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Abstract
When we have a univariate distribution that is symmetric around its mean, the mean can be esti-
mated with a rate (sample complexity) much faster than O(1/

√
n) in many cases. For example,

given univariate random variables Y1, . . . , Yn distributed uniformly on [θ0 − c, θ0 + c], the sample
midrange Y(n)+Y(1)

2 maximizes likelihood and has expected error E
∣∣θ0− Y(n)+Y(1)

2

∣∣ ≤ 2c/n, which
is optimal and much lower than the error rate O(1/

√
n) of the sample mean. What the optimal

rate is depends on the distribution and it is generally attained by the maximum likelihood estimator
(MLE). However, MLE requires exact knowledge of the underlying distribution; if the underlying
distribution is unknown, it is an open question whether an estimator can adapt to the optimal rate.
In this paper, we propose an estimator of the symmetric mean θ0 with the following properties: it
requires no knowledge of the underlying distribution; it has a rate no worse than 1/

√
n in all cases

(assuming a finite second moment) and, when the underlying distribution is compactly supported,
our estimator can attain a rate of n−

1
α up to polylog factors, where the rate parameter α can take

on any value in (0, 2] and depends on the moments of the underlying distribution. Our estimator
is formed by minimizing the Lγ-loss with respect to the data, for a power γ ≥ 2 chosen in a data-
driven way – by minimizing a criterion motivated by the asymptotic variance. Our approach can be
directly applied to the regression setting where θ0 is a function of observed features and motivates
the use of Lγ loss function with a data-driven γ in certain settings.
Keywords: Mean estimation, adaptive rate, irregular estimation

1. Introduction

Symmetric mean estimation is a fundamental problem in statistics. Given IID random variables
Y1, . . . , Yn

d∼ P (· − θ0), where P is an unknown distribution symmetric around 0, the question
is how to best estimate θ0. The existing theory focuses on the case where P has a density p that
is smooth so that the Fisher information I =

∫
(p′)2/p for θ0 is finite, which implies that the

optimal rate is O(1/
√
n). For example, asymptotic theory from Stein (1956), Stone (1975), Beran

(1978), and many others construct estimators θ̂ that are asymptotically normal in the sense that
√
n(θ̂ − θ0)

d→ N(0, V (p)), where the asymptotic variance V (p) = 1/I is the inverse of Fisher
information and is known to be optimal by generalizations of the Cramer-Rao lower bound, see,
e.g., the Hayek-Le Cam convolution theorem (Van der Vaart, 2000). The estimator θ̂ is typically
constructed by first non-parametrically estimating the density p. Recently, a line of work (Gupta
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et al., 2023, 2022) proved a finite sample bound for similar estimators (we discuss their result more
in Remark 12).

In this paper, we are interested in settings where the density p is nonsmooth (also known as
irregular) or where P does not have a density. In these settings, Fisher information can be infinite
and the optimal rate for estimating θ0 can be much faster than O(1/

√
n). For example, given

random variables Y1, . . . , Yn
d∼ Uniform(θ0 − c, θ0 + c) for some c > 0, the optimal estimator

for the center θ0 is not the usual sample mean Ȳ but rather the sample midrange Ymid =
Y(n)+Y(1)

2 .
Indeed, we have

E
∣∣∣∣Y(n) + Y(1)

2
− θ0

∣∣∣∣ ≤ E
∣∣∣∣Y(n) − θ0 − c2

∣∣∣∣+ E
∣∣∣∣Y(1) − θ0 + c

2

∣∣∣∣ = 2c

n+ 1
,

which is far smaller than the 1/
√
n error of the sample mean; a two points argument in Le Cam

(1973) shows that the 1/n rate is optimal in this case. However, sample midrange is a poor choice

when Y1, . . . , Yn
d∼ N(θ0, 1), where we have that E|Ymid−θ0| is of order 1/

√
log n. These observa-

tions naturally motivate the following question: let P be a univariate distribution symmetric around
0, possibly nonsmooth, and suppose Y1, . . . , Yn has the distribution P ( · − θ0) which is the location
shift of P , can we construct an estimator of the location θ0 whose rate of convergence adapts to the
unknown P ? The existing theory does not have an answer to this question because P is not assumed
to have a smooth density p. Even the problem of choosing between only the sample mean Ȳ and
the sample midrange Ymid is nontrivial, as we show in this paper that the tried and true method of
cross-validation fails in this setting (see Remark 2 for a detailed discussion).

If P has a density p which is known, the optimal rate in estimating the location θ0 is governed
by the speed with which the function ∆ 7→ H

(
p(·), p(· −∆)

)
decreases as ∆ goes to zero, where

H(p, q) :=
{∫

(
√
p(x)−

√
q(x))2dx

}1/2 is the Hellinger distance. To be precise, for any estimator
θ̂, we have

lim inf
n→∞

sup
θ0

Eθ0

{√
nH

(
p(· − θ0), p( · − θ̂)

)}
> 0,

where the supremum can be taken in a local ball of shrinking radius around any point in R; see, for
example, Theorem 6.1 in Chapter I of Ibragimov and Has’ Minskii (2013) for an exact statement.
Le Cam (1973) also showed that the oracle MLE attains this convergence rate under mild conditions.
Therefore, if H2

(
p(·), p(· −∆)

)
is of order |∆|α for some α > 0, then the optimal rate of the error

Eθ0 |θ̂ − θ0| is n−
1
α . If the underlying density p is differentiable in quadratic mean (DQM), then

we have that α = 2 which yields the usual rate of n−
1
2 . However, if p is the uniform density on

[−1, 1], we have α = 1 that gives an optimal rate of n−1. The behavior of the function ∆ 7→
H
(
p(·), p(· − ∆)

)
depends on the smoothness of the underlying density p. In the extreme case

where p has a Dirac delta point mass at 0 for instance, H
(
p(·), p(· − ∆)

)
is bounded away from

0 for any ∆ > 0. This is expected since, in this case, we can estimate θ0 perfectly by localizing
the discrete point mass. More generally, discontinuities in the density function or singularities in its
first derivative anywhere can increase H

(
p(·), p(· −∆)

)
and thus lead to a faster rate in estimating

the location θ0. Interested readers can find a detailed discussion and a large class of examples in
Chapter VI of Ibragimov and Has’ Minskii (2013).

When the underlying density p is unknown, it becomes unclear how to design a rate adaptive
location estimator. One possible approach is to nonparametrically estimate p, but we would need our
density estimator to be able to accurately recover the points of discontinuities in p or singularities
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in p′ – this goes beyond the scope of existing theory on nonparametric density estimation which
largely deals with estimating a smooth density p. Because of the clear difficulty in analyzing the
rate adaptive location estimation problem in its full generality, we focus on rate adaptivity among
compactly supported distributions which exhibit discontinuity or singularity at the boundary points
of the support; the uniform density on [−1, 1] for instance has discontinuities at points −1 and 1.
Moreover, we would like the rate to be no worse than

√
n (up to polylog factors) for all distributions

with a finite variance.
With the more precise goal in mind, we study a simple class of estimators of the form θ̂γ =

argminθ
∑n

i=1 |Yi− θ|γ where the power γ ≥ 2 is selected in a data-driven way. Estimators of this
form cover both the sample mean Ȳ , with γ = 2, and the sample midrange, with γ → ∞. These
estimators are easy to interpret, easy to compute, and can be extended in a straightforward way to
the regression setting where θ0 is a linear function of some observed covariates.

The key step is to select the optimal power γ from the data; in particular, γ must be allowed to
diverge with n to allow the resulting estimator to have an adaptive rate. Since θ̂γ is unbiased for
any γ ≥ 2, the ideal selection criterion is to minimize the variance. In this work, we approximate
the variance of θ̂γ by its asymptotic variance, which has a finite sample empirical analog that can
be computed from the empirical central moments of the data. We then select γ by minimizing
the empirical asymptotic variance, using Lepski’s method to ensure that we consider only those
γ’s for which the empirical asymptotic variance is a good estimate of the population version. Our
main results are finite sample bounds stated in Theorem 9 and Theorem 10. We give an informal
statement below.

Main result: (informal) Let θ̂ be our estimator on Yi ∼ P (· − θ0), fully data-driven (no tuning).
1. Write Fσ is the set of all distributions (not necessarily symmetric) with second moment σ2 and

mean 0. We have supP∈Fσ
E|θ̂ − θ0| ≤ O(σ

√
log n/n).

2. Write Fc,a1,a2,α as the set of symmetric distributions P supported on [−c, c] and satisfying
a1

cγ

γα ≤
∫ c
−c |x|

γdP (x) ≤ a2 cγ

γα forα ∈ (0, 2]. We have supp∈Fc,a1,a2,α
E|θ̂−θ0| ≤ O((log2 n/n)1/α).

Our estimation procedure can be easily adapted to the linear regression setting where we have
Yi = X⊤

i β0 + Zi where Zi has a symmetric distribution around 0. It is computationally fast using
second order methods and can be directly applied on real data. Importantly, it is robust to violation
of the symmetry assumption. More precisely, if Yi = θ0 + Zi and the noise Zi has a distribution
that is asymmetric around 0 but still has mean zero, then our estimator will converge to EYi = θ0
nevertheless.

Literature Review: Starting from the seminal paper by Stein (1956), a long series of work,
for example Stone (1975), Beran (1978), and many others (Van Eeden, 1970; Bickel, 1982; Schick,
1986; Mammen and Park, 1997; Dalalyan et al., 2006) showed, under the regular DQM setting, we
can attain an asymptotically efficient estimator θ̂ by taking a pilot estimator θ̂init, applying a density
estimation method on the residues Z̃i = Yi − θ̂init to obtain a density estimate p̂, and then construct
θ̂ either by maximizing the estimated log-likelihood, by taking one Newton step using an estimate
of the Fisher information, or by various other related schemes; see Bickel et al. (1993) for more
discussion on adaptive efficiency. Interestingly, Laha (2021) recently showed that the smoothness
assumption can be substituted by a log-concavity condition instead.

Our work is very closely related to a line of work from Gupta et al. (2023) and Gupta et al.
(2022). They observe (rightly) that many asymptotic results hide the fact that the convergence is
pointwise, that is, dependent on the unknown density p in opaque ways. They provide finite sample
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bound which gives convergence uniform over all densities but they require a smoothing parameter
that is difficult to choose in a data-dependent way. We compare our result with these in Remark 12.

Also motivated in part by the contrast between sample midrange and sample mean, Baraud
et al. (2017) and Baraud and Birgé (2018) propose the ρ-estimator. When the underlying density p
is known, the ρ-estimator has optimal rate in estimating the location. When p is unknown, the ρ-
estimator would need to estimate p nonparametrically; it is not clear under what conditions it would
attain adaptive rate. Moreover, computing the ρ-estimator in practice is often difficult.

Our estimator is related to methods in robust statistics (Huber, 2011), although our aim is differ-
ent. Our asymptotic variance based selector can be seen as a generalization of a procedure proposed
by Lai et al. (1983), which uses the asymptotic variance to select between the sample mean and
the median. Another somewhat related line of work is that of Chierichetti et al. (2014) and Pen-
sia et al. (2019), which study location estimation when Z1, . . . , Zn are allowed to have different
distributions.

Notation: We write [n] := {1, 2, . . . , n}. We write a ∧ b := min(a, b), a ∨ b := max(a, b),
(a)+ := a ∨ 0 and (a)− := −(a ∧ 0). For two functions f, g, we write f ≲ g if there exists a
universal constant C > 0 such that f ≤ Cg; we write f ≲α g if there exists a Cα > 0, which
depends on α, such that f ≤ Cαg. we write f ≍ g or f ∝ g if f ≲ g and g ≲ f ; f ≍α g is defined
similarly. We use the Õ(·) notation to represent rate of convergence ignoring poly-log factors.

2. Method

We observe random variables Y1, . . . , Yn such that Yi = θ0 + Zi for i ∈ [n], where θ0 ∈ R is
the unknown location and Z1, . . . , Zn ∼ P where P is an unknown distribution with density p(·)
symmetric around zero. Our goal is to estimate θ0 from the observations Y1, . . . , Yn.

2.1. A class of estimators

Our approach is motivated by the fact that both the sample mean and the sample midrange minimize
the ℓγ norm of the residual for different values of γ. More precisely,

Ȳ :=
1

n

n∑
i=1

Yi = argmin
θ∈R

n∑
i=1

|Yi − θ|2, and

Ymid :=
Y(n) + Y(1)

2
= argmin

θ∈R
max
i∈[n]
|Yi − θ| = lim

γ→∞
argmin

θ∈R

n∑
i=1

|Yi − θ|γ .

This suggests an estimation scheme where we first select the power γ ≥ 2 in a data-driven way
and then output the empirical center with respect to the ℓγ norm:

θ̂γ := argmin
θ∈R

n∑
i=1

|Yi − θ|γ .

It is clear that Ȳ = θ̂2 and that θ̂γ approaches Ymid as γ increases, that is, Ymid ≡ θ̂∞ := limγ→∞ θ̂γ .
We in fact have a deterministic bound of |θ̂γ − Ymid| in the following lemma:

Lemma 1 Let Y1, . . . , Yn be n arbitrary points on R, then |θ̂γ − Ymid| ≤ 2(Y(n) − Y(1)) lognγ .
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We prove Lemma 1 in Section S3 of the appendix. Lemma 1 suggests that we need to consider
γ as large as n to approximate Ymid with error that is of order logn

n . Therefore, in settings where
Ymid is optimal, we need γ to be able to diverge with n.

Estimators of form θ̂γ is simple, easy to compute via Newton’s method (see Section S3.4 of the
appendix), and interpretable even for asymmetric distributions. The key question is of course, how
do we select the power γ? It is necessary to allow γ to increase with n to attain adaptive rate but
selecting a power γ that is too large can introduce tremendous excess variance. As is often said,
”with great power comes great responsibility”.

Before describing our approach in the next subsection, we give some remarks on two approaches
that seem reasonable but in fact do not work well.

Remark 2 (Suboptimality of Cross-validation)
Cross-validation is a natural method for choosing the best estimator among a family of estimators,
but this fails in our problem. To illustrate why, we consider the simpler problem where we choose
between only the sample mean θ̂2 and the sample midrange θ̂∞. We consider held-out validation
where we divide our data into training data Dtrain and test data Dtest each with n data points. We
compute θ̂train

2 , θ̂train
∞ on training data, evaluate test data MSE

R̂(θ̂train
j ) :=

1

n

n∑
i=1

(Y test
i − θ̂train

j )2 = (Ȳ test − θ̂train
j )2 +

1

n

n∑
i=1

(Y test
i − Ȳ test)2, (1)

for j ∈ {2,∞}. Since the second term on the right hand side of (1) is constant, we select γ = 2 if
(Ȳ test − θ̂train

2 )2 < (Ȳ test − θ̂train
∞ )2.

