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Abstract

Follow-The-Regularized-Leader (FTRL) is known as an effective and versatile approach in online
learning, where appropriate choice of the learning rate is crucial for smaller regret. To this end, we
formulate the problem of adjusting FTRL’s learning rate as a sequential decision-making problem
and introduce the framework of competitive analysis. We establish a lower bound for the com-
petitive ratio and propose update rules for the learning rate that achieves an upper bound within a
constant factor of this lower bound. Specifically, we illustrate that the optimal competitive ratio is
characterized by the (approximate) monotonicity of components of the penalty term, showing that a
constant competitive ratio is achievable if the components of the penalty term form a monotone non-
increasing sequence, and derive a tight competitive ratio when penalty terms are {-approximately
monotone non-increasing. Our proposed update rule, referred to as stability-penalty matching,
also facilitates the construction of Best-Of-Both-Worlds (BOBW) algorithms for stochastic and
adversarial environments. In these environments our results contribute to achieving tighter regret
bound and broaden the applicability of algorithms for various settings such as multi-armed bandits,
graph bandits, linear bandits, and contextual bandits.

Keywords: follow-the-regularized-leader, adaptive learning rate, competitive analysis, best-of-both-
worlds bandit algorithm

1. Introduction

In the research field of online learning and bandit algorithms, the follow-the-regularized-leader
(FTRL) framework offers a promising approach to achieving sublinear regret. In this framework,
we choose an action a; in each round ¢, on the basis of x; € X, a solution to the following convex
optimization problem:

t—1
m € argmin{Zﬂ(mH;w(w)}, (1)
s=1

zeX

where X' is a convex set, { f,} are estimators or surrogates of the loss functions, {7} are learning rate
parameters that are positive and monotone non-decreasing, and ) is a convex regularizer function.
This approach can be interpreted as a comprehensive framework that includes Online Gradient
Descent (Zinkevich, 2003) and the Hedge algorithm (Littlestone and Warmuth, 1994; Arora et al.,
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2012; Freund and Schapire, 1997), which demonstrates its effectiveness across various online learning
and bandit problems, such as multi-armed bandits (Auer et al., 2002), linear bandits (Abernethy et al.,
2008; Cesa-Bianchi and Lugosi, 2012), and episodic MDPs (Lee et al., 2020).

To harness the effectiveness of FTRL, it is crucial to appropriately set the learning rate. Here,
a fixed learning rate determined by time horizon 7' often suffices when 7" is predefined and the
goal is the worst-case optimality. On the other hand, adaptive update of the learning rate based on
feedback received at each time step has been considered when 7' is not predetermined and/or the
goal is to achieve the optimality beyond the worst case with better practical performance. Such
methods of adaptive learning rate have been shown to be beneficial in achieving data-dependent
bounds (Cesa-Bianchi et al., 2007; Orabona and Pél, 2015; Erven et al., 2011) and in constructing
best-of-both-worlds (BOBW) algorithms (Gaillard et al., 2014; Bubeck and Slivkins, 2012; Ito,
2021b; Jin et al., 2023) that attain (nearly) optimal performance in both adversarial and stochastic
settings. Other literature on adaptive learning rates is also mentioned in Appendix A.

This paper aims to develop a generic methodology for sequentially adjusting learning rate in
FTRL, and to investigate its limitations. A standard analysis for FTRL (e.g., in Lattimore and
Szepesvari, 2020, Exercise 28.12) provides an upper bound on the regret R as follows:

d 1 /11
Rp S ) mz +—hi+) < - ) hy, 2
=1 mn o \Tt Nt-1
stability terms penalty terms

where z; and h; vary depending on the problem setup and the regularizer function . For example,
in the Hedge algorithm, i.e., when (1) is specified by X = P(K) = {x € [0,1]X | ||z|; = 1},
ft(x) = ¢z with £; € [0,1]%, and 1 () is the negative Shannon entropy, z; and h; are bounded
as z < O <Zfi1 E?Z-xm-) < O (¢ z;) <O(1) and by < —¢(z¢) < log K. In general FTRL, a
standard way of defining h; is to set hy = max, ¥(x) — 1 (x;). Some concrete examples of z; will
be discussed later, such as in Section 4. Many existing methods for sequentially updating the learning
rate adjust 7; based solely on z; (Cesa-Bianchi et al., 2007; Orabona and Pal, 2015; Erven et al.,
2011). Recently, there has been consideration for adjusting the learning rate in response to h; as well
(Ito et al., 2022b; Tsuchiya et al., 2023a; Kong et al., 2023), and approaches that adjust according
to both z; and h; have emerged (Jin et al., 2023; Tsuchiya et al., 2023b). However, these update
methods using h; are often somewhat ad-hoc, designed for specific objectives (e.g., BOBW bounds),
and the optimality of these update rules themselves have not been investigated. More literature on
FTRL with Tsallis entropy regularization is referenced in Appendix A.

1.1. Main contribution

We first formulate the problem of choosing the learning rate as an online decision-making problem
to minimize the right-hand side of (2), which is denoted by F'(n1.7; z1.7, h1.7). For any update rule
m, we denote by F™(z1.7, hi.7) the value of F'(n1.1; z1.7, h1.7) for n1.p determined by 7, where
the update rule 7 is specified as a series of functions: m = {m; : (214, h1:t) — 1t Hen. We also
define F*(z1.7, hi.) as the minimum of F(ny.7; z1.7, hi.7) achieved by the optimal sequence
ny > 15 > --- > np of learning rates given the entire series of z1.7 and hy.7 in advance. Note
that each ; may depend on z;.7 and h;.7 including the “future feedback™ after the ¢-th round. To
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Table 1: Upper bounds on F'™ achieved by proposed update rules 7 for learning rates.

Input for 7 F*-dependent bound (z1.7, h1.7)-dependent bound

o1, bt AVEF min {\/ SL 2 log T\ huwa YL zt}

2141, h—1,€  AVEF* 4+ O(Zmax + h1) min { \/f Zzzl zthylog T, \/fhmax 23;1 Zt}

2141, P1:t—1, iLt - min {\/Zf_l ZtiLtJrl log T, \/iLmaX ZtT:1 Zt}

Lower bound \F+ : \f F -

evaluate the performance of policies 7 and the complexity of this online decision-making problem,
we focus on the competitive ratio defined as CR(7; z1.7, h1.1) = %

This study reveals that the optimal competitive ratio can be characterized by approximate
monotonicity of hi.7. For any fixed £ > 1, a sequence h1.7 is called £-approximately monotone non-
increasing if £hy > hy for all t and ¢/ < t. Letting H §T C Rgo denote the set of all £-approximately

monotone non-increasing sequences, we have the following lower bound on the competitive ratio:

Theorem 1 ForanyT € N, any £ > 1, and for any policy m = {7Tt (21:4, hit) > i}, there exist
z1.T € R>0 and hi.T € HT such that CR(m; z1.17, hi.p) > f+§\[

This lower bound implies that conditions on A1.7 such as approximate monotonicity are essential in
order to establish non-trivial upper bounds on the competitive ratio. The proof of this theorem is
given in the appendix. Note that the instance (sequences of z; and h;) constructed in the proof of
Theorem 1 is just a hard case for the abstract subproblem of optimizing F’, and it is not yet known
whether such an example may appear in an actual learning process of FTRL. Thus, if z; and h; that
appear in the actual FTRL satisfy some conditions, then there is still a possibility of improvement
beyond the lower bound of Theorem 1.

This paper also provides a policy m = {7 : (21.¢, h1:t) — ¢ }ten achieving a competitive-ratio
upper bound that matches the lower bound in Theorem 1 up to a constant. This policy is expressed
by the solution of the following formula:

1 1 1
mz = —hy, Mz = ( — > hy (t>2), (3)
m . M1

i.e., the learning rate under which stability and penalty match in each round, which is referred to
as stability-penalty matching (SPM) in this paper. This formula of (3) leads to the initialization of

_ _ 2
71 = +/21/h1 and the update rule of 1, = 1+\/Wmfl fort > 2.

Theorem 2 The policy m = {m; : (21.¢, h1.t) — Mt }een given by (3) achieves CR(7; z1.1, h1.1) <
4/E forany € > 1, 2.7 € Rgo, and hy.7 € Hg In addition, this policy achieves

T T
m Xhm X
F™(z1.7,h1.7) = O | min 1nf g zthy log (eT) + Zmaximax s a | Prmax E 2 ()

1 £
e> i—1
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forany z1.7 € Rgo and h1.p € Rgo, where hpax = maXe (7] hy and zZpax = maxe() 2t-

The upper bound of (4) holds for any sequences of z;.7 and hj.7 without any requirement on the
monotonicity. Upper bounds in this form is useful in developing and analyzing BOBW bandit
algorithms, as can be seen in Section 1.2 and Section 4.

Theorems 1 and 2 together imply that the tight competitive ratio under the condition on the
approximate monotonicity of k1.7 is of ©(y/€), and that such a tight competitive ratio is achieved by
the policy given by (3).

We note that in the implementation of policy by (3), we need to know h; and z; at the time of
determining 7;. Such a knowledge is not always available in practice as h, and z; may depend on 7;.
To deal with such situations, we also develop learning-rate policies that do not require values of h;
and z; when determining 7;. Bounds on F'™ achieved by such policies are summarized in Table 1.
The “Input” row in this table represents the knowledge required in determining 7. For example, if
the input is 21,41, hi4—1, he, the policy can be expressed as m = {7 : (21:4—1, h1:4—1, ﬁt) > ¢ HeN-
The value ; in this table is an arbitrary upper bound on A that is available when determining 7.
A typical example of ht is to set ht = hy_1, which is justified when h; = O(h;—1) holds and this
condition can be ensured, e.g., via Lemmas 24 and 25 in this paper and via lemmas in Jin et al. (2023,
Appendix C.3). Another example of hy is to define fy = Ehioq :=¢& minge ;1) hs, which is an upper
bound of hy if hy.p € HY ¢ - Bounds shown in Table 1 are achieved by variants of the policy given by
(3), which are provided in Section 3.

1.2. Application: best-of-both-worlds regret bounds

Bounds on F' dependent on (z1.7, hi.7) such as (4) are useful in developing BOBW bandit algorithms.
Examples dealt with in this paper are summarized in Table 2, where we use the notation of log__ (x) =
max{1,log(z)}. The regret bounds presented in Table 2 are achieved through an algorithmic
framework detailed in Algorithm 1. Notably, Algorithm 1 in Section 4 adopts a methodology similar
to those found in prior studies, such as Auer et al. (2002); Eldowa et al. (2023); Cesa-Bianchi
and Lugosi (2012); Zimmert and Seldin (2021), with the distinct exceptions of its learning rate
and regularization definitions. Specifically, the employed regularization function utilizes a hybrid
regularizer based on Tsallis entropy, a concept previously explored in Zimmert et al. (2019); Tsuchiya
et al. (2023a); Masoudian and Seldin (2021); Jin et al. (2023) and thus, is not a novel contribution
of this work. The seminal contribution of this paper lies in the innovative update rules for the
learning rate, demonstrating their effectiveness through BOBW results. These findings underscore
the proposed SPM learning rates capability to significantly enhance performance.

