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The manifold assumption in machine learning is a popular assumption postulating that many
models of data arise from distributions over manifolds, see e.g. Duchemin and De Castro (2023);
Araya and De Castro (2019); Fefferman et al. (2021, 2020b, 2023); Atamanchuk et al. (2023) among
many others. A major problem studied in this area is the inference problem of estimating an un-
known manifold given data sampled from the manifold.

We are interested in a more difficult problem which arises in the context of random geomet-
ric graphs (see e.g. Penrose (2003); Duchemin and De Castro (2023) for surveys on the subject).
Random geometric graphs are random graph models constructed by first sampling points from a
metric space and then connecting each pair of sampled points with a probability that depends on
their distance, independently among pairs.

In this setting, the sample points X1, X2, . . . , Xn are drawn from a manifold M embedded in
an ambient Euclidean space according to some probability measure µ. The graph G is constructed
where each vertex corresponds to a latent sample point. Any two vertices i and j are connected by
an edge with a probability determined by their Euclidean distance; specifically, the further apart Xi

and Xj are, the less likely they are to be connected by an edge. This probability is represented by
p(∥Xi −Xj∥), where p : [0,∞) → [0, 1] is a strictly decreasing function.

Rather than observing the data points X1, . . . , Xn, we ask if it is possible to infer the manifold
M by only observing the random geometric graph G.

In this work we demonstrate that under some mild assumptions on the manifold M , the proba-
bility measure µ, and the function p, with probability 1−on(1), we can estimate both the Euclidean
distance and the geodesic distance for every pair of latent points (Xi, Xj) with an error of order
n−c/dim(M) for some constant c > 0. Furthermore, we can construct a discrete metric measure
space (M̃, ν) that approximates (M,µ) in the Gromov–Hausdorff distance sense. All these results
can be achieved by algorithms that have polynomial running time in n. If we combine our result
with the work of Fefferman et al. (2020a, 2021), it is possible to recover a manifold M̂ that is close
to M .

Our work complements a large body of work on manifold learning, where the goal is to recover
a manifold from sampled points sampled in the manifold along with their (approximate) distances.

. Extended abstract. Full version appears as [arXiv:2402.09591,v2]
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