Now assume that the data follows the uniform distribution on [θ0 − 1, θ0 + 1], so that the

optimal estimator is the sample midrange θ̂∞. We observe that
√
n(θ̂train

2 − θ0)
d→ N(0, 1/3)

and
√
n(Ȳ test − θ0)

d→ N(0, 1/3) whereas
√
n(θ̂train

∞ − θ0) → 0 in probability. Hence, by the
Portmanteau Theorem,

lim inf
n→∞

P(selecting θ̂2) = lim inf
n→∞

P(|Ȳ test − θ̂train
2 | < |Ȳ test − θ̂train

∞ |)

= lim inf
n→∞

P(|
√
n(Ȳ test − θ0)−

√
n(θ̂train

2 − θ0)|

< |
√
n(Ȳ test − θ0)−

√
n(θ̂train

∞ − θ0)|)
≥ P(|W1 −W2| < |W2|) > 0,

where W1 and W2 are independent N(0, 1/3) random variables. In other words, held-out valida-
tion has a non-vanishing probability of incorrectly selecting θ̂2 over θ̂∞ even as n → ∞ and thus
has an error of order 1/

√
n, which is far larger than the optimal 1/n rate. It is straightforward to

extend the argument to the setting of K-fold cross-validation for any fixed K.

Remark 3 (Suboptimality of MLE with respect to the generalized Gaussian family)
We observe that θ̂γ is the maximum likelihood estimator for the center when the data follow the
Generalized Normal GN(θ, σ, γ) distribution, which is also known as the Subbotin distribution (Sub-
botin, 1923), whose density is of the form p(x ; θ, σ, γ) = 1

2σΓ(1+1/γ) exp
(
−
∣∣x−θ

σ

∣∣γ),where Γ(t) :=∫∞
0 xt−1e−xdx denotes the Gamma function. This suggests a potential approach where we deter-

mine γ by fitting the data to the potentially misspecified Generalized Gaussian family via likelihood
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maximization:

argmin
γ

min
θ,σ

1

n

n∑
i=1

∣∣∣∣Yi − θσ

∣∣∣∣γ + log σ + log(2Γ(1 + 1/γ)).

This approach works well if the underlying density p of the noise Zi belongs in the Generalized
Gaussian family. Otherwise, it may be suboptimal: it may select a γ that is too small when the
optimal γ is large and it may select a γ that is too large when the optimal γ is small. We give a
precise and detailed discussion of the drawbacks of the generalized Gaussian MLE in Section S1.1.

2.2. Approximate variance

Under the assumption that the noise Zi has a distribution symmetric around 0, it is easy to see
by symmetry that Eθ̂γ = θ0 for any fixed γ > 0. We thus propose a selection scheme based on
minimizing the variance. The finite sample variance of θ̂γ is intractable to compute, but for any

fixed γ > 1, assuming E|Y −θ0|2(γ−1) <∞, we have that
√
n(θ̂γ−θ0)

d→ N(0, V (γ)) as n→∞,
where

V (γ) :=
E|Y − θ0|2(γ−1)

[(γ − 1)E|Y − θ0|γ−2]2
(2)

is the asymptotic variance of θ̂γ . Thus, from an asymptotic perspective, θ̂γ is a better estimator of
θ0 if V (γ) is small. When γ is allowed to depend on n, V (γ) may not be a good approximation of
the finite sample variance of θ̂γ , but the next example suggests that V (·) is still a sensible criterion.

Example 1 When Y1, . . . , Yn
d∼ Uniform[θ0 − 1, θ0 + 1], straightforward calculation yields that

E|Y − θ0|q = 1
q+1 for any q ∈ N and thus, we have V (γ) = 1

2γ−1 . We see that V (γ) is minimized
when γ → ∞, in accordance with the fact that the sample midrange Ymid is the optimal estimator
among the class of estimators {θ̂γ}γ≥2. More generally, if Yi has a density p(·) supported on
[θ0 − 1, θ0 + 1] which is symmetric around θ0 and satisfies the property that p(x) is bounded away
from 0 and∞ for all x ∈ [θ0 − 1, θ0 + 1], then one may show that V (γ) ∝ 1

γ . On the other hand,
if Yi ∼ N(θ0, 1), then, using the fact that E|Y − θ0|γ ≍ γγ/2e−γ/2, we can directly calculate that
that V (γ) is of order 2γ

γ , which goes to infinity as γ → ∞ as expected. Since θ̂2 is the MLE, we
have that V (γ) is minimized at γ = 2 in the Gaussian case (Van der Vaart, 2000, Chapter 5.5).

2.3. Proposed procedure

We thus propose to select γ by minimizing an estimate of the asymptotic variance V (γ). It is
important to note that although we use V (γ) in our procedure, our error bounds are non-asymptotic.

For simplicity, we restrict our attention to γ ≥ 2 in the main paper and discuss how to select
γ ∈ [1, 2) in Remark 7. A natural estimator of V (γ) is

V̂ (γ) :=
minθ

1
n

∑n
i=1 |Yi − θ|2(γ−1)[

(γ − 1)minθ
1
n

∑n
i=1 |Yi − θ|γ−2

]2 . (3)

Although V̂ (γ) has pointwise consistency in that it is a consistent estimator of V (γ) for any
fixed γ (see Lemma S3.3 in Section S3.2 of the appendix), we require uniform consistency since
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our goal is to minimize V̂ (γ) as a surrogate of V (γ). This unfortunately does not hold; if we allow
γ to diverge with n, the error |V̂ (γ) − V (γ)| can be arbitrarily large. This occurs because, if we
fix n and increase γ, the finite average 1

n

∑n
i=1 |Yi− θ|γ does not approximate the population mean

and behaves closer to 1
n maxi |Yi − θ|γ instead. Indeed, for any fixed n and any deterministic set of

points Y1, . . . , Yn, we have

V̂ (∞) := lim
γ→∞

V̂ (γ) = lim
γ→∞

n

(γ − 1)2
|Y(n) − Ymid|2(γ−1) + |Y(1) − Ymid|2(γ−1)

{|Y(n) − Ymid|γ−2 + |Y(1) − Ymid|γ−2}2

= lim
γ→∞

n

2(γ − 1)2

∣∣∣∣Y(n) − Y(1)2

∣∣∣∣2 = 0. (4)

Therefore, unconstrained minimization of V̂ (γ) over all γ ≥ 1 would select γ = ∞. See for
example Figure 1(a), where we generate Gaussian noise Zi ∼ N(0, 1) and plot V̂ (γ) for a range
of γ’s; although the population V (γ) tends to infinity when γ is large, the empirical V̂ (γ) increases
for moderately large γ but then, as γ further increases, V̂ (γ) decreases and tends to 0.

Luckily, we can overcome this issue by restricting our attention to γ’s that are not too large.
To be precise, we add an upper bound γmax ≥ 2 and minimize V̂ (γ) only among γ ∈ [2, γmax].
We select γmax using Lepski’s method, which is typically used to select smoothing parameters in
nonparametric estimation problems (Lepskii, 1990, 1991) but can be readily adapted to our setting.

The idea is to construct confidence intervals CIγ :=

[
θ̂γ − τ

√
V̂ (γ)/n, θ̂γ + τ

√
V̂ (γ)/n

]
for a set

of γ’s, starting with γ = 2, and take γmax to be the largest γ such that the confidence intervals all
intersect, i.e. γmax := sup{γ̃ : ∩γ≤γ̃CIγ ̸= ∅}. We would thus exclude γ for which θ̂γ is far from
θ0 and V̂ (γ) is too small. This leads to our full estimation procedure below, which we refer to as
CAVS (Constrained Asymptotic Variance Selector):

Algorithm 1 Constrained Asymptotic Variance Selection (CAVS) algorithm

Let τ > 0 be a tuning parameter and letNn ⊆ [2,∞] be the set of candidate γ’s. Define V̂ (γ) as (3)
for γ ∈ [2,∞) and define V̂ (∞) := 0.

1. Define γmax as the largest γ ∈ Nn such that

⋂
γ∈Nn, γ≤γmax

[
θ̂γ − τ

√
V̂ (γ)

n
, θ̂γ + τ

√
V̂ (γ)

n

]
̸= ∅.

2. Select γ̂ := argminγ∈Nn, γ≤γmax
V̂ (γ).

3. Output θ̂ ≡ θ̂γ̂ = argminθ∈R
∑n

i=1 |Yi − θ|γ̂ .

The candidate setNn can be the entire half-line [2,∞]. In practice, we takeNn to be a finite set
so that we are able to compute the minimizer of V̂ (γ). A convenient and computationally efficient
choice is Nn = {2, 4, 8, . . . , n,∞}, which we also use in our theory.

We illustrate how the CAVS procedure works with two examples in Figure 1. In Figure 1(a),
we generate Gaussian noise Zi ∼ N(0, 1); we plot V̂ (γ) for a exponentially increasing sequence of
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(a) V̂ (γ) for Gaussian (b) θ̂γ ± 2

√
V̂ (γ)
n (c) V̂ (γ) for trunc

Gaussian
(d) θ̂γ ± 2

√
V̂ (γ)
n

Figure 1: Red line gives γmax; blue line is the true θ0. We use n = 500 and select γmax as the
largest γ such that all confidence intervals to the left have a nonempty intersection.

γ’s ranging from 2 to 512. The constraint upper bound γmax is given by the red line in the figure.
Unconstrained minimization of V̂ (γ) leads to γ̂ = 512. Figure 1(b) illustrates the Lepski method

that we use to choose upper bound γmax: we compute confidence intervals of width τ
√
V̂ (γ)/n

around θ̂γ for the whole range of γ’s. To get γmax, we pick the largest γ such that the intersection
of all the confidence intervals to the left of γmax is non-empty. This allows us to avoid the region
where V̂ (γ) is very small but the actual V (γ) is very large. Indeed, if V (γ) is much larger than the
variance Var(Z), then θ̂γ likely to be far from the sample mean θ̂2 and thus, if V̂ (γ) is also small,

then θ̂γ ± τ
√
V̂ (γ)/n is unlikely to overlap with the confidence interval around the sample mean.

Therefore, with Gaussian noise, CAVS selects γ̂ = 2 by minimizing V̂ (γ) for only those γ
to the left of γmax (red line) in Figure 1(a). In contrast, if V (γ) decreases as γ increases, then θ̂γ

remains close to the sample mean θ̂2 and the confidence interval θ̂γ±τ
√
V̂ (γ)/n overlaps with that

of the sample mean even when γ is large, which means we would select a large γmax as desired. We
illustrate this in Figure 1(c) and 1(d), where we generate truncated Gaussian noise Z by truncating
at |Z| ≤ 2; that is, we generate Gaussian samples and keep only those that lie in the interval [−2, 2].
From Figure 1(c), we see that our procedure picks a large γ̂ = 128. We provide extensive numerical
experiments in Section S2.

Remark 4 (Selecting τ parameter) Our proposed CAVS procedure has a tuning parameter τ which
governs the strictness of the γmax constraint. Smaller τ will in general result in a smaller γmax and
hence a stronger constraint. For our theoretical results, namely Theorem 10, it suffices to choose
τ to be very slowly growing so that τ√

log logn
→ ∞. For practical data analysis applications, we

recommend τ = 1 as a conservative choice based on simulation studies in Section S2.1

Remark 5 (Robustness to asymmetry) One important aspect of CAVS is that it is robust to violations
of the symmetry assumption. If the density p of the noise has mean zero but is asymmetric (so that
θ0 is the mean of Yi), then, there may exist γ greater than 2 where the γ-th center of Yi = θ0 + Zi

is different from θ0 (i.e. θ∗γ := argminθ E|Y − θ|γ ̸= θ0) and so θ̂γ is a biased estimator of θ0.

In such cases however, the confidence interval θ̂γ±τ
√

V̂ (γ)
n will, for large enough n, be concen-

trated around Eθ̂γ = θ∗γ and thus not overlap with the confidence interval about the sample mean

8
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θ̂2 ± τ
√

V̂ (2)
n , which will concentrated around Eθ̂2 = θ0. Therefore, we would have γmax < γ

and the constraint would thus exclude any biased θ̂γ . We illustrate an example in Figure 2 where
because θ̂3 is biased, we have that γmax = 2 and thus, we select γ̂ = 2 and the resulting estimator
θ̂γ̂ still converges to θ0. Indeed, Theorem 9 does not require the noise distribution to be symmetric
around 0, it only requires the noise to have mean zero.

(a) V̂ for asymmetric density (b) θ̂γ ± 2

√
V̂ (γ)
n

Figure 2: We generate mean zero Zi from an asymmetric mixture distribution 2
3Unif[−1, 0] +

1
3Unif[0, 2]. Note that θ̂3 ± 2

√
V̂ (3)
n does not overlap with θ̂2 ± 2

√
V̂ (2)
n because

Eθ̂2 ̸= Eθ̂3 due to the asymmetry. Red line gives γmax; blue line is the true θ0.

Remark 6 (Extension to the regression setting) We can directly extend our estimation procedure to
the linear regression setting. Suppose we observe (Yi, Xi) for i = 1, 2, . . . , n where Xi is a random
vector on Rd, Yi = X⊤

i β0 + Zi, and Zi is an independent noise with a distribution symmetric
around 0. Then, we would compute, for each γ in a set Nn ⊂ [2,∞],

β̂γ = argmin
β∈Rp

n∑
i=1

|Yi −X⊤
i β|γ and V̂ (γ) =

minβ∈Rd
1
n

∑n
i=1 |Yi −X⊤

i β|2(γ−1)

(γ − 1)2{minβ∈Rd
1
n

∑n
i=1 |Yi −X⊤

i β|γ−2}2
.

We define Σ̂X := 1
n

∑n
i=1XiX

⊤
i . Using Taylor expansion, it is straightforward to show that

√
nΣ̂

1/2
X (β̂γ − β0)

d→ N(0, V (γ)Id). Thus, for a given τ > 0, our estimation procedure first
computes γmax as the largest γ ∈ Nn such that

⋂
γ∈Nn, γ≤γmax

p⊗
j=1

[(
Σ̂
1/2
X β̂γ

)
j
− τ

√
V̂ (γ)

n
,
(
Σ̂
1/2
X β̂γ

)
j
+ τ

√
V̂ (γ)

n

]
̸= ∅,

where we use the ⊗ notation to denote the Cartesian product. Then, we select the minimizer γ̂ =
argminγ∈Nn, γ≤γmax

V̂ (γ) and output β̂γ̂ .

Remark 7 (Selecting γ ∈ [1, 2)) When the noise Zi is heavy-tailed, it is desirable to allow consid-
eration of γ ∈ [1, 2); note that γ = 1 corresponds to the sample median θ̂1 = argminθ

∑n
i=1 |Yi−

9
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θ|. For γ ∈ [1, 2), the estimator V̂ (γ) given in (3) is not appropriate. In particular, if Zi has a den-
sity p and population median 0 and that p(0) > 0, then the asymptotic variance of sample median
is V (1) = 1

4p(0)2
instead of (2). For γ ∈ (1, 2), expression (2) holds but the estimator V̂ (γ) may

behave poorly because of the negative power in the denominator. We do not have a general way of
estimating V (γ) for γ < 2. In the specific case of the sample median (γ = 1), there are various
good estimators of the variance. For instance, Bloch and Gastwirth (1968) proposed an approach
based on density estimation and Lai et al. (1983) proposed an approach based on the bootstrap. The
general idea of selecting an estimator using asymptotic variance is not specific to the Lγ-centers;
one can also add say Huber loss minimizers into the set of candidate estimators provided that there
is a good way to estimate the asymptotic variance.

