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Abstract
To sample from a general target distribution p∗ ∝ e−f∗ beyond the isoperimetric condition,

Huang et al. (2023) proposed to perform sampling through reverse diffusion, giving rise to Diffusion-
based Monte Carlo (DMC). Specifically, DMC follows the reverse SDE of a diffusion process
that transforms the target distribution to the standard Gaussian, utilizing a non-parametric score
estimation. However, the original DMC algorithm encountered high gradient complexity1, resulting
in an exponential dependency on the error tolerance ϵ of the obtained samples. In this paper, we
demonstrate that the high complexity of the original DMC algorithm originates from its redundant
design of score estimation, and proposed a more efficient DMC algorithm, called RS-DMC, based on
a novel recursive score estimation method. In particular, we first divide the entire diffusion process
into multiple segments and then formulate the score estimation step (at any time step) as a series of
interconnected mean estimation and sampling subproblems accordingly, which are correlated in a
recursive manner. Importantly, we show that with a proper design of the segment decomposition,
all sampling subproblems will only need to tackle a strongly log-concave distribution, which can
be very efficient to solve using the standard sampler (e.g., Langevin Monte Carlo) with a provably
rapid convergence rate. As a result, we prove that the gradient complexity of RS-DMC exhibits
merely a quasi-polynomial dependency on ϵ. This finding is highly unexpected as it substantially
enhances the prevailing belief of the necessity for exponential gradient complexity in all prior works
such as Huang et al. (2023). Under commonly used dissipative conditions, our algorithm is provably
much faster than the popular Langevin-based algorithms. Our algorithm design and theoretical
framework illuminate a novel direction for addressing sampling problems, which could be of broader
applicability in the community.
Keywords: Diffusion-based Monte Carlo, Quasi-polynomial complexity

1. We denote gradient complexity as the required number of gradient calculations to achieve at most ϵ sampling error.
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1. Introduction

Sampling problems, i.e., generating samples from a given target distribution p∗ ∝ exp(−f∗), have
received increasing attention in recent years. A popular approach for solving this problem is to
apply gradient-based Markov chain Monte Carlo (MCMC) methods, such as Unadjusted Langevin
Algorithms (ULA) (Neal, 1992; Roberts and Tweedie, 1996), Underdamped Langevin Dynamics
(ULD) (Cheng et al., 2018; Ma et al., 2021; Mou et al., 2021), and Metropolis-Adjusted Langevin
Algorithm (MALA) (Roberts and Stramer, 2002; Xifara et al., 2014). In particular, these algorithms
can be seen as the discretization of the continuous Langevin dynamics (LD) and its variants (Ma
et al., 2015), which will converge to a unique stationary distribution that follows p∗ ∝ exp(−f∗),
under regularity conditions on the energy function f∗(x) (Roberts and Tweedie, 1996).

The convergence rate of the Langevin-based algorithms heavily depends on the isoperimetric-like
properties of the target distribution p∗: guaranteeing the convergence in polynomial time requires p∗
to be, e.g., log-concave, satisfying log-Sobolev or Poincaré inequalities or their generalizations with
well-behaving coefficients. Unfortunately, for general non-log-concave distributions, the convergence
rate typically depends exponentially on the problem dimension (Raginsky et al., 2017; Holzmüller
and Bach, 2023) (i.e., ∼ exp(d)), or even the convergence to p∗ cannot be guaranteed altogether
(one instead only guarantee to converge to some local stationarity (Balasubramanian et al., 2022)).
This implies that the Langevin-based algorithms may not be the ideal candidate for solving such hard
sampling problems. To this end, we are interested in addressing the following question:

Can we develop a new sampling algorithm that enjoys a non-exponential convergence
rate for sampling general non-log-concave distributions?

To address this problem, we draw inspiration from recent studies—including Montanari (2023);
Huang et al. (2023)—that attempt to design samplers based on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Vargas et al., 2023). We refer to this class of samplers as the diffusion-based
Monte Carlo (DMC) methods. In particular, the algorithm developed in Huang et al. (2023) is
based on the reverse process of the Ornstein-Uhlenbeck (OU) process, which starts from the target
distribution p∗ and converges to a standard Gaussian distribution. The mathematical formula of the
OU process and its reverse process are given as follows (Anderson, 1982; Song et al., 2020):

dxt = −xtdt+
√
2dBt, x0 ∼ p0(x) = p∗, (OU Process)

dx←t =
[
x←t + 2∇ log pT−t(x

←
t )
]
dt+

√
2dBt, x←0 ∼ pT (x) ≈ N (0, I), (Reverse Process)

where Bt denotes the Brownian term, pt(x) denotes the underlying distribution of the particle at
time t along the OU process, T denotes the end time of the OU process, and ∇ log pt(x) denotes
the score function of the distribution pt(x). In fact, the exponentially slow convergence rate of
the Langevin-based algorithms stems from the rather long mixing time of Langevin dynamics to
its stationary distribution, while in contrast, the OU process exhibits a much shorter mixing time.
Therefore, principally, if the reverse process of the OU process can be perfectly recovered, one can
avoid suffering from the issue of slow mixing of Langevin dynamics, and develop more efficient
sampling algorithms accordingly.

Then, the key to recovering (Reverse Process) is to obtain a good estimation for the score
∇ log pt(x) for all t ∈ [0, T ]. Huang et al. (2023) proposed a score estimation method called
reverse diffusion sampling (RDS) based on an inner-loop ULA. However, it still suffers from the
exponential dependency with respect to the target sampling error, which requires exp

(
O(1/ϵ)

)
2
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gradient complexity to achieve the ϵ sampling error in KL divergence. The reason behind this is that
RDS involves many hard subproblems that need to sample non-log-concave distributions with bad
isoperimetric properties, which incurs huge gradient complexities in the desired Langevin algorithms.

In this work, we argue that the hard subproblems in Huang et al. (2023) are redundant or even
unnecessary, and propose a more efficient diffusion-based Monte Carlo method, called recursive score
DMC (RS-DMC), that only requires quasi-polynomial gradient complexity to sampling general
non-log-concave distributions. At the core of RS-DMC is a novel non-parametric method for score
estimation, which involves a series of interconnected mean estimation and sampling subproblems
that are correlated in a recursive manner. In particular, we first divide the entire forward process into
several segments starting from 0, S, . . . , (K−1)S, and estimate the scores {∇ log pkS(x)}k=0,...,K−1
recursively. Given the segments, the score within each segment ∇ log pkS+τ (x) will be further
estimated according to the reference score∇ log pkS(x), where τ ∈ [0, S] can be arbitrarily chosen.
Importantly, given proper configuration of the segment length (i.e., S), we can show that all sampling
subproblems in the developed score estimation method are much easier, as long as the target
distribution p∗ is log-smooth and has bounded second moment. Then, all intermediate target
distributions are guaranteed to be strongly log-concave, which can be sampled very efficiently
via standard ULA. Accordingly, based on the samples generated via ULA, the mean estimation
subproblems can be then resolved very efficiently under some mild assumptions on the tail of the
posterior distribution (e.g., moment bounds). We summarize the main contributions as follows:

• We propose a new Diffusion Monte Carlo algorithm, called RS-DMC, for sampling general non-
log-concave distributions. At the core is a novel and efficient recursive score estimation algorithm.
In particular, based on a properly designed recursive structure, we show that the hard non-log-
concave sampling problem can be divided into a series of benign sampling subproblems that can
be solved very efficiently via standard ULA.

• We establish the convergence guarantee of the proposed RS-DMC algorithm under very mild
assumptions, which only require the target distribution to be log-smooth and to have a bounded
second moment. In contrast, to obtain provable convergence (to the target distribution), the
Langevin-based methods typically require additional isoperimetric conditions (e.g., Log-Sobolev
inequality, Poincaré inequality, etc). This justifies that our algorithm can be applied to a broader
class of distributions with rigorous theoretical convergence guarantees.

• We prove that the gradient complexity of our algorithm is exp
[
O(log3(d/ϵ))

]
to achieve ϵ sampling

error in KL divergence, which only has a quasi-polynomial dependency on the target error ϵ and
dimension d. In contrast, under even stronger conditions in our work, the gradient complexity in
prior works either need exponential dependency in ϵ (i.e., exp

(
O(1/ϵ)

)
) (Huang et al., 2023) or

exponential dependency in d, (i.e., exp
(
O(d)

)
) (Raginsky et al., 2017; Xu et al., 2018)2 (which

requires the additional dissipative condition). This demonstrate the efficiency of our algorithm.

2. Preliminaries

In this section, we will first introduce the notations and problem settings that are commonly used in
the following sections. We will then present some fundamental properties, such as the closed form of

2. We omit the d-dependency in Huang et al. (2023) and ϵ-dependency in Raginsky et al. (2017); Xu et al. (2018) for the
ease of presentation.
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the transition kernel and the expectation form of score functions along the OU process. Finally, we
will specify the assumptions that the target distribution is required in our algorithms and analysis.

Notations. We use the lowercase bold symbol x to denote the random vector, and the lowercase
italicized bold symbol x means a fixed vector. We use ∥ · ∥ to denote the standard Euclidean distance.
We say an = poly(n) if an ≤ O(nc) for some constant c and pow(a, b) = ab.

The segmented OU process. We define Na,b = [a, b] ∩ N∗ for brevity. Suppose the length of each
segment is S ∈ R+, and we divide the entire forward process with length T into K ∈ N+ segments
satisfying K = T/S. In this condition, we can reformulate the previous SDE as

xk,0 ∼ p0,0 = p∗ when k = 0, else xk,0 = xk−1,S k ∈ N0,K−1

dxk,t = −xk,tdt+
√
2dBt k ∈ N0,K−1, t ∈ [0, S],

(1)

where xk,t denotes the random variable of the OU process at time (kS + t) with underlying density
pk,t. Besides, we define the following conditional density, i.e., p(k,t)|(k′,t′)(x|x′), which presents the
probability of obtaining xk,t = x when xk′,t′ = x′. The diagram of SDE (1) is presented in Fig 1.

The reverse segmented OU process. According to (Reverse Process), the reverse process of the
segmented SDE (1) can be presented as

x←k,0 ∼ pK−1,S when k = K − 1, else x←k,0 = x←k+1,S k ∈ N0,K−1

dx←k,t =
[
x←k,t + 2∇ log pk,S−t(x

←
k,t)
]
dt+

√
2dBt k ∈ N0,K−1, t ∈ [0, S]

where particles satisfy x←k,t = xk,S−t with underlying density p←k,t = pk,S−t for any k ∈ N0,K−1 and
t ∈ [0, S]. To approximately solve the SDE with numerical methods, we first split each segment
into R intervals {[(r − 1)η, rη]}r=1,...,R, where η is the interval length and R = S/η. Then we can
replace the score function∇ log pk,S−t as v←k,t, and for t ∈ [rη, (r+ 1)η], we freeze the value of this
coefficient in the SDE at time (k, rη). Then starting from the standard Gaussian distribution, we
consider the following new SDE:

x←k,0 ∼ p∞ = N (0, I) when k = K − 1, else x←k,0 = x←k+1,S k ∈ N0,K−1

dx←k,t =
[
x←k,t + 2v←k,⌊t/η⌋η

(
x←k,⌊t/η⌋η

)]
dt+

√
2dBt k ∈ N0,K−1, t ∈ [0, S]

(2)

where p∞ denotes the stationary distribution of the forward process. Similar to the segmented OU
process, we define the following conditional density, i.e., p←k,t|t′(x|x

′), which presents the probability
of obtaining x←k,t = x when x←k,t′ = x′. The diagram of SDE (2) is presented in Fig 1.

Basic properties of the OU process. Previously, we have demonstrated that SDE (1) is an
alternative presentation of the OU process. Therefore, the properties in the OU process can be
directly introduced for this segmented version. First, the transition kernel in the k-th segment satisfies

pk,t|0(x|x0) =
(
2π
(
1− e−2t

))−d/2 · exp[−∥∥x− e−tx0

∥∥2
2 (1− e−2t)

]
, ∀ 0 < t ≤ S.

Plugging the transition kernel into Tweedie’s formula, the score function can be reformulated as the
following lemma whose proof is deferred in Appendix E.
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The forward process

The reverse process

p0,0 = p∗ pk−1,0 pk−1,S = pk,0 pk,S pK−1,S ≈ p∞

p←0,S p←k−1,S p←k−1,0 = p←k,S p←k,0 p←K−1,0

≈ =

v←k,Rη v←k,0
= v←k,(r−1)η= v←k,rη

∇ ln pk,0 ∇ ln pk,S∇ ln pk,S−(r−1)η∇ ln pk,S−rη

≈≈

Figure 1: The illustration of SDE (1) and (2) with the definitions in Section 2. The top of the figure describes
the underlying distribution of the segmented OU process, SDE (1), and the bottom presents the
corresponding distribution in the reverse segmented OU process, SDE (2). For the intermediate
part, the upper half describes the gradients of the log densities along the forward SDE (1), while
the lower half describes approximated scores used to update particles in the reverse SDE (2).

Lemma 1 (Lemma 1 of Huang et al. (2023)) For any k ∈ N0,K−1 and t ∈ [0, S], the score func-
tion can be written as

∇ log pk,S−t(x) = Ex0∼qk,S−t(·|x)

[
−x− e−(S−t)x0(

1− e−2(S−t)
)]

where the conditional density function qk,S−t(·|x) is defined as

qk,S−t(x0|x) ∝ exp

(
log pk,0(x0)−

∥∥x− e−(S−t)x0

∥∥2
2
(
1− e−2(S−t)

) ) .
Therefore, to approximate the score ∇ log pk,S−rη(x) with an estimator v←k,rη(x), we can draw
samples from qk,S−rη(·|x) and calculate their empirical mean.

Assumptions. To guarantee the convergence in KL divergence, the Langevin-based methods require
the target distribution to satisfy certain isoperimetric properties such as Log-Sobolev inequality (LSI)
and Poincaré inequality (PI) or even strong log-concavity (Vempala and Wibisono, 2019; Cheng
and Bartlett, 2018; Dwivedi et al., 2018; Ma et al., 2019; Zou et al., 2019, 2021; Dong et al., 2022)
(the formal definitions of these conditions are deferred to Appendix A). Some other works consider
milder assumptions such as modified LSI (Erdogdu and Hosseinzadeh, 2021) and weak Poincaré
inequality (Mousavi-Hosseini et al., 2023), but they are only the analytical continuation of LSI and
PI, which still exhibit a huge gap with the general non-log-concave distributions. Huang et al. (2023)
requires the target distribution p∗ to have a heavier tail than that of the Gaussian distribution.
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Remarkably, our algorithm does not require any isoperimetric condition or condition on the
tail properties of p∗ to establish the convergence guarantee. We only require the following mild
conditions on the target distribution.

[A1] For any k ∈ N0,K−1 and t ∈ [0, S], the score∇ log pk,t is L-Lipschitz.

[A2] The target distribution has a bounded second moment, i.e., M := Ep∗ [∥·∥
2] <∞.

Assumption [A1] corresponds to the L-smoothness condition of the log density f∗ in traditional ULA
analysis, which has been widely made in prior works (Chen et al., 2023b,c; Huang et al., 2023). It is
often used to ensure that numerical discretization is feasible. We emphasize that Assumption [A1]
may be relaxed only to assume the target distribution is smooth rather than the entire OU process
(based on Lemmas 12 and 14 in Chen et al. (2023a)) or even only the second moment bounded
and identity data covariance matrix (in the counterpart of Benton et al. (2023)). We do not include
this additional relaxation in this paper to make our analysis clearer. Assumption [A2] is one of the
weakest assumptions being adopted for the analysis of posterior sampling.

3. Proposed Methods

In this section, we introduce a new approach called Recursive Score Estimation (RSE) and describe
the proposed Recursive Score Diffusion-based Monte Carlo (RS-DMC) method. We start by dis-
cussing the motivations and intuitions behind the use of recursion. Next, we provide implementation
details for the RSE process and emphasize the importance of selecting an appropriate segment length.
Finally, we present the RS-DMC method based on the RSE approach.

3.1. Difficulties of the vanilla DMC

We consider the reverse segmented OU process, i.e., SDE 2 and begin with the original version
of DMC in Huang et al. (2023), which can be seen as a special case of the reverse segmented OU
process with a large segment length S = T and a small number of segments K = 1. According to
the reverse SDE 2, for the r-th iteration within one single segment, we need to estimate∇ log p0,S−rη
to update the particles. Specifically, by Lemma 1, we have

∇ log p0,S−rη(x) = Ex0∼q0,S−rη(·|x)

[
−x− e−(S−rη)x0(

1− e−2(S−rη)
)]

for any x ∈ Rd, where the conditional distribution is

q0,S−rη(x0|x) ∝ exp

(
log p0,0(x0)−

∥∥x− e−(S−rη)x0

∥∥2
2
(
1− e−2(S−rη)

) ). (3)

Since the analytic form ∇ log p0,0 = −∇f∗ exists, we can use the ULA to draw samples from
q0,S−rη(·|x) and calculate the empirical mean to estimate∇ log p0,S−rη(x).

However, sampling from q0,S−rη(·|x) is not trivial. When r is small, sampling q0,S−rη(·|x)
via ULA is almost as difficult as sampling p0,0(x0) via ULA (see (3)), since the additive quadratic
term, whose coefficient is e−2(S−rη)/2(1− e−2(S−rη)), will be nearly negligible in this case. This is
because that S = T is large and then e−2(S−rη)/2(1− e−2(S−rη)) ∼ exp(−2T ) becomes extremely

6
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≈ ∇ ln pk,S−t(x)

m
ea

n

ULA to qk,S−rη(·|x)
. . .

. . .

..
.

..
.

..
.

..
.

