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Abstract
We revisit the problem of offline reinforcement learning with value function realizability but without
Bellman completeness. Previous work by Xie and Jiang (2021) and Foster et al. (2022) left open
the question of whether bounded (all-policy) concentrability coefficient along with trajectory-based
offline data admits a polynomial sample complexity. In this work, we provide a negative answer to
this question for the task of offline policy evaluation. In addition to addressing this question, we
provide a rather complete picture for offline policy evaluation with only value function realizability.
Our primary findings are threefold: 1) The sample complexity of offline policy evaluation is governed
by the concentrability coefficient in an aggregated Markov Transition Model jointly determined by
the function class and the offline data distribution, rather than that in the original MDP. This unifies
and generalizes the ideas of Xie and Jiang (2021) and Foster et al. (2022), 2) The concentrability
coefficient in the aggregated Markov Transition Model may grow exponentially with the horizon
length, even when the concentrability coefficient in the original MDP is small and the offline data is
admissible (i.e., the data distribution equals the occupancy measure of some policy), 3) Under value
function realizability, there is a generic reduction that can convert any hard instance with admissible
data to a hard instance with trajectory data, implying that trajectory data offers no extra benefits over
admissible data. These three pieces jointly resolve the open problem, though each of them could be
of independent interest.

1. Introduction

In offline Reinforcement Learning (RL), the goal of a learner is to either find the optimal policy
(policy optimization) or evaluate a given policy (policy evaluation) based solely on pre-collected
data (i.e., offline data), without direct interaction with the environment. This paradigm is particularly
relevant in situations where real-time interaction is infeasible or expensive, e.g., in safety-critical
applications such as healthcare and autonomous driving. The primary challenge in offline RL comes
from the mismatch between the offline data distribution and the distribution induced by the target
policy (i.e., the optimal policy or the policy to be evaluated), which can severely affect the efficacy of
the output policy or evaluation. Therefore, a large portion of offline RL research aims to mitigate the
impact of this mismatch.

* Authors are listed in alphabetical order by last name.
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To deal with large state spaces in RL, function approximation is used to generalize the learned
knowledge across states. One such approach is the model-based approach, where the learner explicitly
models the transition and the reward functions. Theoretical research for this approach studies the
sample complexity under model realizability, i.e., assuming that the learner is provided with a model
class that includes the true model (Uehara and Sun, 2021). In this setting, the minimax sample
complexity is polynomial in the concentrability coefficient and the complexity of the model class
(Uehara and Sun, 2021). The concentrability coefficient of a policy is defined as the largest ratio
between the probability of a state-action pair being visited by that policy and the frequency of it
in the offline data (formally defined in Section 2.2.1), which captures the mismatch between the
distribution induced by the offline data and the target policy. The model class complexity captures
the diversity of the model class, and unfortunately, could be large in practical RL settings.

Another approach is the value-based approach, where the learner only approximates the value
function of the target policy. Usually, the value function class complexity is much smaller than the
model class complexity, and is sometimes considered as a simpler and more direct approach. However,
under value function realizability, all prior works that establish polynomial sample complexity
make additional assumptions than just bounded concentrability coefficient, for example, Bellman
completeness (Chen and Jiang, 2019), β-incompleteness with β < 1 (Zanette, 2023), or density-
ratio realizability (Xie and Jiang, 2020), pushforward concentrability (Xie and Jiang, 2021), etc.
While, any of these additional conditions along with bounded concentrability coefficient can lead to
polynomial sample complexity, it remained open for a long time whether bounded concentrability
alone is enough for sample efficient offline RL.

The work of Foster et al. (2022) gave a negative answer to this open problem. They showed that
realizability and concentrability alone cannot ensure polynomial sample complexity. Their lower
bound construction, however, relies on the offline data being generated in an unnatural way — the
offline data distribution has to either cover state-actions that will never be visited by any policy, or
has to come from just the first two steps in an episode, with all data from later steps hidden from the
learner. Thus, the following question remains open:

Can offline RL be sample efficient under value function realizability, bounded all-policy
concentrability, and natural offline data distribution such as trajectories generated by a single

behavior policy?

Our work takes a first step to addressing this questions, where we consider the setting of offline
policy evaluation (OPE), where the goal is to evaluate the expected payoff of a prespecified policy.
We answer the above question in the negative and show that there exist MDP instances where the
offline data consists of trajectories generated by a single behavior policy, the value function is
realized by a small function class, and the concentrability coefficient for all policies is polynomial
in the horizon length, but the worst-case sample complexity for OPE is exponential in the horizon
length.

En route to establishing the above result, we provide a rather complete characterization for OPE
with value function realizability. First, we show that in order to achieve sample efficiency, the concept
of “concentrability” needs be strengthened. More precisely, we show that the sample complexity of
OPE under value function realizabilty is characterized by the “aggregated concentrability coefficient”
(of the evaluation policy) instead of the concentrability coefficient in an aggregated transition model.
The aggregated transition model is constructed by aggregating states with indistinguishable value
functions, and its transition is jointly determined by the aggregation and the offline data distribution.
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On one hand, our lower bound construction generalizes that of Foster et al. (2022) by providing
instance dependent lower bounds applicable to MDPs with different structures; their construction can
be viewed as a special case where the aggregated concentrability coefficient is exponentially large.
On the other hand, our upper bound recovers the notion of pushforward concentrability coefficient
used by Xie and Jiang (2021) to establish their sample complexity upper bound, as one can show
that the aggregated concentrability coefficient is upper bounded by the pushforward concentrability
coefficient.

Having identified that the aggregated concentrability coefficient is the key quantity that governs
the sample complexity for OPE, we provide a simple example where the offline data distribution is
admissible (i.e., the offline data distribution equals the occupancy measure of an offline policy), the
all-policy concentrability coefficient isO(H3), but the aggregated concentrability is 2Ω(H), whereH
is the horizon length. Since aggregated concentrability governs the sample complexity, this implies
that realizability, concentrability, and admissibility are not sufficient for sample efficient OPE.

We then provide a generic reduction that converts this hard instance for admissible data into a
hard instance for trajectory data, which implies the above lower bound for offline policy evaluation
with trajectory data.

2. Preliminaries

2.1. Markov Decision Process

We consider the finite horizon setting. A Markov Transition Model (MTM), denoted by M =
MTM(X ,A, T,H, ρ), is parameterized by a state space X , an action space A = {a1,a2, . . .}, a
transition kernel T ∶ X ×A↦∆(X ), horizon length H ∈ N, and initial distribution ρ ∈∆(X ). We
assume that the state space X is layered across time, i.e., X = X1∪X2∪⋅ ⋅ ⋅∪XH with Xi∩Xj = ∅ for
any i ≠ j. The initial distribution ρ ∈∆(X1) specifies the state distribution that every episode starts
with. The transition kernel T (x′ ∣ x, a) for x ∈ X ∖XH , x′ ∈ X and a ∈ A specifies the probability of
transitioning to state x′ if the learner takes action a on state x. By the layering structure, T (⋅ ∣ x, a)
is supported on Xh if x ∈ Xh−1.

For a MTM M and policy π ∶ X → △(A), we let EM,π[⋅] denote the expectation under the
following process: x1 ∼ ρ; and for h = 1, . . . ,H , action ah ∼ π(⋅ ∣ xh), and next state xh+1 ∼ T (⋅ ∣
xh, ah). The state occupancy measure for a particular layer h is defined as dπh(x;M) ∶= EM,π[I{xh =
x}] , and the state-action occupancy measure is defined as dπh(x, a;M) ∶= dπh(x;M)π(a ∣ x).

A Markov Decision Process (MDP), denoted by M = MDP(X ,A, T, r,H, ρ), is a Markov
Transition Model augmented with a reward function r ∶ X ×A→∆([−1,1]). For h ≤H , the state
value function of a policy V π

h (⋅;M) ∶ Xh ↦ R is defined such that for any xh ∈ Xh, V π
h (xh;M)

is the total cumulative reward obtained by starting at state xh at timestep h, and acting according
to the policy π till the end of the episode, i.e. V π

h (x;M) = EM,π[∑Hk=h r(xk, ak) ∣ xh = x]. We
similarly define the state-action value function Qπh ∶ Xh × A ↦ R such that for any xh ∈ Xh,
Qπeh (x, a) = EM,π[∑Hh′=h r(xh′ , ah′) ∣ (xh, ah) = (x, a)]. Whenever clear from the context, we omit
the dependency on M and simply write dπh(x), V π

h (x) and V π(ρ), etc.
For the ease of notation, for any policy π, we define T (x′ ∣ x,π) = Ea∼π(⋅∣x)[T (x′ ∣ x, a)] and

r(x,π) = Ea∼π(⋅∣x)[r(x, a)], and if π is deterministic (i.e., π(⋅ ∣ x) is always supported on a single
action for every x ∈ X ), we use π(x) ∈ A to denote the action it chooses on the state x. Furthermore,
whenever clear from the context, we overload the notation and use r(x, a) to denote the expected
value of reward distribution r(x, a).
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2.2. Offline RL Preliminaries

Throughout the paper, we consider the offline RL setting. In this setting, the learner is equipped with
an offline data distribution1 and can only gather data about the MDP by i.i.d. sampling from this
offline distribution. We consider three types of offline data models:

● General Data: The offline dataset is characterized by an offline distribution µ = (µ1, . . . , µH)
where µh ∈∆(Xh×A) for h ≤H . An offline sample comprises of the tuple (h,xh, ah, rh, x′h+1)
where h is drawn from Uniform([H]), (xh, ah) ∈ Xh ×A is drawn from µh, rh ∈ [−1,1] is
drawn from r(xh, ah), and x′h+1 ∈ Xh+1 is drawn from T (⋅ ∣ xh, ah).

● Admissible Data: Similar to the General Data setting, but with the addition requirement that
there exists an offline policy πb ∈ Π such that for all x ∈ X and a ∈ A, µh(x, a) = dπbh (x, a).

● Trajectory Data: Each offline sample is a complete trajectory of the form (x1, a1, r1, x2, a2, r2, . . . ,
xH) sampled in the underlying MDP using an offline policy πb.

The goal of the learner is to estimate the value of a given evaluation policy πe by collecting
samples from the offline data distribution. In particular, given access to the offline distribution µ, the
learner would like to estimate V πe(ρ) up to an accuracy of ε, i.e. return a V̂ such that

∣V̂ − V πe(ρ)∣ ≤ ε. (1)

We are interested in quantifying the amount of data required to achieve (1) with high probability.
It is not hard to see that learning with general or admissible data is more challenging than learning
with trajectory data, because from a trajectory dataset one can generate a (x, a, r, x′) dataset with
µh(x, a) = dπbh (x, a), but not vice versa.

Throughout the paper, for simplicity, we consider a fixed and deterministic evaluation policy πe
that takes action a1 on all the states, i.e. πe(x) = a1 for all x ∈ X .

Comparison to the Definition of Admissible Data in Foster et al. (2022). A result in Foster
et al. (2022) also claims to provide an exponential lower bound for admissible data but in the
discounted MDP setting. Their data distribution µ(x, a) = 1

2(d
πb
1 (x, a)+d

πb
2 (x, a)) is not considered

as admissible in our definition above2. We note that their lower bound construction heavily relies on
samples being drawn only from the first two steps, and no information from the third step or later
should be revealed. Our admissible data, on the other hand, forces the information to be revealed
on all steps. Our lower bound for the stronger notion of admissible data serves as an important step
towards the lower bound for trajectory data (see Section 4.2).

2.2.1. CONCENTRABILITY COEFFICIENT

The concentrability coefficient (Munos (2003); Chen and Jiang (2019)) of a policy π in an MDP
M = (X ,A, T, r,H, ρ) with respect to offline data distribution µ is defined as

C(M,µ,π) = max
h∈[H]

max
x∈Xh,a∈A

dπh(x, a)
µh(x, a)

. (2)

1. Various works in the offline RL literature assume that instead of direct sampling access to the offline distribution µ,
the learner is given an offline dataset D of n samples drawn from µ. These two settings are equivalent upto sampling.

2. Since Foster et al. (2022) consider the discounted setting, data from the first two steps is enough to provide bounded
concentrability coefficient. This is not true in our finite-horizon case.
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We further define the all-policy concentrability coefficient, which is the supreme of concentrability
coefficient over all possible policies.

Definition 1 (All-policy concentrability coefficient) Let Π denote the set of all non-stationary
policies in the MDP M . Then, we define the all-policy concentrability coefficient of M w.r.t. an
offline distribution µ as:

C(M,µ) = sup
π∈Π

max
h∈[H]

max
x∈Xh,a∈A

dπh(x, a)
µh(x, a)

. (3)

2.2.2. FUNCTION APPROXIMATION

The learner is given a function set F that consists of functions of the form X ×A → [−1,1]. We
make the following realizability assumption that the Q-function belongs to the function class F .

Assumption 1 (Realizability) We have Qπe ∈ F .

Under value function realizability and provided an offline data distribution µ, a common goal for
offline policy evaluation is to design an algorithm that achieves (1) with probability at least 1 − δ
using only poly(log ∣F ∣,H, 1/δ, 1/ε,C(M,µ)) samples. In the following sections, we argue that this
is impossible, unless we replace concentrability coefficient C(M,µ) with aggregated concentrability
coefficient C̄ε(M,Φ, µ, πe) (of the evaluation policy), where Φ is the state aggregation scheme that
aggregates indistinguishable states under F (see Section 3 for details).

2.2.3. OFFLINE POLICY EVALUATION PROBLEM

An Offline Policy Evaluation (OPE) problem g is given by a tuple (M,πe, µ,F) where M denotes
the underlying MDP, µ denotes the offline data distribution, πe denotes the evaluation policy, and F
denotes a state-action value function class. Given an OPE instance g and a parameter ε > 0, the goal
of the learner is to estimate the value of the policy πe in the MDP M upto precision ε, in expectation,
by only relying on samples drawn from the offline distribution µ.

We say that the OPE problem g is realizable if Qπe(⋅;M) ∈ F . Furthermore, whenever µ is
admissible and there exists a policy πb such that µh = dπbh for all h ≤H , we often denote the OPE
problem as g = (M,πe, πb,F). Finally, in the case of trajectory data, we still use the notation
g = (M,πe, πb,F) to denote the OPE problem but explicitly clarify, whenever invoked, that the
learner now has access to complete trajectories sampled using πb.

3. State Aggregation in Offline RL

We start by considering the offline policy evaluation problem with general offline data, and introduce
useful tools and notation for our main lower bounds for admissible and trajectory data, and our upper
bound, in the following sections.

There is a rich literature on understanding the right structural assumptions for offline RL with
general offline data. For a warm-up, when the underlying MDP is tabular, i.e. has a small number
of states and actions, it is well-known that the concentrability coefficient governs the statistical
complexity of offline policy evaluation. To give some intuition for this claim, and to set the foundation
for what follows, let x⋆ denote the state that maximizes the right-hand side in the definition of the
concentrability coefficient in (2), and for simplicity, suppose that dπe(x⋆) ≥ ε. Now, consider two
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scenarios, the first where the MDP has a reward of +1 by taking any action in the state x⋆, and the
second where the MDP has a reward of −1 by taking any action in x⋆; in both cases, we assume
zero reward on all other states. Thus, to estimate the value of πe up to precision ε, the learner needs
to distinguish between the two scenarios, and the only way to do so is to observe a transition from
x⋆ in the given offline dataset, which requires at least 1

µ(x⋆,πe(x⋆)) ≥ C offline samples from µ, in
expectation. To conclude, in tabular MDPs, the learner can explicitly keep track of different states
in the MDP, and use the corresponding transition and reward behavior on these states to evaluate
πe, and thus the worst case scenarios for offline policy evaluation is when the offline data does not
provide enough information about the parts of the MDP where πe has high visitation probability,
and thus concentrability coefficient governs the statistical complexity.

The offline policy evaluation problem unfortunately becomes more challenging when the MDP
has a large state space and the learner has to rely on function approximation. For this regime,
previous works by Xie and Jiang (2021) and Foster et al. (2022) hint that the difficulty of offline
policy evaluation comes from the hardness of distinguishing states that have different transition
behaviors but the same values. Recall that every piece of data in the offline dataset is of the form
(x, a, r, x′). If x1 and x2 are two states appearing in the dataset such that F does not provide
any information to distinguish them, i.e., f(x1, ⋅) = f(x2, ⋅) for all f ∈ F , then the learner has
no guidance from F whether they are essentially the same state or not in terms of their rewards
or dynamics behavior. There are also no clues from other parts of the dataset, since with high
probability, every state only appears at most once in the dataset due to the large state space. Under
such a challenging scenario, intuitively, the best the learner can do is to aggregate these two states
together and treat them as the same item, to get the most out of the offline dataset and the given value
function class. This algorithmic idea of “aggregation” is precisely what is used in the BVFTalgorithm
of Xie and Jiang (2021). In this following section, we formalize the argument that aggregating
indistinguishable states is indeed the best the learner can do by showing a general lower bound in
terms of aggregated concentrability coefficient. To establish our lower bound, in the next section, we
formally define the notion of state aggregation and aggregated concentrability coefficient.

3.1. Aggregated Concentrability Coefficient

Over a given state spaceX = X1∪⋅ ⋅ ⋅∪XH , we can define a state aggregation scheme Φ = Φ1∪⋅ ⋅ ⋅∪ΦH
as below. For any h, Φh defines a partition of Xh so that the following hold:

1) Every element ϕ ∈ Φh is a subset of Xh;

2) The subsets are disjoint, i.e., ϕ ∩ ϕ′ = ∅ for all ϕ,ϕ′ ∈ Φh;

3) The subsets cover Xh, i.e., ⋃ϕ∈Φh ϕ = Xh.

An aggregated Markov Transition Model M̄ is defined via a underlying Markov Transition Model
M = (X ,A, T,H, ρ), state aggregation schemes Φh, and offline data distributions µh ∶ Xh×A→ R≥0
for 1 ≤ h ≤ H − 1. We write M̄ = (M,Φ, µ). The aggregated transition dynamics for a policy π is
defined by

T̄ (ϕ′ ∣ ϕ,π; M̄) = ∑x∈ϕ∑x
′∈ϕ′∑a∈A π(a ∣ x)µh(x, a)T (x′ ∣ x, a)
∑x∈ϕ∑a∈A π(a ∣ x)µh(x, a)

(4)
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for ϕ ∈ Φh, ϕ′ ∈ Φh+1. The aggregated occupancy measure for a policy π is defined as

d̄πh(ϕ; M̄) ∶= E [I{ϕh = ϕ} ∣ ϕ1 ∼ ρ̄(⋅), ϕi+1 ∼ T̄ (⋅ ∣ ϕi, π; M̄),∀1 ≤ i ≤ h − 1] ,

where the initial distribution ρ̄ is defined as ρ̄(ϕ) ∶= ∑x∈ϕ ρ(x).
Notice that in general, it may not be meaningful to define aggregated transitions with respect to

actions, i.e., T̄ (ϕ′ ∣ ϕ, a; M̄). This is because states in the same aggregation may not even share the
same action space. However, in the special case where states within the same aggregation share the
same action space, the quantity T̄ (ϕ′ ∣ ϕ, a; M̄) can be defined, which could be useful in simplifying
the notation. We use this notation in our lower bound proof (Appendix D).

Definition 2 (Aggregated Concentrability Coefficient) For an aggregated MDP M̄ = (M,Φ, µ)
with underlying MDP M , aggregation scheme Φ, and offline distribution µ, we define the aggregated
concentrability coefficient C̄ε(M,Φ, µ, πe) for policy πe as

C̄ε(M,Φ, µ, πe) =max
h

max
I

⎧⎪⎪⎨⎪⎪⎩

∑ϕ∈I d̄πeh (ϕ)
∑ϕ∈I ∑x∈ϕ µh(x,πe(x))

RRRRRRRRRRR
I ⊆ Φh, ∑

ϕ∈I
d̄πeh (ϕ) ≥ ε

⎫⎪⎪⎬⎪⎪⎭
.

The aggregated concentrability coefficient is analogous to the standard concentrability coefficient
defined in (2), but now under the aggregated transition model. The reason why the sum of aggregated
occupancy measure is restricted to be at least ε above is because those ϕ with extremely small
occupancy can be fully ignored during the policy evaluation process, while making no impact in the
estimation error even if the above ratio is large.

3.2. A General Lower Bound in Terms of Aggregated Concentrability Coefficient

We now have all the necessary tools to state our first lower bound. The following theorem provides
a general reduction that lifts any given instance of a Markov Transition Model, evaluation policy,
offline data distribution, and aggregation scheme into a class of offline policy evaluation problems,
and provides a statistical lower bound for offline policy evaluation for this class in terms of the
aggregated concentrability coefficient.

Theorem 3 Let ε ∈ (0,1), M be a Markov Transition Model, Φ be an aggregation scheme over
the states of M , πe be a deterministic evaluation policy in M such that for any aggregation ϕ ∈ Φ
and states x,x′ ∈ ϕ it holds that πe(x) = πe(x′), and µ be a general offline data distribution with
all-policy concentrability coefficient C(M,µ) and aggregated concentrability coefficient w.r.t. πe as
C̄ε(M,Φ, µ, πe). Then, there exists a class G of realizable OPE problems such that for every OPE
problem g = OPE(M (g), πe

(g), µ(g),F (g)) in G,

(a) The function class F (g) satisfies Qπe(⋅;M (g)) ∈ F (g) (Assumption 1), and ∣F (g)∣ = 2.

(b) Any pair of states x,x′ that belong to the same aggregation ϕ ∈ Φ satisfy f(x, ⋅) = f(x′, ⋅) for
all f ∈ F (g).

(c) The all-policy concentrability coefficient C(M (g), µ(g)) = Θ(C(M,µ)).
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Furthermore, any offline policy evaluation algorithm that guarantees to estimate the value of πe(g) in
the MDP M (g) up to precision ε, in expectation, for every OPE problem g ∈ G must use

Ω̃( C̄ε(M,Φ, µ, πe)
ε

)

offline samples from µ(g) in some OPE problem g ∈ G.

The proof of Theorem 3 is deferred to Appendix D. In the proof, instead of directly using the
given MTM M to construct the class G, we construct Block MDPs {M (g)}g∈G with latent state
dynamics given by M (with three additional new latent states per layer). As shown in the appendix,
this reduction ensures that the all-policy concentrability remains unchanged. Furthermore, we note
that the function class F (g) and the evaluation policy πe(g) are the same for all instances g ∈ G, and
that the aggregated concentrability coefficient in M (g) is Θ(C̄ε(M,Φ, µ, πe)) (see Proposition 24).
We also have the following property.

Property 1 In the construction in Theorem 3, if the offline distribution µ is admissible for the
Markov Transition Model M , then for every OPE problem g ∈ G, the offline distribution µ(g) is also
admissible for the corresponding MDP M (g).

3.3. Can Aggregated Concentrability be larger than All-Policy Concentrability?

Figure 1: Markov Transition Model and aggregation scheme used in Example 1. The blue arrows
represent the transitions under action a1, and the red arrows represent the transitions under
a2.

Theorem 3 indicates that the sample complexity of offline policy evaluation (with general data)
grows with the aggregated concentrability coefficient C̄ε(M,Φ, µ, πe) instead of the all-policy
concentrability coefficient C(M,µ). Given this lower bound, one may wonder how large can the
aggregated concentrability be in comparison to the all-policy concentrability. In this section, we will
demonstrate via an example that the gap could indeed be exponential.

Example 1 Consider the example represented in Figure 1 where
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Figure 2: Dynamics for policy πe in the aggregated MDP M̄ in Example 1, where ph ∶=
T̄(ϕ[1]h+1 ∣ ϕ

[1]
h , πe; M̄). As shown in the appendix Lemma 33, ph ≥ H−1

H+2 for all 1 ≤
h ≤H − 1.

● Markov Transition Model M consists of three states {x[1]h , x
[2]
h , x

[3]
h } in each layer h ∈ [H],

and two actions A = {a1, a2}. The initial distribution ρ (denoted by the solid green arrows) is
defined such that ρ(x[1]1 ) = (H−1)/2H, ρ(x[2]1 ) = 1/2H and ρ(x[3]1 ) = 1/2.
The transition dynamics are identical for every layer h ∈ [H − 1], and is defined such that on
taking action a1 the agent transitions deterministically according to the solid blue arrows, and
on taking action a2, the agent transitions stochastically according to the dotted red arrows.

● For every h ∈ [H], the aggregation scheme Φh = {ϕ[1]h , ϕ
[2]
h } with the aggregation Φ[1]h =

{x[1]h , x
[2]
h } and ϕ[2]h = {x

[3]
h }. The aggregated states are denoted by rectangular blocks.

● The offline distribution µ is the occupancy measure of an offline policy πb defined such
that πb(x) = 1

H2 δ(a1) + H2−1
H2 δ(a2) for all x ∈ X , and the evaluation policy πe such that

πe(x) = δ(a1) for all x ∈ X .

Proposition 4 For ε ≤ 1/15, the Markov Transition Model M , aggregation scheme Φ, evaluation
policy πe and offline distribution µ given in Example 1, the all-policy concentrability coefficient
C(M,µ) = O(H3), whereas the aggregated concentrability coefficient C̄ε(M,Φ, µ, πe) = Ω̃(2H).