As demonstrated in Table 2, the SPM learning rates introduced in this paper achieve BOBW
regret bounds with tight dependencies on 7', for any value of o € (0, 1) in the «-Tsallis entropy.
Specifically, we attain an O(logT') bound in stochastic environments and an O(\/T) bound in
adversarial environments. When designing FTRL-based BOBW algorithms, various regularizers
have been investigated, including a-Tsallis entropy (Zimmert and Seldin, 2021; Jin et al., 2023),
log-barrier (Wei and Luo, 2018; Ito et al., 2022a), and Shannon entropy (Ito et al., 2022b). However,
achieving bounds in a tight order for both stochastic and adversarial scenarios has been confirmed
only when we use the 1/2-Tsallis entropy regularizer (for instance, see Jin et al., 2023). This research
marks the first instance of demonstrating optimality in terms of 7" for o # 1/2, thereby presenting
a method that allows the parameter « to be adjusted. This adaptability ensures the achievement of
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Table 2: Bounds on z; and regret for FTRL with a-Tsallis entropy and SPM learning rates. Based on
the values of B(«) in the upper table, we establish the BOBW regret bounds in the lower

table.
Setting Parameters Bound on z; B(«) min,, B(«a)
Multi-armed bandit K: # arms T D it i ﬁ K-1
Graph bandit K: # arms, Ca(l_l‘fg)lia C(f({ﬂ);;“ Clog, (%)
(: independence number
Linear bandit K: # arms, W gﬁ:j) dlog K
d: dimensionality

Contextual bandit M: # arms, K: # experts K(l%g)lw Jg(lf_l;; Mlog K

Environment Regret upper bound

Adversarial @) ( B(a)T)

2
Stochastic @) (f(?‘) log | (ABF?E)T»

Corrupted Stochastic O (ir(nol‘z log, (A;r?ian)T ) + \/ (ﬂﬁ) log , (AménT)>

optimal bounds relative to problem-specific parameters, such as the independence number in graph
bandits or the number of experts in contextual bandits.

The bounds presented in Table 2 of this study can be compared with existing results as follows:
For multi-armed bandits, the current state-of-the-art for comparison would be the work of Jin et al.
(2023). When « # 1/2, their bounds in terms of T" are O(y/T log T) in adversarial environments
and O(log T') in stochastic environments. Our study improves upon these by achieving O(v/T)
and O(log T'), respectively, thus presenting a tight dependency on 7. However, their bounds have
advantages in achieving the tight dependency on the suboptimality gaps of individual arms and
allowing for multiple optimal arms. In the case of & = 1/2, our results essentially replicate the
bounds of Tsallis-INF (Zimmert and Seldin, 2021; Masoudian and Seldin, 2021), ignoring constant
factors. In graph bandits, compared to the bounds by Dann et al. (2023), our results show an
improved dependency on log K, achieving the same bounds as the adversarial graph-bandit algorithm
by Eldowa et al. (2023) for adversarial environments, which are tight within a constant factor. This
can be seen as an extension of the adversarial-only results by Eldowa et al. (2023) to the BOBW
results. For contextual and linear bandits, our bounds are nearly identical to those reported by Dann
et al. (2023), but notably better when considering corrupted settings; Our method achieves the refined
bound in which log T is replaced by log(Anin7/C'), indicating a superior guarantee under certain
conditions suggested by Masoudian and Seldin (2021).

The proposed approach, similarly to other FTRL-based algorithms, achieves bounds of o(v/T')-
regret in stochastic regimes with adversarial corruption, and more generally, in adversarial regimes
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with self-bounding constraints (Zimmert and Seldin, 2021). The specific form of these bounds is
presented in Table 2, where C' > 0 represents the corruption level, indicating the magnitude of

adversarial corruption. Compared to the O (ﬁ logT + +/ AL log T" ) -bounds commonly found

min

in existing studies (Dann et al., 2023; Zimmert and Seldin, 2021), our work refines these to a
form of O (51— Tog. (A2,T) + |/ 5 1og,. 24T ). Similar bounds for the multi-armed bandit

min

problem have been demonstrated by Masoudian and Seldin (2021), and for an understanding of
the significance of these refined bounds, we refer to this paper. This study is the first to achieve
such refined bounds for a-Tsallis entropy with o # 1/2 and to extend their applicability beyond
multi-armed bandit problems.

2. Problem Setup

We consider the problem of updating the learning rate 7; so that the RHS of (2) is minimized. To this
end, we define F(Bl:T; Z1:T» hl:T) by

T

F(Bi.1; z1:7, hir) = Z (;i + (B — 5t—1)ht> , ®)

t=1

for Br.r = (B1)L, € ]Rgo, zir = (z)l, € Rzo, and hi.r = (b)), € Rzo, where we let 55 = 0
for notational simplicity. The value of F' is equal to the main components of the RHS of (2), under
the variable transformation of 8, = 1/n,. We address a sequential decision-making problem where
the objective is to choose (; based on the information up to the ¢-th round, given by (z1.¢, h1.¢), or up
to the (¢ — 1)-th round, given by (21.4—1, h1.t—1), with the goal of minimizing the value of F.

For any policy 7 of choosing f3;, let F™ (2.7, h1.7) be the value of F(B1.1, z1.1, h1.1) for B1.1
determined by 7. We measure the performance of policies 7 based on the competitive ratio given by

Fﬂ—(zl:Ta hl:T)
F*(z1.7, hir)’

where F™* represents the minimum value of F' achieved by the offline optimization procedure
depending on the entire series of zy.; and h1.; in hindsight, i.e.,

CR(m; z1.7, hir) = (0)

F*(z1.0, hir) = inf{F(Br.1; 217, haor) |0 < By < Bo < -+ < Br) (7

Remark 3 The constraint of By < Biy1 is equivalent to the constraint that the learning rate 1 is
monotone non-increasing, i.e., Nz > ny1. Although this constraint is not absolutely necessary in the
algorithm design, it is often needed when obtaining regret upper bounds of the form of (2).

In interpreting the competitive ratio as defined in (6) of this paper, it is essential to be aware of its
practical implications and limitations. A smaller competitive ratio implies that, upon fixing any
sequences of z;.7 and hi.7, the performance closely approximates that for the optimal sequence
B1.7 of learning rates. However, in the context of actual applications to FTRL, the scenario is more
complex because the values of z; and h; are influenced by the learning rate 1. itself. This leads to
a critical insight: Our competitive analysis does not incorporate how changes in the learning rate
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might affect z;.7 and hy.7 directly. In other words, the “optimality” of the learning rate update rules,
in the sense of the competitive ratio, merely signifies optimality from the perspective of dependency
on z1.7 and hi.7, without considering the effects that learning rates have on z;.7 and hy.7. Despite
this limitation, bounds dependent on z1.7 and h;.7 provide various benefits, such as data-dependent
bounds (Cesa-Bianchi et al., 2007; Erven et al., 2011; De Rooij et al., 2014; Orabona and Pal, 2015)
and BOBW bounds (Zimmert and Seldin, 2021) that are also discussed in Section 4, and are thus of
practical utility.

This paper shows that the optimal competitive ratio for some reasonable classes of policies can
be characterized by approximate monotonicity of hy.r:

Definition 4 Let & > 1. We call a sequence hy.7 is £-approximately non-increasing if Ehy > hy
holds for any t and t' such that t' < t.

Note that 1-approximately non-increasing sequences are monotone non-increasing. For any £ > 1,
let H £T denote the set of £-approximately non-increasing sequences, i.e.,

HE = {hr e Ry [t <t = Ehy > Iy} ®)
In our analysis, we use the following property of &-approximately non-increasing sequences:

Lemma 5 Suppose hi.pt € H§T Then, hy.p € HlT defined by hy = minge (1 2.4} s satisfies
he < hy < Ehy for all t.

This lemma implies that the parameter £ > 1 represents the ratio of how well the sequence hi.r
can be approximated by a monotone non-increasing sequence. All omitted proofs are given in the
appendix. Sequence hir e H T given in Lemma 5 will be utilized in Section 3. For any nonnegative
integer n € Zx>o, we denote [n] = {1,2,...,n}. We also use the natation of zp.x = sup, z; and
Pmax = supy hy.

3. Stability-Penalty Matching

Assume that at the time of choosing 3;, we are given an access to hy, an upper bound or an
approximated value of h;. Consider the following two update rules:

~ z
Rulel 7= {ﬂ't D (21 ha—1, ) 51&} Bo=0, Bi=pB1+4— (t>1), )
Btht
~ Zt—
Rule2 7= {m: (zramt,hioihe) = B} Bi>0, fi=Ba+—— (t=2). (10)
Br—1ht

We set learning rates by 7, = 1/, with 3, given by these rules. We refer to these update rule as

stability-penalty-matching (SPM) learning rate, as they are designed so that the ¢-th stability term

zt/ B (or the (t — 1)-th stability term z;_1 //3;—1) matches the ¢-th penalty term (5; — B1—1)hy.
The update rule of (9) can be viewed as a quadratic equation in ¢, whose positive solution is

By = &T_l <1 + \/ 142/ (51521?%))- Specifically in our analysis, we consider two typical settings
of izt: One is to set fzt = hy, and the other is to set

hy=¢€hy, hy=¢Eh 1 =¢ rr[nn”hs (t > 2), (11)
sE(|t—
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where the latter ensures h; < iLt_;,_l < iLt and ilt.i,.l < &hy, which are used in our analysis. These
inequalities follow from Lemma 5.

Remark 6 The SPM learning rate can replicate several existing learning rate update rules under
certain parameter settings. For example, if we set hy = h for all t, (9) and (10) lead to 5; =

S <\ /R3S, zs> and By = © <ﬁ1 +1/h Zz;ll zs>, respectively, which correspond to AdaFTRL-

type learning rates (Cesa-Bianchi et al., 2007; De Rooij et al., 2014, Erven et al., 201 1; Orabona and
Pdl, 2015; Ito, 2021b). This approach is known to achieve regret bounds of O <\ /h Zthl zt) By

considering another example, when z = ©(hy), (9) leads to B; = ©(\/t). As a corresponding case,
in Tsallis-INF using the 1/2-Tsallis entropy (Zimmert and Seldin, 2021), we can see that z; =~ hy, and
it is known to be advantageous to use a learning rate of By = ©(\/t). Further, when we set z; = p}*“

and hy = pi_, for some p; € (0,1) and o € (0,1), (10) leads to B = © <ﬁ1 + 4/ 22;11 p§2a>,
which replicates the learning rate designed by Jin et al. (2023) for FTRL-based MAB algorithms
with (1 — «)-Tsallis entropy regularizers.

