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Abstract
This paper studies the problem of recovering the hidden vertex correspondence between two corre-
lated random graphs. We propose the partially correlated Erdős-Rényi graphs model, wherein a pair
of induced subgraphs with a certain number are correlated. We investigate the information-theoretic
thresholds for recovering the latent correlated subgraphs and the hidden vertex correspondence. We
prove that there exists an optimal rate for partial recovery for the number of correlated nodes, above
which one can correctly match a fraction of vertices and below which correctly matching any pos-
itive fraction is impossible, and we also derive an optimal rate for exact recovery. In the proof
of possibility results, we propose correlated functional digraphs, which partition the edges of the
intersection graph into two types of components, and bound the error probability by lower-order
cumulant generating functions. The proof of impossibility results build upon the generalized Fano’s
inequality and the recovery thresholds settled in correlated Erdős-Rényi graphs model.
Keywords: Graph alignments, information-theoretic thresholds, Erdős-Rényi random graphs, par-
tial recovery, exact recovery

1. Introduction

Recently, there has been a surge in interest in the problems of detecting graph correlations and the
alignments of two correlated graphs. These questions have emerged across various domains. For
instance, in social networks, determining the similarity between friendship networks across different
platforms has garnered attention (Narayanan and Shmatikov, 2008, 2009).

In the realm of computer vision, where 3-D shapes are often represented as graphs with adja-
cency matrices, the identification of whether two graphs represent the same object holds significant
importance in pattern recognition and image processing (Berg et al., 2005; Cour et al., 2006). In
computational biology, the representation of biological networks as graphs aids in understanding
and quantifying their correlation (Singh et al., 2008; Vogelstein et al., 2011). Furthermore, in natu-
ral language processing, the ontology alignment problem involves representing each sentence as a
graph, with nodes denoting words. The task of determining whether a given sentence can be inferred
from the text directly relates to graph matching problems (Haghighi et al., 2005). Numerous graph
models exist, with the Erdős-Rényi random graph model being a prominent example, as proposed
by Paul and Alfréd (1959) and Gilbert (1959):
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Definition 1 (Erdős-Rényi graph) The Erdős-Rényi random graph is the graph on n vertices where
each edge connects with probability 0 < p < 1 independently. Let G(n, p) denote the distribution
of Erdős-Rényi random graphs with n vertices and edge connecting probability p.

While there are inherent disparities between the Erdős-Rényi random graph model and networks
derived from real-world scenarios, comprehensively understanding the Erdős-Rényi graphs remains
profoundly significant. This understanding serves as a pivotal step in transitioning from solving
detection and matching problems on Erdős-Rényi graphs to addressing challenges inherent in prac-
tical applications. The graph alignment problem entails identifying latent vertex correspondences
between two graphs based on their structures. Following Pedarsani and Grossglauser (2011), for
two random graphs G1, G2 with vertex sets V (G1), V (G2) and edge sets E(G1), E(G2), a typical
correlated graph model is correlated Erdős-Rényi random graph model:

Definition 2 (Correlated Erdős-Rényi graphs) Let π denote a latent bijective mapping from V (G1)
to V (G2). We say a pair of graphs (G1, G2) are correlated Erdős-Rényi graphs if both marginal
distributions are G(n, p) and each pair of edges (uv, π(u)π(v)) for u, v ∈ V (G1) follows the cor-
related bivariate Bernoulli distribution with correlation coefficient ρ.

Given observations on G1 and G2 under the correlated Erdős-Rényi graphs model, the goal is
to recover the latent vertex mapping π. To quantify the performance of an estimator π̂, we consider
the following two recovery criterion:

• Partial recovery: given a constant δ ∈ (0, 1), we say π̂ succeeds for partial recovery if

|{v ∈ V (G1) : π(v) = π̂(v)}| ≥ δ|V (G1)|. (1)

• Exact recovery: we say π̂ succeeds for exact recovery if

π(v) = π̂(v), ∀ v ∈ V (G1). (2)

The information-theoretic thresholds for partial and exact recoveries of π between two corre-
lated Erdős-Rényi graphs have been extensively studied in the recent literature.

• Partial Recovery. Ganassali et al. (2021) presented an impossibility result for partial recov-
ery in the sparse regime characterized by constant average degree and correlation. Hall and
Massoulié (2023) showed that np(p ∨ ρ) ≳ log

(
1 + ρ

p

)
∨ 1 suffices for partial recovery,

while n ≳ d(p + ρ − pρ∥p) log n is necessary, where d(p∥q) denotes the Kullback–Leibler
(KL) divergence between Bernoulli distributions with mean p and q, respectively. The recent
work Wu et al. (2022) settled the sharp threshold for dense graphs with p

p∨ρ = n−o(1) and the
thresholds within a constant factor for sparse ones with p

p∨ρ = n−Ω(1). For the sparse case,
Ding and Du (2023b) proved a sharp threshold when p

p∨ρ = n−α+o(1) for α ∈ (0, 1].

• Exact Recovery. Based on the properties of the intersection graph under a permutation π,
(Cullina and Kiyavash, 2016, 2017) showed that the Maximal Likelihood Estimator (MLE)
achieves exact recovery and established an information-theoretical lower bound with a gap
of ω(1). The results are sharpened by Wu et al. (2022) where the sharp threshold for exact
recovery are derived.
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While numerous studies have extensively investigated recovery procedures within the correlated
Erdős-Rényi graphs model, it is however imperative to recognize that the signal present in many
graph structures from realistic models is often inferior to that within the correlated Erdős-Rényi
graph. This discrepancy emerges as many nodes in realistic graphs do not have corresponding nodes
in the second correlated graphs. To offer a resolution to this concern, we propose the following
model where on part of the nodes from two graphs are correlated.

Definition 3 (Partially correlated Erdős-Rényi graphs) Let S∗ ⊆ V (G1) be a latent subset of
vertices and π∗ be a latent injective mapping from S∗ to V (G2). We say a pair of graphs (G1, G2)
are partially correlated Erdős-Rényi graphs if both marginal distributions are G(n, p) and each pair
of edges (uv, π∗(u)π∗(v)) for u, v ∈ S∗ follows the correlated bivariate Bernoulli distribution with
correlation coefficient ρ.

The case S∗ = V (G1) reduces to a pair of correlated Erdős-Rényi graphs in Definition 2. Under
the model in Definition 3, given S∗ ⊆ V (G1) and the range of π∗ denoted by T ∗ ⊆ V (G2), the
induced subgraphs G1[S

∗] and G2[T
∗] are correlated Erdős-Rényi graphs on m vertices. Therefore,

the model can be equivalently constructed by planting correlated Erdős-Rényi graphs over a pair of
independent Erdős-Rényi graphs.

In this paper, we investigate the information-theoretic thresholds for recovering the correlated
nodes S∗ and the mapping π∗. For notational simplicity, we also refer to the problem as recovering
π∗ while keeping S∗ implicit as the domain of π∗. The success criterion is similar to (1) and (2),
where V (G1) shall be replaced by S∗. However, due to the potential inconsistency between the
domain of π∗ and the estimator π̂ : Ŝ 7→ V (G2), we define their overlap by:

overlap(π∗, π̂) ≜
|v ∈ S∗ ∩ Ŝ : π∗(v) = π̂(v)|

|S∗|
. (3)

With the notion of overlap, the success criterion is given by

• Partial recovery: π̂ succeeds if overlap(π∗, π̂) ≥ δ for a given constant δ ∈ (0, 1);

• Exact recovery: π̂ succeeds if overlap(π∗, π̂) = 1.

1.1. Main Results

In this subsection, we present the main results of the paper. We first introduce some notations for
the presentation of main theorems. Throughout the paper, we assume 0 < ρ ≤ 1, 0 < p ≤ 1

2 ,
and the cardinality |S∗| = m is known. We further assume p ≥ 1

n since otherwise partial recovery
is impossible by Wu et al. (2022). For a pair of Bernoulli random variables with means p1, p2
and correlation ρ, their bivariate distribution is denoted as Bern(p1, p2, ρ). In our model, a pair of
correlated edges (e, π∗(e)) ∼ Bern(p, p, ρ). Define pij ≜ P [e = i, π∗(e) = j] for i, j ∈ {0, 1}.
Then

p11 = p2 + ρp(1− p), p10 = p01 = (1− ρ)p(1− p), p00 = (1− p)2 + ρp(1− p).