Remark 8 An important property of γ̂ is that it is shift and scale invariant in the following sense:
if we apply the transformation Ỹi = bYi + a where b > 0 and a ∈ R and then compute γ̃ on
{Ỹ1, . . . , Ỹn}, then γ̃ = γ̂. This follows from the fact that V̂ (γ)/V̂ (2) is shift and scale invariant.
Likewise, we see that θ̂γ̂ is shift and scale equivariant in that if we compute θ̃γ̃ on {Ỹ1, . . . , Ỹn},
then θ̃γ̃ = bθ̂γ̂ + a.

2.4. Error rate is at least 1/
√
n

Using the definition of γ̂, we can directly show that θ̂γ̂ must be close to the sample mean Ȳ and that
the error of θ̂γ̂ is at most O(τ

√
σ2/n) where σ2 := Var(Z).

Theorem 9 Let σ̂2 be the empirical variance of Y1, . . . , Yn. For any n, it holds surely that |θ̂γ̂ −
Ȳ | ≤ 2τ

√
σ̂2

n . Therefore, if we additionally have that σ2 := E|Z|2 <∞, then, writing θ0 = EY1,

E|θ̂γ̂ − θ0| ≤ Cτ
√
σ2

n

for a universal constant C > 0.

Proof Since γ̂ ≤ γmax, we have by the definition of γmax that θ̂γ̂+τ
√

V̂ (γ̂)
n ≥ θ̂2−τ

√
V̂ (2)
n and θ̂γ̂−

τ

√
V̂ (γ̂)
n ≤ θ̂2−τ

√
V̂ (2)
n . Since V̂ (γ̂) ≤ V̂ (2) by definition of γ̂ and since θ̂2 = Ȳ and V̂ (2) = σ̂2,

the first claim immediately follows. The second claim directly follows from the first claim.

It is important to note that Theorem 9 does not require symmetry of the noise distribution P . If
Yi has a distribution asymmetric around θ0 but EY = θ0, then Theorem 9 implies that θ̂γ̂ converges
to θ0 as might be desired.

3. Adaptive rate on compacted supported densities

Theorem 9 shows that, so long as τ is small and the noise Zi has finite variance, then our proposed
estimator has an error E|θ̂γ̂ − θ0| that is at most Õ(n−1/2). In this section, we analyze the behavior
of our estimator when the density p(·) is supported on the interval [−c, c]. Since our estimator is
scale-equivariant, we can without loss of generality assume that the support of p(·) is [−1, 1]; note
then that E|Zi|γ ≤ 1 for all γ ≥ 0 and that E|Zi|γ is non-increasing in γ.

We prove that if the moments decrease at a rate E|Zi|γ ∝ 1/γα where α ∈ (0, 2], then our
estimator, without knowing α, can attain an adaptive rate of convergence of Õ(n−

1
α ).

10
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Theorem 10 Suppose Z1, Z2, . . . , Zn are independent and identically distributed with a distribu-
tion P symmetric around 0. Suppose there exists α ∈ (0, 2], a1 ∈ (0, 1] and a2 ≥ 1 such that
a1
γα ≤ E|Z|γ ≤ a2

γα for all γ ≥ 1. LetNn be a subset of [2,∞] with Mn := supNn and supposeNn

contains 2k for all integer k ≤ n ∧ log2Mn.
Let Ca1,a2,α > 0 be a constant that depends only on a1, a2, α; let θ̂γ̂ be defined as in Algo-

rithm 1. The following then hold:

1. If τ√
log logn

→∞, then
|θ̂γ̂ − θ0| ≤ Op

(
Ca1,a2,α

{(
logα+1 n

n

) 1
α

∨ log n

Mn

})
.

2. If τ ≥
√
log n, then

E|θ̂γ̂ − θ0| ≤ Ca1,a2,α

{(
logα+1 n

n

) 1
α

∨ log n

Mn

}
.

Therefore, we can choose Mn ≥ 2n and τ =
√
log n, without any knowledge of α, so that our

estimator has an adaptive rate of convergence E|θ̂γ̂ − θ0| ≲a1,a2,α

( logα+1 n
n

) 1
α where α can take on

any value in (0, 2] depending on the underlying noise distribution. The adaptive rate ( log
α+1

n )1/α is,
up to log-factors, minimax optimal for the class of densities satisfying E|Z|γ ∝ γ−α; see Remark 16
for more details.

We relegate the proof of Theorem 10 to Section S4.1 of the appendix, but give a sketch of the
proof ideas here. First, by using the moment condition a1

γα ≤ E|Z|γ ≤ a2
γα as well as Talagrand’s

inequality, we give the following uniform bound for V̂ (γ): that V̂ (γ) ≍a1,a2,α γ
α−2 ≍a1,a2,α V (γ)

for all 2 ≤ γ ≤
(

n
logn

) 1
α with high probability. Using this bound in conjunction with another

uniform bound on |θ̂γ − θ0|, we then can guarantee that γmax is large enough in that γmax ≳a1,a2(
n

logn

) 1
α ∨ Mn. These results in turn yields the key fact that γ̂ is also sufficiently large in that

γ̂ ≳a1,a2

(
n

logn

) 1
α ∨ Mn. We then bound the error of θ̂γ̂ by the inequality |θ̂γ̂ − θ0| ≤ |θ̂γ̂ −

Ymid|+ |θ0−Ymid|, where Ymid is the sample midrange. We control the first term |θ̂γ̂−Ymid| through
Lemma 1 and the second term |θ0 − Ymid| using the moment condition. The resulting bound gives
the desired conclusion of Theorem 10. We also see that the oracle choice of a data dependent γ is
any value in the range [(n/ log n)1/α,∞).

Remark 11 A direct implication of Theorem 10 and the scale-equivariance of our estimator is that
if Zi takes value on [−c, c] for any c > 0 and satisfies E|Z|γ ∝ cγ

γα , then we have that E|θ̂γ̂ − θ0| ≤

c · Ca1,a2,α

{( logα+1 n
n

) 1
α ∨ logn

Mn

}
.

Remark 12 Gupta et al. (2023) constructed an estimator θ̂, using on nonparametric density esti-
mation, that has finite sample error bound Op(

√
1/nIr) (Theorem 1 in Gupta et al. (2023)). They

do not assume smoothness in the underlying density p but their error bound is in terms of a smooth
Fisher information Ir, which is the Fisher information of p convolved with N(0, r2). We note that
their theory does not directly apply to our setting. The Fisher information of Unif[−1, 1] ⋆N(0, r2)
diverges at a rate of O(1/r2) so that we would need r = O(1/

√
n) in order to obtain the optimal

rate. In contrast, Theorem 1 in Gupta et al. (2023) requires r ≥ n−1/13. Moreoever, in Gupta et al.
(2023), the smoothing parameter r must be chosen by the user. It is unclear whether one can choose
r in a data-dependent way that leads to an estimator with optimal adaptive rate.

11
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Remark 13 The proof of Theorem 10 shows that when E|Zi|γ ∝ γ−α, the midrange estimator
Ymid has rate Õ(n−

1
α ). However, this does not mean we can simply use the midrange estimator –

the midrange performs very poorly when the density is not compactly supported. For example, as
mentioned in the introduction, if Zi ∼ N(0, 1), then Ymid has rate O(1/

√
log n). In contrast, our

proposed estimator γ̂γ̂ has rate no worse than Õ(1/
√
n) regardless of the underlying distribution

(so long as the variance is finite).

Remark 14 One reviewer pointed out that our estimator θ̂γ̂ may have a rate of convergence that is
exponentially fast in n in some situations where P does not have a density, such as when P is the
Rademacher distribution. In this case, we have that E|Z|γ = 1 for all γ > 0 which corresponds to
α = 0. This is not covered by Theorem 10 but we believe the analysis can be readily extended to
this case to show that E|θ̂γ̂ − θ0| = Õ(2−n). Indeed, so long as not all of the Yi’s are θ0 + 1 or
θ0 − 1, the midrange estimator would estimate θ0 perfectly.

3.1. Concrete examples

The moment condition a1
γα ≤ E|Z|γ ≤ a2

γα constrains the behavior of the density p(·) around the
boundary of the support [−1, 1]. The following Proposition formalizes this intuition.

Proposition 15 Let α ∈ (0, 2) and suppose X is a random variable with density p(·) satisfying
Cα,1(1− |x|)α−1

+ ≤ p(x) ≤ Cα,2(1− |x|)α−1
+ , ∀x ∈ [−1, 1], for Cα,1, Cα,2 > 0 dependent only

on α. Then, there exists C ′
α,1, C

′
α,2 > 0, dependent only on α, such that, for all γ ≥ 1,

C ′
α,1

γα
≤ E|X|γ ≤

C ′
α,2

γα
.

We prove Proposition 15 in Section S4.2 of the Appendix.

Example 2 Using Proposition 15, we immediately obtain examples of noise distributions where
the convergence rates of our location estimator θ̂γ̂ vary over a wide range.

1. When Z has the semicircle density p(x) ∝ (1 − |x|2)1/2, then E|Z|γ ∝ γ−
3
2 so that θ̂γ̂ has

rate Õ(n−
2
3 ), where we use the Õ(·) notation to indicate that we have ignored polylog terms.

2. When Z ∼ Unif[−1, 1], we have that E|Z|γ = 1
γ+1 so that θ̂γ̂ has rate Õ(n−1).

3. More generally, let q be a symmetric continuous density on R and let p be a density that
results from truncating q, that is, p(x) ∝ q(x)1{|x| ≤ 1}. If p(1) = p(−1) > 0, then
a1
γ ≤ E|Z|γ ≤ a2

γ where a1, a2 depend on q. In particular, if Z is a truncated Gaussian, then

γ̂γ̂ also has Õ(n−1) rate.

4. Suppose Z has a U-shaped density of the form p(x) ∝ (1 − |x|)−
1
2 , then E|Z|γ ∝ γ−

1
2 so

that θ̂γ̂ has rate Õ(n−2).

Remark 16 By Proposition S4.13 and the subsequent Remark S4.14 in Section S4.2 of the Ap-
pendix, we have that if a density p is of the form p(x) = Cα(1− |x|)α−1

1{|x| ≤ 1} for α ∈ (0, 2),
then we have that, writingH2(θ1, θ2) :=

∫ (√
p(x− θ1)−

√
p(x− θ2)

)2
dx, that Cα,1|θ1−θ2|α ≤

12
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H2(θ1, θ2) ≤ Cα,2|θ1− θ2|α, for Cα,1 and Cα,2 dependent only on α. From Le Cam (1973, Propo-
sition 1), any estimator θ̂ has a rate lower bounded by the fact that H2(θ̂, θ0) ≳ 1

n so that among
the class of densities

Pa1,a2 :=

{
p : symmetric,

a1
γα
≤

∫
|x|γp(x)dx ≤ a2

γα
,∀γ ≥ 1, for some α ∈ (0, 2]

}
, (5)

our proposed estimator θ̂γ̂ has a rate of convergence that is minimax optimal up to polylog factors.

4. Discussion

An immediate question is how to design an estimator whose rate adapts to any discontinuity in the
underlying density p, even those in the interior of the support. A promising approach is to apply the
technique of Gupta et al. (2023) and use Lepski’s method to choose the smoothing parameter r. One
challenge is that in other to obtain rates faster than 1/

√
n, we may need to estimate the location of

the discontinuities of p with o(1/
√
n). Another interesting question is how to extend the framework

to nonparametric regression.
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Supplementary material to “Choosing the p in Lp loss: adaptive rates for
symmetric mean estimation”

Appendix S1. Comparison with Generalized Gaussian MLE

S1.1. Comparison with the MLE

Recall from Remark 3 that for θ ∈ R and σ, γ > 0, the generalized Gaussian distribution (also
known as the Subbotin distribution) has a density of the form p(x : θ, σ, γ) = 1

2σΓ(1+γ−1)
exp

(
−
∣∣x−θ

σ

∣∣γ).
We note that the uniform distribution on [−σ, σ] is a limit point of the generalized Gaussian class
where we let γ →∞.

Using univariate observations Y1, . . . , Yn, we may then compute the MLE of γ with respect to
the generalized Gaussian family:

γ̂MLE = argmin
γ

min
θ,σ

1

n

n∑
i=1

∣∣∣∣Yi − θσ

∣∣∣∣γ + log σ + log Γ

(
1 +

1

γ

)
.

For any fixed γ, we may minimize over θ and σ to obtain that

γ̂MLE = argmin
γ

Ln(γ),

where

Ln(γ) :=
1

γ
log

(
min
θ

1

n

n∑
i=1

|Yi − θ|γ
)
+

1 + log γ

γ
+ log Γ

(
1 +

1

γ

)
.

A natural question then is how good is γ̂MLE as a selection procedure? Would the resulting location
estimator θ̂γ̂MLE have good properties? If the density of Yi belongs to the generalized Gaussian
class, then we expect γ̂MLE to perform well. But when there is model misspecification, we show in
this section that γ̂MLE performs suboptimally compared to the CAVS estimator that we propose in
Section 2.3.

To start, let us define the population level likelihood function for every γ > 0

L(γ) := min
θ,σ

E
∣∣∣∣Y − θσ

∣∣∣∣γ + log(2σ) + log Γ
(
1 +

1

γ

)
=

1

γ
log

(
min
θ

E|Y − θ|γ
)
+

1 + log γ

γ
+ log Γ

(
1 +

1

γ

)
.

We define L(∞) := limγ→∞ L(γ) and Ln(∞) := limγ→∞ Ln(γ) = log
{
(Y(n) − Y(1))/2

}
. We

note that if E|Y |γ = ∞, then L(γ) = ∞ and if Y is not compactly supported, then L(∞) = ∞.
Moreover, by Lemma S3.3 (in Section S3.2 of the appendix), we have that, for any fixed γ ∈
R ∪ {∞}, we have that Ln(γ)

a.s.→ L(γ).
Define γ∗MLE = argminγ≥2 L(γ) as the minimizer of L(γ). We show in the next Proposition

that when the noiseZi is supported on [−1, 1] with a small but positive density value at the boundary,
then γ∗MLE <∞ even though the optimal selection of γ is to take γ →∞ since the sample midrange
θ̂∞ would have a rate of convergence that is at least as fast as Õ(n−1).
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Proposition S1.1 Suppose Y = Z + θ0 where Z has a distribution symmetric around 0. Define
γ∗MLE = argminγ>0 L(γ).

1. If Z is supported on all of R, then γ∗MLE <∞.

2. Suppose Z has a density p supported and continuous on [−1, 1]. Let γE ≈ 0.57721 be the
Euler–Mascheroni constant. If the density value at the boundary satisfies p(1) < 1

2e
γE−1,

then γ∗MLE <∞.

3. Suppose Z has a density p supported and continuous on [−1, 1]. If the density value at the
boundary satisfies p(1) > 1

2e
γE−1, then γ =∞ is a local minimum of L(γ).