. . .x′

≈ ∇ ln pk−1,S(x
′)

∇ ln pk,0(x
′) =m

ea
n

ULA to qk−1,S(·|x′)
. . .

. . .

..
.

..
.

..
.

..
.

. . . Step 1

Step 3

Step 2

∇f∗ ∇ ln pk−1,0 ∇ ln pk,0 ∇ ln pk,S−rη ∇ ln pk+1,0 ∇ ln pK,0 p∞

Figure 2: The illustration of recursive score estimation (RSE). The upper half presents RSE locally,
which shows how to utilize the former score,∇ log pk,0(x

′) to update particles by ULA in
the sampling subproblem formulated by the latter score, ∇ log pk,S−t(x). The lower half
presents RSE globally, which is a series of interconnected mean estimation and sampling
subproblems accordingly.

small when rη = O(T ). Specifically, in Huang et al. (2023), when e−2(S−rη) ≤ 2L/(1 + 2L),
the LSI parameter of q0,S−rη(·|x) can be as worse as exp

(
− O(1/ϵ)

)
. Then applying ULA for

sampling this distribution needs a dramatically high gradient complexity that is exponential in 1/ϵ.

3.2. Intuition of the recursion

Therefore, the key to avoiding sampling such a hard distribution is to restrict the segment length. By
Lemma 1, it can be straightforwardly verified that if the segment length satisfies S ≤ 1

2 log
(
2L+1
2L

)
,

−∇2
x0

log qk,S−rη(x0|x) ⪰ −∇2
x0

log pk,0(x0) +
e−2S

1− e−2S
· I ⪰ e−2S

2(1− e−2S)
· I (4)

where the last inequality follows from Assumption [A1]. This implies that qk,S−rη(x0|x) is strongly
log-concave for all r ≤ ⌊S/η⌋, which can be efficiently sampled via the standard ULA. However,
ULA requires to calculate the score function∇x0 log qk,S−rη(x0|x), which further needs to calcu-
late ∇ log pk,0(x) according to Lemma 1. Different from the vanilla DMC where the formula of
∇ log p0,0(x) is known, the score ∇ log pk,0(x) in (4) is an unknown quantity, which also requires
to be estimated. In fact, based on our definition, we can rewrite pk,0(x) as pk−1,S(x) (see Figure 1),
then applying Lemma 1, we can again decompose the problem of estimating ∇ log pk−1,S(x) into
the subproblems of sampling qk−1,S(·|x) and the estimation of∇ log pk−1,0(x), which is naturally
organized in a recursive manner. Therefore, by recursively adopting this subproblem decomposition,
we summarize the recursive process for approximating∇ log pk,S−rη(x) as follows and illustrate the
diagram in Figure 2:

• Step 1: We approximate the score ∇ log pk,S−rη(x) by a mean estimation with samples generated
by running ULA over the intermediate target distribution qk,S−rη(·|x).

• Step 2: When running ULA for qk,S−t(·|x), we estimate the score∇ log pk,0 = ∇ log pk−1,S .

7
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• Step 3: We jump to Step 1 to approximate the score ∇ log pk−1,S(x) via drawing samples from
qk−1,S(·|x), and continue the recursion.

3.3. Recursive Score Estimation and Reverse Diffusion Sampling

Recursive Score Estimation. We have already explained the rough intuition behind introducing
recursion. By conducting the recursion, we need to solve a series of sampling and mean estimation
subproblems. Then, it is demanding to control the error propagation between these subproblems in
order to finally ensure small sampling errors. In particular, this amounts to the adaptive adjustment
of the sample numbers for mean estimation and iteration numbers for ULA in solving sampling
subproblems. Specifically, if we require score estimation v←k,rη : Rd → Rd to satisfy

∥∥∇ log pk,S−rη(x)− v←k,rη(x)
∥∥2 ≤ ϵ, ∀x ∈ Rd (5)

with a high probability, then the sample number in Step 1 and the number of calls of Step 2 (the
iteration number of ULA) in Fig 2 will be two functions with respected to the target error ϵ, denoted
as nk,r(ϵ) and mk,r(ϵ) respectively. Furthermore, when Step 2 is introduced to update ULA, we rely
on an approximation of∇ log pk,0 instead of the exact score. To ensure (5) is met, the error resulting
from estimating∇ log pk,0 should be typically smaller than ϵ. We express this requirement as:∥∥∇ log pk,0(x)− v←k,0(x)

∥∥2 ≤ lk,r(ϵ), ∀x ∈ Rd.

where lk,r(ϵ) is a function of ϵ that satisfies lk,r(ϵ) ≤ ϵ. Under this condition, we provide Alg 1, i.e.,
RSE, to calculate the score function for the r-th iteration at the k-th segment, i.e., ∇ log pk,S−rη(x).
Note that the initial distribution q′0 and the step size τr in Line 4 and 9 should be chosen carefully to
guarantee the convergence of inner ULA, i.e.,

q′0(x
′) ∝ exp

(
−
∥∥x− e−(S−rη)x′∥∥2
2(1− e−2(S−rη))

)
and τr = O

(
e2(S−rη)

(
1− e−2(S−rη)

)2
· d−1ϵ

)
.

Quasi-polynomial Complexity. We consider the ideal case for interpreting the complexity of
our score estimation method. In particular, since the benign error propagation, i.e., lk,r(ϵ) = ϵ, is
almost proven in Lemma 20, we suppose the number of calls to the recursive function, RSE(k −
1, 0,x′, lk,r(ϵ)), is uniformly bounded by mk,r(ϵ) · nk,r(ϵ) for all feasible (k, r) pairs when the RSE
algorithm is executed with input (k, r,x, ϵ). Then, recall that we will conduct the recursion in at
most K rounds. The total gradient complexity for estimating one score will be

[mk,r(ϵ) · nk,r(ϵ)]O(K) = [mk,r(ϵ) · nk,r(ϵ)]O(T/S) .

This formula highlights the importance of selecting a sufficiently large segment with length S to
reduce the number of recursive function calls and improve gradient complexity. In our analysis, we
set S = 1

2 log
(
2L+1
2L

)
, which is “just” small enough to ensure that all intermediate target distributions

in the sampling subproblems are strongly log-concave. Due to the choice of T is O(log(d/ϵ)) in
general cases and mk,r(·) and nk,r(·) are typically polynomial w.r.t. the target sampling error ϵ and
dimension d ( Theorem 5 in Appendix B), we expect a quasi-polynomial gradient complexity.

8
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Algorithm 1 Recursive Score Estimation (approximate∇ log pk,S−rη(x)): RSE(k, r,x, ϵ)
Input :The segment number k ∈ N0,K−1, the iteration number r ∈ N0,R−1, variable x requiring

the score function, error tolerance ϵ.
1 if k ≡ −1 then
2 return −∇f∗(x)
3 Initial the returned vector v′ ← 0
4 for i = 1 to nk,r(ϵ) do
5 Draw x′0 from an initial distribution q′0
6 for j = 0 to mk,r(ϵ,x)− 1 do
7 v′j ← RSE

(
k − 1, 0,x′j , lk,r(ϵ)

)
/* Recursive score estimation ∇ log pk−1,S(x

′
j) */

8 if r ̸≡ 0 then t′ ← S − rη else t′ ← S ;
/* The gap of time since the last call */

9 Update the particle

x′j+1 := x′j + τr ·
(
v′j +

e−t
′
x− e−2t′x′j
1− e−2t′

)
︸ ︷︷ ︸

≈∇ log qk,S−rη(x
′
j |x)

+
√
2τr · ξ

where ξ is sampled from N (0, Id)
10 end
11 Update the score estimation of v′ ≈ ∇ log pk,S−rη(x) with empirical mean as

v′ := v′ +
1

nk,r(ϵ)

(
−

x− e−t′x′mk,r(ϵ)

1− e−2t′
)

12 end
Return :v′ /* As the approximation of ∇ log pk,S−rη(x) */

Algorithm 2 Recursive Score Diffusion-based Monte Carlo (RS-DMC)
Input :Initial particle x←K,S sampled from p∞, Terminal time T , Step size η, required convergence

accuracy ϵ.
1 for k = K − 1 down to 0 do
2 Initialize the particle as x←k,0 ← x←k+1,S

3 for r = 0 to R− 1 do
4 Approximate the score, i.e.,∇ log pk,S−rη(x

←
k,rη) by v′ ← RSE(k, r,x←k,rη, l(ϵ))

5 x←k,(r+1)η ← eηx←k,rη + (eη − 1)v′ + ξ where ξ is sampled from N
(
0,
(
e2η − 1

)
Id
)

6 end
7 end

Return :x←0,S

Diffusion-based Monte Carlo with Recursive Score Estimation. Based on Alg 1, we can directly
apply the DDPM (Ho et al., 2020) based method to perform the sampling, giving rise to the Recursive
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Score Diffusion-based Monte Carlo (RS-DMC) method. We summarize the algorithm in Alg 2 (the
detailed setup of mk,r(·), nk,r(·), lk,r(·) are provided in Theorem 5 in Appendix B).

4. Analysis of RS-DMC

In this section, we will establish the convergence guarantee for RS-DMC and reveal how the gradient
complexity depends on the problem dimension and the target sampling error. We will also compare
the gradient complexity of RS-DMC with other sampling methods to justify its strength. Additionally,
we will provide a proof roadmap that briefly summarizes the critical theoretical techniques.

4.1. Theoretical Results

The following theorem states that RS-DMC can provably converge to the target distribution in
KL-divergence with quasi-polynomial gradient complexity.

Theorem 2 (Gradient complexity of RS-DMC, informal) Under Assumptions [A1]-[A2], let p←0,S
be the distribution of the samples generated by RS-DMC, then there exists a collection of appropriate
hyperparameters nk,r,mk,r, τr, η, lk,r and l such that with probability at least 1 − ϵ, it holds that

KL
(
p∗∥p←0,S

)
= Õ(ϵ). Besides, the gradient complexity of RS-DMC is

exp
[
O
(
L3 · log3

(
(Ld+M)/ϵ

)
·max

{
log logZ2, 1

} )]
, (6)

where Z denotes the maximum norm of particles which appears in Alg 2.

We defer the detailed configurations of nk,r,mk,r, τr, η, lk,r, l and relative constants in the formal
version of this theorem, i.e., Theorem 5 Appendix B and Table 2 in Appendix A, respectively. From
this theorem, we note the gradient complexity will be exponentially dependent on the smoothness
L. Actually, such an exponential dependence may be inevitable under Assumption [A1] and [A2].
Considering the sampling problem with the target distribution exp(−βU), when the temperature β
increases to Õ(d/ϵ) level (e.g., the smoothness is also Õ(d/ϵ)), the sampling problem can be very
close to an optimization problem. Then, if the gradient complexity of RS-DMC does not have an
exponential dependency on the smoothness, it can be used to solve the optimization problem with
potentially quasi-polynomial gradient calculations. This contradicts the Ω̃((LR2/ϵ)d/2) lower bound
results proved in Ma et al. (2019). In the following, we compare our theoretical results with those of
other previous work.

Comparison with ULA. The gradient complexity of ULA has been well studied for sampling
the non-log-concave distribution. However, in order to prove the convergence in KL divergence or
TV distance, they typically require additional isoperimetric conditions, such as Log-Soboleve and
Poincaré inequality (see Definitions 3 and 4). In particular, when p∗ satisfies LSI with parameter α,
Vempala and Wibisono (2019) proved the O

(
dϵ−1α−2

)
in KL convergence. However, for general

non-log-concave distributions, α is not dimension-free. For instance, under the Dissipative condition
(Hale, 2010), α can be as worse as exp(−O(d)) (Raginsky et al., 2017), leading to a exp(O(d))
gradient complexity results (Xu et al., 2018).

When the isoperimetric condition is absent, Balasubramanian et al. (2022) proved the convergence
of ULA based on the Fisher information measure, i.e., FI (p∥p∗) := Ep[∥∇ log(p/p∗)∥2], they
showed that ULA can generate the samples that satisfy FI (p∥p∗) ≤ ϵ for some small error tolerance

10
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ϵ. However, it may be unclear what can be entailed by such a guarantee FI (p∥p∗) ≤ ϵ. It has
demonstrated that, in some cases, even if the Fisher information FI (p∥p∗) is very small, the total
variation distance/KL divergence remains bounded away from zero (Balasubramanian et al. (2022)).
This suggests that the convergence guarantee in Fisher information might be weaker than that in KL
divergence (i.e., our convergence guarantee).

Comparison with DMC. Then we make a detailed comparison with DMC in (Huang et al., 2023),
which is the most similar algorithm compared to ours. Firstly, we would like to strengthen again that
our convergence results are obtained on a milder assumption, while Huang et al. (2023) additionally
requires the target distribution to have a heavier tail. Besides, as discussed in the introduction section,
DMC has a much worse gradient complexity since it performs all score estimation straightforwardly,
while RS-DMC is based on a recursive structure. Consequently, DMC involves many hard sampling
subproblems that take exponential time to solve, while RS-DMC only involves strongly log-concave
subsampling problems that can be efficiently solved within polynomial time. As a result, the gradient
complexity of RDS is proved to be poly(d) · poly(1/ϵ) · exp (O(1/ϵ)), which is significantly worse
than the quasi-polynomial gradient complexity of RS-DMC.

4.2. Proof Sketch

In this section, we aim to highlight the technical innovations by presenting the roadmap of our
analysis. Due to space constraints, we have included the technical details in the Appendix.

Firstly, by requiring Novikov’s conditions, we can establish an upper bound on the KL divergence
gap between the target distribution p∗ and the underlying distribution of output particles, i.e., p←0,S ,
by Girsanov’s Theorem which demonstrates

KL
(
p∗∥p←0,S

)
≤KL

(
pK−1,S∥p←K−1,0

)︸ ︷︷ ︸
Term 1

+2

K−1∑
k=0

R−1∑
r=0

∫ η

0

Ex←k,rη

[∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2] dt︸ ︷︷ ︸
Term 3

+ 2

K−1∑
k=0

R−1∑
r=0

∫ η

0

E(x←k,t+rη,x
←
k,rη)

[∥∥∇ log pk,S−(t+rη)(x
←
k,t+rη)−∇ log pk,S−rη(x

←
k,rη)

∥∥2] dt︸ ︷︷ ︸
Term 2

.

Although Novikov’s condition may not be met in general, we employ techniques in Chen et al.
(2023a) and sidestep this issue by utilizing a differential inequality argument as shown in Lemma 27.

Upper bound Term 1. Intuitively, Term 1 appears since we utilize the standard Gaussian to
initialize the reverse OU process (SDE (2)) rather than pK−1,S which can hardly be sampled from
directly in practice. Therefore, the first term can be bounded using exponential mixing of the forward
(Ornstein-Uhlenbeck) process towards the standard Gaussian in Lemma 9, i.e.,

KL
(
pK−1,S∥p←K−1,0

)
≤ KL

(
p∗∥p←K−1,0

)
exp(−KS) ≤ (Ld+M) exp(−KS),

where p←K−1,0 = N (0, I) as shown SDE (2).

Upper bound Term 2. Term 2 corresponds to the discretization error, which has been successfully
addressed in previous work Chen et al. (2023b,a). By utilizing the unique structure of the Ornstein-
Uhlenbeck process, they managed to limit both the time and space discretization errors, which
decrease as η becomes smaller. To ensure the completeness of our proof, we have included it in
Lemma 13, utilizing the segmented notation.

11
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Upper bound Term 3. Term 3 represents the accuracy of the score estimation. In diffusion models,
due to the parameterization of the target density, this term is trained by a neural network and assumed
to be less than ϵ to ensure the convergence of the reverse process. However, in RS-DMC, the score
estimation is obtained using a non-parametric approach, i.e., Alg 1. To this end, we can provide
rigorous high probability bound for this term under Alg 1, which is stated in Lemma 23. Roughly
speaking, for Alg 1 with input each (k, r,x, ϵ), suppose the score estimation of∇ log pk,0 is given as
v←k−1,0 satisfying the following event⋂

x′∈Sk,r(x,ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ lk,r(ϵ)

where Sk,r(x, ϵ) denotes the set of particles appear in Alg 1 except for the recursion. In this condition,
Lemma 20 provides the upper bound of score estimation error as:

∥∥v←k,rη(x)−∇ log pk,S−rη(x)
∥∥2 ≤ 2e−2(S−rη)(

1− e−2(S−rη)
)2 · ∥∥∥∥− 1

nr,k(ϵ)

nr,k(ϵ)∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
] ∥∥∥∥2︸ ︷︷ ︸

Term 3.1

+
2e−2(S−rη)(

1− e−2(S−rη)
)2 · ∥∥∥∥− Ex′∼q′k,S−rη(·|x)

[
x′
]
+ Ex′∼qk,S−rη(·|x)

[
x′
] ∥∥∥∥2︸ ︷︷ ︸

Term 3.2

where q′k,S−rη(·|x) is the underlying distribution of output particles, i.e., x′mk,r(lk,r(ϵ))
in Alg 1.

Considering that the distribution qk,S−rη is strongly log-concave (given in Eq. 4) and we can get
a lower bound on the strongly log-concave constant (see Lemma 15). Therefore, q′k,S−rη also
satisfies the log-Sobolev inequality due to Lemma 32, which can imply the variance upper bound
(see Lemma 35). Then, in our proof, we directly make use of the Sobolev inequality to derive the
high-probability bound (or concentration results) for estimating the mean of q′k,S−rη(·|x) in Term
3.1 with Lemma 20 by selecting sufficiently large nk,r(ϵ). Besides, Term 3.2 can be upper bounded
by KL

(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
, which can be well controlled by conducting the ULA with a

sufficiently large iteration number mk,r(ϵ). Therefore, by conducting the following decomposition

P
[ ∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ ϵ]
≥ (1− δ)P

[ ⋂
x′∈Sk,r(x,ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ lk,r(ϵ)].