For a pair (e, π∗(e)) both edges present with probability p11, while for π(e) ̸= π∗(e) both e and
π(e) present with probability p2. The relative signal strength present in correlated edges is denoted
by γ ≜ p11

p2
− 1 = ρ(1−p)

p . It turns out that such reparametrization of the correlation coefficient is
crucial in determining the fundamental limits of the graph alignment problem.
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Let Sn,m denote the set of injective mappings π : S ⊆ V (G1) 7→ V (G2) with |S| = m. Our
goal is to identify the minimum number of correlated nodes m such that recovery of π∗ is possible.
For the possibility results, we consider the estimator defined as

π̂ = argmax
π∈Sn,m

∑
u̸=v

1uv∈E(G1)1π(u)π(v)∈E(G2). (4)

Next, we introduce our main theorems. Define ϕ(γ) ≜ (1 + γ) log(1 + γ)− γ.

Theorem 4 (Partial recovery) For any constant δ ∈ (0, 1), there exists constant c1(δ) such that,
when m ≥ c1(δ) logn

p2ϕ(γ)
, for any π∗ ∈ Sn,m, the estimator in (4) satisfies

P [overlap(π∗, π̂) ≥ δ] = 1− o(1).

Furthermore, for any c ∈ (0, 1), there exists c2(c, δ) such that, when m ≤ c2(c,δ) logn
p2ϕ(γ)

, for any
estimator π̂,

P [overlap(π∗, π̂) < δ] ≥ 1− c,

where π∗ is uniformly distributed over Sn,m.

The possibility result is presented in the minimax sense, while the impossibility result is under a
Bayesian model. Hence, the threshold holds for both minimax and Bayesian risks. Theorem 4
implies, for the purpose of partial recovery, the threshold for the number of correlated nodes m
is of the order logn

p2ϕ(γ)
, beyond which partial recovery is possible and below which partial recovery

is impossible. The dependency on the ambient graph order is only logarithmic, while the scale in
terms of p and ρ is characterized by 1

p2ϕ(γ)
.

Theorem 5 (Exact recovery) When m ≥ C
(

logn
p2ϕ(γ)

∨ log(1/(p2γ))
p2γ

)
, where C is a universal con-

stant, for any π∗ ∈ Sn,m, the estimator in (4) satisfies

P [overlap(π∗, π̂) = 1] = 1− o(1).

Furthermore, for any c ∈ (0, 1), there exists a constant c3 only depending on c such that, when
m ≤ c3

(
logn
p2ϕ(γ)

∨ log(1/(p2γ))
p2γ

)
, for any estimator π̂

P [overlap(π∗, π̂) < 1] ≥ 1− c,

where π∗ is uniformly distributed over Sn,m.

Theorem 5 implies, for the purpose of exact recovery, the threshold for the number of correlated
nodes m is of the order logn

p2ϕ(γ)
∨ log(1/(p2γ))

p2γ
. Under the weak signal regime γ = O(1), we obtain

the same rate as for partial recovery described in Theorem 4. Although the log n scaling has been
observed in many other problems on random graphs, under the strong signal regime γ = ω(1),
Theorem 5 highlights a transition from logn

p2ϕ(γ)
to log(1/(p2γ))

p2γ
if log2 1

p − log2 1
ρ ≳ log n. In the

latter regime, the difficulty is essentially the recovery of mapping given the sets of correlated nodes
(S∗, T ∗). See more discussions in Section 4.

In comparison to prior work, our results of partial recovery in Theorem 4 match the thresholds
established in Wu et al. (2022) up to a constant factor in both dense and sparse regimes for the
special case S∗ = V (G1). Furthermore, the threshold log(1/(p2γ))

p2γ
for exact recovery is derived

from addressing the alignment problem for the subgraphs with the additional information on the
domain and range of π∗, which applies the result in Wu et al. (2022).
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1.2. Related Work

Graph sampling. Graph sampling methodologies are often propelled by many practical factors.
Most notably, these encompass data scarcity, high data acquisition costs (Stumpf et al., 2005), and
limited surveys of hidden structures (Lancichinetti and Fortunato, 2009; Yang et al., 2013; Fortunato
and Hric, 2016). In scenarios where observations are sampled from two large networks, it becomes
unrealistic to presume that correlation exists among all nodes within the sampled subgraphs. As a
result, a pair of partially correlated graphs emerge naturally. While the precise number of correlated
nodes may not be accessible, we often have some partial knowledge on the scale. For instance,
when the observations are induced subgraphs of randomly selected nodes, the number of correlated
nodes follows a hypergeometric distribution that concentrates around the mean value.

Besides the recent literature on the graph alignment problem, the correlation detection is another
related topic. Given a pair of graphs, their correlation detection is formulated as a hypothesis test-
ing problem, wherein the null hypothesis assumes independent random graphs, while the alternative
assumes edge correlation under a latent permutation. Barak et al. (2019) proposed a hypothesis test-
ing model for correlated Erdős-Rényi graphs and provided a pseudo-polynomial time algorithm for
detection under certain conditions on the edge connection probability and average degree. Wu et al.
(2023) established the sharp threshold for dense Erdős-Rényi graphs and determined the thresh-
old within a constant factor for sparse Erdős-Rényi graphs. Ding and Du (2023a) derived the sharp
threshold for sparse Erdős-Rényi graphs by analyzing the densest subgraph. Additionally, Mao et al.
(2021) proposed a polynomial time algorithm for detection by counting trees when the correlation
coefficient exceeds a constant value. It is natural to ask whether the correlation can be detected
when only a subsample from the graphs is collected. The probabilistic model is similar to the one
present in the current paper, and we leave the exploration as our future work.

Efficient algorithms and computational hardness. Numerous algorithms have been developed
for the recovery problem. For example, Yartseva and Grossglauser (2013) analyzed the percolation
graph matching algorithm, Barak et al. (2019) analyzed the problem using subgraph matching tech-
niques, and Mossel and Xu (2020) obtained an algorithm for the seeded setting based on a delicate
analysis of local neighborhoods. However, these algorithms may be computationally inefficient.
There are several polynomial-time algorithms for recovery, catering to different regimes correla-
tion coefficients ρ. These include works by Babai et al. (1980); Bollobás (1982); Dai et al. (2019);
Ganassali and Massoulié (2020); Ding et al. (2021); Mao et al. (2023a,c); Ding and Li (2023); Mu-
ratori and Semerjian (2024). For instance, Mao et al. (2023c) proposed a polynomial-time algorithm
for recovery by counting chandeliers when the correlation coefficient ρ >

√
α, where α ≈ 0.338

is the Otter’s constant introduced in Otter (1948). Additionally, Ding and Li (2023) introduced an
efficient iterative polynomial-time algorithm for sparse Erdős-Rényi graphs when the correlation
coefficient is a constant.