We relegate the proof of Proposition S1.1 to Section S4.3 of the Appendix.
If the noise density p is continuous and has boundary value p(1) ∈ (0, 12e

γE−1), then Proposi-
tion S1.1 suggests that we would not expect γ̂MLE →∞. More precisely, we have that L(γ∗MLE) <
L(∞) and thus, by Lemma S3.3, when n is large enough, we also have Ln(γ

∗
MLE) < Ln(∞) almost

surely. Therefore, selecting γ by minimizing Ln would always favor a finite γ = γ∗MLE over γ =∞.
As a result, selecting γ based on MLE yields a suboptimal rate of n−1/2.

In contrast, Theorem 10 shows that under the same setting, our proposed CAVS estimator selects
a divergent γ̂ which can yield an error that is smaller than Õ(n−1/2) for θ̂γ̂ . In fact, there are settings
in which the density at the boundary is equal to zero, that is, p(1) = 0, where our proposed estimator
can θ̂γ̂ have a rate of convergence that is faster than n−1/2; for example, we see in that |θ̂γ̂ − θ0| is
Õ(n−2/3) when the noise has the semicircle density.

We note that although Proposition S1.1 is stated for Z supported on [−1, 1], by scale invariance
of γ∗MLE, Proposition S1.1 holds for support of the form [−b, b], where the the condition on the
density generalizes to p(b) > 1

2be
γ0−1.

Remark S1.2 Another drawback, one that is perhaps more alarming, of selecting γ based on the
Generalized Gaussian likelihood is that the resulting location estimator may have a standard devi-
ation (and hence error) that is larger than O(n−1/2).

Consider the following example: let p1 be the density of |W |
1
3 sign(W ), where W follows the

standard Cauchy distribution, let p2(x) ∝ exp
(
−|x|3

)
, and let the noise Z have a mixture density

p = δp1 + (1− δ)p2 for some δ ∈ (0, 1). We let Y = Z + θ0 as usual.
If δ = 0 so that Z ∼ p2, then L(γ) is minimized at γ = 3. We can thus pick a suffi-

ciently small δ (see Lemma S5.17) such that the likelihood L(γ) is minimized at γ = 3 + ϵ for
some small ϵ > 0. This however is a poor choice of γ since the asymptotic variance of θ̂3+ϵ

is V (3 + ϵ) = E|Z|4+2ϵ

((2+ϵ)E|Z|1+ϵ)2
= ∞ and moreover, we can show via a truncation argument that

limn→∞ P(|
√
n(θ̂3+ϵ − θ0)| < M) = 0 for every M > 0.

In contrast, our proposed procedure would output the sample mean Ȳ = θ̂2, which has finite
asymptotic variance. Intuitively, the CAVS procedure behaves better because it takes into account
the higher moment E|Z|2(γ−1) whereas the likelihood selector is based only on E|Z|γ .

Appendix S2. Empirical studies

We perform empirical studies on simulated data to verify our theoretical results in Section 3. We
also analyze a dataset of NBA player statistics for the 2020-2021 season to show that our proposed
CAVS estimator can be directly applied to real data.

16



ADAPTIVE RATES FOR SYMMETRIC MEAN

S2.1. Simulations

(a) Location estimation (b) Regression

Figure 3: Log-error vs. sample size plots. Sample size n is plotted on a log-scale.

Convergence rate for location estimation: Our first simulation takes the location estimation
setting where Yi = θ0 + Zi for i = 1, . . . , n. We let the distribution of the noise Zi be either
Gaussian N(0, 1), uniform Unif[−1, 1], or semicircle (see Example 2). We let the sample size n

vary between (200, 400, 800). We compute our proposed CAVS estimator θ̂γ̂ (with τ =
√

log 4n
200 )

and plot, in Figure 3(a), log-error versus the sample size n, where n is plotted on a logarithmic
scale. Hence, a rate of convergence of n−t would yield an error line of slope −t in Figure 3(a). We
normalize the errors so that all the lines have the same intercept. We see that error under uniform
noise has a slope of −1, error under semicircle noise has a slope of −2/3, and error under Gaussian
noise has a slope of −1/2 exactly as predicted by Theorem 9 and Theorem 10.

Convergence rate for regression: Then, we study the regression setting where Yi = X⊤
i β0+Zi

for i = 1, 2, . . . , n. We let the distribution of the noise Zi be either Gaussian N(0, 1), uniform
Unif[−1, 1], or the semicircle density given in Example 2. We let the sample size n vary between
(200, 400, 600). We apply the regression version of the CAVS estimate β̂γ̂ as described in Remark 6

(with τ =
√
log 4n

200 ), and plot, in Figure 3(a), log-error versus the sample size n, where n is plotted
on a logarithmic scale. We see that CAVS also has adaptive rate of convergence; the uniform noise
yields a rate of n−1, the semicircle noise yields a rate of n−2/3, and the Gaussian noise yields a rate
of n−1/2 as n increases, as predicted by our theory.

Convergence rate for truncated Gaussian at different truncation levels: In Figure 4(a), we
take the location model Yi = θ0 + Zi where Zi has the density pt(x) ∝ exp{−1

2
x2

σ2
t
}1(|x| ≤ t/σt)

for some t > 0 and where σt > 0 is chosen so that Zi always has unit variance. In other
words, we sample Zi by first generating W ∼ N(0, 1), keep W only if |W | ≤ t, and then take
Zi = σtW where σt > 0 is chosen so that Var(Zi) = 1. We use four different truncation levels
t = 1, 1.5, 2, 2.5; we let the sample size vary from n = 50 to n = 1600 and compute our CAVS

17
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(a) Gaussian truncated at different levels (b) Different τ

Figure 4: Log-error vs. sample size plots. Sample size n is plotted on a log-scale.

estimate θ̂γ̂ (with τ =
√

log 4n
50 ). We plot in Figure 4(a), the log-error versus the sample size n,

where n is plotted on a logarithmic scale. We observe that when the truncation level is t = 1 or 1.5
or 2, the error is of order n−1. When the truncation level is t = 2.5, the error behaves like n−1/2 for
small n but transitions to n−1 when n becomes large. This is not surprising since, when n is small,
it is difficult to know whether the Zi’s are drawn from N(0, 1) or drawn from truncated Gaussian
with a large truncation level.

Convergence rate for different τ : In Figure 4(b), we take the location model Yi = θ0+Zi and
take Zi to be either Gaussian N(0, 1) or uniform Unif[−M,M ] where M > 0 is chosen so that Zi

has unit variance. We then apply our proposed CAVS procedure for different levels of τ , ranging
from τ ∈ {1, 2, 4}. We let the sample size vary from n = 400 to n = 6400 and plot the log-error
versus the sample size n, where n is plotted on a logarithmic scale. For comparison, we also plot the
error of the sample mean Ȳ , which does not depend on the distribution of Zi since we scale Zi to
have unit variance in both settings. We observe in Figure 4(b) that when τ = 1, the CAVS estimate
θ̂γ̂ basically coincides with the sample mean if Zi ∼ N(0, 1) but has much less error when Zi is
uniform. As we increase τ , CAVS estimator has increased error under the Gaussian setting when
Zi ∼ N(0, 1) since we select γ̂ > 2 more often; under the uniform setting, it has less error. Based
on these studies, we recommend τ = 1 in practice as a conservative choice.

S2.2. Real data experiments

Uniform or truncated Gaussian data are not ubiquitous but they do appear in real world datasets. In
this section, we use the CAVS location estimation and regression procedure to analyze a dataset of
626 NBA players in the 2020–2021 season. We consider variables AGE, MPG (average minutes
played per game), and GP (games played).

Both MPG and GP variables are compactly supported. They also do not exhibit clear signs of
asymmetry; MPG has an empirical skewness of−0.064 and GP has an empirical skewness of 0.013.
We apply the CAVS procedure to both with τ = 1 and we obtain γ̂ = 32 for MPG variable and
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(a) Histogram of MPG (b) V̂ (γ) (c) θ̂γ ±
√

V̂ (γ)
n

Figure 5: Analysis on MPG (average minutes played per game) in the NBA 2021 data

γ̂ = 2048 for the GP variable. In contrast, the AGE variable has a skewness of 0.56 and when we
apply CAVS procedure (still with τ = 1), we obtain γ̂ = 2. These results suggest that CAVS can be
useful for practical data analysis.

Moreover, we also study the CAVS regression method by considering two regression models:

(MODEL 1) MPG ∼ GP + AGE + W, (MODEL 2) MPG ∼ AGE + W,

where W is an independent Gaussian feature add so that we can assess how close the estimated
coefficient β̂W is to zero to gauge the estimation error. We estimate β̂γ̂ on 100 randomly chosen
training data points and report the predictive error on the remaining test data points; we also report
the average value of |β̂W|, which we would like to be as close to 0 as possible. We perform 1000
trials of this experiment (choosing random training set in each trial) and report the performance of
CAVS versus OLS estimator in Table 1.

Model 1 Pred. Error Model 1 |β̂W| Model 2 Pred. Error Model 2 |β̂W|
CAVS 0.686 0.045 0.95 0.082
OLS 0.689 0.140 1.04 0.205

Table 1: Comparison of CAVS vs. OLS on two simple regression models.

Appendix S3. Supplementary material for Section 2

S3.1. Proof of Lemma 1

Proof (of Lemma 1)
First, we observe that if 4 logn

γ ≥ 1, then, by the fact that θ̂γ ∈ [X(1), X(n)], we have that

|θ̂γ −Xmid| ≤
1

2
(X(n) −X(1)) ≤ 2(X(n) −X(1))

log n

γ
.

Therefore, we assume that 4 logn
γ ≤ 1.
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(a) Histogram of GP (b) V̂ (γ) (c) θ̂γ ±
√

V̂ (γ)
n

Figure 6: Analysis on GP (games played) in the NBA 2021 data

We apply Lemma S3.4 with f(θ) =
{

1
n

∑n
i=1 |Xi − θ|γ

}1/γ and g(θ) = maxi |Xi − θ| so that
θg := argmin g(θ) = θ̂mid and θf := argmin f(θ) = θ̂γ . Fix any δ > 0. We observe that

g(θg) = max
i
|Xi −Xmid| =

X(n) −X(1)

2

g(θg + δ) =
X(n) −X(1)

2
+ δ, and g(θg − δ) =

X(n) −X(1)

2
+ δ.

Therefore, for θ ∈ {θg − δ, θg + δ}, we have that 1
2(g(θ)− g(θg)) =

δ
2 . On the other hand, by

the fact that {
1

n

n∑
i=1

|Xi − θ|γ
} 1

γ

≥ n−
1
γ max

i∈[n]
|Xi − θ|,

we have that

g(θ) ≥ f(θ) ≥ n−
1
γ g(θ) ∀θ ∈ R. (S3.1)

Therefore, for θ ∈ {θg − δ, θg, θg + δ}, we have that

|f(θ)− g(θ)| = g(θ)− f(θ) ≤ (1− n−
1
γ )g(θ)

≤ log n

γ

(
X(n) −X(1)

2
+ δ

)
.

Using our assumption that 4 logn
γ ≤ 1, we have that for any δ ≥ 2(X(n) − X(1))

logn
γ and any

θ ∈ {θg − δ, θg, θg + δ},

|f(θ)− g(θ)| ≤ log n

γ

(
X(n) −X(1)

2
+ δ

)
≤ δ

2
=

1

2
(g(θ)− g(θg)).

The Lemma thus immediately follows from Lemma S3.4.
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S3.2. Lemma S3.3 on the convergence of V̂ (γ)

The following lemma implies that, for a fixed γ such that V (γ) is well-defined, our asymptotic
variance estimator V̂ (γ) is consistent. For a random variable Y , we define its essential supremum
to be

ess-sup(Y ) := inf
{
M ∈ R : P(Y ≤M) = 1

}
,

where the infimum of an empty set is taken to be infinity. Note that ess-sup(|Y |) < ∞ if and only
if Y is compacted supported and that limγ→∞{E|Y |γ}

1
γ = ess-sup(|Y |).

We may define ess-inf(Y ) is the same way. For an infinite sequence Y1, Y2, . . . of indepen-
dent and identically distributed random variables, it is straightforward to show that Y(n),n :=

maxi∈[n] Yi
a.s.→ ess-sup(Y ) and Y(1),n := mini∈[n] Yi

a.s.→ ess-inf(Y ) regardless of whether the
essential supremum and infimum are finite or not.

Lemma S3.3 Let Y1, Y2, . . . be a sequence of independent and identically distributed random vari-
ables and let γ > 1. The following hold:

1. If E|Y |γ <∞, then minθ∈R
1
n

∑n
i=1 |Yi − θ|γ

a.s.→ minθ∈R E|Y − θ|γ .

2. If E|Y |γ =∞, then minθ∈R
1
n

∑n
i=1 |Yi − θ|γ

a.s.→ ∞.

3. If Y is compactly supported, then we have that minθ∈Rmaxi≤n |Yi−θ| = (Y(n),n−Y(1),n)/2
a.s.→

minθ ess-sup(|Y − θ|).

4. If ess-sup(|Y |) =∞, then minθ∈Rmaxi≤n |Yi − θ|
a.s.→ ∞.

As a direct consequence, for any γ > 1 such that E|Y |γ−2 < ∞, we have V̂ (γ)
a.s.→ V (γ), even

when V (γ) =∞.

Proof (of Lemma S3.3)
For the first claim, we apply Proposition S3.5 with g(y, θ) = |y − θ|γ and ψ(θ) = E|Y − θ|γ

and immediately obtain the desired conclusion.
We now prove the second claim by a truncation argument. Suppose E|Y |γ = ∞ so that

minθ E|Y − θ|γ =∞. Fix M > 0 arbitrarily. We claim there then exists τ > 0 such that

min
θ∈R

E
[
|Y − θ|γ1{|Y | ≤ τ}

]
> M.

To see this, for any τ > 0, define θτ = argminθ∈R E
[
|Y − θ|γ1{|Y | ≤ τ}

]
. The argmin

is well-defined since θ 7→ E
[
|Y − θ|γ1{|Y | ≤ τ}

]
is strongly convex and goes to infinity as

|θ| → ∞. If {θτ}∞τ=1 is bounded, then the claim follows because E|Y − θτ |γ1{|Y | ≤ τ} ≥
{(E|Y |γ1{|Y | ≤ τ})1/γ − θτ}γ . If {θτ}∞τ=1 is unbounded, then there exists a sub-sequence
τm such that limm→∞ θτm → ∞ say. For any a > 0 such that P(|Y | ≤ a) > 0, we have
limm→∞ E|Y − θτm |γ1{|Y | ≤ τm} ≥ limm→∞ |a − θτm |γP(|Y | ≤ a) = ∞. Therefore, in
either cases, our claim holds.

Using Proposition S3.5 again with g(x, θ) = |x− θ|γ1{|x| ≤ τ}, we have that

min
θ

1

n

n∑
i=1

|Yi − θ|γ1{|Yi| ≤ τ}
a.s.→ min

θ
E
[
|Y − θ|γ1{|Y | ≤ τ}

]
> M.
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In other words, there exists an event Ω̃M with probability 1 such that, for any ω ∈ Ω̃M , there exists
nω such that for all n ≥ nω,

min
θ

1

n

n∑
i=1

|Yi − θ|γ ≥ min
θ

1

n

n∑
i=1

|Yi − θ|γ1{|Yi| ≤ τ} ≥M/2.