We only need to use this proof process recursively with a proper choice of δ (δ as a function of ϵ) to
get the bound:

P
[ ∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ ϵ] ≥ 1− ϵ,

which implies Term 3 ≤ Õ(ϵ) with a probability at least 1−ϵ. Due to the large amount of computation,
we defer the details of the recursive proof procedure and the choice of δ to the Appendix E.3.

5. Empirical Results

We consider the target distribution defined on R2 to be a mixture of Gaussian distributions with 6
modes. Meanwhile, we draw 1, 000 particles from the target distribution, presented as blue nodes
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Figure 3: Illustration of the returned particles for ULA, RS-DMC-v1 and RS-DMC-v2 shown with
orange particles and the blue ones sampled from the ground truth. The first row is returned
by ULA, the second is RS-DMC-v1 and the last is from RS-DMC-v2. N = grad num.

shown in Fig. 3. We fix the random seed and initialize particles with the standard Gaussian. Then,
update particles with the following three settings:

ULA. We choose ULA Neal (1992); Roberts and Tweedie (1996) as the sampler, setting the step
size and the iteration number as 2 · 10−4 and 200 respectively.

RS-DMC-v1. We choose RS-DMC as the sampler, setting the outer step size and the inner step
size as η = 0.05 and τr = 0.01, respectively. For inner loops, the # of samples and iterations, i.e.,
nk,r and mk,r, are 1. For outer loops, the # of iterations is 200, and we divide the entire process into
two segments, i.e., K = 2, and each segment contains 100 iterations, i.e., R = 100.

RS-DMC-v2. We choose the same hyper-parameter settings as that in RS-DMC-v1, but replace the
mean estimation by the ULA’s update for the last 10 iterations since when p←t is closed to p∗, i.e.,

lim
t→T
∇ log p←t (x) = ∇ log p0(x) +O ((T − t)) ≈ −∇f∗(x),

which follows from Lemma 10 and means −∇f∗(x) can approximate the score.

Experimental results. To compare the behaviors of the three methods, we illustrate the particles
when the algorithms return for different gradient complexity in Fig 3. We note that (1) ULA will
quickly fall into some specific modes, and most steps are used to improve the mean estimation of
each mode. However, the number of particles belonging to each mode is unbalanced and almost
determined at the very beginning of the entire process. This is because the drift force of different
modes at the origin varies greatly. (2) RS-DMC-v1 quickly covers the different modes and converges
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to their means. Besides, the number of particles belonging to each mode is much more balanced than
that in ULA. However, since we only choose nk,r = mk,r = 1, and the score∇ log pk,t(x) does not
be approximated accurately, the convergence to specific modes will be relatively slow, which causes
the variance of RS-DMC-v1 larger than the target distribution. (3) RS-DMC-v2 takes the advantage
of RS-DMC-v1 and estimate the the score∇ log pk,t(x), when pk,t(x) approaches p∗, with −f∗(x)
directly rather than a inner-loop mean estimation. From another perspective, RS-DMC-v2 covers the
different modes by RS-DMC-v1 and achieves local convergence by ULA. Hence, it has a balanced
particle distribution for each mode and shares a variance almost identical to the ground truth.

6. Conclusion

In this paper, we propose a novel non-parametric score estimation algorithm, i.e., RSE, presented in
Alg 1 and derive its corresponding reverse diffusion sampling algorithm, i.e., RS-DMC, and outlined
in Alg 2. By introducing the segment length S to balance the challenges of score estimation and
recursive calls, RS-DMC exhibits several advantages over Langevin-based MCMC, e.g., ULA, ULD,
and MALA. It can achieve KL convergence beyond isoperimetric target distributions with a quasi-
polynomial gradient complexity, i.e., exp

[
O(L3 · log3(d/ϵ) ·max

{
log logZ2, 1

}
)
]
. Additionally,

the theoretical result also demonstrates the efficiency of RS-DMC in challenging sampling tasks. To
the best of our knowledge, this is the first work that eliminates the exponential dependence with only
smoothness and the second moment bounded assumptions.
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Appendix A. Notations

Symbols Description

φσ2 The density function of the centered Gaussian distribution, i.e., N
(
0, σ2I

)
.

p∗, p0,0 The target density function (initial distribution of the forward process)

{xk,t}k∈N0,K−1,t∈[0,S] The forward process, i.e., SDE 1
pk,t The density function of xk,t, i.e., xk,t ∼ pk,t
p∞ The density function of the stationary distribution of the forward process

{x←k,t}k∈N0,K−1,t∈[0,S] The practical reverse process following from SDE 2 with initial distribution p∞
p←k,t The density function of x←k,t, i.e., x←k,t ∼ p←k,t

Table 1: The list of notations defined in Section 2, where Na,b is denoted as the set of natural numbers
from a ∈ N∗ to any b ∈ N+.

In this section, we summarize the notations defined in Section 2 in Table 1 for easy reference
and cross-checking. Additionally, another important notation is the score estimation, denoted as
v←k,rη, which is used to approximate ∇ log pk,S−rη. When r = 0, v←k,0 is expected to approximate
∇ log pk,S which is not explicitly defined in SDE 1. However, sine xk,S = xk+1,0 in Eq 1, the
underlying distributions, i.e., pk,S and pk+1,0, are equal, and ṽk,0 can be considered as the score
estimation of∇ log pk+1,0. For∇ log p0,0, which can be calculated exactly as∇f∗, we define

v←−1,0(x) = ∇ log p0,0(x) = −∇f∗(x) (7)

as a complement.

Isoperimetric conditions and assumptions. According to the classical theory of Markov chains
and diffusion processes, some conditions can lead to fast convergence over time without being as
strict as log concavity. Isoperimetric inequalities, such as the log-Sobolev inequality (LSI) or the
Poincaré inequality (PI), are examples of these conditions defined as follows.

Definition 3 (Logarithmic Sobolev inequality) A distribution with density function p satisfies the
log-Sobolev inequality with a constant µ > 0 if for all smooth function g : Rd → R with Ep[g

2] ≤ ∞,

Ep

[
g2 log g2

]
− Ep

[
g2
]
logEp

[
g2
]
≤ 2α−1Ep

[
∥∇g∥2

]
.

Constant symbol Value Constant symbol Value

Cη 2−14L−2 Cm,1 log
(
2M · 32 · 5L

)
+M · 3L

Cn 26 · 52 · C−1
η Cm 29 · 32 · 53 · Cm,1C

−1.5
η

Cu,1 log
(
5CnCm

104

)
+ log

(
2max

{
logZ, 1

2

})
Cu,2 70/S2 + 10/S

Cu,3 2Cu,1/S S 1/2 log((2L+ 1)/2L)

Table 2: Constant List independent with ϵ and d.
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By supposing g = 1+ ϵĝ with ϵ→ 0, a weaker isoperimetric inequality, i.e., PI can be defined Menz
and Schlichting (2014).

Definition 4 (Poincaré inequality) A distribution with density function p satisfies the Poincaré
inequality with a constant µ > 0 if for all smooth function ĝ : Rd → R,

Var(ĝ) ≤ α−1Ep

[
∥∇ĝ∥2

]
.

We also provide a list of constants used in our following proof in Table 2 to prevent confusion.

Appendix B. Proof of Theorem 2

Theorem 5 The formal version of Theorem 2 In Alg 2, suppose we set

S = 1/2 · log(1 + 1/2L), K = 2 log[(Ld+M)/ϵ] · S−1,
η = Cη(M + d)−1ϵ, R = S/η,

l(ϵ) = 10ϵ, lk,r(ϵ) = ϵ/960,

nk,r(ϵ) = Cn · (d+M)ϵ−2 ·max{d,−2 log δ},
mk,r(ϵ,x) = Cm · (d+M)3ϵ−3 ·max{log ∥x∥2, 1},

τr = 2−5 · 3−2 · e2(S−rη)
(
1− e−2(S−rη)

)2
· d−1ϵ

where δ satisfies

δ =pow

(
2,− 2

S
log

Ld+M

ϵ

)
· pow

(
CηSϵ

2

4(d+M)
· log−2

(
Ld+M

ϵ

)
· pow

((
Ld+M

ϵ

)
,

−Cu,2 log
Ld+M

ϵ
− Cu,3

)
,
2

S
log

Ld+M

ϵ
+ 1

)
,

and the initial underlying distribution q′0 of the Alg 1 with input (k, r,x, ϵ) satisfies

q′0(x
′) ∝ exp

(
−
∥∥x− e−(S−rη)x′∥∥2
2(1− e−2(S−rη))

)
,

we have
P
[
KL
(
p̂0,S∥p←0,S

)
= Õ(ϵ)

]
≥ 1− ϵ.

In this condition, the gradient complexity will be

exp
[
O
(
L3 · log3 ((Ld+M)/ϵ) ·max

{
log logZ2, 1

})]
where Z is the maximal norm of particles appeared in Alg 2.

Proof [Proof of Theorem 5] According to Lemma 27, suppose x̂k,t = xk,S−t whose SDE can be
presented as

x←k,0 ∼ pK−1,S when k = K − 1, else x←k,0 = x←k+1,S k ∈ N0,K−1

dx←k,t =
[
x←k,t + 2∇ log pk,S−t(x

←
k,t)
]
dt+

√
2dBt k ∈ N0,K−1, t ∈ [0, S]
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due to Chen et al. (2023b). Then, we have KL
(
p∗∥p←0,S

)
= KL

(
p̂0,S∥p←0,S

)
which satisfies

KL
(
p̂0,S∥p←0,S

)
≤KL

(
p̂K−1,0∥p←K−1,0

)︸ ︷︷ ︸
Term 1

+

K−1∑
k=0

R−1∑
r=0

∫ η

0

E(x̂k,t+rη,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2] dt.

(8)

Upper bound Term 1. Term 1 can be upper-bounded as

Term 1 = KL
(
pK−1,S∥p←K−1,0

)
≤ (Ld+M) · exp (−KS/2)

with Lemma 9 when p←K−1,0 is chosen as the standard Gaussian. Therefore, we choose

S =
1

2
log

2L+ 1

2L
, K = 2 log

Ld+M

ϵ
·
(
1

2
log

2L+ 1

2L

)−1
, and KS ≥ 2 log

Ld+M

ϵ
,

which make the inequality Term 1 ≤ ϵ establish.
For the remaining term of RHS of Eq 8, it can be decomposed as follows:

K−1∑
k=0

R−1∑
r=0

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2]dt

≤ 2
K−1∑
k=0

R−1∑
r=0

∫ η

0
E
[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)−∇ log pk,S−rη(x̂k,rη)

∥∥2]dt︸ ︷︷ ︸
Term 2

+ 2

K−1∑
k=0

R−1∑
r=0

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−rη(x̂k,rη)− v←k,rη(x̂k,rη)
∥∥2] dt︸ ︷︷ ︸

Term 3

(9)

Upper bound Term 2. This term is mainly from the discretization error in the reverse process.
Therefore, its analysis is highly related to Chen et al. (2023b,a). To ensure the completeness of our
proof, we have included it in our analysis, utilizing the segmented notation presented in Section A.
Specifically, we have

Term 2 ≤4
K−1∑
k=0

R−1∑
r=0

∫ η

0
E
[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)−∇ log pk,S−(t+rη)(x̂k,rη)

∥∥2]
+ 4

K−1∑
k=0

R−1∑
r=0

∫ η

0
E

[∥∥∥∥∇ log
pk,S−(t+rη)(x̂k,rη)

pk,S−rη(x̂k,rη)

∥∥∥∥2
]
dt

≤4
K−1∑
k=0

R−1∑
r=0

∫ η

0

(
E
[
L2 ∥x̂k,t+rη − x̂k,rη∥2

]
+ E

[∥∥∥∥∇ log
pk,S−rη(x̂k,rη)

pk,S−(t+rη)(x̂k,rη)

∥∥∥∥2
])

dt

where the last inequality follows from Assumption [A1]. Combining this result with Lemma 13,
when the stepsize, i.e., η of the reverse process is η = Cη(M + d)−1ϵ, then it has Term 2 ≤ ϵ.
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Upper bound Term 3. Due to the randomness of v←k,rη, we consider a high probability bound,
which is formulated as

P

 ⋂
k∈N0,K−1

r∈N0,R−1

∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ

 ≥ 1− ϵ, (10)

which means we choose l(ϵ) = 10ϵ. Lemma 23 demonstrate that under the following settings, i.e.,

lk,r(ϵ) = ϵ/960,

nk,r(ϵ) = Cn · (d+M)ϵ−2 ·max{d,−2 log δ},
mk,r(ϵ,x) = Cm · (d+M)3ϵ−3 ·max{log ∥x∥2, 1},

where δ satisfies

δ :=pow

(
2,− 2

S
log

Ld+M

ϵ

)
· pow

(
CηSϵ

2

4(d+M)
· log−2

(
Ld+M

ϵ

)
· pow

((
Ld+M

ϵ

)
,

−Cu,2 log
Ld+M

ϵ
− Cu,3

)
,
2

S
log

Ld+M

ϵ
+ 1

)
,

Eq 10 can be achieved with a gradient complexity:

exp
[
O
(
L3 · log3 ((Ld+M)/ϵ) ·max

{
log logZ2, 1

})]
where Z is the maximal norm of particles appeared in Alg 2. All constants can be found in Table 2.
In this condition, we have

Term 3 ≤ 4 · T
η
· (η · 10ϵ) ≤ 40ϵ log

Ld+M

ϵ
= Õ(ϵ).

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL
(
p̂0,S∥p←0,S

)
= Õ(ϵ).

The proof is completed.

Corollary 6 Suppose we set all parameters except for δ to be the same as that in Theorem 5, and
define

δ =pow

(
2,− 2

S
log

Ld+M

ϵ

)
· pow

(
CηSϵδ

′

4(d+M)
· log−2

(
Ld+M

ϵ

)
· pow

((
Ld+M

ϵ

)
,

−Cu,2 log
Ld+M

ϵ
− Cu,3

)
,
2

S
log

Ld+M

ϵ
+ 1

)
,

we have
P
[
KL
(
p̂0,S∥p←0,S

)
= Õ(ϵ)

]
≥ 1− δ′.

In this condition, the gradient complexity will be

exp

[
O

(
L3 ·max

{(
log

Ld+M

ϵ

)3

, log
Ld+M

ϵ
· log 1

δ′

}
·max

{
log logZ2, 1

})]
where Z is the maximal norm of particles appeared in Alg 2.
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Proof In this corollary, we follow the same proof roadmap as that shown in Theorem 5. Combining
Eq 8 and Eq 9, we have

KL
(
p̂0,S∥p←0,S

)
≤KL

(
p̂K−1,0∥p←K−1,0

)︸ ︷︷ ︸
Term 1

≤ 2

K−1∑
k=0

R−1∑
r=0

∫ η

0

E
[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)−∇ log pk,S−rη(x̂k,rη)

∥∥2] dt︸ ︷︷ ︸
Term 2

+ 2

K−1∑
k=0

R−1∑
r=0

∫ η

0

E(x̂k,t+rη,x̂k,rη)

[∥∥∇ log pk,S−rη(x̂k,rη)− v←k,rη(x̂k,rη)
∥∥2] dt︸ ︷︷ ︸

Term 3

(11)

It should be noted that the techniques for upper-bounding Term 1 and Term 2 are the same as that
in Theorem 5.

Upper bound Term 3. Due to the randomness of v←k,rη, we consider a high probability bound,
which is formulated as

P

 ⋂
k∈N0,K−1

r∈N0,R−1

∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ

 ≥ 1− δ′, (12)

which means we choose l(ϵ) = 10ϵ. Lemma 24 demonstrate that under the following settings, i.e.,

lk,r(ϵ) = ϵ/960,

nk,r(ϵ) = Cn · (d+M)ϵ−2 ·max{d,−2 log δ},
mk,r(ϵ,x) = Cm · (d+M)3ϵ−3 ·max{log ∥x∥2, 1},

where δ satisfies

δ :=pow

(
2,− 2

S
log

Ld+M

ϵ

)
· pow

(
CηSϵδ

′

4(d+M)
· log−2

(
Ld+M

ϵ

)
· pow

((
Ld+M

ϵ

)
,

−Cu,2 log
Ld+M

ϵ
− Cu,3

)
,
2

S
log

Ld+M

ϵ
+ 1

)
,

Eq 12 can be achieved with a gradient complexity:

exp

[
O

(
L3 ·max

{(
log

Ld+M

ϵ

)3

, log
Ld+M

ϵ
· log 1

δ′

}
·max

{
log logZ2, 1

})]
where Z is the maximal norm of particles appeared in Alg 2. All constants can be found in Table 2.
In this condition, we have

Term 3 ≤ 4 · T
η
· (η · 10ϵ) ≤ 40ϵ log

Ld+M

ϵ
= Õ(ϵ).

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL
(
p̂0,S∥p←0,S

)
= Õ(ϵ).

The proof is completed.
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Appendix C. Lemmas for Bounding Initialization Error

Lemma 7 (Lemma 11 in Vempala and Wibisono (2019)) Suppose p ∝ exp(−f) and f : Rd →
R is L-gradient Lipschitz continuous function. Then, we have

Ex∼p

[
∥∇f(x)∥2

]
≤ Ld

Lemma 8 Under the notation in Section A, suppose p ∝ exp(−f) satisfies Assumption [A1]
and [A2], then we have

KL (p∥φ1) ≤ Ld+M

Proof From the analytic form of the standard Gaussian, we have ∇2 logφ1 = I . Combining this
fact with Lemma 28, we have

KL (p∥φ1) ≤
1

2

∫
p(x)

∥∥∥∥∇ log
p(x)

φ1(x)

∥∥∥∥2 dx
≤
∫
p(x) ∥∇f(x)∥2 dx+

∫
p(x) ∥x∥2 dx ≤ Ld+M.

where the last inequality follows from Lemma 7 and Assumption [A2]. Hence, the proof is completed.

