Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space

Yiheng Jiang Courant Institute of Mathematical Sciences, New York University

Sinho Chewi School of Mathematics, Institute for Advanced Study

Aram-Alexandre Pooladian

yj2070@nyu.edu

SCHEWI@IAS.EDU

Center for Data Science, New York University

ARAM-ALEXANDRE.POOLADIAN@NYU.EDU

Editors: Shipra Agrawal and Aaron Roth

Abstract

We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. These sets are defined with respect to a fixed reference measure ρ , and a collection of *compatible* transport maps \mathcal{M} (Panaretos and Zemel, 2020), written

 $\mathcal{P}_{\diamond} \coloneqq \left\{ (\sum_{T \in \mathcal{M}} \lambda_T T)_{\sharp} \rho \mid \lambda \in \mathbb{R}_+^{|\mathcal{M}|} \right\},\$

where $\mathbb{R}^{|\mathcal{M}|}_{+}$ is the non-negative orthant. The assumption of compatibility entails strong consequences. Letting W_2 denote the 2-Wasserstein metric over probability distributions, we show that $(\mathcal{P}_{\diamond}, W_2)$ is *isometric* to $(\mathbb{R}^{|\mathcal{M}|}_+, \|\cdot\|_Q)$, where $\|\cdot\|_Q$ is a twisted *Euclidean* norm. This isometry allows us to optimize functionals over \mathcal{P}_\diamond via lightweight first-order algorithms, and their stochastic variants. Moreover, this isometry property also holds when $\lambda \in \mathcal{K} \subseteq \mathbb{R}^{|\mathcal{M}|}_{\perp}$ for any convex set \mathcal{K} , which permits us to analyze algorithms such as Frank-Wolfe.

The second part of our paper concerns our main application: the problem of mean-field variational inference, which seeks to approximate a distribution $\pi \propto \exp(-V)$ over \mathbb{R}^d by a product measure with respect to the KL divergence, where $0 \prec \ell_V I \preceq \nabla^2 V \preceq L_V I$, with condition number $\kappa = L_V/\ell_V$. The premise of this application is the observation that the space of product measures $\mathcal{P}(\mathbb{R})^{\otimes d}$ can be approximated by \mathcal{P}_{\diamond} for suitably chosen \mathcal{M} when π has suitable structure, i.e.,

$$\underset{\mu \in \mathcal{P}(\mathbb{R})^{\otimes d}}{\arg\min} \operatorname{KL}(\mu \,\|\, \pi) \eqqcolon \pi^{\star} \approx \pi^{\star}_{\diamond} \coloneqq \underset{\mu \in \mathcal{P}_{\diamond}}{\arg\min} \operatorname{KL}(\mu \,\|\, \pi) \,.$$

Concretely, we show that $\sqrt{\ell_V} W_2(\pi_{\alpha}^{\star}, \pi^{\star}) \leq \varepsilon$ when ρ is the standard Gaussian, and

- \mathcal{M} follows a piecewise linear construction, with $|\mathcal{M}| \leq \tilde{O}(\kappa^2 d^{3/2}/\varepsilon)$,
- \mathcal{M} follows a higher-order construction, with $|\mathcal{M}| \leq \tilde{O}(\kappa^{3/2} d^{5/4} / \varepsilon^{1/2})$.

We accompany the above results with stochastic optimization guarantees, and have implemented the piecewise linear construction here. Our proofs hinge on regularity theory for the optimal transport map from ρ to π^* , as well as novel smoothness results for entropy over the family \mathcal{P}_{α} .¹ Keywords: mean-field variational inference, optimization, Wasserstein gradient flows

^{1.} Extended abstract. Full version appears as [arXiv:2312.02849].

References

Victor M Panaretos and Yoav Zemel. An invitation to statistics in Wasserstein space. Springer Nature, 2020.