We show that SPM update rules achieve the following:
Theorem 7 Suppose hy < hy holds for all t. If By is given by (9), it holds that

~

T T
. . 7+ Zm Xhm X 7
F(B1.1; z1:7, h1.7) = O [ min IDE g zthy log(eT) + =% - = 34| Pmax E 2zt o |- (12)
=1

=27 |\ =1
If By is given by (10), it holds that

F(BI:T; 21:T, hl:T)

T - T
. . 7 z xh X 7 Z X 7
= O | min elilfl E 2thy11og(eT) + % 7 hmax} :Zt yEmex g0 (13

=T t=1 t=1 ’81

The following bounds dependent on F* also hold:
(a) If 7 = {m : (214, h1t) ¥ Bt} is given by (9) with hy = hy, it holds for any T, £ > 1,
217 € RLy, and hy.r € HgT that F™(z1.7, hi.1) < 4/EF* (211, ha.r).
(b) If m = {m : (21:4—1, h1t) > Bi} is given by (10) with hy = hy, it holds for any T, £ > 1,
210 € REy, and hy.r € HE that F™ (217, hir) < 4V/EF* (217, har )40 (Zmaxﬁl + /31ﬁ1>~

(c) Forany fixed§ > 1, if 7 = {my : (214, h1:4—1) > Bt} is given by (9) with hy defined as (11),
it holds for any T, z1.T € ng and hi.T € HET that F™(z1.7, hi.1) < AVEF* (2117, hir) +

) ( % fhmaxzmax)-

(d) Foranyfixed§ > 1, if 1 = {m : (214—1, h14—1) = Bi} is given by (10) with hy defined as (11),
it holds for any T, z1.1 € ng and hi.T € Hg that F™(z1.7, hi.1) < 4VEF*(z1.7, hi.T) +

@) (Zmaxﬁl + 51%)-
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Note that, in the application to the design of best-of-both-worlds algorithm provided in Section 4, the
bound in (13) is mainly used, and the results on the competitive ratio (a)-(d) in Theorem 7 are not
used in particular. The upper bound on the competitive given in (a) of Theorem 7, combined with the
lower bound in Theorem 1, leads to the following corollary:

Corollary 8 For the class of policy {m = {m : (214, h1.t) = B¢} } and for any & > 1, the competi-
tive ratio is bounded as follows:

inf sup CR(m; 217, hior) € [\/5,4\/5} . (14)

™= {Trt (Zl tsh1: t)HBt} TeN,zy. TGR hleGHfT

For any zi1.7 € Rgo and hy.p € Rgo, define G(ZLT, hl:T) by

T ' ~1/2
G(z1.1, ) = Z (Z h5> 2. (15)
t=1 s=1 "%

Using this function G, we can provide upper bounds on F' as follows:

Lemma 9 Suppose hy < hy holds for all t. If By is given by (9), F(B1.r; 211, hir) < 2G(z1.7, lAllzT).
If By is given by (10), F(Br.1; z1:1, hi:r) < 2G(21:1, hairya) + 7552 + Bihy.

The value of G can be bounded as follows:

Lemma 10 Let 6y > 01 > 63 > --- > 05 > 0 be an arbitrary positive and monotone decreasing
sequence such that 6y > hpax. Denote T; = {t € [T] | 0;_1 > hy > 0;} for j € [J] and Tj41 =

{t € [T]| 0; > hi}. We then have G(z1.7,h1.1) < 223];“11 N Zte?} 2. Consequently, by

choosing 0; = hmax2 ™7, we obtain

T T
G(z1.r, hizr) < min q inf < 8T ez +2V/2 Thaxzmax 0 524 | hmax 2 p - (16)
t=1 t=1

JeN

On the other hand, F*(z1.7, h1.7) can be bounded from below as follows:

Lemma 11 Let 6y > 01 > 02 > --- > 05 > 05,1 = 0 be an arbitrary positive and monotone
decreasing sequence. Denote T; = {t € [T'] | 6;_1 > hy > 0} for j € [J]. Suppose that hy.7 is a

monotone non-increasing sequence. We then have F* (zy.p, hy.p) > 2 ijl (0; —0j41) Zteﬂ 2.

To see the relation between F™* and G, define H (z1.7, h1.7) by

H 21 T, hl T Z Hj_l Z Zt, where Hj = hmaXQ_j, 7; = {t € [T]wj—l > ht > QJ}
j=1 teT;

with 0; = hpax2™7 Jand T; = {t € [T 1161 > hy > 6;}. Lemma 10 implies G(z1.7, hi.7)
2H (z1.7, h1.7) holds for any z1.p and hy.p. Further, Lemma 11 means that F*(z1.p, hi.7)
H(z.7, hi.7) holds if hy.7 is monotone non-increasing.
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Remark 12 For the policy 7 given by (9) with hy = hy, if h1.7 is monotone non-increasing, we can
see that each of F™ (z1.1, h1.1), F*(z1.1, h1.7), G(21.7, h1.7) and H(z1.7, hi.7) is in the constant
factor of the others. In fact, we have F™(z1.p,h1.7) < 2G(z1.7,h1.1) < 4H(z1.7,h1.1) <
4=F’*(21:T7 hl:T) < 4F7T(21:T7 hl:T)-

Lemma 13 If hy.7 is £-approximately non-increasing for some £ > 1 we have
G(zur, hiir) < 20/ EF* (211, har). (17)
Lemma 14 Ifhi.py1 € Hf“, we then have H (z1.7, h1.7) < H(z1.7, ho.r+1) + 4V hmaxZmax-

By using the lemmas presented so far, we can prove Theorem 7:
Proof sketch of Theorem 7 Bounds on F' of (12) and (13) immediately follow from Lemmas 9
and 10. In the following, we show bounds that depend on F'*. Suppose hi.7 € H§T . Then,

ﬁt = minse[t] hg satisfies ﬁt < h < §ﬁt < gEH and iLl;T € H;[, ie., th > Bt+1. Hence, if 81.1
is given by (9) with th = hy, we have

F(Brr; 211, hur) < 2G(z1.1, hiar) < AVEF* (21, haer), (18)

where the first and second inequalities follow from Lemmas 9 and 13, respectively. This means that
(a) in Theorem 7 holds. We next see that (c) holds. If 5;.7 is given by (9) with (11), we then have

F(Brr; 211, har) < 2G (217, har) (Lemma 9)
= 2G(z1.1, §i~zo:T_1) = 2\/§G(21:T, iNzo;T_l) (Definitions of /; and G in (15))
< 4\/EH (217, hor—1) (Lemma 10)

< 4\/5 (H(ZliTa ill:T) +4 V hmaxzmax) (Lemma 14)
< 4\/5 (F*(Zl;T, ill:T) +4 V hmaxzmax> (Lemma 11)
<44/¢ (F*(ZLT, hi.r) + 4/ hmaxzmax> : (Definition of F* and h; < hy)

which completes the proof of (¢) in Theorem 7. Other bounds (b) and (d) can be shown in a similar
manner. For a complete proof, please refer to Appendix C.7.

4. Application: best-of-both-worlds bandit algorithm

This section provides examples of best-of-both-worlds bandit algorithms based on the stability-
penalty-matching learning rate. In problem examples in this paper, we consider the following
procedure of online learning: A player is given the number of actions K, and some information of
the setup before the game starts. In each round of ¢t € {1,2,...}, the environment chooses a loss
vector £; € [—1,1]% while the player chooses an action I(t) € [K], and then incurs the loss of
bty € [—1, 1]. The available feedback and the structure behind ¢, are different depending on the
problem setup. The performance of the player is measured by the regret defined as follows:

T T
Z Ce1(e) — Z by
t=1 t=1

RT(Z*) =E s RT = Imax RT(’L*) (19)

1*€[K]

10
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Letp; € P(K) = {p € [0,1]% | ||p|l1 = 1} denote the distribution from which an action I(#) is
chosen, i.e., Pr[I(t) = i|H_1] = pu» where H;_1 = {(£s, I(s))}'ZL. In an adversarial regime, the
loss ¢; can be chosen in an adversarial manner depending on H;_1. Special cases such as stochastic
environments, in which ¢; independently follows an identical unknown distribution, can be captured
in the following regime:

Definition 15 (Adversarial regime with a self-bounding constraint (Zimmert and Seldin, 2021))
For A € RIZ{O, C >0, and T € N, the environment is in an adversarial regime with a (A, C,T)
self-boundig constraint if the regret is bounded from below as Rp > R’ — C, where we define

T T K
> A D> Aipii
=1

t=1 i=1
As discussed in Zimmert and Seldin (2021, Section 5), this regime includes stochastic environments
with adversarial corruption, where each A; > 0 represents the suboptimality gap for action i, and C'
corresponds to the magnitude of corruption. Following prior studies such as (Zimmert and Seldin,
2021) and (Jin et al., 2023), we assume that there is a unique optimal action ¢* € [K], and that
A; > 0holds for all i € [K] \ {i"}. Denote Apin = min;e[g v} Ai.

Ry =E —E (20)

4.1. Algorithmic framework for best-of-both-worlds

This subsection provide an algorithmic framework for online learning problems based on FTRL,
which has been considered in a variety of problems including multi-armed bandits (Auer et al., 2002;
Zimmert and Seldin, 2021), combinatorial semi-bandits (Zimmert et al., 2019), graph bandits (Alon
et al., 2017; Eldowa et al., 2023), linear bandits (Cesa-Bianchi and Lugosi, 2012), and contextual
bandits (Auer et al., 2002).

Our algorithmic framework computes the probability distribution ¢; € P(K) given by

t—1
ar € argmin ¢ S~ (Lo,p) + Bru(p) + Bp) ¢ @
where /; is an unbiased estimator of 4. Regularizers 1) and ¢ are defined as follows:
1 & 1 &
- __ o« ), w(p)=—— & — i), h 0,1),a=1—a. (22
W (p) a;(pz p), P(p) a;(pz pi), where a€(0,1), a a. (22)

We refer v (and ) as the a-Tsallis entropy (and the a-Tsallis entropy) in this paper. The additional
regularizer 51[} is introduced to ensure the condition of h; = O(hy_1) is satisfied. Similar techniques,
referred to as hybrid regularizers, have also been used in existing studies such as Masoudian et al.
(2022), Tsuchiya et al. (2023b), and Jin et al. (2023). We then choose an action I(¢) € [K] from the
distribution p; € P(K) defined by

pe = (L — %) @t + vepo, (23)

where v, € [0,1/2] and py € P(K) is a distribution which we refer to as the exploration basis. By a
standard analysis of FTRL (e.g., Exercise 28.12 in Lattimore and Szepesvari, 2020), we have
Rr<E

T
Z (2% + <Et, qr — Qt+1> — BeD(qt+1,qt) + (Bt — Be—1)he + Bh/) ; (24)

t=1

11
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Algorithm 1 FTRL with Tsallis-entropy regularizers and SPM learning rates
Require: K € N,0<a < 1,8 >0,3>0,py € P(K).
1. fort=1,2,...do
2. Compute ¢; € P(K) given by (21) with ¥)(p) and ¥ (p) defined in (22).
. Set hy = —9(q) and z; > 0 based on ¢;. Compute ; based on z; and ;. Set p; by (23).
Choose I(t) so that Pr[I(t) = i] = ps; and get feedback from the environment.

3
4:
5:  Compute ¢; based on the feedback.
6
7

. Set 111 by he update rule of (10) with a1 = hy.
: end for

where D(p, q) = ¥(p) — ¥(q) — (V¥(q), p — q) is the Bregman divergence associated with ¢, and
we define hy = —(q;) and b/ = —1)(q1) < 2K~ We note that h; < hy = hpay holds for all £.