Thus, on Ω̃M , we have that

lim inf
n→∞

min
θ

1

n

n∑
i=1

|Yi − θ|γ > M/2.

Thus, on the event Ω̃ = ∩∞M=1Ω̃M , we have that minθ
1
n

∑n
i=1 |Yi − θ|γ → ∞. Since Ω̃ has

probability 1, the second claim follows. For the third claim, without loss of generality, we can
assume that ess-sup(Y ) = 1 and ess-inf(Y ) = −1. Define Xn = (Y(n),n − Y(1),n)/2, then we have
Xn ≤ minθ ess-sup(|Y − θ|) = 1 and

P{Xn < 1− δ} ≤ P{Y(n),n < 1− δ}+ P{Y(1),n > −1 + δ},

where, as n → ∞, the right hand side tends to 0 for every δ > 0. Xn thus converges to 1 in
probability. Since the collection {Xn}∞n=1 is defined on the same infinite sequence {Y1, Y2, . . .} of
independent and identically distributed random variables, we have that 1 ≥ Xn ≥ Xn−1 ≥ 0 so
that Xn

a.s.→ 1 by the monotone convergence theorem.
For the forth claim, suppose without loss of generality that ess-inf(Y ) ≤ −1 and that ess-sup(Y ) =

∞. Let Xn = (Y(n),n − Y(1),n)/2 as with the proof of the third claim. Then,

P{Xn < M} ≤ P{Y(n),n < 2M}+ P{Y(1),n ≥ 0}.

Since the right hand side tends to 0 for every M > 0, we have that Xn converges to infinity almost
surely. The Lemma follows as desired.

S3.3. Bound on V

The following lower bound on V (γ) holds regardless of whether Y is symmetric around θ0 or not.
We have

V (γ) =
E|Y − θ0|2(γ−1)

(γ − 1)2{E|Y − θ0|γ−2}2

=
E|Y − θ0|2(γ−1)

{E|Y − θ0|γ−1}2

(
E|Y − θ0|γ−1

E|Y − θ0|γ−2

)2 1

(γ − 1)2

≥ E|Y − θ0|2(γ−1)

{E|Y − θ0|γ−1}2
{E|Y − θ0|γ−2}

2
γ−2

1

(γ − 1)2

≥ E|Y − θ0|2(γ−1)

{E|Y − θ0|γ−1}2
E|Y − θ0|2

1

(γ − 1)2
,

where the first inequality follows from the fact that E|Y − θ0|γ−1 ≥
(
E|Y − θ0|γ−2

) γ−1
γ−2 . In

particular, we have that V (γ) ≥ E|Y−θ0|2
(γ−1)2

. Equality is attained when Y − θ0 is a Rademacher
random variable.
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S3.4. Optimization algorithm

We give the Newton’s method algorithm for computing θ̂γ = argminθ∈R
1
n

∑n
i=1 |Yi − θ|γ . It is

important to note that to avoid numerical precision issues when γ is large, we have to transform the
input Y1, . . . , Yn so that they are supported on the unit interval [−1, 1].

Algorithm 2 Newton’s method for location estimation
Input: observations Y1, . . . , Yn ∈ R and γ ≥ 2.
Output: θ̂γ := minθ∈R

1
n

∑n
i=1 |Yi − θ|γ .

Compute S = (Y(n) − Y(1)) and M = (Y(n) + Y(1))/2 and transform Yi ← 2(Yi −M)/S.
Initialize θ(0) = 0.
for t = 1, 2, 3, . . . do

Compute f ′ = − 1
n

∑n
i=1 |Yi − θ(t−1)|γ−1sign(Yi − θ(t−1))

Compute f ′′ = γ−1
n

∑n
i=1 |Yi − θ(t−1)|γ−2.

Set θ(t) = θ(t−1) − f ′

f ′′ .
If |f ′| ≤ ε, break and output Sθ(t)/2 +M .

end

To compute θ̂γ for a collection of γ1 < γ2 < . . ., we can warm start our optimization of θ̂γ2 by
initializing with θ̂γ1 . In the regression setting where γ is large, we find that it improves numerical
stability to to apply a quasi-Newton’s method where we add a an identity εI to the Hessian for a
small ε > 0.

S3.5. Supporting Lemmas

Lemma S3.4 Let f, g : Rd → R and suppose f is convex. Let xg ∈ argmin g(x) and xf ∈
argmin f(x). Suppose there exists δ > 0 such that

|f(x)− g(x)| ∨ |f(xg)− g(xg)| <
1

2
(g(x)− g(xg)), for all x s.t. ∥x− xg∥ = δ.

Then, we have that
∥xf − xg∥ ≤ δ.

Proof
Let δ > 0 and suppose δ satisfies the condition of the Lemma. Fix x ∈ Rd such that ∥x −

xg∥ > δ. Define ξ = xg +
δ

∥x−xg∥(x − xg) so that ∥ξ − xg∥ = δ. Note by convexity of f that

f(ξ) ≤ (1− δ
∥x−xg∥)f(xg) +

δ
∥x−xg∥f(x).

Therefore, we have that

δ

∥x− xg∥
(f(x)− f(xg)) ≥ f(ξ)− f(xg)

= f(ξ)− g(ξ) + g(ξ)− g(xg) + g(xg)− f(xg) > 0

under the condition of the Theorem. Therefore, we have f(x) > f(xg) for any x such that ∥x −
xg∥ > δ. The conclusion of the Theorem follows as desired.
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S3.5.1. LLN FOR MINIMUM OF A CONVEX FUNCTION

Proposition S3.5 Suppose θ 7→ g(y, θ) is convex on R for all y ∈ Y . Define ψ(θ) := Eg(Y, θ)
and suppose ψ is finite on an open subset of R and lim|θ|→∞ ψ(θ) =∞.

Then, we have that

min
θ∈R

1

n

n∑
i=1

g(Yi, θ)
a.s.→ min

θ∈R
Eg(Y, θ),

and
sup

θ1∈Θn

min
θ2∈Θ0

|θ1 − θ2|
a.s.→ 0,

where Θn := argminθ∈R
1
n

∑n
i=1 g(Yi, θ) and Θ0 := argminθ∈R Eg(Y, θ)

Proof Define ψ̂n(θ) :=
1
n

∑n
i=1 g(Yi, θ) and observe that ψ̂n is a convex function on R. We also

observe that argminψ is a closed bounded interval on R and we define θ0 to be its midpoint.
Fix ϵ > 0 arbitrarily. We may then choose θL ∈ (−∞, θ0) and θR ∈ (θ0,∞) such that

1. ψ(θL) > ψ(θ0) and ψ(θR) > ψ(θ0),

2. (ψ(θL)− ψ(θ0)) ∨ (ψ(θR)− ψ(θ0)) ≤ ϵ,

3. θ0 − θL = θR − θ0,

4. and minθ∈Θ0 |θR − θ| ∨minθ∈Θ0 |θL − θ| < ϵ.

Define ϵ̃ := (ψ(θL) − ψ(θ0)) ∧ (ψ(θR) − ψ(θ0)) and note that 0 < ϵ̃ < ϵ by our choice of
θL and θR. By LLN, there exists an event Ω̃ϵ with probability 1 such that, for every ω ∈ Ω̃ϵ, there
exists nω ∈ N where for all n ≥ nω,

|ψ̂n(θL)− ψ(θL)| ∨ |ψ̂n(θR)− ψ(θR)| ∨ |ψ̂n(θ0)− ψ(θ0)| ≤ ϵ̃/3.

Fix any ω ∈ Ω̃ϵ and fix n ≥ nω, we have that ψ̂n(θL) ≥ ψ(θL)− ϵ̃/3 > ψ(θ0) and likewise for
ψ̂n(θR). Thus, ψ̂n must attain its minimum in the interval (θL, θR), i.e., supθ1∈Θn

minθ2∈Θ0 |θ1 −
θ2| < ϵ. We then have by Lemma S3.6 that

min
θ∈R

ψ̂(θ) = min
θ∈(θL,θR)

ψ̂n(θ)

≥ ψ̂n(θ0)− |ψ̂n(θ0)− ψ̂n(θR)| ∨ |ψ̂n(θ0)− ψ̂n(θL)|
≥ ψ(θ0)− ϵ̃− ϵ ≥ ψ(θ0)− 2ϵ.

On the other hand,
min
θ∈R

ψ̂n(θ) ≤ ψ̂n(θ0) ≤ ψ(θ0) + ϵ.

Therefore, for all ω ∈ Ω̃ϵ, we have that

lim sup
n→∞

∣∣min
θ∈R

ψ̂n(θ)− ψ(θ0)
∣∣ ≤ 2ϵ,

and
lim sup
n→∞

sup
θ1∈Θn

min
θ2∈Θ0

|θ1 − θ2| < ϵ.
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We then define Ω̃ := ∩∞k=1Ω̃1/k and observe that Ω̃ has probability 1 and that on Ω̃,

lim
n→∞

∣∣min
θ∈R

ψ̂n(θ)− ψ(θ0)
∣∣ = 0,

and

lim
n→∞

sup
θ1∈Θn

min
θ2∈Θ0

|θ1 − θ2| = 0.

The Proposition follows as desired.

Lemma S3.6 Let f : R → R be a convex function. For any x0 ∈ R, xL ∈ (−∞, x0) and
xR ∈ (x0,∞), we have

for all x ∈ (xL, x0), f(x) ≥ f(x0) + {f(xR)− f(x0)}
x− x0
xR − x0

for all x ∈ (x0, xR), f(x) ≥ f(x0) + {f(x0)− f(xL)}
x− x0
x0 − xL

.

As a direct consequence, if x0 − xL = xR − x0, then we have that for all x ∈ (xL, x0),

f(x) ≥ f(x0)− |f(x0)− f(xR)|

and that for all x ∈ (x0, xR),

f(x) ≥ f(x0)− |f(x0)− f(xL)|.

Proof Let x ∈ (xL, x0); using the fact that f ′(x0) ≤ f(xR)−f(x0)
xR−x0

, we have

f(x) ≥ f(x0) + f ′(x0)(x− x0)

≥ f(x0) + {f(xR)− f(x0)}
x− x0
xR − x0

.

Likewise, for x ∈ (x0, xR), we have f ′(x0) ≥ f(x0)−f(xL)
x0−xL

and hence,

f(x) ≥ f(x0) + f ′(x0)(x− x0)

≥ f(x0) + {f(x0)− f(xL)}
x− x0
x0 − xL

.
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Appendix S4. Supplementary material for Section 3

S4.1. Proof of Theorem 10

Structure of intermediate results: The proof is long and uses various intermediate technical re-
sults. The key intermediate theorems are (1) Theorem S4.7 which is essentially a corollary of Propo-
sition S4.8 and (2) Theorem S4.9 which follow from Proposition S4.10 as well as Theorem S4.7.

Notation for constants: For all the proofs in this section, we let C indicate a generic universal
constant whose value could change from instance to instance. We let C1, C2, C3, C4 be specific
universal constants where C1, C2 are defined in the proof of Proposition S4.8 and where C3, C4 are
defined in Theorem S4.9.

Proof (of Theorem 10)

We first prove the following: assume that n is large enough such that

τ ≥ C1

√
C4a

3/2
2

a
3/2
1

√
log log n, and that

{
1

C1α ∨ C2α ∨ C4

(c20a61
a32

α2
) n

log n

} 1
α

≥ eC1
a2
a1 ≥ 2, (S4.2)

where C1, C4 are universal constants and C1α, C2α are constants depending only on α – the value
of these are specified in Theorem S4.7 and Theorem S4.9.

We claim that

P
{
|θ̂γ̂ − θ0| ≤ Ca1,a2,α

(
log1+

1
α n

n
1
α

∨ log n

Mn

)}
≥ 1− 4

n
1
α

− exp(− 1

α
(τ ∧

√
log n)

√
log n).

(S4.3)

This immediately proves the first claim of the theorem. To see that the second claim of the theorem
also holds, note that if (S4.3) holds and if τ ≥

√
log n, then, by inflating the constant Ca1,a2,α if

necessary, we have that, for all n ∈ N,

E|θ̂γ̂ − θ0| ≤ Ca1,a2,α

(
log1+

1
α n

n
1
α

∨ log n

Mn

)
+

7

n1/α

≤ Ca1,a2,α

(
log1+

1
α n

n
1
α

∨ log n

Mn

)
,

where the first inequality uses the fact that |θ̂γ̂ − θ0| ≤ 1. The desired conclusion would then im-
mediately follow.

We thus prove (S4.3) under assumption (S4.2). To that end, let c0 = 2−8 and define γu ={
1

C1α∨C2α∨C4

( c20a61
a32
α2

)
n

logn

} 1
α and note that γu ≥ e

C1
a2
a1 ≥ 2 under assumption (S4.2).

Let C4 be a sufficiently large universal constant as defined in Theorem S4.9 and define the event

E1 :=
{

1

C4

a1
a22
γα−2 ≤ V̂ (γ) ≤ C4

a2
a21
γα−2, for all γ ∈ [2, (γu + 1)/2]

}
, (S4.4)
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It holds by Theorem S4.9 that P(E1) ≥ 1− 2n−
1
α .

Now define τ ′ = 1√
C4

√
a1
a2
τ and note that τ ′ ≥ C1

√
a2

a1

√
log log n under assumption (S4.2).

Define the event

E2 :=
{
|θ̂γ − θ0| ≤ τ ′

√
γα−2

n
, for all γ ∈ [2, γu]

}
. (S4.5)

Then we have by Theorem S4.7 that

P(Ec2) ≤ exp
{
− a21
C2a2

(τ ′ ∧
√

log n)

√
n

γαu

}
≤ exp

{
− 1

α

√
C4a2√
a1

(τ ′ ∧
√

log n)
√
log n

}
≤ exp

{
− 1

α
(τ ∧

√
log n)

√
log n

}
.

On the event E1 ∩ E2, we have that, for all γ ∈ [2, (γu + 1)/2],

|θ̂γ − θ0| ≤ τ ′
√
γα−2

n
≤ τ ′

√
C4

a2√
a1

√
V̂ (γ)

n
≤ τ

√
V̂ (γ)

n
.

Therefore, we have that

θ0 ∈
⋂

γ∈Nn, γ≤(γu+1)/2

[
θ̂γ − τ

√
V̂ (γ)

n
, θ̂γ + τ

√
V̂ (γ)

n

]
.

Since Nn contains {2k : k ≤ log2Mn}, either γu+1
2 ≥ Mn or there exists γ ∈ Nn such that

γ ≥ γu+1
4 . In either case, it holds by the definition of γmax that γmax ≥ γu+1

4 ∧ Mn. Write

γ̃ := γu+1
4 ∧Mn. For any γ < 1

C2
4

(
a1
a2

) 3
2−α γ̃, we have

V̂ (γ) ≥ 1

C4

a1
a22
γα−2 > C4

a2
a21
γ̃α−2 ≥ V̂ (γ̃).

