ − θ⋆∥q
(
1− 1

4
∥θ − θ⋆∥2

)q/2 2q/2√
π
Γ

(
q + 1

2

)
· 1
β

√
2

π

≤ 2q−1 · 1

π
√
2
Γ

(
q + 1

2

)(
π√
2
∥θ − θ⋆∥

)q+1

+ 22q−2 · ∥θ − θ⋆∥q · q!
β

+ 22(q−1) · ∥θ − θ⋆∥q 2
q/2

√
π
Γ

(
q + 1

2

)
· 1
β

√
2

π

≤ q! · (C∥θ − θ⋆∥)q−2 · C
2
· ∥θ − θ⋆∥2 ·

(
∥θ − θ⋆∥+ 1

β

)
for some absolute constant C > 0, where the final inequality uses Γ((q + 1)/2) ≤ q!. The final
right-hand side in the previous display is clearly bounded above by q!vbq−2/2 for the specified
choices of b and v.

Appendix C. Proof of Lemma 14

Proof of Lemma 14. We have

errθ⋆(θ) = E
[
g′(−β sign(xTθ)xTθ⋆)

]
= E

[
g′(−β sign(xTθ)xTθ⋆)1{θTxxTθ⋆ ≤ 0}

]
+ E

[
g′(−β sign(xTθ)xTθ⋆)1{θTxxTθ⋆ > 0}

]
= E

[
(1− g′(−β|xTθ⋆|))1{θTxxTθ⋆ ≤ 0}

]
+ E

[
g′(−β|xTθ⋆|)1{θTxxTθ⋆ > 0}

]
= Pr(θTxxTθ⋆ ≤ 0)− 2E

[
g′(−β|xTθ⋆|)1{θTxxTθ⋆ ≤ 0}

]
+ E

[
g′(−β|xTθ⋆|)

]
= Pr(θTxxTθ⋆ ≤ 0)− 2E

[
g′(−β|xTθ⋆|)1{θTxxTθ⋆ ≤ 0}

]
+ errθ⋆(θ

⋆).

Therefore

Pr(θTxxTθ⋆ ≤ 0) = errθ⋆(θ)− errθ⋆(θ
⋆) + 2E

[
g′(−β|xTθ⋆|)1{θTxxTθ⋆ ≤ 0}

]
≤ errθ⋆(θ)− errθ⋆(θ

⋆) + 2E
[
g′(−β|xTθ⋆|)

]
.

The claim now follows by Lemma 17 and the fact that

Pr(θTxxTθ⋆ ≤ 0) =
arccos(θTθ⋆)

π
≥
√

2(1− θTθ⋆)

π
=

∥θ − θ⋆∥
π

.
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