It is postulated in (Hopkins and Steurer, 2017; Hopkins, 2018; Kunisky et al., 2019) that the
framework of low-degree polynomial algorithms effectively demonstrates computation hardness of
detecting and recovering latent structures, and it bears similarities to sum-of-square methods (Hop-
kins et al., 2017; Hopkins, 2018). Based on the conjecture on the hardness of low-degree polynomial
algorithms, Mao et al. (2021) proved that there is no polynomial-time test or matching algorithm
when the correlation coefficient satisfies ρ2 ≤ 1

polylog(n) . Furthermore, Ding et al. (2023a) showed

computation hardness for detection and exact recovery when p = n−1+o(1) and the correlation co-
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efficient ρ <
√
α, where α ≈ 0.338 is the Otter’s constant, suggesting that several polynomial

algorithms may be essentially optimal.
The maximal overlap in the form of (4) is a test statistic which aims to identify the mapping that

maximizes the edge correlation between two graphs. It is known that finding the maximal overlap
is an instance of quadratic assignment problem (QAP) (Pardalos et al., 1994), which is NP-hard
to solve or to approximate (Makarychev et al., 2010). There are many studies aiming to detect
or recover latent structures based on the maximal overlap statistics (Cullina and Kiyavash, 2016,
2017; Barak et al., 2019; Mossel and Xu, 2020; Ding et al., 2021; Wu et al., 2022, 2023; Hall and
Massoulié, 2023). Finally, we mention that the recent work Ding et al. (2024) approximated the
maximal overlap within a constant factor in polynomial-time for sparse Erdős-Rényi graphs, and
Du et al. (2023) established a sharp transition on approximating problem on the performance of
online algorithms for dense Erdős-Rényi graphs.

Other graph models. Many properties of the correlated Erdős-Rényi graphs model have been ex-
tensively investigated. However, the strong symmetry and tree-like structure inherent in this model
distinguish it significantly from graph models encountered in practical applications. Therefore, it
is crucial to explore more general graph models. One such model is inhomogeneous random graph
model, where the edge connecting probability varies among edges in the graph (Rácz and Sridhar,
2023; Song et al., 2023; Ding et al., 2023b). Besides, geometric random graph model (Wang et al.,
2022; Bangachev and Bresler, 2023; Sentenac et al., 2023; Gong and Li, 2024), planted cycle model
(Mao et al., 2023b, 2024), planted subhypergraph model (Dhawan et al., 2023) and corrupt model
(Ameen and Hajek, 2023) have also been subjects of recent studies.

1.3. Notations

For any n ∈ N, let [n] ≜ {1, 2, ..., n}. For any a, b ∈ R, let a ∧ b = min{a, b} and a ∨ b =
max(a, b). We use standard asymptotic notation: for two positive sequences {an} and {bn}, we
write an = O(bn) or an ≲ bn, if an ≤ Cbn for some absolute constant C and for all n; an = Ω(bn)
or an ≳ bn, if bn = O(an); an = Θ(bn) or an ≍ bn, if an = O(bn) and an = Ω(bn); an = o(bn)
or bn = ω(an), if an/bn → 0 as n → ∞.

For a given graph G, let V (G) denote its vertex set and E(G) denote its edge set. Let v(G) =
|V (G)| denote the order of G and e(G) = |E(G)| denote size of G. For a set V , let

(
V
2

)
≜ {{x, y} :

x, y ∈ V, x ̸= y} denote the collection of all subsets of V of cardinality two. We also write uv to
denote an edge {u, v}. The induce subgraph of G over a vertex set V is denoted by G[V ]. Given an
injective mapping of vertices π : S ⊆ V (G1) 7→ V (G2), the induced injective mapping of edges
is defined as πE :

(
S
2

)
7→
(
V (G2)

2

)
as πE(uv) = π(u)π(v) for u, v ∈ S. We also succinctly write

π(e) = πE(e) for an edge e when the meaning is clear from the context.

2. Correlated functional digraph

A mapping from a set to itself can be graphically represented as functional digraph (see, e.g., (West,
2021, Definition 1.3.3)). Here we extend the notion to a mapping with different domain and range
sets, where the elements from the two sets are correlated. While our focus in this section is on the
mapping between the edges in G1 and G2, the graphical representation can be easily extended to
mappings between two arbitrary finite sets such as vertices.
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•

•

•

•

•

•

•

•

π

π∗

(
V (G1)

2

) (
V (G2)

2

)

Figure 1: Examples of the mapping π and the underlying correlation π∗, where the domain and
range of π and π∗ could be different.

We first provide an equivalent description of the estimator in (4). Given a domain subset S ⊆(
V (G1)

2

)
and an injective function π : S 7→

(
V (G2)

2

)
, we define the intersection graph Hπ as

V (Hπ) = V (G1), e ∈ E(Hπ) if and only if e ∈ E(G1) ∩ S and π(e) ∈ E(G2).

The estimator (4) maximizes the size of the intersection graph |E(Hπ)|. More generally, in our
analysis in Section 3, we need to count the number of edges present in some subset E ⊆ S given by

|E ∩ E(Hπ)| =
∑
e∈E

1{e∈E(Hπ)} =
∑
e∈E

1{e∈E(G1)}1{π(e)∈E(G2)}. (5)

Due to the correlation between the edges in G1 and G2, the counters 1{e∈E(Hπ)} are correlated ran-
dom variables. The main idea is to decompose E into independent parts. Specially, the correlation
is prescribed by the underlying mapping π∗ as illustrated in Figure 1, where the correlated edges
are red dashed lines. To formally describe all correlation relationships, we introduce the correlated
functional digraph of a mapping π between a pair of graphs.

Definition 6 (Correlated functional digraph) Let π∗ : S∗ 7→ T ∗ be the underlying mapping be-
tween correlated elements. The correlated functional digraph of the function π : S 7→ T is con-
structed as follows. Let the vertex set be S ∪ S∗ ∪ T ∪ T ∗. We first add every edge e 7→ π(e) for
e ∈ S, and then merge each pair of nodes (e, π∗(e)) for e ∈ S∗ into one node.

It should be noted that both π and π∗ are injective mappings under our model. After merging all
pairs of nodes under π∗, the degree of each vertex in the correlated functional digraph is at most two.
Therefore, the connected components consist of paths and cycles, where the self-loop is understood
as a cycle of length one. The connected components are illustrated in Figure 2. Let P and C denote
the collections of subsets of E belonging to different connected paths and cycles, respectively. Note
that the sets from P and C are disjoint. Consequently,

|E ∩ E(Hπ)| =
∑
P∈P

|P ∩ E(Hπ)|+
∑
C∈C

|C ∩ E(Hπ)|,

where the summands are mutually independent.
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In our model, the edge correlations are assumed to be homogeneous, and hence the distribution
of |P ∩E(Hπ)| and |C ∩E(Hπ)| only depends on the size of the component. Let κPℓ (t) and κCℓ (t)
denote the cumulant generating functions of |P ∩ E(Hπ)| and |C ∩ E(Hπ)| with |P | = |C| = ℓ,
respectively, and we have

logE
[
et|P∩E(Hπ)|

]
= κP|P |(t), logE

[
et|C∩E(Hπ)|

]
= κC|C|(t).

The lower-order cumulants can be promptly calculated. For instance,

κC1 (t) = log(1 + p11(e
t − 1)), (6)

κC2 (t) = log(1 + 2p2(et − 1) + p211(e
t − 1)2). (7)

It is however essential to establish upper bounds for higher-order cumulants in terms of lower-order
ones. To this end, we introduce the following lemma.

Lemma 7 For any ρ > 0, 0 < p < 1, and t > 0,

κP1 (t) ≤
1

2
κC2 (t) ≤ κC1 (t) and κPℓ (t) ≤ κCℓ (t) ≤

ℓ

2
κC2 (t), ∀ ℓ ≥ 2.

Consequently,

logE
[
et|E∩E(Hπ)|

]
≤ |E|

2
κC2 (t) + L

(
κC1 (t)−

1

2
κC2 (t)

)
, (8)

where L denotes the number of self-loops.

The proof of Lemma 7 is deferred to Section C.1. The special case that both π and π∗ are
bijective has been studied in Wu et al. (2022); Ding and Du (2023b); Hall and Massoulié (2023),
the correlation relationships under which can be characterized by a permutation (π∗)−1 ◦ π. In this
case, the connected components of the functional digraph of permutations are all cycles. However,
in our case, the domain and range of π and π∗ could be different and we need to deal with delicate
correlations among the edges involving both cycles and paths by Lemma 7.