Lemma 9 (Variant of Theorem 4 in Vempala and Wibisono (2019)) Under the notation in Sec-
tion A, suppose p̃K−1,0 is chosen as the standard Gaussian distribution. Then, we have

KL (pK−1,S∥p∞) ≤ (Ld+M) · exp (−KS/2) .

Proof Suppose another random variable zt := x⌊t/S⌋,t−⌊t/S⌋·S where xk,t is shown in SDE 1, we
have

dzt = −ztdt+
√
2dBt, z0 = x0,0,

where the underlying distribution of x0,0 satisfies p0,0 = p∗ ∝ exp(−f∗). If we denote zt ∼ p
(z)
t ,

then Fokker-Planck equation of the previous SDE will be

∂tp
(z)
t (z) = ∇ ·

(
p
(z)
t (z)z

)
+∆p

(z)
t (z) = ∇ ·

(
p
(z)
t (z)∇ log

p
(z)
t (z)

exp
(
−1

2∥z∥2
)) .

It implies that the stationary distribution is standard Gaussian, i.e., p(z)∞ ∝ exp(−1/2 · ∥z∥2). Then,
we consider the KL convergence of (zt)t≥0, and have

dKL
(
p
(z)
t ∥p

(z)
∞
)

dt
=

d

dt

∫
p
(z)
t (z) log

p
(z)
t (z)

p
(z)
∞ (z)

dz =

∫
∂tp

(z)
t (z) log

p
(z)
t (z)

p
(z)
∞ (z)

dz

=

∫
∇ ·

(
p
(z)
t (z)∇ log

p
(z)
t (z)

p
(z)
∞ (z)

)
· log p

(z)
t (z)

p
(z)
∞ (z)

dz = −
∫
p
(z)
t (z)

∥∥∥∥∥∇ log
p
(z)
t (z)

p
(z)
∞ (z)

∥∥∥∥∥
2

dz.

(13)
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Combining the fact∇2(− log p
(z)
∞ ) = I and Lemma 28, we have

KL
(
p
(z)
t ∥p(z)∞

)
≤ 2

∫
p
(z)
t (z)

∥∥∥∥∥∇ log
p
(z)
t (z)

p
(z)
∞ (z)

∥∥∥∥∥
2

dz.

Plugging this inequality into Eq 13, we have

dKL
(
p
(z)
t ∥p

(z)
∞
)

dt
= −

∫
p
(z)
t (z)

∥∥∥∥∥∇ log
p
(z)
t (z)

p
(z)
∞ (z)

∥∥∥∥∥
2

dz ≤ −1

2
KL
(
p
(z)
t ∥p(z)∞

)
.

Integrating implies the desired bound,i.e.,

KL
(
p
(z)
t ∥p(z)∞

)
≤ exp (−t/2) ·KL

(
p
(z)
0 ∥p

(z)
∞

)
≤ (Ld+M) · exp (−t/2)

where the last inequality follows from Lemma 8. It implies KL divergence between the underlying
distribution of xK−1,S and p∞ is

KL (pK−1,S∥p∞) = KL
(
p
(z)
KS∥p

(z)
∞

)
≤ (Ld+M) · exp (−KS/2)

Hence, the proof is completed.

Appendix D. Lemmas for Bounding Discretization Error.

Lemma 10 (Lemma C.11 in Lee et al. (2022)) Suppose that p(x) ∝ e−f(x) is a probability den-
sity function on Rd, where f(x) is L-smooth, and let φσ2(x) be the density function of N (0, σ2Id).
Then for L ≤ 1

2σ2 , it has∥∥∥∥∇ log
p(x)

(p ∗ φσ2) (x)

∥∥∥∥ ≤ 6Lσd1/2 + 2Lσ2 ∥∇f(x)∥ .

Lemma 11 (Lemma 9 in Chen et al. (2023b)) Under the notation in Section A, suppose that As-
sumption [A1] and [A2] hold. For any k ∈ N0,K−1 and t ∈ [0, S], we have

1. Moment bound, i.e.,
E
[
∥xk,t∥2

]
≤ d ∨M.

2. Score function bound, i.e.,

E
[
∥∇ log pk,t(xk,t)∥2

]
≤ Ld.

Lemma 12 (Variant of Lemma 10 in Chen et al. (2023b)) Under the notation in Section A,Suppose
that Assumption [A2] holds. For any k ∈ {0, 1, . . . ,K − 1} and 0 ≤ s ≤ t ≤ S, we have

E
[
∥xk,t − xk,s∥2

]
≤ 2 (M + d) · (t− s)2 + 4d · (t− s)
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Proof According to the forward process, we have

E
[
∥xk,t − xk,s∥2

]
=E

[∥∥∥∥∫ t

s
−xk,rdr +

√
2 (Bt −Bs)

∥∥∥∥2
]
≤ E

[
2

∥∥∥∥∫ t

s
xk,rdr

∥∥∥∥2 + 4 ∥Bt −Bs∥2
]

≤2E

[(∫ t

s
∥xk,r∥ dr

)2
]
+ 4d · (t− s) ≤ 2

∫ t

s
E
[
∥xk,r∥2

]
dr · (t− s) + 4d · (t− s)

≤2 (M + d) · (t− s)2 + 4d · (t− s) ,

where the third inequality follows from Holder’s inequality and the last one follows from Lemma 11.
Hence, the proof is completed.

Lemma 13 (Errors from the discretization) Under the notation in Section A, if the step size of
the outer loops satisfies

η ≤ C1(d+M)−1ϵ,

then, for any k ∈ {0, 1, . . . ,K − 1}, r ∈ {0, 1, . . . , R− 1} and t ∈ [0, η], we have

E
[
L2 ∥x̂k,t+rη − x̂k,rη∥2

]
+ E

[∥∥∥∥∇ log
pk,S−rη(x̂k,rη)

pk,S−(t+rη)(x̂k,rη)

∥∥∥∥2
]
≤ 4ϵ.

Proof We consider the following formulation with any t ∈ [0, η],

Term 2 = E

[∥∥∥∥∇ log
pk,S−rη(x̂k,rη)

pk,S−(t+rη)(x̂k,rη)

∥∥∥∥2
]

︸ ︷︷ ︸
Term 2.1

+E
[
L2 ∥x̂k,t+rη − x̂k,rη∥2

]
. (14)

Upper bound Term 2.1. To establish the connection between pk,S−rη and pk,S−(t+rη), due to the
transition kernel of the forward process (OU process), we have

pk,S−rη(x) =

∫
pk,S−(rη+t)(y) · P [x, (k, S − rη)|y, (S − (rη + t))] dy

=

∫
pk,S−(rη+t)(y) ·

(
2π
(
1− e−2t

))− d
2 · exp

[
−
∥∥x− e−ty∥∥2
2(1− e−2t)

]
dy

=

∫
etdpk,S−(rη+t)(e

tz) ·
(
2π
(
1− e−2t

))− d
2 · exp

[
−∥x− z∥2

2(1− e−2t)

]
dz

(15)

where the last equation follows from setting z := e−ty. We define

p′k,S−(rη+t)(z) := etdpk,S−(rη+t)(e
tz)

which is also a density function. Therefore, for each element x̂k,rη = x, we have∥∥∥∥∇ log
pk,S−(rη+t)(x)

pk,S−rη(x)

∥∥∥∥2 ≤2
∥∥∥∥∥∇ log

pk,S−(rη+t)(x)

p′k,S−(rη+t)(x)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∇ log
p′k,S−(rη+t)(x)

pk,S−rη(x)

∥∥∥∥∥
2

=2

∥∥∥∥∥∇ log
pk,S−(rη+t)(x)

p′k,S−(rη+t)(x)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∇ log
p′k,S−(rη+t)(x)

p′k,S−(rη+t) ∗ φ(1−e−2t)(x)

∥∥∥∥∥
2
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where the last inequality follows from Eq 15. For the first term, we have∥∥∥∥∥∇ log
pk,S−(rη+t)(x)

p′k,S−(rη+t)(x)

∥∥∥∥∥ =
∥∥∇ log pk,S−(rη+t)(x)− et · ∇ log pk,S−(rη+t)(e

tx)
∥∥

≤
∥∥∇ log pk,S−(rη+t)(x)− et∇ log pk,S−(rη+t)(x)

∥∥
+ et ·

∥∥∇ log pk,S−(rη+t)(x)−∇ log pk,S−(rη+t)(e
tx)
∥∥

= (et − 1) ·
∥∥∇ log pk,S−(rη+t)(x)

∥∥+ et · (et − 1)L ∥x∥ .

(16)

To upper bound the latter term, we expect to employ Lemma 10. However, it requires a specific
condition which denotes the smoothness of −∇ log p′k,S−(rη+t) should be upper bounded with the
variance of φ(1−e−2t) as ∥∥∥−∇2 log p′k,S−(rη+t)

∥∥∥ ≤ 1

2(1− e−2t)
,

which can be achieved by setting

η ≤ min

{
1

4L
,
1

2

}
.

Since the smoothness of −∇ log pk,S−(rη+t), i.e., Assumption [A1], implies −∇ log p′k,S−(rη+t) is
e2tL-smooth. Besides, there are

t ≤ η ≤ min

{
1

4L
,
1

2

}
≤ log

(
1 +

1

2L

)
and e2tL ≤ 1

2(1− e−2t)
.

Therefore, we have∥∥∥∇ log p′k,S−(rη+t)(x)−∇ log
(
p′k,S−(rη+t) ∗ φ(1−e−2t)

)
(x)
∥∥∥

≤6e2tL
√

1− e−2td1/2 + 2e3tL(1− e−2t)
∥∥∇ log pk,S−(rη+t)(e

tx)
∥∥

≤6e2tL
√

1− e−2td1/2 + 2L · et(e2t − 1)
∥∥∇ log pk,S−(rη+t)(x)

∥∥
+ 2L · et(e2t − 1)

∥∥∇ log pk,S−(rη+t)(e
tx)−∇ log pk,S−(rη+t)(x)

∥∥
≤6e2tL

√
1− e−2td1/2 + 2L · et(e2t − 1)

∥∥∇ log pk,S−(rη+t)(x)
∥∥

+ 2L2 · et(e2t − 1)(et − 1) ∥x∥ ,

(17)

where the first inequality follows from Lemma 10, the last inequality follows from Assumption [A1].
Due to the range, i.e., η ≤ 1/2, we have the following inequalities

e2t ≤ e2η ≤ 1 + 4η ≤ 3, 1− e−2t ≤ 2t ≤ 2η and et ≤ eη ≤ 1 +
3

2
· η.

In this condition, Eq 16 can be reformulated as∥∥∥∥∥∇ log
pk,S−(rη+t)(x)

p′k,S−(rη+t)(x)

∥∥∥∥∥
2

≤2
[
(et − 1)2 ·

∥∥∇ log pk,S−(rη+t)(x)
∥∥2 + e2t · (et − 1)2L2 ∥x∥2

]
≤5η2

∥∥∇ log pk,S−(rη+t)(x)
∥∥2 + 14L2η2 ∥x∥2 ,
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and Eq 17 implies∥∥∥∇ log p′k,S−(rη+t)(x)−∇ log
(
p′k,S−(rη+t) ∗ ϕ(1−e−2t)

)
(x)
∥∥∥2

≤3 ·
[
62e4tL2(1− e−2t)d+ 4L2e2t(e2t − 1)2

∥∥∇ log pk,S−(rη+t)(x)
∥∥2 + 4L4e2t(e2t − 1)2(et − 1)2 ∥x∥2

]
≤3 ·

[
23 · 34L2ηd+ 26 · 3L2η2

∥∥∇ log pk,S−(rη+t)(x)
∥∥2 + 33 · 24L4η4 ∥x∥2

]
≤23 · 35L2ηd+ 26 · 32L2η2

∥∥∇ log pk,S−(rη+t)(x)
∥∥2 + 34 · L2η2 ∥x∥2 ,

where the last inequality follows from ηL ≤ 1/4. Hence, suppose L ≥ 1 without loss of generality,
we have

Term 2.1 ≤ 2 ·

E

∥∥∥∥∥∇ log
pk,S−(rη+t)(x̂k,rη)

p′k,S−(rη+t)(x̂k,rη)

∥∥∥∥∥
2
+ E

∥∥∥∥∥∇ log
p′k,S−(rη+t)(x̂k,rη)

pk,S−rη(x̂k,rη)

∥∥∥∥∥
2


≤ 24 · 35L2ηd+ 28 · 32L2η2E
[∥∥∇ log pk,S−(rη+t)(x̂k,rη)

∥∥2]+ 22 · 34L2η2E
[
∥x̂k,rη∥2

]
≤ 214L2ηd+ 213L2η2E

[∥∥∇ log pk,S−(rη+t)(x̂k,rη+t)
∥∥2]+ 213L4η2E

[
∥x̂k,rη+t − x̂k,rη∥2

]
+ 210L2η2E

[
∥x̂k,rη∥2

]
.

Therefore, we have

Term 2 ≤214L2ηd+ 210L2η2E
[
∥x̂k,rη∥2

]
+ 213L2η2E

[∥∥∇ log pk,S−(rη+t)(x̂k,rη+t)
∥∥2]

+
(
213L2η2 + 1

)
L2E

[
∥x̂k,rη+t − x̂k,rη∥2

]
≤214L2ηd+ 210L2η2(M + d) + 213L3η2d+ 210L2

(
2(M + d)η2 + 4dη

)
where the last inequality follows from Lemma 11 and Lemma 12. To diminish the discretization
error, we require the step size of backward sampling, i.e., η satisfies


214L2ηd ≤ ϵ
210 · L2η2(d+M) ≤ ϵ
213 · L3η2d ≤ ϵ
210 · L2

(
2(M + d)η2 + 4dη

)
≤ ϵ

⇐



η ≤ 2−14L−2d−1ϵ

η ≤ 2−5 · L−1 (d+M)−0.5 ϵ0.5

η ≤ 2−6.5 · L−1.5d−0.5ϵ0.5

η ≤ 2−6L−0.5 (d+M)−0.5 ϵ0.5

η ≤ 2−13L−2d−1ϵ.

Specifically, if we choose

η ≤ 2−14L−2 (d+M)−1 ϵ = Cη(d+M)−1ϵ,

we have

E
[
L2 ∥x̂k,t+rη − x̂k,rη∥2

]
+ E

[∥∥∥∥∇ log
pk,S−rη(x̂k,rη)

pk,S−(t+rη)(x̂k,rη)

∥∥∥∥2
]
≤ 4ϵ,

and the proof is completed.
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Appendix E. Lemmas for Bounding Score Estimation Error

Lemma 14 (Recursive Form of Score Functions) Under the notation in Section A, for any k ∈
N0,K−1 and t ∈ [0, S], the score function can be written as

∇x log pk,S−t(x) = Ex′∼qk,S−t(·|x)

[
− x− e−(S−t)x′(

1− e−2(S−t)
)]

where the conditional density function qk,S−t(·|x) is defined as

qk,S−t(x
′|x) ∝ exp

(
∇ log pk,0(x

′)−
∥∥x− e−(S−t)x′∥∥2
2
(
1− e−2(S−t)

) ) .
Proof When the OU process, i.e., SDE 1, is selected as the forward path, for any k ∈ N0,K and
t ∈ [0, S], the transition kernel has a closed form, i.e.,

pk,t|0(x|x0) =
(
2π
(
1− e−2t

))−d/2 · exp[−∥∥x− e−tx0

∥∥2
2 (1− e−2t)

]
, ∀ 0 ≤ t ≤ S.

In this condition, we have

pk,S−t(x) =

∫
Rd

pk,0(x0) · pk,S−t|0(x|x0)dx0

=

∫
Rd

pk,0(x0) ·
(
2π
(
1− e−2(S−t)

))−d/2
· exp

[
−
∥∥x− e−(S−t)x0

∥∥2
2
(
1− e−2(S−t)

) ]
dx0

Plugging this formulation into the following equation

∇x log pk,S−t(x) =
∇pk,S−t(x)
pk,S−t(x)

,

we have

∇x log pk,S−t(x) =

∇
∫
Rd pk,0(x0) ·

(
2π
(
1− e−2(S−t)

))−d/2 · exp [−∥x−e−(S−t)x0∥2
2(1−e−2(S−t))

]
dx0∫

Rd pk,0(x0) ·
(
2π
(
1− e−2(S−t)

))−d/2 · exp [−∥x−e−(S−t)x0∥2
2(1−e−2(S−t))

]
dx0

=

∫
Rd pk,0(x0) · exp

(
−∥x−e−(S−t)x0∥2

2(1−e−2(S−t))

)
·
(
− x−e−(S−t)x0

(1−e−2(T−t))

)
dx0∫

Rd pk,0(x0) · exp
(
−∥x−e−(S−t)x0∥2

2(1−e−2(S−t))

)
dx0

=Ex0∼qk,S−t(·|x)

[
−x− e−(S−t)x0(

1− e−2(S−t)
)]

(18)
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where the density function qT−t(·|x) is defined as

qk,S−t(x0|x) =
pk,0(x0) · exp

(
−∥x−e−(S−t)x0∥2

2(1−e−2(S−t))

)
∫
Rd pk,0(x0) · exp

(
−∥x−e−(S−t)x0∥2

2(1−e−2(S−t))

)
dx0

∝ exp

(
−fk,0(x0)−

∥∥x− e−(S−t)x0

∥∥2
2
(
1− e−2(S−t)

) ) ,
where pk,0 ∝ exp(−fk,0). Hence, the proof is completed.

