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Abstract
We revisit the fundamental problem of learning with distribution shift, in which a learner is given
labeled samples from training distribution D, unlabeled samples from test distribution D′ and is
asked to output a classifier with low test error. The standard approach in this setting is to bound
the loss of a classifier in terms of some notion of distance between D and D′. These distances,
however, seem difficult to compute and do not lead to efficient algorithms.

We depart from this paradigm and define a new model called testable learning with distri-
bution shift, where we can obtain provably efficient algorithms for certifying the performance of
a classifier on a test distribution. In this model, a learner outputs a classifier with low test error
whenever samples from D and D′ pass an associated test; moreover, the test must accept (with high
probability) if the marginal of D equals the marginal of D′. We give several positive results for
learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision
trees when the marginal of D is Gaussian or uniform on {±1}d. Prior to our work, no efficient
algorithms for these basic cases were known without strong assumptions on D′.

For halfspaces in the realizable case (where there exists a halfspace consistent with both D
and D′), we combine a moment-matching approach with ideas from active learning to simulate an
efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we
apply recent work from testable (agnostic) learning. More generally, we prove that any function
class with low-degree L2-sandwiching polynomial approximators can be learned in our model.
Since we require L2- sandwiching (instead of the usual L1 loss), we cannot directly appeal to
convex duality and instead apply constructions from the pseudorandomness literature to obtain the
required approximators. We also provide lower bounds to show that the guarantees we obtain on
the performance of our output hypotheses are best possible up to constant factors, as well as a
separation showing that realizable learning in our model is incomparable to (ordinary) agnostic
learning.
Keywords: Distribution Shift, PAC Learning, Testable Learning, Domain Adaptation

1. Introduction

Mitigating distribution shift remains one of the major challenges of machine learning. Training
distributions can deviate significantly from test distributions, and pre-trained models are commonly
deployed without a precise understanding of these differences. In such cases, a model may have
poor performance with potentially dangerous consequences. For example, several recent studies in
the AI/healthcare community highlight the lack of generalization among many AI models trained to
detect disease (e.g., skin cancer or pneumonia), often due to distribution shift. As such, developing
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best practices for using these models in a clinical setting remains a vexing and difficult problem
Zech et al. (2018); Wong et al. (2021); Ternov et al. (2022).

The computational landscape of traditional supervised learning— where training sets and tests
are drawn from the same distribution— is by now well understood. There is a rich literature of
efficient algorithms and computational hardness results for broad sets of concept classes and distri-
butions. In contrast, little is known in terms of efficient algorithms for classification in the context
of distribution shift or domain adaptation. The most common approach is to prove a generaliza-
tion bound in terms of some notion of distance between D and D′ Ben-David et al. (2006, 2010);
Mansour et al. (2009). These distances, however, involve an enumeration of all functions in the
underlying concept class and seem difficult to compute. Other recent work requires oracles for
empirical risk minimization Goldwasser et al. (2020); Kalai and Kanade (2021) or the existence
of distribution-free reliable learners, which are believed to require superpolynomial time for even
simple concept classes (e.g., reliably learning conjunctions is known to be harder than PAC learning
DNF formulas) (Kalai and Kanade, 2021, Section 4.2).

In this work we define a new model called testable learning with distribution shift (TDS learn-
ing) and show that this model does admit efficient algorithms for several well-studied concept
classes and distributions. Inspired by recent work in testable learning Rubinfeld and Vasilyan
(2023); Gollakota et al. (2023a,b,c), we allow a learner to reject unless D and D′ pass an efficiently
computable test. Whenever the test accepts, the learner outputs a classifier that is assured to have
low error with respect to D′. Further, we require that the test accept with high probability whenever
the marginal of D equals the marginal of D′. This approach allows us to take no assumptions on D′

whatsoever and still provide meaningful guarantees.
It is easy to see that TDS learning generalizes the traditional PAC model of learning, and, more-

over, TDS learning seems considerably more challenging. For example, even an algorithm to am-
plify the success probability of a TDS learner is nontrivial, since we do not get to see labeled
examples from D′ (we show how to do this in Section H). It is also tempting to apply property
testing algorithms in this setting to “detect” when D is “close” to D′, but even for simple cases,
distribution testing requires an exponential (in the dimension) number of samples (see e.g. Canonne
(2022)). While testable learning and TDS learning both encounter similar issues, they are funda-
mentally distinct models. Specifically, the realizable setting, where there exists a classifier with zero
train and test loss, is a trivial case in testable learning. We further discuss separations among these
models in Section 1.3.

1.1. Our Results

Here we formally define TDS learning and summarize our main results. For readability, we have
placed some notation and basic definitions in Section A.
Learning Setup. Let C be a function class over Rd and D be a distribution over Rd. Suppose A
is given as input a set Strain consisting of i.i.d. examples from D labelled by some f ∈ C, together
with a set of i.i.d. unlabelled examples Xtest from some distribution Dtest

X over Rd. The algorithm
A is allowed to either output REJECT or (ACCEPT, f̂ ) for some concept f̂ . The algorithm A is a
TDS-learning algorithm for C under distribution D if it satisfies the following two properties:

1. Soundness. With probability 1−δ, if the algorithm A outputs (ACCEPT, f̂ ), then hypothesis
f̂ satisfies Px∈Dtest

X
[f(x) ̸= f̂(x)] ≤ ϵ.

2. Completeness. If Dtest
X = D, then with probability 1− δ, the algorithm A accepts.
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TDS Learning: the Agnostic Setting. Sometimes the training data or the testing data cannot be
captured perfectly by any function in the function class C and, instead, follow labeled distributions
Dtrain

XY ,Dtest
XY , where the marginal of Dtrain

XY is Dtrain
X = D and Dtrain

XY ,Dtest
XY are otherwise arbitrary.

We extend our setup to apply in this setting as well. To this end, a key quantity is the smallest
sum of expected training error and expected test error among all functions in the concept class C,
i.e. λ = minf∈C err(f ;Dtrain

XY ) + err(f ;Dtest
XY ), where err(f ;DXY) = P(x,y)∼DXY [y ̸= f(x)]. We

denote this quantity as λ, and note that it is standard in the domain adaptation literature (see, e.g.,
Ben-David et al. (2006); Blitzer et al. (2007); Ben-David et al. (2010); David et al. (2010)).

With this definition at hand, we modify the soundness condition to require that with probability
1−δ, if the algorithm A outputs (ACCEPT, f̂ ), then hypothesis f̂ satisfies P(x,y)∼Dtest

XY
[y ̸= f̂(x)] ≤

O(λ) + ϵ. In Theorem 48, we show that a dependence of Ω(λ) is unavoidable.

Proposition 1 No TDS learning algorithm can have an error guarantee better than Ω(λ) + ϵ.

Results. We show that TDS learning can be achieved efficiently for a number of natural high-
dimension function classes. These include halfspaces, decision trees, intersections of halfspaces
and low-depth formulas. See Table 1 for the full list.

Function class Training Distribution TDS Setting Run-time

1 Homogeneous
halfspaces

Isotropic Log-Concave Agnostic poly (d/ϵ)
(Theorem 2)

2 General halfspaces Standard Gaussian Realizable dO(log 1/ϵ)

(Theorem 6)

3 General halfspaces
Standard Gaussian
Uniform on {±1}d Agnostic dÕ(1/ϵ

2)

(Corollary 39)

4 Intersection of ℓ
halfspaces

Standard Gaussian
Uniform on {±1}d Agnostic dÕ(ℓ6/ϵ2)

(Corollary 39)

5 Decision trees of
size s

Uniform on {±1}d Agnostic dO(log(s/ϵ))

(Corollary 36)

6 Formulas of size s,
depth ℓ

Uniform on {±1}d Agnostic d
√
s·O(log(s/ϵ))

5ℓ
2

(Corollary 37)

Table 1: Our TDS learning results for various function classes. Since agnostic TDS learning is
more general than realizable TDS learning, algorithms for the agnostic setting also apply
to the realizable setting.

Given the abundance of positive results, it is natural to ask whether TDS learning can always
be achieved efficiently for any function class F that can be efficiently PAC-learned under a distri-
bution D. We answer this question in the negative by proving separations between TDS learning
and PAC learning. Our separations hold for the natural and well-studied function classes of mono-
tone functions over {±1}d and convex sets over Rd (under uniform distribution on {±1}d and the
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standard Gaussian distribution respectively). Even though for these function classes there are well-
known PAC-learning algorithms Bshouty and Tamon (1996); Klivans et al. (2008) that run in time
2Õ(

√
d poly(1/ϵ)), we show that any TDS-learning algorithm for these function classes needs to run

in time 2Ω(d).

1.2. Techniques

Here we summarize the technical ideas that we use to develop the TDS learning algorithms in
Table 1.

Moment Matching/Sandwiching Polynomials. We present a general approach for obtaining
TDS learning algorithms for a wide variety of function classes via a moment matching approach.
In brief, the algorithm for this approach is as follows:

• Estimate all the degree-k moments of Dtest
X up to a high accuracy. REJECT if some of the

moments are not close to the corresponding moments of D.

• Otherwise, fit the best degree-k polynomial p on the training data, and output (ACCEPT,
sign(p)).

This algorithm above runs in time dO(k), and we show that this algorithm is a valid TDS-learning
algoithm for the wide class of functions whose L2-sandwiching degree is bounded by k, which we
define as follows: For an approximation parameter ϵ, the L2-sandwiching degree of a function f
is the smallest degree for a pair of polynomials pdown and pup satisfying: i) pdown(x) ≤ f(x) ≤
pup(x) for all x in the learning domain and ii) Ex∼D[(pup(x)− pdown(x))

2] ≤ ϵ.
The related notion of L1-sandwiching was recently used to obtain several results in testable

learning Gollakota et al. (2023a). These results, however, do not seem to apply to TDS learning.
Instead, we prove a “transfer lemma” showing that we can relate the test error under Dtest

X of a
polynomial to its training error under D by leveraging the simple fact that the squared loss between
two polynomials is itself a polynomial. As such, low-degree moment matching between the training
and test marginals ensures that the squared loss between any pair of low-degree polynomials is ap-
proximately preserved (Lemma 7). Absolute loss cannot be computed by a low-degree polynomial,
ruling out this type of transfer lemma based on L1-sandwiching.

Even though we need the more stringent property of small L2-sandwiching degree, we show
that constructions from works in the pseudorandomness literature that explicitly construct L1-
sandwiching polynomials (e.g., Diakonikolas et al. (2010) and Gopalan et al. (2010)) can be ex-
tended to bound the L2-sandwiching degree. This allows us to obtain efficient TDS learning algo-
rithms for the classes of intersections of halfspaces, decision trees and small-depth formulas (see
lines 3-6 in Table 1). We also note that this technique yields TDS learning algorithms not only in
the realizable setting, but also in the agnostic setting.

Beyond Moment Matching. It is a natural question whether it is possible to beat the moment-
matching approach. We answer this question in the affirmative by showing that for the class of
halfspaces this is indeed possible. It is a standard fact that one needs polynomials of degree Ω̃(1/ϵ2)
to ϵ-approximate halfspaces up to L1 error better than ϵ under the standard Gaussian distribution.
Therefore the moment-matching approach requires a run-time of at least dΩ̃(1/ϵ2) to TDS learn half-
spaces under the standard Gaussian. We overcome this obstacle and give a TDS learning algorithm
for halfspaces that runs in time dO(log( 1

ϵ
)) (Line 2, Table 1).
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One ingredient we use to design our algorithm is what we call TDS learning via the disagree-
ment region method. Suppose we are able to recover the parameters of a halfspace f∗ up to some
accuracy β. Then, for some points x in Rd we will know f∗(x) with certainty, but for some others
we will not. We say that the latter points form the disagreement region, and it gets smaller as β de-
creases. The idea is to (i) use the training data to recover the parameters of halfspace f∗ up to such
high accuracy β that the probability that a Gaussian sample falls into the disagreement region is very
small (ii) make sure that the recovered halfspace f̂ generalizes on the testing dataset by checking
that only a small fraction of the testing dataset falls into the uncertainty region. We note that this
notion of disagreement region is also widely used in active learning (see discussion in Section 3.1).

Although the disagreement region method gives an efficient algorithm for homogeneous (i.e.
origin-centered) halfspaces (Proposition 19), it fails for general halfspaces. Indeed, in Section 3.2
we show that for general halfspaces under the standard Gaussian distribution the disagreement re-
gion method requires 2Ω(d) samples. We design a dO(log(1/ϵ))-time TDS learning algorithm for
general halfspaces under the Gaussian distribution by combining the moment matching approach
with the disagreement region approach:

• Suppose the halfspace f∗ is not too biased, i.e. among dO(log(1/ϵ)) training samples we see
labels with values of both +1 and −1. We show that the parameters of such a halfspace can
be recovered up to a very high accuracy using only dO(log(1/ϵ)) additional training samples.
This allows us to leverage the disagreement region method to achieve TDS learning.

• Otherwise, the halfspace f∗ is highly biased and it almost always takes the same label L
on a Gaussian input. For such halfspaces there is no hope to recover their parameters with
dO(log(1/ϵ) samples. Yet, we show that using the moment-matching approach with degree
parameter k of onlyO(log(1/ϵ)) allows us to certify that even under the test distribution Dtest

X
the halfspace f∗ will be biased and very likely to take the label L. Therefore, a predictor f̂
that assigns the label L to all points in Rd will generalize.

Techniques from Testable Learning. Additionally, in the setting of agnostic TDS learning we
give an algorithm for the class of homogeneous (i.e. origin-centered) halfspaces under any isotropic
log-concave distribution (see line 1 in Table 1). We achieve this using techniques from testable
learning Gollakota et al. (2023a,b). The first phase of our TDS learning algorithm uses an approxi-
mate agnostic learning algorithm for halfspaces Awasthi et al. (2017); Diakonikolas et al. (2020b) in
order to obtain a vector v̂, such that the homogeneous halfspace defined by v̂ has error O(λ) + ϵ in
the training dataset. Since the training distribution D is isotropic and log-concave, this means that
the angle between v̂ and the vector v, defining the halfspace with optimal combined error on the
training and testing datasets, is also at most O(λ) + ϵ. Finally, we apply one of the core procedures
from Gollakota et al. (2023a,b) in order to ensure that every halfspace defined by a vector v′ that
forms an angle of at most O(λ) + ϵ with v̂ agrees on at least 1 − O(λ) − ϵ fraction of the testing
dataset with the halfspace defined by the vector v̂. This allows us to certify that the halfspace de-
fined by the vector v̂ will indeed generalize to the testing distribution. Note that we can use tools
from testable learning to remove the assumption on the training marginal; the algorithm would in-
stead run a test that accepts when both Dtrain

X and Dtest
X equal the target D without any assumptions

on Dtrain
XY and Dtest

XY (see also Remark 18). For clarity of exposition, we postpone formal statements
composing the two models to future work.
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1.3. Related Work

Domain Adaptation. The field of domain adaptation has received significant attention over the
past two decades (see Ben-David et al. (2006); Blitzer et al. (2007); Mansour et al. (2009); Ben-
David et al. (2010); David et al. (2010); Redko et al. (2020) and references therein). Similar to
our learning setting, domain adaptation considers scenarios where the learner has access to labeled
training and unlabeled test examples and is asked to output a hypothesis with low test error without,
however, being allowed to reject. Ben-David et al. (2006); Blitzer et al. (2007); Mansour et al.
(2009) bound the test error of an empirical risk minimizer of training data by a sum of the parameter
λ and some notion of distance between the training and test marginals (discrepancy or dA distances)
which is statistically efficient to compute using unlabeled test and training examples. This implies a
statistically efficient TDS learning algorithm with error 2λ+ϵ (Section F). All known algorithms for
computing discrepancy distance or dA distance, however, require exponential time even for basic
classes such as halfspaces and decision trees. By allowing the learning algorithm to reject, we
design computationally efficient TDS learning algorithms with error O(λ) + ϵ without explicitly
computing the discrepancy distance.