π∗

e1•

e2•

π(e1)•

π(e2)•

e1•
π(e1)

e2
•

π(e2)
•

Path

π∗

e1•

e2•

π(e1)•

π(e2)•

e1

π(e2)
•

π(e1)

e2
•

Cycle

π∗

e1
•

π(e1)
•

e1, π(e1)
•

Self-loop

Figure 2: The connected components in the correlated functional digraph.
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3. Recovery by maximizing the size of intersection graph

In this section, we prove the possibility results by analyzing the estimator π̂ given in (4). By
the optimality condition, it suffices to show that, for any π∗ ∈ Sn,m, we have e(Hπ∗) exceeds
maxπ:d(π,π∗)>τ e(Hπ) with high probability when the underlying correlation is specified by π∗,
where the thresholds τ = 0 and δm are for exact and partial recoveries, respectively. In the follow-
ing, we fix π∗ and provide a general recipe for the upper bound of Pπ∗ [d(π̂, π∗) = k]. The overall
error probability follows from the summation over the desired range of k.

Let Tk ⊆ Sn,m denote the set of injections π such that d(π, π∗) = k. For π ∈ Tk, by definition,
there exists a set of correctly matched vertices (the self-loops in the correlated functional digraph of
π over the vertices), denoted by Fπ ≜ {v ∈ S∗ ∩ S : π∗(v) = π(v)} of cardinality |Fπ| = m− k.
The induced subgraphs of Hπ and Hπ∗ over Fπ are identical. Therefore,

e(Hπ) ≥ e(Hπ∗) ⇐⇒ e(Hπ)− e(Hπ[Fπ]) ≥ e(Hπ∗)− e(Hπ∗ [Fπ]).

It should be noted that correlated random variables are contained within the two sides of the inequal-
ity. Nevertheless, for any threshold τk, either e(Hπ∗)− e(Hπ∗ [Fπ]) < τk or e(Hπ)− e(Hπ[Fπ]) ≥
τk holds. Therefore, we have the following upper bound:

{d(π̂, π∗) = k} ⊆
⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk} ∪ {e(Hπ)− e(Hπ[Fπ]) ≥ τk}.

The first event is indicative of a weak signal, while the latter implies the presence of strong noise.
The crucial result to establish is that, for a suitable threshold τk, both bad events will occur with a
low probability. Here we may pick τk a function of all other parameters m, k, p, ρ. For brevity we
also write τk = τ(m, k, p, ρ).

Bad event of signal. For a fixed π ∈ Tk, the random variable e(Hπ∗) − e(Hπ∗ [Fπ]) counts the
total number of edges among Nk ≜

(
m
2

)
−
(
m−k
2

)
= mk(1 − k+1

2m ) pairs of vertices, where each
edge presents independently with probability p11. Furthermore, Fπ is a subset of S∗ of cardinality
m−k. While the size of Tk could be large, the total number of possible Fπ is at most

(
m

m−k

)
=
(
m
k

)
.

Therefore,

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

 ≤ P

 ⋃
F⊆S∗

|F |=m−k

{e(Hπ∗)− e(Hπ∗ [F ]) < τk}


≤
(
m

k

)
P [Bin(Nk, p11) < τk] . (9)

For τk < Nkp11, the tail of binomial distributions follows from the standard Chernoff bound.

Bad event of noise. The analyses for the noise part is more involved due to the mismatch between
π and the underlying π∗. Let Sπ denote the domain of π, and Eπ ≜

(
Sπ

2

)
−
(
Fπ

2

)
. Then the total

number of edges e(Hπ) − e(Hπ[Fπ]) can be equivalently represented as |Eπ ∩ E(Hπ)|, and the
cumulant generating function has been upper bounded in Lemma 7 thanks to the decomposition
based on the correlated functional digraph. Thus, the error probability can be obtained via the
Chernoff bound by optimizing over t > 0 in (8).

9
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To this end, we need to upper bound the number of self-loops in (8). For a self-loop over an edge
e = uv, we have π(uv) = π∗(uv). Note that Eπ excludes the edges in the induced subgraph over
Fπ. It necessarily holds that π(u) = π∗(v) and π(v) = π∗(u), which contributes two mismatched
vertices in the reconstruction of the underlying mapping. Since the total number of mismatched
vertices for π ∈ Tk equals to k, the number of self-loops is at most k

2 . Consequently, applying (8)
with the formula of lower-order cumulants (6) and (7) yields the following lemma, whose proof is
deferred to Section C.2.

Lemma 8 If τk > |Eπ|p2, then

P [|Eπ ∩ E(Hπ)| ≥ τk] ≤ exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2
+

kγ

4(2 + γ)

)
.

In view of Lemma 8, for τk > |Eπ|p2, we can apply the union bound for the probability of
the bad event due to noise. It remains to upper bound the cardinality of Tk. We first choose m − k
elements from the domain of π∗ and map them to the same value as π∗. Then, the remaining domain
and range of size k and the mapping are selected arbitrarily. Then we obtain

|Tk| ≤
(

m
m−k

)(
n−m+k

k

)2
k! ≤ mkn2k

k!2
,

where the last step applies the upper bound
(
n
k

)
≤ nk

k! . Since e
kγ

4(2+γ) ≤ ek/4, we have

P

 ⋃
π∈Tk

{e(Hπ)− e(Hπ[Fπ]) ≥ τk}

 = P

 ⋃
π∈Tk

{|Eπ ∩ E(Hπ)| ≥ τk}


≤ |Tk|e

kγ
4(2+γ) exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2

)
≤ n3k exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2

)
. (10)

The following propositions provide sufficient conditions on m for partial and exact recoveries.

Proposition 9 (Upper bound for partial recovery) For any δ ∈ (0, 1), there exists a constant
c1(δ) > 0 such that, when m ≥ c1(δ) logn

p2ϕ(γ)
, for any π∗ ∈ Sn,m, the estimator in (4) satisfies

P [overlap(π̂, π∗) < δ] ≤ (log n)−1+o(1).

Proposition 10 (Upper bound for exact recovery) There exists a universal constant C > 0 such
that, when m ≥ C

(
log(1/(p2γ))

p2γ
∨ logn

p2ϕ(γ)

)
, for any π∗ ∈ Sn,m, the estimator in (4) satisfies

P [π̂ ̸= π∗] ≤ exp(− logm)

1− exp(− logm)
+

exp(− log n)

1− exp(− log n)
.

By Propositions 9 and 10, we prove the possibility results in Theorems 4 and 5. The proofs of
Propositions 9 and 10 are deferred to Sections A and B, respectively.
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4. Impossibility results

In this section, we present the impossibility results for the graph alignment problem. Under our
proposed model, the alignment problem aims to recover the domain S∗ ⊆ V (G1), range T ∗ ⊆
V (G2), and the mapping π∗ : S∗ 7→ T ∗. When equipped with the additional knowledge on S∗

and T ∗, our problem can be reduced to recovery with full observations on smaller graphs, the
reconstruction threshold for which is settled in Wu et al. (2022). The lower bound therein remains
valid when the number of correlated nodes is substituted with m. However, such reduction only
proves tight in a limited number of regimes (see Proposition 12). We will establish the impossibility
results for the remaining regimes by Fano’s method. Two main ingredients of Fano’s method are
outlined as follows:

• Construct a packing set M of the parameter space Sn,m such that any two distinct elements
from M differ by a prescribed threshold. Specifically, in partial recovery, the overlap of each
pair is less than δ, which is equivalent to minπ ̸=π′∈M d(π, π′) ≥ (1 − δ)m, while in exact
recovery M = Sn,m. The cardinality of M measures the complexity of the parameter space
under the target metric.

• Choose the uniform prior on π∗ over M and upper bound the mutual information I(π∗;G1, G2).
Given π∗, the conditional distribution of the observed graphs (G1, G2) is specified in Defini-
tion 3. For the mutual information, let P denote the joint distribution of (G1, G2) and Q be
any distribution over (G1, G2), then

I(π∗;G1, G2) = Eπ∗ [D(PG1,G2|π∗∥PG1,G2)] ≤ max
π

D(PG1,G2|π∥QG1,G2). (11)

The impossibility results follows if I(π∗;G1, G2) ≤ c log |M| for some small constant c.