We now give a sketch for the proof of Proposition 4, with the full details deferred to Appendix E.
We first calculate the upper bound on the all-policy concentrability coefficient. First, we argue that
for h ≥ 3, dπeh (xh) = 1 if xh = x[3]h and 0 otherwise. This can be easily observed from the transition
of πe (blue arrow) in Figure 1—following the blue arrow, the policy must stay in x[3]h for h ≥ 3.
Next, we lower bound the state occupancy under πb. We claim that

dπbh (x
[1]
h ) ≥ Ω(

1

2h
) , dπbh (x

[2]
h ) ≥ Ω(

1

H2h
) , and dπbh (x

[3]
h ) ≥

1

2
. (5)

The third inequality in (5) is easy to see since the occupancy on x[3]h is non-decreasing w.r.t. h
under any policy (Figure 1). To see the first two inequalities in (5), notice that since πb chooses
a2 with probability 1 − 1

H2 , and a2 carries 1
2 of the weights from x[1]h to x[1]h+1 (depicted by the red

arrow in Figure 1), we have dπbh (x
[1]

h ) ≥ ρ(x
[1]
1 )(12(1 −

1
H2 ))

h−1 = Ω( 1
2h
). Similarly, dπbh (x

[2]

h ) ≥

9
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ρ(x[2]1 )(12(1 −
1
H2 ))

h−1 = Ω( 1
H2h
). With the calculation above and the fact that πe(a∣x)πb(a∣x) ≤ H

2, we

conclude that C ≤H2maxhmaxx
dπe
h
(x)

d
πb
h
(x) ≤ O(H

3). Similarly, we can show that the concentrability

coefficient is also bounded for other policies (thus giving all policy concentrability).
We now proceed to the lower bound on aggregated concentrability coefficient of πe. From (4),

we know that the aggregated dynamic for πe, shown in Figure 2, is constructed by reweighting
the transition in the original transition model using dπb(⋅). Since πb takes action a2 with large

probability, and a2 does not change the relative weight d
πb
h
(x[1]
h
)

d
πb
h
(x[2]
h
)

(see Figure 1), it can be shown that

d
πb
h
(x[1]
h
)

d
πb
h
(x[2]
h
)
≥ ρ(x[1]1 )

3ρ(x[2]1 )
= H−1

3 for all h. This gives

ph ∶= T̄ (ϕ[1]h+1 ∣ ϕ
[1]
h , πe) =

dπbh (x
[1]
h ) ⋅ 1 + d

πb
h (x

[2]
h ) ⋅ (1/2)

dπbh (x
[1]
h ) + d

πb
h (x

[2]
h )

≥ H − 1
H + 2 ,

where the factors of 1 and 1/2 are the probability of transitioning to ϕ[1]h+1 from x[1]h and x[2]h following

πe. This further implies d̄πeh (ϕ
[1]
h ) ≥

1
2
(H−1
H+2)

h
. On the other hand, using a similar argument as for

(5), we have d̄πbh (ϕ
[1]
h ) ≤

1
2h

. These two bounds together imply that the aggregated concentrability is
2Ω(H).

4. Main Lower Bounds for Offline Policy Evaluation

4.1. Admissible Data

Example 1 provides an instance of a Markov Transition Model, aggregation scheme, evaluation policy
and offline distribution for which the all-policy concentrability is O(H3) whereas the aggregated
concentrated is 2Ω(H). Since the offline distribution µ in Example 1 is the occupancy measure dπb
for the policy πb, plugging Example 1 in Theorem 3 implies the following lower bound for offline
policy evaluation with admissible offline data.

Theorem 5 Let ε ≤ 1/15, and horizon H ≥ 1. Then, there exits a class GADM of realizable OPE
problems, such that for every OPE problem g = (M (g), πe

(g), µ(g),F (g)) ∈ GADM, the all policy
concentrability coefficient w.r.t. µ(g) is O(H3), the offline distribution µ(g) is admissible for the MDP
M (g), and ∣F (g)∣ = 2.

Furthermore, any offline policy evaluation algorithm that guarantees to estimate the value of
πe
(g) in the MDP M (g) up to precision ε, in expectation, for every OPE problem g ∈ GADM must use

2Ω(H) offline samples in some g ∈ GADM.

The construction of the class GADM, and the proof of Theorem 5, are deferred to Appendix E. We
remark that in all the OPE problem instances g ∈ GADM, the corresponding MDPs M (g) share the
same action spaceA = {a1, a2} (binary actions), state spaceX and horizonH , however, the transition
dynamics, reward function and initial distribution could change with the instance. Furthermore, the
policy πe(g) and the state-action value function class F (g) are also same across all instances g ∈ GADM.

Our lower bound in Theorem 5 considers admissible offline data distributions, where for any
instance g ∈ GADM and h ≤H , the offline distribution µ(g)h = d

πb
(g)

h (⋅;M (g)), and the offline algorithm
can draw samples of the form (xh, ah, rh, xh+1) from the process (xh, ah) ∼ µ(g)h , rh ∼ r(g)(xh, ah)

10



OFFLINE RL: ROLE OF STATE AGGREGATION AND TRAJECTORY DATA

and xh+1 ∼ T (g)(⋅ ∣ xh, ah). Thus, Theorem 5 strengthens over the results of Foster et al. (2022), in
which the offline data distribution is not equal to the occupancy measure of a single policy.

Having shown that bounded concentrability coefficient and realizability alone are not suffi-
cient for statistically efficient offline policy evaluation, even if the offline distribution µh = dπbh
is admissible, we now ask what happens if the learner has access to complete offline trajectories
(x1, a1, r1, s2, . . . , rH , sH) sampled using πb. Unfortunately, for this scenario, the result of Theo-
rem 5 no longer holds. This is because the reduction in Theorem 3, which is a key tool in the proof
of Theorem 5, does not prevent from leaking additional information when the learner has access to
trajectories of length more than 2. In particular, by looking at the conditional distributions of x3 after
fixing actions a1 and a2 for the first two timesteps in that construction (which can be computed when
given trajectory data that covers the first two timesteps), the learner can infer the value of πe in the
underlying MDP. In the next section, we develop additional tools to handle trajectory data.

4.2. Trajectory Data

In many real world applications, the offline dataset is collected by sampling trajectories of the form
(x1, a1, r1, x2, . . . , xH , aH , rH) and it remains to address whether access to the entire H-length
trajectory instead of just the tuples (x, a, r, x′) can allow the learner to circumvent the challenges
introduced in previous subsections. In fact, Foster et al. (2022) left it as an open problem whether
access to trajectory data can make offline RL statistically tractable. In this section, we answer this
in the negative and show that in the worst case, access to trajectory data does not overcome the
statistical inefficiencies of offline RL with just bounded concentrability coefficient and realizability.

Theorem 6 Let ε ≤ 1/15, and horizon H ≥ 1. Then, there exits a class GTRAJ of realizable OPE
problems, such that for every OPE problem g = (M (g), πe

(g), πb
(g),F (g)) ∈ GTRAJ, the learner has

access to offline trajectories sampled using πb(g), the all-policy concentrability coefficient w.r.t. πb(g)

is O(H5), and ∣F (g)∣ = 2.
Furthermore, any offline policy evaluation algorithm that estimates the value of πe(g) in the MDP

M (g) up to precision ε/(16H), in expectation, for every OPE problem g ∈ GTRAJ must use 2Ω(H)

offline trajectories in some g ∈ GTRAJ.

While the full proof is deferred to Appendix F, we present the main ideas and the key tools below.
The primary reason why the lower bound from Theorem 5 does not hold under trajectory data is that
access to trajectories spanning more than two timesteps in the underlying MDPs in that construction
leaks additional information, which can be exploited by the learner to evaluate πe. In particular,
given trajectory data, the learner can compute the marginal distribution over xh+2 given actions ah
and ah+1, for h ≤ H − 2, which can be used to identify the underlying instance in the class GADM

and thus compute πe. Our key insight in the proof is to fix this problem of information leakage by
introducing a general-purpose reduction from offline RL with admissible data to offline RL with
trajectory data, which may be of independent interest. This reduction is obtained by using two new
protocols called (a) the REPLICATOR protocol, and (b) the ADMISSIBLE-TO-TRAJECTORY protocol,
which we describe below.

REPLICATOR: Given in Algorithm 1 in the appendix, the REPLICATOR protocol takes as input a
realizable OPE problem g = (M,πb, πe,F) where the MDP M has horizon H , and a parameter K,
and converts it into another realizable OPE problem g̃ = (M̃, π̃b, π̃e,F) where the new MDP M̃ has
horizon H̃ = (H − 1)K + 1. We require that REPLICATOR satisfies the following property.

11
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Figure 3: Lower bound construction for the proof of Theorem 57. For each h ∈ [H], the correspond-
ing block denotes the K layers that are obtained using REPLICATOR by replicating the
h-th layer in the given MDP M for K many times. The solid red arrows represent the
transitions under the action a1, the dotted blue arrows represent the transitions under the
a2 (under which we resample from the admissible distribution µh), the solid green arrows
denote the transitions according to the original MDP M .

Property 2 (Informal; Formal version in Lemma 37) The realizable OPE problem g̃← REPLICATOR(g,K)
satisfies the following:

(a) Concentrability coefficient supπ̃ suph̃≤H̃∥
dwtπh

d
π̃b
h

∥
∞
≤ (HK) ⋅ supπ suph≤H∥

dπh
d
πb
h

∥
∞
.

(b) The value of the policy π̃e in M̃ is equal to the value of πe in M .

Our construction of REPLICATOR essentially replicates each layer in the given MDP M for
K times (except for the last layer); see Figure 3 for illustration. In the following, we call these
replicated layers as sub-layers. We first define the transition function. For the last sub-layer (i.e.,
for k = K) of each layer h ≤ H − 1, the transition is exactly the same as that in the MDP from
layer h to h + 1 (denoted by the green arrows in Figure 3). For other sublayers with k < K, the
transitions are designed such that: if the action a1 is taken, then the state transitions to the same state
in the next sub-layer (red arrows in Figure 3); and if the action a2 is taken, the next state is sampled
independently from the offline data distribution µh = dπbh (blue arrows in Figure 3). Furthermore, the
evaluation policy π̃e in the new MDP is the same as πe, and takes action a1 on all states The offline
policy π̃b is set as πb for the last sub-layer (i.e. k =K), and is set as 1

2(δa1 + δa2) for the intermediate
sub-layers with k ≤K − 1.

The rationale behind this design is that since π̃b = 1
2(δa1 + δa2), for each h, with probability

1 − 2−K+1 the offline policy will choose a2 at least once in sub-layers k = 1, . . . ,K − 1. If a2 is
chosen at least once, then the state distribution at k = K is equal to µh = dπb and independent
from all previous layers 1, . . . , h − 1. As long as K is large enough, this happens with very high

12
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probability, which makes the offline data distribution at sub-layer k =K resemble admissible data
with distribution µh = dπbh , even when the data is actually a complete trajectory. It can be shown that
this conversion preserves the all-policy concentrability coefficient up to an (HK) factor.

ADMISSIBLE-TO-TRAJECTORY: Given in Algorithm 2 in the appendix, this protocol takes
as input K tuples of the form (xh, ah, rh, xh+1) sampled from an admissible offline distribution
µh = dπbh , for every h ∈ [H], and returns a trajectory τ̃ of length H̃ in M̃ . We require that
ADMISSIBLE-TO-TRAJECTORY satisfies the following property.

Property 3 (Informal; Formal version in Lemma 38) For a large class of offline policies πb, the
distribution of trajectory τ̃ , constructed by ADMISSIBLE-TO-TRAJECTORY using offline data tuples
from dπb , is close to the distribution of trajectories τ̃ ′ obtained using π̃b in M̃ .

The idea of ADMISSIBLE-TO-TRAJECTORY is straightforward: We already argue that REPLI-
CATOR can simulate admissible data using trajectory data. Hence, with a reverse process, given an
admissible dataset, we can create a new trajectory dataset in a new MDP that simulates the original
admissible dataset.

With the above two protocols, the reduction of offline RL with admissible data to trajectory
data is straightforward and is stated in Algorithm 3 in the appendix. At a high level, given a
realizable OPE problem g with admissible offline distribution dπb , for some large enough K, we
use the REPLICATOR protocol to create a realizable OPE problem g̃ and use the ADMISSIBLE-TO-
TRAJECTORY protocol to generate trajectory data corresponding to π̃b in M̃ . Since, Property 2-(a)
implies that the concentrability coefficient stays bounded and Property 2-(b) implies that the value
to be evaluated remains unchanged, the above reduction provides a way to solve offline RL with
admissible data by invoking an offline algorithm that requires trajectory data. Thus, if trajectory
data with bounded concentrability coefficient is tractable, then so is admissible data by leveraging
Algorithm 3, which contradicts Theorem 5. This implies that offline RL with trajectory data must
also be statistically inefficient. The formal proof is deferred to Appendix F.

5. Upper Bound

Our lower bounds show that the worst-case sample complexity of offline policy evaluation grows
with the aggregated concentrability. In this section, we complement our lower bounds with an upper
bound of the form poly(C̄,H, ε−1, log ∣F ∣). Taken together, the lower and upper bound suggest that
aggregated concentrability, but not the all-policy concentrability, characterize the worst-case sample
complexity of offline policy evaluation with value function approximation.

Theorem 7 Let ε > 0, F be a state-action value function class that satisfies Assumption 1, πe be an
evaluation policy and µ be an offline (general) data distribution. Then, Algorithm 4 (a adaptation
of the BVFTalgorithm of Xie and Jiang (2021)) returns a V̂ such that ∣Ex∼ρ[V πe(x) − V̂ ]∣ = O (ε)
after collecting

n = O( C̄ ⋅H
6 log(∣F ∣/δ)
ε4

)

many (offline) samples from µ, where C̄ ∶= maxf,f ′∈F C̄ε2/H2(M,Φ(f, f ′), µ, πe) and Φ(f, f ′) is
the state aggregation scheme determined by f, f ′ ∈ F (see Definition 42 for the precise definition).

13
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The proof of Theorem 7 is deferred to Appendix G, wherein we also provide a generalization of
this result that accounts for misspecification error in Assumption 1, and an upper bound for a slightly
more challenging scenario where the learner only has access to the state value function class (instead
of the state-action value function class). Note that the upper bound depends on the aggregations
scheme Φ(f, f ′). The appearance of such an aggregation scheme in the upper bound is not surprising.
In our lower bound in Theorem 3, while Φ is given as an input, the corresponding value function
class F constructed for the class G satisfies that Φ(f, f ′) = Φ (see item-(b) in Theorem 3).

Algorithm 4 is an adaptation of the BVFTalgorithm (Xie and Jiang, 2021) for offline policy
evaluation. At a high-level, the key idea in the algorithm is to solve a minimax problem (with the
objective determined by Bellman error) over pairs (f, f ′) ∈ F ×F , where for each pair, the algorithm
creates a “tabular problem” by aggregating states with the same (f(x), f ′(x)) value, and estimates
the Bellman error for this tabular problem. Intuitively, this is probably the best the learner can do,
since besides the value of (f(x))f∈F , the learner has no other ways to distinguish states in the large
state space. Thus, due to aggregation, the upper bounds depends on aggregated concentrability
coefficeint rather than the all-policy concentrability coefficient.

We remark that while Xie and Jiang (2021) do not present their upper bound in terms of the
aggregated concentrability, this quantity already appears in their analysis (see Appendix C in Xie and
Jiang (2021)). However, their final bound is represented with a stronger version of concentrability
coefficient Cpf (pushforward concentrability coefficient, formally defined in Definition 8 in the
appendix). It is straightforward to show C̄ ≤ Cpf (Lemma 55). Our analysis follows theirs, but along
the way does not relax C̄ to Cpf.

6. Conclusion

Our paper considers the problem of offline policy evaluation with value function approximation,
where the function class does not satisfy Bellman completeness, and shows that its sample complexity
is characterized by the aggregated concentrability coefficient—a notion of distribution mismatch in an
aggregated MDP obtained by clubbing together transitions from the states that have indistinguishable
value functions under the given value function class (formal details in Section 3). We provide an
example of an MDP where the aggregated concentrability coefficient could be exponentially larger
than the (all-policy) concentrability coefficient, using which we conclude that statistically efficient
offline policy evaluation is not possible with bounded concentrability coefficient even if we assume
access to trajectory data. This result thus highlights the necessity for further research into designing
more effective strategies for dealing with the complexities inherent in offline reinforcement learning
environments. Further discussion of our results and related works are given in Appendix A and
Appendix B respectively.
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Appendix A. Discussion

Could the Aggregated Concentrability be Smaller Than the Standard Concentrability? In
Section 3.3, we demonstrated via an example that the aggregated concentrability can be exponentially
larger than the standard concentrability. However, it is also quite easy to come up with situations
where the aggregated concentrability is actually smaller than the standard one. For example, suppose
the aggregations scheme Φh = {ϕh} with ϕh = Xh, i.e. all states belong to a single aggregation. Here,
the aggregated concentrability coefficient is exactly 1 since each layer has only one aggregation,
whereas the standard concentrability coefficient could be arbitrary.

Gap Between Upper and Lower Bounds in terms of Dependence on ε. The sample complexity
in our upper bound (Theorem 7) scales with 1

ε4
instead of the more common 1

ε2
. This is similar

to Xie and Jiang (2021) and is because we divide the state space into O( 1
ε2
) aggregations, each of

which consists of states having the same value functions up to an accuracy ε. On the other hand, our
lower bound has a Ω(1ε) dependence instead of the more common Ω( 1

ε2
). Improving the dependence

on ε in either the upper or lower bounds is an interesting future research direction.

Connections to Other Notations of Concentrability. Various other notions of concentrability like
pushforward concentrability Cpf, and action concentrability CA Definition 8 are considered in the
literature (Xie and Jiang, 2021). We show that C̄ ≤ Cpf (Lemma 55) and C̄ ≤ (CA)H (Lemma 56).
Note that the sample complexity bound of O((CA)H) is also what we get by using importance
sampling to perform offline policy evaluation.

Role of Realizable Value Function Class in Offline RL. In this paper, we considered the realizable
setting (Assumption 1) where the learner has access to a value function class that contains Qπe , and
showed that the statistical complexity of offline policy evaluation is governed by the aggregated
concentrability coefficient for the aggregation scheme induced by the given function class. However,
how important is this access to the value function class? In particular, is statistically efficient
offline RL feasible in the agnostic setting where the learner does not have any value function class?
Unfortunately, as we show in Appendix H, agnostic offline policy evaluation is not statistically
tractable in the worst case even when the learner is given trajectory offline data that has bounded
pushforward concentrability coefficient (From Lemma 55 recall that this implies bounded aggregated
concentrability coefficient for any aggregation scheme). Hence, further structural assumptions on
the underlying MDP or the policies are needed for tractable learning. Sekhari et al. (2021); Jia et al.
(2024) explored some structural assumptions that enable agnostic learning in the online RL setting,
and extending their work to the offline setting is an interesting future research direction.

How to Benefit from Trajectory Offline Data? Our work indicates that in the worst-case, trajec-
tory offline data provides no additional statistical benefit over General or Admissible offline data
in the standard offline RL setting with value function approximation and bounded concentrability
coefficient. But not all MDPs are the worst-case. Can we expect some instance-dependent benefit
from access to trajectory data in offline RL? Alternately, can we make further assumptions on the
underlying MDP or the value function classes, that are benign enough to capture real-world scenarios,
but allow the learner to better exploit trajectory data. Furthermore, it is also interesting to study
whether we can get statistical or computational improvements under trajectory data when the Bellman
Completeness property holds.

19



JIA RAKHLIN SEKHARI WEI

Appendix B. Related Works

Offline RL is challenging due to lack of direct interaction with the environment. Existing theoretical
works that provide polynomial sample complexity guarantees often rely on multiple assumptions to
be satisfied simultaneously. Specifically, in the realm of value function approximation, three pivotal
assumptions stand out: (value function) realizability, concentrability, and Bellman completeness
(i.e. Thfh+1 ⊂ Fh for all fh+1 ∈ Fh+1). The first two assumptions can be further categorized into
single-policy concentrability (i.e., only the target policy has bounded concentrability) and all-policy
concentrability (all policies in the MDP have bounded concentrability).

Bellman Completeness. If Bellman completeness holds, either all-policy realizability with single-
policy concentrability (Xie et al., 2021) or single-policy realizability with all-policy concentrability
(Chen and Jiang, 2019) can guarantee polynomial sample complexity for policy optimization. Further-
more, other classical algorithms like Fitted Q-Iteration (FQI) (Munos, 2003; Munos and Szepesvári,
2008; Antos et al., 2008) are proved to have finite sample guarantee in terms of concentrability. The
Bellman completeness assumption, however, is deemed rather undesirable because it is non-monotone
in the function class and thus may be severely violated when a rich function class is used. Several
efforts have been made to remove this assumption, though all requiring new assumptions: Xie and
Jiang (2021) showed that if a stronger version of concentrability, called pushforward concentrability,
holds, then with only single-policy realizability, polynomial sample complexity can be achieved
without Bellman completeness. Xie and Jiang (2020), Zhan et al. (2022), and Ozdaglar et al. (2023)
introduced the notion of density-ratio realizability (different from value function realizability), and
showed that this along with single-policy realizability and single-policy concentrability ensures
polynomial sample complexity. Zanette (2023) relaxed Bellman completeness to the notion of
β-incompleteness where Bellman completeness corresponds to β = 0. He proved that β < 1 along
with realizability and concentrability admits polynomial sample complexity for policy evaluation.

The question of whether just realizability and concentrability alone are sufficient for sample efficient
offline RL remained open until the work of Foster et al. (2022), who answered this in the negative.
They gave two examples where polynomial samples is insufficient even with all-policy realizability
and all-policy concentrability. However, their lower bounds heavily rely on the offline data distribu-
tion being non-admissible, leaving the admissible and the trajectory cases open (see definitions and
comparison in Section 2.2).

Further works on offline RL include Liu et al. (2018); Uehara et al. (2020, 2021) that focus on policy
evaluation, and Zhan et al. (2022); Huang and Jiang (2022); Chen and Jiang (2022); Rashidinejad
et al. (2022); Ozdaglar et al. (2023) that focus on policy optimization.

Other Lower Bounds in Offline RL. There is another line of works showing exponential lower
bound / impossibility results for offline policy evaluation with linear function approximation, but with
concentrability replaced by other weaker notions of coverage (Wang et al., 2020; Amortila et al., 2020;
Zanette, 2021), e.g. the linear coverability assumption that λmin(E(s,a)∼µϕ(s, a)ϕ(s, a)T ) ≥ 1/d.
However, their alternate assumptions do not imply concentrability; Furthermore, these prior works
also do not consider trajectory data, as in our results. More positive results can be found in the
literature of model-based approaches, for which we refer the reader to Uehara and Sun (2021) and
the related works therin.
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Online RL. In online RL, while value function realizability and Bellman completeness is still a
common assumption, the bounded concentrability coefficient assumption can be replaced by some
low rank structure on the Bellman error or its estimator (Jiang et al., 2017; Zanette et al., 2020;
Du et al., 2021; Jin et al., 2021), which allow for efficient exploration. Recently, Xie et al. (2022)
identified a new structural assumption called coverability which resembles all-policy concentrability
and ensures polynomial sample complexity when combined with Bellman completeness. There have
been various works in online RL that attempt to relax the Bellman completeness assumption by
instead assuming density ratio realizability Amortila et al. (2024), occupancy realizability Huang
et al. (2023). Additionally, Krishnamurthy et al. (2016); Du et al. (2019); Misra et al. (2020); Zhang
et al. (2022); Mhammedi et al. (2023), focus on the simpler setting of block MDPs (which is a special
case of density ratio realizability). It is an interesting direction to further unify the common notions
used in online and offline RL.

Appendix C. Additional Definitions and Notation

In this section, we provide additional definitions and notations used in the appendix.

Definition 8 (Pushforward Concentrability Coefficient and Action Concentrability Coefficient; Xie and Jiang (2021, Assumption 1))
For a distribution µ ∈∆(X ×A), if we further assume that

(a) There exists some CA > 0 such that µ(a ∣ x) ≥ 1/CA for any x ∈ X , a ∈ A,

(b) There exists some CX > 0 such that the transition model satisfies T (x′ ∣ x, a)/µ(x′) < CX ,
and the initial distribution ρ satisfies ρ(x)/µ(x) < CX for any x,x′ ∈ X , a ∈ A,

then we say that the MDP’s pushforward concentrability coefficient with respect to µ is Cpf = CXCA,
and the MDP’s action concentrability coefficient with respect to µ is CA.

Aggregated Transitions with Actions. We further define the aggregated transitions with actions:

T̄ (ϕ′ ∣ ϕ, a; M̄) ∶= ∑x∈ϕ∑x
′∈ϕ′ µ(x, a)T (x′ ∣ x, a)
∑x∈ϕ µ(x, a)

(6)

Notice that when π(x) = δa(⋅), i.e. π takes action a with probability 1 at all states, T̄ (ϕ′ ∣ ϕ, a; M̄)
in (6) agrees with T̄ (ϕ′ ∣ ϕ,π; M̄) in (4).

Definition 9 (Block MDP; Du et al. (2019); Misra et al. (2020)) A block MDP is defined on top
of a latent MDP M = (Z,A, T, r,H, ρ), a rich observation state space X (partitioned into disjoint
blocks Xz for each latent state z), a decoder function ξ and a conditional distribution q(⋅ ∣ z) ∈
∆(Xz). The block MDP M̌ = (X ,A, Ť , ř,H, ρ̌) with Ť (x ∣ x, a) = q(x′ ∣ ξ(x′))T (ξ(x′) ∣ ξ(x), a),
ř(x, a) = r(ξ(x), a) and ρ̌(x) = ρ(ξ(x))q(x ∣ ξ(x)).

Definition 10 (W -function of OPE problems) Given an OPE problem (M,µ,πe,F), the W -
function: W πe(⋅;µ,M) ∶ [H]→ R is defined as

W πe(h;µ,M) = ∑
z∈Zh

µh(z, πe(z))Qπeh (z, πe(z);M). (7)

Whenever clear from the context, the dependence on πe, µ and M will be ignored.
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Additional Notation. For n ∈ N, we write [n] = {1, . . . , n}. For a countable set S, we write
∆(S) for the set of probability distributions on S. For any function u ∶ X ×A↦ R and distribution
ρ ∈∆(X ×A), we define the norms ∥u∥1,ρ = E(x,a)∼ρ[∣u(x, a)∣] and ∥u∥2,ρ =

√
E(x,a)∼ρ[u2(x, a)].

For a distribution P ∈∆(X ), we define the cross product of P⊗n to be a distribution over X n such
that P⊗n((x1,⋯, xn)) =∏ni=1 P(xi), where xi ∈ X . We use DTV(p, q) and Dχ2(p∥q) to denote the
TV distance and χ2-divergence between two distribution p and q. Unless explicitly specified, any
log is a natural logarithm.

Appendix D. Proof of Theorem 3

Suppose we are given the Markov Transition Model (MTM) M = (Z,A, T,H, ρ), and a distribution
µ over Z ×A. Φ is an aggregated scheme so that every z ∈ Z belongs to exact one of ϕ ∈ Φ, written
as z ∈ ϕ (also all the latent states in ϕ should be at the same layer). We further define the aggregated
function ζ ∶ Z → Φ, where for any z ∈ ϕ,

ζ(z) ∶= ϕ (8)

In the proof we will construct two class of offline policy evaluation (OPE) problems G(1) and G(2)

from the given MDP M and distribution µ. And we will prove Theorem 3 by showing that there
exists an OPE problem in G = G(1) ∪G(2) that requires Ω(C̄/ε) number of samples for each layers
to achieve accuracy 1/2. The constructive proof is divided into three parts:

(i) Construct aggregated MDPs M̄ (1) and M̄ (2) according toM and Φ such that the concentrability
coefficients of M̄ (1) and M̄ (2) are of order C̄ (Section D.2).