PQ Learning. Among the learning models that capture settings with distribution shift, PQ learn-
ing (see Goldwasser et al. (2020) and Kalai and Kanade (2021)) is most relevant to TDS learning. In
PQ learning, the learner has access to labeled training data and unlabeled test data and must output a
classifier h and a set X. The classifier needs to minimize the following two criteria simultaneously:
(1) the test error of the hypothesis h on test data points that fall into the region X (in other words, X
is the region where one is confident in the predictions of the hypothesis h for test data) and (2) the
probability that a training example falls outside X. Goldwasser et al. (2020) show that any concept
class that can be agnostically learned in the distribution-free setting can be PQ learned. Kalai and
Kanade (2021) improve this reduction by showing that PQ learning is equivalent to distribution-free
reliable agnostic learning (see Kalai et al. (2012)). The complexity of reliable learning is known to
be “in between” agnostic learning and PAC learning. In particular, reliably learning conjunctions
implies PAC learning DNF formulas. In Section G, we show that PQ learning actually implies TDS
learning.

Testable Learning. Although conceptually our definition of TDS learning is inspired by the recent
line of work in testable learning Rubinfeld and Vasilyan (2023); Gollakota et al. (2023a,b,c), the two
frameworks address very different issues. Testable learning does not address distribution shift, as
it assumes that the training and testing distributions are the same distribution Dtrain

XY . What the
framework of testable learning does (indirectly) test is whether Dtrain

X satisfies a certain assumption
(e.g. Gaussianity) in order to make sure the learning algorithm gives a hypothesis f̂ that satisfies
the agnostic learning guarantee.

As noted in Rubinfeld and Vasilyan (2023), in the realizable setting one can trivially satisfy the
definition of testable learning by drawing a fresh set of samples and using them to validate the hy-
pothesis f̂ . Due to this, existing work on testable learning Rubinfeld and Vasilyan (2023); Gollakota
et al. (2023a,b,c) focuses on the agnostic setting, where such validation procedure cannot be applied
(see Rubinfeld and Vasilyan (2023) for further detail). In contrast to this, even in the realizable set-
ting, no such validation procedure exists for TDS learning, as indicated by our separations between
PAC learning and TDS learning for monotone functions and convex sets (see Section 1.1). In fact,
for monotone functions and convex sets, realizable TDS learning is harder than agnostic learning as
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well. Furthermore, there are cases where realizable TDS learning is easier than agnostic learning
(and, therefore, easier than testable agnostic learning). Here are two examples:

1. Due to statistical query lower bounds and cryptographic hardness results Goel et al. (2020);
Diakonikolas et al. (2020a, 2021, 2023), the run-time required to agnostically learn a halfs-
pace under the standard Gaussian distribution is believed to be dΩ(1/ϵ2). In contrast to this,
in this work we show that realizable TDS learning of halfspaces with respect to the Gaussian
distribution can be achieved using only dO(log 1/ϵ)) run-time.

2. The agnostic learning of parity functions, even under the uniform distribution on {±1}d, is

believed to require 2Ω( d
poly log d

) time. In strong contrast with this, the class of parity functions
can be TDS-learned in the realizable setting using only poly(d/ϵ) time under any distribu-
tion over {±1}d. This follows from the PQ-learning algorithm of Kalai and Kanade (2021),
together with the connection between PQ learning and TDS learning (Section G).

Overall, we conclude that realizable TDS learning is incomparable to regular agnostic learning. In
particular, there are examples where realizable TDS learning is easier than testable agnostic learn-
ing. Moreover, realizable TDS learning is harder than PAC learning, where distributional assump-
tions can be verified through validation.

2. TDS Learning of Homogeneous Halfspaces

We provide an efficient TDS learner for the class of homogeneous halfspaces over Rd with respect
to any given isotropic log-concave distribution that achieves error O(λ) + ϵ, by applying results
from prior work in the literature of testable learning (see Gollakota et al. (2023b,c)) and agnostic
learning (see Daniely (2015); Awasthi et al. (2017); Diakonikolas et al. (2020b)). We provide the
following theorem and a proof sketch. The full proof can be found in Section B.

Theorem 2 (Agnostic TDS learning of Halfspaces) Let C be the class of origin-centered halfs-
paces over Rd and C > 0 a sufficiently large universal constant. Let A, T be as defined in Proposi-
tions 3 and 15. Let mA be the sample complexity of A(ϵ/C, δ/4) and mT = Cd4

ϵ2δ
. Then, there is an

algorithm (Algorithm 1) that, given inputs Strain, Xtest of sizes |Strain| ≥ mA and |Xtest| ≥ mT is
a TDS learning algorithm for C w.r.t. any isotropic log-concave distribution D with error O(λ) + ϵ
and run-time poly(d, 1ϵ ) log(

1
δ ), where is the accuracy parameter and δ is the failure probability.

Leveraging training data. We first use an efficient agnostic learner on training data to recover a
halfspace f̂ : x → sign(v̂ · x) with low training error. For example, we may use a (polynomial
time) algorithm by Diakonikolas et al. (2020b) (Proposition 15) that outputs f̂ with err(f̂ ;Dtrain

XY ) ≤
O(η) + ϵ whenever the training marginal is isotropic log-concave (η is the optimal training error).
There are other similar results in the literature of agnostic learning (e.g., see Awasthi et al. (2017)),
but we use Diakonikolas et al. (2020b) as it is more convenient for our setting.

Approximate parameter recovery. Let v∗ be the parameter vector corresponding to the halfs-
pace f∗ that minimizes the common train and test error, i.e., err(f∗;Dtrain

XY ) + err(f∗;Dtest
XY ) = λ.

Then, we have PDtrain
X

[sign(v̂ ·x) ̸= sign(v∗ ·x)] ≤ err(f̂ ;Dtrain
XY )+ err(f∗;Dtrain

XY ) ≤ O(η)+ ϵ+

λ = O(λ) + ϵ. Since Dtrain
X = D is isotropic log-concave, it is known that the disagreement over

Dtrain
X between two halfspaces is proportional to the angular distance between their parameters, i.e.,

∡(v̂,v∗) = O(PDtrain
X

[sign(v̂ · x) ̸= sign(v∗ · x)]), which we have bounded by O(λ+ ϵ).
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Testing phase. We have shown that v̂ is geometrically close to v∗, which achieves test error at
most λ, by definition. It remains to certify that the test marginal behaves like an isotropic log-
concave distribution with respect to v̂, i.e., for a large enough set of i.i.d. examples Xtest from
Dtest

X and for any v′ ∈ Sd−1 we have that 1
|Xtest|

∑
x∈Xtest

1{sign(v̂ · x) ̸= sign(v′ · x)} :=

PXtest [sign(v̂ · x) ̸= sign(v′ · x)] = O(∡(v̂,v′)), because then we will be able to bound the
empirical test error of f̂ by λ+ O(∡(v̂,v∗)), which is O(λ+ ϵ). The result then would follow by
standard VC dimension arguments.

It turns out that recent work by Gollakota et al. (2023c) on testable learning has provided an
efficient tester that achieves exactly what we need. Note that the proof of the following proposition
(Lemma 3.1 in Gollakota et al. (2023c)) is nontrivial, requiring estimation of low-order moments
and careful conditioning. We can apply this to our setting, because it only requires access to the
marginal distribution.

Proposition 3 (Tester of Local Halfspace Disagreement, Lemma 3.1 in Gollakota et al. (2023c))
Let D be a distribution over Rd, v1 ∈ Sd−1, θ ∈ (0, π/4], δ ∈ (0, 1) and C > 0 a sufficiently large
universal constant. Then, there is an algorithm T (θ, δ) that, upon drawing at least Cd4

θ2δ
examples

X from D and in time poly(d, 1θ ,
1
δ ) either accepts or rejects and satisfies the following.

(a) If T accepts, then for any v2 ∈ Rd with ∡(v1,v2) ≤ θ, it holds

P
x∼X

[sign(v1 · x) ̸= sign(v2 · x)] ≤ C∡(v1,v2)

(b) If D is isotropic log-concave, then T accepts with probability at least 1− δ.

3. TDS Learners for General Halfspaces

3.1. Warm-Up: Disagreement-Based TDS Learning

We provide a general TDS learner for the realizable setting, based on the notion of disagreement
regions from active learning. Not only is this approach interesting in and of itself, but it will also
be useful in Section 3.2 where we present our main result for TDS learning of general halfspaces in
the realizable setting. The main idea is to testably bound the probability that a test example falls in
some region D, whose mass with respect to the target distribution becomes smaller as the number
of training samples increases and, also, the output of the training algorithm achieves low error on
any distribution that assigns small mass to D. It turns out that the quantity Px∼D[x ∈ D], where D
is some given distribution over a space X ⊆ Rd, is a well-studied notion in the literature of active
learning (see Cohn et al. (1994); Hanneke (2009); Balcan et al. (2006); Hanneke (2011, 2014);
Balcan et al. (2010); Hanneke (2007) and references therein). We now provide a formal definition
for the disagreement region.

Definition 4 (Disagreement Region) Let X ⊆ Rd, D a distribution over X and C a concept class
of functions that map X to {±1}. For ϵ > 0 and f ∈ C, we define the ϵ-disagreement region of f
under D, Dϵ(f ;D) as the subset of X such that if x ∈ Dϵ(f ;D), then there are f1, f2 ∈ C with
err(f1, f ;D) ≤ ϵ, and err(f2, f ;D) ≤ ϵ and f1(x) ̸= f2(x).
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In the literature of active learning, the quantity of interest is called the disagreement coefficient
and is defined for a concept class C and a distribution D as follows (see, e.g., Hanneke (2014)).

θ(ϵ) = sup
f∈C

sup
ϵ′>ϵ

Px∼D[x ∈ Dϵ′(f ;D)]

ϵ′
(3.1)

In particular, for active learning, is is crucial that θ(ϵ) is asymptotically bounded by a slowly in-
creasing function of 1/ϵ (e.g., O(log(1/ϵ))), since bounds on the disagreement coefficient directly
provide rates on the label complexity of disagreement-based active learning, up to logarithmic fac-
tors Hanneke (2011). In our setting, meaningful results are obtained even when θ(ϵ) = O(1/ϵ1−c)
for any constant c ∈ (0, 1). Moreover, we also focus on the dependence of the disagreement coef-
ficient on other relevant parameters, like the dimension d. To emphasize this, in what follows, we
will use the notation θ(ϵ, d) to refer to the disagreement coefficient. We obtain the following result,
which implies, for example, a polynomial improvement in the sample complexity bound of realiz-
able TDS learning of homogeneous halfspaces w.r.t. the Gaussian compared to the TDS learner we
proposed in Theorem 2 for the agnostic setting (see also Section C.1).

Theorem 5 (Disagreement-Based TDS learning) Let C be the class of concepts that map X ⊆
Rd to {±1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large
universal constant. Suppose that we have access to an ERM oracle for PAC learning C under D
and membership access to Dϵ′(f ;D) for any given f ∈ C and ϵ′ > 0. Then, there is an algorithm
(Algorithm 3) that given inputs of sizes |Strain| ≥ C VC(C)

ϵ′ log( 1
ϵ′δ ) and |Xtest| ≥ C VC(C)

ϵ2
log( 1

ϵδ )
is a TDS learning algorithm for C w.r.t. D that calls the ϵ′-ERM oracle once and the ϵ′-membership
oracle |Strain| times, where ϵ is the accuracy parameter, δ is the failure probability and ϵ′ such that
ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

3.2. Beyond Disagreement: TDS Learners for General Halfspaces

We give a TDS-learning algorithm for the class of halfspaces under the standard Gaussian distri-
bution. The algorithm runs in quasi-polynomial time in all relevant parameters and, contrary to
the case of homogeneous halfspaces, works in a setting where efficient parameter recovery is not
possible. This happens because when a general halfspace has arbitrarily large bias, it is possible,
for example, that all of the training examples have the same label.

In particular, applying a pure disagreement-based TDS learning framework (Theorem 5) in the
case of general halfspaces can only give exponential-time algorithms for this problem. To illustrate
this, imagine that the ground truth is a general halfspace with bias τ =

√
d but unknown direction

v ∈ Sd−1. Then, any general halfspace x 7→ sign(v′ ·x−τ) with the same bias is exp(−Ω(d))-close
to the ground truth with respect to the Gaussian distribution, due to standard Gaussian concentration,
i.e., Px∼N (0,Id)[sign(v ·x−τ) ̸= sign(v′ ·x−τ)] ≤ Px∼N (0,Id)[sign(v ·x−τ) ̸= sign(−v ·x−τ)],
which is upper bounded by Px∼N (0,Id)[|v · x| >

√
d] ≤ 2 exp(−d/2). Let ϵ′ = 2 exp(−d/2).

Suppose that ERM returns a halfspace f̂ that is ϵ′-close to the ground truth but has bias τ . Any
x ∈ Rd with ∥x∥2 ≥

√
d, falls within the disagreement region Dϵ′(f̂ ;N (0, Id)) and therefore

Px∼N (0,Id)[x ∈ Dϵ′(f̂ ;N (0, Id))] is constant. This implies that running the ERM oracle on training
data even up to exponentially small accuracy ϵ′ = exp(−Ω(d)) does not meet the requirement of
Theorem 5 (see also El-Yaniv and Wiener (2012)) that the disagreement coefficient is bounded as
ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

9
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In order to overcome this obstacle, we perform a case analysis that depends on the bias of the
unknown halfspace. If the bias is bounded, then we may use a disagreement-based approach, since
we can approximately recover the true parameters of the unknown halfspace using training data and
it suffices to verify that the test distribution does not amplify the error between any pair of halfspaces
close to the obtained approximations of the true parameters. Now, consider the case when the bias
is large. We may assume without loss of generality the constant hypothesis +1 has low training
error (since the ground truth has large bias and the marginal is Gaussian). If we can certify that
the test marginal is sufficiently concentrated in every direction, then this hypothesis must also have
small test error. To certify concentration for the test distribution’s marginals, we use a moment-
matching approach. Checking the moment matching condition only up to degree O(log(ϵ)) turns
out to be sufficient to certify the type of concentration we need. We thus obtain a quasi-polynomial
TDS learning algorithm for general halfspaces with respect to the Gaussian distribution. Since the
probability of success can be amplified through repetition (see Proposition 58), we provide a result
with constant failure probability. For the full proof, see Section C.2.