Lemma 15 (Strong log-concavity and L-smoothness of the auxiliary targets) Under the nota-
tion in Section A, for any k ∈ N0,K−1, r ∈ N0,R−1 and x ∈ Rd, we define the auxiliary target
distribution as

qk,S−rη(x
′|x) ∝ exp

(
∇ log pk,0(x

′)−
∥∥x− e−(S−rη)x′∥∥2
2
(
1− e−2(S−rη)

) ) .
We define

µr :=
1

2
· e−2(S−rη)

1− e−2(S−rη)
and Lr :=

3

2
· e−2(S−rη)

1− e−2(S−rη)
.

Then, we have
µrI ⪯ −∇2 log qk,S−rη(x

′|x) ⪯ LrI

when the segment length S satisfies S = 1
2 log

(
2L+1
2L

)
.

Proof We begin with the formulation of∇2 log qk,S−t, i.e.,

−∇2 log qk,S−rη(x
′|x) = −∇2 log pk,0(x

′) +
e−2(S−rη)

1− e−2(S−rη)
I. (19)

By supposing S = 1
2 log

(
2L+1
2L

)
, we have

e−2(S−rη)

1− e−2(S−rη)
≥ e−2S

1− e−2S
= 2L ≥ 2

∥∥∇2 log pk,0
∥∥ .

Plugging this inequality into Eq 19, we have

−∇2pk,0(x
′) +

e−2(S−rη)

1− e−2(S−rη)
· I ⪯

(∥∥∇2 log pk,0(x
′)
∥∥+ e−2(S−rη)

1− e−2(S−rη)

)
· I

⪯ 3

2
· e−2(S−rη)

1− e−2(S−rη)
· I = LrI.

Besides, it has

−∇2pk,0(x
′) +

e−2(S−rη)

1− e−2(S−rη)
· I ⪰

(
−
∥∥∇2 log pk,0(x

′)
∥∥+ e−2(S−rη)

1− e−2(S−rη)

)
· I

⪰ 1

2
· e−2(S−rη)

1− e−2(S−rη)
· I = µrI.

Hence, the proof is completed.
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E.1. Score Estimation Error from Empirical Mean

Lemma 16 With a little abuse of notation, for each i ∈ N1,nk,r
in Alg 1, we denote the underlying

distribution of output particles as x′i ∼ q′k,S−rη and suppose it satisfies LSI with the constant µ′r.
Then, for any x ∈ Rd, we have

P

[∥∥∥∥∥− 1

nk,r

nk,r∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥ ≤ 2ϵ′

]
≥ 1− δ

by requiring the sample number nk,r to satisfy

nk,r ≥
max {d,−2 log δ}

µ′rϵ
′2 .

Proof For any x ∈ Rd, we set

b′ := Eq′k,S−rη(·|x)
[
x′
]

and σ′ := E
{x′

i}
nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

[∥∥∥∥∥
nk,r∑
i=1

x′i − E

[nk,r∑
i=1

x′i

]∥∥∥∥∥
]
.

We begin with the following probability

P
{x′

i}
nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

∥∥∥∥∥− 1

nk,r

nk,r∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥

2

≥
(
σ′

nk,r
+ ϵ′

)2


=P
{x′

i}
nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

[∥∥∥∥∥
nk,r∑
i=1

x′i − nk,rb′
∥∥∥∥∥ ≥ σ′ + nk,rϵ

′

] (20)

To lower bound this probability, we expect to utilize Lemma 33 which requires the following two
conditions:

• The distribution of
∑nk,r

i=1 x′i satisfies LSI, and its LSI constant can be obtained.

• The formulation
∥∥∑nk,r

i=1 x′i − nk,rb′
∥∥ ≥ σ′ + nk,rϵ

′ can be presented as F ≥ E[F ] + bias
where F is a 1-Lipschitz function.

For the first condition, by employing Lemma 29, we have that the LSI constant of

nk,r∑
i=1

x′i ∼ q′k,S−rη(·|x) ∗ q′k,S−rη(·|x) · · · ∗ q′k,S−rη(·|x)︸ ︷︷ ︸
nk,r

is µ′r/nk,r. For the second condition, we set the function F (x) = ∥x− nk,rb′∥ : Rd → R is
1-Lipschitz because

∥F∥Lip = sup
x̸=y

|F (x)− F (y)|
∥x− y∥

= sup
x̸=y

|∥x∥ − ∥y∥|
∥(x− y)∥

= 1.
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Besides, we have

F

(nk,r∑
i=1

x′i

)
=

∥∥∥∥∥
nk,r∑
i=1

x′i − nk,rb′
∥∥∥∥∥ and E

[
F

(nk,r∑
i=1

x′i

)]
= σ′

where the second equation follows from the definition of σ′. Therefore, with Lemma 33, we have

P
{x′

i}
nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

[∥∥∥∥∥
nk,r∑
i=1

x′i − nk,rb′
∥∥∥∥∥ ≥ σ′ + nk,rϵ

′

]
≤ exp

(
−
µ′rϵ
′2nk,r
2

)
. (21)

Then, we consider the range of σ′ and have

σ′ =nk,r · E{x′
i}

nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

∥∥∥∥∥ 1

nk,r

nk,r∑
i=1

x′i − b′

∥∥∥∥∥
≤nk,r ·

√√√√var

(
1

nk,r

nk,r∑
i=1

x′i

)
=
√
nk,rvar (x

′
i) ≤

√
nk,rd

µ′r
,

(22)

the first inequality follows from Holder’s inequality and the last follows from Lemma 35. Combining
Eq 21 and Eq 22, it has

P
{x′

i}
nk,r
i=1
∼q

′(nk,r)

k,S−rη(·|x)

∥∥∥∥∥− 1

nk,r

nk,r∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥

2

≥

(√
d

µ′rnk,r
+ ϵ′

)2
 ≤ exp

(
−
µ′rϵ
′2nk,r
2

)
.

By requiring

d

µ′rnk,r
≤ ϵ′2 and −

µ′rϵ
′2nk,r
2

≤ log δ, (23)

we have

P

[∥∥∥∥∥− 1

nk,r

nk,r∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥ ≤ 2ϵ′

]

= 1− P

[∥∥∥∥∥− 1

nk,r

nk,r∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥ ≥ 2ϵ′

]
≥ 1− δ.

Noted that Eq. 23 implies the sample number nk,r should satisfy

nk,r ≥
d

µ′rϵ
′2 and nk,r ≥

2 log δ−1

µ′rϵ
′2 .

Hence, the proof is completed.

32



RECURSIVE DIFFUSION-BASED MONTE CARLO

E.2. Score Estimation Error from Mean Gap

Lemma 17 For any given (k, r,x) in Alg 1, suppose the distribution qk,S−rη(·|x) satisfies

µrI ⪯ −∇2 log qk,S−rη(·|x) ⪯ LrI,

and x′j ∼ q′j(·|x) corresponds to Line 9 of Alg 1. If 0 < τr ≤ µr/(8L2
r), we have

KL
(
q′j+1(·|x)∥qk,S−rη(·|x)

)
≤ e−µrτrKL

(
q′j(·|x)∥qk,S−rη(·|x)

)
+ 28L2

rdτ
2
r

when the score estimation satisfies ∥∇ log pk,0 − v′∥∞ ≤ Lr

√
2dτr.

Proof Suppose the loop in Line 6 of Alg 1 aims to draw a sample from the target distribution
qk,S−rη(·|x) satisfying

qk,S−rη(x
′|x) ∝ exp(−gk,r(x′)) := exp

(
−fk,0(x′)−

∥∥x− e−(S−rη)x′∥∥2
2(1− e−2(S−rη))

)
.

The score function of the target, i.e.,∇gk,r(x′), satisfies

∇gk,r(x′) = ∇fk,0(x′) +
−e−(S−rη)x+ e−2(S−rη)x′

1− e−2(S−rη)
.

At the j-th iteration corresponding to Line 9 in Alg 1. The previous score is approximated by

∇g′(x′) = v′(x′) +
−e−(S−rη)x+ e−2(S−rη)x′

1− e−2(S−rη)
.

where v′(·) is used to approximate ∇ log pk,0(·) by calling Alg 1 recursively. Suppose x′j = z0, the
j-th iteration is equivalent to the following SDE

dzt = −∇g′(z0)dt+
√
2dBt,

we denote the underlying distribution of zt as qt. Similarly, we set q0t as the joint distribution of
(z0, zt), and have

q0t(z0, zt) = q0(z0) · qt|0(zt|z0).

According to the Fokker-Planck equation, we have

∂tqt|0(zt|z0) = ∇ ·
(
qt|0(zt|z0) · ∇g′(z0)

)
+∆qt|0(zt|z0)

In this condition, we have

∂tqt(zt) =

∫
∂qt|0(zt|z0)

∂t
· q0(z0)dz0

=

∫ [
∇ ·
(
qt|0(zt|z0) · ∇g′(z0)

)
+∆qt|0(zt|z0)

]
· q0(z0)dz0

=∇ ·
(
qt(zt)

∫
q0|t(z0|zt)∇g′(z0)dz0

)
+∆qt(zt).
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For abbreviation, we suppose

q∗(·) := qk,S−rη(·|x) and g∗ := gk,r.

With these notations, the dynamic of the KL divergence between qt and q∗ is

∂tKL (qt∥q∗) =
∫
∂tqt(zt) log

qt(zt)

q∗(zt)
dzt

=

∫
∇ ·
[
qt(zt)

(∫
q0|t(z0|zt)∇g′(z0)dz0 +∇ log qt(zt)

)]
· log qt(zt)

q∗(zt)
dzt

=−
∫
qt(zt)

(∥∥∥∥∇ log
qt(zt)

q∗(zt)

∥∥∥∥2 +〈∫ q0|t(z0|zt)∇g′(z0)dz0 +∇ log q∗(zt),∇ log
qt(zt)

q∗(zt)

〉)
dzt

=−
∫
qt(zt)

∥∥∥∥∇ log
qt(zt)

q∗(zt)

∥∥∥∥2 dzt + ∫ q0t(z0, zt)

〈
∇g′(z0)−∇g∗(zt),∇ log

qt(zt)

q∗(zt)

〉
d(z0, zt)

≤− 3

4

∫
qt(zt)

∥∥∥∥∇ log
qt(zt)

q∗(zt)

∥∥∥∥2 dzt + ∫ q0t(z0, zt)
∥∥∇g′(z0)−∇g∗(zt)∥∥2 d(z0, zt)

≤− 3

4

∫
qt(zt)

∥∥∥∥∇ log
qt(zt)

q∗(zt)

∥∥∥∥2 + 2

∫
q0t(z0, zt)

∥∥∇g′(z0)−∇g∗(z0)∥∥2 d(z0, zt)
+ 2

∫
q0t(z0, zt) ∥∇g∗(z0)−∇g∗(zt)∥2 d(z0, zt).

(24)

Upper bound the first term in Eq 24. The target distribution q∗ satisfies µr-strong convexity, i.e.,

µrI ⪯ −∇2 log qk,S−rη(x
′|x) = −∇2 log(q∗(x

′)),

It means q∗ satisfies LSI with the constant µr due to Lemma 28. Hence, we have

−3

4

∫
qt(zt)

∥∥∥∥∇ log
qt(zt)

q∗(zt)

∥∥∥∥2 ≤ −3µr
2

KL (qt∥q∗) . (25)

Upper bound the second term in Eq 24. We assume that there is a uniform upper bound ϵg
satisfying∥∥∇g′(z)−∇g∗(z)∥∥ ≤ ϵg ⇒

∫
q0t(z0, zt)

∥∥∇g′(z0)−∇g∗(z0)∥∥2 d(z0, zt) ≤ ϵ2g. (26)

Upper bound the third term in Eq 24. Due to the monotonicity of e−t/(1− e−t), we have

2L ≤ e−2(S−rη)

1− e−2(S−rη)
≤ e−2η

1− e−2η
≤ η−1

where we suppose η ≤ 1/2 without loss of the generality to establish the last inequality. Hence, the
target distribution q∗ satisfies

−∇2 log q∗ = −∇2 log qk,S−rη(·|x) = −∇2 log pk,0 +
e−2(S−rη)

1− e−2(S−rη)

⪯
∥∥∇2 log pk,0

∥∥ I +
e−2(S−rη)

1− e−2(S−rη)
I := LrI ⪯ (L+ η−1)I,
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where the last inequality follows from Assumption [A1]. This result implies the smoothness of q∗,
and we have∫

q0t(z0, zt) ∥∇g∗(z0)−∇g∗(zt)∥2 d(z0, zt)

≤L2
r

∫
q0t(z0, zt) ∥zt − z0∥2 d(z0, zt) = L2

r · Eq0t

[∥∥∥−t∇g′(z0) +√2tξ∥∥∥2]
=L2

r ·
(
2td+ t2Eq0

∥∥∇g′(z0)−∇g∗(z0) +∇g∗(z0)∥∥2)
≤2L2

r ·
(
td+ t2ϵ2g + t2Eq0 ∥∇g∗(z0)∥

2
)

≤2L2
rdt+ 2L2

rϵ
2
gt

2 + 4L3
rdt

2 +
8L4

rt
2

µr
KL (q0∥q∗) ,

(27)

where the last inequality follows from Lemma 36.
Hence, Combining Eq 24, Eq 25, Eq 26, Eq 27 with t ≤ τr ≤ 1/(2Lr) and ϵ2g ≤ 2L2

rdτr, we
have

∂tKL (qt∥q∗) ≤−
3µr
2

KL (qt∥q∗) + 2ϵ2g +
16L4

rt
2

µr
KL (q0∥q∗) + 4L2

rdt+ 4L2
rϵ

2
gt

2 + 8L3
rdt

2

≤− 3µr
2

KL (qt∥q∗) + 4L2
rdτr +

16L4
rτ

2
r

µr
KL (q0∥q∗) + 4L2

rdτr + 8L4
rdτ

3
r + 8L3

rdτ
2
r

≤− 3µr
2

KL (qt∥q∗) +
16L4

rt
2

µr
KL (q0∥q∗) + 14L2

rdτr.

Multiplying both sides by exp(3µrt
2 ), then the previous inequality can be written as

d

dt

(
e

3µrt
2 KL (qt∥q∗)

)
≤ e

3µrt
2 ·

(
16L4

rτ
2
r

µr
KL (q0∥q∗) + 14L2

rdτr

)
.

Integrating from t = 0 to t = τr, we have

e
3µrτr

2 KL (qt∥q∗)−KL (q0∥q∗) ≤
2

3µr
·
(
e

3µrτr
2 − 1

)
·
(
16L4

rτ
2
r

µr
KL (q0∥q∗) + 14L2

rdτr

)
≤2τr ·

(
16L4

rτ
2
r

µr
KL (q0∥q∗) + 14L2

rdτr

)
where the last inequality establishes due to the fact ec ≤ 1 + 2c when 0 < c ≤ 3

2 · µrτr ≤ 1. It
means we have

KL (qt∥q∗) ≤ e−
3µrτr

2 ·
(
1 +

32L4
rτ

3
r

µr

)
KL (q0∥q∗) + e−

3µrτr
2 · 28L2

rdτ
2
r .

By requiring 0 < τr ≤ µr/(8L2
r), we have

1 +
32L4

rτ
3
r

µr
≤ 1 +

µrτr
2
≤ e

µrτr
2 and e−

3µrτr
2 ≤ 1.

Hence, there is
KL (qt∥q∗) ≤ e−µrτrKL (q0∥q∗) + 28L2

rdτ
2
r , (28)

and the proof is completed.
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Lemma 18 In Alg 1, suppose the input is (k, r,x, ϵ) and k > 0, if we choose the initial distribution
of the inner loop to be

q′0(x
′) ∝ exp

(
−
∥∥x− e−(S−rη)x′∥∥2
2(1− e−2(S−rη))

)
,

then suppose qk,S−rη(·|x) satisfies LSI with the constant µr and Lr smoothness. Their KL divergence
can be upper-bounded as

logKL
(
q′0(·)∥qk,S−rη(·|x)

)
≤ log ∥x∥2 + log

[
L2
rM

µ2r
· deS

1− e−2S

]
+

Me−S

1− e−2S
.

Proof According to Lemma 14, the density qk,S−rη(·|x) can be presented as

qk,S−rη(x
′|x) ∝ exp

(
−fk,0(x′)−

∥∥x− e−(S−rη)x′∥∥2
2(1− e−2(S−rη))

)

where fk,0(x′) = ∇ log pk,0(x
′). Since it satisfies LSI with the constant, .i.e, µr, due to Definition 3,

we have

KL
(
q′0(·)∥qk,S−rη(·|x)

)
≤ 1

2µr
·
∫
q′0(x

′)
∥∥∇fk,0(x′)∥∥2 dx′

≤ µ−1r ·
(∫

q′0(x
′)
∥∥∇fk,0(x′)−∇fk,0(0)∥∥2 dx′ + ∫ q′0(x

′) ∥∇fk,0(0)∥2 dx′
)
.