(ii) Construct two OPE problems g(1) = (M (1), µ′, πe,F) and g(2) = (M (2), µ′, πe,F) (Sec-
tion D.3), where MDP M (1) and M (2) are obtained by adding three states uh, vh and wh in
each layers. Distribution µ′ is obtained from µ after rearranging some probability to uh, vh
and vh. And we can show that the concentrability coefficients of M̄ (1) and M̄ (2) can translate
to the ratio between difference of value functions and difference of rewards between M (1) and
M (2).

(iii) Construct two class of OPE problems G(1) and G(2) by lifting OPE problems g(1) and g(2)

into rich observations (Section D.4).

D.1. Construction Sketch

Suppose we are given an arbitrary Markov Transition Model M with state space Z , transition
dynamics T and initial distribution ρ, any offline data distribution µ, and any state aggregation
scheme Φ (see Figure 4(a)). Let I and h∗ denote the set of aggregations and horizon that attain the
maximum for C̄ε(M,Φ, µ, πe) given in Definition 2. In Figure 4(a), I is represented with the bold
rectangle (for simplicity, in Figure 4, I only includes a single aggregation that contains a single
latent state z⋆, but in general I may include multiple aggregations each with multiple latent states).
Based on M , we will construct two MDPs M (1) (with transitions T (1) and reward r(1)) and M (2)

(with transitions T (2) and reward r(2)), and will argue that it is difficult for the learner to tell them
apart when the MDPs are lifted to block MDPs.
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(a) Given Markov Transition ModelM and
aggregation scheme Φ.

(b) Augmented Markov Transition Model
M ′ and aggregation scheme Φ′.

(c) Determine the reward and value functions
in the layer H .

(d) Determine the value functions induc-
tively assuming Q(i) are already deter-
mined on all layers h′ ≥ h + 1.

Figure 4: Lower bound construction used in the proof sketch of Theorem 3. States are represented
with circles and the corresponding state aggregations are represented with rectangles. We
use the bold rectangle to denote the set of aggregations I that attains the maximum in the
definition of C̄ε(M,Φ, µ, πe) (see Definition 2). For simplicity, in the above figure I only
contains a single aggregation that contains a single latent state z⋆, while in general I may
include multiple aggregations each with multiple latent states.

1. Modified Markov Transition Model (MTM) M ′ (Section D.3): We construct an MTM M ′

with state space Z ′ that comprises of the state space Z (corresponding to M ) along with three
additional states uh, vh,wh on each layer h ∈ [H] (see Figure 4(b)). The transition dynamics T ′

in the M ′ is defined such that
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(a) Each of uh, vh, and wh deterministically transitions to wh+1 under any action.

(b) For any z1, z2 ∈ Z and a ∈ A, T ′(z2 ∣ z1, a) = (1 − 2/H)T (z2 ∣ z1, a). In particular, the
probability of each transition from Zh to Zh+1 is decreased by a factor of (1 − 2/H).

(c) The remaining 2/H probability mass in T ′ is assigned to transitions from Zh to uh+1 and
vh+1. These transitions are different for M (1) and M (2), and will be specified later.

Finally, we also define a new a modified aggregation scheme Φ′ that comprises of Φ along with
3H more singleton aggregations, each consisting of uh, vh,wh for h ∈ [H].

2. Reward functions (Section D.2 and Section D.3): We create reward functions r(1) and r(2),
for MDPs M (1) and M (2) respectively, such that non-zero rewards are only given to states in
aggregation I and to (uh, vh,wh)h∈[H] (see Figure 4(c)). In particular, we set

● r(1)(z, πe(z)) = α and r(2)(z, πe(z)) = −α for any state z ∈ I, for some properly chosen
constant α.

● r(i)(uh, a) = 1, r(i)(vh, a) = −1 and r(i)(wh, a) = 0 for any h ∈ [H] and a ∈ A.

● r(i)(z, a) = 0 for all other z ∈ Z and a ∈ A.

3. Value functions and missing transitions (Section D.2 and Section D.3): We now proceed to
the construction of state-action value functions Q(1) and Q(2) for the evaluation policy πe, and
the transition probabilities T (1) and T (2), for M (1) and M (2) respectively. These quantities are
constructed so as to ensure that:

(a) All states that belong to the same aggregation have the same value in both M (1) and M (2),
and are thus indistinguishable via the value functions, i.e. for any aggregation ϕ ∈ Φ′, states
z1, z2 ∈ ϕ, and a ∈ A,

Q(1)(z1, a) = Q(1)(z2, a) and Q(2)(z1, a) = Q(2)(z2, a). (9)

(b) From any aggregation, the probability of transitioning to states uh (or to states vh) is same
between M (1) and M (2), i.e. for any ϕ ∈ Φ and h ∈ [H],

∀a ∈ A, ∑
z∈ϕ

µh(z, a)T (1)(uh+1 ∣ z, a) =∑
z∈ϕ

µh(z, a)T (2)(uh+1 ∣ z, a),

∀a ∈ A, ∑
z∈ϕ

µh(z, a)T (1)(vh+1 ∣ z, a) =∑
z∈ϕ

µh(z, a)T (2)(vh+1 ∣ z, a). (10)

(c) For any z1, z2 ∈ Z , we have T (i)(z2 ∣ z1, a) = T ′(z2 ∣ z1, a) for all a ∈ A.

Value functions and transitions that satisfy the above constraints are inductively constructed from
time step h =H to 1. Since each of the above constraints is a linear equation, the corresponding
solutions can be obtained by solving a system of linear equations. At a high level, the reason why
we added uh+1 and vh+1 — by splitting out some transition probabilities to uh+1 and vh+1, and
adjust their differences properly (notice that Q(i)(uh+1, a) = 1 and Q(i)(vh+1, a) = −1), we can
calibrate the state-action values in ϕ, making them all equal.
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Jointly solving (9), (10), and using the condition T (i)(uh+1 ∣ z, a)+T (i)(vh+1 ∣ z, a) = 2
H , we can

obtain the following solution:

Q(i)(ϕ, a) = ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ϕ, a)V (i)(ϕ′), (11)

where Q(i)(ϕ, a) is the value of Q(i)(z, a) shared by all z ∈ ϕ, Φh+1 is the set of aggregations

on layer h + 1, and T̄ (ϕ′ ∣ ϕ, a) = ∑z′∈ϕ′ ∑z∈ϕ µh(z,a)T
′(z′∣z,a)

∑z∈ϕ µh(z,a)
is the aggregated transition. This

is where the aggregated transition comes into the picture. With (11), the argument that the
aggregated transition plays a role in the sample complexity is similar to the argument in the
tabular case as outlined in Section 3. For formal proofs, see Lemma 15(a)-Lemma 15(c)

4. Construction of offline distribution µ′ (Section D.3): For any z ≠ uh, vh,wh, we set µ′h(z, a) =
1
2µh(z, a). Furthermore, for z = uh, vh,wh, we define µ′h(z, a) = 1

6 This construction ensures
that both C and C̄ remain unchanged up to constant factors in the original M and in the modified
M (1) and M (2). See Lemma 15(d) and Corollary 16 for formal proofs.

5. Lifting to block MDPs (Section D.4): We finally lift M (1) and M (2) to block MDPs where every
state z serves as a latent state invisible to the learner. Instead of observing the latent state z, the
learner only observes a rich observation from the set X corresponding to latent state z.

For the rest of this section, we provide a formal proof for Theorem 3.

D.2. Construction of Aggregated MDPs

We first construct two aggregated MDPs M̄ (1) = (Φ,A, T̄ , r̄(1),H, ρ̄) and M̄ (2) = (Φ,A, T̄ , r̄(2),H, ρ̄)
of horizon H , whose state space is Φ and action space isA. Furthermore, both of them have identical
transition models and initial distributions given by:

● State Space Φ, and action space A.

● Transition model T̄ is defined as T̄ (ϕ ∣ ϕ, a) ∶= T̄ (ϕ ∣ ϕ, a; M̄), where T̄ (ϕ ∣ ϕ, a; M̄) is
given in (4).

● Initial distribution ρ̄ is defined as ρ̄(ϕ) ∶= ∑z∈ϕ ρ(z).

Suppose h∗ ∈ [H] and set I ⊂ Φh∗ attains the maximum in Definition 2. The reward function of
M̄ (1) and M̄ (2) are given by:

● Reward function r̄(1) for M̄ (1). We set the reward to be 0 for all states ϕ ∉ I. Furthermore,
for ϕ ∈ I, we set the reward to be 0 for actions that would not have been chosen by πe. On the
remaining (ϕ, a) tuples, we set a non-zero reward given by:

r̄(1)(ϕ, a) = ε

2H∑ϕ∈I dπ̄eh∗(ϕ; M̄)
⋅ I{ϕ ∈ I, a = πe(ϕ)}.

The key intuition in the above choice of reward function is to ensure that only those states-
action contribute to non-zero rewards for which ϕ ∈ I and a = πe(ϕ); Hence, in order to
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receive a non-zero return, any agent in this MDP needs to first find states in I and then play
action given by πe on them. The denominator just consists of additional normalizing factors to
ensure that the value is bounded by ε/2H.

● Reward function r̄(2) for M̄ (2). The reward function is similar to r̄(1), but with the negative
sign. In particular, we define

r̄(2)(ϕ, a) = − ε

2H∑ϕ∈I dπ̄eh∗(ϕ; M̄)
⋅ I{ϕ ∈ I, a = πe(ϕ)}.

Definition 11 (Aggregated MDP) We define aggregated MDPs M̄ (1) = (Φ,A, T̄ , r̄(1),H, ρ̄) and
M̄ (2) = (Φ,A, T̄ , r̄(2),H, ρ̄) as follows: transition model T̄ is defined as T̄ (ϕ ∣ ϕ, a) ∶= T̄ (ϕ ∣
ϕ, a; M̄), where T̄ (ϕ ∣ ϕ, a; M̄) is given in (4), reward functions are defined as

r̄(1)(ϕ, a) = ε

2H∑ϕ∈I dπ̄eh∗(ϕ; M̄)
⋅ I{ϕ ∈ I, a = πe(ϕ)},

and,

r̄(2)(ϕ, a) = − ε

2H∑ϕ∈I dπ̄eh∗(ϕ; M̄)
⋅ I{ϕ ∈ I, a = πe(ϕ)}.

Lemma 12 The value functions of M̄ (1) and M̄ (2) satisfies that for any policy π and ϕ ∈ Φ,

V π(ϕ; M̄ (1)) = −V π(ϕ; M̄ (@)).

Proof of Lemma 12. This lemma is easy to see after noticing that the transitions of M̄ (1) and M̄ (2)

are the same, while the reward functions of M̄ (1) and M̄ (2) are of opposite signs.

Lemma 13 The value functions of M̄ (1) and M̄ (2) satisfies that

V π̄e(ρ̄; M̄ (1)) = ε

2H
, and V π̄e(ρ̄; M̄ (2)) = − ε

2H
.

Additionally, for each ϕ ∈ Φ,

0 ≤ V π̄e(ϕ; M̄ (1)) ≤ 1

2H
, − 1

2H
≤ V π̄e(ϕ; M̄ (2)) ≤ 0. (12)

Proof of Lemma 13. According to Lemma 12, we only need to prove results for M̄ (1). First of all,
we can write the value functions as weighted averages of rewards with occupancy-measure-weights:

V π̄e(ρ̄; M̄ (1)) = ∑
ϕ∈I

r(1)(ϕ,πe(ϕ))dπ̄eh∗(ϕ; M̄) =
ε

2H
. (13)

Next, We let I to be the set which attains the second maximum in (3) of the definition of Cε(M,µ).
Then I ⊂ Φh for some h ∈ [H], and it also satisfies ∑ϕ∈I dπ̄eh∗(ϕ; M̄) ≥ ε, which implies that

0 ≤ r̄(1)(ϕ, a) ≤ ε

2H ⋅ ε ≤
1

2H
, ∀ϕ ∈ Φh, a ∈ A and r̄(1)(ϕ, a) = 0, ∀ϕ /∈ Φh, a ∈ A.

Hence for any ϕ ∈ Φ, the sum of rewards along any trajectory which starts from ϕ is always between
0 and 1/2H in M̄ (1). Therefore we get 0 ≤ V π̄e(ϕ; M̄ (1)) ≤ 1/2H for any ϕ ∈ Φ.
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D.3. Construction of Latent-State MDPs and OPE Problems

Based on M̄ (1) and M̄ (2), we next construct two MDPs M (1) and M (2) which will be used as latent-
state dynamics for rich observation MDPs that we construct in the next section. For i ∈ {1,2}, we
define

M (i) =MDP(Z ′,A, T (i), r(i),H, ρ),

where

● State space Z ′ is defined such that Z ′ = ∪Hh=1Z ′h where, for each h ∈ [H], in addition to the
states in Zh, the set Z ′h contains three additional states {uh, vh,wh} for all h ∈ [H]. Formally,
Z ′h ∶= Zh ∪ {uh, vh,wh}.
The roles of uh, vh and wh is to ensure that for every aggregated state ϕ ∈ Φ, each state z ∈ ϕ
has the same value functione; How we achieve this will become clear later when we define the
transition model T (i).

● Initial distribution ρ is the same as the initial distribution in M (the original MDP that was
used in the construction of M̄ (1) and M̄ (2)).

● Reward function r(i) is set as

r(i)(z, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r̄(i)(ζ(z), a) if z ∈ Zh
1 if z = uh
−1 if z = vh
0 if z = wh

for all h ∈ [H], where ζ(z) is defined in (8). In particular, we use the same reward in M (i) as
in M̄ (i) for the (old) states z ∈ Z , and define new rewards for (newly added) states uh, vh and
wh. By definition, the reward r(i)(z′, a) = r(i)(z′′, a) whenever z′ and z′′ belong the same
aggregated state ϕ, for all a ∈ A.

● Transition model T (i). The transitions are defined such that T (i)(z′ ∣ z, a) is proportional to
T (z′ ∣ z, a) for tuples (z, a, z′) ∈ Zh ×A ×Zh that corresponds to transitions amongst (old)
states that were also present in M , and the remaining probability mass is redirected it to new
states {uh, vh,wh}h∈[H]. Formally, for z ∈ Zh and action a ∈ A, we set

T (i)(z′ ∣ z, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 2
H
)T (z′ ∣ z, a) if z′ ∈ Zh+1

[∆T (i)](z) + 1
H if z′ = uh+1

−[∆T (i)](z) + 1
H if z′ = vh+1

0 if z′ = wh+1

, (14)

where we defined

[∆T (i)](z) ∶= 1

2

⎛
⎝ ∑ϕ′∈Φh+1

T̄ (ϕ′ ∣ ζ(z), a)V π̄e(ϕ′; M̄ (i)) − (1 − 2

H
) ∑
z′∈Zh+1

T (z′ ∣ z, a)V π̄e(ζ(z′); M̄ (i))
⎞
⎠
.

(15)
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Furthermore, for any z ∈ {uh, vw,wh} and a ∈ A, T (i) transits to wh+1 with probability 1, i.e.

T (i)(z′ ∣ z, a) =
⎧⎪⎪⎨⎪⎪⎩

1 if z′ = wh+1
0 otherwise

(16)

Intuitively, the above transitions imply that states {wh}h∈[H] act as terminal states.

We further define distribution µ′h over Z ′h of layer h ∈ [H] as follows:

µ′h(z) =
⎧⎪⎪⎨⎪⎪⎩

µh(z)/2 z ∈ Zh,
1/6 z ∈ {uh, vh,wh}.

(17)

Additionally, to be formal, we define πb(z) = πe(z) ≡ a0 (an arbitrary fixed state in A) for any
z ∈ {uh, vh,wh}. And we define OPE problems g(1) and g(2) as

g(1) = (M (1), µ′, πe,F), g(2) = (M (2), µ′, πe,F), (18)

where F ∶= {Q(1),Q(2)} with Q(1) and Q(2) are Q-functions of M (1) and M (2) under policy πe.
Before we proceed, we note the following technical lemma.

Lemma 14 For i ∈ {1,2}, T (i) constructed via (14) and (16) above is a valid transition model.

Proof of Lemma 14. We first show that T (i)(z′ ∣ z, a) > 0 for all a ∈ A and z, z′ ∈ Z ′h+1. This is
trivial for z′ ∈ Zh or when z′ = wh+1. We next show that the same holds when z′ ∈ {uh+1, vh+1}.
Note that due to Lemma 13, we have that ∣V π̄e(ϕ; M̄ (i))∣ ≤ 1

2H for all ϕ ∈ Φ. Plugging this in (15),
and using Triangle inequality, we get that

∣[∆T (i)](z)∣ ≤ sup
ϕ∈Φ
∣V π̄e(ϕ; M̄ (i))∣ ≤ 1

2H
.

Using this in (14), we immediately get that T (i)(z′ ∣ z, a) > 0 for any ε ≤ 1. Furthermore, it is easy
to check that for any z ∈ Z ′h and a ∈ A, ∑z′∈Z′

h+1
T (i)(z′ ∣ z, a) = 1. Thus, T (i) is a valid transition

model.

We note the following technical lemma, which will be used in the rest of the analysis.

Lemma 15 We have the following properties of value functions, Q-functions and occupancy mea-
sures of M (1) and M (2):

(a) For i ∈ {1,2}, and for any ϕ ∈ Φ, z ∈ ϕ, and a ∈ A,

Qπe(z, a;M (i)) = Qπ̄e(ζ(z), a; M̄ (i)).
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(b) Corresponding to the initial distribution ρ, the expected values satisfy

V πe(ρ;M (1)) − V πe(ρ;M (2)) = ε

H
.

(c) For any h ∈ [H], latent state ϕ ∈ Φh, action a ∈ A and latent state z′ ∈ Z ′,

∑
z∈ϕ

µ(z ∣ z ∈ ϕ, a)T (1)(z′ ∣ z, a) =∑
z∈ϕ

µ(z ∣ z ∈ ϕ, a)T (2)(z′ ∣ z, a).

(d) For each i ∈ {1,2}, for any h ∈ [H] and z ∈ Zh, and policy π,

1

16
dπh(z;M) ≤ dπh(z;M (i)) ≤ dπh(z;M).

Proof of Lemma 15. Observe that, by construction, we have for i ∈ {1,2},

Q(i)(uh, a) = 1, Q(i)(vh, a) = −1, and Q(i)(wh, a) = 0,

for any h and a ∈ A.

Proof of (a): The proof follows via downward induction from h = H to h = 1. First note that
for any z ∈ ZH and a ∈ A, we have Qπe(z, a;M (i)) = 0 = Qπ̄e(ζ(z), a; M̄ (i)); Thus the base case is
satisfied. For the induction hypotesis, assume that the desired claim holds for h + 1. Thus, for layer
h, using Bellman equation for the policy πe, we have that

Qπ(z, a;M (i))
= r(i)(z, a) + T (i)(uh+1 ∣ z, a) − T (i)(vh+1 ∣ z, a) + ∑

z′∈Zh+1
T (i)(z′ ∣ z, a)Qπe(z′, πe(z′);M (i))

= r̄(i)(ζ(z), a) + T (i)(uh+1 ∣ z, a) − T (i)(vh+1 ∣ z, a) + ∑
z′∈Zh+1

T (i)(z′ ∣ z, a)V π̄e(ζ(z′); M̄ (i))

= r̄(i)(ζ(z), a) + ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ζ(z), a)V π̄e(ϕ′; M̄ (i)) = Qπ̄e(ζ(z), a; M̄ (i)),

where in the last line, we used Bellman equation for policy πe under the MDP M̄ (1). The above
completes the induction step, thus showing that the claim holds for all h ∈ [H].

Proof of (b): Using part-(a) above, we note that

V πe(z;M (1)) = Qπe(z, πe(z);M (1)) = Qπ̄e(ζ(z), π̄e(ζ(z)); M̄ (1)) = V π̄e(ζ(z); M̄ (1)).

Similarly, we also get that V πe(z;M (2)) = V π̄e(ζ(z); M̄ (2)). The desired bound follows by noting
that (13) implies

V π̄e(ρ̄; M̄ (1)) − V π̄e(ρ̄; M̄ (2)) = ε

H
,

which implies
V πe(ρ;M (1)) − V πe(ρ;M (2)) = ε

H
.
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Proof of (c): First note that whenever z′ /∈ {uh, vh}Hh=1, we always have T (1)(z′ ∣ z, a) = T (2)(z′ ∣
z, a) according to the definition of T (1) and T (2). We next show that the same holds for z′ = uh. We
only need to verify ∑z∈ϕ µ(z, a)(T (1)(uh ∣ z, a) − T (2)(uh ∣ z, a)) = 0.

∑
z∈ϕ

µ(z, a)(T (1)(uh ∣ z, a) − T (2)(uh ∣ z, a))

=∑
z∈ϕ

µ(z, a)( ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ζ(z), a)V̄ (1)(ϕ′) − ∑
z′∈Zh+1

T (1)(z′ ∣ z, a)V̄ (1)(ζ(z′)))

=∑
z∈ϕ

µ(z, a) ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ϕ, a)V̄ (1)(ϕ′) − ∑
ϕ′∈Φh+1

∑
z′∈ϕ′

V̄ (1)(ζ(z′))∑
z∈ϕ

µ(z, a)T (1)(z′ ∣ z, a)

=∑
z∈ϕ

µ(z, a) ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ϕ, a)V̄ (1)(ϕ′) − ∑
ϕ′∈Φh+1

V̄ (1)(ϕ′) ∑
z′∈ϕ′
∑
z∈ϕ

µ(z, a)T (1)(z′ ∣ z, a)

=∑
z∈ϕ

µ(z, a) ∑
ϕ′∈Φh+1

T̄ (ϕ′ ∣ ϕ, a)V̄ (1)(ϕ′) − ∑
ϕ′∈Φh+1

V̄ (1)(ϕ′)∑
z∈ϕ

µ(z, a)T̄ (ϕ′ ∣ ϕ, a) = 0,

where the first equation uses the definition of T (1) and T (2) in (14) and Lemma 12, and the last
equation follows from the definition of T̄ in (4). Hence (c) is verified for z′ = uh. The proof for
z′ = vh follows similarly.

Proof of (d): We only prove the result for M (1); the proof for M (2) follows similarly. In fact, we
show a slightly stronger result that for all h ∈ [H] and z ∈ Zh,

(H − 2
H
)
h−1

dπh(z;M) ≤ dπh(z,M (1)) ≤ dπh(z,M). (19)

The proof follows via induction over h. For the base case, note that for h = 1, by definition, we have
dπ1(z;M) = ρ(z) = dπ1(z;M (1)) for any z ∈ Z1, which implies (19).

For the induction step, suppose (19) holds for a certain h ≤H − 1. For the upper bound, note that any
z ∈ Zh+1 satisfies

dπh+1(z;M (1)) = ∑
z′∈Zh

dπh(z′;M (1))T (1)(z ∣ z′, π(z′)),

which combined with the upper bound in (19) implies

dπh+1(z;M (1)) ≤ ∑
z′∈Zh

dπh(z′;M)T (z ∣ z′, π(z′)) = dπh+1(z,M).

For the lower bound, recall from the definition of T (1), which implies that

T (1)(z ∣ z′, π(z′)) = H − 2
H

T (z ∣ z′, π(z′)).

Using the above with the lower bound in (19), we get that

dπh+1(z;M (1)) = ∑
z′∈Z′

h

dπh(z′;M (1))T (1)(z ∣ z′, π(z′))

≥ (H − 2
H
)
h−1
∑
z′∈Zh

dπh(z′;M) ⋅
H − 2
H

T (z ∣ z′, π(z′)) = (H − 2
H
)
h

dπh(z,M).
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The two bounds above imply the (19) also holds for h + 1. This completes the induction step.

This lemma has two direct corollaries:

Corollary 16 The concentratbility coefficients C(M (1), µ′) of M (1) (or C(M (2), µ′) of M (2)) satis-
fies that

C(M (1), µ′) ≤ 6C(M,µ), and, C(M (2), µ′) ≤ 6C(M,µ).

Proof of Corollary 16. This corollary directly follows from Definition 17 and Lemma 15 (d).

Corollary 17 For any two policies π and π′ and any i ∈ {1,2}, we have

sup
h∈[H]

sup
z∈Z′

h

dπh(z;M (i))
dπ
′
h (z;M (i))

≤ 48 ⋅ sup
h∈[H]

sup
z∈Zh

dπh(z;M)
dπ
′
h (z;M)

Proof of Corollary 17. First of all, for those z ∈ Zh and h ∈ [H], Lemma 15 (d) indicates that

dπh(z;M (i))
dπ
′
h (z;M (i))

≤ 16 ⋅ d
π
h(z;M)
dπ
′
h (z;M)

≤ 48 ⋅ sup
h∈[H]

sup
z∈Zh

dπh(z;M)
dπ
′
h (z;M)

.

Next, we verify cases where z ∈ {uh, vh,wh}Hh=1. Notice that the transition model of M (i) gives that

dπh(wh;M (i)) = dπh−1(uh;M (i)) + dπh−1(vh−1;M (i)),

we only need to verify that for any z ∈ {uh, vh}Hh=1, we have

dπh(z;M (i))
dπ
′
h (z;M (i))

≤ 48 ⋅ sup
h∈[H]

sup
z∈Zh

dπh(z;M)
dπ
′
h (z;M)

.

Without loss of generality, we only verify for z = uh. We write

dπh(uh;M (i)) = ∑
z∈Zh−1

T (i)(uh ∣ z, π(z))dπh−1(z).

According to the transition model of M (i), we have for any z ∈ Zh−1 and any a ∈ A,

T (i)(uh ∣ z, a) ∈ [
1

2H
,
3

2H
] ,

which indicates that for any policy π,π′, we have

sup
z∈Zh−1

T (i)(uh ∣ z, π(z))
T (i)(uh ∣ z, π′(z))

∈ [1,3].

Therefore, we have

dπh(uh;M (i))
dπ
′
h (uh;M (i))

≤ 3 ⋅ sup
z∈Zh−1

dπh−1(z;M (i))
dπ
′
h−1(z;M (i))

≤ 48 ⋅ sup
h∈[H]

sup
z∈Zh

dπh(z;M)
dπ
′
h (z;M)

.
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D.4. Construction of the Class G of Offline Policy Evaluation (OPE) Problems

In this section, we construct the class G of OPE problems that are used in Theorem 3. The
corresponding MDPs in G are block MDPs based on M (1) and M (2) (constructed in the previous
section), and certain decoder functions. The organization of this section is as follows:

● In Appendix D.4.1, we provide a general procedure to lift an OPE problem (M,µ,πe,F) over
state space Z into a block OPE problem (M̌, µ̌, π̌e, F̌) with rich-observations in a set X and
latent states in Z , given a decoder function ψ.