Theorem 6 (TDS learning of General Halfspaces) Let C be the class of general halfspaces over
Rd and C > 0 a sufficiently large universal constant. Then, there is an algorithm (Algorithm 4)
that, given inputs of size |Strain| = |Xtest| = CdC log 1/ϵ is a TDS learning algorithm for C w.r.t.
N (0, Id) with run-time dO(log 1/ϵ), where ϵ is the accuracy parameter, and the failure probability δ
is at most 0.01.

Compared to Theorem 5, our approach here incurs an increase in the amount of test samples
required (from poly(d, 1/ϵ) to dO(log(1/ϵ)), used for moment matching) but significantly decreases
the amount of training samples required (from exp(Ω(d)) to dO(log(1/ϵ))).

4. TDS Learning through Moment Matching

In the previous section, we provided a TDS learner for general halfspaces in the realizable setting
that requires ideas beyond parameter recovery and testably bounding the probability of falling in the
disagreement region. Crucially, Theorem 6 uses a moment-matching approach in the case when the
bias of the unknown halfspaces is large. As is explained in this section, we show that the moment-
matching approach can actually provide a generic result which demonstrates that L2-sandwiching
(see Definition 12) implies TDS learning, even in the non-realizable setting. We also instantiate our
framework to several important concept classes (halfspace intersections, decision trees and Boolean
formulas) with respect to the Gaussian and uniform distributions, by applying constructions from
pseudorandomness literature to bound the L2-sandwiching degree of each of these classes and ac-
quire entries 3-6 in Table 1.

We provide a general theorem, which demonstrates that L2-sandwiching implies TDS learning
under some additional natural assumptions about the target marginal distribution, which are satisfied
by the standard Gaussian distribution over Rd and the uniform distribution on {±1}d. While it is
known that L1-sandwiching implies testable learning (see Gollakota et al. (2023a)), we require the
stronger notion of L2-sandwiching. In particular, while L1-sandwiching would (testably) imply the
existence of low degree polynomials with low test error, we do not get to see labeled examples
from Dtest

XY . Moreover, we cannot a priori assume that the output of the training algorithm is a
sandwiching polynomial, even if we know one exists.

10
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In our analysis, we crucially use the fact that the square of the difference between two polyno-
mials is itself a polynomial whose coefficients and degree are bounded by the degree and coefficient
bounds of the original polynomials. Crucially, this enables us to use the following transfer lemma
which relates the squared distance between polynomials under the test distribution to their squared
distance under the training distribution. In what follows, we use the notation xα =

∏
i∈[d] x

αi
i ,

where α ∈ Nd.

Lemma 7 (Informal, Transfer Lemma for Square Loss, see Lemma 32) Let D be a distribu-
tion over X ⊆ Rd and Xtest a (multi)set of points in Rd. If Ex∼Xtest [x

α] ≈ Ex∼D[x
α] for all

α ∈ Nd with ∥α∥1 ≤ 2k, then for any degree k polynomials p1, p2 with bounded coefficients, it
holds

1

|Xtest|
∑

x∈Xtest

(p1(x)− p2(x))
2 ≈ E

x∼D
[(p1(x)− p2(x))

2]

Moreover, we use the fact that, due to the L2-sandwiching assumption, we can bound quantities
of the form E[(p(x)−f(x))2] for f ∈ C from above by O(E[(p(x)−pdown(x))

2]+E[(pdown(x)−
pup(x))

2]), irrespective of the distribution that the expectations are taken over. Over the training
distribution, the quantity ED[(pdown(x) − pup(x))

2] is small via the definition of L2-sandwiching
degree, and the quantity ED[(p(x)− f(x))2] because p is obtained from L2 polynomial regression.
If p, pdown, pup are all low degree and the dataset Xtest matches low-degree moments with D, then
we may apply Lemma 7 to bound 1

|Xtest|
∑

x∈Xtest
[(p(x) − f(x))2]. Once it is shown that p fits

f well on the testing dataset Xtest, standard generalization bounds allows us to conclude that it
will also predict f well on the testing distribution. Therefore, by running polynomial regression on
training data to obtain p and testing whether the empirical test moments match the moments of the
training distribution, we acquire the following result, whose proof can be found in Section D.

Theorem 8 (L2-sandwiching implies TDS Learning) Let D be a distribution over a set X ⊆ Rd

and let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1), ϵ′ = ϵ/100 δ′ = δ/2 and assume
that the following are true.

(i) (L2-Sandwiching) The ϵ′-approximate L2 sandwiching degree of C under D is at most k with
coefficient bound B.

(ii) (Moment Concentration) If X ∼ D⊗m and m ≥ mconc then, with probability at least 1− δ′,
we have that for any α ∈ Nd with ∥α∥1 ≤ k it holds |ED[x

α]− 1
|X|
∑

x∈X xα| ≤ ϵ′

B2d4k
.

(iii) (Generalization) If S ∼ D⊗m
XY where DXY is any distribution over X × {±1} such that

DX = D and m ≥ mgen then, with probability at least 1− δ′, for any degree-k polynomial p
with coefficient bound B it holds |EDXY [(y − p(x))2]− 1

|S|
∑

(x,y)∈S [(y − p(x))2]| ≤ ϵ′.

Then, there is an algorithm (Algorithm 5) that, upon receiving mtrain ≥ mgen labelled samples

Strain from the training distribution and mtest ≥ C · dk+log(1/δ)
ϵ2

+mconc unlabelled samples Xtest

from the test distribution (where C > 0 is a sufficiently large universal constant), runs in time
poly(|Strain|, |Xtest|, dk) and TDS learns C with respect to D up to error 32λ + ϵ and with failure
probability δ.
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5. Lower Bounds for Monotone Functions and Convex Sets in Realizable Setting

We provide three lower bounds for TDS learning. The first one shows that TDS learning the class
of monotone functions over {±1}d with respect to the uniform distribution requires an exponential
number of examples from either the training or the test distribution, which implies a separation with
regular agnostic learning. The second lower bound shows that TDS learning the class of indicators
of convex sets also requires an exponential in the dimension number of samples. The third lower
bound demonstrates that a linear dependence on the error term λ (as defined in Equation (A.1)) is
necessary for TDS learning in the non-realizable setting and can be found in Section E.3.

Recent work on testable learning (which is a generalization of the classical agnostic learning
framework, see Rubinfeld and Vasilyan (2023); Gollakota et al. (2023a)) has demonstrated that the
class of monotone functions over {±1}d cannot be testably learned with respect to the uniform
distribution unless the learner draws at least 2Ω(d) training samples. Since the class of monotone
functions can be agnostically learned in time 2Õ(

√
d) with respect to the uniform distribution over

the hypercube {±1}d, this implies that testable (agnostic) learning is strictly harder than regular
agnostic learning. We show that the lower bound of 2Ω(d) extends to the problem of TDS learning
monotone functions even in the realizable setting. Recall that we have shown that we can TDS
learn halfspaces with respect to the standard Gaussian distribution in the realizable setting in time
dO(log(1/ϵ)) (Theorem 6) but it is known that, for agnostic learning, any SQ algrorithm for the prob-
lem requires time dΩ(1/ϵ2) (see Goel et al. (2020); Diakonikolas et al. (2020a, 2021)). Therefore,
we conclude that realizable TDS learning and agnostic learning are incomparable. We now provide
our lower bound. For the proof, see Section E.

Theorem 9 (Hardness of TDS Learning Monotone Functions) Let the accuracy parameter ϵ be
at most 0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable
setting, any TDS learning algorithm for the class of monotone functions over {±1}d with accuracy
parameter requires either 20.04d training samples or 20.04d testing samples for all sufficiently large
values of d.

We now provide a lower bound for convex sets (see also Section E). Since the class of indicators
of convex sets can be agnostically learned in time 2Õ(

√
d) with respect to the Standard Gaussian on

Rd, the following theorem implies yet another separation between agnostic learning and realizable
TDS learning in the distribution specific setting under the Gaussian distribution for a well-studied
concept class.

Theorem 10 (Hardness of TDS Learning Convex Sets) Let the accuracy parameter ϵ be at most
0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable setting,
any TDS learning algorithm for the class of indicators of convex sets under the standard Gaussian
distribution on Rd requires either 20.04d training samples or 20.04d testing samples for all sufficiently
large values of d.

Remark 11 In Proposition 56 of the Appendix, we show that TDS learning is not harder than PQ
learning (which is a related learning primitive, see Goldwasser et al. (2020); Kalai and Kanade
(2021)). Kalai and Kanade (2021) show that the class of parities over {±1}d can be efficiently PQ
learned, which provides another example where TDS learning is easier than agnostic learning.

12



TDS LEARNING

Acknowledgments

We wish to thank the anonymous reviewers of COLT 2024 for their constructive feedback. We thank
Aravind Gollakota for insightful discussions during early stages of this project and for feedback on
a draft of this manuscript. We also thank Varun Kanade for helpful discussions regarding PQ-
learning. Adam Klivans was supported by NSF award AF-1909204 and the NSF AI Institute for
Foundations of Machine Learning (IFML). Konstantinos Stavropoulos was supported by the NSF
AI Institute for Foundations of Machine Learning (IFML) and by scholarships from Bodossaki
Foundation and Leventis Foundation. Arsen Vasilyan was supported in part by NSF awards CCF-
2006664, DMS-2022448, CCF-1565235, CCF-1955217, CCF-2310818, Big George Fellowship
and Fintech@CSAIL. Work done in part while visiting UT Austin.

References

Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for efficiently
learning linear separators with noise. Journal of the ACM (JACM), 63(6):1–27, 2017.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 65–72, 2006.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample complexity
of active learning. Machine learning, 80:111–139, 2010.

Louay MJ Bazzi. Polylogarithmic independence can fool dnf formulas. SIAM Journal on Comput-
ing, 38(6):2220–2272, 2009.

Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the utility of unla-
beled target samples. In International Conference on Algorithmic Learning Theory, 2012. URL
https://api.semanticscholar.org/CorpusID:5122114.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.
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Appendix A. Notation and Basic Definitions

We let X ⊆ Rd and, in particular, X will either be the d-dimensional hypercube {±1}d or the
d-dimensional Euclidean space Rd. For a distribution D over X , we use ED (or Ex∼D) to refer to
the expectation over distribution D and for a given (multi)set X , we use EX (or Ex∼X ) to refer to
the expectation over the uniform distribution on X (i.e., Ex∼X [g(x)] = 1

|X|
∑

x∈X g(x), counting
possible duplicates separately). We let R+ = (0,∞).

For a function p : X → R and r ∈ N, we define the Lr norm of p under D as ∥p∥Lr(D) =

Ex∼D[p(x)
r]

1
r . For x ∈ X where x = (x1,x2, . . . ,xd) and for α ∈ Nd, we denote with xα the

product
∏

i∈[d] x
αi
i , Mα = E[xα] and ∥α∥1 =

∑
i∈[d] αi. For a polynomial p over Rd and α ∈ Nd,

we denote with pα the coefficient of p corresponding to xα, i.e., we have p(x) =
∑

α∈Nd pαx
α. If

p is a polynomial over {±1}d, then we can always express it in a unique multilinear form, so we
will only use coefficients pα with α ∈ {0, 1}d, i.e., p(x) =

∑
α∈{0,1}d pαx

α. We define the degree
of p and denote deg(p) the maximum degree of a monomial whose coefficient in p is non-zero, i.e.,
deg(p) = max{∥α∥1 : pα ̸= 0}.

We denote with Sd−1 the d−1 dimensional sphere on Rd. For any v1,v2 ∈ Rd, we denote with
v1 · v2 the inner product between v1 and v2 and we let ∡(v1,v2) be the angle between the two
vectors, i.e., the quantity θ ∈ [0, π] such that ∥v1∥2∥v2∥2 cos(θ) = v1 · v2. For v ∈ Rd, τ ∈ R, we
call a function of the form x 7→ sign(v · x) an origin-centered (or homogeneous) halfspace and a
function of the form x 7→ sign(v · x− τ) a general halfspace over Rd.

L2-sandwiching degree. We now define the notion of L2-sandwiching polynomials for a function
f with respect to a distribution D, i.e., a pair of polynomials such that one of them is pointwise
above f , the other one is pointwise below f and the L2 distance between the two polynomials
with respect to D is small. While the notion of L1 sandwiching polynomials is standard in the
literature of pseudorandomness (see, e.g., Bazzi (2009)) and has applications to testable learning
(see Gollakota et al. (2023b)), in order to obtain our main results, we make use of the stronger
notion of L2-sandwiching polynomials which we define below.

Definition 12 (L2-sandwiching polynomials) Consider a product set X and a distribution D over
X . For ϵ > 0 and f : X → {±1}, we say that the polynomials pup, pdown : X → R are
ϵ-approximate L2-sandwiching polynomials for f under D if the following are true.

1. pdown(x) ≤ f(x) ≤ pup(x), for all x ∈ X .

2. ∥pup − pdown∥2L2(D) ≤ ϵ

Moreover, for ϵ > 0, a concept class C ⊆ {X → {±1}} and k,B > 0, we say that the ϵ-
approximate L2-sandwiching degree of C under D is at most k and with coefficient bound B if
for any f ∈ C there are ϵ-approximate L2-sandwiching polynomials pup, pdown for f such that
deg(pup),deg(pdown) ≤ k and each of the coefficients of pup, pdown are absolutely bounded by B.

Learning Setup. Consider Dtrain
XY ,Dtest

XY to be distributions over X ×{±1} and let Dtrain
X ,Dtest

X be
the corresponding marginal distributions on X ⊆ Rd. Our tester-learners receive labelled examples
from Dtrain

XY and unlabelled examples from Dtest
X and their goal is to produce a hypothesis with low

error on Dtest
XY or potentially reject but only if distribution shift is detected. Given a hypothesis class

C ⊆ {X → {±1}}, h1, h2 : X → {±1} and distributions DXY ,Dtrain
XY ,Dtest

XY over X × {±1}, we
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define err(h1;DXY) = P(x,y)∼DXY [y ̸= h1(x)] and err(h1, h2;DX ) = Px∼DX [h1(x) ̸= h2(x)]
as well as the following quantity, which is standard in the domain adaptation literature (see, e.g.,
Ben-David et al. (2006); Blitzer et al. (2007); Ben-David et al. (2010); David et al. (2010)).