[0}

To obtain BOBW regret bounds, we design py, 0, a, B, B, and y; € [0,1/2], so that

hy = O(hi-1), E [2% + <ét, qr — Qt+1> - 6tD(Qt+1>Qt)|Ht—1] =0 (;tt) (25)

hold for some 2; € [0, zmax]. We then have Ry < E [F(B1.1; 21.7, h1.7)] + BH. By applying the

A

SPM update rule (10) with h; = h;_1, we obtain

T T
h max
Rr=0O | E [min h1 Z Zt, ing Z hizilog(eT') + % + kK (26)
t—1 2T t=1

as a direct consequence of Theorem 7, where we denote xk = Z’é‘% + B1hy + B . In an adversarial
regime with a (A, C, T') self-bounding constraint, if

htZt < W(A) . <A, qt> (27)

holds for some w(A) > 0, we have Ry = O (\/(RT + C)w(A)logT + E), which implies Ry =

0 (w(A) logT 4 /Cw(A)logT + H).

The proposed algorithm is summarized in Algorithm 1. We note that the input of pg is not
required if v; = O for all . Feedback information from the environment and the construction of A
vary with each problem setting. From the discussion in this section, we can show that Algorithm 1
achieves BOBW regret bounds as follows:

Proposition 16 Suppose that (25) holds and that some zy,.x > 0 satisfies z; < zmax for all t with
probablity 1. Then Algorithm 1 achieves R = O (E [\ /hq Zthl Zt + ﬁ]) <0 (\/hlzmaXT + /{)

in adversarial regimes, where k. = Z‘g% + B1h1 + Bh. Further, in adversarial regimes with (A, C,T)
self-bounding constraints, if (27) holds for some w(A), Algorithm I achieves

Ry =0 <w(A) log., (w(A@éziaéZ(AQ n ¢CW(A) log Q@@T@Z(m) + /s:) . (28)

12
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In the subsections below, we use the following notation:

V4 . ~ .
K= rgjx + Bih1 + Bh,  que = min{||@lloos 1 — llgtlloo}, @i = min{qu, qis} - (29)

In the following, we demonstrate that using Algorithm 1, we can achieve the BOBW regret bounds
for multi-armed bandit and linear bandit problems as shown in Table 2. The results for graph bandits
and for contextual bandits are described in Appendices D.6 and D.7, respectively.

4.2. Multi-armed bandit

In the multi-armed bandit problem, we assume that £, € [0, 1]% and that the player gets only feedback
of the incurred loss of ¢, ;. We set arbitrary o € (0, 1) and set

K

4K 1 o N 1[I(t) =1
B1 > y 2= Q@ =0, ly= W =1 ]En‘- (30)
11—« 11—« prt Dti
In addition, we set B > 0 as follows:
1 ~ 1 = 32K
<~ = =0 = —_— 31

As shown in Appendix D.4, conditions (30) and (31) are sufficient conditions for (25). Further, we
can show that hy = —1(q;) and z; in (30) satisfy hy1z; < af( and (27) with

1—a)

-« o

1 @ TTa K-1
a < [ —
w(A) = ; A, ; A, < za(l ST~ (32)

Hence, from Proposition 16, we have the following:

Theorem 17 For the K-armed bandit problem, Algorithm 1 with (30) and (31) achieves BOBW
regret bounds in Proposition 16 with hizmax = O (aﬁii» and w(A) given by (32).

Note that if « = 1/2 then w(A) = O (Zz e 1/ Ai>, which recovers the regret bounds shown by
Zimmert and Seldin (2021); Masoudian and Seldin (2021).

4.3. Linear bandit

In the linear bandit problems, each arm i € [K] is associated with a d-dimensional feature vector
¢; € R?. The environment in each round determines a loss vector 6; € R%, for which the loss
by € [—1,1] satisfies E[¢4;]0:] = (6, ¢;). After choosing an arm I(t), the player observes only the
incurred loss of ¢; 7(;). Without loss of generality, we assume that d < K and that {@}{il spans R%.
For any distribution p € P(K), denote

K
=Xl = B (6107 ]. (33)

13
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Then, there exists a distribution p € P(K) such that ¢ S(p) ~1¢; < d (see, e.g., Lattimore and
Szepesvari, 2020, Theorem 21.1). We choose pg € P(K) so that

¢ S(po) ' < ed (i€ [K]) (34)
holds for some ¢ = O(1). Let a > 1/2 and set

8cd
1-—

32d dq _ ez
(1-a28 "~ 1—a””‘ B’

If pg satisfies (34) and if parameters are given by (35), then (25) holds. Further, h; = —1(¢;) and z
in (35) satisfy hy2z; < K= and (27) with w(A) defined as

p1 > B

li = o1y ®1yS(Pe) i (35)

a(l )

-«
d o dK!—«
- - E e <=
w(A) a(l —a) Amin = A ~ a(l — a)Anin (36)

Hence, Proposition 16 leads to the following regret bounds:

Theorem 18 For linear bandit problems of K arms associated with d-dimensional vectors, Al-

gorithm 1 with pg satisfying (34) and parameters given by (35) achieves BOBW regret bounds in

Proposition 16 with hi zmax = O (%) and w(A) given by (36).

Note that we obtain 45 —% — O(dlog K) by setting « = 1 — 4log 7c» Which recovers the regret

a(l— a)

upper bound by Dann et al. (2023, Corollary 12).

5. Conclusion

In this paper, we formulated a sequential decision-making problem of adjusting the learning rate in
FTRL. For this problem, we showed that simple strategies, referred to as stability-penalty matching,
achieve optimal performance in terms of the worst-case competitive ratio. We also demonstrated that
these strategies for adaptive learning rates, combined with Tsallis-entropy regularizers, are useful
in designing best-of-both-worlds algorithms for various bandit problems, including multi-armed
bandits, graph bandits, linear bandits, and contextual bandits. The proposed approach is expected
to have a wider range of applications, including use in further problem setups and the design of
algorithms to achieve data-dependent regret bounds.
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Appendix A. Additional Related Work

Online Learning using Tsallis entropy To the best of our knowledge, the use of Tsallis entropy
in online learning is first considered by Audibert and Bubeck (2009); Abernethy et al. (2015), in
which they showed that FTRL with Tsallis entropy can achieve an O(\/ﬁ ) regret in multi-armed
bandits.

After that Tsallis entropy has been employed in many online decision-making problems: FTRL
with Tsallis entropy of exponent « = 1 — 1/log(K/s), was used to exploit the sparsity of losses,
s = {i € [K] | ls # 0}|, in multi-armed bandits (Kwon and Perchet, 2016), and FTRL with
(1—1/log K)-Tsallis entropy was used to obtain an improved regret bound in the strongly observable
graph bandit problem (Zimmert and Lattimore, 2019).

The most relevant studies to this paper are ones aimed at constructing BOBW algorithms using
FTRL with Tsallis entropy. Zimmert and Seldin (2021) showed for the first time that FTRL with
1/2-Tsallis entropy can achieve a nearly optimal logarithmic regret, whose regret bound in stochastic
regimes with adversarial corruptions is later improved by Masoudian and Seldin (2021). FTRL
with 1/2-Tsallis entropy was also proven to be powerful in combinatorial semi-bandits (Zimmert
et al., 2019), in the delayed feedback setting, where the loss of the selected action is observed after a
delay (Zimmert and Seldin, 2020; Masoudian et al., 2022), in multi-armed bandits with switching
costs, where the learner needs to pay a cost when changing their actions (Rouyer et al., 2021; Amir
et al., 2022), dueling bandits (Saha and Gaillard, 2022), and MDPs (Jin and Luo, 2020; Jin et al.,
2021).

In addition to these applications, it is known that in the decoupling setting, where different actions
can be chosen for exploration and exploitation, FTRL with 2/3-Tsallis entropy can achieve a constant
regret bound (Rouyer and Seldin, 2020). Interestingly, even in the setting of heavy-tailed multi-armed
bandits, where the n-th moment of loss is bounded by ¢” for some o > 0, FTRL with Tsallis entropy
with exponent 1/n can achieve a logarithmic regret (Huang et al., 2022). Furthermore, for the weakly
observable setting in graph bandits and for the globally observable setting in partial monitoring,
whose minimax regrets are © (7T’ 2/ 3), FTRL with 1/2-Tsallis entropy and the complement version
of Tsallis entropy play key roles in achieving BOBW guarantees (Ito et al., 2022b; Tsuchiya et al.,
2023a).

Adaptive Learning Rate Using an adaptive learning rate is one of the most common ways to
design algorithms with a desired adaptivity. In the literature, it has been standard to determine the
adaptive learning rate by relying on the stability component in (2) observed so far. Typical examples
are AdaGrad (McMahan and Streeter, 2010; Duchi et al., 2011) in online convex optimization and its
closely related algorithms that can achieve the first-order bounds (Allenberg et al., 2006; Abernethy
et al., 2012; Wei and Luo, 2018) and the second-order bounds (Cesa-Bianchi et al., 2007; Erven
et al., 2011; De Rooij et al., 2014; Gaillard et al., 2014; Orabona and P4l, 2015; Ito et al., 2022b;
Olkhovskaya et al., 2023)

In contrast, some very recent studies improve the adaptivity of algorithms by designing an
adaptive learning rate depending on the penalty component in (2), instead of the stability term. To
our knowledge, Ito et al. (2022b) is the first attempt for such a design, where the authors aimed at
constructing BOBW algorithms. A natural question that arises here is whether we can construct an
adaptive learning rate that depends on both the stability and penalty terms.

The stability-penalty-adaptive (SPA) learning rate is the first adaptive learning rate that can
achieve such simultaneous adaptivity (Tsuchiya et al., 2023b). With the SPA learning rate, they
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proved that (2) is roughly bounded by O(\/ Zthl zthyy11og T'). A comparison of the SPA learning
rate and the SPM learning rate is discussed in the following.

Comparison of SPM learning rate against SPA learning rate There are several issues in the
existing adaptive learning rate that depends on the penalty term. The biggest issue is that their regret
upper bounds in the adversarial regime (or in the worst-case) have extra O(y/logT') factors, which
is due to the loose analysis or the “ad-hoc” learning rate designs. Although the SPA learning rate
is designed in a generic form so that it can be used for generic regularizers, the authors focus only
on the Shannon entropy, not investigating the use of Tsallis entropy. As mentioned earlier, Tsallis
entropy has been proven to be powerful in many BOBW algorithms, and our adaptive learning
rate framework could be used for a wide range of online decision-making problems besides those
presented in the paper.

At a high level, this study provides a non-ad-hoc, theoretically grounded adaptive learning rate
design principle by rethinking the design of adaptive learning rate from the standpoint of competitive
analysis. Consequently, we succeeded in constructing nearly optimal BOBW algorithms, totally
removing the suboptimality caused by the existing ad-hoc design of adaptive learning rates.