● Then, in Appendix D.4.2, we first provide a class Ψ of decoder function and use the above
procedure to construct the family G of offline RL problems.

D.4.1. LIFTING FROM OPE PROBLEMS TO BLOCK OPE PROBLEMS

In this section, we will discuss how to lift a normal OPE problem (M,µ,πe,F) (F satisfies Q-
realizability) into a block OPE problem (M̌, µ̌, π̌e, F̌) where F̌ satisfies (Q,W )-realizability.

Let Z = ⋃h∈[H]Zh be the state space of MDP M , and we fix X = {X (z)}z∈Z to be a family of
disjoint sets that denote rich-observations corresponding to latent states z ∈ Z . Furthermore, let
Xh = {X (z)}z∈Zh . Then, for M = (Z,A, T, r,H, ρ), we can define a block MDP

M̌ =MDP(X ,A, Ť , Ř,H, ρ̌)

with latent state Z and rich observations in X , where

• State space: X consists of rich-observations corresponding to latent states. We assume that
the state space X = ⋃h∈[H]Xh is layered.

• Transition Model depends only on the latent transition model T . In particular, for any h ∈ [H],
x ∈ X (z) corresponding to z ∈ Zh, and x′ ∈ X (z′) corresponding to z′ ∈ Zh+1, we have

Ť (x′ ∣ x, a) ∶= 1

∣X (z′)∣ ⋅ T (z
′ ∣ z, a).

• Rewards: For any z ∈ Z and x ∈ X , and a ∈ A, Ř(x, a) is a {−1,1}-valued random variable
with expected value r(z, a).

• Initial distribution: ρ̌ ∈∆(X1) is defined such that for any x ∈ X1,

ρ̌(x) ∶= 1

∣X (z)∣ ⋅ ρ(z) (20)

where z is such that x ∈ X (z).

In particular, corresponding to a latent state z, the observations are sampled from Uniform(X (z)).
In order to construct respective offline RL problems on the MDP M̌ , we also lift the offline data
distribution µ to µ̌, and offline policy πe to π̌e as follows:
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• Offline distribution For any h ∈ [H], we define µ̌h ∈ ∆(Xh ×A) such that for any x ∈ Xh
and a ∈ A,

µ̌h(x, a) ∶=
1

∣X (z)∣ ⋅ µh(z, a),

where z ∈ Zh is such that x ∈ X (z).

• Evaluation policy π̌e ∶ X ↦ A is defined such that for any x ∈ X , π̌e(x) ∶= πe(z) where z is
such that x ∈ X (z).

• Function class F̌ consists of tuples (f̌ , W̌ ), where each f ∈ F generates a tuple (f̌ , W̌ ) with
f̌ ∶ X ×A→ R defined as f̌(x, a) = f(z, a) for any x ∈ X (z) and W̌ ∶ [H]→ R is defined as
W̌ [h] = ∑x∈Xh µ̌h(x, π̌e(x))f̌(x, π̌e(a)).

The following lemma indicates that f̌ is the Q-function of block MDP M̌ as long as f is the
Q-function of MDP M .

Lemma 18 For any h ∈ [H], z ∈ Zh, x ∈ X (z) and a ∈ A, we have

Qπ̌eh (x, a; M̌) = Q
πe
h (z, a;M).

Proof of Lemma 18. We prove this equation by induction from h = H to h = 1. When h = H ,
we have Qπ̌eH (x, a; M̌) = Q

πe
H (z, a;M) for any z ∈ ZH , z ∈ X (z) and a ∈ A. Next, suppose

Qπ̌eh+1(x, a; M̌) = Q
πe
h+1(z, a;M) holds for z ∈ Zh+1 and x ∈ X (z). According to the Bellman

equation and definitions of Ť , Ř, for any z ∈ Zh and x ∈ X (z), we have

Qπ̌eh (x, a; M̌) = E[Ř(x, a)] + ∑
x′∈Xh+1

Ť (x′ ∣ x, a)Qπ̌eh+1(x
′, π̌e(x′); M̌)

= r(z, a) + ∑
z′∈Zh+1

Qπeh+1(z
′, πe(z′)) ∑

x′∈X (z′)
Ť (x′ ∣ x, a)

= r(z, a) + ∑
z′∈Zh+1

Qπeh+1(z
′, πe(z′);M) ∑

z′∈ϕ′
T (z′ ∣ z, a) = Qπeh (z, a;M),

where we use the induction hypothesis and the fact that π̌e(x′) = πe(z) for x′ ∈ X (z′) in the second
equation.

Lemma 19 For any h ∈ [H],

∑
x∈Xh

µ̌h(x, π̌e(x))Qπ̌eh (x, π̌e(x); M̌) = ∑
z∈Zh

µh(z, πe(z))Qπeh (z, πe(x);M).

Proof of Lemma 19. We first notice that x ∈ X (z), we have π̌e(x) = πe(z). Hence according to
Lemma 18 we only need to verify that, for any z ∈ Z ,

∑
x∈X (z)

µ̌h(x, π̌e(x)) = µh(z, πe(z)),

which is given by definition of µ̌h: µ̌h(x, a) = µh(z,a)
∣X (z)∣ .
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Lemma 20 For any policy π̌ over M̌ , let π to be the policy π such that π(z) = ∑x∈X(z) π̌(x)∣X (z)∣ for any
z ∈ Z . Then we have for any h ∈ [H], z ∈ Zh and x ∈ X (z),

dπ̌h(x; M̌) =
dπh(z;M)
∣X (z)∣ . (21)

Proof of Lemma 20. We will prove via induction on the layer of x. For x ∈ X1, (21) holds acording
to the definition of initial distribution ρ̌. The induction from layer h to layer h+ 1 can be achieved by

dπ̌h+1(x; M̌) = ∑
x′∈Xh

dπ̌h(x′; M̌)Ť (x ∣ x′, π̌(x′)) = ∑
z′∈Zh

dπh(z′;M)
T (z ∣ z′, π(z′))
∣X (z)∣ = d

π
h(z;M)
∣X (z)∣

for any x ∈ X (z) and z ∈ Zh+1, where we use the fact that dπ̌h(x′; M̌) = dπ̌h(x; M̌) for any
x,x′ ∈ X (z).

The above lemma has the following corollary:

Corollary 21 The concentrability coefficient C(M̌, µ) is the same as the concentrability coefficient
C(M,µ).

Proof of Corollary 21. According to Lemma 20, for any policy π̌ of MDP M̌ , there exists a policy
π of MDP M such that for any h ∈ [H], z ∈ Zh and x ∈ X (z),

dπ̌h(x; M̌)
µ̌(x) =

dπh(z;M)/∣X (z)∣
µ(z)/∣X (z)∣ =

dπh(z;M)
µ(z) .

Taking the supreme over all h ∈ [H], z ∈ Zh, x ∈ X (z) and π̌, we get

C(M̌, µ) = sup
π̌

sup
h∈[H]

sup
x∈Xh

dπ̌eh (x; M̌)
µ̌(x) = sup

π
sup
h∈[H]

sup
z∈Zh

dπeh (z;M)
µ(z) = C(M,µ).

D.4.2. CONSTRUCTION OF THE FAMILY OF OFFLINE RL PROBLEMS

We will construct two OPE families G(1) and G(2) by lifting OPE problems g(1) = (M (1), µ′, πe,F)
and g(2) = (M (2), µ′, πe,F) defined in (18) into Block OPE problems. Each Block OPE problem
has the same observation space but a different emission distributions. Furthermore, each of these
Block OPE problem has latent state space Z and is based on the same aggregation scheme Φ.

let {X (ϕ)}ϕ∈Z be a family of disjoint sets that denote rich-observations corresponding to aggregated
states states ϕ ∈ Φ such that

∣X (ϕ)∣ ≳
∣ϕ∣3H8 ⋅ suph∈H ∣Φh∣ ⋅ supϕ∈Φ ∣ϕ∣C̄ε(M,Φ, µ, πe)3

ε3
. (22)
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The observation space for all the Block-MDPs is given by X = ∪Hh=1Xh, where

Xh = {uh, vh,wh} ∪ (∪ϕ∈ΦhX (ϕ)).

The Block-MDPs that we construct next will different in terms of which observations from X (ϕ)
will be assigned to latent states z ∈ ϕ. To make this explicit, we rely on decoder functions that
map ψ ∶ X ↦ Z . Without loss of generality, assume that all decoders that we will consider satisfy
ψ(uh) = uh, ψ(vh) = vh and ψ(wh) = wh for all h ∈ [H]. Additionally, given a decoder ψ, we define
the set Xψ(z) = {x ∈ X ∣ ψ(x) = z}. We finally define the set Ψ as the set of all possible decoders
which ensure that for any ϕ ∈ Φ, each latent state z ∈ Z gets the same number of observations from
Z . In particular,

Ψ = {ψ ∶ X ↦ Z ∣ ∀ϕ ∈ Φ,∀z ∈ ϕ ∶ Xψ(z) ⊆ X and ∣Xψ(z)∣ =
∣X (ϕ)∣
∣ϕ∣ }.

Offline Policy Evaluation (OPE) Problem given ψ. Given a decoder ψ, and the above notation,
we will lift OPE problem g(1) = (M (1), µ′, πe,F) and g(2) = (M (2), µ′, πe,F) into OPE problems
g(1)ψ = (M̌

(1)
ψ , µ̌′, π̌e, F̌ψ) and g(2)ψ = (M̌

(2)
ψ , µ̌′, π̌e, F̌ψ) using the recipe in Appendix D.4.1, with F̌ψ

satisfies (Q,W )-realizability.

Family of OPE problems. We finally define the family G for OPE problems as

G = ⋃
ψ∈Ψ
{g(1)ψ ,g(2)ψ }.

We note the following important technical lemma.

Lemma 22 For any ψ,ψ′ ∈ Ψ, we have F̌ψ = F̌ψ′ .

Proof of Lemma 22. We will only prove the results for M̌ (1)
ψ . To verify this, we only need to prove

that for any ψ,ψ′ ∈ Ψ, we have for any 1 ≤ h ≤H ,

Qπ̌eh (⋅; M̌
(1)
ψ ) = Q

π̌e
h (⋅; M̌

(1)
ψ′ ) and W (h; µ̌′ψ, M̌

(1)
ψ )) =W (h; µ̌

′
ψ, M̌

(1)
ψ′ )).

The second equation directly follows from Lemma 19. In the next, we will verify the first equation.
Lemma 18 gives that for any ϕ ∈ Φh and x ∈ X (ϕ) and a ∈ A, we have

Qπ̌eh (x, a; M̌
(1)
ψ ) = Q

πe
h (ψ(x), a;M

(1)).

Next, Lemma 15 (a) indicates that

Qπeh (ψ(x), a;M
(1)) = Qπ̄eh (ζ(ψ(x)), a; M̄

(1)).

Notice that for every x ∈ X (ϕ), we have ζ(ψ(x)) = ϕ for any ψ ∈ Ψ. Hence for any ψ ∈ Ψ, we have
Qπ̌eh (x, a; M̌

(1)
ψ ) = Q

π̄e
h (ϕ, a; M̄

(1)) for every ϕ ∈ Φ and x ∈ X (ϕ), which is independent to ψ.

Thus, moving forward, whenever clear from context, we will use the notation F to denote F̌ψ for
any ψ ∈ Ψ, i.e.

F ≜ {(Qπ̌eh (⋅; M̌
(1)
ψ ),W (h; µ̌

′
ψ, M̌

(1)
ψ )), (Q

π̌e
h (⋅; M̌

(2)
ψ ),W (h; µ̌

′
ψ, M̌

(2)
ψ ))}

for some ψ ∈ Ψ (according to the above lemma, F is independent to the choice of ψ ∈ Ψ.)
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D.5. Proof of Theorem 3

After constructing the class G, we have finished the construction step. In the rest of the section we
will prove the theorem by analyzing properties of OPE problems in G. Actually we will prove the
following stronger results than Theorem 3:

Theorem 23 Class G satisfies the following properties:

(a) Function class F with only two elements realizes the (Q,W )-function for all OPE problems
in G;

(b) For any OPE problem (M̌,F , µ̌′, π̌e), we have C(M̌, µ̌′) ≤ 6C(M,µ);

(c) Let N = o(HC̄ε(M,Φ,µ,πe)/ε). For any algorithm which takes D = ∪Hh=1Dh as input and output
the evaluation of value function V̂ , there must exist some g = (M̌,F , µ̌′, π̌e) ∈ G such that the
algorithm fails to output ε/H-accurate evaluation with probability at least 1/2 if the dataset Dh
are collected according to µ̌ and M̌ using N samples.

Proposition 24 The aggregated concentrability coefficient of OPE problems g = (M̌,F , µ̌′, π̌e) ∈
G is of the same order of the original one, i.e. C̄ε(M̌, Φ̌, µ̌′, π̌e) = Θ(C̄ε(M,Φ, µ, πe)) where the
aggregation scheme Φ̌ is defined over X such that Φ̌h = {X (ϕ) ∶ ϕ ∈ Φh} ∪ {{uh},{vh},{wh}}.

D.5.1. TECHNICAL LEMMAS FOR PROOF OF THEOREM 23

In this subsection we provide several useful technical lemmas for proof of Theorem 23.

To begin with, we denote

µ̌ψ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

µ(z)/∣Xψ(z)∣ ∀z ∈ Z, x ∈ Xψ(z),
0 ∀x ∈ {uh, vh,wh}Hh=1

.

Since the transition of uh, vh,wh are already known, and µ̌ψ(x) ≥ µ̌′ψ(x) for all x ∈ Xψ(z) and
z ∈ Z , in the following we only need to prove the results for OPE problems g = (M̌,F , µ̌, π̌e).
In the following, we use Ph,n(⋅; µ̌, M̌) where M̌ = (X ,A,H, Ť , Ř, ρ̌) to denote the law of n tuples
of (x, a, r, x′) jointly, where each tuple is i.i.d. collecting as follows: first sample (x, a) ∼ µ̌h, then
sample r ∼ Ř(⋅ ∣ x, a), x′ ∼ Ť (x′ ∣ x, a). Let

P(1)h,n =
1

∣Ψ∣ ∑ψ∈Ψ
Ph,n(⋅; µ̌ψ, M̌ (1)

ψ ) and P(2)h,n =
1

∣Ψ∣ ∑ψ∈Ψ
Ph,n(⋅; µ̌ψ, M̌ (2)

ψ ). (23)

Furthermore, for any M̌ , let Pn(⋅; µ̌, M̌) ∶= ⊗H
h=1 Ph,n(⋅; µ̌, M̌), and using this notation, define

P(1)n =
1

∣Ψ∣ ∑ψ∈Ψ
Pn(⋅; µ̌ψ, M̌ (1)

ψ ) and P(2)n =
1

∣Ψ∣ ∑ψ∈Ψ
Pn(⋅; µ̌ψ, M̌ (2)

ψ ). (24)

Additionally, since the state space S = S1 ∪ ⋅ ⋅ ⋅ ∪SH is layered, we get that ψ can be separated across
layers, and thus the above definitions imply that

P(1)n =
H

⊗
h=1

P(1)h,n and P(2)n =
H

⊗
h=1

P(2)h,n. (25)

We have the following inequality for TV distances between product measures.
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Lemma 25 (Polyanskiy and Wu (2014), I.33(b)) For distributions P1,⋯,PH and Q1,⋯,QH , we
have

DTV(
H

⊗
h=1

Ph,
H

⊗
h=1

Qh) ≤
H

∑
h=1

DTV(Ph,Qh).

To prove this theorem, we first show the following lemma.

Lemma 26 For any algorithm which takes Dh,n = {(xh,i, ah,i, rh,i, x′h,i)}ni=1 where h ∈ [H] as
input and returns a value V̂ (D1∶H,n) (where we use D1∶H,n to denote D1,n,⋯,DH,n), it must satisfy

sup
ψ∈Ψ,i∈{1,2}

E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(i)

ψ
) [∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣] ≥

ε

4H
⋅ (1 −

H

∑
h=1

DTV(P(1)h,n,P
(2)
h,n)) .

Proof of Lemma 26. Lemma 22 gives that for any M̌, M̌ ′ ∈ {M̌ (1)
ψ ∶ ψ ∈ Ψ}, we have

Qπ̌eh (⋅; M̌) = Q
π̌e
h (⋅; M̌

′), which implies that MDPs in {M̌ (1)
ψ ∶ ψ ∈ Ψ} share the same value function.

Hence we have
V π̌e
h (ρ̌; M̌) = V

π̌e
h (ρ̌; M̌

′), ∀M,M ′ ∈ {M̌ (1)
ψ ∶ ψ ∈ Ψ}.

In the following, we denote the above quantity to be V (1)(ρ̌). Similarly, we denote V (2)(ρ̌) to be the
counterpart for MDPs in {M̌ (2)

ψ ∶ ψ ∈ Ψ}.
For any dataset D1∶H,n, we use δ(D1∶H,n) to denote the following random variable:

δ(D1∶H,n) = I{V̂ (D1∶H,n) ≤
V (1)(ρ̌) + V (2)(ρ̌)

2
} ∈ {0,1},

Then for any ψ ∈ Ψ, we have

E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
) ∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣

≥ E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
) [δ(D1∶H,n) ⋅ ∣V̂ (D1∶H,n) − V (1)(ρ̌)∣]

≥ E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
) [δ(D1∶H,n) ⋅ ∣

V (1)(ρ̌) + V (2)(ρ̌)
2

− V (1)(ρ̌)∣]

≥ P
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
)(δ(D1∶H,n) = 1) ⋅

V (1)(ρ̌) − V (2)(ρ̌)
2

= ε

2H
⋅ P

D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)
ψ
)(δ(D1∶H,n) = 1),

where in the last equation we use (b) and Lemma 18. Similarly, for ψ ∈ Ψ, we have

E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(2)

ψ
) ∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣ ≥

ε

2H
⋅ P

D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(2)
ψ
)(δ(D1∶H,n) = 0).

Therefore, we obtain that

sup
ψ∈Ψ,i∈{1,2}

E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(i)

ψ
) [∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣]
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≥ 1

2∣Ψ∣ ∑ψ∈Ψ
E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
) [∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣]

+ 1

2∣Ψ∣ ∑ψ∈Ψ
E
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(2)

ψ
) [∣V̂ (D1∶H,n) − V (ρ̌; M̌)∣]

≥ ε

4H
⋅
⎛
⎝

1

∣Ψ∣ ∑ψ∈Ψ
P
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(1)

ψ
)(δ(D1∶H,n) = 1) +

1

∣Ψ∣ ∑ψ∈Ψ
P
D1∶H,n∼Pn(⋅;µ̌ψ ,M̌(2)

ψ
)(δ(D1∶H,n) = 0)

⎞
⎠

(i)
≥ ε

4H
⋅
⎛
⎝
1 −DTV

⎛
⎝

1

∣Ψ∣ ∑ψ∈Ψ
Pn(⋅; µ̌ψ, M̌ (1)

ψ ),
1

∣Ψ∣ ∑ψ∈Ψ
Pn(⋅; µ̌ψ, M̌ (2)

ψ )
⎞
⎠
⎞
⎠

(ii)
≥ ε

4H
⋅ (1 −DTV(P(1)n ,P(2)n ))

(ii)
≥ ε

4H
⋅ (1 −

H

∑
h=1

DTV(P(1)h,n,P
(2)
h,n)) ,

where in the inequality (i) we use P(E) +Q(Ec) ≥ 1 −DTV(P,Q) for any event E , in the inequality
(ii) we use (24), and in the equation (iii) we use (25) and Lemma 25.

Hence we only need to upper bound the TV distance between P(1)h,n and P(2)h,n, which is proved in the
following lemma.

Lemma 27 Suppose for every ϕ ∈ Ψ, we have

∣X (ϕ)∣ ≳
∣ϕ∣3H8 ⋅ suph∈H ∣Φh∣ ⋅ supϕ∈Φ ∣ϕ∣C̄ε(M,Φ, µ, πe)3

ε3
.

If n ≤ H
8ε C̄ε(M,Φ, µ, πe), then we have

H

∑
h=1

DTV(P(1)h,n,P
(2)
h,n) ≤

1

2
.

Proof of Lemma 27. At a high level, the proof contains three steps:

(i) We first define intermediate distributions P(0)h,n over tuples (x, a, r, x′) and observe that via
Triangle inequality that

H

∑
h=1

DTV(P(1)h,n,P
(2)
h,n) ≤

H

∑
h=1

DTV(P(1)h,n,P
(0)
h,n) +

H

∑
h=1

DTV(P(0)h,n,P
(2)
h,n).

The final bound follows by showing that ∑Hh=1DTV(P(i)h,n,P
(0)
h,n) ≤ 1/4 for all i ∈ {1,2}.

(ii) Note that P(i)h,n is a distribution over tuples (x, a, r, x′) where the instantaneous reward r ∼
Ř(i)(r ∣ x, a). We first simplify our objective a bit by converting P(i)h,n to P̃(i)h,n, where P̃(i)h,n is a
distribution over tuples (x, a, r, x′) where r ∼ Ř(0)(r ∣ x, a) where Ř(0) is the reward function
in P(0)h,n. Another application of Triangle inequality implies that,

H

∑
h=1

DTV(P(1)h,n,P
(0)
h,n) ≤

H

∑
h=1

DTV(P(1)h,n, P̃
(1)
h,n) +

H

∑
h=1

DTV(P̃(1)h,n,P
(0)
h,n).
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Bounding the first term above is straightforward.

(iii) We finally bound the term DTV(P̃(1)h,n,P
(0)
h,n) for each h ∈ [H] by delving further into the

structure of the MDPs and the underlying data distribution in P̃(1)n . Most of the proof will be
spend on bound.

Part-(i): Construction of P(0)n . We first define additional notation. Let the distribution ν ∈
∆(X ×A ×X ) such that for any h ∈ [H], ϕ ∈ Φh, ϕ′ ∈ Φh+1 and x ∈ X (ϕ), x′ ∈ X (ϕ′), a ∈ A, we
have

νh(x, a, x′) =∑
z∈ϕ
∑
z′∈ϕ′

µ(z, a)T (1)(z′ ∣ z, a)
∣X (ϕ)∣∣X (ϕ′)∣ , (26)

Additionally, we define a reward distribution Ř(0)h ∈∆({−1,1}) such that

Ř(0)h (⋅ ∣ x, a) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ1(⋅) x = uh+1,
δ−1(⋅) x = vh+1,
1
2δ1(⋅) +

1
2δ−1(⋅) otherwise,

(27)

where we use δt(⋅) denote the density of delta-distribution at t. Given ν and Ř(0)h above, we define
P(0)h ∈∆(Xh ×A × {−1,1} ×Xh+1) as

P(0)h ((x, a, r, x
′)) ∶= νh(x, a, x′)Ř(0)h (r ∣ x, a), (28)

and set P(0)h,n = (P
(0)
h )
⊗n.

As a sanity check, note that

∑
(x,a,r,x′)∈Xh×A×{−1,1}×Xh+1

P(0)h ((x, a, r, x
′)) = ∑

(x,a,x′)∈Xh×A×Xh+1
νh(x, a, x′)

= ∑
ϕ∈Φh

∑
ϕ′∈Φ′

h+1∪{uh+1,vh+1}
∑
z∈ϕ
∑
z′∈ϕ′

µ(z, a)T (1)(z′ ∣ z, a) = 1,

and thus P(0)h is a valid distribution; the above also implies that νh (defined above) is a valid
distribution. Furthermore, while the above definition is based in T (1), we could have also defined P(0)h
using T (2) and would have ended up with the same distribution since ∑z∈ϕ µ(z, a)T (1)(z′ ∣ z, a) =
∑z∈ϕ µ(z, a)T (2)(z′ ∣ z, a) for any ϕ ∈ Φ, z ∈ Z ′ due to Lemma 15-(c).
Given P(0)h,n, using Triangle inequality we have

∑
h∈[H]

DTV(P(1)h,n,P
(2)
h,n) ≤ ∑

h∈[H]
DTV(P(1)h,n,P

(0)
h,n) + ∑

h∈[H]
DTV(P(0)h,n,P

(2)
h,n). (29)

In the next part, we prove that ∑h∈[H]DTV(P(1)h,n,P
(0)
h,n) ≤ 1/4. The proof for P(2)h,n follows similarly,

and combining the two bound gives the desired statement.

Part-(ii): Construction of P̃(1)n and bounding DTV(P(1)h,n, P̃
(1)
h,n). First recall that from (24), we

can write

P(1)h,n({(xi, ai, ri, x
′
i)}ni=1) =

1

∣Ψ∣ ∑ψ∈Ψ

n

∏
i=1
µ̌h,ψ(xi, ai)Ř(1)h (ri ∣ xi, ai)Ť

(1)
ψ (x

′
i ∣ xi, ai),
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where Ř(1)h is given by

Ř(1)h (⋅ ∣ x, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1(⋅) x = uh+1,
δ−1(⋅) x = vh+1,
δ1(⋅)+δ−1(⋅)

2 + δ1(⋅)−δ−1(⋅)
2 ⋅ ε

2H∑ϕ∈I dπ̄eh∗(ϕ;M̄)
x ∈ X (ϕ) for ϕ ∈ I, a = π̌e(x)

1
2δ1(⋅) +

1
2δ−1(⋅) otherwise.

(30)

We next define the distribution P̃(1)h,n similar to P(1)h,n, but where we use Ř(0) (given in (27)) instead of
Ř(1) to remove the dependence on the rewards on i. In particular, we define

P̃(1)h,n({(xi, ai, ri, x
′
i)}ni=1) =

1

∣Ψ∣ ∑ψ∈Ψ

n

∏
i=1
µ̌h,ψ(xi, ai)Ř(0)h (ri ∣ xi, ai)Ť

(1)
ψ (x

′
i ∣ xi, ai). (31)

If we denote

ř(1)h (xi, ai) ∶= E[Ř(1)h (⋅ ∣ x, a)] and ř(0)h (xi, ai) ∶= E[Ř(0)h (⋅ ∣ x, a)].