λ(C;Dtrain
XY ,Dtest

XY ) := min
f∈C

{err(f ;Dtrain
XY ) + err(f ;Dtest

XY )}, attained by f∗ ∈ C (A.1)

Observe that parameter λ becomes small whenever the training and test errors can be simultaneously
minimized by a common classifier in C. Clearly, if there is no relationship between the training and
test distributions, then using data from the training distribution does not reveal any information
about the test distribution and, therefore, learning is hopeless (see also Theorem 48). We will
assume (as is common in the domain adaptation literature) that the parameter λ is a valid choice for
quantifying the relationship between the training and test distributions, in the sense that considering
λ to be small is not unrealistic. In particular, we will partly focus on the following setting where λ is
zero. To distinguish between the two settings, we say that we are in the agnostic setting when λ ≥ 0
(arbitrary) and in the realizable setting when λ = 0. When λ = 0, there exists a classifier in C
that achieves both zero training loss and test loss and we therefore refer to this setting as realizable.
Another (slightly more specific) way to view the realizable setting is by considering the labelled
distribution Dtrain

XY (resp. Dtest
XY ) formed as follows: for some f∗ ∈ C, draw an example x from

Dtrain
X (resp. Dtest

X ) and form the pair (x, y) ∼ Dtrain
XY (resp. (x, y) ∼ Dtest

XY ) by setting y = f∗(x).
We now provide a formal definition of our learning model.

Definition 13 (Testable Learning with Distribution Shift (TDS Learning)) Let X ⊆ Rd and
consider a distribution D over X and a concept class C ⊆ {X → {±1}}. For some ψ : [0, 1] →
[0, 1] and ϵ, δ ∈ (0, 1), we say that an algorithm A testably learns C with distribution shift w.r.t.
D up to error ψ(λ) + ϵ and probability of failure δ if the following is true. For any distributions
Dtrain

XY ,Dtest
XY over X ×{±1} such that Dtrain

X = D, algorithm A, upon receiving a large enough set
of labelled samples Strain from the training distribution Dtrain

XY and a large enough set of unlabelled
samples Xtest from the test distribution Dtest

X , either rejects (Strain, Xtest) or accepts and outputs a
hypothesis h : X → {±1} with the following guarantees.

(a) (Soundness.) With probability at least 1− δ over the samples Strain, Xtest we have:

If A accepts, then the output h satisfies err(h;Dtest
XY ) ≤ ψ(λ) + ϵ.

(b) (Completeness.) Whenever Dtest
X = Dtrain

X , A accepts with probability at least 1− δ over the
samples Strain, Xtest.

In particular, we say that A testably learns C with distribution shift w.r.t. D in the realizable setting,
if A is required to satisfy the above guarantees only when Dtrain

XY ,Dtest
XY and C are realizable (where

λ = 0 = ψ(λ)).

Appendix B. TDS Learning of Homogeneous Halfspaces

We now provide a proof of Theorem 2, which we restate here for convenience.

Theorem 14 (Agnostic TDS learning of Halfspaces) Let C be the class of origin-centered half-
spaces over Rd and C > 0 a sufficiently large universal constant. Let A, T be as defined in
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Propositions 3 and 15. Let mA be the sample complexity of A(ϵ/C, δ/4) and mT = Cd4

ϵ2δ
. Then,

Algorithm 1, given inputs Strain, Xtest of sizes |Strain| ≥ mA and |Xtest| ≥ mT is a TDS learning
algorithm for C w.r.t. any isotropic log-concave distribution D with error O(λ) + ϵ and run-time
poly(d, 1ϵ ) log(

1
δ ), where ϵ is the accuracy parameter and δ is the failure probability.

Algorithm 1: Agnostic TDS Learning of Halfspaces

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , parameters ϵ > 0, δ ∈ (0, 1)
Set ϵ′ = ϵ/C where C is some sufficiently large universal constant.
Let mA be the sample complexity of A(ϵ′, δ/4).
Split Strain to S1, S2 with sizes mA,

C
ϵ2
log(1/δ)

Run A(ϵ′, δ/4) on S1 and obtain v̂ ∈ Sd−1

Let ϵ̂ = P(x,y)∼S2
[sign(v̂ · x) ̸= y].

Run T (ϵ̂, δ/2) on Xtest.
Reject and terminate if T rejects.
Otherwise, output f̂ : Rd → {±1} with f̂ : x → sign(v̂ · x).

In order to prove the above theorem, we make use of the following agnostic learning result from
Diakonikolas et al. (2020b).

Proposition 15 (Theorem 3.1 in Diakonikolas et al. (2020b)) Let DXY be a distribution over Rd×
{±1} such that its marginal on Rd is isotropic log-concave. Then there is an algorithm A such that
for any ϵ > 0 and δ ∈ (0, 1), A(ϵ, δ), upon drawing m = Õ( d

ϵ4
log(1/δ)) independent examples

from DXY and in time poly(d, 1/ϵ) · log(1/δ), outputs v̂ ∈ Sd−1 such that, with probability at least
1− δ, the corresponding halfspace has error at most O(η) + ϵ, where η is the error of the optimal
halfspace on DXY .

We also use the following fact about isotropic log-concave distributions.

Fact 16 Px∼D[sign(v̂ · x) ̸= sign(v∗ · x)] = Θ(∡(v̂,v∗)), when D is isotropic log-concave.

Proof Suppose that Strain is a set of mtrain independent samples from Dtrain
XY , where the marginal

of Dtrain
XY on Rd is the standard Gaussian distribution. Let also Xtest be a set of mtest independent

unlabelled samples from Dtest
X . In what follows, let ϵ′ = ϵ/C and let C > 0 be a sufficiently large

universal constant. Let also mA be the sample complexity of A(ϵ′, δ/4) and mT = Cd4

ϵ2δ
.

Soundness. Suppose that the algorithm accepts. Let v∗ ∈ Sd−1 define the halfspace f∗ that
achieves err(f∗;Dtest

XY ) + err(f∗;Dtrain
XY ) = λ. Note that since |S2| ≥ C

ϵ2
log(1/δ), we have that

ϵ̂ ≤ err(f̂ ;Dtrain
XY ) + ϵ′. By Proposition 15, since |S1| ≥ mA we have err(f̂ ;Dtrain

XY ) ≤ η + ϵ′,
where η ∈ (0, 1) is the error of the optimum halfspace, say f : x 7→ sign(v · x) on Dtrain

XY . Note
that η ≤ λ. We have that err(f̂ , f ;Dtrain

X ) ≤ err(f̂ ;Dtrain
XY ) + err(f ;Dtrain

XY ) ≤ 2η + ϵ′. Therefore,
due to Theorem 16, and since Dtrain

X = D, we obtain ∡(v̂,v) ≤ 2C ′η + C ′ϵ′ for some sufficiently
large C ′ > 0 (with C ≫ C ′).

Moreover, we have that err(f∗;Dtrain
XY ) ≤ λ and, hence err(f∗, f ;Dtrain

X ) ≤ λ+ C ′η. We now

apply Proposition 3, to obtain err(f̂ , f∗;Xtest) ≤
√
C∡(v̂,v∗). Since |Xtest| ≥

√
C

ϵ2
log(1/δ),
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due to standard VC dimension arguments, we have err(f̂ , f∗;Dtest
X ) ≤

√
C∡(v̂,v∗) + ϵ′. By

Theorem 16, ∡(v̂,v∗) ≤ C ′err(f̂ , f∗;Dtrain
X ). Therefore, with probability at least 1− δ, we have

err(f̂ ;Dtest
XY ) ≤ err(f̂ , f∗;Dtest

X ) + err(f∗;Dtest
XY ) ≤ C ′√Cerr(f̂ , f∗;Dtrain

X ) + ϵ′ + λ

≤ C ′√Cerr(f̂ , f ;Dtrain
X ) + C ′√Cerr(f, f∗;Dtrain

X ) + ϵ′ + λ

≤ Cλ+ Cϵ′ ≤ ϵ

Completeness. Readily follows from Proposition 3 and |Xtest| ≥ mT .

Remark 17 We note that, in fact, the original version of Proposition 3 in Gollakota et al. (2023c)
does not require the target marginal to be known, but works universally for any isotropic log-
concave distribution (as well as distributions with heavier tails). This implies that the completeness
criterion that Algorithm 1 satisfies is actually much stronger: for an appropriate choice of the
absolute constant C, Algorithm 1 can be made to accept whenever Dtest

X is isotropic log-concave
(and not necessarily equal to the training marginal).

Remark 18 Moreover, we point out that we can apply results from Gollakota et al. (2023c) and
substitute algorithm A with a universal tester-learner for halfspaces. This enables us to remove
the assumption that Dtrain

X is some fixed isotropic log-concave distribution, and the final algorithm
would accept with high probability whenever Dtrain

X is isotropic strongly log-concave and Dtest
X

is isotropic log-concave. In that sense, TDS learning composes well with (universally) testable
learning. For sake of presentation, however, we leave formal compositional arguments to future
work.

Appendix C. Realizable TDS Learning

C.1. Disagreement-Based TDS Learners

In this section, we prove Theorem 5. First, we prove the following a special version regarding
realizable TDS learning of homogeneous halfspaces with respect to the Gaussian distribution.

Proposition 19 (TDS learning of Homogeneous Halfspaces) Let C be the class of origin-centered
halfspaces over Rd and C > 0 a sufficiently large universal constant. Then, Algorithm 2, given in-
puts Strain, Xtest of sizes |Strain| ≥ C(dϵ )

3/2 log( 1
ϵδ ) and |Xtest| ≥ C d

ϵ2
log( 1

ϵδ ) is a TDS learning
algorithm for C w.r.t. the standard Gaussian distribution N (0, Id) with run-time poly(d, 1/ϵ) log(1δ ),
where ϵ is the accuracy parameter and δ is the failure probability.

We will use the following fact about the Gaussian distribution.

Fact 20 For any v1,v2 ∈ Sd−1 we have Px∼N (0,Id)[sign(v1 · x) ̸= sign(v2 · x)] = ∡(v1,v2)/π.

Proof [Proof of Proposition 19] Suppose that Strain is a set of mtrain independent samples from
Dtrain

XY , where the marginal of Dtrain
XY on Rd is the standard Gaussian distribution. Let also Xtest be

a set of mtest independent unlabelled samples from Dtest
X . In what follows, let ϵ′ = ϵ3/2/(8d1/2).
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Algorithm 2: TDS Learning of Homogeneous Halfspaces

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , parameter ϵ > 0

Set ϵ′ = ϵ3/2/(10d1/2).
Run the Empirical Risk Minimization algorithm on Strain up to error ϵ′, i.e., compute a vector
v̂ ∈ Sd−1 with v̂ = argminv′∈Sd−1 P(x,y)∈Strain

[y ̸= sign(v′ · x)]
Let V = {v′ ∈ Sd−1 : ∥v′ − v̂∥2 ≤ ϵ′}.
For each x ∈ Xtest, compute the following quantities.

v+
x = argmax

v′∈V
v′ · x and v−

x = argmin
v′∈V

v′ · x

Reject and terminate if Px∼Xtest [sign(v
+
x · x) ̸= sign(v−

x · x)] > 3ϵ/4.
Otherwise, output f̂ : Rd → {±1} with f̂ : x 7→ sign(v̂ · x).

Soundness. When the algorithm accepts, we have that Px∼Xtest [sign(v
+
x ·x) ̸= sign(v−

x ·x)] ≤ 3ϵ
2 .

By standard VC dimension arguments and Theorem 20, after running the Empirical Risk Minimiza-
tion algorithm on training data, as long as mtrain ≥ C d

ϵ′ log(1/(δϵ
′)), we have ∥v̂ − v∥2 ≤ ϵ′.

Therefore, both v and v̂ are within V = {v′ ∈ Sd−1 : ∥v′− v̂∥2 ≤ ϵ′}. By the definition of v+
x and

v−
x , we have the following.

P
x∼Xtest

[sign(v̂ · x) ̸= sign(v · x)] ≤ P
x∼Xtest

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ 3ϵ/4 (C.1)

Moreover, we have err(f̂ ;Dtest
XY ) = E[Px∼Xtest [sign(v̂ ·x) ̸= sign(v ·x)]], where the expectation is

over Xtest ∼ (Dtest
X )⊗mtest . By standard VC dimension arguments, we have that, with probability

at least 1 − δ/2, err(f̂ ;Dtest
XY ) = Px∼Xtest [sign(v̂ · x) ̸= sign(v · x)] + ϵ/4 whenever mtest ≥

C d
ϵ2
log(1/(δϵ)). Therefore, with probability at least 1−δ (union bound over two bad events), upon

acceptance, we have err(f̂ ;Dtest
XY ) ≤ ϵ.

Completeness. For completeness, we assume that Xtest is drawn from N (0, Id). Observe that
V does not depend on Xtest (since it is formed only using training data). Therefore, we may ap-
ply a standard Hoeffding bound to ensure that with probability at least 1 − δ, whenever mtest ≥
C 1

ϵ2
log(1/(δ)), we have

P
x∼Xtest

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] + ϵ/4

It remains to bound Px∼N (0,Id)[sign(v
+
x · x) ̸= sign(v−

x · x)] by ϵ/2. We observe that, since
v+,v− ∈ V , we have v−

x · x ≥ v+
x · x−∥v+

x − v−
x ∥2∥x∥2 ≥ v+

x · x− ϵ′∥x∥2 ≥ v̂ · x− ϵ′∥x∥2 by
the definition of v+

x and v−
x . We similarly have v+

x · x ≤ v̂ · x+ ϵ′∥x∥2.
Therefore the probability that sign(v+

x · x) ̸= sign(v−
x · x) is upper bounded by the probability

that |v̂ · x| ≤ ϵ′∥x∥2 (since, otherwise, both v+
x · x and v−

x · x have the same sign). In particular

P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ P
x∼N (0,Id)

[|v̂ · x| ≤ ϵ′∥x∥2]

≤ P
x∼Nd

[∥x∥2 >
√

4d/ϵ] + P
x∼Nd

[|v̂ · x| ≤ ϵ′
√
4d/ϵ]

≤ Ex∼Nd
[∥x∥22]ϵ
4d

+ P
x∼Nd

[|v̂ · x| ≤ ϵ′
√

4d/ϵ]
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We obtain the final inequality by applying Markov’s inequality. Since Ex∼Nd
[∥x∥22] = d and the

one-dimensional Gaussian density is upper bounded by (2π)−1, we have the following bound.

P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ ϵ

4
+

2√
2π
ϵ′
√

4d/ϵ ≤ ϵ/2 ,

since ϵ′ ≤ ϵ3/2/(8d1/2). This completes the proof.

We now prove Theorem 5, which we restate here for convenience.

Theorem 21 (Disagreement-Based TDS learning) Let C be the class of concepts that map X ⊆
Rd to {±1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large
universal constant. Suppose that we have access to an ERM oracle for PAC learning C under D and
membership access to Dϵ′(f ;D) for any given f ∈ C and ϵ′ > 0. Then, Algorithm 3, given inputs
of sizes |Strain| ≥ C VC(C)

ϵ′ log( 1
ϵ′δ ) and |Xtest| ≥ C VC(C)

ϵ2
log( 1

ϵδ ) is a TDS learning algorithm for
C w.r.t. D that calls the ϵ′-ERM oracle once and the ϵ′-membership oracle |Strain| times, where ϵ is
the accuracy parameter, δ is the failure probability and ϵ′ such that ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

Algorithm 3: Disagreement-Based TDS Learning

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , parameter ϵ > 0
Set ϵ′ > 0 such that ϵ′ · θ(ϵ′, d) ≤ ϵ/2.
Run the Empirical Risk Minimization algorithm on Strain up to error ϵ′, i.e., compute f̂ ∈ C

with f̂ = argminf ′∈C P(x,y)∈Strain
[y ̸= f ′(x)]

Let Dϵ′(f̂ ;D) be as in Definition 4.
Reject and terminate if Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] > ϵ/2.
Otherwise, output f̂ .