Since γ̂ = argminγ∈Nn, γ≤γmax
V̂ (γ) and since 1

C2
4

(
a1
a2

) 3
2−α ≤ 1 so that there exists γ ∈ Nn such

that γmax ≥ γ ≥ 1
C2

4

(
a1
a2

) 3
2−α γ̃, it must be that

γ̂ ≥ 1

C2
4

(a1
a2

) 3
2−α γ̃ ≥ 1

C2
4

(a1
a2

) 3
2−α

(
γu + 1

2
∧Mn

)
≥ C̃−1

a1,a2,α

{(
n

log n

) 1
α

∧Mn

}
,

where we define C̃−1
a1,a2,α := 1

4C2
4

(
a1
a2

) 3
2−α

(
1

C1α∨C2α∨C4

c20a
4
1

a2
α2

) 1
α .

Now define E3 as the event that |θ̂mid − θ0| ≤ 22+
2
αa

− 1
α

1
1

α
1
α+1

log1+
1
α n

n
1
α

. We have by Corol-

lary S4.12 that P(E3) ≥ 1 − 2
n1/α . Therefore, on the event E1 ∩ E2 ∩ E3, we have by Lemma 1
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that

|θ̂γ̂ − θ0| ≤ |θ̂γ̂ − θ̂mid|+ |θ̂mid − θ0|

≤ 4
log n

γ̂
+ 22+

2
αa

− 1
α

1

1

α
1
α
+1

log1+
1
α n

n
1
α

≤ C̃a1,a2,α

{
log1+

1
α n

n
1
α

∨ log n

Mn

}
+ 22+

2
αa

− 1
α

1

1

α
1
α
+1

log1+
1
α n

n
1
α

≤ Ca1,a2,α

{
log1+

1
α n

n
1
α

∨ log n

Mn

}
,

where, in the final inequality, we define Ca1,a2,α := C̃a1,a2,α + 22+
2
αa

− 1
α

1
1

α
1
α+1

.

Since P(E1∩E2∩E3) ≥ 1− 4
n1/α −exp

(
− 1

α(τ ∧
√
log n)

√
log n

)
, the desired conclusion (S4.3)

follows. Hence, the Theorem follows as well.

Theorem S4.7 Let Z1, . . . , Zn be independent and identically distributed random variables on R
with a distribution P symmetric around 0 and write νγ := E|Z|γ . Suppose there exists α ∈ (0, 2)
and a1 ∈ (0, 1] and a2 ≥ 1 such that a1

γα ≤ νγ ≤ a2
γα for all γ ≥ 1.

Let C1, C2 > 0 be universal constants and C1α > 0 be a constant depending only on α, as
defined in Proposition S4.8. Let c0 ∈ (0, 2−8), let γαu = 1

C1α∨C2,α

( c20a61
a32
α2

)
n

logn , and let τ ′ ≥
C1

√
a2

a1

√
log log n.

Suppose n is large enough so that γu ≥ 2. Then, we have that

P
{

sup
γ∈[2,γu]

4γ

a1c0
|θ̂γ − θ0| ≥ 1

}
≤ n−

1
α . (S4.6)

Moreover, if n is large enough such that γu ≥ e
C1

a2
a1 ≥ 2 and that

√
log n ≥ C1

√
a2

a1

√
log log n.

Then, we also have

P
{

sup
γ∈[2,γu]

|θ̂γ − θ0|

τ ′
√

γα−2

n

≥ 1

}
≤ exp

{
− a21
C2a2

(
τ ′ ∧

√
log n

)√
n

γαu

}
(S4.7)

Proof
Since θ̂γ for any γ ≥ 2 is location equivariant, we assume without loss of generality that θ0 = 0

so that Yi = Zi.
Define τ̃ = τ ′ ∧

√
log n and note that C1

√
a2

a1

√
log logn ≤ τ̃ ≤

√
log n ≤ 1

4

√
n
γα
u

since a1 ≤ 1,

a2 ≥ 1, and c0 ≤ 2−8. We further note that with our definition of and assumptions, the conditions
in Proposition S4.8 (i) and (ii) are all satisfied.

Let {∆γ}γ≥2 be a collection of positive numbers. For any γ ≥ 2, we have by the second claim
of Lemma S5.16 that, for t ∈ {−∆γ ,∆γ},∣∣E[−sgn(Z − t)|Z − t|γ−1

]∣∣ ≥ a1
2
∆γγ

1−α. (S4.8)
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To prove the first claim of the theorem, we let ∆γ = a1c0
4 . We use Proposition S4.8 (noting that

the probability bound in (S4.9) is less than exp{− 1
α log n} under our definition of γu) and (S4.8) to

obtain that, with probability at least 1−n−
1
α , the following holds simultaneously for all γ ∈ [2, γu]:

1

n

n∑
i=1

{
−sgn(Yi −∆γ)|Yi −∆γ |γ

}
≥ 1

2
E
[
−sgn(Y −∆γ)|Y −∆γ |γ−1

]
> 0,

where, in the last inequality, we use the fact that the function θ 7→ E|Y − θ|γ is strongly convex for
all γ > 1 and minimized at θ = θ0 = 0.

Likewise, we have that

1

n

n∑
i=1

{
−sgn(Yi +∆γ)|Yi +∆γ |γ

}
≥ 1

2
E
[
−sgn(Y +∆γ)|Y +∆γ |γ−1

]
< 0.

By the strong convexity of the function θ 7→ 1
n

∑n
i=1 |Yi−θ|γ therefore, we have that |θ̂γ−θ0| =

|θ̂γ | ≤ ∆γ . The first claim thus follows as desired.

To prove the second claim, we let ∆γ = τ̃
√

γα

n and follow exactly the same argument. The
only difference is that the probability bound of Proposition S4.8 in this case becomes, under our
assumptions on τ̃ ,

exp

{
− a21
C2a2

(
τ̃2√

γα
u
n log log γu

∧ τ̃√
γα
u
n

}
≤ exp

{
− a21
C2a2

τ̃

√
n

γαu

}
.

The entire theorem then follows.

Proposition S4.8 Let Z1, . . . , Zn be independent and identically distributed random variables on
R with a distribution P symmetric around 0 and write νγ := E|Z|γ . Suppose there exists α ∈ (0, 2)
and a1 ∈ (0, 1] and a2 ≥ 1 such that a1

γα ≤ νγ ≤ a2
γα for all γ ≥ 1.

For γ ≥ 1 and x ∈ R, define ψγ(x) := −sgn(x)|x|γ−1. Let γu > 2 and let {∆γ}γ∈[2,γu] be a
collection of positive numbers; define the event

E ≡ Eγu,{∆γ},α :=

 sup
γ∈[2,γu]
|t|=∆γ

∣∣∣∣ 1
n

∑n
i=1 ψγ(Zi − t)− Eψγ(Z − t)

a1
2 ∆γγ1−α

∣∣∣∣ ≥ 1

2


Let C1, C2 > 0 be universal constants and C1α be a constant depending only on α (the values of
these are specified in the proof). Then, the following holds:

(i) Suppose ∆γγ = a1c0
4 for some c0 ∈ (0, 1) and suppose that γu ≥ 2 and

√
γα
u
n ≤

1
4

c0a1
C1

√
a2

,
then, we have that

P(Ec) ≤ exp

{
− c20a

4
1

C1αa2

(
n

γαu

)}
, (S4.9)
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(ii) Let τ̃ ≥ C1
√
a2

a1

√
log logn and suppose ∆γγ = τ̃

√
γα

n . Suppose also γu ≥ e
C1

a2
a1 and√

γα
u
n ≤

1
4τ̃ . Then, we have that

P(Ec) ≤ exp

{
− a21
C2a2

(
τ̃2√

γα
u
n log log γu

∧ τ̃√
γα
u
n

}
.

Proof
We define the function class

F ≡ Fγu,{∆γ},α :=

{
ψγ(z − t)
a1
2 ∆γγ1−α

: t ∈ {−∆γ ,∆γ}, γ ∈ [2, γu]

}
. (S4.10)

We now use Talagrand’s inequality (Theorem S5.18) to prove the Proposition. To this end, we
derive upper bounds on various quantities involved in Talagrand’s inequality.
Step 1: bounding supf∈F ∥f(Z)∥ess-sup and σ̃2 := supf∈F Ef(Z)2.

Using the fact ∆γ ≤ 1
4γ in both cases, we observe that for any γ ≥ 2, if |t| = ∆γ and |z| ≤ 1,

then |ψγ(z − t)| ≤ (1 + ∆γ)
γ−1 ≤ e. Therefore, we have that,

U := sup
γ∈[2,γu]

∣∣∣∣ 1
n

∑n
i=1 ψγ(Zi − t)
a1
2 ∆γγ1−α

∣∣∣∣ ≤ 2e

a1
sup

γ∈[2,γu]

γα

∆γγ
.

Thus, it follows that

U ≤


C

c0a21
γαu if ∆γγ = a1c0

4

C
a1

√
γα
un
τ̃ if ∆γγ = τ̃

√
γα

n

. (S4.11)

Next, we have that, writing σ̃2 := supf∈F Ef(Z)2,

σ̃2 ≤ 1

4a21
sup

γ∈[2,γu]
|t|=∆γ

γ2αE|Z − t|2(γ−1)

∆2
γγ

2

=
1

4a21
sup

γ∈[2,γu]

γ2αE|Z −∆γ |2(γ−1)

∆2
γγ

2

≤ Ca2
a21

sup
γ∈[2,γu]

γα

∆2
γγ

2
,

where the last inequality follows from Lemma S5.16.
Therefore, we have that

σ̃2 ≤


Ca2
c20a

4
1
γαu if ∆γγ = a1c0

4

Ca2
a21

n
τ̃2

if ∆γγ = τ̃
√

γα

n .
(S4.12)

When ∆γγ = τ̃
√

γα

n , we also see that

σ̃2 ≥ C

a1

1

4∆2
2

≥ C

a1

n

τ̃2
. (S4.13)
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Step 2: bounding the envelope function.

Define F (z) := supf∈F |f(z)|. Since, for any z ∈ R,

sup
γ∈[2,γu],|t|=∆γ

|ψγ(z − t)| = |(|z|+∆γ)
γ−1|,

we have that

F (z) =
4

a1
sup

γ∈[2,γu]

γα|(|z|+∆γ)
γ−1|

∆γγ
. (S4.14)

Using the fact that the distribution of Z is symmetric around 0, and defining K := ⌈log2 γu⌉,

EF 2(Z) =
16

a21

∫ 1

0
sup

γ∈[2,γu]

γ2α(z +∆γ)
2(γ−1)

∆2
γγ

2
dP (z)

= ≤16

a21

K∑
k=1

∫ 1

0
sup

γ∈[2k,2k+1]

γ2α(z +∆γ)
2(γ−1)

∆2
γγ

2
dP (z) (S4.15)

Case 1: suppose ∆γγ = a1c0
4 . In this case, we have that

EF 2(Z) =
16

c20a
4
1

K∑
k=1

∫ 1

0
sup

γ∈[2k,2k+1]

γ2α(z +∆γ)
2(γ−1) dP (z)

≤ C

c20a
4
1

K∑
k=1

22kα
∫ 1

0
sup

γ∈[2k,2k+1]

(z +∆γ)
2(γ−1) dP (z)

≤ C

c20a
4
1

K∑
k=1

22kα · a22−kα

≤ Cαa2
c20a

4
1

γαu ,

where the second inequality follows from the third claim of Lemma S5.16.

Case 2: suppose ∆γγ = τ̃
√

γα

n . In this case,

EF 2(Z) =
C

a21

n

τ̃2

K∑
k=1

∫ 1

0
sup

γ∈[2k,2k+1]

γα(z +∆γ)
2(γ−1) dP (z)

≤ C

a21

n

τ̃2

K∑
k=1

2kα
∫ 1

0
sup

γ∈[2k,2k+1]

(z +∆γ)
2(γ−1) dP (z)

≤ C

a21

n

τ̃2

K∑
k=1

2kα · Ca22−kα ≤ Ca2
a21

n

τ̃2
log γu, (S4.16)

where, in the second inequality, we use Lemma S5.16 again.
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Step 3: bounding the VC-dimension of F .

We first note that the class of univariate functions G :=
{ | · |γ−1

∆γγ
: γ ≥ 2

}
has VC dimension at

most 4. This holds because log G consists of functions of the form

(γ − 1) log | · |+ log(∆γγ)

and thus lies in a subspace of dimension 2. It then follows from Lemma 2.6.15 and 2.6.18 (viii) of
Van Der Vaart and Wellner (1996) that G has VC-dimension at most 4.

It then follows from Lemma 2.6.18 (vi) that F has VC-dimension at most 8.

Step 4: bounding the expected supremum.

Let us define

S̃n := sup
γ∈[2,γu]
|t|=∆γ

∣∣∣∣ 1n
n∑

i=1

ψγ(Zi − t)− Eψγ(Z − t)
a1
2 ∆γγ1−α

∣∣∣∣. (S4.17)

Case 1: suppose ∆γγ = a1c0
4 . Then, using the second claim of Theorem S5.21, we have that

ES̃n ≤
Cα
√
a2

c0a21

√
γαu
n
. (S4.18)

Case 2: suppose now that ∆γγ = τ̃
√

γα

n .
We first note that, by (S4.13) and (S4.16),

σ̃

∥F∥L2(P )
≥ Ca1

a2

1√
log γu

. (S4.19)

Define the entropy integral J(δ) as (S5.29) and note that 1
δJ(δ) is decreasing for δ ∈ (0, 1]. By

Corollary S5.20 and our bound on the VC-dimension of F , we have that

∥F∥L2(P )

σ̃
J

(
σ̃

∥F∥L2(P )

)
≤

√
1 ∨ log

(
a2
Ca1

√
log γu

)
≤

√
log log γu + log

(a2
a1

)
+ C.

Therefore, using our upper and lower bounds on σ̃, upper bound on U and upper bound on
∥F∥L2(P ), we have, by the first claim of Theorem S5.21, that

ES̃n ≤ C
σ̃√
n

(√
log log γu + log

(a2
a1

)
+ C

)(
1 +

U√
nσ̃

√
log log γu + log

(a2
a1

)
+ C

)
≤
C
√
a2

a1

1

τ̃

√
log log γu + log

(a2
a1

)
+ C ≤

C
√
a2

a1

1

τ̃

√
log log γu.

where, in the second inequality, we used the fact that U√
nσ̃
≤ C

√
γα
u
n ≤ C, and in the last inequality,

we used the hypothesis that γu ≥ e
C1

a2
a1 (with C1 as a sufficiently large universal constant).
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Step 5: bounding the tail probability.

Using our assumption that C1
√
a2

c0a21

√
γα
u
n ≤

1
4 and τ̃ ≥ C1

√
a2

a1

√
log logn (withC1 as a sufficiently

large universal constant), we have that ES̃n ≤ 1
4 in both the case where ∆γγ = a1c0

4 and the case

where ∆γγ = τ̃
√

γα

n .
Case 1: when ∆γγ = a1c0

4 , we have that, writing t = 3/4,

P(Ec) ≤ P(S̃n − ES̃n ≥
3

4
)

≤ exp

{
− nt2

UES̃n + σ̃2
∧ nt

2
3U

}
≤ exp

{
− c20a

4
1

Cαa2

((
n

γαu

)3/2

∧ n

γαu

)}
.