Note that when n ≤ HC̄ε(M,Φ,µ,πe)
2ε , using the above definitions, we have

H

∑
h=1

DTV(P(1)h,n, P̃
(1)
h,n)

= 1

2
∑

h∈[H]
∑

{(xi,ai,ri,x′i)}ni=1
∈(Xh×A×{0,1}×Xh+1)n

∣P(1)h,n({(xi, ai, ri, x
′
i)}ni=1) − P̃(1)h,n({(xi, ai, ri, x

′
i)}ni=1)∣

(i)
≤ 1

2
∑

h∈[H]
∑

{(xi,ai)}ni=1∈(Xh×A)n

1

∣Ψ∣ ∑ψ∈Ψ

n

∑
i=1
∣ř(1)h (xi, ai) − ř

(0)
h (xi, ai)∣

n

∏
i=1
µ̌h,ψ(xi, ai)

(ii)= 1

2∣Ψ∣ ∑ψ∈Ψ

n

∑
i=1
∑

h∈[H]
∑

(xi,ai)∈Xh×A
µ̌h,ψ(xi, ai)∣ř(1)h (xi, ai) − ř

(0)
h (xi, ai)∣

(iii)
≤ 1

2∣Ψ∣ ∑ψ∈Ψ

n

∑
i=1
∑

h∈[H]
∑
xi∈Xh

µ̌ψ(xi, π̌e(xi))
εI{ζ(ψ(xi)) ∈ I)}
2H∑ϕ∈I dπ̄eh (ϕ; M̄)

= nε

4H∑ϕ∈I dπ̄eh (ϕ; M̄)
∑

z∶ζ(z)∈I
µ(z, πe(z)),

where inequality (i) follows from Triangle Inequality, inequality (ii) follows by rearranging the
terms and using the fact that ∑xi,ai µ̌h,ψ(xi, ai) = 1. The inequality (iii) is from plugging in the
forms of Ř(1) and Ř(0) from (27) and (30). Finally, the last line uses the fact that

1

∣Ψ∣ ∑ψ∈Ψ
∑
xi

µ̌ψ(xi, π̌e(xi))I{ζ(ψ(xi)) ∈ I)} = ∑
z∶ζ(z)∈I

µ(z, πe(z)),

from the definition of µ̌. Next, using the definition of C̄ε(M,Φ, µ, πe) in Definition 2, and recalling
that I is the maximizer aggregation in Definition 2, we get that

C̄ε(M,Φ, µ, πe) =
∑ϕ∈I dπ̄eh (ϕ; M̄)

∑z∶ζ(z)∈I µ(z, πe(z))
,
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which implies that
H

∑
h=1

DTV(P(1)h,n, P̃
(1)
h,n) ≤

nε

4HC̄ε(M,Φ, µ, πe)
≤ 1

8
,

where the last inequality holds since n ≤ HC̄ε(M,Φ,µ,πe)
2ε .

Thus, using Triangle inequality,

∑
h∈[H]

DTV(P(1)h,n,P
(0)
h,n) ≤ ∑

h∈[H]
DTV(P(1)h,n, P̃

(1)
h,n) + ∑

h∈[H]
DTV(P(0)h,n, P̃

(1)
h,n)

≤ 1

8
+ ∑
h∈[H]

DTV(P(0)h,n, P̃
(1)
h,n).

(32)

Part-(iii): Bound on DTV(P(0)h,n, P̃
(1)
h,n). First note that, from Polyanskiy and Wu (2014, Proposi-

tion 7.13), we have

DTV(P(0)h,n, P̃
(1)
h,n) ≤

1

2

√
Dχ2(P̃(1)h,n∥P

(0)
h,n). (33)

Using the form of χ2-divergence, we note that

Dχ2(P̃(1)h,n∥P
(0)
h,n)

= E{(xi,ai,ri,x′i)}ni=1∼P
(0)
h,n

⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

P̃(1)h,n({(xi, ai, ri, x
′
i)}ni=1)

P(0)h,n({(xi, ai, ri, x′i)}ni=1)
⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦
− 1

= E{(xi,ai,ri,x′i)}ni=1∼P
(0)
h,n

⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

1
∣Ψ∣ ∑ψ∈Ψ∏

n
i=1 µ̌h,ψ(xi, ai)Ř

(0)
h (ri ∣ xi, ai)Ť

(1)
ψ (x

′
i ∣ xi, ai)

∏ni=1 νh(xi, ai, x′i)Ř
(0)
h (ri ∣ xi, ai)

⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦
− 1,

where the second line plugs in the definition of P̃(1)h,n in (31) and P(0)h,n in (28). We next note
that the terms Ř(0)h (ri ∣ xi, ai) will cancel out in the ratio, thus implying that the expression is
independent of {ri}ni=1. Furthermore, from the definition of P(0)h,n in (28), we note that sampling
{(xi, ai, x′i)}ni=1 ∼ P(0)h,n is same as sampling {(xi, ai, x′i)}ni=1 ∼ ν⊗nh . Thus,

Dχ2(P̃(1)h,n∥P
(0)
h,n)

= E{(xi,ai,x′i)}ni=1∼ν
⊗n
h

⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

1
∣Ψ∣ ∑ψ∈Ψ∏

n
i=1 µ̌h,ψ(xi, ai)Ť

(1)
ψ (x

′
i ∣ xi, ai)

∏ni=1 νh(xi, ai, x′i)
⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦
− 1

= 1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

E{(xi,ai,x′i)}ni=1∼ν
⊗n
h

⎡⎢⎢⎢⎢⎣

n

∏
i=1

µ̌h,ψ1(xi, ai)µ̌h,ψ2(xi, ai)Ť
(1)
ψ1
(x′i ∣ xi, ai)Ť

(1)
ψ2
(x′i ∣ xi, ai)

νh(xi, ai, x′i)2
⎤⎥⎥⎥⎥⎦
− 1

= 1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

E(x,a,x′)∼νh

⎡⎢⎢⎢⎢⎣

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)2

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=B(ψ1,ψ2)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

n

− 1,

(34)
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where the second equality follows by expanding the square and rearranging the product. Finally, the
last line exchange the expectation and the product by using the fact that tuples {(xi, ai, x′i)}ni=1 are
i.i.d. sampled from νh. In the following, we will complete the proof by giving bounds on the terms
B(ψ1, ψ2) under various conditions on ψ1 and ψ2. However, we need additional notation before we
proceed:

● Given any h ∈ [H], ϕ ∈ Φh, z, z′ ∈ ϕ, and ψ1, ψ2 ∈ Ψ, we define

θh(ϕ, z1, z2;ψ1, ψ2) ∶=
∣Xψ1(z1) ∩Xψ2(z2)∣

∣X (ϕ)∣ (35)

to denote the fraction of repeated observations between z and z′ amongst all the observations
that correspond to aggregation ϕ.

● Let ξ = 1/(64H2n) ∈ (0, 1/n). For any h ∈ [H], ϕ ∈ Φh, and z1, z2, ∈ ϕ, we define

Γh(ξ;ϕ, z1, z2) = {(ψ1, ψ2) ∈ Ψ2 ∣ θ(ϕ, z1, z2;ψ1, ψ2) ≤
1 + ξ
∣ϕ∣2 } (36)

to denote the set of all pairs (ψ1, ψ2) for which the corresponding ratios θ(ϕ, z1, z2;ψ1, ψ2)
are small.

● Finally, we define the set

Γ(ξ) = ⋂
h∈[H],ϕ∈Φh∪{uh,vh}

⎛
⎝ ⋂z1,z2,∈ϕ

Γ(ξ;ϕ, z1, z2)
⎞
⎠
. (37)

We now have all the necessary notation to proceed with the proof. We split the terms B(ψ1, ψ2)
appearing in (34) under two separate scenarios:

● Case 1: B(ψ1, ψ2) ∈ Γ(ξ). In this case, Lemma 28 (below) implies that

B(ψ1, ψ2) ≤ (1 + ξ)2.

● Case 2: B(ψ1, ψ2) ∉ Γ(ξ). In this case, Lemma 29 (below) implies that

B(ψ1, ψ2) ≤ sup
ϕ∈Φ
∣ϕ∣4.

Combining the two above in (34), we get that

Dχ2(P̃(1)h,n∥P
(0)
h,n) ≤

1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

[(I{(ψ1, ψ2) ∈ Γ(ξ)}(1 + ξ)2n + I{(ψ1, ψ2) /∈ Γ(ξ)} sup
ϕ∈Φ
∣ϕ∣4n)] − 1

≤ 1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

[(1 + 2nξ + I{(ψ1, ψ2) /∈ Γ(ξ)} sup
ϕ∈Φ
∣ϕ∣4n)] − 1
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= 2ξn + sup
ϕ∈Φ
∣ϕ∣4n ⋅ 1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

I{(ψ1, ψ2) /∈ Γ(ξ)},

where the second line uses the fact that (1 + ξ)n ≤ 1 + 2ξn for any ξ ≤ 1/n. Next, we notice that for
ϕ ∈ ∪Hh=1{uh, vh} and z1, z2 ∈ ϕ, since ∣ϕ∣ = 1, we always have (ψ1, ψ2) ∈ Γ(ξ;ϕ, z1, z2). Therefore,
we have

Γ(ξ) = ⋂
h∈[H],ϕ∈Φh

⎛
⎝ ⋂z1,z2,∈ϕ

Γ(ξ;ϕ, z1, z2)
⎞
⎠
.

Lemma 30 gives that for any h ∈H,ϕ ∈ Φh and z1, z2 ∈ Φ, we always have

1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

I{(ψ1, ψ2) /∈ Γh(ξ;ϕ, z1, z2)} ≤ e
−2ξ2 ∣X(ϕ)∣

∣ϕ∣3 ≤ Γh(ξ;ϕ, z1, z2)} ≤ e
−2ξ2 infϕ∈Φ ∣X(ϕ)∣∣ϕ∣3 ,

which indicates that
1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

I{(ψ1, ψ2) /∈ Γ(ξ)} ≤ ∑
h∈[H],ϕ∈Φh

∑
z1,z2∈ϕ

1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

I{(ψ1, ψ2) /∈ Γh(ξ;ϕ, z1, z2)}

≤H ⋅ sup
h∈H
∣Φh∣ ⋅ sup

ϕ∈Φ
∣ϕ∣2 ⋅ e−2ξ

2 infϕ∈Φ
∣X(ϕ)∣
ϕ∣3

This suggests that

Dχ2(P̃(1)h,n∥P
(0)
h,n) ≤ 2ξn +H ⋅ sup

h∈H
∣Φh∣ ⋅ sup

ϕ∈Φ
∣ϕ∣4n+2 ⋅ e−2ξ

2 infϕ∈Φ
∣X(ϕ)∣
∣ϕ∣3 .

Finally, when
∣X (ϕ)∣ ≥ c0 ⋅ n3∣ϕ∣3H5 ⋅ sup

h∈H
∣Φh∣ ⋅ sup

ϕ∈Φ
∣ϕ∣ ∀ϕ ∈ Φ

for some sufficiently large constant c0, with choice ξ = 1/(64H2n) we will have

Dχ2(P̃(1)h,n∥P
(0)
h,n) ≤

1

16H2
.

Hence when

∣X (ϕ)∣ ≳
∣ϕ∣3H8 ⋅ suph∈H ∣Φh∣ ⋅ supϕ∈Φ ∣ϕ∣C̄ε(M,Φ, µ, πe)3

ε3
and n ≤ H

8ε
C̄ε(M,Φ, µ, πe)

this together with (33) implies that

DTV(P(0)h,n, P̃
(1)
h,n) ≤

1

8H
.

According to (32), we have

∑
h∈[H]

DTV(P(1)h,n,P
(0)
h,n) ≤

1

8
+H ⋅ 1

8H
≤ 1

4
.

Similarly, we can also prove that

∑
h∈[H]

DTV(P(2)h,n,P
(0)
h,n)

1

4
.

Plug in these two in (29), we get the desired bound.
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Lemma 28 We have the following property for Bh(ψ1, ψ2) defined in (34): For any ψ1, ψ2 ∈ Γ(ξ),
we have

Bh(ψ1, ψ2) ≤ (1 + ξ)2.

Proof of Lemma 28. Recall that

Bh(ψ1, ψ2) = E(x,a,x′)∼νh

⎡⎢⎢⎢⎢⎣

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)2

⎤⎥⎥⎥⎥⎦
.

According to our construction of µ̌h,ψ in Appendix D.4.1, for any x ∈ X (z), we have

µ̌h,ψ(x, a) =
µh(z, a)
∣X (z)∣ = µh(z, a) ⋅

∣ϕ∣
∣X (ϕ)∣ .

Additionally, according to our construction of Ť (1)ψ (x
′ ∣ x, a), for any x ∈ X (z) and x′ ∈ X (z′), we

have

Ť (1)ψ (x
′ ∣ x, a) = T

(1)(z′ ∣ z, a)
∣X (ϕ′)∣ = T (1)(z′ ∣ z, a) ⋅ ∣ϕ

′∣
∣X (ϕ′)∣ .

This implies that for any ϕ ∈ Φh, ϕ′ ∈ Φ′h+1, and x ∈ Xψ1(z1) ∩Xψ2(z2), x′ ∈ Xψ1(z′1) ∩Xψ2(z′2),
we have

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)

= ∣ϕ∣2
∣X (ϕ)∣2 ⋅

∣ϕ′∣2
∣X (ϕ′)∣2 ⋅ µh(z1, a)µh(z2, a)T

(1)(z1 ∣ z1, a)T (1)(z2 ∣ z2, a). (38)

And the definition of θ in (35) gives that

∣Xψ1(z1) ∩Xψ2(z2)∣ = θh(ϕ, z1, z2;ψ1, ψ2) ⋅ ∣X (ϕ)∣
∣Xψ1(z′1) ∩Xψ2(z′2)∣ = θh+1(ϕ′, z′1, z′2;ψ1, ψ2) ⋅ ∣X (ϕ)∣

Hence we can write

E(x,a,x′)∼νh

⎡⎢⎢⎢⎢⎣

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)2

⎤⎥⎥⎥⎥⎦

= ∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1∪{uh+1,vh+1}

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)

(i)= ∑
ϕ∈Φh

∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
x∈X (ϕ)

∑
x′∈X (ϕ′)

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)

∑z∈ϕ∑z′∈ϕ′ µh(z,a)T
(1)(z′∣z,a)

∣X (ϕ)∣∣X (ϕ′)∣
(ii)= ∑

ϕ∈Φh
∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

∑
z2∈ϕ

∑
z′2∈ϕ′

µh(z1, a)µh(z2, a)T (1)(z1 ∣ z1, a)T (1)(z2 ∣ z2, a)

⋅
∣ϕ∣2
∣X (ϕ)∣2 ⋅

∣ϕ′∣2
∣X (ϕ′)∣2 ⋅ ∣Xψ1(z′1) ∩Xψ2(z′2)∣∣Xψ1(z1) ∩Xψ2(z2)∣

∑z∈ϕ∑z′∈ϕ′ µh(z,a)T
(1)(z′∣z,a)

∣X (ϕ)∣∣X (ϕ′)∣
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(iii)= ∑
ϕ∈Φh

∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

∑
z2∈ϕ

∑
z′2∈ϕ′

µh(z1, a)µh(z2, a)T (1)(z1 ∣ z1, a)T (1)(z2 ∣ z2, a)

⋅
∣ϕ∣2
∣X (ϕ)∣2 ⋅

∣ϕ′∣2
∣X (ϕ′)∣2 ⋅ θh(ϕ, z1, z2;ψ1, ψ2) ⋅ θh+1(ϕ′, z′1, z′2;ψ1, ψ2) ⋅ ∣X (ϕ)∣

∑z∈ϕ∑z′∈ϕ′ µh(z,a)T
(1)(z′∣z,a)

∣X (ϕ)∣∣X (ϕ′)∣
(iv)= ∑

ϕ∈Φh
∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

∑
z2∈ϕ

∑
z′2∈ϕ′
∣ϕ∣2∣ϕ′∣2 ⋅ µh(z1, a)µh(z2, a)T (1)(z1 ∣ z1, a)T (1)(z2 ∣ z2, a)

θh(ϕ, z1, z2;ψ1, ψ2) ⋅ θh+1(ϕ′, z′1, z′2;ψ1, ψ2)
∑z∈ϕ∑z′∈ϕ′ µh(z, a)T (1)(z′ ∣ z, a)

, (39)

where in (i)we use the exact form of νh defined in (26), in (ii)we group those x ∈ Xψ1(z1)∩Xψ2(z2)
and x′ ∈ Xψ1(z′1) ∩Xψ2(z′2) together (because the summand gives the same value) and use (38), in
(iii) we use the definition of θh(ϕ, z1, z2;ψ1, ψ2) in (35), and (iv) is just algebraic calculation.

Next, when (ψ1, ψ2) ∈ Γ(ξ), according to the definition of γ(ξ) in (37), we have

(ψ1, ψ2) ∈ Γh(ξ;ϕ, z1, z2) ∀h ∈ [H], ϕ ∈ Φh, z1, z2 ∈ ψ,

which implies that

θh(ϕ, z1, z2;ψ1, ψ2) ≤
1 + ξ
∣ϕ∣2 and θh+1(ϕ′, z′1, z′2;ψ1, ψ2) ≤

1 + ξ
∣ϕ′∣2 . (40)

Bringing this back to (39), we obtain that

E(x,a,x′)∼νh

⎡⎢⎢⎢⎢⎣

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)2

⎤⎥⎥⎥⎥⎦
(i)
≤ (1 + ξ)2 ⋅ ∑

ϕ∈Φh
∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

∑
z2∈ϕ

∑
z′2∈ϕ′

µh(z1, a)µh(z2, a)T (1)(z′1 ∣ z1, a)T (1)(z′2 ∣ z2, a)
∑z∈ϕ∑z′∈ϕ′ µh(z, a)T (1)(z′ ∣ z, a)

(ii)= (1 + ξ)2 ⋅ ∑
ϕ∈Φh

∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

µh(z1, a)T (1)(z′1 ∣ z1, a)

(iii)= (1 + ξ)2 ∑
z∈Zh

∑
a∈A

∑
z′∈Z′

h+1

µh(z1, a)T (1)(z′ ∣ z, a) = (1 + ξ)2,

where in (i) we use (40), (ii) is just algebraic calculation, and in (iii) we use the fact that µh(⋅) ∈
∆(Zh ×A) and T (1)(⋅ ∣ z, a) ∈∆(Zh+1) for any z ∈ Z, a ∈ A.

Lemma 29 We have the following property for Bh(ψ1, ψ2) defined in (34): For any ψ1, ψ2 /∈ Γ(ξ),
we have

Bh(ψ1, ψ2) ≤ sup
ϕ∈Φ
∣ϕ∣4.

Proof of Lemma 29. For (ψ1, ψ2) /∈ Γ(ξ), since for any h ∈ [H], ϕ ∈ Φh ∪ {uh, vh} and z1, z2 ∈ ϕ,
we always have

Xψ1(z1) ∩Xψ2(z2) ⊂ X (ϕ),
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we have θh(ϕ, z1, z2;ψ1, ψ2) ≤ 1. Bringing this back to (39), we obtain that

Bh(ψ1, ψ2) = E(x,a,x′)∼νh

⎡⎢⎢⎢⎢⎣

µ̌h,ψ1(x, a)µ̌h,ψ2(x, a)Ť
(1)
ψ1
(x′ ∣ x, a)Ť (1)ψ2

(x′ ∣ x, a)
νh(x, a, x′)2

⎤⎥⎥⎥⎥⎦
≤ sup
ϕ∈Φh
∣ϕ∣2 sup

ϕ′∈Φ′∪{uh+1,vh+1}
∣ϕ′∣2

⋅ ∑
ϕ∈Φh

∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

∑
z2∈ϕ

∑
z′2∈ϕ′

µh(z1, a)µh(z2, a)T (1)(z′1 ∣ z1, a)T (1)(z′2 ∣ z2, a)
∑z∈ϕ∑z′∈ϕ′ µh(z, a)T (1)(z′ ∣ z, a)

= sup
ϕ∈Φh
∣ϕ∣2 sup

ϕ′∈Φ′∪{uh+1,vh+1}
∣ϕ′∣2 ⋅ ∑

ϕ∈Φh
∑
a∈A

∑
ϕ′∈Φh+1∪{uh+1,vh+1}

∑
z1∈ϕ

∑
z′1∈ϕ′

µh(z1, a)T (1)(z′1 ∣ z1, a)

= sup
ϕ∈Φh
∣ϕ∣2 sup

ϕ′∈Φ′∪{uh+1,vh+1}
∣ϕ′∣2 ∑

z∈Zh
∑
a∈A

∑
z′∈Z′

h+1

µh(z1, a)T (1)(z′1 ∣ z1, a)

= sup
ϕ∈Φh
∣ϕ∣2 sup

ϕ′∈Φ′∪{uh+1,vh+1}
∣ϕ′∣2.

Further notice that for any ϕ′ ∈ {uh+1, vh+1}, we have ∣ϕ′∣ ≤ 1 ≤ supϕ′∈Φ′ ∣ϕ′∣, which indicates that
Bh(ψ1, ψ2) ≤ supϕ∈Φh ∣ϕ∣

2 ⋅ supϕ′∈Φh ∣ϕ
′∣2 ≤ supϕ∈Φ ∣ϕ∣4.

Lemma 30 For any h ∈ [H], ϕ ∈ Φh and z1, z2 ∈ Φ and ξ ∈ (0,1), we have

1

∣Ψ∣2 ∑
ψ1,ψ2∈Ψ

I{(ψ1, ψ2) /∈ Γh(ξ;ϕ, z1, z2)} ≤ e
−2ξ2 ∣X(ϕ)∣

∣ϕ∣3 ,

where Γh(ξ;ϕ, z1, z2) is defined in (36)

Proof of Lemma 30. We denote S = ∣X (ϕ)∣. Without loss of generality, we assume X (ϕ) = [S] =
{1,2,⋯, S}. Since ψ1 and ψ2 are samples i.i.d. according to Unif(Ψ), without loss of generality we
assume Xψ1(z1) = [S/∣ϕ∣]. And to prove this lemma, we only need to verify that when ψ2 ∼ Unif(Ψ),
we have

P(∣Xψ2(z2) ∩ [
S

∣ϕ∣ ]∣ ≥
S(1 + ξ)
∣ϕ∣2 ) ≤ e−2ξ

2 S
∣ϕ∣3 . (41)

Next, we notice that sampling ψ2 ∼ Unif(Ψ) is equivalent of sampling Xψ2(z2) uniformly from all
subsets of [S] with exact S/∣ϕ∣ elements. Hence we obtain that

P(∣Xψ2(z2) ∩ [
S

∣ϕ∣ ]∣ ≥
S(1 + ξ)
∣ϕ∣2 ) = ∑

t≥S(1+ξ)/∣ϕ∣2

(S/∣ϕ∣
t
)(S−S/∣ϕ∣S/∣ϕ∣−t)

( SS/∣ϕ∣)
.

We further notice that according to Lemma D.7 in Foster et al. (2022) (also in Hoeffding (1994)), we
get

∑
t≥S(1+ξ)/∣ϕ∣2

(S/∣ϕ∣
t
)(S−S/∣ϕ∣S/∣ϕ∣−t)

( SS/∣ϕ∣)
= P [X ≥ (K

N
+ ξ

∣ϕ∣)N
′] ≤ e−2ξ

2 S
∣ϕ∣3 ,

where X ∼ Hypergeometric(K,N,N ′) with K = N ′ = S/∣ϕ∣,N = S. This verifies (41).

46



OFFLINE RL: ROLE OF STATE AGGREGATION AND TRAJECTORY DATA

Lemma 31 (Lemma D.7 in Foster et al. (2022)) Let X ∼ Hypergeometric(K,N,N ′) and define
p =K/N . Then for any 0 < ε < pN ′, we have

P[X ≥ (p + ε)N ′] ≤ exp(−2ε2N ′).

D.5.2. PROOF OF THEOREM 23

Proof of Theorem 23. Given the original MDP M and distribution µ, we construct family G of
OPE problems in Appendix D.4.2. First of all, Lemma 22 indicates that function class F of these
OPE problems in G is 2. Next, bringing Lemma 27 into Lemma 26 and noticing that (22) satisfies
the condition of Lemma 27, we have that any algorithm which takes Dh,n for h ∈ [H] must induce
error at least ε/8H in one case within G.

Additionally, Corollary 21 indicates that the standard concentrability of instances in G equals to
the standard concentrability of C(M (1), µ′) or C(M (2), µ′). Additionally, Corollary 16 indicates
that C(M (1), µ′) or C(M (2), µ′) is no more than 6C(M,µ). This verifies the second condition in
Theorem 23.

Appendix E. Missing Details from Section 3.1 and Section 4.1

In this subsection, we will prove Proposition 4 and Theorem 5.

E.1. Proof of Proposition 4

The following lemmas state some properties of the MDP defined in Example 1. Proposition 4 is a
direct corollary of Lemma 35.

Lemma 32 For MDP M , and policy πb defined above, we have

dπbh (z
[1]
h ;M) ≥ 1

2h+2
, dπbh (z

[2]
h ;M) ≥ 1

2h+2H
, and dπbh (z

[3]
h ;M) ≥ 1

4
, ∀1 ≤ h ≤H.

Proof of Lemma 32. Under policy πb(z) = 1
H2 δa1(⋅) + H2−1

H2 δa2(⋅), the transition satisfies

T (z[1]h+1 ∣ z
[1]
h , πb(z

[1]
h )) ≥

H2 − 1
H2

T (z[1]h+1 ∣ z
[1]
h ,a2) =

H2 − 1
2H2

,

T (z[2]h+1 ∣ z
[2]
h , πb(z

[2]
h )) ≥

H2 − 1
H2

T (z[2]h+1 ∣ z
[2]
h ,a2) =

H2 − 1
2H2

, and,

T (z[3]h+1 ∣ z
[3]
h , πb(z

[3]
h )) ≥

H2 − 1
H2

T (z[3]h+1 ∣ z
[3]
h ,a2) =

H2 − 1
H2

.

Hence according to the choice initial distribution ρ(⋅), we have for all 1 ≤ h ≤H ,

dπbh (z
[1]
h ;M) ≥ H − 1

2H
⋅ (H

2 − 1
2H2

)
h−1
≥ 1

2h+2
,
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dπbh (z
[2]
h ;M) = 1

2H
⋅ (H

2 − 1
2H2

)
h−1
≥ 1

2h+2H
, and,

dπbh (z
[3]
h ;M) ≥ 1

2
(H

2 − 1
H2

)
h−1
≥ 1

4
.

Lemma 33 For MDP M and policy πb defined above, we have

dπbh (z
[1]
h )

dπbh (z
[2]
h )
≥ H − 1

3
.

Proof of Lemma 33. First we can write the dynamic programming formula for dπh:

dπbh+1(z
[1]
h+1) = d

πb
h (z

[1]
h )T (z

[1]
h+1 ∣ z

[1]
h , πb(z

[1]
h )) + d

πb
h (z

[2]
h )T (z

[1]
h+1 ∣ z

[2]
h , πb(z

[2]
h )),

dπbh+1(z
[2]
h+1) = d

πb
h (z

[1]
h )T (z

[2]
h+1 ∣ z

[1]
h , πb(z

[1]
h )) + d

πb
h (z

[2]
h )T (z

[2]
h+1 ∣ z

[2]
h , πb(z

[2]
h )).