Proof [Proof of Theorem 5] Suppose that Strain is a set of mtrain independent samples from Dtrain
XY ,

where the marginal of Dtrain
XY on X is the distribution D. Let alsoXtest be a set ofmtest independent

unlabelled samples from Dtest
X . In what follows, let ϵ′ > 0 such that ϵ′θ(ϵ′, d) ≤ ϵ/2. The proof

follows a similar recipe as the one of Proposition 19. For the following, let f∗ ∈ C be the label
generating function.

Soundness. Suppose that the algorithm accepts. Then, Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] ≤ ϵ/2. Since
f̂ is an minimizes the empirical error on training data, by standard VC arguments, we have that
err(f̂ , f∗;D) ≤ ϵ/2, whenevermtrain ≥ C VC(C)

ϵ′ log( 1
ϵ′δ ), since Dtrain

X = D by assumption. There-
fore, by the definition of Dϵ′(f̂ ;D), for any x ̸∈ Dϵ′(f̂ ;D), we have f̂(x) = f∗(x). Therefore, we
have

P
x∼Xtest

[f̂(x) ̸= f∗(x)] ≤ P
x∼Xtest

[x ∈ Dϵ′(f̂ ;D)] ≤ ϵ/2

Whenever mtest ≥ C VC(C)
ϵ2

log( 1
ϵδ ), we have Px∼Dtest

XY
[y ̸= f∗(x)] ≤ Px∼Xtest [f̂(x) ̸= f∗(x)] +

ϵ/2 ≤ ϵ.

Completeness. Suppose that Dtest
X = D. Then, by a standard Hoeffding bound, we have that

whenever mtest ≥ C 1
ϵ log(1/δ), we have Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] ≤ Px∼D[Dϵ′(f̂ ;D)] + ϵ/2 with

probability at least 1− δ and Px∼D[Dϵ′(f̂ ;D)] ≤ ϵ′θ(ϵ′, d) ≤ ϵ/2, by the choice of ϵ′.
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C.2. TDS Learner for General Halfspaces

We now prove Theorem 6 which we restate here for convenience.

Theorem 22 (TDS learning of General Halfspaces) Let C be the class of general halfspaces over
Rd and C > 0 a sufficiently large universal constant. Then, Algorithm 4, given inputs of size
|Strain| = |Xtest| = CdC log 1/ϵ is a TDS learning algorithm for C w.r.t. the standard Gaussian
distribution N (0, Id) with run-time dO(log 1/ϵ), where ϵ is the accuracy parameter, and the failure
probability δ is at most 0.01.

Algorithm 4: TDS Learning of General Halfspaces

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , parameter ϵ > 0

1: Set T = 2C
2
1 log 1

ϵ
+1, k = C1 log

1
ϵ , ∆ = ϵ

dC2k
and β = ϵ2

C3dC3
.

2: if P(x,y)∼Strain
[y ̸= b] ≤ 1

T for some b ∈ {±1} (large bias case) then
3: For each α ∈ Nd with ∥α∥1 ≤ k, compute the quantity M̂α = Ex∼Xtest [x

α].
4: Reject and terminate if |M̂α − Ex∼N (0,Id)[x

α]| > ∆ for some α with ∥α∥1 ≤ k.
5: Otherwise, output f̂ : Rd → {±1} and terminate, where f̂ : x 7→ b (f̂ constant).
6: else
7: Set v̂ =

E(x,y)∼Strain
[yx]

∥E(x,y)∼Strain
[yx]∥2 .

8: Let T = {v̂ · x : (x, y) ∈ Strain}.
9: Set τ̂ = argminτ∈T P(x,y)∈Strain

[f∗(x) ̸= sign(v̂ · x− τ ′)],
10: Let V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}.
11: For each x ∈ Xtest, compute the following quantities.

(v+
x , τ

+
x ) = argmax

(v′,τ ′)∈V
v′ · x− τ ′ and (v−

x , τ
−
x ) = argmin

(v′,τ ′)∈V
v′ · x− τ ′

12: Reject and terminate if Px∼Xtest [sign(v
+
x · x− τ+x ) ̸= sign(v−

x · x− τ−x )] > 10ϵ.
13: Otherwise, output f̂ : Rd → {±1} with f̂ : x 7→ sign(v̂ · x− τ̂).
14: end if

Suppose the ground-truth halfspace f∗(x) = sign(x · v − τ) is determined by a unit vector
v ∈ Rd and a value τ ∈ R. We will need the following showing that if a halfspace not too
biased under the standard Gaussian distribution, then it is possible to recover the parameters of the
halfspace up to a very high accuracy. See Subsection C.2.3 for the proof.

Proposition 23 (Parameter recovery for halfspaces) For a sufficiently large absolute constant
C > 0, the following is true. For every β, γ ∈ (0, 1) and integer d, let Strain be a set of C( d

βγ )
C

i.i.d samples from a distribution Dtrain
XY such that Dtrain

X = N (0, Id) and the labels are given by an
unknown halfspace f : x 7→ sign(v · x − τ). Additionally, assume that the halfspace f satisfies
Px∈N (0,Id)[f

∗(x) = −1] ≥ γ and Px∈N (0,Id)[f
∗(x) = 1] ≥ γ. Let T = {v̂ · x : (x, y) ∈ Strain}

and set

v̂ =

∑
(x,y)∈Strain

xy

∥
∑

(x,y)∈Strain
xy∥2

and τ̂ = argmin
τ ′∈T

P
(x,y)∈Strain

[f∗(x) ̸= sign(v̂ · x− τ ′)].
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Then, with probability at least 1− 1/1000 we have ∥v − v̂∥2 ≤ β and |τ − τ̂ | ≤ β.

We also highlight two technical lemmas that we use for the analysis of Algorithm 4. Our first
technical lemma insures that if f is a halfspace that very likely assigns the same label to samples
from the Gaussian distribution, then f also very likely assigns the same label to samples form a
distribution whose low-degree moments match those of a Gaussian. This lemma will be useful for
proving the soundness of Algorithm 4, and is proven in Section C.2.2. (Recall that for x ∈ Rd we
denote

∏n
i=1 x

αi
i as xα.)

Lemma 24 When C1 and C2 both exceed some specific absolute constant, the following holds. Let
k and T be defined as in Algorithm 4. Suppose, the set Xtest is such that for every collection of
non-negative integers (α1, · · · , αd) satisfying

∑
i αi ≤ k we have∣∣∣∣ E

x∼Xtest

[xα]− E
x∼N (0,Id)

[xα]

∣∣∣∣ ≤ ϵ

dC2k
. (C.2)

Also, suppose the function f∗(x) = sign(x · v − τ) and the value L ∈ {±1} are such that

P
x∼N (0,1)

[f∗(x) ̸= L] ≤ 2

T
. (C.3)

Then, it is the case that
P

x∼Xtest

[f∗(x) ̸= L] ≤ O(ϵ). (C.4)

Our second technical lemma bounds, for x chosen from the standard Gaussian, the probability
that one is unsure about f∗(x) = sign(v ·x−τ) when one only has approximate estimates for v̂ and
τ̂ for v and τ respectively. This lemma will be useful for proving the completeness of Algorithm 4,
and is proven in Section C.2.1.

Lemma 25 There is some absolute constant K1, such that for every positive integer d and β ∈
(0, 1), the following holds. Let v̂ be any unit vector in Rd and τ̂ be in R. Then, we have for
V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ K1d

K1
√
β (C.5)

C.2.1. PROOF OF SOUNDNESS.

In this subsection we show that if Algorithm 4 accepts then the output f̂ of our algorithm will
generalize on the distribution Dtest

X .

Proposition 26 (Soundness) For any sufficiently large absolute constant C, the following is true.
For any distribution Dtest

X and any halfspace f = sign(v̂ · x − τ̂), the following is true. It can
happen with probability only at most 1

100 that Algorithm 4 gives an output (ACCEPT, f̂ ) for some
predictor f̂ , but it is not the case that

P
x∼Dtest

X

[f∗(x) ̸= f̂(x)] ≤ O(ϵ).
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To prove this proposition, we first need to prove Lemma 24.
Proof [Proof of Lemma 24] First of all, we claim that Equation C.3 implies that

|τ | ≥
√

1

2
log

T

2
(C.6)

Indeed, we have
2

T
≥ 1√

2π

∫ ∞

|τ |
e−z2/2dz ≥ |τ |e−2|τ |2 ≥ e−2|τ |2 ,

where the last inequality holds because for sufficiently large C1 the value of T and therefore |τ | is
sufficiently large and exceeds 1.

Recall that v is assumed to be a unit vector in Rd. Assume, without loss of generality, that
L = −1, and therefore τ > 0. We have

P
x∼Xtest

[sign(x · v − τ) ̸= −1] = P
x∼Xtest

[x · v ≥ τ ] ≤ Ex∼Xtest [(x · v)k]
τk

. (C.7)

To use this inequality, we need to upper-bound Ex∼Xtest [(x · v)k]. Since v is a unit vector, every
(of at most dk) terms of the polynomial mapping x ∈ Rd to (x · v)k has coefficient at most 1. This,
together with Equation C.2 and the triangle inequality, allows us to conclude that∣∣∣∣ E

x∼Xtest

[(x · v)k]− E
x∼N (0,Id)

[(x · v)k]
∣∣∣∣ ≤ dk

ϵ

dC2k
.

Now, since v is a unit vector, we have Ex∼N (0,Id)[(x · v)k] = k!! ≤ kk. Combining this with the
equation above, and Equation C.7 and then substituting Equation C.6 and the values of k and T we
get:

P
x∼Xtest

[sign(x · v − τ) ̸= −1] ≤ 1

|τ |k
(
kk/2 + dk

ϵ

dC2k

)
≤

1(
1
2C

2
1 log

1
ϵ

)C1 log
1
ϵ

((
C1 log

1

ϵ

)C1 log
1
ϵ

+ dk
ϵ

dC2k

)

We see that when C1 and C2 both exceed some absolute constant, the above expression is at most
ϵ, which completes the proof.

Having proven Lemma 24, we are now ready to prove Proposition 26.
Proof [Proof of Proposition 26.]

First, suppose the algorithm outputs (ACCEPT, L) for some L ∈ {±1} via Step 5. For the
algorithm to reach this step, it has to be that

P
x∈S

[f∗(x) ̸= L] ≤ 1

T
,

Via Hoeffding’s inequality, if C is sufficiently large then with probability at least 1 − 1
1000 it holds

that
| P
x∈S

[f∗(x) ̸= L]− P
x∈S

[f∗(x) ̸= L]| ≤ 1

2T
, (C.8)
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and combining the two equations above

P
x∈N (0,Id)

[f∗(x) ̸= L] ≤ 2

T
.

Furthermore, for the algorithm not output REJECT in Step 4, it has to be the case that for every
collection of non-negative integers (α1, · · · , αd) satisfying

∑
i αi ≤ k we have∣∣∣∣ E

x∼Xtest

[xα]− E
x∼N (0,Id)

[xα]

∣∣∣∣ > ϵ

dC2k
.

Overall, this allows us to apply Lemma 24 to conclude that

P
x∼Xtest

[f∗(x) ̸= L] ≤ O(ϵ),

and, for a sufficiently large absolute constant C, with probability at least 1 − 1
1000 , this is only

possible if
P

x∼Dtest
X

[f∗(x) ̸= L] ≤ O(ϵ),

which finishes the proof for the case when the algorithm accepts in Step 5.
Now, suppose the algorithm accepts in Step 13. For the algorithm to reach this step, it has to be

that
P

x∈S
[f∗(x) ̸= L] >

1

T
,

And together with Equation C.8, this implies that

P
x∈N (0,Id)

[f∗(x) ̸= L] >
1

2T
.

For such f∗ we can apply Proposition 23 and conclude that with probability at least 1− 1/1000 the
values of v̂ and τ obtained in Algorithm 4 satisfy

∥v − v̂∥2 ≤
(

ϵ

C3dC3

)2

= β, (C.9)

|τ − τ̂ | ≤
(

ϵ

C3dC3

)2

= β, (C.10)

where the last equality is by the definition of β. Now, since the algorithm did not reject in Step
12, it must be the case that the fraction of elements in Xtest that satisfy sign(v+

x · x − τ+x ) ̸=
sign(v−

x ·x−τ−x ) is at most 10ϵ. IfC is a sufficiently large absolute constant, the standard Hoeffding
inequality tells us that for this to happen with probability larger than 1/1000 it has to be the case
that

P
x∼Dtest

X

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ 11ϵ.

Whenever the event above occurs, since V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β} we can use
Equations C.9 and C.10 to conclude sign(v · x− τ) = sign(v̂ · x− τ̂). Therefore,

P
x∼Dtest

X

[sign(v · x− τ) ̸= sign(v̂ · x− τ̂)] ≤ 11ϵ

This completes the proof of soundness of Algorithm 4.
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C.2.2. PROOF OF COMPLETENESS.

The second proposition shows that if the testing distribution is the standard Gaussian, then the
algorithm will likely accept. Together, propositions 26 and 27 yield Theorem 6.

Proposition 27 (Completeness) For sufficiently large value of the absolute constants C and C3

and for any halfspace f = sign(v̂ · x − τ̂), suppose the testing distribution Dtest
X is the standard

Gaussian distribution. Then, with probability at least 1 − 1
100 Algorithm 4 will accept, i.e. output

(ACCEPT, f̂ ) for some f̂ .

To prove this proposition, we first need to prove Lemma 25.
Proof [Proof of Lemma 25] We have Ex∼N (0,Id)[∥x∥

2
2] = d. Therefore, by Markov’s inequality, we

have

P
x∼N (0,Id)

[
∥x∥2 >

√
d√
β

]
= P

x∼N (0,Id)

[
∥x∥22 >

d

β

]
≤ β (C.11)

Additionally, from the bound of 1√
2π

on the density of standard Gaussian in one dimension, we get:

P
x∼N (0,Id)

[
|v̂ · x− τ̂ | ≤ 100

√
βd+ β

]
≤ 200

√
βd+ 2β√
2π

(C.12)

If it holds that ∥x∥2 ≤
√
d√
β

, we have for every v′ satisfying ∥v′ − v̂∥2 ≤ β and any τ ′ satisfying
|τ ′ − τ̂ | ≤ β that

|v′ · x− τ ′ − (v̂ · x− τ̂)| ≤
√
dβ + β

Therefore, if it is also the case that |v̂ · x− τ̂ | > 100
√
βd+ β, then we have

sign
(
v′ · x− τ ′

)
= sign (v̂ · x− τ̂)

This allows us to conclude that

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤

P
x∼N (0,Id)

[
∥x∥2 >

√
d√
β

]
+ P

x∼N (0,Id)

[
|v̂ · x− τ̂ | ≤ 100

√
βd+ β

]
≤ β +

200
√
βd+ 2β√
2π

,

where in the end we substituted Equation C.11 and Equation C.12. Recalling that for β ∈ (0, 1) we
have β <

√
β and picking K1 to be a sufficiently large absolute constant, our proposition follows

from the inequality above.