Parameter-free online learning algorithms Both parameter-free algorithms (Orabona and Pil,
2016; Orabona, 2019) and ours can be interpreted as providing adaptivity to the penalty terms, but
the focus is slightly different. Penalty terms are given as hy(u*) := 1 (u*) — 1 (z), where v is the
regularizer, u* is the comparator, and x; is the output of the algorithm. Parameter-free algorithms
achieve regret bounds depending on h (u*) for any u* i.e., these are adaptive to unknown values
of ¥(u*) (which corresponds to comparator norm when () = ||z||3), but not to {¢(z;)}_,. In
contrast, our study leads to regret bounds depending on {h;(u*)}L_; under the assumption that t(u*)
is known (which can be justified when v is the negative Shannon / Tsallis entropy as 1 (u*) = 0
for the standard basis), i.e., these are adaptive to {1 (z;)}_; but not to ¥»(u*). The adaptivity to
{w(xt)};f:l plays an important role in showing BOBW bounds. Designing an algorithm that achieves
both adaptabilities simultaneously is an interesting future research direction to consider.

Appendix B. Lower Bound on the Competitive Ratio

This section provides a proof of Theorem 1, which provide a lower bound on the competitive ratio.
Note here that we use the notation 3; = 1/1, as an alternative to 7, as introduced in Section 2.
Proof of Theorem 1  Consider two problem instances (z1.7, hi.7) and (2].p, hi.7) defined as
follows: z1 = 2f =1,hy = 1l,and 2, = 0, z; = 1, hy = { fort = 2,...,T. We then have

T
F*(Zl:Tv hl:T) = 2, F*(Zi:T7 hl:T) S I%ll’l {IB + ,81} = 2\/ T (37)
1 1
For a policy , denote 31 = 71 (21, h1) = m1(2], h1) = m1(1,1). We then have

F™(z1.1, hir) > *-1-517

st
F™ (2.7, hir) > ITm%1 {51 + 61+ TBT + (Br — ﬁl)f}
> B—+Bl+2\/ T—1)— &8 > 20/E(T - 1) — B (38)
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We hence have

inf sup CR(m; z1.7, h1.7) > inf max {
o2 T€R>07h1 TEH T

>ér;%max{ < —i—ﬁ) \/ T }
: p 5 /€ T—l
Zéﬁ%max{2 T} f+§ f+§ &

F™(z1:7, hir) F™(2.p, hir) }
F*(Zl;T, hl:T) ’ F*(ZLT’ hl:T)

Appendix C. Omitted Proofs in Sections 2 and 3

C.1. Proof of Lemma 5

Proof Let fzt = minse[ﬂ hs. Then it is clear that Bt < hy and iLt_H < Bt. Further, it follows from
the assumption of h;.7 € H, £T and the definition of H, 5T in (8) that

€hy = min {‘fhtv m<i£1{§hs}} > min {he, by} = hy, (40)

which completes the proof. |

C.2. Proof of Lemma 9

Proof We first consider the case in which [; is given by (9). We then have

T T T
z - z
F(Byrs; z1m, har) = (t + (B — BH)ht) < Z ( + (B - 5t1>ht> =2)
=1 Bt Bt = Pt
41
Further, it follows from (9) that
‘2
L2t RN E (42)
B = BB h Bty ht slhs
By combining (41) and (42), we obtain F(Bl:T; 21T, hl:T) < QG(ZLT, iL1;T>.
We next consider the case of (10). We then have
T A
F(Brr; 217, hir) < 5— +Bihy+ Y ( (B — ﬁt_oht)
t=2
d z
Lk iy + - 1>
51 P tz:; ( Bi-1
< Bihi +2 Z iy 43)
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Further, for any ¢ > 2, it follows from (10) that

_ 22_ 2 24 ¢ Ze_
53:531+22%1+( ) A el h) I Y
t

Br—1ht t = Ils

which implies that 3] := \/51 +230t 2 == satisfies B < Bi. Denote T = {t € [T] | i, <
V2B}and T¢ = [T)\ T = {t € [T] | Bt+1 > V/2/3}. We then have

DERD LTS ST o8-

tGT tETC

VIS ey

<y () E

teT TtHl s=0

2 1 Zmax 2 Zmax
<V2y T < G(z1r, horyr) + (2+ V2 :
G 112 B Gur fara) + (24 V2) 7

Combining this with (43), we obtain F'(51.7; z1.7, h1.7) < 2G(21.1, iAzg:TH) + 7”2‘23‘% + B1hy. N

C.3. Proof of Lemma 10

Proof The inequalities of the lemma can be shown as follows:

-1/2

J+1 t —1/2 J+1 p
Clorirshnir) — zz(z) <Yy =) -

j=1teT; \s=1 J=1t€T; \seT;n[t]
J+1 -1/2 J+1
Zs
<22 X 7o Zv 1) e
J=1t€T; \seT;n[t] 7~ teT; \/zseTmt] Zs
+

S Z \V ] 1 =t
j=1 teT; \/Zseﬂ-m[t] zs + \/Zseﬁm[t—u s

J+1 J+1
<3 viny ([ a- 3 a)ey oy
j=1 teT; seT;N|t] seT;N[t—1] Jj=1 teT;
By setting J = 0 and 8y = hpax, We obtain
T
G (21, h1ir) < 24| hnax Y 21 (45)

t=1
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By setting 0 = 277 hyax for j = 0,1,...,J, we have

J+1 J
9];1
G(z1.r, hir) <2 E 61 E 2z <2 E ) E hize +2 |0 E 2t
j=1 teT; j=1 teT; teTy

J
=23 2> ez 42 27 hnax Y 2
j=1\ te7; teTy
J
<2 (2733 iz +2 27 b Y 2
J=11t€T; teTs

T
< 873 e + 2T T, o
t=1

where the second inequality follows from h; > 6; for j € 7; and third inequality can be shown from
the Cauchy-Schwarz inequality. |

C.4. Proof of Lemma 11

Proof Define 7(j) = max{t € [T] | hy > 6;} for j = 1,2,...,J and set 7(0) = 0 and
7(J+1) =T. Wethenhave 7; = {7(j — 1)+ 1,...,7(j)} for j = 1,2,...,J + 1. For any
non-decreasing sequence [31.7 € RZO’ we have

7(j)

T
F (Br.1; 211, hier) = Z (Z + (B — 5t—1)ht> > Z <Z + (B — 5t—1)ht>

t=1 J=lt=7(j-1)+1

ZXJ: Tz(]:) ( & +(5t—/3t—1)9j>

Bri)
. 7(j)
— D 2+ (B — Br-n) Y

j=1 (BT(J) t=7(j—1)+1
J 1 7(5)
= Z B, Z 2t + Br(jy (05 — 0541) | + Brnbir1 — Broybh
=1 \"70) y=r(j_1)+1
J () J
>23 " 10 -011) Y. a=2) [0-040)> @)
j=1 t=1(j—1)+1 j=1 teT;

where the last inequality follows from the AM-GM inequality and the fact that 8,y = 6o =0. W
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C.5. Proof of Lemma 13

Proof We first suppose that /1.7 is monotone non-increasing. Then, from Lemma 11 with 6; =
hmax2~7, we have

F*(z1.7, hir) > QZ (05 —0;41) Z 2t = 22 27101 —2720;_4) Z 2t

j=1 teT; teT;

> Z 0;_1 Z zy = H(z1.1, hir)- (48)
j=1

LteT;

Further, as Lemma 10 implies G(ZLT, hl:T) < 2H(21:T, hl:T)7 we have G(ZLT, hl:T) < 2F*(21:T, hl:T)
for non-increasing sequence hy.7.

We next consider the case in which hy.7 is a-approximately non-increasing. Define hy =
minge( h¢. Then h1 .7 18 monotone non-increasing and it holds for any ¢ that ht <h < aht We
hence have

G(z1.1, hir) < G(z1r, ahyr) < 2F* (217, ahip) = 2v/aF* (217, hi.r) < 2v/aF* (217, hir),
(49)

which completes the proof. |

C.6. Proof of Lemma 14

Proof Denote 7(j) = max{t € [T] | hy > 0;} and 7/(j) = max{t € [T] | hy1 > 0;} forj > 1
and 7(0) = 7/(0) = 0. We then have 7/(j) < 7(j) < 7/(j) + 1. We hence have

' (5)+1

o o0
H(zip,hir) =Y 00 > <Y |0 Y. =
=1 = =1

t=7'(j—1)+1

Sl X Vi

Jj=1 t=T/(j—1)+1

00
= H(21:T> h2:T+1) + \/hmaxzmax Z \/21_j
j=1

< H(21:T7 hQ:T-i—l) +4 V Pmax Zmax- (50)

C.7. Proof of Theorem 7

Proof The bounds on F' of (12) and (13) immediately follow from Lemmas ? and 10. In the
following, we show bounds that depend on F™*. Suppose h;.r € H ET . Then, hy := minsecp hs
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§atisﬁes iLt < h < é’ﬁt < fﬁt_l and iLl;T € HlT 1.e., fzt > iLtH. Hence, if 81.7 is given by (9) with
hy = h;, we have
F(Brr; 211, har) < 2G (211, hiar) < ANEF* (21, haer), (51)

where the first and second inequalities follow from Lemmas 9 and 13, respectively. This means that
(a) in Theorem 7 holds. We next see that (c) holds. If 51.7 is given by (9) with (11) we then have

F(Brr; 211, har) < 2G (217, har) (Lemma 9)
= 2G (217, Eho:r—1) = 24/€G(z1.7, hor—1)  (Definitions of ; and G in (15))
< 4\/EH (217, hor—1) (Lemma 10)

< 44/€ (H(ZLT, hir) + 4y hmaxzmax) (Lemma 14)
< 4\/% (F*(leTa iLl:T) +4 V hmaxzmax> (Lemma 11)
<4\/¢ (F*(ZLT, hi.7) + 44/ hmaxzmax> : (Definition of F* and hy < hy)

which completes the proof of (c) in Theorem 7. We next show (b) and (d) by con§idering the case in
which 3, is given by (10). Denote k = Z'é% + B1hy. If B, is given by (10) with h; = hy, we have

F(Br.1; z1.7, hir) < 2G(21:7, hars1) + O (K) (Lemma 9)
< 2G(21.1, Ehir) + O (k) (hy < Ehy_1)
= 2/€G (217, hir) + O (k) (Definition (15) of G)
< 2VEF* (1.1, hair) + O (k) (Lemmas 10 and 11)
< 2VEF* (217 hir) + O (k) . (Definition of F* and hy < hy)

This means that (b) in Theorem 7 holds. We next show (d). If 8;.7 is given by (10) with (11), we
have

F(Br7; 217, hir) < 2G (217, hoors1) + O (k) (Lemma 9)
< 2G(z1.7,€h1r) + O (K) (Definition of /)
= 2V/€G (217, har) + O (k) (Definition (15) of @)

S 2\/EF*(Z1:T7 EI:T) + (0]
< 2\/EF*(ZI:T> hi1)+ O

K) (Lemmas 10 and 11)
K), (Definition of F* and h; < hy)

(
(
which completes the proof of (d) of Theorem 7. |
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Appendix D. Analysis for Algorithm 1: FTRL with SPM Learning Rates
D.1. Facts on FTRL
Lemma 19 Suppose q; is given by (21). Then, it holds for any p* € P(K) that

)

<<gt7Qt — Qt+1> — BeD(qi+1,qt) + (Br — Bi—1) (W (p*) — ¢(Qt))) +9(p*) — ¥(q),

AN Mq
= =
S

o~
Il

=1

~+

where D(p, q) denotes the Bregman divergence associated with ).