(29)

For the first term, we have∫
q′0(x

′)
∥∥∇fk,0(x′)−∇fk,0(0)∥∥2 dx′

≤ L2
r ·
∫
q′0(x

′)
∥∥x′∥∥2 dx′ = L2

r · Eq′0

[
∥x′∥2

]
= L2

r ·
[
Var(x′) +

∥∥Ex′∥∥2]
where the first inequality follows from [A1]. The high-dimensional Gaussian distribution, i.e., q′0
satisfies ∥∥∥Eq′0

[
x′
]∥∥∥ = eS−rη ∥x∥ and Var(x′) ≤ d ·

(
e2(S−rη) − 1

)
,

where the last inequality follows from Lemma 35, hence we have∫
q′0(x

′)
∥∥∇fk,0(x′)−∇fk,0(0)∥∥2 dx′ ≤ L2

r · e2(S−rη)(d+ ∥x∥2). (30)

Then we consider to bound the second term of Eq 29. According to the definition of∇fk,0, with
the transition kernel of the OU process, we have

−∇fk,0(x′) = ∇ log pk,0(x
′) =

∇pk,0(x′)
pk,0(x′)

=

∫
Rd p∗(x0) · exp

(
−∥x−e−kSx0∥2

2(1−e−2kS)

)
·
(
− x−e−kSx0

(1−e−2(T−t))

)
dx0∫

Rd p∗(x0) · exp
(
−∥x−e−kSx0∥2

2(1−e−2kS)

)
dx0

.
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Therefore, we have

∥∇fk,0(0)∥2 =

∥∥∥∥∥∥∥∥
∫
Rd p∗(x0) · exp

(
−e−2kS∥x0∥2

2(1−e−2kS)

)
· e−kSx0

(1−e−2kS)
dx0∫

Rd p∗(x0) · exp
(
−e−2kS∥x0∥2

2(1−e−2kS)

)
dx0

∥∥∥∥∥∥∥∥
2

≤ e−kS

1− e−2kS
·
∫
p∗(x0) · ∥x0∥2 dx0 ·

∫
p∗(x0) · exp

(
−e−2kS∥x0∥2

(1−e−2kS)

)
dx(∫

Rd p∗(x0) · exp
(
−e−2kS∥x0∥2

2(1−e−2kS)

)
dx0

)2

≤ e−kS

1− e−2kS
·M ·

(∫
Rd

p∗(x0) · exp

(
−e−2kS ∥x0∥2

2 (1− e−2kS)

)
dx0

)−1
(31)

where the first inequality follows from Holders’ inequality, the second inequality follows from [A2].
With, the following range:

e−2kS

1− e−2kS
≤ e−kS

1− e−2kS
≤ e−S

1− e−2S

we plug Eq 30 and Eq 31 into Eq 29 and obtain

logKL (q′0(·)∥qk,S−rη(·|x)) ≤ log
[
µ−1r ·

(
L2
r · e2(S−rη)(d+ ∥x∥2)

+
e−kS

1− e−2kS
·M

(∫
Rd

p∗(x0) · exp

(
−e−2kS ∥x0∥2

2 (1− e−2kS)

)
dx0

)−1
Without loss of generality, we suppose both RHS of Eq 30 and Eq 31 are larger than 1. Then, we
have
logKL (q′0(·)∥qk,S−rη(·|x))

≤ log

[
L2
r

µ2
r

· e2(S−rη)M · e−kS

1− e−2kS
· (d+ ∥x∥2)

]
− log

[∫
Rd

p∗(x0) · exp

(
−e−2kS ∥x0∥2

2 (1− e−2kS)

)
dx0

]

≤ log

[
L2
rM

µ2
r

· eS

1− e−2S
· (d+ ∥x∥2)

]
+

e−2kS

2(1− e−2kS)
·
∫
Rd

p∗(x0) ∥x0∥2 dx0

≤ log

[
L2
rM

µ2
r

· eS

1− e−2S
· (d+ ∥x∥2)

]
+

Me−S

1− e−2S
≤ log ∥x∥2 + log

[
L2
rM

µ2
r

· deS

1− e−2S

]
+

Me−S

1− e−2S
.

Hence, the proof is completed.

Corollary 19 For any given (k, r) in Alg 1 and x ∈ Rd, suppose the distribution qk,S−rη(·|x)
satisfies

µrI ⪯ −∇2 log qk,S−rη(·|x) ⪯ LrI,

and x′j ∼ q′j(·|x). If 0 < τr ≤ µr/(8L2
r), we have

KL
(
q′j∥q∗

)
≤ exp (−µrτrj) ·KL

(
q′0∥q∗

)
+

32L2
rdτr
µr

when the score estimation satisfies ∥∇ log pk,0 − v′∥∞ ≤ Lr

√
2dτr.
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Proof Due to the range 0 < τr ≤ µr/8L2
r , we have µrτr ≤ 1/8. In this condition, we have

1− exp (−µrτr) ≥
7

8
· µrτr.

Plugging this into the following inequality obtained by the recursion of Eq. 28, we have

KL
(
q′j∥q∗

)
≤ exp (−µrτrj) ·KL

(
q′0∥q∗

)
+

28L2
rdτ

2
r

(1− exp (−µrτr))

≤ exp (−µrτrj) ·KL
(
q′0∥q∗

)
+

32L2
rdτr
µr

.

In this condition, if we require the KL divergence to satisfy KL
(
q′j∥q∗

)
≤ ϵ, a sufficient condition

is that

exp (−µrτrj) ·KL
(
q′0∥q∗

)
≤ ϵ

2
and

32L2
rdτ

µr
≤ ϵ

2
,

which is equivalent to

τr ≤
µrϵ

64L2
rd

and j ≥ 1

µrτr
· log 2KL (q′0∥q∗)

ϵ
.

According to the upper bound of KL (q′0∥q∗) shown in Lemma 18, we require

j ≥ 1

µrτr
·
[
log
∥x∥2

ϵ
+ log

(
2L2

rM

µ2r
· deS

1− e−2S

)
+

Me−S

1− e−2S

]
.

E.3. Core Lemmas

Lemma 20 In Alg 1, for any k ∈ N0,K−1, r ∈ N0,R−1 and x ∈ Rd, we have

P
[∥∥v←k,rη(x)−∇ log pk,S−rη(x)

∥∥2 ≤ 10ϵ
]
≥ 1− δ

by requiring the segment length S, the sample number nk,r and the step size of inner loops τr and
the iteration number of inner loops mk,r satisfy

S =
1

2
log

2L+ 1

2L
, nk,r ≥

4

ϵ(1− e−2(S−rη))
·max {d,−2 log δ} ,

τr ≤
µr

64L2
rd
· (1− e−2(S−rη))ϵ and mk,r ≥

64L2
rd

µ2r(1− e−2(S−rη))ϵ
·
[
log

d∥x∥2

(1− e−2(S−rη))ϵ
+ Cm,1

]
,

where Cm,1 = log
(
2M · 32 · 5L

)
+M ·3L. In this condition that choosing the τr to its upper bound,

we required the score estimation in the inner loop satisfies

∥∥∇ log pk,0(x
′)− v′k,0(x

′)
∥∥ ≤ e−(S−rη)ϵ0.5

8
.
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Proof With a little abuse of notation, for each loop i ∈ N1,nk,r
in Line 4 of Alg 1, we denote the

underlying distribution of output particles as x′i ∼ q′k,S−rη(·|x) for any k ∈ N0,K−1, r ∈ N0,R−1

and x ∈ Rd in this lemma. According to Line 11 in Alg 1, we have∥∥v←k,rη(x)−∇ log pk,S−rη(x)
∥∥2

=

∥∥∥∥∥ 1

nr,k

nr,k∑
i=1

(
−x− e−(S−rη)x′i

1− e−2(S−rη)

)
− Ex′∼qk,S−rη(·|x)

[
−x− e−(S−rη)x′

1− e−2(S−rη)

]∥∥∥∥∥
2

=
e−2(S−rη)(

1− e−2(S−rη)
)2 ·

∥∥∥∥∥− 1

nr,k

nr,k∑
i=1

x′i + Ex′∼qk,S−rη(·|x)
[
x′
]∥∥∥∥∥

2

≤ 2e−2(S−rη)(
1− e−2(S−rη)

)2 ·
∥∥∥∥∥− 1

nr,k

nr,k∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥

2

+
2e−2(S−rη)(

1− e−2(S−rη)
)2 · ∥∥∥−Ex′∼q′k,S−rη(·|x)

[
x′
]
+ Ex′∼qk,S−rη(·|x)

[
x′
]∥∥∥2

(32)

In the following, we respectively upper bound the concentration error and the mean gap between
q′k,S−rη(·|x) and qk,S−rη(·|x) corresponding to the former and the latter term in Eq 32.

Upper bound the concentration error. The choice of S, i.e., S = 1
2 log

(
2L+1
2L

)
, Lemma 15

demonstrate that suppose

µr =
1

2
· e−2(S−rη)

1− e−2(S−rη)
and Lr =

3

2
· e−2(S−rη)

1− e−2(S−rη)
.

Then, we have
µrI ⪯ −∇2 log qk,S−rη(x

′|x) ⪯ LrI.

According to Alg 1, we utilize ULA as the inner loop (Line 4 – Line 9) to sample from qk,S−rη(·|x).
By requiring the step size, i.e., τr to satisfy τr ≤ 1/Lr, with Lemma 32, we know that the underlying
distribution of output particles of the inner loops satisfies, i.e., q′k,S−rη(·|x) satisfies LSI with a
constant µ′r satisfying

µ′r ≥
µr
2
≥ e−2(S−rη)

4(1− e−2(S−rη))
.

In this condition, we employ Lemma 16, by requiring

nk,r ≥
4

ϵ(1− e−2(S−rη))
·max {d,−2 log δ}

≥ 1

µ′r
·

(
e−(S−rη)

(1− e−2(S−rη))ϵ0.5

)2

·max {d,−2 log δ} .

and obtain

P

 2e−2(S−rη)(
1− e−2(S−rη)

)2 ·
∥∥∥∥∥− 1

nr,k

nr,k∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥

2

≤ 2ϵ


=P

[∥∥∥∥∥− 1

nr,k

nr,k∑
i=1

x′i + Ex′∼q′k,S−rη(·|x)
[
x′
]∥∥∥∥∥ ≤ (1− e−2(S−rη))ϵ0.5

e−(S−rη)

]
≥ 1− δ.
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Upper bound the mean gap. According to Lemma 15 and Lemma 28, we know qk,S−rη(x
′|x)

satisfies LSI with constant

µr ≥
e−2(S−rη)

2(1− e−2(S−rη))
.

By introducing the optimal coupling between qk,S−rη(·|x) and q′k,S−rη(·|x), we have∥∥∥−Ex′∼q′k,S−rη(·|x)
[
x′
]
+ Ex′∼qk,S−rη(·|x)

[
x′
]∥∥∥2

≤W 2
2

(
q′k,S−rη(·|x), qk,S−rη(·|x)

)
≤ 2

µr
KL
(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
,

(33)

where the last inequality follows from Talagrand inequality Vempala and Wibisono (2019). Hence,
the mean gap can be upper-bounded as

2e−2(S−rη)(
1− e−2(S−rη)

)2 · ∥∥∥−Ex′∼q′k,S−rη(·|x)
[
x′
]
+ Ex′∼qk,S−rη(·|x)

[
x′
]∥∥∥2

≤ 2e−2(S−rη)(
1− e−2(S−rη)

)2 · 2µrKL
(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
≤ 8

(1− e−2(S−rη))
KL
(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
.

To provide ϵ-level upper bound, we expect the required accuracy of KL convergence of inner loops
to satisfy

KL
(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
≤ (1− e−2(S−rη))ϵ.

According to Corollary 19, to achieve such accuracy, we require the step size and the iteration number
of inner loops to satisfy

τr ≤
µr

64L2
rd
· (1− e−2(S−rη))ϵ and

mk,r ≥
1

µr
· 64L2

rd

µr(1− e−2(S−rη))ϵ
·
[
log

∥x∥2

(1− e−2(S−rη))ϵ
+ log

(
2L2

rM

µ2r
· deS

1− e−2S

)
+

Me−S

1− e−2S

]
.

To simplify notation, we suppose L ≥ 1 without loss of generality, and we the following equations:

Lr

µr
= 3, eS = exp

(
1

2
log

2L+ 1

2L

)
=

√
2L+ 1

2L
,(

1− e−2S
)−1

= (2L+ 1),

which implies

log
d∥x∥2

(1− e−2(S−rη))ϵ
+ log

(
2M · 32 · 5L

)
+M · 3L

≥ log
d∥x∥2

(1− e−2(S−rη))ϵ
+ log

(
2M · L

2
r

µ2r
·
√

2L+ 1

2L
· (2L+ 1)

)
+M · (2L+ 1) ·

√
2L

2L+ 1

= log
d∥x∥2

(1− e−2(S−rη))ϵ
+ log

(
2L2

rM

µ2r
· eS

1− e−2S

)
+

Me−S

1− e−2S
.
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Therefore, we only require mk,r satisfies

mk,r ≥
1

µr
· 64L2

rd

µr(1− e−2(S−rη))ϵ
·
[
log

d∥x∥2

(1− e−2(S−rη))ϵ
+ Cm,1

]
where Cm,1 = log

(
2M · 32 · 5L

)
+M · 3L. For simplicity, we choose τr as its upper bound and

lower bound, respectively. In this condition, we still require

∥∥∇ log pk,0 − v′
∥∥ ≤ e−(S−rη)ϵ0.5

8
≤ 1

4
·
√
µr(1− e−2(S−rη))

2
· ϵ ≤ Lr

√
2dτr

where the first inequality follows from the range of µr, and the last inequality is satisfied when we
choose τr to its upper bound. Hence, the proof is completed.

Lemma 21 (Errors from fine-grained score estimation) Under the notation in Section A, sup-
pose the step size satisfy η = Cη(d+M)−1ϵ, we have

P
[∥∥∇ log pk,S−rη(x)− v←k,rη(x)

∥∥2 ≤ 10ϵ, ∀x ∈ Rd
]

≥(1− δ) ·
(

min
x′∈Sk,r(x,ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

])nk,r(10ϵ)·mk,r(10ϵ,x)

,

where Sk,r(x, 10ϵ) denotes the set of particles appear in Alg 1 when the input is (k, r,x, 10ϵ). For
any (k, r) ∈ N0,K−1 × N0,R−1 by requiring

nk,r(10ϵ) = Cn ·
(d+M) ·max{d,−2 log δ}

(10ϵ)2
where Cn = 26 · 52 · C−1η ,

mk,r(10ϵ,x) = Cm ·
(d+M)3 ·max{log ∥x∥2, 1}

(10ϵ)3
where Cm = 29 · 32 · 53 · Cm,1C

−1.5
η .

Proof According to Line 9 of Alg 1, for any x ∈ Rd, the score estimation v←k,rη is constructed by
estimating the mean in RHS of the following expectation using nk,r samples (i.e., calculating the
empirical mean):

∇x log pk,S−rη(x) =Ex′∼qk,S−rη(·|x)

[
− x− e−(S−rη)x′(

1− e−2(S−rη)
)] (34)

where qk,S−rη(x
′|x) ∝ exp

(
log pk,0(x

′)−
∥∥x− e−(S−rη)x′∥∥2
2
(
1− e−2(S−rη)

) ) . (35)

Then in order to guarantee an accurate estimation for∇x log pk,S−rη(x), i.e., denoted by v←k,rη(x),
with Lemma 20, we require

1. Get a precise estimation for ∇ log pk,0(x
′), in order to guarantee that the estimation for

∇ log qk,S−rη(x
′|x) is accurate. In particular, we require

∥∥∇ log pk,0(x
′
i,j)− v←k−1,0(x

′
i,j)
∥∥ ≤ e−(S−rη)ϵ0.5

8
.
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2. Based on the ∇ log qk,S−rη(x
′|x), we run ULA with appropriate step size τr and iteration

number mk,r satisfying

τr ≤
µr

64L2
rd
· (1− e−2(S−rη))ϵ and

mk,r ≥
64L2

rd

µ2r(1− e−2(S−rη))ϵ
· log

2KL (q′0(·)∥qk,S−rη(·|x))
(1− e−2(S−rη))ϵ

(36)

to generate samples x′ whose underlying distribution q′k,S−rη(·|x) is sufficiently close to
qk,S−rη(x

′|x), i.e.,

KL
(
q′k,S−rη(·|x)∥qk,S−rη(·|x)

)
≤ (1− e−2(S−rη))ϵ.

3. Generate a sufficient number of samples satisfying

nk,r ≥
4

ϵ(1− e−2(S−rη))
·max {d,−2 log δ} . (37)

such that the empirical estimation of the expectation in (34) is accurate, i.e.,

P
[
∥∇ log pk,S−rη(x)− ṽk,rη(x)∥2 ≤ 10ϵ

]
= P

[∥∥∥∥∥∇ log pk,S−rη(x)−
1

nk,r

nk,r∑
i=1

[
−
x− e−(S−rη)x′i,mk,r(

1− e−2(S−rη)
) ]∥∥∥∥∥ ≤ 10ϵ

]
≥ 1− δ.

Due to the fact rη ≥ 0, the first condition can be achieved by requiring

∥∥∇ log pk,0(x
′
i,j)− v←k−1,0(x

′
i,j)
∥∥ ≤√2

3
· ϵ

0.5

8
≤
√

2L

2L+ 1
· ϵ

0.5

8
=
e−Sϵ0.5

8
≤ e−(S−rη)ϵ0.5

8
,

where the second inequality is established by supposing L ≥ 1 without loss of generality, and the
last equation follows from the choice of S.