Having proven Lemma 25, we are now ready to prove Proposition 27.
Proof [Proof of Proposition 27.] There are two ways for the algorithm to output REJECT: through
Step 4 and through Step 12. We will argue neither takes place. From standard Gaussian concentra-
tion, if C is a sufficiently large absolute const ant, with probability at least 1 − 1

1000 the algorithm
will not output REJECT in Step 4.

We now proceed to ruling out the possibility that the algorithm outputs REJECT in Step 12. For
the algorithm to reach step Step 12, it is necessary that

P
x∈S

[f∗(x) ̸= L] >
1

T
,
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Via Hoeffding’s inequality, if C is sufficiently large then with probability at least 1 − 1
1000 it holds

that |Px∈S [f
∗(x) ̸= L]−Px∈S [f

∗(x) ̸= L]| ≤ 1
2T , which together with the equation above implies

that
P

x∈N (0,Id)
[f∗(x) ̸= L] >

1

2T
.

For such f∗ we can apply Proposition 23 and conclude that with probability at least 1− 1/1000
the values of v̂ and τ obtained in Algorithm 4 satisfy

∥v − v̂∥2 ≤
(

ϵ

C3dC3

)2

= β, (C.13)

|τ − τ̂ | ≤
(

ϵ

C3dC3

)2

= β, (C.14)

Recall that V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}. The equation above together with
Lemma 25 implies that

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ K1d

K1
ϵ

C3dC3
≤ ϵ,

where the last inequality holds for sufficiently large value of C3. Combining the inequality above
with the standard Hoeffding bound and recalling that Dtest

X = N (0, Id), we see that with probability
at least 1− 1

1000 ,

P
x∼Xtest

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ 2ϵ,

In conclusion, we see that the inequality above implies that the algorithm does not output REJECT
in Step 12. This completes our proof.

C.2.3. PARAMETER RECOVERY.

Here we prove Proposition 23, which was used in the proofs of Proposition 26 and Proposition 27,
thereby finishing the proof of Theorem 6. Let us first recall the setting of Proposition 23. For a unit
vector v in Rd and τ ∈ R satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

Strain is a set of C
(

d
ηβ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as
standard Gaussian and Y-marginal given by the halfspace f = sign(v·x−τ). The absolute constant
C is assumed to be sufficiently large. We let T = {v̂ · x : (x, y) ∈ Strain} and set

v̂ =

∑
(x,y)∈Strain

xy

∥
∑

(x,y)∈Strain
xy∥2

τ̂ = argmin
τ ′∈T

P
(x,y)∈Strain

[f∗(x) ̸= sign(v̂ · x− τ ′)].
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We would like to prove that with probability at least 29/30 we have

∥v − v̂∥2 ≤ β,

|τ − τ̂ | ≤ β.

The following proposition tells us that the first inequality above is likely to hold:

Proposition 28 (Recovery of normal vector for halfspaces) For a sufficiently large absolute con-
stant C, and every η, β ∈ (0, 1) and integer d, the following holds. Let Strain is a set of at least

C
(

d
ηβ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as standard Gaus-

sian and Y-marginal given by the halfspace f = sign(v ·x− τ). For every unit vector v in Rd and
τ ∈ R satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

The vector v̂ =

∑
(x,y)∈Strain

xy

∥
∑

(x,y)∈Strain
xy∥2 with probability at least 1− 1

2000 satisfies:

∥v − v̂∥2 ≤ β,

Once this stage is accomplished, the next proposition tells us that we can recover the offset τ .

Proposition 29 (Offset recovery for halfspaces) For a sufficiently large absolute constant C, and

every η, γ ∈ (0, 1) and integer d, the following holds. Let Strain is a set of at least C
(

d
ηγ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as standard Gaussian and Y-
marginal given by the halfspace f = sign(v · x − τ). For every unit vector v in Rd and τ ∈ R
satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

Then, with probability at least 1 − 1
2000 , for every unit vector v̂ that forms an angle of at most γ

with v the value
τ̂ = argmin

τ ′∈R
P

(x,y)∈Strain

[f∗(x) ̸= sign(v̂ · x− τ ′)].

satisfies

|τ − τ̂ | ≤ O

(
1

η50
√
γ

)
.

Formally, Proposition 23 follows from the two propositions above as follows. One first uses Propo-
sition 28 to conclude that, for any absolute constant C5, there is a value of the absolute constant C
for which with probability 1− 1

2000 a vector v̂ that satisfies ∥v− v̂∥ ≤ 1
C5
β2η100. This implies that

the angle between v and v̂ is upper-bounded by 10
C5
β2η100. Then, if the absolute constantC5 is large

enough, if we use Proposition 29, then with probability 1 − 1
2000 the value τ̂ satisfies |τ − τ̂ | ≤ β,

finishing the proof of Proposition 23.
Now, proceed to prove the two propositions above. We start with Proposition 28.

Proof [Proof of Proposition 28]
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Let {e1, · · · ed−1} form an orthonormal basis for the subspace orthogonal to v. Since all the
projections {v · x, e1 · x, · · · , ed−1 · x} are independent standard Gaussians and f∗(x) = sign(v ·
x− τ) we have for all i

E
x∈N (0,Id)

[ei · xf∗(x)] = 0.

At the same time

E
x∈N (0,Id)

[v · xf(x)] =
∫ +∞

t=−∞
t sign(t− τ)

1√
2π

dt =∫
t∈[−|τ |,|τ |]

t sign(t− τ)
1√
2π

dt+

∫
t∈[−∞,−|τ |]∪[|τ |,+∞]

t sign(t− τ)
1√
2π

dt =
2√
2π

∫ ∞

t=|τ |
t dt

For some positive absolute constant K2, the final expression above is at least K2 Pt∼N(0,1)[t > τ ],
because if |τ | > 1, then one can lower-bound the expression above by 2√

2π

∫∞
t=|τ | dt. On the other

hand, if |τ | ∈ [0, 1], then the expression on the right side is at least 2√
2π

∫∞
t=1 dt which is a positive

absolute constant, while Pt∼N(0,1)[t > τ ] is always upper-bounded by 1. Overall, we have

E
x∈N (0,Id)

[v · xf∗(x)] ≥ K2 P
t∼N(0,1)

[t > τ ]

= K2min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ K2η.

Now, we bound the variance of xf∗(x). Since f∗(x) ∈ {±1}, we have

E
x∈N (0,Id)

[
(ei · xf∗(x))2

]
= E

x∈N (0,Id)

[
(ei · x)2

]
= 1,

E
x∈N (0,Id)

[
(v · xf∗(x))2

]
= E

x∈N (0,Id)

[
(v · x)2

]
= 1.

This allows us to use the Chebychev’s inequality together with the union bound to conclude that
with probability at least 1− 1

2000 we have for all i

|Ex∈S [ei · xf∗(x)]| ≤
√

60d

N
,

and also

Ex∈S [v · xf∗(x)] ≥ K2η −
√

60d

N
,

Recalling that v̂ =

∑
x∈S1

xf∗(x)

∥
∑

x∈S1
xf∗(x)∥2 =

Ex∈S1
xf∗(x)

∥Ex∈S1
xf∗(x)∥2 , we see that

|v̂ · ei| ≤

√
60d
N

K2η −
√

60d
N

30



TDS LEARNING

Substituting N = C( d
ηβ )

C , and letting C be a sufficiently large absolute constant, we obtain from

above implies that |v̂ · ei| ≤ β

10
√
d

. Since ∥v̂∥ = 1 we have

1 ≥ |v̂ · v| ≥
√
1− β

10
≥ 1− β

10
,

we also see that taking C to be a sufficiently large absolute constant also ensures that v̂ · v > 0, so
overall we get

∥v̂ − v∥ ≤ β,

which finishes the proof.

In order to prove Proposition 29, we will need a proposition that relates the following two
quantities: (1) the difference in offsets τ1 and τ2 of two halfspaces (2) The probability that these
two hafspaces disagree on a point drawn from the standard Gaussian.

Proposition 30 There is some absolute constant K1 such that for any pair of unit vectors v1,v2 ∈
Rd and a pair of real numbers τ1, τ2, letting γ denote the angle between v1 and v2, the following
holds. Suppose γ < π/4, then

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ2)] ≥
1

K1
e−τ21 /2min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
(C.15)

It is also the case that

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ1 cos γ)] ≤ K1
√
γ (C.16)

Proof To prove this, we first show that for any z ∈ R, conditioned on v1 ·x = z1 the distribution of
v2 · x is N (z1 cos γ, sin γ). Indeed, let v3 be the unit vector that one obtains by first projecting v2

into the subspace perpendicular to v1, and then normalizing the resulting vector to have unit norm.
This means v3 is orthogonal to v1 and we have

v2 = v1 cos γ + v3 sin γ.

Therefore
x · v2 = x · v1 cos γ + x · v3 sin γ

Now, since x · v1 and x · v3 are distributed as i.i.d. one-dimensional standard Gaussians. Thus,
conditioning on x · v1 = z1 we get that x · v2 is distributed as N (z cos γ, sin γ).

Our observation allows us to write:

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ2)] =

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 cos γ + z2 sin γ − τ2)] =

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 + z2 tan γ − τ2/ cos γ)] (C.17)
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Let us first focus on the case when γ ∈ [0, π/2). We see that

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 + z2 tan γ − τ2/ cos γ)] ≥

1

2
P

z1∈N (0,1)
[sign (z1 − τ1) ̸= sign (z1 − τ2/ cos γ)] (C.18)

The reason that inequality above is true is that, conditioned on a specific value of z1, if z1 >
τ2/ cos γ, then z1 + z2 tan γ − τ2 is more likely to be positive than negative. At the same time, if
z1 < τ2/ cos γ, then z1 + z2 tan γ − τ2 is more likely to be negative than positive.

We lower-bound the probability above as follows. Let A be the interval of R defined as follows:

A :=

{
z ∈ R : sign(z − τ1) ̸= sign(z − τ2/ cos γ) & |z − τ1| ≤

1

|τ1|+ 1

}
We have

P
z1∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 − τ2/ cos γ)] ≥ P
z1∈N (0,1)

[z1 ∈ A] ≥

≥ min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
1√
2π
e
− 1

2

(
|τ1|− 1

|τ1|+1

)2

≥ Ω(1) ·min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
e−τ21 /2, (C.19)

which, combined with Equations C.17 and C.18, finishes the proof of Equation C.15.
Now, we proceed to proving Equation C.16. We proceed as follows:

P
z1,z2∈N (0,1)

[sign (z1 − τ1) = sign (z1 + z2 tan γ − τ1)]

≥ P
z1,z2∈N (0,1)

[
|z1 − τ1| >

√
tan γ & |z2| <

1√
tan γ

]
≥ 1−O(1) ·

√
tan γ −O(1)

∫ ∞

1√
tan γ

e−z2/2 dz

= 1−O(
√
tan γ) = 1−O(

√
γ),

which, when combining with with Equation C.17 and substituting τ2 = τ1 cos γ, proves Equation
C.16.

Having proven Proposition 30, we are now ready to prove Proposition 29.
Proof [Proof of Proposition 29.] Recall that T = {v̂ · x : (x, y) ∈ Strain}. We see for τ ′ between
two neighboring elements of T the value of Px∈N(0,I)[f

∗(x) ̸= sign(v̂ · x − τ ′)] stays the same.
Therefore

P
x∈T

[f∗(x) ̸= sign(v̂·x−τ̂)] = min
τ ′∈T

P
x∈T

[f∗(x) ̸= sign(v̂·x−τ ′)] = min
τ ′∈R

P
x∈T

[f∗(x) ̸= sign(v̂·x−τ ′)].
(C.20)
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Since the function class {sign(v′ · x − τ ′ : v′ ∈ Rd, τ ′ ∈ R} has a VC dimension of d + 1, the
standard VC bound tells us that for sufficiently large absolute constant C with probability at least
1− 1

2000 we have for every τ ′ ∈ R and unit vector v̂ that∣∣∣∣ P
x∈N(0,I)

[f∗(x) ̸= sign(v̂ · x− τ ′]− P
x∈T

[f∗(x) ̸= sign(v̂ · x− τ ′)]

∣∣∣∣ ≤ √
γ (C.21)

From Equation C.16 in Proposition 30 we have that

min
τ ′∈R

P
x∈N(0,I)

[f∗(x) ̸= sign(v̂ · x− τ ′)] ≤ K1
√
γ ≤ O(

√
γ) (C.22)

We now upper-bound |τ | in terms η as follows:

|τ | ≤ 10

√
log

1

η
, (C.23)

For |τ | < 1, this is immediate, because the probability that the Gaussian exceeds one standard
deviation in a given direction is at least 1/10. For |τ | ≥ 1, we write

η ≥
∫ ∞

|τ |
e−t2/2 dt ≥ 1

|τ |
e−(|τ |+1/|τ |)2/2 ≥ 1

e2
· 1

|τ |
e−|τ |2/2,

which proves Equation C.23.
Taking Equation C.15 in Proposition 30 and substituting Equation C.23 we get

P
x∈N (0,Id)

[f(x) ̸= sign (v̂ · x− τ̂)] ≥ 1

K1
e−τ21 /2min

(∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ , 1

|τ |+ 1

)
≥

η50

K1
min

(∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ , 1)
Combining the above with Equation C.20, Equation C.21 and Equation C.22 we get∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ ≤ K1

η50
(O(

√
γ) +

√
γ) ≤ O(

√
γ/η50).

Finally, we see that

|τ − τ̂ | ≤
∣∣∣∣τ − τ̂

cos γ

∣∣∣∣+ ∣∣∣∣τ̂ − τ̂

cos γ

∣∣∣∣ ≤ O(
√
γ/η50) +O(

√
log(1/η)γ2) = O(

√
γ/η50).

This completes the proof of Proposition 29.

Appendix D. TDS Learning Through Moment Matching

D.1. L2-Sandwiching Implies TDS Learning

We now prove Theorem 8 which we restate here for convenience.
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Theorem 31 (L2-sandwiching implies TDS Learning) Let D be a distribution over a set X ⊆ Rd

and let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1), ϵ′ = ϵ/100 δ′ = δ/2 and assume
that the following are true.

(i) (L2-Sandwiching) The ϵ′-approximate L2-sandwiching degree of C under D is at most k with
coefficient bound B.

(ii) (Moment Concentration) If X ∼ D⊗m and m ≥ mconc then, with probability at least 1− δ′,
we have that for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [xα]− ED[x

α]| ≤ ϵ′

B2d4k
.

(iii) (Generalization) If S ∼ D⊗m
XY where DXY is any distribution over X × {±1} such that

DX = D and m ≥ mgen then, with probability at least 1− δ′ we have that for any degree-k
polynomial p with coefficient bound B it holds |EDXY [(y− p(x))2]−ES [(y− p(x))2]| ≤ ϵ′.