Let Mδ denote a packing set under the overlap threshold δ. The size of Mδ follows from the
standard volume argument (Polyanskiy and Wu, 2022, Theorem 27.3). For r ∈ [m], let B(π, r) ≜
{π′ : d(π, π′) ≤ r} denote the ball of radius r centered at π. Then we have

|Mδ| ≥
|Sn,m|

maxπ |B(π, (1− δ)m− 1)|
≥ |Sn,m|

maxπ |B(π, (1− δ)m)|
.

It remains to evaluate the cardinality of Sn,m and upper bound the volume of the ball under our
distance metric d. It is straightforward to obtain that |Sn,m| =

(
n
m

)2
m!. Let k = δm. Note that all

elements from B(π,m− k) have at least k common mappings. To upper bound |B(π,m− k)|, we
first choose k elements from the domain of π and map to the same value as π, and the remaining
domain and range of size m− k and the mapping are selected arbitrarily. We get |B(π,m− k)| ≤(
m
k

)(
n−k
m−k

)2
(m− k)!. Consequently,

|Mδ| ≥
(
n
m

)2
m!(

m
k

)(
n−k
m−k

)2
(m− k)!

=

( (
n
k

)(
m
k

))2

k! >

(
n2k

e3m2

)k

≥
(
δn

e3

)k

, (12)

where we use the inequalities that (nk )
k ≤

(
n
k

)
< ( enk )k and k! ≥ (k/e)k. Fano’s method provides

a lower bound on the Bayesian risk when π is uniformly distributed over Mδ, which further lower
bound the minimax risk. The above argument also yields a lower bound when π is uniform over
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Sn,m via generalized Fano’s inequality (Banerjee et al., 2012, Lemma 20). The following proposi-
tions provide lower bounds for m for partial recovery and exact recovery, and thus prove the lower
bounds in Theorems 4 and 5.

Proposition 11 (Lower bound for partial recovery) For any δ ∈ (0, 1), if m ≤ c logn
p2ϕ(γ)

, then for
any estimator π̂,

P [overlap(π̂, π∗) < δ] ≥ 1− 13c

δ
.

Proof For any π with domain S and range T such that |S| = |T | = m, arbitrarily pick a bijection
σ : V (G1) 7→ V (G2) such that σ|S = π. Then, the conditional distribution PG1,G2|π can be
factorized into

PG1,G2|π =
∏

e∈
(
S
2

)P (e, π(e))
∏

e∈
(
V (G1)

2

)
\
(
S
2

)Q(e, σ(e)),

where P ∼ Bern(p, p, ρ) and Q ∼ Bern(p, p, 0). Pick Q in (11) to be an auxiliary null model under
which G1 and G2 are independent with the same marginal as P . Then, QG1,G2 can be factorized
into

QG1,G2 =
∏

e∈
(
S
2

)Q(e, π(e))
∏

e∈
(
V (G1)

2

)
\
(
S
2

)Q(e, σ(e)).

The KL-divergence between the product measures PG1,G2|π and QG1,G2 can be expressed as

D
(
PG1,G2|π∥QG1,G2

)
=
(
m
2

)
D(P∥Q)

for any π : S 7→ T with |S| = |T | = m. Applying Lemma 16, we obtain

max
π

D(PG1,G2|π∥QG1,G2) ≤
(
m

2

)
D(P∥Q) ≤ 25

(
m
2

)
p2ϕ(γ). (13)

Applying generalized Fano’s inequality (Banerjee et al., 2012, Lemma 20) with (12) and (13), we
obtain

P [overlap(π∗, π̂) < δ] ≥ 1−
25
(
m
2

)
p2ϕ(γ)

δm log
(
δn
e3

) ≥ 1− 13c

δ
,

where π∗ is uniformly distributed over Sn,m.

Proposition 12 (Lower bound for exact recovery) For any c ∈ (0, 1) and any estimator π̂, there
exists constant c3 only depending on c such that, when m ≤ c3

(
logn
p2ϕ(γ)

∨ 1
p2γ

log
(

1
p2γ

))
,

P [π̂ ̸= π∗] ≥ 1− c,

where π∗ is uniformly distributed over Sn,m.

Proof We first apply the reduction argument. With the additional information on the domain
and range of π∗, our problem can be reduced to the reconstruction of mapping as in Wu et al.
(2022). Applying the lower bound in (Wu et al., 2022, Theorem 4), for a fixed ϵ ∈ (0, 1), when

12
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m(
√
p00p11 −

√
p01p10)

2 ≤ (1 − ϵ) logm, we have P [π̂ ̸= π∗] ≥ 1 − o(1) for any estimator π̂.
Note that (

√
p00p11 −

√
p01p10)

2 ≍ p2(γ ∧ γ2) ≍ (ρ2) ∧ (ρp). Therefore, when

m ≲
1

p2(γ ∧ γ2)
log

(
1

p2(γ ∧ γ2)

)
, (14)

we have P [π̂ ̸= π∗] ≥ 1− o(1). Applying Proposition 11 with δ = 1/2 yields that, when

m ≲
log n

p2ϕ(γ)
, (15)

we have P [π̂ ̸= π∗] ≥ 1− c for c ∈ (0, 1).
When 1

p2(γ∧γ2)
≍ n, by (14), exact recovery is impossible, even when m = n. Next we consider

the regime that 1
p2(γ∧γ2)

≲ n. When γ ≤ 1, we have p2(γ ∧ γ2) = p2γ2 ≍ p2ϕ(γ), and thus

1

p2(γ ∧ γ2)
log

(
1

p2(γ ∧ γ2)

)
≲

log n

p2ϕ(γ)
.

When γ ≥ 1, γ ∧ γ2 = γ. By comparing (14) and (15), we derive that exact recovery is impossible
if m ≲ logn

p2ϕ(γ)
∨ 1

p2γ
log
(

1
p2γ

)
.

5. Discussion and future directions

This paper proposes the partially correlated Erdős-Rényi graphs model, wherein a pair of induced
subgraphs with a certain size are correlated. We investigate the optimal information-theoretic thresh-
old for recovering the latent correlated subgraphs and the hidden vertices correspondence under our
new model. In comparison with prior work on correlated Erdős-Rényi graphs model, the additional
challenge arises from the unknown location of the correlated subsets. For a candidate mapping π
whose domain may include both correlated and ambient subgraphs, we extend the classical notion
of functional digraph to formally describe the correlation structure among the edges. We observe
from the correlated functional digraph that the independent components consist of cycles and paths.
The graphical representation may be of independent interest for general models.

There are many problems to be further investigated under our proposed model:

• Refined results. The results in the paper could be further refined in various ways, such as
deriving the sharp constants and characterizing the optimal scaling in terms of the fraction δ
in partial recovery.

• Efficient algorithms. It is of interest to investigate the polynomial-time algorithms and iden-
tify the computational hardness under our model. More efficient algorithms are also desirable
when the signal is stronger.

• Graph sampling. One motivation of the paper stems from graph sampling as discussed in
Section 1.2. The sampled subgraphs are partially correlated, where the size of correlated
subsets is a random variable depending on the sampling methods. Thus, it is natural to ask
about the sample size needed for reliable recovery.

• Correlation test. The correlation test problem under our model is also highly relevant. It is
interesting to find out whether the detection problem is strictly easier than recovery, both in
terms of the information thresholds and algorithmic developments.
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Georgina Hall and Laurent Massoulié. Partial recovery in the graph alignment problem. Operations
Research, 71(1):259–272, 2023.

Samuel Hopkins. Statistical inference and the sum of squares method. PhD thesis, Cornell Univer-
sity, 2018.

Samuel B Hopkins and David Steurer. Efficient bayesian estimation from few samples: commu-
nity detection and related problems. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 379–390. IEEE, 2017.

15



HUANG SONG YANG

Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and
David Steurer. The power of sum-of-squares for detecting hidden structures. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.

Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness
of hypothesis testing: Predictions using the low-degree likelihood ratio. In ISAAC Congress
(International Society for Analysis, its Applications and Computation), pages 1–50. Springer,
2019.

Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a comparative analy-
sis. Physical review E, 80(5):056117, 2009.

Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. Maximum quadratic assign-
ment problem: Reduction from maximum label cover and lp-based approximation algorithm. In
International Colloquium on Automata, Languages, and Programming, pages 594–604. Springer,
2010.

Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H Yu. Testing network correlation efficiently via
counting trees. arXiv preprint arXiv:2110.11816, 2021.

Cheng Mao, Mark Rudelson, and Konstantin Tikhomirov. Exact matching of random graphs with
constant correlation. Probability Theory and Related Fields, 186(1-2):327–389, 2023a.

Cheng Mao, Alexander S Wein, and Shenduo Zhang. Detection-recovery gap for planted dense
cycles. In The Thirty Sixth Annual Conference on Learning Theory, pages 2440–2481. PMLR,
2023b.

Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H Yu. Random graph matching at otter’s threshold
via counting chandeliers. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pages 1345–1356, 2023c.

Cheng Mao, Alexander S. Wein, and Shenduo Zhang. Information-theoretic thresholds for planted
dense cycles. arXiv preprint arXiv:2402.00305, 2024.

Michael Mitzenmacher and Eli Upfal. Probability and computing: an introduction to randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005. ISBN 978-0-521-
83540-4.

Elchanan Mossel and Jiaming Xu. Seeded graph matching via large neighborhood statistics. Ran-
dom Structures & Algorithms, 57(3):570–611, 2020.

Andrea Muratori and Guilhem Semerjian. Faster algorithms for the alignment of sparse correlated
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Appendix A. Proof of Proposition 9

Let τk = Nkp11(1− η) with

η =

√
8h( k

m)

kp11
· 1k≤m−1 +

√
log n

kmp11
· 1k=m,

where h(x) ≜ −x log x−(1−x) log(1−x) is the binary entropy function. Since h(x)/x decreases
in (0, 1), h(x)/x ≥ h(1− δ)/(1− δ) for 1− δ ≤ x < 1. By Lemma 17.5.1 in Cover and Thomas
(2006), we have

(
m
k

)
≤ exp [mh(k/m)] for any k ≤ m − 1. By (9) and the Chernoff bound (21),

when k ≤ m− 1, we have

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

 ≤
(
m

k

)
exp

(
−Nkp11η

2

2

)

≤ exp

(
mh

(
k

m

)
− Nkp11η

2

2

)
≤ exp

(
−mh

(
k

m

))
.

When k = m, since Nk = mk
2

(
2− k+1

m

)
≥ mk

3 , we have

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

 ≤
(
m

k

)
exp

(
−Nkp11η

2

2

)
≤ exp

(
− log n

6

)
.

Pick c1(δ) = 100 ∨ 200h(1−δ)
1−δ . We then verify the condition in Lemma 14: η ≤ γ

4(1+γ) . Since
p2ϕ(γ) ≤ p2γ(1 + γ) ≤ 1, we get m ≥ c1(δ) log n. Therefore,

η ≤

√
8h(1− δ)

(1− δ)mp11
· 1k≤m−1 +

√
log n

m2p11
· 1k=m ≤

(√
8h(1− δ)

1− δ
∨ 1√

c1(δ)

)
1

√
mp11

≤

(√
8h(1− δ)

(1− δ)c1(δ)
∨ 1

c1(δ)

)√
log(1 + γ)− γ/(1 + γ)

log n
≤ 1

5

√
log(1 + γ)− γ/(1 + γ)

log n
.

Recall the assumption stated in Section 1.1, where it’s asserted that p ≥ n−1, thereby implying
log(1+γ) ≤ log n. When γ > 10, η ≤ 1

5 ≤ γ
4(1+γ) . When γ ≤ 10, since log(1+x)− x

1+x−x2 ≤ 0

for any x > 0,
√

1
mp11

≤
√

log(1+γ)−γ/(1+γ)
logn ≤ γ√

logn
≤ γ

4(1+γ) . Therefore, we obtain η ≤ γ
4(1+γ) .

By Lemma 14, τk
|Eπ |p2 = (1 + γ)(1− η) > 1. Applying Lemma 8, we derive (10). Combining this
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with (19) in Lemma 14, we obtain

P

 ⋃
π∈Tk

{e(Hπ)− e(Hπ[Fπ]) ≥ τk}


≤n3k exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2

)
=n3k exp

{
−Nkp

2

2
ϕ [(1 + γ)(1− η)− 1]

}
≤ n3k exp

(
−Nkp

2

8
ϕ(γ)

)
.

Sum over k ≥ (1− δ)m, since Nk ≥ km
3 , we obtain

m∑
k=δm

P [d(π∗, π̂) = k]

≤
m∑

k=δm

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

+ P

 ⋃
π∈Tk

{e(Hπ)− e(Hπ[Fπ]) ≥ τk}


≤ exp

(
− log n

6

)
+

m−1∑
k=(1−δ)m

exp

[
−mh

(
k

m

)]
+

m∑
k=(1−δ)m

[
n3 exp

(
−mp2ϕ(γ)

24

)]k

≤ exp

(
− log n

6

)
+

exp [−(1− δ)m log n]

1− exp(− log n)
+

m−1∑
k=(1−δ)m

exp

[
−mh

(
k

m

)]
.

Combining this with Lemma 15,
∑m

k=(1−δ)m P [d(π∗, π̂) = k] ≤ (log n)−1+o(1). We finish the
proof.

Appendix B. Proof of Proposition 10

Let τk = Nkp11(1− η) with η = γ
4(1+γ) , by (9) and the Chernoff bound (21),

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

 ≤
(
m

k

)
exp

(
−Nkp11η

2

2

)
.

By Lemma 14, τk
|Eπ |p2 = (1 + γ)(1− η) > 1. Applying Lemma 8, we derive (10). Combining this

with (19) in Lemma 14, we obtain

P

 ⋃
π∈Tk

{e(Hπ)− e(Hπ[Fπ]) ≥ τk}


≤n3k exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2

)
=n3k exp

{
−Nkp

2

2
ϕ [(1 + γ)(1− η)− 1]

}
≤ n3k exp

[
−Nkp

2

8
ϕ(γ)

]
.
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Sum over k ≥ 1, since Nk ≥ km
3 and

(
m
k

)
≤ mk, we obtain

m∑
k=1

P [d(π∗, π̂) = k]

≤
m∑
k=1

P

 ⋃
π∈Tk

{e(Hπ∗)− e(Hπ∗ [Fπ]) < τk}

+ P

 ⋃
π∈Tk

{e(Hπ)− e(Hπ[Fπ]) ≥ τk}


≤

m∑
k=1

[
m exp

(
−mp11η

2

6

)]k
+

[
n3 exp

(
−mp2ϕ(γ)

24

)]k
.

Pick the universal constant C = 400. Recall that ϕ(γ) = (1+γ) log(1+γ)−γ. When γ ≤ 1, since
ϕ(γ) ≤ γ2

1+γ , we obtain p2ϕ(γ) ≤ 16p11η
2. Therefore, m ≥ 400 logn

p2ϕ(γ)
implies m ≥ 12 logm

p11η2
. When

γ > 1, since γ ≤ 32(1+γ)
[

γ
4(1+γ)

]2
, we obtain p2γ ≤ 32p11η

2. Since m ≥ 400 log(1/p2γ)
p2γ

, we have

m ≥ 384 logm
p2γ

≥ 12 logm
p11η2

. Thus we get m exp
(
−mp11η2

6

)
≤ exp(− logm). When m ≥ 400 logn

p2ϕ(γ)
,

we get n3 exp
(
−mp2ϕ(γ)

24

)
≤ exp(− log n). Therefore, when m ≥ 400

(
log(1/p2γ)

p2γ
∨ logn

p2ϕ(γ)

)
, we

have

m exp

(
−mp11η

2

6

)
≤ exp(− logm), n3 exp

(
−mp2ϕ(γ)

24

)
≤ exp(− log n).