To investigate the setting of hyper-parameters, i.e., the number of samples for empirical mean
estimation nk,r and the number of iterations for ULA mk,r. We first reformulate them as two
functions, i.e.,

nk,r(10ϵ) = Cn ·
(d+M) ·max{d,−2 log δ}

(10ϵ)2
where Cn = 26 · 52 · C−1η ,

mk,r(10ϵ,x) = Cm ·
(d+M)3 ·max{log ∥x∥2, 1}

(10ϵ)3
where Cm = 29 · 32 · 53 · Cm,1C

−1.5
η .

since this presentation helps to explain the connection between them and the input of Alg 1. Different
from the results shown in Lemma 20, nk,r(·) and mk,r(·, ·) is independent with k and r. However,
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these choices will still make Eq 36 and Eq 37 establish, because

nk,r(10ϵ) =
16

ϵ
· (d+M)

Cηϵ
·max {d,−2 log δ} ≥ 16

ϵη
·max {d,−2 log δ}

≥ 16

ϵ(1− e−2η)
·max {d,−2 log δ} ≥ 16

ϵ(1− e−2(S−rη))
·max {d,−2 log δ}

mk,r(10ϵ,x) =576 · (d+M)3

ϵ3
· Cm,1

C1.5
η

·max{log ∥x∥2, 1} ≥ 64 · L
2
r

µ2r
·
(
d

ϵη

)1.5

· Cm,1 ·max{log ∥x∥2, 1}

≥64 · L
2
r

µ2r
· d
ϵη

log
d

ϵη
· Cm,1 ·max{log ∥x∥2, 1} ≥ 64 · L

2
r

µ2r
· d
ϵη

(
log

d∥x∥2

ϵη
+ Cm,1

)
≥64 · L

2
r

µ2r
· d

ϵ(1− e−2η)

(
log

d∥x∥2

ϵ(1− e−2η)
+ Cm,1

)
≥ 64L2

rd

µ2r(1− e−2(S−rη))ϵ
·
(
log

d∥x∥2

(1− e−2(S−rη))ϵ
+ Cm,1

)
with the proper choice of step size, i.e., η = Cη(d + M)−1ϵ. With these settings, Lemma 20
demonstrates that

P
[∥∥∇ log pk,S−rη(x)− v←k,rη(x)

∥∥2 ≤ 10ϵ,∀x ∈ Rd
∣∣∣

⋂
x′∈Sk,r(x,10ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ ϵ

96

 ≥ 1− δ.

where Sk,r(x, 10ϵ) denotes the set of particles appear in Alg 1 when the input is (k, r,x, 10ϵ) except
for the recursion. It satisfies |Sk,r(x, 10ϵ)| = nk,r(10ϵ) ·mk,r(10ϵ,x). Furthermore, we have

P
[∥∥∇ log pk,S−rη(x)− v←k,rη(x)

∥∥2 ≤ 10ϵ
]

≥ P

∥∥∇ log pk,S−rη(x)− v←k,rη(x)
∥∥2 ≤ 10ϵ

∣∣∣ ⋂
x′∈Sk,r(x,10ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ ϵ

96


· P

 ⋂
x′∈Sk,r(x,10ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ ϵ

96


≥ (1− δ) · P

 ⋂
x′∈Sk,r(x,10ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ ϵ

96

 .
(38)

Considering that for each x′i,j , the score estimation, i.e., v←k−1,0(x
′
i,j) is independent, hence, we have

P

 ⋂
x′∈Sk,r(x,10ϵ)

∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ ϵ

96


=

∏
x′∈Sk,r(x,10ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

]

≥
(

min
x′∈Sk,r(x,ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

])|Sk,r(x,ϵ)|
(39)
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Therefore, combining Eq 38 and Eq 39, we have

P
[∥∥∇ log pk,S−rη(x)− v←k,rη(x)

∥∥2 ≤ 10ϵ
]

≥(1− δ) ·
(

min
x′∈Sk,r(x,ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

])nk,r(10ϵ)·mk,r(10ϵ,x)

,

and the proof is completed.

Corollary 22 (Errors from coarse-grained score estimation) Under the notation in Section A,
suppose the step size satisfy η = C1(d+M)−1ϵ, we have

P
[∥∥∇ log pk+1,0(x)− v←k,0(x)

∥∥2 ≤ 10ϵ,∀x ∈ Rd
]

≥(1− δ) ·
(

min
x′∈Sk,0(x,ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

])nk,0(10ϵ)·mk,0(10ϵ,x)

,
(40)

where Sk,0(x, 10ϵ) denotes the set of particles appear in Alg 1 when the input is (k, 0,x, 10ϵ). For
any k ∈ N1,K−1 by requiring

nk,0(10ϵ) = Cn ·
(d+M) ·max{d,−2 log δ}

(10ϵ)2
where Cn = 26 · 52 · C−1η ,

mk,0(10ϵ,x) = Cm ·
(d+M)3 ·max{log ∥x∥2, 1}

(10ϵ)3
where Cm = 29 · 32 · 53 · Cm,1C

−1.5
η .

Besides, for any x ∈ Rd, we have

P
[∥∥∇ log p0,0(x

′)− v←−1,0(x
′)
∥∥2 ≤ ϵ

96
, ∀x′ ∈ Rd

]
= 1

by requiring ṽ−1,0(x
′) = −∇f∗(x′), which corresponds to Line 2 in Alg 1.

Proof When k > 0, plugging r = 0 into Lemma 21, we can obtain the result except inequality
Eq 40. Instead, we have

P
[∥∥∇ log pk,S(x)− v←k,0(x)

∥∥2 ≤ 10ϵ,∀x ∈ Rd
]

≥(1− δ) ·
(

min
x′∈Sk,0(x,ϵ)

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

])nk,0(10ϵ)·mk,0(10ϵ,x)

.
(41)

Since the forward process, i.e., SDE 1, satisfies xk,S = xk+1,0, we have

pk,S(x) = pk+1,0(x) =

∫
p∗(y) ·

(
2π
(
1− e−2(k+1)S

))−d/2
· exp

[
−
∥∥x− e−(k+1)Sy

∥∥2
2
(
1− e−2(k+1)S

) ]
dy,

which means∇ log pk,S = ∇ log pk+1,0. Therefore, Eq 40 is established.
When k = 0, due to the definition of ṽ−1,0 in Eq 7, we know Eq 41 is established. Hence, the

proof is completed.
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Lemma 23 (Errors from score estimation) Under the notation in Section A, suppose the step size
satisfy η = Cη(d+M)−1ϵ, we have

P

 ⋂
k∈N0,K−1

r∈N0,R−1

∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ

 ≥ 1− ϵ

with Alg 1 by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

exp

[
O

(
L3 ·

(
log

Ld+M

ϵ

)3

·max
{
log logZ2, 1

})]
,

where Z is the maximal norm of particles that appear in Alg 2.

Proof We begin with lower bounding the following probability with (i, j) ∈ N0,K−1 × N0,R−1 and
(i, j) ̸= (0, 0),

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]
.

In the following part of this Lemma, we set η = Cη(d +M)−1ϵ and denote δ as a tiny positive
constant waiting for determining. With Lemma 21, we have

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥(1− δ) ·

(
min

x′∈Sk,r(x←k,rη,10ϵ)
P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ 10ϵ

960

])nk,r(10ϵ)·mk,r(10ϵ,x
←
k,rη)

.
(42)

Then, if k ≥ 1, for each item of the latter term, supposing 10ϵ′ = ϵ/96, Lemma 22 shows

P
[∥∥∇ log pk,0(x

′)− v←k−1,0(x
′)
∥∥2 ≤ ϵ

96

]
= P

[∥∥∇ log pk,0(x
′)− v←k−1,0(x

′)
∥∥2 ≤ 10ϵ′

]
≥(1− δ) ·

(
min

x′′∈Sk−1,0(x′,10ϵ′)
P
[∥∥∇ log pk−1,0(x

′′)− v←k−2,0(x
′′)
∥∥2 ≤ ϵ′

96

])nk,0(10ϵ
′)·mk,r(10ϵ

′,x′)

=(1− δ) ·
(

min
x′′∈Sk−1,0(x′,ϵ/96)

P
[∥∥∇ log pk−1,0(x

′′)− v←k−2,0(x
′′)
∥∥2 ≤ ϵ

96 · 960

])nk,0(ϵ/96)·mk,0(ϵ/96,x
′)

.

Only particles that appear in the iteration will appear in powers of Eq 42. To simplify the notation,
we set Z as the upper bound of the norm of particles appear in Alg 2,

mk,r(10ϵ,x) ≤ mk,r(10ϵ) := Cm ·
(d+M)3 ·max{2 logZ, 1}

(10ϵ)3

and uk,r(ϵ) := nk,r(ϵ) ·mk,r(ϵ).

Plugging this inequality into Eq 42, we have

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥(1− δ)1+uk,r(10ϵ) ·
(
P
[∥∥∇ log pk−1,0(x

′′)− v←k−2,0(x
′′)
∥∥2 ≤ 10ϵ

(960)2

])uk,r(10ϵ)·uk,0(
ϵ
96

)

.

45



HUANG ZOU DONG MA ZHANG

Using Lemma 22 recursively, we will have

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥(1− δ)1+uk,r(10ϵ)+uk,r(10ϵ)·uk,0( 10ϵ
960 )+...+uk,r(10ϵ)·

∏2
i=k ui,0( 10ϵ

960k−i+1 )(
P
[
∥∇ log p0,0(x

′)− ṽ−1,0(x
′)∥2 ≤ 10ϵ

(960)k+1
,∀x′ ∈ Rd

])uk,r(10ϵ)·
∏1

i=k ui,0( 10ϵ

960k−i+1 )

=(1− δ)1+uk,r(10ϵ)+uk,r(10ϵ)·uk,0( 10ϵ
960 )+...+uk,r(10ϵ)·

∏2
i=k ui,0( 10ϵ

960k−i+1 )

≥1− δ ·

(
1 + uk,r(10ϵ) + uk,r(10ϵ) · uk,0

(
10ϵ

960

)
+ . . .+ uk,r(10ϵ) ·

2∏
i=k

ui,0

(
10ϵ

960k−i+1

))
(43)

where the third inequality follows from the case k = 0 in Lemma 22 and the last inequality follows
from union bound.

Then, we start to upper bound the coefficient of δ. According to Lemma 21 and Lemma 22, it can
be noted that the function uk,r(·) is independent with k and r. It is actually because we provide a union
bound for the sample number nk,r and the iteration number mk,r when (k, r) ∈ N0,K−1 × N0,R−1.
Therefore, the explicit form of the uniformed u is defined as

u(10ϵ) = CnCm · (d+m2
2)

4 ·max{d, log(1/δ2)} ·max{2 logZ, 1}︸ ︷︷ ︸
independent with ϵ

·(10ϵ)−5

Then, we have

u

(
10ϵ

960

)
= u(10ϵ) · 9605 and u

(
10ϵ

960i

)
= u(10ϵ) · 9605i.

Combining this result with Eq 43, we obtain

1 + uk,r(10ϵ) + uk,r(10ϵ) · uk,0
(
10ϵ

960

)
+ . . .+ uk,r(10ϵ) ·

2∏
i=k

ui,0

(
10ϵ

960k−i+1

)

≤ (k + 1) · u(10ϵ) ·
2∏

i=k

u

(
10ϵ

9605(k−i+1)

)
= (k + 1) · u(10ϵ) ·

2∏
i=k

(
u(10ϵ) · 960k−i+1

)
= (k + 1) · 9602.5k(k−1) · u(10ϵ)k ≤ K · 9602.5(K−1)(K−2) · u(10ϵ)K−1.

Considering that K = 2/S · log[(Ld+M)/ϵ], to bound RHS of the previous inequality, we have

log
(
9602.5(K−1)(K−2) · u(10ϵ)K−1

)
= 2.5(K − 1)(K − 2) log(960) + (K − 1) log(u(10ϵ))

≤ 2.5 · log(960) ·
(
2

S
log

Ld+M

ϵ

)2

+
2

S
log

Ld+M

ϵ
·
(
logCnCm + 4 log(d+M) + log d+ log

(
2 log

1

δ

)
+ log

(
2max

{
logZ,

1

2

})
+ log(10−5) + 5 log

1

ϵ

)
.

To make the result more clear, we set

Cu,1 := log(CnCm) + log 2 + log

(
2max

{
logZ,

1

2

})
− 5 log 10
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which is independent with d, ϵ and δ. Then, it has

log
(
9602.5(K−1)(K−2) · u(10ϵ)K−1

)
≤ 70

S2

(
log

Ld+M

ϵ

)2

+
2

S
log

Ld+M

ϵ
·
[
Cu,1 + 5 log(d+M) + log log

1

δ
+ 5 log

1

ϵ

]
.

which means

9602.5(K−1)(K−2) · u(10ϵ)K−1

≤ exp

[
70

S2

(
log

Ld+M

ϵ

)2

+
2

S
log

Ld+M

ϵ
·
(
Cu,1 + 5 log(d+M) + log log

1

δ
+ 5 log

1

ϵ

)]

≤ pow

(
Ld+M

ϵ
,

((
70

S2
+

10

S

)
log

Ld+M

ϵ
+

2

S
log log

1

δ
+

2Cu,1

S

))
(44)

where the last inequality suppose L ≥ 1 as the previous settings. To simplify notation, we set

Cu,2 :=
70

S2
+

10

S
and Cu,3 :=

2Cu,1

S
.

Plugging this result into Eq 43, we have

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥ 1− δ ·K · pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

)
.

(45)

With these conditions, we can lower bound score estimation errors along Alg 2. That is

P

 ⋂
k∈N0,K−1

r∈N0,R−1

∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ


=

∏
k∈N0,K−1

r∈N0,R−1

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

where the first inequality establishes because the random variables, v←k,rη, are independent for each
(k, r) pair. By introducing Eq 45, we have∏

k∈N0,K−1

r∈N0,R−1

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥
(
1− δ ·K · pow

(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

))KR

≥1− δ ·K2R · pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

)
=1− δ · 4(d+M)

SCηϵ

(
log

Ld+M

ϵ

)2

· pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

)
(46)
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where the first inequality follows from Eq 45 and the second inequality follows from the union
bound, and the last inequality follows from the combination of the choice of the step size, i.e.,
η = C1(d+M)−1ϵ and the definition of K and R, i.e.,

K =
T

S
=

2

S
log

C0

ϵ
, R =

S

η
=
S(d+M)

Cηϵ
.

It means when δ is small enough, we can control the recursive error with a high probability, i.e.,∏
k∈N0,K−1

r∈N0,R−1

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]
≥ 1− ϵ. (47)

Compared with Eq 46, Eq 47 can be achieved by requiring

4(d+M)

SCηϵ

(
log

Ld+M

ϵ

)2

· pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+ Cu,3

)
︸ ︷︷ ︸

defined as CB

·δpow
(
Ld+M

ϵ
,
2

S
log log

1

δ

)
≤ ϵ,

which can be obtained by requiring

CBδ(− log δ)
2
S
log Ld+M

ϵ ≤ ϵ ⇔ (− log δ)
2
S
log Ld+M

ϵ ≤ ϵ

CBδ

⇔ 2

S
log

Ld+M

ϵ
· log log 1

δ
≤ log

ϵ

CBδ

(48)

We suppose δ = ϵ/CB · a−2/S·log((Ld+M)/ϵ) and the last inequality of Eq 48 becomes

LHS =
2

S
log

Ld+M

ϵ
· log

[
log

CB

ϵ
+

2

S
log

Ld+M

ϵ
· log a

]
≤ 2

S
log

Ld+M

ϵ
· log a = RHS,

which is hold if we require

a ≥ max

{
2CB

ϵ
,

(
Ld+M

ϵ

)2/S

, 1

}
.

Because in this condition, we have

log
CB

ϵ
+

2

S
log

Ld+M

ϵ
· log a ≤ log

a

2
+ (log a)2 ≤ 2a

5
+

3a

5
= a when a ≥ 1,

where the first inequality follows from the monotonicity of function log(·). Therefore, we have

log

[
log

CB

ϵ
+

2

S
log

Ld+M

ϵ
· log a

]
≤ log a

and Eq 48 establishes. Without loss of generality, we suppose 3CB/ϵ dominates the lower bound of
a. Hence, the choice of δ can be determined.

48



RECURSIVE DIFFUSION-BASED MONTE CARLO

After determining the choice of δ, the only problem left is the gradient complexity of Alg 2. The
number of gradients calculated in Alg 2 is equal to the number of calls for ṽ−1,0. According to Eq 43,
we can easily note that the number of calls of ṽ−1,0 is

uk,r(10ϵ) ·
1∏

i=k

ui,0

(
10ϵ

960k−i+1

)
= u(10ϵ)

1∏
i=k

u

(
10ϵ

960k−i+1

)
for each (k, r) pair. We can upper bound RHS of the previous equation as

u(10ϵ)
1∏

i=k

u

(
10ϵ

960k−i+1

)
= u(10ϵ) ·

2∏
i=k

(
u(10ϵ) · 960k−i+1

)
=9602.5k(k−1) · u(10ϵ)k ≤ 9602.5(K−1)(K−2) · u(10ϵ)K−1.

Combining this result with the total number of (k, r) pair, i.e., T/η, the total gradient complexity
can be relaxed as
T

η
· 9602.5k(k−1) · u(10ϵ)k ≤ K2R · 9602.5(K−1)(K−2) · u(10ϵ)K−1

≤ 4(d+M)

SCηϵ

(
log

Ld+M

ϵ

)2

· pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

)
= CB · (− log δ)

2
S
log Ld+M

ϵ ≤ ϵ

δ
= CB · a

2
S
log Ld+M

ϵ

(49)
where the first inequality follows from the fact T/η = KR, the second inequality follows from the
combination of the choice of the step size, i.e., η = C1(d+M)−1ϵ and the definition of K and R,
i.e.,

K =
T

S
=

2

S
log

C0

ϵ
, R =

S

η
=
S(d+M)

C1ϵ

and the last inequality follows from 48. Choosing a as its lower bound, i.e., 2CB/ϵ, RHS of Eq 49
satisfies

CB · a
2
S
log Ld+M

ϵ = CB ·
(
2CB

ϵ

) 2
S
log Ld+M

ϵ

≤
(
2CB

ϵ

) 4
S
log Ld+M

ϵ

≤ pow

(
8(d+M)

SCηϵ2
·
(
log

Ld+M

ϵ

)2

,
4

S
log

Ld+M

ϵ

)

· pow

(
Ld+M

ϵ
,
4Cu,2

S

(
log

Ld+M

ϵ

)2

+
4Cu,3

S

(
log

Ld+M

ϵ

))

= exp

[
O

((
log

Ld+M

ϵ

)3
)]

.

