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Abstract
For the stochastic variant of decision-theoretic online learning with K actions, T rounds, and min-
imum gap ∆min, the optimal, gap-dependent rate of the pseudo-regret is known to be O

(
logK
∆min

)
.

We ask to settle the optimal gap-dependent rate for the problem under ε-differential privacy.

1. Introduction

The stochastic variant of decision-theoretic online learning (Freund and Schapire, 1997) may be the
simplest non-worst-case online learning setting. Given K actions, in each round t = 1, 2, . . . , T :

1. a possibly randomized learning algorithm selects an action It ∈ [K] = {1, 2, . . . ,K};

2. each action j is assigned a loss ℓj,t drawn independently from an unknown distribution Pj ;

3. the learning algorithm suffers loss ℓIt,t and observes the losses of all the actions.

Due to the stochasticity, a natural goal is to obtain low pseudo-regret, the difference of the learning
algorithm’s expected cumulative loss and the minimum expected cumulative loss among the actions:

E
[∑T

t=1 ℓIt,t

]
−minj∈[K] E

[∑T
t=1 ℓj,t

]
.

Assume for simplicity that the losses lie in [0, 1] and the optimal action is unique with mean loss
µ∗. For convenience, let the actions (denoted by j) be indexed in order of non-decreasing expected
loss (µj), so that µ∗ = µ1 < µ2 ≤ . . . ≤ µK . In this setting and its bandit cousin, pseudo-regret
bounds often are parameterized via gaps of the form ∆j := µj−µ∗, giving “gap-dependent” bounds.

For this problem, Follow the Leader (FTL) (Kotłowski, 2018) achieves O
(
logK
∆min

)
gap-dependent

pseudo-regret (Kotłowski, 2019), which is optimal (Mourtada and Gaı̈ffas, 2019).
The learning theory community has given significant attention to the interplay between differ-

ential privacy (Dwork, 2006) and learning. Yet, fundamental questions remain open in differentially
private learning (defined shortly). We wish to highlight the following question:

Under ε-differential privacy, what is the optimal gap-dependent rate for the pseudo-
regret for the stochastic variant of decision-theoretic online learning?

We now present a definition of differential privacy for online learning (Sajed and Sheffet, 2019).
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Definition 1 A randomized online learning algorithm M is ε-differentially private (ε-DP) if, for
any two loss vector sequences ℓ1:t := (ℓs)s∈[t] and ℓ′1:t differing in at most one vector and any
decision set D1:t ⊆ [K]t, we have Pr (M(ℓ1:t) ∈ D1:t) ≤ eε · Pr (M(ℓ′1:t) ∈ D1:t) for all t ≤ T .

Asi et al. (2023) showed that the worst-case (over all settings of the gaps) pseudo-regret is

O

(√
T log d+

log(K) log(T )

ε

)
,

Using a strategy called RNM-FTNL, Hu et al. (2021) showed the same worst-case bound1 as well
as a gap-dependent pseudo-regret upper bound that in some cases can be as large as

O

(
logK

∆min
+

log(K) log(T )

ε

)
. (1)

RNM-FTNL runs in epochs that double in length. In each successive epoch, the algorithm uses
Follow the Perturbed Leader (Kalai and Vempala, 2005) with independent Laplace noise (at scale
1/ε) but with two modifications: (i) only data from the previous epoch is used; (ii) the same “noisy
leader” is played for all rounds of the current epoch. In Section 2, we will present and discuss a
refinement of the above bound. Hu et al. (2021) also showed the lower bound

Ω

(
logK

min{∆min, ε}

)
. (2)

Until 2023, we believed this lower bound was the optimal gap-dependent rate. At this point, we
lack sufficient confidence to conjecture the optimality nor suboptimality of the lower bound. The
next section presents the full version of (1), followed by our intuition for why the lower bound is the
correct rate as well as our intuition to the contrary for why the lower bound is not the correct rate.

2. Known Results in Detail, and Intuition

For any m ∈ {1, 2, . . .}, define the mth action bracket as

Jm :=
{
j ∈ K : 2m−1 ·∆min ≤ ∆j < 2m ·∆min

}
(3)

and let the mth within-bracket-minimum-gap be defined as ∆(m) := 2m−1∆min. It follows that for
any j ∈ Jm, we have ∆(m) ≤ ∆j < 2∆(m).

Hu et al. (2021) showed that RNM-FTNL’s pseudo-regret is at most

O

 logK

∆min
+

∑
m≥1: |Jm|>0,∆(m)>ε

1 + log |Jm|
ε

 (4)

Surprisingly (to us), the bound (4) is worse when some suboptimal actions have gaps that exceed
the minimum gap. To see this, and to build intuition later, we first introduce a special problem
instance that we call the doubling gaps construction. In this construction:

• We set K = 1 + n, where n is a perfect square (so n = x2 for a positive integer x).

1. After Asi et al. (2023), in June 2023 Hu et al. (2021) corrected their analysis to get the worst-case rate shown here.
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• The gaps for actions 2 through K follow the structure

∆min . . . ∆min︸ ︷︷ ︸
√
n times

2∆min . . . 2∆min︸ ︷︷ ︸
√
n times

22∆min . . . 22∆min︸ ︷︷ ︸
√
n times

. . . 2n−1∆min . . . 2n−1∆min︸ ︷︷ ︸
√
n times

;

so, these actions fall into Θ(
√
K) groups, and in each successive group the gap doubles.