Therefore,
∑m

k=1 P [d(π∗, π̂) = k] ≤ exp(− logm)
1−exp(− logm) +

exp(− logn)
1−exp(− logn) . We finish the proof.

Appendix C. Proof of Lemmas

C.1. Proof of Lemma 7

We first evaluate the moment generating function for paths. Consider a path P of size ℓ denoted
by ⟨e1e2 . . . eℓ⟩ as illustrated in Figure 3. For each i = 1, . . . , ℓ, define Ai−1 ≜ 1{ei∈E(G1)} and
Bi ≜ 1{π(ei)∈E(G2)}. Then (Ai, Bi) ∼ Bern(p, p, ρ). By definition (5),

|P ∩ E(Hπ)| =
ℓ∑

i=1

1{ei∈E(G1)}1{π(ei)∈E(G2)} =

ℓ∑
i=1

Ai−1Bi.

For the sake of notational simplicity, we introduce an auxiliary random variable B0 that is correlated
with A0 such that (A0, B0) ∼ Bern(p, p, ρ). Then

mℓ ≜ E[et|P∩E(Hπ)|] = E

[
E

[
ℓ∏

i=1

etAi−1Bi |B0 . . . Bℓ

]]
= E

[
ℓ∏

i=1

E
[
etAi−1Bi |Bi−1Bi

]]

=
∑

b0,...,bℓ∈{0,1}

ℓ∏
i=0

P[Bi = bi]

ℓ∏
i=1

E
[
etAi−1bi |Bi−1 = bi−1

]
. (16)
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π∗
e1
A0•

e2
A1•

e3
A2•

eℓ
Aℓ−1

•

π(e1)
B1•

π(e2)
B2•

π(e3)
B3•

π(eℓ)
Bℓ•

...

e1
•

e2

π(e1)
•

e3

π(e2)
•

eℓ

π(eℓ−1)
•

π(eℓ)
•. . .

Figure 3: Illustration of a path of size ℓ.

Define M(bi−1, bi) ≜ P[Bi = bi]E
[
etAi−1bi |Bi−1 = bi−1

]
for bi−1, bi ∈ {0, 1} and a matrix

M ≜

[
M(0, 0) M(0, 1)
M(1, 0) M(1, 1)

]
=

[
p̄ (p̄+ p01(e

t − 1))p/p̄
p̄ p+ p11(e

t − 1)

]
,

where p̄ = 1− p. Recall that P[Bi = 1] = p. Then we obtain that

mℓ =
∑

b0,...,bℓ∈{0,1}

P[B0 = b0]M(b0, b1) . . .M(bℓ−1, bℓ) = [p̄, p]M ℓ

[
1
1

]
.

The trace and determinant of M is

T ≜ Tr(M) = 1 + p11(e
t − 1), D ≜ det(M) = ρpp̄(et − 1) > 0.

Since D < p11(e
t − 1), the discriminant is T 2 − 4D > 0. Hence, the matrix M has two distinct

eigenvalues denoted by λ1 > λ2 > 0, and the general term of mℓ is

mℓ = αλℓ
1 + βλℓ

2. (17)

The coefficients α and β can be determined via the first two terms m0 = 1 and m1. Then we get

mℓ =

(
1

2
+

2m1 − T

2
√
T 2 − 4D

)
λℓ
1 +

(
1

2
− 2m1 − T

2
√
T 2 − 4D

)
λℓ
2.

Furthermore, by plugging m1 = 1 + p2(et − 1), we get T −m1 = D and thus m1(T −m1) > D,
which is equivalent to |2m1 − T | <

√
T 2 − 4D. Therefore, both coefficients α, β ∈ (0, 1).

The analysis for cycles follows from similar arguments. Consider a cycle C of size ℓ denoted
by [e1 . . . eℓ] as illustrated in Figure 4. For each i = 1, . . . , ℓ, define Ai−1 ≜ 1{ei∈E(G1)} and
Bi ≜ 1{π(ei)∈E(G2)}. We also let B0 = Bℓ for notational simplicity. Then (Ai, Bi) ∼ Bern(p, p, ρ)
for i = 0, . . . , ℓ− 1. Following a similar argument as (16), we have

m̃ℓ ≜ E[et|C∩E(Hπ)|] =
∑

b1,...,bℓ=b0∈{0,1}

ℓ∏
i=1

P[Bi = bi]

ℓ∏
i=1

E
[
etAi−1bi |Bi−1 = bi−1

]
=

∑
b1,...,bℓ=b0∈{0,1}

M(b0, b1)M(b1, b2) . . .M(bℓ−1, b0).
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π∗
e1•

e2•

e3•

eℓ•

π(e1)•

π(e2)•

π(e3)•

π(eℓ)•

...

π . . .
e1

π(eℓ)

•
e2

π(e1)

•
e3

π(e2)

•
eℓ−1

π(eℓ−2)

•
eℓ

π(eℓ−1)

•

Figure 4: Illustration of a cycle of size ℓ.

Applying the eigenvalue decomposition of M again, we obtain that

m̃ℓ = Tr(M ℓ) = λℓ
1 + λℓ

2. (18)

By definition, κPℓ (t) = logmℓ and κCℓ (t) = log m̃ℓ. To upper bound the cumulants, it suffices to
consider mℓ and m̃ℓ. In (17), we have α, β ∈ (0, 1) and λ1 > λ2 > 0. By monotonicity, it follows
that mℓ ≤ m̃ℓ and thus

κPℓ (t) ≤ κCℓ (t).

For x ∈ Rn and ℓ ≥ 2, we have ∥x∥ℓ ≤ ∥x∥2 ≤ ∥x∥1. It follows from the formula of m̃ℓ in (18)
that m̃1/ℓ

ℓ ≤ m̃
1/2
2 ≤ m̃1. Equivalently,

1

2
κC2 (t) ≤ κC1 (t), κCℓ (t) ≤

ℓ

2
κC2 (t) ∀ ℓ ≥ 2.

The last inequality 2κP1 (t) ≤ κC2 (t) follows by comparing the explicit formula κP1 (t) = log(1 +
p2(et − 1)) with κC2 (t) in (7) and using p11 ≥ p2.

Finally, since the summands over different connected components are independent, it follows
that

logE
[
et|E∩E(Hπ)|

]
=
∑
P∈P

κP|P |(t) +
∑
C∈C

κC|C|(t)

≤
∑
P∈P

|P |
2

κC2 (t) +
∑

C∈C:|C|≥2

|C|
2

κC2 (t) +
∑

C∈C:|C|=1

κC1 (t)

=
|E|
2
κC2 (t) + |{C ∈ C : |C| = 1}|

(
κC1 (t)−

1

2
κC2 (t)

)
,

where the last equality used fact that |E| =
∑

P∈P |P |+
∑

C∈C |C|.