Proof We can apply a standard analytical technique, e.g., in the proof of Lemma 1 by Ito (2021a), as
follows:

<Z ,p*> + Bry () + b (p")
T ~ _
> <Z€ aQT+1> + Br(gria) + Plgr)

T—1
= < l 7QT+1> + <éT7QT+1> + BrY(grs1) + ¥ (qri1)

AV
T
M7

At’QT> + <ET7 QT+1> + Br(qr) + ¥(qr) + BrD(qr+1,qr)

> Z (<ét7 Qt+1> + BeD(qev1,q:) + (Be—1 — Bt) ¢(C]t)> + ¥(qu),

=1

~

which implies that the desired inequality holds. |

D.2. Facts on Tsallis entropy

When % is given by (22), then the Bregman divergence associated with v is given by

K K
1 -
== (a7 +ai —a)q™ =) =D _dpi a), (52)
=1 =1
where we define
_ _ _ l—a , . _
dlp,q) = '¢"+(p—q)g* ' —a p* < —5— (min{p, ¢})° 2(p—q)° (53)
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Lemma 20 (stability for one dimensional case) Let p,q € (0,1). Suppose { > —1_70‘(]0‘*1. We

then have
2q2—a£2
l—a

¢-(qg—p)—dp,q) < (54)

Proof For any given ¢ and /, the left-hand side of (54) is concave in p. Hence, this is maximized
when

d B o
d*p(ﬁ'(q—p)—d(p,q»:—ﬁ—q“ Y+prt=o0. (55)
For such p, we have

1 a1 1 a1

1 f— o— J— o—
p=(¢""t+0T1< (qo“l - aq"“1> =q (1 - a> (56)

1 a—1
= gexp 1 log [ 1+ 5 < gexp (log2) = 2q, 57
o —

where the first equality follows from (55) and the first inequality follows from the assumption of

> — 177"‘(]&_1. Further, from the intermediate value theorem and the fact that p®~2 is monotone

decreasing in p, we have
|€| — ‘pa—l _ qa—1|
> min {|(r = 1)p* |, (@ = )¢ [} [p — g
= (1 — a) max{p, q}a_pr - q’a

where the first equality follows from (55) and the inequality follows from the fact that p — p®~!isa
convex function. This implies

1 —Q
p—al < T max{p.q}* " |(]. (58)

As we have ¢ - (¢ — p) = d(p, q) + d(q, p) for p satisfying (55), we have

£ (g~ )~ d(p.q) = dlg.p) <+ (minfp, }**)(p — ) (59

<3 min{p, ¢}* *(max{p, ¢}*>~*¢)?, (60)

1
(1—-a)
where the first inequality follows from (53) and the second inequality follows from (58). If p > ¢, as
we have p < 2¢ from (56), it holds that

t-(qg—p)—dp,q) < 21—a) min{p, ¢}* %(max{p, ¢}*~*¢)* (61)
1 a—2 sape 20770
< = .
<o) ((2¢)°7%0) o (62)
If p < g, we have
1 2—a p2 q2—o¢€2
t-(qg—p)—dp,q) <l (q—p) < —— max{p,¢}” "7 = (63)

1—

T 1«
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where the first inequality follows from d(p, q) > 0, the second inequality follows form (58), and the
equality follows from the assumption of p < ¢. As (62) holds if p > ¢ and (63) holds otherwise, we
have (54) for all p. [ |

Lemma 21 (stability for probability simplex) Fix arbitrary i* € [K]| and q € P(K). If {; >
_ITTaqq_lfO” all i € [K], we then have

(f,q—p) _D(p’ = 1 (Z 2 0%2) (64)

forany p € P(K). If t; > —152¢* " foralli € [K]\ {i*} and {; < 159(1 — q;+)*"L, we then
have

(a—p)=Dp.g) < T—— | Dol "+ (1—qi)" 6 (65)

1F£0*
foranyp € P(K).
Proof From the definition of the Bregman divergence, we have

(¢,q—p) — D(p,q)

1 1
=52 (2 (e —pi) = dpi, ) + 5 | 26 - (gir = pir) = dlpiv; a) = d(pi,qi)
1F£L* 1F£T*
1
< ) Z (2£z ) ((] p’L) - d(pzy(h))
1£L*
I .
+ g min g 26 - (g = pir) = dpiv, i), 26+ - (0= — pir) =Y d(pi,a) ¢ - (66)
1F£0*
From Lemma 20, if £; > ——qf‘ ! we have
8q; "0}
20; - (¢i — pi) — d(pi, ¢i) < 1 a (67)
-«
Hence, if it holds for all i € [K] that ¢; > —159¢%~ ! we have (64). Further, we have
g —pir=(L—pir) = (1—gr) = > (pi—a) (63)
i€[K\{i*}
As we have (1 — g ) < g forany i € [K]\ {i*}, if 4= < 1 15%(1 — ¢;+)*!, we then have
—lp > =124 forany i € [K]\ {i*}. Hence, Lemma 20 1mphes
2 (= —pir) — Y dpig) = Y (=20 (g — pi) — d(pi,q)) (69)
i€[KN\{i*} i€[KN\{i*}
2—a
<2 S eergerc—2a| Y a] =—(-g)ed. qo
I e Tl -« !

[0
ie[K\{i*} i€[K]\{i*}
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By combining this with (66) and (67) for i € [K] \ {i*}, we obtain (65). |

Lemma 22 Fix arbitrary g € P(K) and let i* € argmax;cg) ¢- If [4;] < 7% min{g;~, (1 —
¢+ )}~ holds for all i € [K], we have

4 —a
(g =p)=D(p.g) < T—— | D af ™ +min{gie, (1 - ;o) }76 (1)
1£1*

foranyp € P(K).

Proof As we have ¢; < ¢;» and qz < 1 — ¢;» holds for any i € [K]\ {i*}, we have |{;| <
e min{gq, 1 — g} < H2¢0 M forall i € [K]\ {i*}. If ¢+ < 1 — g, from (64) in
Lemma 21, we have

2—ap2 2—a 2 . 2—a y2
(g —p) = D(p,q) < T— (Zq €>_1_a >0 +min{g, 1 — g}

£t
(72)
If ¢+ > 1 — g;», from (65) in Lemma 21, we have
<€7 q— p> - D(pa Z q2 a€2 ]_ — qi*)2_a€%*
£t
4 2—c 2 : 2—a )2

< g | 2 d e tminfge 1 - g} 73)

i
]

Lemma 23 Fix arbitrary w > 1. For q,r € P(K), suppose that r; < wq; holds for all i. We then

have —ih(r) < —(1 + (w — Da)u(g) < —wir(q).

Proof As v(z) is a convex function, we have

K
vla) = 90) < (Vo(a)q =) =~ Y (aq? ™ = (g = )
K - K
— =Y - D) = 2@ - Dl )
i=1 p i=1
(w=1)> (g = —(w—Doa(q) < —(w—D(q), (74
=1

where the second inequality follows from the assumption of r; < wg;. This implies that —(r)

<
—(1+ (w=1a)p(q) < —wy(q). u
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Lemma 24 Let L, ¢ € RE and w = \/2. Suppose q,r € P(K) are given by

q € argmin {(L,p) + Bv(p) + Bv(p) } , (75)
pEP(K)

r € argmin { (L + ¢, p) + B'v(p) + BY(p) } (76)
peP(K)

with0 < < " and 0 < j3, and
K

K
o) = S0 —p) D)= = > o), )

i=1 i=1

Q

where 0 < @ < a < 1. Denote g, = min {1 — maxie[K] i, MaX;c (K] qi}. We also assume

HéHOOSmax{l B ‘2" e 1} (78)
/ a—1 1_(”‘}6&_1’ a—a
OSB—Bgmax{(l—w )B’Tﬁq* } (79)

We then have r; < 2q; for all i € [K].

Proof Leti” € arg max;c (g g;- We then have g, = min{g;«,1 — ¢;-}. Forany i € [K]\ {i"}, we
have ¢; < gy and ¢; = 1 — Zi’E[K]\{i} gy < 1 — g;=, which implies ¢; < g.. If ¢;+ > q., we have
gi > 1 — g;=, which means ¢;= > 1/2. Hence, we can see that it suffices to show r; < 2¢; for all
i € [K] such that ¢; < .. In fact, if ¢; > g, such i must be i* and g; > 1/2, and therefore it is
glear that r; < 1 < 2g;. In the following, we focus on ¢ such that ¢; < g,.

We define a monotone decreasing function g : R-g — R by

g(z) = Ba* ' + Bz L (80)
and define
s € argmin {(L + £, p) + By (p) + B(p) } - (81)
pEP(K)

We first show that w™'¢g; < s; < wg; holds for all i such that ¢; < ¢,. From the first-order
optimality condition, there exists A € R such that

9(si) = 9(q) + 4 + A (82)
holds for all i € [K]. If A\ < —||¢||o0, we have g(s;) < g(g;) for all i € [K]. Then, as g is monotone
decreasing, we have s; > ¢; for all ¢ € [K|, which contradicts to ||s||1 = ||¢||1 = 1. Hence, we have
A > —||¢]|o- Similarly, we can see A < ||¢||oo. We hence have

9(qi) = 2|/¢llco < 9(si) < 9(q) + 2[[€]|oo (83)

for all i € [K]. This implies that w™'¢; < s; < wg; for all 4 such that ¢; < g.. In fact, we have

0(0as) = Bloog)™ + Blwg) = Bo= + B — B(1 — o N)g ! — B(1 — w1y

< 9(g) = A1 =W DA = B(1 - W < ga) ~ 2hloe < gls), B
gwg) =Bw ) + Blw qz-)‘i‘1 = B¢+ BT 4+ Bw T = g+ BT = D!

> glg) + B — " 1)ge 1 B -0 V)gE > glg) + 2l > g(s1).  (85)
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Since g is a decreasing function, these implies that w™'¢q; < 5; < wyg;.
We next show that r; < ws; holds for all ¢ such that ¢; < g,.. From the first-order optimality
condition, there exists A € R such that

g(r) + (B = B)re™t = g(si) + A (86)

holds for all i € [K]. If A\ < 0, we have g(r;) = g(s;) +A— (8’ —B)r?! < g(s;), which contradicts
to ||7]]1 = ||s||1 = 1. We hence have A > 0, which implies

g(ri) + (8" = B)r ™ = g(si) + A > g(si). (87)
For i € [K] such that ¢; < ¢, we have

g(wsi) + (8" = B)(wsi)* ! = B st 4 BT 4 (B — B)sp
= g(si) + B! = 1)s¢ 7 4 Bw = 1)s27 4 (B — B)s>

R R e (R R Wﬁqf‘“) o

3 . . » a—ao 1 _w@_l _
= glsi) + B = )si T+ (q) s
1

= g(s) + B = D)+ (1 —w* BT = g(si) < g(ri) + (8 = B)ry .