Then, Algorithm 5, upon receiving mtrain ≥ mgen labelled samples Strain from the training

distribution and mtest ≥ C · d
k+log(1/δ)

ϵ2
+mconc unlabelled samples Xtest from the test distribution

(where C > 0 is a sufficiently large universal constant), runs in time poly(|Strain|, |Xtest|, dk) and
TDS learns C with respect to D up to error 32λ+ ϵ and with failure probability δ.

Algorithm 5: TDS Learning through Moment Matching

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , parameters ϵ > 0, δ ∈ (0, 1), k ∈ N, B > 0

Set ϵ′ = ϵ/100, δ′ = δ/2 and ∆ = ϵ′

B2d4k

For each α ∈ Nd with ∥α∥1 ≤ 2k, compute the quantity
M̂α = Ex∼Xtest [x

α] = Ex∼Xtest

[∏
i∈[d] x

αi
i

]
Reject and terminate if |M̂α − Ex∼D[x

α]| > ∆ for some α with ∥α∥1 ≤ 2k.
Otherwise, solve the following least squares problem on Strain up to error ϵ′

min
p

E
(x,y)∼Strain

[
(y − p(x))2

]
s.t. p is a polynomial with degree at most k

each coefficient of p is absolutely bounded by B

Let p̂ be an ϵ′-approximate solution to the above optimization problem.
Accept and output h : X → {±1} where h : x 7→ sign(p̂(x)).

One key ingredient of the proof of Theorem 8 is the following transfer lemma which states
that moment matching implies that the empirical squared loss between two polynomials on the test
distribution is close to their expected squared loss under the target distribution.

Lemma 32 (Transfer Lemma for Square Loss) Let D be a distribution over X ⊆ Rd and Xtest

a (multi)set of points in Rd. If |Ex∼Xtest [x
α] − Ex∼D[x

α]| ≤ ∆ for all α ∈ Nd with ∥α∥1 ≤ 2k,
then for any degree k polynomials p1, p2 with coefficients that are absolutely bounded byB, it holds∣∣∣ E

x∼Xtest

[(p1(x)− p2(x))
2]− E

x∼D
[(p1(x)− p2(x))

2]
∣∣∣ ≤ B2 · d4k ·∆
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Proof The polynomials p1, p2 all have degree at most k and coefficients that are absolutely bounded
byB. Therefore, the polynomial (p1−p2)2 has degree at most 2k and coefficients that are absolutely
bounded by B2d2k. Let p′ = (p1− p2)

2 =
∑

α:∥α∥1≤2k p
′
αx

α (with |p′α| ≤ B2d2k as argued above)
which gives the following.

∥p1 − p2∥2L2(Xtest)
= E

x∼Xtest

[
(p1(x)− p2(x))

2
]
= E

x∼Xtest

[
p′(x)

]
It remains to relate Ex∼Xtest [p

′(x)] to Ex∼D [p′(x)], which follows by the moment-matching as-
sumption. ∣∣∣ E

x∼Xtest

[
p′(x)

]
− E

x∼D

[
p′(x)

]∣∣∣ =∣∣∣∣ ∑
α:∥α∥1≤2k

p′α

(
E

x∼Xtest

[xα]− E
x∼D

[xα]

)∣∣∣∣
≤

∑
α:∥α∥1≤2k

|p′α| ·
∣∣∣∣ E
x∼Xtest

[xα]− E
x∼D

[xα]

∣∣∣∣
=

∑
α:∥α∥1≤2k

|p′α| ·
∣∣∣M̂α −Mα

∣∣∣
≤ d2k ·B2 · d2k ·∆ ,

which concludes the proof of the lemma.

We are now ready to prove Theorem 8.
Proof [Proof of Theorem 8] For the following, let Dtrain

XY be the training distribution, Dtest
XY the test

distribution (both over X × {±1}) and Dtrain
X ,Dtest

X the corresponding marginal distributions over
X . We assume that Dtrain

X = D. Let mtrain = |Strain| and mtest = |Xtest|, ϵ′ = ϵ/100, δ′ = δ/2,
k, B as defined in condition (i). We also set ∆ = ϵ′

B2d4k
and mconc as defined in condition (ii), as

well as mgen as defined in (iii).

Soundness. Suppose that Algorithm 5 accepts and outputs h = sign(p̂). For the following, let
λtrain = err(f∗;Dtrain

XY ) and λtest = err(f∗;Dtest
XY ) (where we have λ = λtrain + λtest). We can

bound the error of the hypothesis h on Dtest
XY as follows

err(h;Dtest
XY ) ≤ err(f∗;Dtest

XY ) + err(f∗, h;Dtest
X )

= λtest + E[err(f∗, h;Xtest)] ,

where the expectation above is over Xtest ∼ (Dtest
X )⊗mtest . Denote err(h;Dtest

XY ) = PDtest
XY

[y ̸=
h(x)] and err(h1, h2;Dtest

X ) = PDtest
X

[h1(x) ̸= h2(x)] and use the fact that for random variables
y1, y2, y3 ∈ {±1}, it holds P[y1 ̸= y2] ≤ P[y1 ̸= y3] + P[y2 ̸= y3]. Since h is the sign of a
polynomial with degree at most k = k(ϵ′) (see Algorithm 5) and the class of functions of this form
has VC dimension at most dk (e.g., by viewing it as the class of halfspaces in dk dimensions) we
have that whenever mtest ≥ C · dk+log(1/δ′)

ϵ′2 for some sufficiently large universal constant C > 0
the following is true with probability at least 1− δ′ over the distribution of Xtest.

E[err(f∗, h;Xtest)] ≤ err(f∗, h;Xtest) + ϵ′
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Therefore, it is sufficient to bound the quantity err(f∗, h;Xtest). We now observe the following
simple fact.

E
x∼Xtest

[(f∗(x)− p̂(x))2] ≥ P
Xtest

[f∗(x) = 1, p̂(x) < 0] + P
Xtest

[f∗(x) = −1, p̂(x) ≥ 0]

= P
Xtest

[f∗(x) ̸= sign p̂(x)]

= err(f∗, h;Xtest)

Therefore, we have err(f∗, h;Xtest) ≤ ∥f∗ − p̂∥2L2(Xtest)
. Let pup, pdown be ϵ′-approximate L2

sandwiching polynomials for f∗ of degree at most k = k(ϵ′) and with coefficient boundB = B(ϵ′).
The right hand side can be bounded as follows.

∥f∗ − p̂∥L2(Xtest) ≤ ∥f∗ − pdown∥L2(Xtest) + ∥pdown − p̂∥L2(Xtest)

≤ ∥pup − pdown∥L2(Xtest) + ∥pdown − p̂∥L2(Xtest)

In the last inequality, we used the fact that pdown(x) ≤ f∗(x) ≤ pup(x) for any x ∈ X . We will
now compare ∥pup − pdown∥L2(Xtest) to ∥pup − pdown∥L2(D) (and, similarly, ∥pdown − p̂∥L2(Xtest)

to ∥pdown− p̂∥L2(D)) using the transfer lemma (Lemma 32). The polynomials pup, pdown, p̂ all have
degree at most k and coefficients that are absolutely bounded by B. Moreover, since Algorithm 5
has accepted, we have that for any α ∈ Nd with ∥α∥1 ≤ 2k, the following is true∣∣∣M̂α −Mα

∣∣∣ ≤ ∆ , (D.1)

where M̂ = Ex∼Xtest [x
α] (recall that xα =

∏
i∈[d] x

αi
i ), M = Ex∼D[x

α] and ∆ = ϵ′

B2d4k
. There-

fore, by applying Lemma 32, we obtain that ∥pup − pdown∥L2(Xtest) ≤ ∥pup − pdown∥L2(D) +
√
ϵ′

and, similarly, ∥pdown − p̂∥L2(Xtest) ≤ ∥pdown − p̂∥L2(D) +
√
ϵ′.

We have assumed that pup, pdown are ϵ′-approximate L2 sandwiching polynomials for f∗ and,
therefore ∥pup − pdown∥L2(D) =

√
∥pup − pdown∥2L2(D) ≤

√
ϵ′ (see Definition 12). We bound the

quantity ∥pdown − p̂∥L2(D) as follows.

∥pdown − p̂∥L2(D) ≤ ∥pdown − f∗∥L2(D) + ∥f∗ − p̂∥L2(D)

≤ ∥pup − pdown∥L2(D) + ∥f∗ − p̂∥L2(D) (since pdown ≤ f∗ ≤ pup)

≤
√
ϵ′ + ∥f∗ − p̂∥L2(D) (D.2)

Recall that ∥f∗ − p̂∥2L2(D) = Ex∼D[(p̂(x) − f∗(x))2]. By assumption, Dtrain
X = D and therefore

Ex∼D[(p̂(x)− f∗(x))2] = Ex∼Dtrain
X

[(p̂(x)− f∗(x))2]. Moreover, we can view the expectation to
be over the joint distribution (x, y) ∼ Dtrain

XY (coupling of x and y), but the variable y is ignored,
i.e., Ex∼Dtrain

X
[(p̂(x)− f∗(x))2] = E(x,y)∼Dtrain

XY
[(p̂(x)− f∗(x))2]. We can bound the latter term as

follows.

E
(x,y)∼Dtrain

XY

[(p̂(x)− f∗(x))2]1/2 = E
(x,y)∼Dtrain

XY

[(p̂(x)− y + y − f∗(x))2]1/2

≤ E
Dtrain

XY

[(p̂(x)− y)2]
1/2

+ E
Dtrain

XY

[(y − f∗(x))2]
1/2
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For the term E(x,y)∼Dtrain
XY

[(p̂(x)−y)2], we use condition (iii) to have with probability at least 1−δ′,
|E(x,y)∼Dtrain

XY
[(p̂(x) − y)2] − E(x,y)∼Strain

[(p̂(x) − y)2]| ≤ ϵ′ whenever mtrain ≥ mgen. We now
use the fact that p̂ is an ϵ′-approximate solution to the least squares problem defined in Algorithm 5
and have the following bound

E
(x,y)∼Strain

[(p̂(x)− y)2]1/2 ≤ E
(x,y)∼Strain

[(pdown(x)− y)2]1/2 +
√
ϵ′

Therefore, due to the generalization condition we have

E
(x,y)∼Dtrain

XY

[(p̂(x)− y)2]1/2 ≤ E
(x,y)∼Dtrain

XY

[(pdown(x)− y)2]1/2 + 3
√
ϵ′

≤ ∥pdown − f∗∥L2(Dtrain
X ) + E

(x,y)∼Dtrain
XY

[(y − f∗(x))2]1/2 + 3
√
ϵ′

≤ ∥pdown − pup∥L2(D) + E
(x,y)∼Dtrain

XY

[(y − f∗(x))2]1/2 + 3
√
ϵ′

≤ E
(x,y)∼Dtrain

XY

[(y − f∗(x))2]1/2 + 4
√
ϵ′

Therefore, we have shown that ∥f∗ − p̂∥L2(D) ≤ 4EDtrain
XY

[(y − f∗(x))2]1/2 + 2
√
ϵ′. Note that

EDtrain
XY

[(y − f∗(x))2] = 4PDtrain
XY

[y ̸= f∗(x)] = 4λtrain. Therefore, ∥f∗ − p̂∥L2(D) ≤ 4
√
λtrain +

4
√
ϵ′. By Equation (D.2), this implies ∥pdown − p̂∥L2(D) ≤ 4

√
λtrain + 5

√
ϵ′, which in turn implies

∥pdown − p̂∥L2(Xtest) ≤ 4
√
λtrain + 7

√
ϵ′. We overall obtain the following bound.

err(h;Dtest
XY ) ≤ λtest + (4λ

1/2
train + 7

√
ϵ′)2

≤ λtest + 32λtrain + 100ϵ′

≤ 32λ+ ϵ (since ϵ′ = ϵ/100 and λtest ≥ 0)

Note that, in fact, we have also demonstrated that upon acceptance, the following is true.

err(f∗, h;Dtest
X ) ≤ 32λtrain + ϵ

The results above holds with probability at least 1−3δ′ = 1−δ (union bound over two bad events).

Completeness. For completeness, it is sufficient to ensure that mtest ≥ mconc, because then, the
probability of acceptance is at least 1− δ, due to condition (ii), as required.

D.2. Applications

In this section, we apply our main result in Theorem 8 to obtain a number of TDS learners for
important concept classes with respect to Gaussian and Uniform target marginals. In particular, we
will use the following corollary, which follows by Theorem 8 and some simple properties of the
Gaussian and Uniform distributions (see Lemmas 59 and 60).

Corollary 33 Let D be either the standard Gaussian in d dimensions or the uniform distribution
over the d-dimensional hypercube. Let C be a concept class whose ϵ-approximate sandwiching
degree with respect to D is k. Then, there is an algorithm that runs in time dO(k)and TDS learns C
up to error 32λ+O(ϵ) and failure probability at most 0.1.
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Boolean Classes. We now bound the L2 sandwiching degree of bounded size Decision trees and
bounded size and depth Boolean Formulas.

Lemma 34 (L2 sandwiching degree of Decision Trees) Let D be the uniform distribution over
the hypercube X = {±1}d. For s ∈ N, let C be the class of Decision Trees of size s. Then, for any
ϵ > 0 the L2 sandwiching degree of C is at most k = O(log(s/ϵ)).

Proof Let f ∈ C be a decision tree of size s. Consider the polynomials pup, pdown over {±1}d
which correspond to the following truncated decision trees. For pup, we truncate f at depth k and
substitute the internal nodes at depth k with leaf nodes labelled 1. Then, pup corresponds to a sum of
polynomials of degree at most k, each corresponding to a root-to-leaf path in the truncated decision
tree. Clearly, pup ≥ f and pup has degree k. We have that ED[(pup(x)− f(x))2] is upper bounded
by a constant multiple of the probability that pup takes the value 1, while f(x) takes the value −1,
since pup is itself a Boolean-valued function (it is a decision tree). The probability that this happens
is at most s · 2−k = O(ϵ) for k = O(log(s/ϵ)). We obtain pdown by a symmetric argument.

For the following lemma, we make use of an upper bound for the pointwise distance between a
Boolean formula and the best approximating low-degree polynomial from O’Donnell and Servedio
(2003) (which readily implies the existence of low-degree L2 sandwiching polynomials).

Lemma 35 (L2 SD of Boolean Formulas, Theorem 6 in O’Donnell and Servedio (2003)) Let D
be the uniform distribution over the hypercube X = {±1}d. For s, ℓ ∈ N, let C be the class of
Boolean formulas of size at most s, depth at most ℓ. Then, for any ϵ > 0 the L2 sandwiching degree
of C is at most k = (C log(s/ϵ))5ℓ/2

√
s, for some sufficiently large universal constant C > 0.