Case 2: when ∆γγ = τ̃
√

γα

n , we have

P(Ec) ≤ P(S̃n − ES̃n ≥
3

4
)

≤ exp

{
− nt2

UES̃n + σ̃2
∧ nt

2
3U

}
≤ exp

{
− a21
Ca2

(
τ̃2√

γα
u
n

√
log log γu

∧ τ̃√
γα
u
n

)}
.

Theorem S4.9 Let Z1, . . . , Zn be independent and identically distributed random variables on R
with a distribution P symmetric around 0 and write νγ := E|Z|γ . Suppose there exists α ∈ (0, 2)
and a1 ∈ (0, 1] and a2 ≥ 1 such that a1

γα ≤ νγ ≤ a2
γα for all γ ≥ 1.

Let c0 ∈ (0, 2−8] and let C1α, C2α > 0 be constants depending only on α defined in The-
orem S4.7 and Proposition S4.10. Define γαu = 1

C1α∨C2α

( c20a61
a32
α2

)
n

logn and suppose n is large

enough so that γu ≥ 2. Then, with probability at least 1 − 2n−
1
α , there exists a constant C3 ≤ 2

such that
C3V (γ) ≥ V̂ (γ) ≥ 1

C3
V (γ), for all γ ∈ [2, (γu + 1)/2].

Moreover, on the same event, there exists a universal constant C4 ≥ 1 such that

C4
a2
a21
γα−2 ≥ V̂ (γ) ≥ 1

C4

a1
a22
γα−2, for all γ ∈ [2, (γu + 1)/2].

We note that, in Theorem S4.9, by choosing c0 arbitrarily close to 0, we can have C3 be arbi-
trarily close to 1.
Proof
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By Theorem S4.7, with probability at least 1 − n−
1
α , we have that, simultaneously for all γ ∈

[2, γu],
|θ̂γ − θ0| ≤

a1c0
4γ

.

On this event, we have that

ν̂γ := inf
θ∈R

1

n

n∑
i=1

|Yi − θ|γ = inf
|θ−θ0|≤a1c0

4

1

n

n∑
i=1

|Yi − θ|γ .

Then, by Proposition S4.10, with probability at least 1−n−
1
α , simultaneously for all γ ∈ [2, γu],

1− 3
√
c0 ≤

ν̂γ
νγ
≤ 1 + 3

√
c0.

Therefore,

V̂ (γ) =
ν̂2(γ−1)

(γ − 1)2ν̂2γ−2

≥
1− 3

√
c0

(1 + 3
√
c0)2

ν2(γ−1)

(γ − 1)2ν2γ−2

=
1− 3

√
c0

(1 + 3
√
c0)2

V (γ).

Likewise, we have that V̂ (γ) ≤ 1+3
√
c0

(1−3
√
c0)2

V (γ). Using our assumption that c0 ≤ 2−8, the first
claim of the theorem directly follows.

The second claim of the theorem follows then from Lemma S5.15.

Proposition S4.10 Let Z1, . . . , Zn be independent and identically distributed random variables on
R with a distribution P symmetric around 0 and write νγ := E|Z|γ . Suppose there exists α ∈ (0, 2)
and a1 ∈ (0, 1] and a2 ≥ 1 such that a1

γα ≤ νγ ≤ a2
γα for all γ ≥ 1.

Let γu ≥ 2 and c0 ∈ (0, 1). Define the event

Aγu,c0 :=

{
sup

γ∈[2,γu]

∣∣∣∣ inf |θ−θ0|≤a1c0
4γ

1
n

∑n
i=1 |Yi − θ|γ − νγ

νγ

∣∣∣∣ ≤ 3
√
c0

}
. (S4.20)

Let C2α > 0 be a constant depending only on α (its value is specified in the proof). Suppose
γα
u
n ≤ c

2
0

a21
C2αa2

. Then, we have that

P(Ac
γu,c0) ≤ exp

{
− a21
C2αa2

c20

(
n

γαu

)}
.

Proof
First, we claim that, for all γ ≥ 1, z ∈ R, t ≥ 0, and κ > 0, it holds that

|z − t|γ ≥ (|z| − t)γ+ = |z|γ
(
1− t

|z|

)γ

+

= |z|γ
(
1− t

κ

κ

|z|

)γ

+

≥ |z|γ
(
1− t

κ

)γ

+

− κγ

≥ |z|γ
(
1− γ t

κ

)
− κγ . (S4.21)
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Now define ∆γ = a1c0
4γ and θ̃ := argmin|θ−θ0|≤∆γ

1
n

∑n
i=1 |Yi − θ|γ and observe that t̃ :=

θ̃ − θ0 = argmin|t|≤∆γ

1
n

∑n
i=1 |Zi − t|γ . Suppose without loss of generality that t̃ ≥ 0. Then,

using (S4.21), we have that, for any κ > 0,

inf
|θ−θ0|≤∆γ

1

n

n∑
i=1

|Yi − θ|γ =
1

n

n∑
i=1

|Zi − t̃|γ

≥
(
1− γ∆γ

κ

)(
1

n

n∑
i=1

|Zi|γ
)
− κγ .

We also trivially have that inf |θ−θ0|≤∆γ

1
n

∑n
i=1 |Yi − θ|γ ≤

1
n

∑n
i=1 |Zi|γ . Therefore, writing

En|z|γ := 1
n

∑n
i=1 |Zi|γ and En|y − θ|γ := 1

n

∑n
i=1 |Yi − θ|γ , we have that, for any κ > 0,

En|z|γ − νγ
νγ

≥
min|θ−θ0|≤∆γ

En|y − θ|γ − νγ
νγ

≥
(
1− γ∆γ

κ

)
En|z|γ − νγ − κγ

νγ
. (S4.22)

Therefore, we have that∣∣∣∣min|θ−θ0|≤∆γ
En|y − θ|γ − νγ
νγ

∣∣∣∣ ≤ ∣∣∣∣En|z|γ − νγ
νγ

∣∣∣∣︸ ︷︷ ︸
Term 1

+ inf
κ>0

(
γ∆γ

κ
+
κγ

νγ

)
︸ ︷︷ ︸

Term 2

. (S4.23)

Bounding Term 2:

Since ∆γγ = a1c0
4 , by setting κ =

(a21c0
4γα

) 1
γ+1 , we have

Term 2 ≤ inf
κ>0

(
a1c0
4κ

+
κγ

a1γα

)
≤ a1c0

4

(
4

a21c0

) 1
γ+1

γ
α

γ+1 ≤ 2
√
c0.

Bounding Term 1:

To bound Term 1, we define the function class

Fγu :=

{
z 7→ |z|

γ

νγ
: γ ∈ [2, γu]

}
,

so that we have supγ∈[2,γu]
∣∣En|z|γ−νγ

νγ

∣∣ = supf∈Fγu

∣∣Enf(z)− Ef(Z)
∣∣.

We observe that

σ̃2 := sup
γ∈[2,γu]

E
|Z|γ

νγ
≤ a2
a1

U := sup
γ∈[2,γu]

∥Z∥γess-inf
νγ

≤ 1

a1
γαu .
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Moreover, defining F (z) := supγ∈[2,γu]
|z|γ
νγ

and K = ⌈log γu⌉, we have that

EF 2(Z) ≤ E
(

sup
γ∈[2,γu]

|Z|2γ

ν2γ

)
(S4.24)

≤ 1

a21

K∑
k=1

∫ 1

0
sup

γ∈[2k,2k+1]

γ2α|z|γ dP (z) (S4.25)

≤ 1

a21

K∑
k=1

22kα+1ν2k ≤
a2
a21

K∑
k=1

2kα+1 ≤ Cα
a2
a21
γαu . (S4.26)

We note that logFγu is a subset of a linear subspace of dimension 2 (see Step 3 in the proof
of Proposition S4.8). By Lemma 2.6.15 and 2.6.18 (viii) of Van Der Vaart and Wellner (1996), we
know that the VC dimension of Fγu is at most 4.

Write S̃n = supγ∈[2,γu]
∣∣ 1
n

∑n
i=1 |Zi|γ − νγ

}
. Then, by Corollary S5.20 and the second claim

of Theorem S5.21, we have that

ES̃n ≤
Cα
√
a2

a1

√
γαu
n
.

Therefore, using our hypothesis that γα
u
n ≤ c

2
0

a21
C2αa2

where C2α is chosen to be sufficiently large,

then ES̃n ≤ 1
2a0. Then,

P
{

sup
γ∈[2,γu]

∣∣∣∣ 1
n

∑n
i=1 |Zi|γ − νγ

νγ

∣∣∣∣ ≥ c0} ≤ P
(
S̃n − ES̃n ≥

c0
2

)

≤ exp

{
− a21
Cαa2

(
c20

(
n

γαu

)3/2

∧ c0n
γαu

)}
.

Therefore, by (S4.23), it holds that

P
{

sup
γ∈[2,γu]

∣∣∣∣ inf |θ−θ0|≤∆γ

1
n

∑n
i=1 |Yi − θ|γ − νγ
νγ

∣∣∣∣ ≥ 3
√
c0

}

≤ exp

{
− a21
Cαa2

(
c20

(
n

γαu

)3/2

∧ c0
n

γαu

)}
.

By inflating the value of C2α if necessary, the Proposition follows as desired.

Lemma S4.11 Let X be a random variable on [−1, 1] with a distribution P symmetric around 0.
If there exists a1 > 0 and α ≥ 0 such that E|X|γ ≥ a1

γα for all γ ≥ 1, then we have that

P
(
X ≥ 1− 21+

2
αa

− 1
α

1

1

α
1
α
+1

log1+
1
α n

n
1
α

)
≥ α−1 log n

n
.
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Proof
As a short-hand, write δ := 21+2/αa

−1/α
1

1

α
1
α+1

log1+1/α n
n1/α and p =

(
α a1n

4 logn

)1/α; note that δp =

2α−1 log n. Then,

P(X ≥ 1− δ) =
∫ 1

1−δ
dP (x) ≥

∫ 1

1−δ
xpdP (x)

=
1

2
E|X|p −

∫ 1−δ

0
xpdP (x)

≥ a1
2pα
− (1− δ)p ≥ a1

2pα
− e−δp

= 2
1

α

log n

n
− 1

α

1

n2
≥ 1

α

log n

n
.

Corollary S4.12 Let X1, . . . , Xn be independent and identically distributed random variables on
[−1, 1] with a distribution P symmetric around 0 and let Xmid =

X(n)+X(1)

2 . If there exists a1 > 0
and α ≥ 0 such that E|X|γ ≥ a1

γα for all γ ∈ N, then we have that

P
(
|Xmid| ≤ 22+

2
αa

− 1
α

1

1

α
1
α
+1

log1+
1
α n

n
1
α

)
≥ 1− 2

n1/α
.

Proof
As a short-hand, write δ = 21+

2
αa

− 1
α

1
1

α
1
α+1

log1+
1
α n

n
1
α

. By the fact that P is symmetric around 0

and Lemma S4.11, we have

P(|Xmid| ≥ 2δ) ≤ P(X(n) ≤ 1− δ or X(1) ≥ −1 + δ)

≤ 2P(X(n) ≤ 1− δ)
≤ 2

{
P(X1 ≤ 1− δ)

}n

≤ 2

(
1− 1

α

log n

n

)n

≤ 2e−
1
α
logn ≤ 2

n1/α
.

The desired conclusion thus follows.

S4.2. Proof of Examples

Proof (of Proposition 15)
It suffices to show that there exists constants C ′′

α,1, C
′′
α,2 > 0 such that

C ′′
α,1

γα
≤

∫ 1

−1
|x|γ(1− |x|)α−1dx ≤

C ′′
α,2

γα
.
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Indeed, we have by Stirling’s approximation that∫ 1

−1
|x|γ(1− |x|)α−1dx = 2

∫ 1

0
xγ(1− x)α−1dx

= 2
Γ(α)Γ(γ + 1)

Γ(γ + α+ 1)

≍ 2Γ(α)

(
γ

e

)γ(γ + α

e

)−(γ+α)( γ

γ + α

)1/2

= 2Γ(α)

(
γ

γ + α

)γ+1/2

eα
(

γ

γ + α

)α

γ−α.

The conclusion of the Proposition then directly follows from the fact that 1 ≥ ( γ
γ+α)

γ+1/2 ≥
e−3 for all γ ≥ 2.

For a given density p(·), we define

H2(θ1, θ2) :=
1

2

∫
R

(
p(x− θ1)1/2 − p(x− θ2)1/2

)2
dx

for any θ1, θ2 ∈ R.

Proposition S4.13 Let α ∈ (0, 2) and suppose X is a random variable with density p(·) satisfying

Cα,1(1− |x|)α−1
+ ≤ p(x) ≤ Cα,2(1− |x|)α−1

+

for Cα,1, Cα,2 > 0 dependent only on α. Suppose also that
∣∣p′(x)
p(x)

∣∣ ≤ C
1−|x| for some C > 0.

Suppose p(·) is symmetric around 0. Then, there exist C ′
α,1, C

′
α,2 dependent only on α and C

such that
C ′
α,1|θ1 − θ2|α ≤ H2(θ1, θ2) ≤ C ′

α,2|θ1 − θ2|α

for all θ1, θ2 ∈ R.

Proof Since H2(θ1, θ2) = H2(0, θ1 − θ2), it suffices to bound H2(0, θ) for θ ≥ 0.
For the lower bound, we observe that

H2(0, θ) =

∫ 1+θ

−1

{
p(x)1/2 − p(x− θ)1/2

}2
dx

≥
∫ 1+θ

1
p(x− θ)dx =

∫ 1

1−θ
f(t)dt

≥ Cα,1

∫ 1

1−θ
(1− t)α−1dt

= Cα,1

[
−(1− t)α

α

]1
1−θ

=
Cα,1

α
θα.
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To establish the upper bound, observe that, by symmetry of p(·),

H2(0, θ) = 2

∫ 1+θ

θ/2

{
p(x)1/2 − p(x− θ)1/2

}2
dx

= 2

∫ 1+θ

1−θ

{
p(x)1/2 − p(x− θ)1/2

}2
dx+ 2

∫ 1−θ

θ/2

{
p(x)1/2 − p(x− θ)1/2

}2
dx.

(S4.27)

We upper bound the two terms of (S4.27) separately. To bound the first term,∫ 1+θ

1−θ

{
p(x)1/2 − p(x− θ)1/2

}2
dx

≤
∫ 1+θ

1
p(x− θ)dx+

∫ 1

1−θ
p(x) ∨ p(x− θ)dx

≤ Cα,2

α
θα + Cα,2

∫ 1

1−θ

{
(1− x)α−1 ∨ (1− (x− θ))α−1

}
dx

If α ≥ 1, then (1− x)α−1 ∨ (1− (x− θ))α−1 = (1− (x− θ))α−1 and∫ 1

1−θ
(1− (x− θ))α−1dx =

∫ 1−θ

1−2θ
(1− x)α−1dx = (2α − 1)

θα

α
≥ θα

α
.

On the other hand, if α < 1, then (1 − x)α−1 ∨ (1 − (x − θ))α−1 = (1 − x)α−1 and
∫ 1
1−θ(1 −

x)α−1dx = θα

α . Hence, we have that∫ 1+θ

1−θ

{
p(x)1/2 − p(x− θ)1/2

}2
dx ≤ 2Cα,2

α
θα.