Consider the doubling gaps construction. If ∆min = O(1/T ), then the actions in the smallest-
gap group can contribute at most O(1) to the pseudo-regret; hence, when reasoning about pseudo-
regret we may assume (for this construction) that

√
n = O(log T ). With this construction and

constraint on n, the bound in (4) becomes

O

(
logK

∆min
+

log(K) log(T )

ε

)
.

Yet, if we were to instead employ a construction in which all suboptimal actions have the same gap
∆min — that is, the construction that is usually used to show worst-case lower bounds in both non-
private and private hypothesis testing, in non-private stochastic DTOL, and in non-private stochastic
bandits — then (4) becomes

O

(
logK

∆min
+

logK

ε

)
= O

(
logK

min{∆min, ε}

)
,

matching the lower bound (2).
According to information-theoretic intuition, one would expect that the problem only becomes

easier as some actions’ suboptimalities (expected loss minus µ∗) increase. That is, in moving from
the typical worst-case construction to the doubling gaps construction, intuitively the pseudo-regret
should not increase. Sure, the price paid for playing some actions becomes larger in the doubling
gaps construction, but an action’s increased suboptimality should only make it easier to avoid the
action.

Towards a better algorithm or analysis. In what follows, we adopt a fast and loose analysis style
to build mathematical intuition. For the below, we consider the doubling gaps construction. We say
a suboptimal action is sufficiently sampled if the algorithm has collected enough observations of the
action to statistically distinguish the action from the optimal action.

Fix one of the n groups of actions containing some action j. In round t, the amount by which
the expectation of the minimum cumulative loss (where the minimum is taken over the actions
in the group) falls below the expected cumulative loss of a fixed action in the group is of order√

t log
√
n ≍

√
t logK. On the other hand, the expected cumulative loss of a fixed action in the

group exceeds that of the optimal action by t∆j . Therefore, statistically distinguishing the “best-
looking” action in the group from the optimal action requires order logK

∆2
j

samples. Now, suppose

that FTL is as unlucky as possible. Then, ignoring constants, in the first logK
(2n−1∆min)2

rounds, FTL
plays an action in the last group (group n, the one with the largest gaps), picking up pseudo-regret
of order logK

(2n−1∆min)2
·2n−1∆min = logK

2n−1∆min
. Similarly, when unlucky, for three fourths2 of the first

logK
(2n−2∆min)2

rounds, FTL plays an action in group n− 1, picking up order logK
2n−2∆min

pseudo-regret.

2. Since we already accounted for the first quarter.
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Repeating this argument for all groups, FTL in total picks up O
(∑n−1

m=0
logK

2m∆min

)
= O

(
logK
∆min

)
pseudo-regret.

Next, consider the ε-differentially private setting for ε ≪ ∆min. Again fix one of the n groups
of actions containing an action j. If using RNM-FTNL (which uses scale-1ε Laplace noise), af-
ter t rounds the expected deviations of the “best-looking” action in the group (relative to t∆j)

are of order max
{

logK
ε ,

√
t logK

}
. Therefore, until t is of order logK

ε·∆j
, RNM-FTNL cannot

statistically distinguish this within-group “best-looking” action from the optimal action. Follow-
ing an analysis analogous to the non-private case, RNM-FTNL picks up pseudo-regret of order
O
(∑n−1

m=0
logK

ε·2m∆min
· 2m∆min

)
= O

(
log(K)

∑n−1
m=0

1
ε

)
pseudo-regret, which is O

(
log(K) log(T )

ε

)
.

Better pseudo-regret under the uniform hypothesis. If it is possible to show that RNM-FTNL
satisfies what we dub the uniform hypothesis, meaning that the algorithm (approximately) balances
its mistakes across actions that have not yet been sufficiently sampled, then it seems that the algo-
rithm would enjoy O

(
log2 K

ε

)
= O

(
log(K) log log(T )

ε

)
pseudo-regret. To see why, suppose in each

successive epoch (an epoch ends when one more group is sufficiently sampled), plays of suboptimal
actions are balanced (in expectation) across insufficiently sampled actions. Then in the doubling
gaps construction, our sketch analysis implies that RNM-FTNL gets pseudo-regret of order

n−1∑
m=0

logK

ε · 2m∆min

m∑
k=0

1

m+ 1
2k∆min ≤ 2 logK

ε

n−1∑
m=0

1

2m∆min

1

m+ 1
2m∆min = O

(
log2K

ε

)
.

We have been unable to show that RNM-FTNL satisfies the uniform hypothesis. We also tried
to design a new algorithm that maintains lower and upper confidence bounds to try to enforce
balancing pulls across all actions whose optimality statistically cannot be ruled out, but the use of
the confidence bounds unfortunately led to unacceptable extra log factors (including log T factors).

3. Prizes

For the open problems we only consider the case of pure DP, i.e., ε-DP (not approximate DP). Also,
all loss distributions are assumed to have support contained in [0, 1].

Here are the prizes:

• Grand prize: $300 USD for getting the first problem-dependent upper and lower bounds of
matching order. Improving only the upper bound or only the lower bound is fine, as long as
matching bounds are obtained. If improving the upper bound, it is fine to tighten the analysis
of an existing algorithm or design a new algorithm. If the upper bound is not constructive
(no algorithm is presented which achieves the bound), the prize is only $200 USD; the first
subsequent constructive result gets the remaining $100 USD (not $300 USD).

• Lower prize: $100 USD for showing a lower bound of larger order but not satisfying the
conditions for the grand prize (i.e., not showing upper and lower bounds of matching order).
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