Remark 13 We have two bounds for large ℓ in Lemma 7, namely κPℓ (t) ≤ κCℓ (t) and κCℓ (t) ≤
ℓ
2κ

C
2 (t). For the first bound, we apply 1

ℓ log
(
αλℓ

1 + βλℓ
2

)
≤ 1

ℓ log(λ
ℓ
1 + λℓ

2), where 0 < β < α <

1, α + β = 1 and λ1 > λ2 > 0. Consequently, λ1 − log 2
ℓ ≤ 1

ℓκ
P
ℓ (t) ≤ 1

ℓκ
C
ℓ (t) ≤ λ1 + log 2

ℓ .
Hence, the first bound is essentially tight for large ℓ. The second bound, previously used in Wu et al.
(2022), applies the inequality ∥x∥ℓ ≤ ∥x∥2, which becomes less tight as ℓ increases. Nevertheless,
it suffices for our analysis as the probability of long cycles occurring is relatively small.
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C.2. Proof of Lemma 8

By Lemma 7,

logE
[
et|Eπ∩E(Hπ)|

]
≤ |Eπ|

2
κC2 (t) + L

(
κC1 (t)−

1

2
κC2 (t)

)
,

where L denotes the number of self-loops. The self-loop for e only happens when π(e) = π∗(e).
For uv ∈

(
V (G1)

2

)
\
(
Fπ

2

)
, by the definition of Fπ, π(u) ̸= π∗(u) or π(v) ̸= π∗(v). Therefore,

π(uv) = π∗(uv) implies that π(u) = π∗(v) and π(v) = π∗(u). Since d(π∗, π) = k, we must have
L ≤ k

2 .
Applying the formulas (6) and (7) and the fact that p11 ≤ p, we obtain

κC2 (t) ≤ log
(
1 + 2p2(et − 1) + p2(et − 1)2

)
= log

(
1 + p2(e2t − 1)

)
≤ p2(e2t − 1)

and

κC1 (t)−
1

2
κC2 (t) =

1

2
log

[
1 +

2(p11 − p2)

p211(e
t − 1) + 2p2 + (et − 1)−1

]
(a)

≤ 1

2
log

[
1 +

2(p11 − p2)

2(p11 + p2)

]
(b)

≤ γ

2(γ + 2)
,

where (a) is because x+ x−1 ≥ 2 for any x > 0 and (b) is because log(1 + x) ≤ x for any x ≥ 0.
Therefore, we get

logE
[
et|Eπ∩E(Hπ)|

]
≤ |Eπ|

2
p2(e2t − 1) +

kγ

4(γ + 2)
.

For any t > 0, by the Chernoff bound,

P[|Eπ ∩ E(Hπ)| ≥ τk] ≤ exp

(
−tτk +

|Eπ|
2

p2(e2t − 1) +
kγ

4(2 + γ)

)
.

Pick t = 1
2 log

(
τk

|Eπ |p2

)
. Then t > 0 by the assumption τk > |Eπ|p2. We obtain

P [|Eπ ∩ E(Hπ)| ≥ τk] ≤ exp

(
−τk

2
log

(
τk

|Eπ|p2

)
+

τk
2

− |Eπ|p2

2
+

kγ

4(2 + γ)

)
.

C.3. Proof of Lemma 14

Lemma 14 Recall that ϕ(γ) = (1 + γ) log(1 + γ) − γ and η, γ > 0. If η ≤ γ
4(1+γ) , then

(1 + γ)(1− η) > 1 and

ϕ [(1− η)(1 + γ)− 1] ≥ 1

4
ϕ(γ). (19)

Proof We note that (1 + γ)(1− η) ≥ 1 + γ − γ
4 > 1 and

ϕ [(1− η)(1 + γ)− 1] =(1 + γ)(1− η) log [(1 + γ)(1− η)]− [(1 + γ)(1− η)− 1]

=(1− η) [(1 + γ) log(1 + γ)− γ] + (1 + γ)(1− η) log(1− η) + η

≥(1− η) [(1 + γ) log(1 + γ)− γ] + (1 + γ)(−η) + η

=(1− η) [(1 + γ) log(1 + γ)− γ]− ηγ,
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where the last inequality is due to the fact that (1 − x) log(1 − x) + x ≥ 0 for any 0 < x <

1 and 0 < η ≤ γ
4(1+γ) < 1

4 . Since log(1 + γ) − γ
1+γ ≥ γ2

2(1+γ)2
, we have ηγ ≤ γ2

4(1+γ) ≤
1
2 [(1 + γ) log(1 + γ)− γ]. Therefore,

ϕ [(1− η)(1 + γ)− 1] ≥(1− η) [(1 + γ) log(1 + γ)− γ]− ηγ

≥
(
1

2
− η

)
ϕ(γ) ≥ 1

4
ϕ(γ),

where the last inequality is due to 0 < η ≤ γ
4(1+γ) <

1
4 .

C.4. Proof of Lemma 15

Lemma 15 For binary entropy function h(x) = −x log x − (1 − x) log(1 − x), ϕ(x) = (1 +
x) log(1 + x)− x and any constant δ ∈ (0, 1), when m ≥ log n,

m−1∑
k=δm

exp

[
−mh

(
k

m

)]
≤ (log n)−1+o(1)

Proof We note that

m−1∑
k=δm

exp

[
−mh

(
k

m

)]
≤

m−1∑
k=1

exp

[
−mh

(
k

m

)]
(a)

≤ 2
∑

1≤k≤m
2

exp
[
−k log

(m
k

)]
≤ 2

∑
1≤k≤2 logm

exp
[
−k log

(m
k

)]
+ 2

∑
2 logm<k≤m

2

2−k

≤ 2 · exp (− logm) · (2 logm) + 2 · 2−2 logm
(b)

≤ (log n)−1+o(1),

where (a) is because h(x) = h(1− x) and h(x) ≥ −x log x and (b) is because m ≥ log n.

C.5. Proof of Lemma 16

Lemma 16 For P ∼ Bern(p, p, ρ) and Q ∼ Bern(p, p, 0), the KL-divergence between P and Q
can be upper bounded by:

D(P∥Q) ≤ 25p2ϕ(γ).
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Proof By direct calculation,

D(P∥Q) =
∑

{a,b}∈{0,1}

pab log

[
pab

pa+b(1− p)2−a−b

]

=
[
p2 + ρp(1− p)

]
log

[
1 +

ρ(1− p)

p

]
+ 2p(1− p)(1− ρ) log(1− ρ)

+
[
(1− p)2 + ρp(1− p)

]
log

(
1 +

ρp

1− p

)
≤
[
p2 + ρp(1− p)

]
log

[
1 +

ρ(1− p)

p

]
+ 2p(1− p)(1− ρ) · (−ρ)

+
[
(1− p)2 + ρp(1− p)

]
· ρp

1− p

=
[
p2 + ρp(1− p)

]
log

[
1 +

ρ(1− p)

p

]
− ρp(1− p) + ρ2

[
2p(1− p) + p2

]
.

Since log(1 + x) ≥ x
x+1 + x2

2(x+1)2
for any x ≥ 0, we get p2 [(1 + γ) log(1 + γ)− γ] ≥ p2γ2

2(γ+1) .

When γ < 3, since p2γ2

2(γ+1) ≥
p2γ2

8 = ρ2(1−p)2

8 ≥ ρ2[2p(1−p)+p2]
24 for 0 < p ≤ 1

2 , we get

D(P∥Q) ≤ p2 [(1 + γ) log(1 + γ)− γ] + ρ2
[
2p(1− p) + p2

]
≤ 25p2 [(1 + γ) log(1 + γ)− γ] .

When γ ≥ 3, since p2 [(1 + γ) log(1 + γ)− γ] ≥ p2γ(log 4 − 1) = (log 4 − 1)ρp(1 − p) and
ρ2
[
2p(1− p) + p2

]
≤ 3ρp(1− p), we get

D(P∥Q) ≤ p2 [(1 + γ) log(1 + γ)− γ] + ρ2
[
2p(1− p) + p2

]
≤
(

3

log 4− 1
+ 1

)
p2 [(1 + γ) log(1 + γ)− γ] ≤ 25p2 [(1 + γ) log(1 + γ)− γ] .

Therefore, we get D(P∥Q) ≤ 25p2ϕ(γ).

C.6. Proof of Lemma 17

Lemma 17 (Chernoff’s inequality for Binomials) Suppose ξ ∼ Bin(n, p), denote µ = np, then

P [ξ ≥ (1 + δ)µ] ≤ exp {−µ [(1 + δ) log(1 + δ)− δ]} , (20)

P [ξ ≤ (1− δ)µ] ≤ exp

(
−δ2µ

2

)
. (21)

We also have

P [ξ ≥ (1 + δ)µ] ≤ exp

(
− δµ

2 + δ

)
. (22)

Proof By Theorems 4.4 and 4.5 in Mitzenmacher and Upfal (2005) we have (20) and (21). Since
(1 + δ) log(1 + δ)− δ ≥ δ2

2+δ , we obtain (22) from (20).
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