We now turn to the second term of (S4.27). Write ϕ(x) = log p(x) and note that ϕ′(x) = p′(x)
p(x) .

Then, by mean value theorem, there exists θx ∈ (0, θ) depending on x such that

2

∫ 1−θ

θ/2

{
p(x)1/2 − p(x− θ)1/2

}2
dx = 2

∫ 1−θ

θ/2

θ2

4
ϕ′(x− θx)2eϕ(x−θx)dx

≤ CCα,2

2
θ2

∫ 1−θ

θ/2

(
1

1− |x− θx|

)2

(1− |x− θx|)α−1dx

=
CCα,2

2
θ2

∫ 1−θ

θ/2
(1− |x− θx|)α−3dx

≤ CCα,2

2
θ2

∫ 1−θ

0
(1− x)α−3dx

=
CCα,2

2
θ2
θα−2

2− α
=

CCα,2

2(2− α)
θα,

where the second inequality follows because α − 3 < 0. The desired conclusion immediately
follows.
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Remark S4.14 We observe that if a density p is of the form

p(x) = Cα(1− |x|)α−1
1{|x| ≤ 1},

for a normalization constant Cα > 0, then p′(x)
p(x) ≲ 1

1+|x| as required in Proposition S4.13. There-
fore, we immediately see that for such a density, it holds that H2(θ1, θ2) ∝α |θ1 − θ2|α.

S4.3. Proof of Proposition S1.1

Proof
We first note that if Y = θ0+Z where Z has a density p(·) symmetric around 0, then, for γ > 0,

L(γ) =
1

γ
log

(
E|Z|γ

)
+

1 + log γ

γ
+ log Γ

(
1 +

1

γ

)
.

To prove the first claim, suppose that Z is supported on all of R. We observe that

lim
γ→∞

L(γ) = log

(
lim
γ→∞

{
E|Z|γ

} 1
γ

)
.

We thus need only show that limγ→∞
{
E|Z|γ

} 1
γ =∞. LetM > 0 be arbitrary, then, for any γ > 0,

{E|Z|γ}
1
γ ≥ {E

[
|Z|γ1{|Z| ≥M}

]
}

1
γ

≥M · P(|Z| ≥M)
1
γ .

Since P(|Z| ≥ M) > 0 for all M > 0 by assumption, we see that limγ→∞{E|Z|γ}
1
γ ≥ M . Since

M is arbitrary, the claim follows.
Now consider the second claim of the Proposition and assume that ∥Z∥∞ = 1; write g(·) as the

density of |Z|. Writing η = 1
γ , we have that

L(1/η) = η log
(
E|Z|

1
η
)
+ η(1− log η) + log Γ(1 + η).

Differentiating with respect to η, we have

dL(1/η)

dη
= log

E|Z|
1
η

η
− E{|Z|

1
η log |Z|}

ηE|Z|
1
η

+
Γ′(1 + η)

Γ(1 + η)

= log

∫ 1
0 u

1
η g(u)du

η
−

∫ 1
0 u

1
η log(u)g(u)du

η
∫ 1
0 u

1
η g(u)du

+
Γ′(1 + η)

Γ(1 + η)
.

We make a change of variable by letting t = − 1
η log u to obtain

dL(1/η)

dη
= log

∫∞
0 e−tg(e−ηt)e−ηtηdt

η
−

∫∞
0 e−t(−ηt)g(e−ηt)e−ηtηdt

η
∫∞
0 e−tg(e−ηt)e−ηtηdt

+
Γ′(1 + η)

Γ(1 + η)

= log

{∫ ∞

0
e−tg(e−ηt)e−ηtdt

}
+

∫∞
0 te−tg(e−ηt)e−ηtdt∫∞
0 e−tg(e−ηt)e−ηtdt

+
Γ′(1 + η)

Γ(1 + η)
.
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Therefore, using the fact that limη→0
Γ′(1+η)
Γ(1+η) = −γE, we have that

lim
η→0

dL(1/η)

dη
= log

{
g(1)

∫ ∞

0
e−tdt

}
+

∫∞
0 te−tdt∫∞
0 e−tdt

− γE

= log g(1) + 1− γE.

Therefore, if g(1) > eγE−1, then limη→0
dL(1/η)

dη > 0 and hence, η = 0 is a local minimum of

L(1/η). On the other hand, if g(1) < eγE−1, then limη→0
dL(1/η)

dη < 0 and η = 0 is not a local
minimum. The Proposition follows as desired.

Appendix S5. Other material

S5.1. Technical Lemmas

Lemma S5.15 Let Z be a random variable supported on [−1, 1]. For γ ≥ 1, define νγ := E|Z|γ
and suppose there exists α ∈ (0, 2], a1 ∈ (0, 1], and a2 ∈ [1,∞) such that a1γ−α ≤ νγ ≤ a2γ

−α

for all γ ≥ 1.
Define V (γ) := E|Z|2(γ−1)

(γ−1)2{E|Z|γ−2}2 . Then, for some universal constant C ≥ 1, for all γ ≥ 2,

C
a2
a21
γα−2 ≥ V (γ) ≥ 1

C

a1
a22
γα−2.

Proof First suppose γ ∈ [2, 3]. Then we have that

a1 ≤ E|Z| ≤ E|Z|γ−2 ≤ {E|Z|}γ−2 ≤ a2,

where the second inequality follows because |Z| ≤ 1, the third inequality follows from Jensen’s
inequality. Therefore, we have that

V (γ) ≥ a1{2(γ − 1)}−α

(γ − 1)2a22
≥ 1

4α+13α−2

a1
a22
γα−2.

The upper bound on V (γ) follows similarly.
Now suppose γ ≥ 3, then,

V (γ) =
ν2(γ−1)

(γ − 1)2ν2γ−2

≥ a1{2(γ − 1)}−α

(γ − 1)2a22(γ − 2)−2α

=
a1
a22

2−α

(
γ − 2

γ − 1

)α(γ − 2

γ

)α( γ

γ − 1

)2

γα−2 ≥ 1

C

a1
a22
γα−2.

The upper bound on V (γ) follows in an identical manner. The conclusion of the Lemma then
follows as desired.
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Lemma S5.16 Let Z be a random variable on [−1, 1] with a distribution symmetric around 0 and
write νγ := E|Z|γ for γ ≥ 1. Suppose a1γ−α ≤ νγ ≤ a2γ−α for all γ ≥ 1 and for some α ∈ (0, 2],
a1 ∈ [0, 1] and a2 ∈ [1,∞). Then, for any γ ≥ 1 and any 0 ≤ ∆ ≤ 1

4γ , we have

E|Z −∆|γ ≤ Ca2γ−α.

Moreover, we have that for any γ ≥ 2 and any ∆ ∈ R,

E
[
−|Z −∆|γ−1sgn(Z −∆)

]
≥ a1

2
|∆|γ1−α.

Lastly, for any k ∈ N and any ∆γ (allowed to depend on γ) such that 0 ≤ ∆γ ≤ 1
4γ , we have

E
[

sup
γ∈[2k,2k+1]

(|Z|+∆γ)
2(γ−1)

]
≤ Ca22−kα.

Proof Consider the first claim. Observe that

E|Z −∆|γ = E
[
|Z −∆|γ1{|Z| ≤ 1/4}

]
︸ ︷︷ ︸

Term 1

+E
[
|Z −∆|γ1{|Z| > 1/4}

]
︸ ︷︷ ︸

Term 2

.

To bound Term 1, we have that

|Z −∆|γ1{|Z| ≤ 1/4} ≤ 2−γ ≤ 2γ−α,

where, in the last inequality, we use the fact that α ∈ (0, 2] and that 2−x ≤ 2x−2 for all x ≥ 1. It is
clear then that Term 1 is bounded by 2γ−α. To bound Term 2, we have that

|Z −∆|γ1{|Z| > 1/4} = |Z|γ
∣∣∣∣1− ∆

Z

∣∣∣∣γ1{|Z| > 1/4}

≤ |Z|γ
∣∣∣∣1 + 1

γ

∣∣∣∣γ1{|Z| > 1/4} ≤ e|Z|γ ,

where in the second inequality, we use the fact that ∆ ≤ 1
4γ . Therefore, we have that

E
[
|Z −∆|γ1{|Z| < 1/4}

]
≤ eE|Z|γ ≤ Ca2γ−α.

Combining the bounds on the two terms, we have that E|Z −∆|γ ≤ Ca2γ−α as desired.
We now turn to the second claim. Without loss of generality, assume that ∆ ≥ 0 so that, by

symmetry of the distribution of Z, we have E
[
−|Z −∆|γ−1sgn(Z −∆)

]
≥ 0.

Since E
[
−|Z|γ−1sgn(Z)

]
= 0,

E
[
−|Z −∆|γ−1sgn(Z −∆)

]
=

∫ ∆

0
(γ − 1)E

[
|Z − t|γ−2

]
dt

≥ |∆|(γ − 1)E
[
|Z|γ−2

]
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For γ ∈ [2, 3), it holds that E
[
|Z|γ−2

]
≥ E|Z| ≥ a1 since Z is supported on [−1, 1]. For γ ≥ 3,

it holds that E
[
|Z|γ−2

]
= νγ−2 ≥ a1(γ − 2)−α. Therefore, we have that

E
[
−|Z −∆|γ−1sgn(Z −∆)

]
≥

{
a1|∆|(γ − 1) if γ ∈ [2, 3),
a1|∆|(γ − 1)(γ − 2)−α else.

Thus, for all γ ≥ 2, we have that

E
[
−|Z −∆|γ−1sgn(Z −∆)

]
≥ a1

2
|∆|γ1−α.

Finally, we consider the third claim. The argument is similar to that of the first claim. We
observe that

E
[

sup
γ∈[2k,2k+1]

(|Z|+∆γ)
2(γ−1)

]
=

∫ 1
4

0
sup

γ∈[2k,2k+1]

(z +∆γ)
2(γ−1) dP (z)

+

∫ 1

1
4

sup
γ∈[2k,2k+1]

(z +∆γ)
2(γ−1) dP (z). (S5.28)

To bound the first term of (S5.28), we use the fact that ∆γ ≤ 1
4γ ≤

1
4 and that α ∈ (0, 2] to

obtain ∫ 1
4

0
sup

γ∈[2k,2k+1]

(z +∆γ)
2(γ−1)dP (z) ≤ 2−2(2k−1) ≤ 2−kα.

To bound the second term of (S5.28), we have∫ 1

1
4

sup
γ∈[2k,2k+1]

(z +∆γ)
2(γ−1)dP (z) ≤

∫ 1

1
4

sup
γ∈[2k,2k+1]

z2(γ−1)(1 + 4∆γ)
2(γ−1)dP (z)

≤ e2E|Z|2(2k−1) ≤ Ca22−kα.

The third claim of the lemma thus follows as desired.

Lemma S5.17 Define L(γ,P) := 1
γ minθ log

(∫
|y − θ|γP(dy)

)
+ 1+log γ

γ + log Γ

(
1 + 1

γ

)
for

every γ ≥ 2. Given limγ→∞ L(γ,P1) = limγ→∞ L(γ,P2) = ∞, γ∗1 being the unique minimizer
of L(γ,P1), and L(γ∗1 ,P2) <∞, we have that γ∗1 is the unique minimizer of L(γ, (1−δ)P1+δP2)
for all small positive δ.

Proof We first show that limγ→∞ inf0≤δ≤1 L(γ, (1 − δ)P1 + δP2) = ∞. Given M > 0, there
exists a N ∈ N such that 1

γ minθ log
(∫
|y − θ|γP1(dy)

)
∨ 1

γ minθ log
(∫
|y − θ|γP2(dy)

)
> M

for every γ > N , and thus

L(γ, (1− δ)P1 + δP2) ≥
1

γ
min
θ

log

[∫
|y − θ|γ((1− δ)P1 + δP2)(dy)

]
≥ 1

γ
min
θ

[
(1− δ) log

∫
|y − θ|γP1(dy) + δ log

∫
|y − θ|γP2(dy)

]
≥ (1− δ) 1

γ
min
θ

log

(∫
|y − θ|γP1(dy)

)
+ δ

1

γ
min
θ

log

(∫
|y − θ|γP2(dy)

)
≥M, for every γ > N.
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For a fixed γ ≥ 2, we have

lim
δ→0+

L(γ, (1− δ)P1 + δP2) =

{
L(γ,P1), if L(γ,P2) <∞
∞, otherwise.

S5.2. Reference results

We use the following statement of Talagrand’s inequality:

Theorem S5.18 (Talagrand’s Inequality; see e.g. Giné and Nickl (2016, Theorem 3.3.9)) Let
Z1, . . . , Zn be independent and identically distributed random objects taking values in some mea-
surable space Z . Let F be a class of real-valued Borel measurable functions on Z .

Define Sn = supf∈F
∑n

i=1

{
f(Zi)−Ef(Z)

}
. Let U > 0 be a scalar that supf∈F |f(Z)| ≤ U

almost surely; let σ2 := supf∈F Ef2(Z). Then, for any t > 0,

P(Sn − ESn ≥ t) ≤ exp

{
− t2

2U · ESn + nσ2
∧ t

2
3U

}
.

We use the following bound on the expected supremum of the empirical process. For a class
of real-valued functions F on some measurable domain Z , we write F (z) := supf∈F |f(z)| as its
envelope function. For δ ∈ [0, 1), define the entropy integral

J(δ) ≡ J(δ,F) :=
∫ δ

0
sup
Q

√
logN (ϵ∥F∥L2(Q),F , L2(Q)) dϵ, (S5.29)

where the supremum is taken over all finitely discrete probability measures.

Lemma S5.19 (Van Der Vaart and Wellner, 1996, Theorem 2.6.7) If F has finite VC dimension
V (F) ≥ 2, then, for any ϵ ∈ (0, 1),

N(ϵ∥F∥L2(Q),F , L2(Q)) ≤ CV (F)(16e)V (F)

(
1

ϵ

)2(V (F)−1)

.

Corollary S5.20 If F has finite VC dimension V (F), then, for any δ ∈ (0, 1],

J(δ) ≤ C
√
V (F)δ

√
log

1

δ
∧ ∨1.

Proof Using Lemma S5.19, we have that

J(δ) ≤
∫ δ

0

√
CV (F) + 2(V (F)− 1) log

1

ϵ
dϵ

≤ C
√
V (F)

{
δ +

∫ δ

0

√
log

1

ϵ
dϵ

}
≤ C

√
V (F)

(
δ

√
log

1

δ
∧ ∨1

)
.
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Theorem S5.21 (Van Der Vaart and Wellner (2011)) LetF (x) := supf∈F |f(x)|,M := max1≤i≤n F (Zi),
and σ2 := supf∈F Ef(Z)2. Then the following two bounds hold:

E sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Zi)− Ef(Z)
∣∣∣∣ ≲ ∥F∥L2(P )√

n
J

(
σ

∥F∥L2(P )

)1 + ∥M∥L2(P )∥F∥L2(P )J
(

σ
∥F∥L2(P )

)
√
nσ2


as well as

E sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Zi)− Ef(Z)
∣∣∣∣ ≲ ∥F∥L2(P )J(1)√

n
.
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