This implies that 7; < ws; since the function of z — g(z) + (8’ — B)z*~! is monotone decreasing.
Y g g

We hence have r; < ws; < w?q; = 2¢; for all i € [K] such that ¢; < q., which completes the
proof. |

Lemma 25 Fix arbitrary L € RX and w € (1,2]. Let G = (V = [K],E) be an arbitrary
undirected graph such that (i,i) € E holds for all i € V, and let N (1) denote the neighborhood of i,
ie, N(1)={j €V |(i,j) € E}. Suppose q,r € P(K) are given by

q € argmin {(L,p) + B¢(p) + v (p)} (88)
pEP(K)
r € argmin {(L + £, p) + B(p) + B (p) } (89)
PEP(K)
with
1 & _ 1., .
Y(p) = s ;(pz‘ —pi), Y(p)= - ;(pz‘ - Di), (90)
where0 <a<a<l, > W and B > 0. Suppose { is given by
1[i' e N(j)]
b= ==, 91)
Zi’eN(j) Qv

for some j and ' € [0,1)5. We then have r; < wq; for all i € [K].
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Proof Denote Q;j = 3 ;¢ ;) ¢i- Define

g(x) = B~ + B2l (92)
From the first-order optimality condition, there exists A € R such that

g(ri) = g(q) + 4 — A 93)

holds for all i € [K]. As g is monotone decreasing and ||7||1 = ||¢|]1 = 1, we have 0 < A < [|{]|
We also have ||/||oc < @Q; fron the assumption of (91). Suppose @Q); > € with ¢ := Gl

- = <K
1—(/.10‘_1) =
—wl}l < —Il(. We then have A < 1/Q; < 1/e. For i € [K], we have

9(ri) > g(@) — A > glagi) — 1/e > glwg) + B(1 —w® Ngd ™ = 1/e > g(wgi),  (94)

which implies r; < wg;. Suppose (); < e. Then, noting that ¢ < 1/K, we can see that i* €
arg max;c (g ¢i is not included in N (j) as ¢;» > 1/K. As we have r; > ¢; forall i € [K] \ N(j),
we have 7+ — g+ < Zie[K]\NU) (ri—aqi) = ZieN(j)(qi —r;) < Qj <e.Denote a := 1+ /gix > 1.
We then have @ = 1 + (r; — ¢i+)/qi+ < 1+ Ke < w. In addition, we have

9(qi) —g(ri) = A =i < A= g(qix) — g(ri) = g(air) — g(agix) < g(qi) — g(ag:),  (95)

where the last inequality follows from the fact that the function of = — g(x) — g(ax) is monotone
non-increasing for a > 1. This means that g(ag;) < g(r;), which implies ; < ag; as g is monotone
decreasing. By combining this with a < w, we obtain r; < wg; for all i € [K]. [ |

Lemma 26 Fix arbitrary L € RX and w > 1. Suppose q,r € P(K) are given by

q € argmin {(L,p) + B¢ (p) + BY(p) } , (96)
peEP(K)
r € argmin {(L + £, p) + B¢ (p) + BY(p)} 97)
peP(K)
with
1 & _ 18
Y(p) = - S 0 —p), lp) = - > 0F —pi), (98)

=1 i=1

where 0 < & < a < 1, and B > 0. Suppose £ € Rlz{o and

K
> aqiti < % (1=w* g+ (1 -w*h)B) (99)
=1

We then have r; < wgq; for all i € [K].
Proof Define

g(x) = Bzt + pz L (100)
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From the first-order optimality condition, there exists A € R such that

g(ri) = g(qi) + i — X (101)

As g is monotone decreasing and ||r||; = ||¢|[1 = 1, we have 0 < X\ < ||{||. Let ¢'(x) =
(a —1)Br* 2 + (a — 1)Bx* 2 < 0 denote the derivative of g(x). As g is a convex function, we
have

9(ri) > 9(ai) +9'(qi)(ri — ¢i)- (102)
Combining (101) and (102), we obtain
b= X > g (q)(ri — @), (103)
which implies
K K
PCACHRCEDY Z ri—q)=1-1=0. (104)
i=1 izl

‘We hence have

K . -1 g )
A< ( (—9'(a:)) ) > (—d'(a) . (105)
i=1 ;
Further, since it holds for any = € (0, 1) that

(1-a)p+(1-a)B)r ' <(1-a)fz*?+(1-a)Bz* %= —¢(z)
< (A-a)p+1-a)p)a?

we have
< 1 = 1 -1 1
Do (~d@) =Y (1—a)p+(1-a)f) @ = (1-a)f+1-a))  + (106
i=1 i=1
and
K K
Z b < Z (1—-a)f+(1- 07)5)71 il (107)

Il
—

i=1 %
<((-@p+(1-@F) " -+ (-5, (08)

where the second inequality follows from the assumption of (99). Combining (105), (106) and (107),
we obtain

A< (1 —wHB+ (1 -w*HB. (109)
Therefore, we have

9(wa;) = Blwa)* ™ + Blwar) ™ = g(gi) — (1 —w* H)Bg ! = (1w H)Bgf ™ (110)

<g(g) —(1=w* B = (1= HB < glas) — A < g(r) (111)
for any 7 € [K|, where the second and the last inequalities follow from (109) and (101) with ¢; > 0.
Hence, as g is monotone decreasing, we have r; < wg;. |
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D.3. Proof of Proposition 16

Proof Fix arbitrary i* € [K]. Let p* € {0, 1}’ denote the indicator vector of i*, Le., pj. = land
p; =0foralli € [K]\ {i*}. From the definition (23) of p; and the assumption that /; is an unbiased
estimator of /;, we have

=]
3
T

=
E

T
Gy — th,i*]
t=1

t=1

gj
E

(e, pr — ")

~
Il
i

él_j
WE

T
(Ceoqr —p*) + > (b po — Qt>]
t=1

T
(G — ") +2Z%] . (112)
t=1

o~
Il
—

IA
=
N

t

1

From Lemma 19, we have

XT: <ét7 q — P*> < XT: <<gt7Qt - C]t+1> — BeD(qev1,qt) + (Be — Be—1)he + 571) , o (113)

t=1 t=1

where D(p, q) represents the Bregman divergence associated with 1(

¥(q) — (VY(q),p — q), and we denote hy = —1(q;) and h = —)(qq)
these inequalities, we obtain

» D(p,q) = ¥(p) —

D), i.e
< éKl_a. By combining

Rr(i*) <E

T
Z (2% + <ét,Qt - Qt+1> — BiD(q+1,q) + (Bt — Btfl)ht) + Bh
=1

T

<0 (E Z <Zt + (B — 5t—1)ht—1> + Bh >
— \ B
< O (E[F(Bvr; 211, ho:r—1)] + Bh) | (114)

where the second inequality follows from the assumption of (25) and we define hy = h. From
Theorem 7, if 5; is given by (10) with h; = h;_1 (which is clearly an upper bound on h;_1), we have

T
Zmax >
F(Bv.1; 21:7, ho:r—1) = O hlzzt"‘ 3 + pih1 |, (115)
=1
T Zmax z N
F(B1.1; z1.17, hor—1) = O lilfl Zzthtlog(ET)+ mzx L4 ];fx + Bihy | . (116)
&Z7 t=1

By combining (114) and (115), we obtain Ry = O (E [\ / hq Zle zt + /i:| ) <0 (\/hlzmaXT + H)

in adversarial regimes.
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We next consider the case of adversarial regimes with self-bounding constraints. By combining
(114), (116), and Jensen’s inequality, we obtain

T Zmax P
Zztht] log(eT) + %1 + K 117)

t=1

Rr =0 E

for any ¢ > 1/T. Under the condition of adversarial regimes with a (A, C,T) self-bounding
constraint, we have

T

Z <A7pt>

t=1

T
Z}A%igmdME

t=1

E < 2w(A)(Rr +2C), (118)

T
Z Ztht] S w(A) E

where the first inequality follows from (27), the second inequality follows from py; = (1 — v¢)qe +
YePoi > %qti, and the last inequality follows from the assumption of self-bounding constraints given
in Definition 15. We hence have

Rr =0 (\/w(A)(RT + C)log(eT) + ZmaTXhl + H) , (119)

which implies

Ry =0 (w(A) log(eT') + \/Cw(A) log(eT') + ZmaTxhl + :‘i) . (120)

We here used the fact that X = O(vV AX + B) implies X = O(A + B) forany X, A, B > 0. By
setting
ZmaxN1

T T WA+ Cw(A) (120

we obtain

Zmaxh1T ZmaxP1T
fir =0 (“’(A) os: (e tum) * \/ oo os (S e ) * ) -

|
D.4. Multi-Armed Bandit: Proof of Theorem 17
From Proposition 16, it suffices to verify that conditions (25) and (27) hold.
Verifying condition (25) In the following, we denote
I(t) € arg max q;. (122)

1€[K]
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We then have Priey = G i) > 1/K, and hence étj(t) Pt m) <K< (1*:11)51 < (172“)'&, Hence,
from Lemma 21 with i* = I(t), we have
. 4 _ _
E [<ft»Qt - Qt+1> — BeD(qi41,q1)|[Hi—1| < A Z a i

i€[KI\{I(t)}
< — =0+ ), 123
S 2 %; 5 ) a2
ie[KI\{1(t)}
which implies that the second part of (25) holds.

We next show that the first part of (25) holds. Define ¢; € arg miny,ep( ) {<Z§;11 és,p> + B (p) + Blﬁ(p)}

We show ¢}, < 2¢; and g;11; < 2¢}; by using Lemmas 24 and 25, respectively. The condition for
Lemma 24 can be verified as follows: From the definition of z;, we have

K
2z < 17%1* o (124)
and
o7 _ 1— a)qa
hy = t*1—2a1>(7f*. 125
t = %b(Qt) o ( ) = Aoy ( )

We hence have
Zt 4aK ql —2a

B Bt = . (126)
A Btht+1 ﬂtht /81(1 - a)Q
Therefore, from the definition of 3; in (30), if « < 1/2, we have
4K gl 2 4K —a -1
. B <(1-v2")B (127)

<1
f1(l—a)? = f1(l—a) = —
and hence thg condition (79) in Lemma 24 holds. If & > 1/2, as we have @ = 1 — «, from the
definition of 5 in (31), we obtain

4aK 1—2« 1— 264—1 o

LQ < @ < 1-v2 @, (128)

51(1 — Oé) 8 \/5
which implies the condition (79) in Lemma 24 holds. Hence, by applying Lemma 24 with ¢ = 0,
B = B, B = Bit1, and @ = 1 — o, we obtain ¢, < 2¢y; for all i € [K]. Further, as we have
Bir1 > B > 4Ka > 122%, we can apply Lemma 25 withw = 2, E = {(i,i) | i € [K]}, £ = {4,
and 3 = (B441/2 to obtain ¢¢+1,; < 2¢;,; for all i € [K]. We hence have ¢;11; < 4¢; foralli € [K].
Therefore, from Lemma 23, we obtain h;y; = O(h;), which means that the first part of (25) holds.

oz o
2Bg2 = = ghdl.