(50)

If we consider the effect of the norm of particles and the dependency of smoothness L since we have

S =
1

2
log

(
1 +

1

2L

)
= Θ(L−1), when L ≥ 1,

4Cu,2

S
=

70

S3
+

10

S2
= Θ(L3),

4Cu,3

S
=

8Cu,1

S2
= Θ

(
L2 ·

(
max

{
log logZ2, 1

}))
,
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Combining this result with Eq 50, the proof is completed.

Lemma 24 Under the notation in Section A, suppose the step size satisfy η = Cη(d+M)−1ϵ, we
have

P

 ⋂
k∈N0,K−1

r∈N0,R−1

∥∥∇ log pk,S−rη(x
←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ

 ≥ 1− δ′

with Alg 1 by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

exp

(
O

(
max

{(
log

Ld+M

ϵ

)3

, log
Ld+M

ϵ
· log 1

δ′

}
·max

{
log logZ2, 1

}))
,

where Z is the maximal norm of particles appeared in Alg 2.

Proof In this lemma, we follow the same proof roadmap as that shown in Lemma 23. According to
Eq 46, we have∏

k∈N0,K−1

r∈N0,R−1

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]

≥1− δ · 4(d+M)

SCηϵ

(
log

Ld+M

ϵ

)2

· pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+

2

S
log log

1

δ
+ Cu,3

)
where the parameter δ satisfies Lemma 21 under certain conditions. It means we can control the
recursive error with a high probability, i.e.,∏

k∈N0,K−1

r∈N0,R−1

P
[∥∥∇ log pk,S−rη(x

←
k,rη)− v←k,rη(x

←
k,rη)

∥∥2 ≤ 10ϵ
]
≥ 1− δ′. (51)

when δ satisfies

4(d+M)

SCηϵ

(
log

Ld+M

ϵ

)2

· pow
(
Ld+M

ϵ
,Cu,2 log

Ld+M

ϵ
+ Cu,3

)
︸ ︷︷ ︸

defined as CB

·δpow
(
Ld+M

ϵ
,
2

S
log log

1

δ

)
≤ δ′.

We can reformulate the above inequality as follows.

CBδ(− log δ)
2
S
log Ld+M

ϵ ≤ δ′ ⇔ (− log δ)
2
S
log Ld+M

ϵ ≤ δ′

CBδ

⇔ 2

S
log

Ld+M

ϵ
· log log 1

δ
≤ log

δ′

CBδ
.

(52)

By requiring δ = δ′/CB · a−2/S·log((Ld+M)/ϵ), the last inequality of the above can be written as

LHS =
2

S
log

Ld+M

ϵ
· log

[
log

CB

δ′
+

2

S
log

Ld+M

ϵ
· log a

]
≤ 2

S
log

Ld+M

ϵ
· log a = RHS,
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when the choice of a satisfies

a ≥ max

{
2CB

δ′
,

(
Ld+M

ϵ

)2/S

, 1

}
. (53)

Since we have

log
CB

δ′
+

2

S
log

Ld+M

ϵ
· log a ≤ log

a

2
+ (log a)2 ≤ 2a

5
+

3a

5
= a when a ≥ 1,

where the first inequality follows from the monotonicity of function log(·). Then, it has

log

[
log

CB

δ′
+

2

S
log

Ld+M

ϵ
· log a

]
≤ log a

and Eq 52 establishes.
To achieve the accurate score estimation with a high probability shown in Eq 51, the total gradient

complexity will be
T

η
· 9602.5k(k−1) · u(10ϵ)k ≤ CB · a

2
S
log Ld+M

ϵ

shown in Eq 49. Plugging the choice of a (Eq 53) into the above inequality, we have

CB · a
2
S log Ld+M

ϵ ≤ CB ·max

{
pow

(
2CB

δ′
,
2

S
log

Ld+M

ϵ

)
,pow

(
Ld+M

ϵ
,
4

S2
log

Ld+M

ϵ

)}

≤ max

pow

(
2CB

δ′
,
4

S
log

Ld+M

ϵ

)
︸ ︷︷ ︸

Term Comp.1

, CB · pow
(
Ld+M

ϵ
,
4

S2
log

Ld+M

ϵ

)
︸ ︷︷ ︸

Term Comp.2


It can be easily noted that Term Comp.2 will be dominated by Term Comp.1. Then, we provide the
upper bound of Comp.1 as

log (Comp.1) =
4

S
log

Ld+M

ϵ
· (log 2CB + log(1/δ′))

=
4

S
log

Ld+M

ϵ
·
(
log

8

SCη
+ log

d+M

ϵ
+ 2 log log

Ld+M

ϵ

+ log
Ld+M

ϵ
·
(
Cu,2 log

Ld+M

ϵ
+ Cu,3

)
+ log(1/δ′)

)
=O

(
L3 ·max

{(
log

Ld+M

ϵ

)3

, log
Ld+M

ϵ
· log 1

δ′

})
,

which utilizes similar techniques shown in Lemma 23 and means

CB · a
2
S
log Ld+M

ϵ ≤ exp

(
O

(
L3 ·max

{(
log

Ld+M

ϵ

)3

, log
Ld+M

ϵ
· log 1

δ′

}))
.

Hence, the proof is completed.
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Appendix F. Auxiliary Lemmas

F.1. The chain rule of KL divergence

Lemma 25 (Lemma 6 in Chen et al. (2023a)) Consider the following two Itô processes,

dxt =f1(xt, t)dt+ g(t)dBt, x0 = a,

dyt =f2(yt, t)dt+ g(t)dBt, y0 = a,

where f1,f2 : Rd → R and g : R→ R are continuous functions and may depend on a. We assume
the uniqueness and regularity conditions:

• The two SDEs have unique solutions.

• xt,yt admit densities pt, qt ∈ C2(Rd) for t > 0.

Define the relative Fisher information between pt and qt by

FI (pt∥qt) :=
∫
pt(x)

∥∥∥∥∇ log
pt(x)

qt(x)

∥∥∥∥2 dx.
Then for any t > 0, the evolution of KL (pt∥qt) is given by

∂

∂t
KL (pt∥qt) = −

g2(t)

2
FI (pt∥qt) + E

[〈
f1(xt, t)− f2(xt, t),∇ log

p(xt)

q(xt)

〉]
.

Lemma 25 is applied to show the KL convergence between the underlying distribution of the
SDEs that have the same diffusion term and a bounded difference between their drift terms.

Lemma 26 (Lemma 7 in Chen et al. (2023a)) Under the notation in Section A, for k ∈ N0,K−1
and r ∈ N0,R−1, consider the reverse SDE starting from x←k,rη = a

dx̂k,t = [x̂k,t + 2∇ log pk,S−t(x̂k,t)] dt+
√
2dBt, x←k,rη = a (54)

and its discrete approximation

dx←k,t =
[
x←k,t + 2v←k,rη

(
x←k,rη

)]
dt+

√
2dBt, x←k,rη = a (55)

for time t ∈ [kη, (k + 1)η]. Let p̂k,t|rη be the density of x̂k,t given x̂k,rη and p←k,t|rη be the density of
x←k,t given x←k,rη . Then, we have

• For any a ∈ Rd, the two processes satisfy the uniqueness and regularity condition stated in
Lemma 25, which means SDE 54 and SDE 55 have unique solutions and p̂k,t|rη(·|a), p←k,t|rη(·|a) ∈
C2(Rd) for t ∈ (rη, (r + 1)η].

• For a.e., a ∈ Rd, we have

lim
t→rη+

KL
(
p̂k,t|rη(·|a)∥p̃k,t|rη(·|a)

)
= 0.
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Lemma 27 (Variant of Proposition 8 in Chen et al. (2023a)) Under the notation in Section A and
Algorithm 2, we have

KL
(
p̂0,S∥p←0,S

)
≤KL

(
p̂K−1,0∥p←K−1,0

)
+

K−1∑
k=0

R−1∑
r=0

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2] dt.

Proof Under the notation in Section A, for k ∈ N0,K−1 and r ∈ N0,R−1, let p̂k,t|rη be the density
of x̂k,t given x̂k,rη and p←k,t|rη be the density of x←k,t given x←k,rη. According to Lemma 26 and
Lemma 25, for any x←k,rη = a, we have

d

dt
KL
(
p̂k,t|rη(·|a)∥p←k,t|rη(·|a)

)
= −FI

(
p̂k,t|rη(·|a)∥p←k,t|rη(·|a)

)
+ 2Ex∼p̂k,t|rη(·|a)

[〈
∇ log pk,S−t(x)− v←k,rη(a),∇ log

p̂k,t|rη(x|a)
p←k,t|rη(x|a)

〉]
≤ Ex∼p̂k,t|rη(·|a)

[∥∥∇ log pk,S−t(x)− v←k,rη(a)
∥∥2] .

Due to Lemma 26, for any a ∈ Rd, we have

lim
t→rη+

KL
(
p̂k,t|rη(·|a)∥p←k,t|rη(·|a)

)
= 0,

which implies

KL
(
p̂k,t|rη(·|a)∥p←k,t|rη(·|a)

)
=

∫ t

rη
Ex∼p̂τ |rη(·|a)

[∥∥∇ log pk,S−τ (x)− v←k,rη(a)
∥∥2]dτ.

Integrating both sides of the equation, we have

Ex̂k,rη∼p̂k,rη

[
KL
(
p̂k,t|rη(·|x̂k,rη)∥p←k,t|rη(·|x̂k,rη)

)]
≤
∫ t

rη
E
[∥∥∇ log pk,S−τ (x̂k,τ )− v←k,rη(x̂k,rη)

∥∥2] dτ.
According to the chain rule of KL divergence Chen et al. (2023a), we have

KL
(
p̂k,(r+1)η∥p←k,(r+1)η

)
≤ KL

(
p̂k,rη∥p←k,rη

)
+ Ex̂k,rη∼p̂k,rη

[
KL
(
p̂k,(r+1)η|rη(·|x̂k,rη)∥p←k,(r+1)η|rη(·|x̂k,rη)

)]
≤ KL

(
p̂k,rη∥p←k,rη

)
+

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2] dt.

Summing over r ∈ {0, 1, . . . , R− 1}, it has

KL
(
p̂k,Rη∥p←k,Rη

)
≤ KL

(
p̂k,0∥p←k,0

)
+

R−1∑
r=0

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2]dt.

53



HUANG ZOU DONG MA ZHANG

Similarly, by considering all segments, we have

KL
(
p̂0,S∥p←0,S

)
≤KL

(
p̂K−1,0∥p←K−1,0

)
+

K−1∑
k=0

R−1∑
r=0

∫ η

0
E(x̂k,t+rη ,x̂k,rη)

[∥∥∇ log pk,S−(t+rη)(x̂k,t+rη)− v←k,rη(x̂k,rη)
∥∥2] dt.

Lemma 28 (Variant of Lemma 10 in Cheng and Bartlett (2018)) Suppose− log p∗ ism-strongly
convex function, for any distribution with density function p, we have

KL (p∥p∗) ≤
1

2m

∫
p(x)

∥∥∥∥∇ log
p(x)

p∗(x)

∥∥∥∥2 dx.
By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
<

∞, we have

Ep∗

[
g2 log g2

]
− Ep∗

[
g2
]
logEp∗

[
g2
]
≤ 2

m
Ep∗

[
∥∇g∥2

]
,

which implies p∗ satisfies m-log-Sobolev inequality.

Lemma 29 (Corollary 3.1 in Chafaï (2004)) If ν, ν̃ satisfy LSI with constants α, α̃ > 0, respectively,
then ν ∗ ν̃ satisfies LSI with constant ( 1α + 1

α̃)
−1.

Lemma 30 (Lemma 16 in Vempala and Wibisono (2019)) Suppose a probability distribution p
satisfies LSI with constant µ > 0. Let a map T : Rd → Rd, be a differentiable L-Lipschitz map. Then,
p̃ = T#p satisfies LSI with constant µ/L2

Lemma 31 (Lemma 17 in Vempala and Wibisono (2019)) Suppose a probability distribution p
satisfies LSI with a constant µ. For any t > 0, the probability distribution p̃t = p ∗N (0, tI) satisfies
LSI with the constant (µ−1 + t)−1.

Lemma 32 (Theorem 8 in Vempala and Wibisono (2019)) Suppose p ∝ exp(−f) is µ strongly
log concave and L-smooth. If we conduct ULA with the step size satisfying η ≤ 1/L, then, for any
iteration number, the underlying distribution of the output particle satisfies LSI with a constant larger
than µ/2.

Proof Suppose we run ULA from x0 ∼ p0 to xk ∼ pk where the LSI constant of pk is denoted as
µk. When the step size of ULA satisfies 0 < η ≤ 1/L, due to the strong convexity of p, the map
x 7→ x − η∇f(x) is (1 − ηµ)-Lipschitz. Combining the LSI property of pk and Lemma 30, the
distribution of xk − η∇f(xk) satisfies LSI with a constant µk/(1 − ηµ)2. Then, by Lemma 31,
xk+1 = xk − η∇f(xk) +

√
2ηN (0, I) ∼ pk+1 satisfies µk+1-LSI with

1

µk+1
≤ (1− ηµ)2

µk
+ 2η.
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For any k, if there is µk ≥ µ/2, with the setting of η, i.e., η ≤ 1/L ≤ 1/µ, then

1

µk+1
≤ (1− ηµ)2

µ/2
+ 2η =

2

µ
− 2η(1− ηµ) ≤ 2

µ
.

It means for any k′ > k, we have µk′ ≥ µ/2. By requiring the LSI constant of initial distribution,
i.e., p0 to satisfy µ0 ≥ µ/2, we have the underlying distribution of the output particle satisfies LSI
with a constant larger than µ/2. Hence, the proof is completed.

Lemma 33 If ν satisfies a log-Sobolev inequality with log-Sobolev constant µ then every 1-Lipschitz
function f is integrable with respect to ν and satisfies the concentration inequality

ν {f ≥ Eν [f ] + t} ≤ exp

(
−µt

2

2

)
.

Proof According to Lemma 34, it suffices to prove that for any 1-Lipschitz function f with
expectation Eν [f ] = 0,

E
[
eλf
]
≤ eλ2/(2µ).

To prove this, it suffices, by a routine truncation and smoothing argument, to prove it for bounded,
smooth, compactly supported functions f such that ∥∇f∥ ≤ 1. Assume that f is such a function.
Then for every λ ≥ 0 the log-Sobolev inequality implies

Entν

(
eλf
)
≤ 2

µ
Eν

[∥∥∥∇eλf/2∥∥∥2] ,
which is written as

Eν

[
λfeλf

]
− Eν

[
eλf
]
logE

[
eλf
]
≤ λ2

2µ
Eν

[
∥∇f∥2 eλf

]
.

With the notation φ(λ) = E
[
eλf
]

and ψ(λ) = logφ(λ), the above inequality can be reformulated as

λφ′(λ) ≤φ(λ) logφ(λ) + λ2

2µ
Eν

[
∥∇f∥2 eλf

]
≤φ(λ) logφ(λ) + λ2

2µ
φ(λ),

where the last step follows from the fact ∥∇f∥ ≤ 1. Dividing both sides by λ2φ(λ) gives( log(φ(λ))
λ

)′ ≤ 1

2µ
.

Denoting that the limiting value log(φ(λ))
λ |λ=0= limλ→0+

log(φ(λ))
λ = Eν [f ] = 0, we have

log(φ(λ))

λ
=

∫ λ

0

( log(φ(t))
t

)′
dt ≤ λ

2µ
,

which implies that

ψ(λ) ≤ λ2

2µ
=⇒ φ(λ) ≤ exp

(
λ2

2µ

)
Then the proof can be completed by a trivial argument of Lemma 34.
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Lemma 34 Let x be a real random variable. If there exist constants C,A <∞ such that E
[
eλx
]
≤

CeAλ2
for all λ > 0 then

P {x ≥ t} ≤ C exp

(
− t2

4A

)
Proof According to the non-decreasing property of exponential function eλx, we have

P {x ≥ t} = P
{
eλx ≥ eλt

}
≤

E
[
eλx
]

eλt
≤ C exp

(
Aλ2 − λt

)
,

The first inequality follows from Markov inequality, and the second follows from the given conditions.
By minimizing the RHS, i.e., choosing λ = t/(2A), the proof is completed.

Lemma 35 Suppose q is a distribution which satisfies LSI with constant µ, then its variance satisfies∫
q(x) ∥x− Eq̃ [x]∥2 dx ≤

d

µ
.

Proof It is known that LSI implies Poincaré inequality with the same constant, i.e., µ, which means
if for all smooth function g : Rd → R,

varq (g(x)) ≤
1

µ
Eq

[
∥∇g(x)∥2

]
.

In this condition, we suppose b = Eq[x], and have the following equation∫
q(x) ∥x− Eq [x]∥2 dx =

∫
q(x) ∥x− b∥2 dx

=

∫ d∑
i=1

q(x) (xi − bi)
2 dx =

d∑
i=1

∫
q(x) (⟨x, ei⟩ − ⟨b, ei⟩)2 dx

=
d∑

i=1

∫
q(x) (⟨x, ei⟩ − Eq [⟨x, ei⟩])2 dx =

d∑
i=1

varq (gi(x))

where gi(x) is defined as gi(x) := ⟨x, ei⟩ and ei is a one-hot vector ( the i-th element of ei is 1
others are 0). Combining this equation and Poincaré inequality, for each i, we have

varq (gi(x)) ≤
1

µ
Eq

[
∥ei∥2

]
=

1

µ
.

Hence, the proof is completed.

Lemma 36 (Lemma 12 in Vempala and Wibisono (2019)) Suppose p ∝ exp(−f) satisfies Tala-
grand’s inequality with constant µ and is L-smooth. For any p′,

Ep′

[
∥∇f(x)∥2

]
≤ 4L2

µ
KL
(
p′∥p

)
+ 2Ld.
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