According to our choice of πb, we have

T (z[1]h+1 ∣ z
[1]
h , πb(z

[1]
h )) =

H2 − 1
2H2

, T (z[2]h+1 ∣ z
[1]
h , πb(z

[1]
h )) =

1

H2
,

T (z[1]h+1 ∣ z
[2]
h , πb(z

[2]
h )) = 0, and T (z[2]h+1 ∣ z

[2]
h , πb(z

[2]
h )) =

H2 − 1
2H2

,

which indicates that

dπbh+1(z
[2]
h+1)

dπbh+1(z
[1]
h+1)

=
T (z[2]h+1 ∣ z

[1]
h , πb(z

[1]
h ))

T (z[1]h+1 ∣ z
[1]
h , πb(z

[1]
h ))

+
T (z[2]h+1 ∣ z

[2]
h , πb(z

[2]
h ))

T (z[1]h+1 ∣ z
[1]
h , πb(z

[1]
h ))

⋅
dπbh (z

[2]
h )

dπbh (z
[1]
h )
≤ 2

H2 − 1 +
dπbh (z

[2]
h )

dπbh (z
[1]
h )

.

Additionally, after noticing that d
πb
h
(z[2]1 )

d
πb
h
(z[1]1 )

= ρ(z[2]1 )
ρ(z[1]1 )

= 1
H−1 , we have for all 1 ≤ h ≤H ,

dπbh (z
[2]
h+1)

dπbh (z
[1]
h+1)

≤ 1

H − 1 + (h − 1) ⋅
2

H2 − 1 ≤
1

H − 1 +
2(H − 1)
H2 − 1 ≤

3

H − 1 .

Lemma 34 For any policy π, and the MDP M defined above, we have

dπh(z
[1]
h ) + d

π
h(z

[2]
h ) ≤

1

2h−1
∀h ∈ [H].

Proof of Lemma 34. First we can write the dynamic programming formula for dπh:

dπh+1(z
[1]
h+1) = d

π
h(z

[1]
h )T (z

[1]
h+1 ∣ z

[1]
h , π(z

[1]
h )) + d

π
h(z

[2]
h )T (z

[1]
h+1 ∣ z

[2]
h , π(z

[2]
h ))
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dπh+1(z
[2]
h+1) = d

π
h(z

[1]
h )T (z

[2]
h+1 ∣ z

[1]
h , π(z

[1]
h )) + d

π
h(z

[2]
h )T (z

[2]
h+1 ∣ z

[2]
h , π(z

[2]
h )).

We let π(z[1]h ) = p1δa1(⋅) + (1 − p1)δa2(⋅), and π(z[2]h ) = p2δa1(⋅) + (1 − p2)δa2(⋅). Then we have

T (z[1]h+1 ∣ z
[1]
h , π(z

[1]
h )) =

1

2
(1 − p1), T (z[2]h+1 ∣ z

[1]
h , π(z

[1]
h )) = p1,

T (z[1]h+1 ∣ z
[2]
h , π(z

[2]
h )) = 0, and T (z[2]h+1 ∣ z

[2]
h , π(z

[2]
h )) =

1

2
(1 − p2).

This implies that

2dπh+1(z
[1]
h+1) + d

π
h+1(z

[2]
h+1) = d

π
h(z

[1]
h ) ⋅ (1 − p1p1) + d

π
h(z

[1]
h ) ⋅ (2 ⋅ 0 +

1

2
(1 − p2))

= 1

2
⋅ (2dπ(z[1]h ) + d

π(z[2]h )) .

Further noticing that 2dπ(z[1]1 ) + dπ(z
[2]
1 ) = 2ρ(z

[1]
1 ) + ρ(z

[2]
1 ) ≤ 1, we obtain that for any h ∈ [H],

2dπh(z
[1]
h ) + d

π
h(z

[2]
h ) ≤

1

2h−1
.

Therefore, for any h ∈ [H], we have

dπh(z
[1]
h ) + d

π
h(z

[2]
h ) ≤

1

2h−1
.

Lemma 35 For the MDP M and policy πb defined above, the concentrability coefficient of all
policies with respect to dπbh (⋅;M) is upper bounded as

max
π∈Π

max
h

max
z∈Zh,a∈A

dπh(z, a;M)
dπbh (z, a;M)

≤ 8H3,

where Π is the class of all policies. However, for ε ≤ 1/15, the aggregated concentrability coefficient
is lower bounded as

C̄ε(M,ϕ, dπbh (⋅;M), πe) ≥ 2
H−7.

Proof of Lemma 35. For our choice of πb,

dπbh (z, a;M) ≥
dπbh (z;M)

H2
and dπh(z, a;M) ≤

dπh(z;M)
H2

∀z ∈ Z, a ∈ A,

which implies that
dπh(z, a;M)
dπbh (z, a;M)

≤H2 ⋅ d
π
h(z;M)

dπbh (z;M)
∀z ∈ Z.
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Hence, Lemma 32 and Lemma 34 give that for any policy π ∈ Π,1 ≤ h ≤H and z ∈ Zh,

dπh(z;M)
dπbh (z;M)

≤max{4,
1/2h−1

1/(2h+2H)} = 8H.

This implies that

max
π∈Π

max
h

max
z∈Zh,a∈A

dπh(z, a;M)
dπbh (z, a;M)

≤ 8H3.

As for the lower bound of C̄ε(M,ϕ, dπbh (⋅;M), πe), first we notice that according to (4), our choice
of πe(z) = δa1(⋅) and Lemma 33, we have

T̄ (ϕ[1]h+1 ∣ ϕ
[1]
h , πe) =

∑
zh∈ϕ[1]h ,z′

h+1∈ϕ
[1]
h+1

dπbh (zh,a1;M)T (z
′
h+1 ∣ zh,a1)

∑
z∈ϕ[1]

h

dπbh (z,a1;M)

≥
∑
z′
h+1∈ϕ

[1]
h+1

dπbh (zh,a1;M)T (z
′
h+1 ∣ z

[1]
h ,a1)

∑
z∈ϕ[1]

h

dπbh (zh,a1;M)

=
dπbh (zh,a1;M)

∑
z∈ϕ[1]

h

dπbh (zh,a1;M)
= H − 1
H − 1 + 3 =

H − 1
H + 2 .

This implies that d̄πeH (ϕ
[1]
H ;M) satisfies for H ≥ 2,

d̄πeH (ϕ
[1]
H ;M) ≥ d̄πe1 (ϕ

[1]
1 ;M)

H−1
∏
h=1

T̄ (ϕ[1]h+1 ∣ ϕ
[1]
h , π) ≥

1

2
(H − 1
H + 2)

H−1
≥ 1

2e3
≥ 1

41
.

Hence when ε ≤ 1/15, we have

C̄ε(M,ϕ,µ, πe) ≥
d̄πeH (ϕ

[1]
H ;M)

∑
z∈ϕ[1]H

dπbH (z, πe(z);M)

=
d̄πeH (ϕ

[1]
H ;M)

dπbH (z
[1]
H , πe(z

[1]
H );M) + d

πb
h (z

[2]
H , πe(z

[2]
H );M)

≥
1/41

1/(2H−1)
≥ 2H−7,

where in the second inequality we adopt Lemma 34 with π = πb.

E.2. Proof of Theorem 5

In this section, we will prove the following stronger results of Theorem 5.

Theorem 36 There exists a class G of realizable OPE problems such that for every OPE problem
g = OPE(M (g), πe

(g), πb
(g),F (g)) in G,
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(a) The function class F (g) satisfies ∣F (g)∣ = 2 and

(Qπe(g)(⋅;M (g)),W πe(g)(⋅;dπb(g)(⋅;M (g));M (g))) ∈ F (g).

(b) The all-policy concentrability coefficient of all policies with respect to dπb
(g)

h (⋅;M (g)) is upper
bounded by 384H3.

Furthermore, any offline policy evaluation algorithm that guarantees to estimate the value of πe(g) in
the MDP M (g) up to precision ε, in expectation, for every OPE problem g ∈ G must use

Ω̃(H2H

ε
)

admissible samples collected according to policy πb(g) under MDP M (g). Here one admissible
sample consists of (xh, ah, rh, x′h+1) for all h ∈ [H − 1], where (xh, ah) ∼ dπb

(g)

h (⋅;M (g)), and
rh, x

′
h+1 are collected according to the transition model and reward function of M (g).

Proof of Theorem 36. We consider the class of offline RL problems constructed in Appendix D.4.2:
G = ⋃ψ∈Ψ{g[1]ψ ,g

[2]
ψ }. According to the construction, the sampling distributions over rich observations

in g[1]ψ or g[2]ψ are µ̌ψ(x, a) = µ(ψ(z),a)/∣Xψ(z)∣. And Theorem 23 indicates that for ε ≤ 1/41, for any
algorithm using less than

HC̄ε(M,ϕ,µ, πe)
8ε

≥ 2H−10H
ε

samples, there must exist some ψ ∈ Φ such that if the samples are according to µ̌ψ, the algorithm will
have error greater than ε/8H in g[1]ψ or g[2]ψ with probability at least 1/2.
According to Lemma 15 (d), we have dπb(z;M [1]) ≤ dπb(z;M) for any z ∈ Z . Hence we obtain
that for any x ∈ X /{u, v,w}Hh=1,

dπ̌b(x; M̌ [1]
ψ ) =

dπb(ψ(x);M)
∣Xψ(z)∣

≤ d
πb(ψ(x);M)
∣Xψ(z)∣

.

This also implies

dπ̌b(x, a; M̌ [1]
ψ ) = d

π̌b(x; M̌ [1]
ψ )πb(a ∣ x) ≤

dπb(ψ(x);M)πb(a ∣ x)
∣Xψ(z)∣

= d
πb(ψ(x), a;M)
∣Xψ(z)∣

= µ̌ψ(x, a).

Similarly, we can also obtain that

dπ̌b(x, a; M̌ [2]
ψ ) ≤ µ̌ψ(x, a).

Hence, for any algorithm using less than 2H−10H3/ε number of samples, there must exists some
M̌ ∈ {M̌ [1]

ψ ∶ ψ ∈ Ψ} ∪ {M̌
[2]
ψ ∶ ψ ∈ Ψ} such that if the samples are according to dπ̌b(⋅ ∣ M̌), the

estimation error is at least ε/H.

Finally, Lemma 35 indicates that the concentrability coefficient of M is bounded by 8H3. Hence
according to Corollary 17 and Corollary 21 we have for any such M̌ , the all-policy concentrability
coefficient is upper bounded by 384H3, which proves condition (b). And similar to the proof of
Theorem 23, we can also verify condition (a).
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Appendix F. Missing Details from Section 4.2

In this section, we will provide missing details from Section 4.2. In Section F.1 we present algorithms
needed in Section 4.2. Finally, in Section 4.2 we present the proof of Theorem 6.

F.1. Algorithms

In this subsection, we provide algorithms mentioned in Section 4.2. Algorithm 1 will transform a hard-
case OPE problem for admissible data into a hard-case OPE problem for trajectory data. Algorithm 2
is used in the proof of lower bound with trajectory data, where the algorithm can transform admissible
data collected according toM (MDP in the hard-case OPE problem of admissible data) into trajectory
data of M̃ (MDP in the hard-case OPE problem of trajectory data). And finally, Algorithm 3 shows
how to transform an algorithm for OPE with trajectory data to an algorithm for OPE with admissible
data.

F.2. Proof of Theorem 6

For MDP3 M̃ and policies π̃e and π̃b, we have the following properties:

Lemma 37 Suppose under OPE problem OPE(M̃, π̃e, π̃e,F) is the output of Algorithm 1 after
inputing OPE problem OPE(M,πe, πb,F) and arbitrary integer K. Then,

(a) The all-policy concentrability of M̃ and M satisfies that

sup
π̃∈Π̃

sup
h̃∈[H̃]

sup
x̃∈X̃h̃

dπ̃
h̃
(x̃; M̃)

dπ̃b
h̃
(x̃; M̃)

≤ (HK) ⋅ sup
π∈Π

sup
h∈[H]

sup
x∈Xh

dπh(x;M)
dπbh (x;M)

(b) Q̃ calculated in (42) equal to the state-action value function of MDP M̃ . Especially, the value
functions of M̃ and M satisfies

Ṽ (ρ̃; M̃) = V (ρ;M), (43)

where ρ̃ and ρ are initial distributions of M̃ and M respectively.

Proof of Lemma 37. We first prove Lemma 37 (a). For any policy π̃ over MDP M̃ , we construct
a policy π over MDP M as follows: for any h ∈ [H] and x ∈ Xh, we construct

π(x) ≜ π̃((x,K)),

where we use (x,K) ∈ XhK to denote the state constructed in Algorithm 1. Additionally, we
construct policy πm over MDP M as follows: let

πm(x) =
⎧⎪⎪⎨⎪⎪⎩

πb(x) if x ∈ ∪m−1j=1 Xj ,
π(x) if x ∈ ∪Hj=mXj .

3. Throughout this section, we use a "tilde" over the variables, e.g. in M̃ , π̃, etc., to signify that they correspond to the
artificially constructed OPE problem in Algorithm 1 for analyzing trajectory data.

52



OFFLINE RL: ROLE OF STATE AGGREGATION AND TRAJECTORY DATA

Algorithm 1 REPLICATOR

Input: Offline policy evaluation problem OPE(M,πe, πb,F) with M = MDP(X ,A, T, r,H, ρ),
and parameter K ≥ 1.

1: Define πc ∶ X → A to be an arbitrary mapping which satisfies πc(x) ≠ πe(x) for all x ∈ X .
2: /* Construct M̃ = MDP(X̃ ,A, T̃ , r̃, H̃, ρ̃) */

3: Horizon: H̃ =K(H − 1) + 1.
4: State space: Let X = ⋃l∈[H̃] X̃l , where the state space X̃l = {(x, k) ∶ x ∈ Xh, k ∈ [K]}
l = (h − 1)K + k, for h ∈ [H] and k ∈ [K].

5: Initial distribution: Let ρ̃((x,1)) = ρ(x) for x ∈ X1.
6: Transition model: Define the transition matrix T̃ ∶ X̃ ×A↦∆(X̃ ) such that

● When k ≤K − 1: For any h ∈ [H], a ∈ A, and x,x′ ∈ Xh, let

T̃((x′, k + 1) ∣ (x, k), a) =
⎧⎪⎪⎨⎪⎪⎩

I(x′ = x) if a = πe(x),
dπbh (x

′;M) otherwise.

● When k =K: For any h ∈ [H − 1], a ∈ A, x ∈ Xh, and x′ ∈ Xh+1, let

T̃ ((x′,1) ∣ (x, k), a) = T (x′ ∣ x, a).

7: Reward function: For any x ∈ X and a ∈ A, let

r̃((x, k), a) =
⎧⎪⎪⎨⎪⎪⎩

0 if k ≤K − 1,
r(s, a) otherwise.

8: /* Construct evaluation policy π̃e */

9: Construct π̃e such that π̃e((x, k)) = πe(x) for all x ∈ X and k ∈ [K].
10: /* Construct offline policy π̃b */

11: Construct π̃b such that, for any x ∈ X and k ∈ [K],

π̃b((x, k)) =
⎧⎪⎪⎨⎪⎪⎩

πb(x) if k =K,
1
2πe(x) +

1
2πc(x) otherwise.

12: /* Construct state-action value function class F̃ */

13: Construct F̃ ∶= {Q̃ ∶ Q ∈ F}, where Q̃ ∶ X̃ ×A→ R is defined such that

Q̃((xh, k), a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q(xh, a) if k =K,
Q(xh, πe(xh)) if k <K,a = πe(xh),
∑x′

h
∈Xh d

πb
h (x

′
h;M)Q(x′h, πe(x′h)) if k <K,a ≠ πe(xh).

(42)

for any x ∈ X and k ∈ [K].
14: Return: Offline policy evaluation problem OPE(M̃, π̃e, π̃b, F̃).
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Algorithm 2 ADMISSIBLE-TO-TRAJECTORY

1: Input: Admissible datasets DADM
h = {(x(l)h , a

(l)
h , r

(l)
h , x̄

(l)
h )}l≤K for h ∈ [H].

2: Set x̃1 = x(1)1 , and initialize τ = (x̃1).
3: for h = 1, . . . ,H − 1 do
4: Set l = 1.
5: /* Construct Trajectory within Block h */

6: for k = 1, . . . ,K − 1 do
7: Let h̃ ∶= (h − 1)K + k.
8: Sample ãh̃ ∼ Uniform({πe(x̃h̃), πc(x̃h̃)}), and update l ← l + 1 if ãh̃ = πc(x̃h̃).
9: Set

x̃h̃+1 =
⎧⎪⎪⎨⎪⎪⎩

x̃h̃ if ãh̃ = πe(x̃h̃) // Map to the Same State

x
(l)
h if ãh̃ = πc(x̃h̃) // Read Fresh State from DADM

h

10: Update τ = τ ○ (ãh̃, r̃h̃ = 0, x̃h̃+1).
11: Update τ = τ ○ (ãh̃ = a

(l)
h , r̃h̃ = r

(l)
h , x̃h̃+1 = x̄

(l)
h ).

12: Return trajectory τ of length (H − 1)K + 1.

Algorithm 3 Reduction of OPE with Admissible Data to Trajectory Data
Input:

• Admissible dataset DADM
h of size Kn for each h ∈ [H].

• State-action value function class F .

• OPE algorithm ALGTRAJ that takes evaluation policy, state-action value function class and
trajectory data as input and returns a value estimation.

1: Initialize DTRAJ = ∅.
2: for j = 1, . . . , n do
3: For h ∈ [K], construct DADM,j

h = DADM
h [K(j − 1) + 1 ∶Kj]

4: Get trajectory τ j = ADMISSIBLE-TO-TRAJECTORY(DADM,j
1 , . . . ,DADM,j

H ).
5: Update DTRAJ ← DTRAJ ∪ {τ j}.
6: Construct state-action value function class F̃ according to (42) based on F .
7: Return V̂ ← ALGTRAJ(DTRAJ, F̃).

54



OFFLINE RL: ROLE OF STATE AGGREGATION AND TRAJECTORY DATA

We will prove by induction that for h̃ = (h − 1)K + k and (x, k) ∈ X̃h̃, we have

dπ̃
h̃
((x;k); M̃) ≤ dπh(x;M) + (K − 1) ⋅

h−1
∑
m=1

dπ
m

h (x;M) + (k − 1) ⋅ d
πb
h (x;M). (44)

When h̃ = 1, i.e. h = 1, k = 1, according to the construction of ρ̃ in Algorithm 1 we have

dπ̃
h̃
((x;k); M̃) = ρ̃((x,1)) = ρ(x,1) = dπ(x;M),

which implies that (44) holds. Next, we assume that (44) holds for h̃ = (h − 1)K + k and we aim to
prove for h̃ + 1. We consider two cases, where k <K or k =K. When k <K, for any x′ ∈ Xh, we
have

dπ̃
h̃+1((x

′, k + 1); M̃) = ∑
x∈Xh

dπ̃
h̃
((x;k); M̃)T̃ ((x′, k + 1) ∣ (x, k), π̃((x, k)))

≤ dπ̃
h̃
((x′;k); M̃) + dπbh (x

′;M),

where in the inequality we use the fact that T ((x′, k + 1) ∣ (x, k), a) = δ(x′ = x) for a = πe(x′) and
T ((x′, k + 1) ∣ (x, k), a) = dπbh (x

′;M) for a ≠ πe(x′). Thus according to the induction hypothesis
(44) we have

dπ̃
h̃+1((x

′, k + 1); M̃) ≤ dπh(x′;M) + (K − 1) ⋅
h−1
∑
m=1

dπ
m

h (x′;M) + k ⋅ d
πb
h (x

′;M).

Next, when k =K, according to the transition T̃ constructed in Algorithm 1, for any x′ ∈ Xh+1, we
have

dπ̃
h̃+1((x

′,1); M̃) = ∑
x∈Xh

dπ̃
h̃
((x;K); M̃)T̃ ((x′,1) ∣ (x,K), π̃((x,K)))

= ∑
x∈Xh

dπ̃
h̃
((x;K); M̃)T (x′ ∣ x,π(x))

≤ ∑
x∈Xh
(dπh(x;M) + (K − 1) ⋅

h−1
∑
m=1

dπ
m

h (x;M) + (K − 1) ⋅ d
πb
h (x;M)) ⋅ T (x

′ ∣ x,π(x)),

where in the inequality we use the induction hypothesis (44). Next, according to the definition of
policies πm, we have

∑
x∈Xh

dπh(x;M)T (x′ ∣ x,π(x)) = dπh+1(x′;M),

∑
x∈Xh

dπ
m

h (x;M)T (x′ ∣ x,π(x)) = dπ
m

h+1(x′;M),

∑
x∈Xh

dπbh (x;M)T (x
′ ∣ x,π(x)) = dπhh+1(x′;M).

Bringing these back, we arrive at

dπ̃
h̃+1((x

′,1); M̃) = dπh+1(x′;M) + (K − 1) ⋅
h+1
∑
m=1

dπ
m

h+1(x′;M),
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which proves (44) for h̃ + 1. Hence according to induction, (44) holds for all h̃. Additionally, we
further notice that dπ̃bh ((x, k); M̃) = d

πb
h (x;M) for any x ∈ Xh. Hence according to (44), for any

h̃ = (h − 1)K + k and x ∈ Xh, we have

dπ̃
h̃
((x, k); M̃)

dπ̃b
h̃
((x, k); M̃)

≤
dπh(x;M) + (K − 1) ⋅∑h−1m=1 d

πm

h (x;M) + (k − 1) ⋅ d
πb
h (x;M)

dπbh (x;M)

≤ (1 + (K − 1)(h − 1) + k − 1) ⋅ sup
π∈Π

dπh(x;M)
dπbh (x;M)

≤KH ⋅ sup
π∈Π

dπh(x;M)
dπbh (x;M)

.

This implies

sup
π̃∈Π̃

sup
h̃∈[H̃]

sup
x̃∈X̃h̃

dπ̃
h̃
(x̃; M̃)

dπ̃b
h̃
(x̃; M̃)

≤ (HK) ⋅ sup
π∈Π

sup
h∈[H]

sup
x∈Xh

dπh(x;M)
dπbh (x;M)

.

Next, we will prove Lemma 37(b) by induction on l ∶= (h − 1)H + k from H̃ to 1. When l = H̃ , we
have

Q̃((xH ,1), a) = Q(xH , a) = 0, ∀xH ∈ XH , a ∈ A,

which satisfies the induction hypothesis. Next, assuming the induction hypothesis holds for l + 1, we
will prove the induction hypothesis for l. We assume l = (h − 1)K + k.

When k =K, according to Bellman equation and induction hypothesis, we have

Q̃((xh,K), a) = r̃((xh,K), a) + ∑
x′
h+1∈Xh+1

T̃ ((x′h+1,1) ∣ (xh,K), a)Q̃((x′h+1,1), π̃e((x′h+1,1)))

= r(xh, a) + ∑
x′
h+1∈Xh+1

T (x′h+1 ∣ xh, a)Q(x′h+1, πe(x′h+1)) = Q(xh, a).

When k <K and a = πe(xh), according to Bellman equation, we have

Q̃((xh, k), a) = r̃((xh, k), a) + ∑
x′
h
∈Xh

T̃ ((x′h, k + 1) ∣ (xh, k), a)Q̃((x′h, k + 1), π̃e((x′h, k + 1)))

= Q̃((xh, k + 1), π̃e((xh, k + 1))) = Q(xh, πe(xh)),

where in the second last equation we use the fact that T̃ ((xh, k + 1) ∣ (xh, k), πe(xh)) = 1.

When k <K and a ≠ πe(xh), according to Bellman equation, we have

Q̃((xh, k), a) = r̃((xh, k), a) + ∑
x′
h
∈Xh

T̃ ((x′h, k + 1) ∣ (xh, k), a)Q̃((x′h, k + 1), π̃e((x′h, k + 1)))

= ∑
x′
h
∈Xh

dπbh (x
′
h;M)Q̃((x′h, k + 1), π̃e((x′h, k + 1))) = d

πb
h (xh;M)Q(xh, πe(xh)),

Finally for (43) follows from ρ̃((x1,1)) = ρ(x1) for any x1 ∈ X1.
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Lemma 38 For a fix OPE problem g = (M,πe, πb,F) and parameterK, suppose (M̃, π̃e, π̃b, F̃) to
be the output of Algorithm 1 with input to be g and K. Suppose DADM

h are admissible data collected
according to M and πb and we feed DADM

h into Algorithm 2. Let P̃M to be the distribution of the
output. Additionally, we suppose the distribution of a trajectory collected from M̃ and π̃b to be PM̃ .
Let E0 to be the following set of trajectories:

E0 ∶= {τ̃ = (x̃1, ã1, r̃1, x̃2, ã2, r̃2,⋯, x̃H̃) ∣ ∃1 ≤ h ≤H − 1, ã(h−1)K+1 = ⋯ = ã(h−1)K+K−1 = 1}.
(45)

Then for trajectory τ̃ = (x̃1, ã1, r̃1, x̃2, ã2, r̃2,⋯, x̃H̃) /∈ E0, we have

P̃M(τ̃) = PM̃(τ̃).

Proof of Lemma 38. We denote τ̃l = (x̃1, ã1, r̃1, x̃2, ã2, r̃2,⋯, x̃l) to be a partial trajectory till step
l, and for a trajectory τ̃ , we say τ̃ ∈ τ̃l if the first l steps of τ̃ is exactly τ̃l. We denote

P̃M(τ̃l) = ∑
τ̃∈τ̃l

P̃M(τ̃) and PM̃(τ̃) = ∑
τ̃∈τ̃l

PM̃(τ̃).

We will prove by induction on l that

P̃M(τ̃l) = PM̃(τ̃l). (46)

When l = 1, this is true since P̃M(τ̃1) = ρ̃(x̃1) = PM̃(τ̃l). Next, to finish induction from l to l + 1, by
the chain rule of probability, we only need to show that

P̃M(ãl, r̃l, x̃l+1 ∣ τ̃l) = PM̃(ãl, r̃l, x̃l+1 ∣ τ̃l). (47)

We write l = hK + k with 1 ≤ k ≤ K, and x̃l = (xh, k) and x̃l+1 = (x′h, k + 1) (or (x′h+1,1)). If
k =K, we have

P̃M(ãl, r̃l, x̃l+1 ∣ τ̃l) = πb(ãl ∣ xh)R(r̃l ∣ xh, ãl)T (x′h+1 ∣ xh, ãl).