Verifying condition (27) For any i* € [K|, we have

K
1 ~l—a < 1 l1—a 1— _ V-«
T gt =7, Z Qi qt,I(t))
=1 el K\ (1)}
2 —a 2 o 2(K — 1)~
< 1-a Z qtli < 1o Z qtli < (1_0[) (129)
ie[KI\N{I(t)} i€[K]\{i*}
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and

K K
1 1 1 (K — 1)t~
=t () (S ) -1 X S
=1 =1

ie[K\{i*}

We hence have hizmax < ?yf;)loz Further, from Holder’s inequality, we have

IN

2 a 2 1 —a
asio | 2wt =i X )
i€[K)\{i*} ie[K\{i*} —°

a 11—«

T E - Z ! Z AN

1—a
ie[K\{i*} A; @ i€[K\{i*}

IN

and

1 « _ 1 1 e )&
he < > Z ;| = o Z E(Az%z)
i€[K\{i*} ie[K\{i} !
11—« @
1 1
<t s
_ o . Z A Aﬁ . Z ‘ A’thl
ie[K\{i*} B ie[K]\{i*}
We hence have
-« «
I < 2 A‘ﬁ A_lea A
t%_m ' Z i ‘ Z 7 < 7Qt>7
ie[K\{i*} i£[K]\{i*}

which means that (27) holds with w(A) defined by (32).

D.5. Linear Bandit: Proof of Theorem 18

From Proposition 16, it suffices to verify that conditions (25) and (27) hold.
Verifying condition (25) From (35) and (34), we have

o a—1
0 < <4 < (1 =g
Yt 4

B
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Hence, we can apply Lemma 22 to obtain the following:

E K&, qr — (Jt+1> — ﬂtD(th,qt)mt_l} <%

Z €t27, ~z?z a’Ht—ll

Zﬁst pt) ¢1(t)¢?(t)5(pt)_l¢i§§a|7'lt1]

/\

(1 —a)p
— quﬂs( )Lt < 8 i¢TS( )L
- (1—a)B; 4 i D\qt Q= (1— )b v i O\qt 1,

8 o 8 & .
- m ( Zqﬁz@ e ) mtf (5(%) ' Zfﬁz’fb?qzm‘) a.

i=1
8 o 8d ,a z
= ———tr(ly)g, * = m%l* =0 (é) ; (135)

(1—a)B
where tr(M) represents the trace of a matrix M and I; € R?*? denotes the identity matrix of size d.
As it is clear from the definition of 7, in (35) that v, = O(z;/3;), we can verify that the second part
of (25) holds. We next see that hy11 = O(h;). From (125) and the definition of z;, we have

2 . 4O[dq1 2c - Baql 2c

Bt-‘rl Bt ﬁthtJrl /Btht ,61(1 — ()[)2 ~ ] )

(136)

where the first equality comes from (10), the second equality follows from the definition hy in
Algorithm 1, the first inequality follows from (125) and the definition of z; in (35), and the last
inequality follows from the condition on 3 in (35). Thus, we can apply Lemma 24 with / = 0y,
B = B¢, and 8/ = Bi11 to obtain ki1 = O(hy). Therefore, it has been confirmed that condition (25)
is satisfied.

Verifying condition (27) From the definition of z; in (35), and from (130), we have hizpax <

a(ld_a) K172 1In addition, for any i* € [K] we have
d 11—« d Lo
Zt S m (1 - qtj‘(t)> S 1 —a (1 — qt,i*)
l—«
d d 11—«
< W Amin Z Qti < W ((A, ) ) (137)
min ie[K\{i*} min
By combining this with (132), we obtain
11—«
d PR T
h < AC{ 1 A 11—« A 138
t2t > Oé( —Oé) min ; ) < aqt>, ( )

which implies that (27) holds with w(A) defined by (36).
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D.6. Graph bandit

In the graph bandit problems, the player is given feedback graph G = (V, E), where V = [K] is
the set of vertices and £ C V x V is the set of edges. In this paper, we assume that the graph is
undirected and that every vertex has a self-loop, i.e., (i,7) € Fif (j,i) € E and (¢,7) € E for all
i,7 € V. Denote N (i) = {j € [K] | (i,7) € E}. The feedback from the environment is the values
of losses for vertices adjacent to the chosen vertex, i.e., the player can observe ¢;; forall i € N(I(t)),
after incurring the loss of £, 1(t)- Let P,; € [0, 1] denote the probability that ¢;; is observed, i.e., let
Pi=> jeNG) Ptj- Let ¢ > 1 denote the independence number of the feedback graph G.

In applying Algorithm 1 to graph bandit problems, we choose arbitrary o € (0,1) and set
parameters as

4K 1 ; _1ie NU®))

—0, by=
61_ 1_@ 1—a - Pti N ; te Ptz‘

by (139)

We also set 5 > 0 by (31). Then, (25) holds under the conditions of (31) and (139). In addition, we

1—
can show that hy = —1(¢) and z; in (30) satisfy hyz; < 2——— (1 ) (K) a and that (27) holds with
w(A) defined by

l—«

B 2C 1 _ K 11—«
<8 = Sy e | 28 < aiasm (c) 0w

Hence, Proposition 16 leads to the following regret bounds:

Theorem 27 Let G = (V = [K], E) be an undirected graph, of which all vertices have self-
loops, with the independence number ( > 1. For the graph bandit problem associated with G,
Algorithm I with (139) and (31) achieves BOBW regret bounds in Proposition 16 with hizyax =

l1—a
0 <a(1<a) (%) > and w(A) given by (140).

Proof From Proposition 16, it suffices to verify that conditions (25) and (27) hold.

X ¢
Verifying condition (25) As {, 7, < ;=% d ((ti < K we can apply Lemma 21 with i* = I(t) to
’ t,I(t

obtain

E [<@t, qt — Qt+1> - 5tD(Qt+1,Qt)|IHt*1] < (1

K
EZ@@W&J
=1

1 - LI € N(@)} 5o I Y
S(l—a)ﬁtELZ; P2 e\ =00 & B ‘O<5t> (14D

Further, h; 11 = O(h;) can be shown following the approach outlined in Section D.4. Thus, it has
been confirmed that condition (25) is satisfied.

39



ITO TSUCHIYA HONDA

Verifying condition (27) We can obtain a bound on z; from Lemma 1 by Eldowa et al. (2023) as
follows:

Lemma 28 Let ¢ > 1 be the independence number of G. We then have

Z q” (1+¢%) (1 - qtj(t))l_a : (142)

Proof From the proof of Lemma 1 by Eldowa et al. (2023), there exists an independent set .S C
[K]\ {I(t)} such that

3 qtl <Z . (143)

iG[K}\{f(t)} ies

From Holder’s inequality, we have

11—«
> g <9 (Z cm) : (144)

i€S €S
As S is an independent set of G'and S C [K] \ {I(t)}, we have

11—«

11—«
11—«
|S|* (Z %:) <¢“ Z ti = ¢ (1 - qtj(t)> : (145)
€S iK1 (1)}
In addition, we have
22—« 2—«
G« ' -« < ) 1=a
—— < < <(l—q.; : (146)
Pt’j(t) Qs Qi th(t)
Combining these inequalities, we obtain (142). |
From this lemma, we have
14 ¢* -«
T (1 — qtj(t)> . (147)
From this and (130), we have hjzmax < a(l ) CO‘Kl . In addition, for any i* € [K| we have

1+ ¢ e 14¢7 l-a
Ztgl—oz( _qt’f()> Sl—a(l_qm*)
l-a
1+ Ca 1+ Ca 1—-a
<——0 | Auin Y @ < ————= ((A,q)' 7, (148)
_ l1-o . 11— )
(1 OJ)Amm ZE[K]\{Z*} (1 Q)Amln
By combining this with (132), we obtain
l1-o
2¢“
hiz < M—Afm; AT (A, (149)
1F£i*
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which implies that (27) holds with w(A) defined by (140). |

. ¢ K\ K . 1
Note that we can obtain > (f> =0 (C log (1 + f>> by setting & = 1 — 57y »

which recovers the minimax regret upper bound shown by Eldowa et al. (2023).

D.7. Contextual bandit

In the contextual bandit problems, or the bandit problems with expert advices, each action ¢ is
associated with an expert, which provides an advice ¢;; € P(M ) in each round ¢. After choosing an
expert I(t) € [K], the player can observe the advices ¢y; of all experts ¢ € [K], and pick J(t) € [M]
following the distribution of ¢; r(;). Then the player gets feedback of the incurred loss 4 () where
¢, € [0, 1] is chosen by the environment before the player chooses I(t). Let P, € P(M) denote
the distribution that J(¢) follows given p; and {¢tz‘}fi1, ie., Py = Zfil DtiPtij-

Let @« > 1/2 and set

8K

320 Mg 0 2. — U 5y a(0)
1—a’ )

bl z - ) ’y -
1-a)28 " 1-a’ " 20

B> B> (150)

If parameters are given by (150), then (25) holds. Further, h; = —(q;) and z; in (150) satisfy

hiz < %KH and (27) with w(A) defined as

11—«

M - MK
A)= ——— A3 A e 151
WA= gy S ; i = a(l— a)Amin (>

A

Hence, Proposition 16 leads to the following regret bounds:

Theorem 29 For contextual bandit problems of M arms with K experts, Algorithm 1 with parame-
ters given by (150) achieves BOBW regret bounds in Proposition 16 with hizmax = O (gﬁﬁ;?)
and w(A) given by (151).

Proof From Proposition 16, it suffices to verify that conditions (25) and (27) hold.

Verifying condition (25) As g, i) > 1/K, we have

) AN ¢, 7 ¢, 7 1
I (0PI, t,1(),J (1) t1(),J(1)
i = < < < < K. (152)

Pt,J(t) B Zf; Qti¢ti,J(t) B qtj(t)¢t,i(t),J(t) B Qi) B

S

41



ITO TSUCHIYA HONDA

Hence, we can apply Lemma 21 with ¢* = I(¢) to obtain

B{(f—aen) Al a0li] <

K
E|S 2 m]
=1

K K
4 QstzJ ~2 4 [ ¢tiJ ~2 ]
< -——7E : M| £ —=7 E ) P s P
(1 - O[)ﬁt [Z 7 t2J( t) (1 - )ﬂt i=1 PtQJ( t)
N 4 Qbm] ~2 a Qtz¢tl]
= 0ok ZZ ok ZZ .
] 14=1 J 1i=1
4 Ptj -« 4Mqtl*_a <2t>
N dgea AMa (2] (153)
(1—a)B =1 Pij K (1— )b Bt

Further, hi1 = O(h¢) can be shown following the approach outlined in Section D.4. In fact, as
we have Em > (0 and Z 1 qum <1landpg; > SK , we can apply Lemma 26 with w = 2, { = Et.
In addition, (152) and the definition of 5 and B in (150) ensure that we can apply Lemma 24 with
w=2,¢=0,and i* = I (t). Thus, it has been confirmed that condition (25) is satisfied.

Verifying condition (27) From the definition of z; in (150), and from (130), we have hizpax <
d )Klfa. In addition, for any i* € [K] we have

a(l-a
M I-a M 1—
Ztﬁmo—qtj(t)) S?(l—%z) “
11—«
M M 1—
< W Amin Z qti < W (<A7Qt>) “.
min ie[K]\{i*} min
By combining this with (132), we obtain
l1—a
M
htZt < rAiunl Z A 1 “ <A7qt>7
1F£i*
which implies that (27) holds with w(A) defined by (151). [ |

which recovers the

Note that we obtain %(If_l;; = O(M log K) by setting o« = 1 —

regret upper bound by Dann et al. (2023, Corollary 13).

_1
4log K~
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