According to Algorithm 2, as long as there exists some (h − 1)K + 1 ≤ t ≤ (h − 1)K +K − 1 with
ãt ≠ 1, we will have (x̃l, ãl, r̃l, x̃l+1) ∈ DADM

h , which indicates that

PM̃(ãl, r̃l, x̃l+1 ∣ τ̃l) = πb(ãl ∣ xh)R(r̃l ∣ xh, ãl)T (x
′
h+1 ∣ xh, ãl) = P̃M(ãl, r̃l, x̃l+1 ∣ τ̃l).

If l = hK + k for some h and 1 ≤ k ≤K − 1, then the transition model of M̃ gives that

PM̃(ãl, r̃l, x̃l+1 ∣ τ̃l) =
⎧⎪⎪⎨⎪⎪⎩

1
2 ⋅ I(r̃l = 0) ⋅ I(x

′
h = xh), if ãl = πe(xl),

1
2 ⋅ I(r̃l = 0) ⋅ d

πb
h (x

′
h;M), if ãl = πc(xl).

Additionally, according to Algorithm 2, action 1 is taken with probability 1/2. Hence if ãl = πe(xl),
then the algorithm chooses x′h = xh and r̃ = 0, we have

LHS of (47) = 1

2
⋅ I(r̃l = 0)I(x′h = xh).
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And if ãl = πc(xl), the algorithm will sample x′h from dπbh (⋅;M). Hence we obtain

LHS of (47) = 1

2
⋅ I(r̃l = 0)dπbh (x

′
h;M).

This finishes the proof of induction at l + 1.

Finally, by induction, (46) holds for l = H̃ as long as τ̃ /∈ E0. Hence for τ̃ /∈ E0 we always have
P̃M(τ̃) = PM̃(τ̃).

Theorem 39 Suppose for M̃ , algorithm ALGTRAJ taking n trajectories τ̃1∶n and state-action value
function class F̃ can output V̂τ̃1∶n ∈ [−1,1] such that

Eτ̃1∶n∼M̃ [∣V̂τ̃1∶n − V
M̃(ρ̃)∣] ≤ ε.

Then taking H2n admissible dataset DH2n and class of tuples of state-action value function together
with W -function, Algorithm 3 can output ε-close value to V̂DH2n

such that

Eτ̃1∶n∼M [∣V̂Dn − VM(ρ)∣] ≤ ε +H2−K+2.

Proof of Theorem 39. We use τ̃1∶n to denote n trajectories τ̃1,⋯, τ̃n, and let e(τ̃1∶n) = ∣V̂τ̃1∶n −
V M̃(ρ̃)∣. We have

∑
τ̃1∶n

e(τ̃1∶n)
n

∏
j=1

PM̃(τ̃j) = Eτ̃1∶n∼M̃ [∣V̂τ̃1∶n − V
M̃(ρ̃)∣] ≤ ε. (48)

We further notice V (ρ̃; M̃) = V (ρ;M) from Lemma 37. Furthermore, since Algorithm 3 first transit
the admissible data DHKn into trajectory data τ̃1∶n according to Algorithm 2, and then output V̂τ̃1∶n
according to algorithm ALGTRAJ, we have

Eτ̃1∶n∼M [∣V̂Dn − VM(ρ)∣] = ∑
τ̃1∶n

∣V̂τ̃1∶n − V M̃(ρ̃)∣
n

∏
j=1

P̃M(τ̃j) = ∑
τ̃1∶n

e(τ̃1∶n)
n

∏
j=1

P̃M(τ̃j),

where P̃M is defined in Lemma 38. Next, Lemma 38 indicates that if τ̃j /∈ E0 (where E0 is defined in
(45)), then P̃M(τ̃j) = PM̃(τ̃j). Therefore, noticing that e(τ̃1∶n) = ∣V̂τ̃1∶n − V M̃(ρ̃)∣ ≤ 2, we have

∑
τ̃1∶n

e(τ̃1∶n)
n

∏
j=1

P̃M(τ̃j) = ∑
τ̃1∶n∶∃1≤i≤n,τ̃i∈E0

e(τ̃1∶n)
n

∏
j=1

P̃M(τ̃j) + ∑
τ̃1∶n∶∀1≤i≤n,τ̃i/∈E0

e(τ̃1∶n)
n

∏
j=1

P̃M(τ̃j)

= 2 ∑
τ̃1∶n∶∃1≤i≤n,τ̃i∈E0

n

∏
j=1

P̃M(τ̃j) + ∑
τ̃1∶n∶∀1≤i≤n,τ̃i/∈E0

e(τ̃1∶n)
n

∏
j=1

PM̃(τ̃j)

≤ 2
n

∑
i=1

P̃M(τ̃i ∈ E0) + ∑
τ̃1∶n∶∀1≤i≤n,τ̃i/∈E0

e(τ̃1∶n)
n

∏
j=1

PM̃(τ̃j)

≤ 2
n

∑
i=1

P̃M(τ̃i ∈ E0) +∑
τ̃1∶n

e(τ̃1∶n)
n

∏
j=1

PM̃(τ̃j)
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Further notice that for any 1 ≤ j ≤ n, we have

P̃M(τ̃ ∈ E0) = 1 − (1 − 2−H)K ≤H2−K+1.

Therefore, using (48), we obtain

2
n

∑
i=1

P̃M(τ̃i ∈ E0) +∑
τ̃1∶n

e(τ̃1∶n)
n

∏
j=1

PM̃(τ̃j) ≤ 2nH2−K+1 + ε,

which indicates that Eτ̃1∶n∼M [∣V̂Dn − VM(ρ)∣] ≤ ε +H2−K+2.

This theorem has the following direct corollary, indicating that any algorithm taking trajectory data
as input cannot do policy evaluation in polynomial number of samples.

Proof of Theorem 6. According to Theorem 36, there exists a class M of MDPs, where
each M ∈M has bounded coverage 384H3. And any algorithm which takes o(H2H/ε) number of
admissible samples together with realizable class of tuples of state-action value function together
with W -function induces estimation error ε/8H in at least one MDP. We further carry the lifting in this
section for any MDP inM, and suppose these lifting MDPs form the class M̃. Lemma 37 indicates
that every instance in M̃ has bounded all-policy concentrability 384H4K ≤ 384H5 if K ≤H .

Next, we will prove this corollary by contradiction. Suppose the algorithm ALGTRAJ using õ(H2H/ε)
trajectories together with realizable state-action value function class induces estimation error less than
ε/16H in every MDP in M̃. Then after inserting ALGTRAJ into Algorithm 3, we form an algorithm
which takes õ(H2H/ε) admissible data for each layer, together with realizable function class, and
outputs an estimation to the value function.

Theorem 39 indicates that this algorithm will induce ε/16H +H2−K+2 error for all MDPs in M.
Hence taking K = 2+ log2 16H2/ε = log2 64H2/ε, this algorithm will induces estimation error less than
ε/8H in all MDPs inM. Notice that with this choice of K, we have õ(KH2H/ε) ≤ õ(H2H/ε), which
contradicts to Theorem 36.

Appendix G. Upper Bound for Offline Policy Evaluation

G.1. Setup

In previous sections we construct the lower bound assuming access to the Qπe function class. For the
upper bound, we consider a slightly more challenging scenario, where the learner only has access to
the V πe function class. It is not hard to see that learning with a V πe function class is more challenging
than learning with Qπe because one can always reduce a Qπe function set to a V function set by
redefining f(x)← Ea∼πe(⋅∣x))[f(x, a)]. For simplicity, we assume that πe is deterministic, though
the extension to the stochastic case is straightforward. See Section G.2 for the discussion.

Similar to Xie and Jiang (2021), we first establish results for the case where the function set only
approximately realizes the true V πe . The result for the fully realizable setting can be easily deduced
from it. Formally, we assume that the learner is given a function set F that consists of mappings
X → [−H,H] with the following approximate realizability guarantee.
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Algorithm 4 Batch Value-Function Tournament for Policy Evaluation (Xie and Jiang, 2021)
Input: Evaluation policy πe, Offline Dataset D consisting of n tuples of the form (x, a, r, x′).

1: Among all samples (x, a, r, x′) in D, only keep those such that a = πe(x), and discard all others.
We denote the new dataset as D′ = {(xi, ri, x′i)}n

′

i=1, where we omit ai’s since ai is always equal
to πe(xi) in this dataset.

2: Compute

f̂ = argmin
f∈F

max
f ′∈F

max
h
∥f − T̂G(f,f ′)f∥ν̂,h (49)

where

G(f, f ′) ∶= {g ∶ X → R ∣ g(x) = g(y) if f(x) = f(y) and f ′(x) = f ′(y) and h(x) = h(y)},

(h(x) ∈ [H] denotes the layer at which x lies)

T̂Gf ∶= argmin
g∈G

n′

∑
i=1
(g(xi) − ri − f(x′i))

2
, (50)

ν̂(x) ∶= 1

n

n′

∑
i=1

I{xi = x}. (51)

3: Return f̂ .

Assumption 2 (Approximate value function realizability) There exists an f⋆ ∈ F such that
supx∈X ∣V πe(x) − f⋆(x)∣ ≤ εappr.

Besides, the learner is given an offline dataset D, which consists of n tuples of (x, a, r, x′) with
(x, a) drawn from µ, and r ∼ r(x, a) and s′ ∼ T (⋅ ∣ x, a) are sampled according to the MDP’s reward
function and transition model.

G.2. Algorithm

Our algorithm for this setting is presented in Algorithm 4, which is an adaptation of the BVFT
algorithm (Xie and Jiang, 2021) to the case of policy evaluation. In the beginning of the algorithm,
the dataset D is pre-processed so that only (x, a, r, x′) samples with a = πe(x) are kept (line 1). The
core of the algorithm is to solve the min-max problem in (49). The high-level idea of it is that for
every pair of functions f, f ′ ∈ F , the algorithm creates a “tabular problem” by aggregating states with
the same (f(x), f ′(x)) value, and estimates the Bellman error for this tabular problem. Intuitively,
this is probably the best the learner can do, since besides the value of (f(x))f∈F , the learner has
no other ways to distinguish states in the large state space. The output function f̂ is the one that
always attains a small Bellman error estimate no matter what the other function it is paired with. For
more explanation on this min-max formulation, we refer the reader to Xie and Jiang (2021) or the
amazing talk by Jiang (2021). The key differences with the algorithm of Xie and Jiang (2021) are the
following:
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• We deal with policy evaluation for πe, and our function class consists of V πe functions, while
Xie and Jiang (2021) deal with policy optimization, and their function class consists of Q⋆

functions. For this reason, we have a preprocessing step in line 1 of Algorithm 4, which
removes data samples whose action is not generated by πe. These samples are irrelevant to our
policy evaluation task.

• We consider the finite-horizon setting while Xie and Jiang (2021) considers the discounted
infinite-horizon setting. Therefore, different from theirs, Our aggregation is performed in a
layer-by-layer manner, and only states in the same layer can be aggregated.

If πe is stochastic, we perform the pre-processing step (line 1) in the following way: for each sample
(x, a, r, x′) ∈ D, sample a′ ∼ πe(⋅ ∣ x). If a = a′, then keep this sample; otherwise discard this
sample.

Our upper bound result is stated in the following theorem, whose proof is provided in Appendix G.3
to Appendix G.5.

Theorem 40 Let f̂ ∈ F be the output of the BVFT algorithm given in Algorithm 4. Let Φ(f, f ′) be
the state aggregation scheme determined by f and f ′ (see Definition 42 for the precise definition),
and let C̄ = maxf,f ′∈F C̄ε2/H2(M,Φ(f, f ′), µ, πe). For given δ > 0, if n ≥ Ω̃ ( C̄

2H6 log(∣F ∣/δ)
ε4

), then
with probability at least 1 − δ,

∣Ex∼ρ[V πe(x) − f̂(x)]∣ ≤ O(ε).

Because of the state aggregation procedure in BVFT, the sample complexity upper bound in Theo-
rem 40 depends on the concentrability coefficient of the aggregated MDP (i.e., C̄) rather than that of
the original MDP. Notice also that the sample complexity scales with 1

ε4
instead of the more common

1
ε2

. This is similar to Xie and Jiang (2021) and is because we divide the state space into O( 1
ε2
)

aggregations, each of which consists of states having the same value functions up to an accuracy of
ε. Our bound have a smaller dependence on the horizon length H , but this is simply because we
assume the range of the value function is [−1,1] while they assume it to be [−H,H].
Finally, we provide some implications of Theorem 40. First, as pointed out previously, we have
C̄ ≤ Cpf (Lemma 55). Second, in the case that the data is admissible with offline policy πb, and

1
πb(πe(x)∣x) ≤ CA for all x, we have C̄ ≤ (CA)H (Lemma 56). Interestingly, a sample complexity

bound of order (CA)H is also the case if we use importance sampling to perform offline policy
evaluation. The difference is that importance sampling does not require access to any function class,
but needs the data to be trajectories, while BVFTrequires access to a function class, but only needs
the data to be admissible.

For the remaining of this section, we provide a proof for Theorem 40.

G.3. Definitions

Definition 41 (partial offline data distribution ν(x)) Given the offline data distribution µ ∈∆(X×
A), we define the partial distribution ν ∈∆(X ) such that ν(x) = µ(x,πe(x)).

Definition 42 (aggregation schemes Φ(f, f ′), Φh(f, f ′) and maximum partition number Φmax)
Define Φ(f, f ′) as the state aggregation scheme (see Section 3.1) where x, y belongs to the same
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partition if and only if f(x) = f(y) and f ′(x) = f ′(y) and x, y are in the same layer. Let
Φh(f, f ′) ⊂ Φ(f, f ′) be the set of partitions in layer h. Define Φmax =maxf,f ′∈F maxh ∣Φh(f, f ′)∣.

Definition 43 (aggregation Φ⋆, aggregated transition T̄ , occupancy d̄, and offline distribution ν̄)
Consider the partition Φ⋆ = Φ(f̂ , f⋆), where f̂ is the output of Algorithm 4 and f⋆ is defined in

Assumption 2. Let ϕ,ϕ′ ∈ Φ⋆, Define

T̄ (ϕ′ ∣ ϕ) = ∑x∈ϕ∑x
′∈ϕ′ ν(x)T (x′ ∣ x,πe)
∑x∈ϕ ν(x)

.

Furthermore, let d̄(ϕ) be the occupancy measure of πe in the aggregated MDP. That is, d̄ follows the
recursive definition below:

∀ϕ′ ∈ Φ⋆h+1, d̄(ϕ′) = ∑
ϕ∈Φ⋆

h

d̄(ϕ)T̄ (ϕ′ ∣ ϕ), with d̄(ϕ) = 1

H
∑
x∈ϕ

ρ(x) for ϕ ∈ Φ⋆1 .

Also, define ν̄(ϕ) = ∑x∈ϕ ν(x).

Definition 44 (aggregated concentrability C̄⋆ε ) The aggregated concentrability with respect to the
aggregation Φ⋆ = Φ(f̂ , f⋆) (defined in Definition 43) is defined as

C̄⋆ε =max
h

max

⎧⎪⎪⎨⎪⎪⎩

∑ϕ∈I d̄(ϕ)
∑ϕ∈I ν̄(ϕ)

∶ I ⊂ Φ⋆h, ∑
ϕ∈I

d̄(ϕ) ≥ ε
⎫⎪⎪⎬⎪⎪⎭
. (52)

Definition 45 (projection operators TGf and T̂Gf ) Let f ∶ X → R, and let G be any function set
that consists of functions of the form X → R. Define

TGf = argmin
g∈G

∑
s,x′

ν(x)T (x′ ∣ x,πe) (g(x) − r(x,πe) − f(x′))
2
,

T̂Gf = argmin
g∈G

1

n

n′

∑
i=1
(g(xi) − ri − f(x′i))

2
.

Definition 46 (weighted norm ∥g∥w,h) Let g ∈ G(f, f ′) and Φ = Φ(f, f ′) for some f, f ′ ∈ F . Let
w ∶ Φ→ R≥0 be arbitrary. With abuse of notation, define ∥g∥w,h =

√
∑ϕ∈Φh w(ϕ)g(ϕ)2, where g(ϕ)

is such that g(x) = g(ϕ) for all x ∈ ϕ.

Definition 47 (estimation error εstat) εstat =
√

Φmax log(nΦmax∣F ∣/δ)
n , where n is the number of

offline samples, and Φmax is defined in Definition 42.

We next establish a few properties of state aggregation.

Lemma 48 Let g = TG(f,f ′)f for some f, f ′ ∈ F . Fix a layer h. Let gαβ be the value of g(x) for
those x ∈ Xh’s such that f(x) = α and f ′(x) = β. Then gαβ has the following form:

gαβ =
∑x∈Xh∶f(x)=α,f ′(x)=β(ν(x)T f(x))
∑x∈Xh∶f(x)=α,f ′(x)=β(ν(x))

.
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Proof of Lemma 48. Recall from Definition 45 that g is the minimizer of Ex∼νEx′∼T (⋅∣x,πe) (g(x) − r(x,πe) − f(x′))
2

within G(f, f ′). The derivative of this objective with respect to gαβ is

Ex∼νEx′∼T (⋅∣x,πe)2(gαβ − r(x,πe) − f(x
′))I{f(x) = α, f ′(x) = β,h(x) = h}

= 2gαβ ∑
x∈Xh∶ f(x)=α,f ′(x)=β

ν(x) − 2 ∑
x∈Xh∶f(x)=α,f ′(x)=β

ν(x)(r(x,πe) +∑
x′
T (x′ ∣ x,πe)f(x′))

= 2gαβ ∑
x∈Xh∶ f(x)=α,f ′(x)=β

ν(x) − 2 ∑
x∈Xh∶f(x)=α,f ′(x)=β

ν(x)T f(x).

Setting this to be zero gives the desired expression of gαβ .

Lemma 49 For any f ∈ F , we have that maxf ′∈F ∥f − TG(f,f ′)f∥ν,h ≤ ∥f − T f∥ν,h.

Proof of Lemma 49. Fix f, f ′ ∈ F and fix h ∈ [H]. Let g = TG(f,f ′)f and let gαβ be the value of
g(x) for x ∈ Xh such that f(x) = α and f ′(x) = β.

Define ναβ = ∑x∈Xh ν(x)I{f(x) = α and f ′(x) = β}. Then by definition, we have

∥f − TG(f,f ′)f∥2ν,h =∑
α,β

ναβ(α − gαβ)2

=∑
α,β

ναβ
⎛
⎝
α − 1

ναβ
∑

x∈Xh∶f(x)=α,f ′(x)=β
ν(x)T f(x)

⎞
⎠

2

(using Lemma 48)

≤∑
α,β

ναβ
1

ναβ
∑

x∈Xh∶f(x)=α,f ′(x)=β
ν(x) (α − T f(x))2 (Jensen’s inequality)

= ∑
x∈Xh

ν(x) (f(x) − T f(x))2

= ∥f − T f∥2ν,h.

G.4. Supporting Technical Results

Lemma 50 With probability at least 1 − δ, for all f, f ′ ∈ F and all g ∈ G(f, f ′) such that
supx ∣g(x)∣ ≤ 1, it holds that

∥g∥ν,h ≤
√
2∥g∥ν̂,h +O (εstat) ,

∥g∥ν̂,h ≤
√
2∥g∥ν,h +O (εstat) .

(Recall the definition of εstat in Definition 47)

Proof of Lemma 50. Fix f, f ′ and g. By Bernstein’s inequality, with probability at least 1 − δ′,

∣∥g∥2ν,h − ∥g∥2ν̂,h∣ =
RRRRRRRRRRR

1

n

n′

∑
i=1
(g(xi)2 −∑

s

ν(x)g(x)2)
RRRRRRRRRRR
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≤ O (
√

1

n
∑
s

ν(x)g(x)4 log(1/δ′) + log(1/δ′)
n

)

≤∑
s

ν(x)g(x)2 +O ( log(1/δ
′)

n
) (AM-GM)

= ∥g∥2ν,h +O (
log(1/δ′)

n
) .

Rearranging this gives

∥g∥2ν,h ≤ 2∥g∥2ν̂,h +O (
log(1/δ′)

n
) and ∥g∥2ν̂,h ≤ 2∥g∥2ν,h +O (

log(1/δ′)
n

) .

Next, we take union bounds over f, f ′ and g. Notice that for every pair of (f, f ′), the value of
g ∈ G(f, f ′) on x ∈ Xh is determined by the values of {g(ϕ)}ϕ∈Φh(f,f ′), where g(ϕ) is the value
of g(x) for x ∈ ϕ. Therefore, an ε-net of G(f, f ′) on layer h can be constructed by discretizing
each value of {g(ϕ)}ϕ∈Φh(f,f ′), and its size is at most (1/ε)O(∣Φh(f,f ′)∣) ≤ (1/ε)O(Φmax). It suffices
to pick ε = 1

n and bound the discretization error by O( 1n). Overall, the union bound is taken over
∣F ∣2nΦmax instances. Therefore, we pick δ′ = δ

∣F ∣2nΦmax
, which gives

∥g∥2ν,h ≤ 2∣g∥2ν̂,h +O (
Φmax log(n∣F ∣/δ)

n
) , and

∥g∥2ν̂,h ≤ 2∥g∥2ν,h +O (
Φmax log(n∣F ∣/δ)

n
) .

Finally, taking square root on both sides and recalling that εstat =
√

Φmax log(nΦmax∣F ∣/δ)
n finishes the

proof.

Lemma 51 With probability at least 1 − δ, for all f, f ′ ∈ F , and h ≤H ,

∥TG(f,f ′)f − T̂G(f,f ′)f∥ν,h ≤ O (εstat) .

Proof of Lemma 51 . We first fix the function pair f, f ′ and define additional notation. Let
Φ = Φ(f, f ′) and G = G(f, f ′). For every ϕ ∈ Φh, define

Y (ϕ) = ∑
x∈ϕ

ν(x)(r(x,πe) +∑
x′
T (x′ ∣ x,πe)f(x′)) , Z(ϕ) = ∑

x∈ϕ
ν(x),

Ŷ (ϕ) = 1

n

n′

∑
i=1

I{xi ∈ ϕ} (r(xi, πe) + f(x′i)) , Ẑ(ϕ) = 1

n

n′

∑
i=1

I{xi ∈ ϕ}.

Additionally, let δ′ = δ
∣F ∣2Φmax

, ε0 = log(1/δ′)
n , and Φ′h = {ϕ ∈ Φh ∶ Z(ϕ) ≥ ε0}.
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Using Lemma 48 together with definitions above, we get that for all x ∈ ϕ,

TGf(x) =
Y (ϕ)
Z(ϕ) and T̂Gf(x) =

Ŷ (ϕ)
Ẑ(ϕ)

.

Thus, we have

∥TGf − T̂Gf∥2ν,h (53)

= ∑
x∈Xh

ν(x) (TGf(x) − T̂Gf(x))
2

= ∑
ϕ∈Φh

∑
x∈ϕ

ν(x)(Y (ϕ)
Z(ϕ) −

Ŷ (ϕ)
Ẑ(ϕ)

)
2

≤ ∑
ϕ∈Φ′

h

∑
x∈ϕ

ν(x)(Y (ϕ)
Z(ϕ) −

Ŷ (ϕ)
Ẑ(ϕ)

)
2

+ 4 ∑
ϕ∈Φh∖Φ′h

∑
x∈ϕ

ν(x)H2 (Y (ϕ)Z(ϕ) −
Ŷ (ϕ)
Ẑ(ϕ) ∈ [−2,2])

≤ 2 ∑
ϕ∈Φ′

h

Z(ϕ)(Y (ϕ)
Z(ϕ) −

Ŷ (ϕ)
Z(ϕ))

2

+ 2 ∑
ϕ∈Φ′

h

Z(ϕ)( Ŷ (ϕ)
Z(ϕ) −

Ŷ (ϕ)
Ẑ(ϕ)

)
2

+ 4 ∑
ϕ∈Φh∖Φ′h

Z(ϕ) (54)

≤ 2 ∑
ϕ∈Φ′

h

(Y (ϕ) − Ŷ (ϕ))2
Z(ϕ) + 2 ∑

ϕ∈Φ′
h

Ŷ (ϕ)2

Ẑ(ϕ)2
(Z(ϕ) − Ẑ(ϕ))2

Z(ϕ) + 4∣Φh∣ε0

(because Z(ϕ) ≤ ε0 for all ϕ ∈ Φh ∖Φ′h)

≤ 2 ∑
ϕ∈Φ′

h

(Y (ϕ) − Ŷ (ϕ))2 + (Z(ϕ) − Ẑ(ϕ))2
Z(ϕ) + 4Φmax log(1/δ′)

n
, (55)

where the last line follows by observing that Ŷ (ϕ)/Ẑ(ϕ) ≤ 1 for any ϕ ∈ Φ.

Next, using Bernstein’s inequality for any ϕ ∈ Φh, with probability at least 1 − δ′, we have

∣Y (ϕ) − Ŷ (ϕ)∣ ≤ O
⎛
⎝

√
Z(ϕ)
n

log(1/δ′) + log(1/δ′)
n

⎞
⎠
,

∣Z(ϕ) − Ẑ(ϕ)∣ ≤ O
⎛
⎝

√
Z(ϕ)
n

log(1/δ′) + log(1/δ′)
n

⎞
⎠
.

Plugging the above in (55), and using a union bound over ϕ ∈ Φ′h, we get that with probability at
least 1 − δ′Φmax,

∥TGf − T̂Gf∥2ν,h ≤ O
⎛
⎜
⎝
∑
ϕ∈Φ′

h

log(1/δ′)
n

+ log2(1/δ′)
n2Z(ϕ) +

Φmax log(1/δ′)
n

⎞
⎟
⎠

≤ O (Φmax log(1/δ′)
n

+ Φmax log
2(1/δ′)

n2ε0
+ Φmax log(1/δ′)

n
)

(for ϕ ∈ Φ′h, Z(ϕ) ≥ ε0)

= O (Φmax log(∣F ∣Φmax/δ)
n

) . (by the definition of ε0 and δ′)
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Finally, using a union bound over (f, f ′) ∈ F ×F and recalling that εstat =
√

Φmax log(n∣F ∣Φmax/δ)
n

finishes the proof.

Lemma 52 Let f̂ be the output of Algorithm 4 and f⋆ be defined in Assumption 2.

(a) ∥f̂ − TG(f̂ ,f⋆)f̂∥ν,h ≤ O (εappr + εstat).

(b) ∥TG(f̂ ,f⋆)f̂ − TG(f̂ ,f⋆)f⋆∥d̄,h ≤ ∥f̂ − f⋆∥d̄,h+1.

(recall the definition of d̄ in Definition 43)

Proof of Lemma 52. We prove the two parts separately below.

(a) Note that

max
h
∥f̂ − TG(f̂ ,f⋆)f̂∥ν,h

≤max
h
∥f̂ − T̂G(f̂ ,f⋆)f̂∥ν,h + ∥T̂G(f̂ ,f⋆)f̂ − TG(f̂ ,f⋆)f̂∥ν,h (triangle inequality)

≤max
f ′∈F

max
h
∥f̂ − T̂G(f̂ ,f ′)f̂∥ν,h +O (εstat) (by Lemma 51)

≤
√
2max
f ′∈F

max
h
∥f̂ − T̂G(f̂ ,f ′)f̂∥ν̂,h +O (εstat) (by Lemma 50)

≤
√
2max
f ′∈F

max
h
∥f⋆ − T̂G(f⋆,f ′)f⋆∥ν̂,h +O (εstat) (by the choice of f̂ in (49))

≤ 2max
f ′∈F

max
h
∥f⋆ − T̂G(f⋆,f ′)f⋆∥ν,h +O (εstat) (by Lemma 50)

≤ 2max
f ′∈F

max
h
∥f⋆ − TG(f⋆,f ′)f⋆∥ν,h +O (εstat) (by Lemma 51)

≤ 2max
h
∥f⋆ − T f⋆∥ν,h +O (εstat) . (by Lemma 49)

(b) For the ease of notation, let G = G(f̂ , f⋆). Notice that by Lemma 48,

TG f̂(ϕ) − TGf⋆(ϕ) =
∑x∈ϕ ν(x)∑x′∈Xh+1 T (x

′ ∣ x,πe) (f̂(x′) − f⋆(x′))
∑x∈ϕ ν(x)

.

Therefore,

∥TG f̂ − TGf⋆∥2d̄,h
= ∑
ϕ∈Φh

d̄(ϕ) (TG f̂(ϕ) − TGf⋆(ϕ))
2

= ∑
ϕ∈Φh

d̄(ϕ)
⎛
⎝
∑s∈ϕ ν(x)∑x′∈Xh+1 T (x

′ ∣ x,πe) (f̂(x′) − f⋆(x′))
∑s∈ϕ ν(x)

⎞
⎠

2

≤ ∑
x′∈Xh+1

∑
ϕ∈Φh

d̄(ϕ)(∑s∈ϕ
ν(x)T (x′ ∣ x,πe)
∑s∈ϕ ν(x)

) (f̂(x′) − f⋆(x′))2 (Jensen’s inequality)
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= ∑
ϕ′∈Φh+1

∑
x′∈ϕ′

∑
ϕ∈Φh

d̄(ϕ)(∑s∈ϕ
ν(x)T (x′ ∣ x,πe)
∑s∈ϕ ν(x)

) (f̂(ϕ′) − f⋆(ϕ′))2

= ∑
ϕ′∈Φh+1

∑
ϕ∈Φh

d̄(ϕ)T̄ (ϕ′ ∣ ϕ) (f̂(ϕ′) − f⋆(ϕ′))2

≤ ∑
ϕ′∈Φh+1

d̄(ϕ′) (f̂(ϕ′) − f⋆(ϕ′))2

= ∥f̂ − f⋆∥2d̄,h+1.

Lemma 53 With the Φ⋆ and C̄⋆ε defined in Definition 43 and Definition 44, there exist J1, . . . ,JH
such that

• Jh ⊂ Φ⋆h
• ∑ϕ∈Jh d̄(ϕ) < ε

• maxhmaxϕ∈Φh∖Jh
d̄(ϕ)
ν̄(ϕ) ≤ C̄

⋆
ε

Proof of Lemma 53. Define

Ih = argmax

⎧⎪⎪⎨⎪⎪⎩

∑ϕ∈I d̄(ϕ)
∑ϕ∈I ν̄(ϕ)

∶ I ⊂ Φ⋆h, ∑
ϕ∈I

d̄(ϕ) ≥ ε
⎫⎪⎪⎬⎪⎪⎭
. (56)

If Ih has more than one solution, we pick one such that ∣Ih∣ is the smallest. By the definition of C̄⋆ε ,

we know that
∑ϕ∈Ih d̄(ϕ)
∑ϕ∈Ih ν̄(ϕ)

≤ C̄⋆ε for all h.

Assume Ih = {ϕh,1, . . . , ϕh,Nh} where Nh = ∣Ih∣, and assume without loss of generality that

d̄(ϕh,1)
ν̄(ϕh,1)

≥ d̄(ϕh,2)
ν̄(ϕh,2)

≥ ⋯ ≥ d̄(ϕh,Nh)
ν̄(ϕh,Nh)

.

If Nh = 1, it is easy to see that ϕh,1 = argmaxϕ∈Φ⋆
h

d̄(ϕ)
ν̄(ϕ) . This is because if not, then

⎧⎪⎪⎨⎪⎪⎩
ϕh,1, argmax

ϕ∈Φ⋆
h

d̄(ϕ)
ν̄(ϕ)

⎫⎪⎪⎬⎪⎪⎭
will be a better solution for Ih in (56) than {ϕh,1}, contradicting that Ih = {ϕh,1}. Thus, in this case,

Ih = {argmaxϕ∈Φ⋆
h

d̄(ϕ)
ν̄(ϕ)}. Then choosing Jh = ∅ satisfies all conditions in the lemma.

If Nh ≥ 2, we define Jh = Ih ∖ {ϕh,Nh} = {ϕh,1, . . . , ϕh,Nh−1}. Below we verify that it satisfies the
two inequalities in the lemma.

First, we prove ∑ϕ∈Jh d̄(ϕ) < ε by contradiction. Suppose that ∑ϕ∈Jh d̄(ϕ) ≥ ε. By the assumption
that

d̄(ϕh,1)
ν̄(ϕh,1)

≥ ⋯ ≥ d̄(ϕh,Nh)
ν̄(ϕh,Nh)

,
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we have
∑ϕ∈Jh d̄(ϕ)
∑ϕ∈Jh ν̄(ϕ)

≥ ∑ϕ∈Ih
d̄(ϕ)

∑ϕ∈Ih ν̄(ϕ)
,

and thus Jh is also a solution of (56). However, ∣Jh∣ < ∣Ih∣, contradicting the assumption that ∣Ih∣ is
the smallest.

Next, we prove maxhmaxϕ∈Φ⋆
h
∖Jh

d̄(ϕ)
ν̄(ϕ) ≤ C̄

⋆
ε . Define

ϕ′h ∶= argmax
ϕ∈Φ⋆

h
∖Jh

d̄(ϕ)
ν̄(ϕ) .

If ϕ′h = ϕh,Nh , then we have

d̄(ϕ′h)
ν̄(ϕ′h)

= d̄(ϕh,Nh)
ν̄(ϕh,Nh)

≤ ∑ϕ∈Ih
d̄(ϕ)

∑ϕ∈Ih ν̄(ϕ)
≤ C̄⋆ε .

If ϕ′h ≠ ϕh,Nh and d̄(ϕ′h)
ν̄(ϕ′

h
) > C̄

⋆
ε , then we have

∑ϕ∈Ih d̄(ϕ) + d̄(ϕ
′
h)

∑ϕ∈Ih ν̄(ϕ) + µ̄(ϕ′h)
> ∑ϕ∈Ih

d̄(ϕ)
∑ϕ∈Ih ν̄(ϕ)

because
∑ϕ∈Ih d̄(ϕ)
∑ϕ∈Ih ν̄(ϕ)

≤ C̄⋆ε . This implies that Ih ∪ {ϕ′h} is a better solution than Ih in (56), which is a
contradiction. This concludes the proof.

G.5. Proof of Theorem 7

Lemma 54 Let C̄⋆ = C̄⋆ε2/H2 . With probability ≥ 1 − δ,

Ex∼ρ[∣f̂(x) − f⋆(x)∣] ≤ O
⎛
⎝
Hεappr

√
C̄⋆ +H

√
C̄⋆Φmax log(nΦmax∣F ∣/δ)

n
+ ε
⎞
⎠
.

Proof of Lemma 54. In this proof, we denote G = G(f̂ , f⋆). Recall the definitions of Φ⋆, d̄, and
ν̄ in Definition 43. Notice that f̂ , f⋆,TG f̂ ,TGf⋆ ∈ G. For any g ∈ G and ϕ ∈ Φ⋆, we use g(ϕ) to
represent the value of g(x) for those x ∈ ϕ. Using Definition 46, we have

∥f̂ − f⋆∥d̄,h ≤ ∥f⋆ − TGf⋆∥d̄,h + ∥f̂ − TG f̂∥d̄,h + ∥TG f̂ − TGf⋆∥d̄,h. (57)

Before bounding the three terms above, we notice that by Lemma 53, there exist {Jh}h∈[H] such that

• Jh ⊂ Φ⋆h

• ∑ϕ∈Jh d̄(ϕ) <
ε2

H2

• maxhmaxϕ∈Φ⋆
h
∖Jh

d̄(ϕ)
ν̄(ϕ) ≤ C̄

⋆
ε2/H2
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Below we denote C̄⋆ = C̄⋆ε2/H2 . Now we bound the three terms in (57). The square of the first term
can be upper bounded as

∥f⋆ − TGf⋆∥2d̄,h = ∑
ϕ∈Φ⋆

h

d̄(ϕ) (f⋆(ϕ) − TGf⋆(ϕ))2

≤ ∑
ϕ∈Φ⋆

h
∖Jh

d̄(ϕ) (f⋆(ϕ) − TGf⋆(ϕ))2 +
ε2

H2
(∑ϕ∈Jh d̄(ϕ) ≤

ε2

H2 )

≤ C̄⋆ ∑
ϕ∈Φ⋆

h
∖Jh

ν̄(ϕ) (f⋆(ϕ) − TGf⋆(ϕ))2 +
ε2

H2
(by the definition of C̄)

≤ C̄⋆∥f⋆ − TGf⋆∥2ν̄,h +
ε2

H2

≤ C̄⋆∥f⋆ − TGf⋆∥2ν,h +
ε2

H2
(because f⋆,TGf⋆ ∈ G)

≤ C̄∥f⋆ − T f⋆∥2ν,h +
ε2

H2
(by Lemma 49)

≤ C̄⋆ε2appr +
ε2

H2
. (by the definition of εappr)

The square of the second term can be upper bounded as

∥f̂ − TG f̂∥2d̄,h = ∑
ϕ∈Φ⋆

h

d̄(ϕ) (f̂(ϕ) − TG f̂(ϕ))
2

= ∑
ϕ∈Φ⋆

h
∖Jh

d̄(ϕ) (f̂(ϕ) − TG f̂(ϕ))
2 + ε2

H2

≤ C̄⋆ ∑
ϕ∈Φ⋆

h
∖Jh

ν̄(ϕ) (f̂(ϕ) − TG f̂(ϕ))
2 + ε2

H2
(by the definition of C̄⋆)

≤ C̄⋆∥f̂ − TG f̂∥2ν̄,h +
ε2

H2

= C̄⋆∥f̂ − TG f̂∥2ν,h +
ε2

H2
(because f̂ ,TG f̂ ∈ G)

≤ O (C̄⋆ε2appr + C̄⋆ε2stat) +
ε2

H2
. (by Lemma 52-(a))

Next, again using Lemma 52-(b), the last term can be upper bounded as

∥TG f̂ − TGf⋆∥d̄,h ≤ ∥f̂ − f⋆∥d̄,h+1.

Combining all above, we get

∥f̂ − f⋆∥d̄,h ≤ ∥f̂ − f⋆∥d̄,h+1 +O (
√
C̄⋆εappr +

√
C̄⋆εstat +

ε

H
) ,

which gives ∥f̂ −f⋆∥d̄,1 ≤ O (H
√
C̄⋆εappr +H

√
C̄⋆εstat + ε) after recursively applying the inequality

and using Cauchy-Schwarz inequality. The desired inequality follows by noticing that Ex∼ρ[∣f̂(x) −
f⋆(x)∣] ≤ ∥f̂ − f⋆∥d̄,1 by Cauchy-Schwarz.
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Proof of Theorem 40 (Theorem 7 in the main body). In the fully realizable setting (i.e.,
V πe ∈ F), in order to control the magnitude of Φmax, we discretize the function set F , and make it
an approximate realizable case.

For each f ∈ F , we round the value of f(s) to the nearest multiple of ε

H
√
C̄

. This way, we have

εappr = ε

H
√
C̄

and Φmax = O (( H
εappr
)
2
) = O (H4C̄

ε2
). Thus, by Lemma 54,

∥f̂ − f⋆∥d̄,1 ≤ O
⎛
⎝
H
√
C̄⋆εappr +H

√
C̄⋆Φmax log(n∣F ∣Φmax/δ)

n
+ ε
⎞
⎠

≤ O
⎛
⎝
H

√
C̄2H4 log(n∣F ∣HC̄/εδ)

ε2n
+ ε
⎞
⎠
.

In order to make the last expression to be O(ε), we need

n ≥ Ω̃( C̄
2H6 log(∣F ∣/δ)

ε4
) .

G.6. Implications of the BVFT Upper Bound

Lemma 55 For any ε, C̄ε ≤ Cpf, where Cpf is defined in Definition 8.

Proof of Lemma 55. By the definition of C̄ε,

C̄ε ≤max
h

max
ϕ∈Φh

d̄(ϕ)
ν̄(ϕ)

=max
h

max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ µ(x,πe(x))
(by the definitions of d̄ and ν̄ and ν)

=max
h

max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ µ(x)µ(πe(x) ∣ x)
(by the definition of µ(a ∣ x))

≤max
h

max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ µ(x)
⋅ CA

≤max
h

max
ϕ∈Φh

1

∑x∈ϕ µ(x)
∑

ϕ′∈Φh−1
d̄(ϕ′)∑x

′∈ϕ′ ν(x′)∑x∈ϕ T (x ∣ x′, πe)
∑x′∈ϕ′ ν(x′)

⋅ CA

(by the definition of T̄ )

≤max
h

max
ϕ∈Φh

max
x′∈Xh−1

∑x∈ϕ T (x ∣ x′, πe)
∑x∈ϕ µ(x)

⋅ CA

≤max
h

max
x∈Xh

max
x′∈Xh−1

T (x ∣ x′, πe)
µ(x) ⋅ CA

≤ CX ⋅ CA
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= Cpf.

Lemma 56 Let the offline data distribution µ be admissible, i.e., µ(x, a) = dπb(x)πb(a ∣ x) for
some πb . Suppose that 1

µ(πe(x)∣x) =
1

πb(πe(x)∣x) ≤ CA for all x ∈ X . Then for any ε, C̄ε ≤ (CA)H .

Proof of Lemma 56. For a fixed h, we have

max
ϕ∈Φh

d̄(ϕ)
ν̄(ϕ)

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ µ(x,πe(x))
(by the definitions of d̄ and ν̄ and ν)

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ µ(x)µ(πe(x) ∣ x)
(by the definition of µ(a ∣ x))

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ∑x′∈Xh−1∑a′∈A µ(x′, a′)T (x ∣ x′, a′)µ(πe(x) ∣ x)
(by the fact that µ is an occupancy measure)

≤max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑x∈ϕ∑x′∈Xh−1 µ(x′, πe(x′))T (x ∣ x′, πe(x′))
⋅ CA

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑ϕ′∈Φh−1∑x∈ϕ∑x′∈ϕ′ µ(x′, πe(x′))T (x ∣ x′, πe(x′))
⋅ CA

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑ϕ′∈Φh−1 (∑x′∈ϕ′ µ(x′, πe(x′))) T̄ (ϕ ∣ ϕ′, πe)
⋅ CA (by the definition of T̄ )

=max
ϕ∈Φh

∑ϕ′∈Φh−1 d̄(ϕ
′)T̄ (ϕ ∣ ϕ′, πe)

∑ϕ′∈Φh−1 ν̄(ϕ′)T̄ (ϕ ∣ ϕ′, πe)
⋅ CA (by the definition of ν̄)

≤ max
ϕ′∈Φh−1

d̄(ϕ′)
ν̄(ϕ′) ⋅ CA.

Recursively applying this we get maxhmaxϕ∈Φh
d̄(ϕ)
ν̄(ϕ) ≤ (CA)

H . Then by just noticing that C̄ε ≤
maxhmaxϕ∈Φh

d̄(ϕ)
ν̄(ϕ) finishes the proof.
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Appendix H. Role of Realizable Value Function Class in Offline RL

So far, we have considered offline policy evaluation problems where in addition to an offline data
distribution µ (that satisfies concentrability), the learner is also given a function class F that contains
Qπe—the state-action value function corresponding to the policy πe that the learner wishes to evaluate.
To understand the role of value function class in offline RL, in this section, we ask:

Is statistically efficient offline policy evaluation feasible without access to a
realizable value function class?

We answer this question negatively for both admissible and trajectory data. Our first result in
Theorem 57 (below) shows that given only admissible offline data, offline policy evaluation is
intractable without a realizable value function class, even when we have bounded pushforward
concentrability coefficient.

Theorem 57 For any positive integer N , there exists a classM of MDPs with shared state space
XN , action space A = {a1,a2} and horizon H = 3, a deterministic evaluation policy πe, and an
exploration policy πb with Pr(πe(x) = πb(x)) ≥ 1/2 for all x ∈ X such that any algorithm that
estimate the value V πe(ρ,M) up to error 1/2 for all MDPs M ∈M must use Ω(N) many admissible
samples in some MDP inM.

Theorem 57 suggests the intractability of offline policy evaluation without a realizable function class
since the result holds for any positive integer N .

Remark 58 Note that sinceH = 3 in the construction of Theorem 57, the property Pr(πe(x) = πb(x)) ≥
1/2 indicates that the pushforward concentrability coefficient Cpf ≤ 8 w.r.t. the admissible distribution
µh(x, a;M) = dπb(x, a;M) (see Definition 8). Thus, using Lemma 55, the aggregated concentrabil-
ity coefficient C̄ ≤ 8 for any aggregation scheme on the underlying MDPs.

On the other hand, under access to a realizable state-action value function class (Assumption 2), BVFT
algorithm (Theorem 40 + Lemma 56) obtains a sample complexity upper bound ofO(poly(2H , log(∣F ∣)))
which is tractable for H = 3. This highlights the role of a realizable value function class in offline
policy evaluation with admissible data. Our next result extends this to trajectory offline data.

Theorem 59 There exists a class M of MDPs with shared state space X , action space A =
{a1,a2}, and horizon H , a deterministic evaluation policy πe and an exploration policy πb such
that the pushforward concentrability coefficient Cpf ≤ 4 for the offline distribution µh(x, a;M) =
dπbh (x, a;M) (see Definition 8).

Furthermore, any algorithm that estimate the value V πe(ρ,M) up to precision 1/2 for all MDPs
M ∈M must use Ω(2H) many offline trajectories in some MDP inM.

The above shows that agnostic offline policy evaluation is not statistically tractable even when given
trajectory offline data. On the other hand, recall that under access to a realizable state-action value
function class (Assumption 2) and bounded pushforward concentrability coefficient, the BVFT
algorithm in Xie and Jiang (2021) enjoys a poly(Cpf,H, log(∣F ∣), 1/ε) sample complexity (even
without access to trajectory data).
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Remark 60 For the lower bound MDP construction in Theorem 59, recall that πb(x) = Uniform(A)
for any x ∈ X . Thus, given trajectory data, the classical importance sampling algorithm from Kearns
et al. (1999); Agarwal et al. (2019) can evaluate the value of πe upto precision ε after collecting
O(2H

ε2
) many offline trajectories from πb.

H.1. Proof of Lower Bounds

Figure 5: Lower bound construction in Theorem 57. The blue arrows represent the transitions under
the action a1, and the red arrows represent the transitions under the action a2. In the middle
layer, the arrows to the blocks X 1

2 and X 2
2 denote uniform transitions to the states within

those blocks.

To avoid redundancy, we only provide an informal construction of the lower bound here. A formal
lower bound construction can be obtained by following arguments similar to that in Appendix D.

Proof of Theorem 57. Let N be a positive integer, and consider a state space X = X1 ∪X2 ∪X3

where X1 = {x1}, X3 = {x3} and X2 is of size 4N2. Consider a partition ϕ of X2 that divides it into
two parts X 1

2 and X 2
2 , each of size 2N2. For any such partition ϕ, we define two MDPs M (1) and

M (2), where the M (i)
ϕ =MDP (X ,A,H,T (i), r(i), ρ) is defined such that (this construction can be

viewed in Figure 5):

● Horizon H = 3, action space A = {a1,a2}, and initial distribution ρ = δx1(⋅).

● Transition dynamics T (i) is defined such that T (i)(⋅ ∣ x2) = δx3(⋅) for any x2 ∈ X2, and

T (i)(⋅ ∣ x1, a) =
⎧⎪⎪⎨⎪⎪⎩

Uniform(X 1
2 ) if a = a1,

Uniform(X 2
2 ) if a = a2.

● Reward function is defined for any a ∈ {a1,a2},

r(i)(x, a) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x = x1,
1 if x ∈ X (i)2 ,

0 otherwise.
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We thus define the classM as

M = ⋃
ϕ∈Φ
(M (1)

ϕ ,M (2)
ϕ ),

where Φ denotes the set of all feasible partitions for X2 into X 1
2 and X 2

2 of the same size, and satisfies
∣Φ∣ = 2O(N log(N)).

We further define the evaluation policy πe and πb such that for all x ∈ X ,

πe(x) = δa1(⋅), and πb(x) = Uniform({a1,a2}).

Then for any M ∈ ∪ϕ∈ΦM(1), we have V πe(ρ;M) = 1 and for any M ∈ ∪ϕ∈ΦM(2), we have
V πe(ρ;M) = 0. Hence if the algorithm cannot tell whether M ∈ ∪ϕ∈ΦM(2) or M ∈ ∪ϕ∈ΦM(2), then
the algorithm must fail to output 1/2-accurate estimation in at least one case amongM.

The key intuition behind the proof is that given some dataset Dh = {(xh, ah, rh, xh+1)}, the learner
can not identify which states belong to X 1

2 vs X 2
2 in the second layer. Since, the reward model

depends on whether x ∈ X 1
2 or x ∈ X 2

2 , inability to identify the partition ϕ which split X into X 1
2 and

X 2
2 , will lead to an error in evaluating V πe(ρ;M) with probability 1/2 since we consider Φ to be the

set of all possible partitions of equal size.

To see the above, note that for any M ∈M, the marginal occupancy measure at layer 2 is

dπb2 (⋅;M) = Uniform(X2 × {a1,a2}).

Hence, samples (x2, a2, r2, x3) where x2 ∈ X2 cannot provide useful any information unless we
know whether x2 ∈ X 1

2 or X 2
2 . However, while collecting admissible samples of the second layer, the

distribution we samples from is dπb2 (⋅;M), i.e. Uniform(X2), which reveals no information on X 1
2

and X 2
2 unless some state x2 appears both in samples (x1, a1, r1, x2) and (x2, a2, r2). According to

our choice of N , this happens with probability at most

1 −
2N

∏
i=1
(1 − 2N

4N2
)
N

≤ 1

2
.

Hence any algorithm must fail to output 1/2-accurate estimation of V πe(ρ;M) in at least one M ∈M
with probability at least 1/2.

Proof of Theorem 59. Let N = 2H and consider a state space X = ∪Hh=1Xh where X1 = {x1} and
X2,⋯,XH are of size 4N2 each. Consider ϕ to be a partition of X2,X3,⋯,XH that divides each Xh
(2 ≤ h ≤H) into two parts X 1

h and X 2
h , each of size 2N2. For any such ϕ, we define two MDPs M (1)

and M (2), where the M (i)
ϕ =MDP (X ,A,H,T (i), r(i), ρ) is defined such that (this construction can

be viewed in Figure 6):

● Horizon H , action space A = {a1,a2}, and initial distribution ρ = δ(x1).

● Transition dynamics T (i) ∶ Xh ×A↦ Xh+1 is defined such that

T (i)(⋅ ∣ x1, a) =
⎧⎪⎪⎨⎪⎪⎩

Uniform(X 1
2 ) if a = a1,

Uniform(X 1
2 ∪X 2

2 ) if a = a2,
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Figure 6: Lower bound construction in Theorem 59. The blue arrows represent the transitions under
the action a1, and the red arrows represent the transitions under the action a2. In layers
for h = 2 to H − 1, the arrows to the blocks X 1

h and X 2
h denote uniform transitions to the

states within those blocks.

and for x ∈ X 1
h with h ∈ [H],

T (i)(⋅ ∣ x, a) =
⎧⎪⎪⎨⎪⎪⎩

Uniform(X 1
2 ) if a = a1,

Uniform(X 1
2 ∪X 2

2 ) if a = a2,

for x ∈ X 2
h with h ∈ [H],

T (i)(⋅ ∣ x, a) =
⎧⎪⎪⎨⎪⎪⎩

Uniform(X 2
2 ) if a = a1,

Uniform(X 1
2 ∪X 2

2 ) if a = a2.

● Reward function: for any a ∈ {a1,a2},

r(i)(x, a) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ X (i)H ,

0 otherwise.

We thus define the classM as

M = ⋃
ϕ∈Φ
(M (1)

ϕ ,M (2)
ϕ ),

where Φ denotes the set of all feasible partitions for X2,⋯,XH into X 1
h and X 2

h of the same size. We
further define the evaluation policy πe and πb such that for all x ∈ X ,

πe(x) = δa1(⋅), and πb(x) = Uniform({a1,a2}).
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For any MDP M ∈M, we observe that the occupancy measure dπbh (⋅;M) is

dπbh (⋅;M) = Uniform(Xh ×A).

Hence it is easy to verify that the strong coverability coefficient? of any instances inM is upper
bounded by 4. Additionally, we also have for any MDP M ∈ ⋃ϕ∈ΦM (1)

ϕ , V πe(ρ;M) = 1 and for any
M ∈ ⋃ϕ∈ΦM (1)

ϕ , V πe(ρ;M) = 0.

The only way to tell whether a case M ∈ ⋃ϕ∈ΦM (1)
ϕ or M ∈ ⋃ϕ∈ΦM (2)

ϕ is through the reward
function in the last layer. However, if action a2 is taken in any step within the whole trajectory, the
last layer distribution will be Uniform(XH), which will induce the same reward distribution no
matter the MDP is M (1)

ϕ or M (2)
ϕ .

Hence as long as none of the trajectory collected takes only action 1 among the trajectory, the learner
will fail to output 1/2-accurate estimation in at least one MDP inM with probability at least 1/2. And
using o(2H) trajectories, the learner will fail to output 1/2-accurate estimation in at least one MDP
inM with probability at least 1/2 − o(2H) ⋅ 1/2H ≥ 1/4.
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