Proof Let f ∈ C be an formula of size s and depth ℓ. We first construct a polynomial p that satisfies
|p(x) − f(x)| ≤

√
ϵ/2 for any x ∈ {±1}d. This corresponds to a slight modification of the proof

of Theorem 6 in O’Donnell and Servedio (2003), where the basis of the inductive construction
of p (see Lemma 10 in O’Donnell and Servedio (2003)) is an O(

√
ϵ/s3) bound (instead of the

original 1/s3 bound) for the (trivial) approximation of a single variable xi by itself. The degree
of p is indeed upper bounded by (C log(s/ϵ))5ℓ/2

√
s and we may obtain pup, pdown by setting

pup(x) = p(x) +
√
ϵ/2 and pdown = p(x) −

√
ϵ/2. Clearly, pdown(x) ≤ f(x) ≤ pup(x) and

|pup(x)− pdown(x)| =
√
ϵ for all x ∈ {±1}d. Therefore ∥pup − pdown∥2L2(D) ≤ ϵ.

We obtain the following results for agnostic TDS learning of boolean concept classes.

Corollary 36 (TDS Learner for Decision Trees) Let D be the uniform distribution over the hy-
percube in d dimensions. Then, there is an algorithm that runs in time dO(log(s/ϵ)) and TDS learns
Decision Trees of size s with respect to Unif({±1}d) up to error 32λ+O(ϵ).

Corollary 37 (TDS Learner for Boolean Formulas) Let D be the uniform distribution over the
hypercube in d dimensions and C > 0 some sufficiently large universal constant. Then, there is an
algorithm that runs in time d

√
s(C log(s/ϵ))5ℓ/2 and TDS learns Boolean formulas of size at most s

and depth at most ℓ with respect to Unif({±1}d) up to error 32λ+O(ϵ).
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Intersections and Decision Trees of Halfspaces. We now provide an upper bound for the L2-
sandwiching degree of Decision Trees of halfspaces, which does not merely follow from a bound
on the L∞ approximate degree and, in particular, holds under both the Gaussian distribution and
the Uniform over the hypercube. The following lemma is based on a powerful result from pseu-
dorandomness literature (Theorem 10.4 from Gopalan et al. (2010)) which was originally used to
provide a bound for the L1-sandwiching degree of decision trees of halfspaces, but, as we show,
also provides a bound on the L2-sandwiching degree with careful manipulation.

Lemma 38 (L2-sandwiching degree of Intersections and Decision Trees of Halfspaces) Let D
be either the uniform distribution over the hypercube X = {±1}d or the multivariate Gaussian
distribution N (0, Id) over X = Rd. For ℓ ∈ N, let also C be the class of concepts that can be
expressed as an intersection of ℓ halfspaces on X . Then, for any ϵ > 0 the L2 sandwiching degree
of C is at most k = Õ( ℓ

6

ϵ2
). For Decision Trees of halfspaces of size s and depth ℓ, the bound is

k = Õ( s
2ℓ6

ϵ2
).

The above result implies the following corollary.

Corollary 39 (TDS Learner for Intersections and Decision Trees of Halfspaces) Let D be ei-
ther the standard Gaussian in Rd or the uniform distribution over the hypercube in d dimensions.
Then, there is an algorithm that runs in time dÕ(ℓ6/ϵ2) and TDS learns intersections of ℓ halfspaces
with respect to D up to error 32λ+O(ϵ). For Decision Trees of halfspaces with size s and depth ℓ
the bound is dÕ(s2ℓ6/ϵ2).

In order to apply the structural result we need from Gopalan et al. (2010), we first provide a
formal definition for the notion of hypercontractivity.

Definition 40 (Hypercontractivity) Let D1 be a distribution over R and let T ∈ N, T > 2,
η ∈ (0, 1). We say that D1 is (T, 2, η)-hypercontractive if E[xT ] <∞ and for any a ∈ R we have

E
x∼D1

[(a+ ηx)T ]1/T ≤ E
x∼D1

[(a+ ηx)2]1/2

The following result can be used to show Lemma 38.

Proposition 41 (Modification of Theorem 10.4 from Gopalan et al. (2010)) Let r ∈ N, σ ∈
(0, 1), T ∈ N, η > 0 and t > 4 be parameters and consider D to be a product distribution over
X ⊆ Rd such that each of its independent coordinates is (4, 2, η)-hypercontractive, and (T, 2, 4/t)-
hypercontractive. Suppose that T ≥ Cr log(rt) for some sufficiently large universal constantC > 0
and T is even. Then, for any function of the form h : X → R, h(x) = 1{w ·x ≥ τ}, where w ∈ Rd

and τ ∈ R, there is a polynomial p : X → R such that the following are true.

(i) The degree of p is at most k = poly(log t, 1η ) ·
1
σ +O(Tr ).

(ii) For any x ∈ X we have p(x) ≥ h(x).

(iii) The expected distance between p and h is bounded by Ex∼D[p(x) − h(x)] ≤ O(σ
1
2 +

rt log(rt)
T ).
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(iv) The values of p are upper bounded with high probability, i.e., Px∼D[p(x) > 1+ 1
r2
] ≤ 2−T/r.

(v) The L2r(D) norm of p is bounded by ∥p∥L2r(D) ≤ 1 + 2
r2

.

Proof [Proof of Lemma 38] Let f ∈ C be an intersection of ℓ halfspaces over X , i.e., f can be
written in the following form

f(x) = 2
ℓ∏

j=1

hj(x)− 1, where hj(x) = 1{wj · x+ τj} for some wj ∈ Rd, τj ∈ R

Note that if f is a Decision Tree of halfspaces of size s and depth ℓ, then f can be written as a
sum of at most s intersections of ℓ halfspaces and it suffices to use accuracy parameter ϵ/s for each
intersection.

Back to the case where f is an intersection of ℓ halfspaces, we will apply Proposition 41 in a
way similar to the proof of Lemma 10.1 in Gopalan et al. (2010). However, our goal here is to show
that Proposition 41 implies the existence of L2 (rather than L1) sandwiching polynomials for f . We
use the following standard fact about the Gaussian and Uniform distributions.

Claim (Hypercontractivity of Gaussian and Uniform marginals, see e.g. Krakowiak and Szulga
(1988); Wolff (2007); Gopalan et al. (2010)) If D is either the standard Gaussian N (0, Id) over Rd

or the uniform distribution over the hypercube {±1}d, then, for some universal constant C > 0,
each of the coordinates of D is (⌈Ct2⌉, 2, 4t )-hypercontractive for any t > 0 and, in particular, each
one is also (4, 2, 1√

3
)-hypercontractive.

We may apply Proposition 41 for each hj with parameters r = 2ℓ, σ = ϵ2

Cℓ4
, t = C ℓ3

ϵ log(ℓ/ϵ),
η = 1/

√
3 and T = Ct2, for some sufficiently large universal constant C to obtain a polynomial pj

of degree k = Õ( ℓ
5

ϵ2
) such that the following are true.

pj(x) ≥ hj(x) for all x ∈ X (D.3)

ϵ1 := E
D
[pj(x)− hj(x)] = O

( ϵ
ℓ2

)
(D.4)

ϵ2 := P
D

[
pj(x) > 1 +

1

4ℓ2

]
≤ 2−Ω( ℓ

5

ϵ2
log2(ℓ/ϵ)) (D.5)

∥pj∥L4m(D) ≤ 1 +
1

2ℓ2
(D.6)

We will now construct a polynomial pup of degree Õ( ℓ
6

ϵ2
) such that pup(x) ≥ f(x) for all x ∈ X

and also ED[(pup(x) − f(x))2] ≤ ϵ/4. This implies the existence of a corresponding polynomial
pdown with pdown(x) ≤ f(x) for all x ∈ X and ED[(pup(x) − pdown(x))

2] ≤ ϵ via a symmetric
argument. Our proof consists of a hybrid argument similar to the one used in the proof of Lemma
10.1 in Gopalan et al. (2010), modified to provide a bound for the L2 error of approximation.
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We pick pup = 2p−1, where p =
∏ℓ

j=1 pj . Let p(0) =
∏ℓ

j=1 hj , p
(i) = (

∏i
j=1 pj)(

∏ℓ
j=i+1 hj)

and p(ℓ) = p. We then have the following.

∥p− h∥L2(D) = ∥p(ℓ) − p(0)∥L2(D) ≤
ℓ∑

i=1

∥p(i) − p(i−1)∥L2(D)

=

ℓ∑
i=1

∥∥∥( i−1∏
j=1

pj

)( ℓ∏
j=i+1

hj

)
(pi − hi)

∥∥∥
L2(D)

≤
ℓ∑

i=1

∥∥∥(∏
j ̸=i

pj

)
(pi − hi)

∥∥∥
L2(D)

(by property (D.3))

For any fixed i ∈ [ℓ] we have∥∥∥(∏
j ̸=i

pj

)
(pi − hi)

∥∥∥2
L2(D)

= E
D

[(∏
j ̸=i

p2j (x)
)
(pi(x)− hi(x))

2
]

≤ E
D

[(∏
j ̸=i

p2j (x)
)
(pi(x)− hi(x))pi(x)

]
(since hi ≥ 0 and pi ≥ hi)

In order to bound the quantity ED[(
∏

j ̸=i p
2
j )(pi − hi)pi], we split the expectation according to the

event E that (
∏

j ̸=i pj)
√
pi < 2. In particular, we have that ED[(

∏
j ̸=i p

2
j )(pi − hi)pi 1{E}] is at

most 4ϵ1 by property (D.4) and ED[(
∏

j ̸=i p
2
j )(pi − hi)pi 1{¬E}] is bounded as follows.

E
D

[(∏
j ̸=i

p2j (x)
)
(pi(x)− hi(x))pi(x)1

{(∏
j ̸=i

pj(x)
)√

pi(x) ≥ 2
}]

≤

≤ E
D

[( ∏
j∈[ℓ]

p2j (x)
)
1

{(∏
j ̸=i

pj(x)
)√

pi(x) ≥ 2
}]

(by property (D.3))

We now observe that whenever (
∏

j ̸=i pj(x))
√
pi(x) ≥ 2, there must exist some index j′ such that

pj′(x) > 1 + 1
4ℓ2

and, therefore, we can further bound the above quantity by the following one.

E
D

[ ℓ∑
j′=1

1

{
pj′(x) > 1 +

1

4ℓ2

}( ∏
j∈[ℓ]

p2j (x)
)]

=

ℓ∑
j′=1

E
D

[
1

{
pj′(x) > 1 +

1

4ℓ2

}( ∏
j∈[ℓ]

p2j (x)
)]

In the above expression we used linearity of expectation. We now apply Hölder’s inequality and

obtain the bound
∑ℓ

j′=1(PD[pj′(x) > 1 + 1
4ℓ2

])
1
2
∏ℓ

j=1

(
ED[p

4ℓ
j (x)]

) 1
2ℓ . Due to properties (D.5)

and (D.6), we finally have the bound ℓ
√
ϵ2 ·
∏ℓ

j=1 ∥pj∥2L4ℓ
≤ ℓ

√
ϵ2(1+

1
2ℓ2

)2ℓ ≤ 3ℓ
√
ϵ2. Therefore,

in total, we have ∥p − h∥2L2(D) ≤ 4ℓ2ϵ1 + 3ℓ3ϵ2 ≤ ϵ, which implies that ∥pup − f∥L2(D) ≤ ϵ and
pup ≥ f .

Appendix E. Lower Bounds

E.1. Lower Bound for Realizable TDS Learning of Monotone Functions

We now prove Theorem 9, which we restate here for convenience.
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Theorem 42 (Hardness of TDS Learning Monotone Functions) Let the accuracy parameter ϵ be
at most 0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable set-
ting, any TDS learning algorithm for the class of monotone functions over {±1}d with accuracy
parameter ϵ and success probability at least 1− δ requires either 20.04d training samples or 20.04d

testing samples for all sufficiently large values of d.

We will need the following standard fact, see for example Rubinfeld and Vasilyan (2023) for a
proof:

Fact 43 For any distribution D over any domain, let multisets T1 and T2 be sampled as follows:

1. Set T1 is N i.i.d. samples from D.

2. First, multiset S is formed by taking M i.i.d. samples from D. Then, multiset T2 is formed by
taking N i.i.d. uniform elements from S.

Then, the statistical distance between the distributions of T1 and T2 is at most N2

M .

Now, we prove Theorem 9.
Proof [Proof of Theorem 9]

We fix δ ≤ 0.1 and also fix ϵ ≤ 0.1. Let A be an algorithm that takes N ≤ 20.04d testing
samples and N ≤ 20.04d training samples, and either outputs REJECT, or (ACCEPT, f̂ ) for a
function f̂ : {±1}d → {±1}. We argue that for, a sufficiently large d, the algorithm A will fail to
be a TDS-learning algorithm for monotone functions over {±1}d.

Let f be some function mapping {±1}d → {±1} and let a multiset S consist of elements in
{±1}d. We define T (f, S) to be a random variable supported on {Yes,No} determined as follows
(informally, if A is a TDS-learner for monotone functions, then T (f, S) will allow us to distinguish
a uniform distribution over S from the uniform distribution over {±1}d):

1. Let Strain ⊂ {±1}d ×{±1} consist of N pairs (x, f(x)), where x are drawn i.i.d. uniformly
from {±1}d.

2. Let Xtest consist of N i.i.d. uniform samples from set S.

3. The algorithm A is run on (Strain, Xtest).

4. If A outputs REJECT, then output T (f, S) =No.

5. If A outputs (ACCEPT, f̂ ), then

(a) Obtain a new set X2 of 10000 i.i.d. uniform samples from S.

(b) If, on the majority of points x in X2, we have f̂(x) = 1, then output No.

(c) Otherwise, output Yes.

For a multiset S consisting of elements in {±1}d, let fS be the monotone function defined as
follows:

fS(x) :=

{
+1 if there exists z ∈ S : x ⪰ z,

−1 otherwise.

First, we observe that if A is indeed a (ϵ, δ)-TDS learning algorithm for monotone functions over
{±1}d, then:
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• T (−1, {±1}d)=Yes with probability at least 2
3 (from here on, by −1 we mean the func-

tion that maps every element in {±1}d into −1). This is true because, by the definition
of a TDS learner, since Strain comes from the uniform distribution over {±1}d, with prob-
ability at least 1 − 2δ = 0.8 the algorithm A will output (ACCEPT, f̂ ) for some f̂ sat-
isfying Px∼{±1}d [f̂(x) ̸= −1] ≤ ϵ = 0.1. Then, via a standard Hoeffding bound, with
probability at least 0.9 on the majority of elements x in X2 we have f̂(x) = −1 and then
T (−1, {±1}d)=Yes.

• For any multiset S with elements in {±1}d, we have T (fS , S) =No with probability at least
2
3 . Indeed, from the definition of a TDS learning algorithm, we see that, with probability at
least 1− δ = 0.9, the algorithm A will either output

– Output reject, in which case T (fS , S) =No.

– Output (ACCEPT, f̂ ) with Px∼S [f̂(x) ̸= fS(x)] ≤ ϵ = 0.1. But we know that fS takes
values +1 on all elements in S. Therefore, Px∼S [f̂(x) ̸= fS(x)] ≤ 0.1. Then, via a
standard Hoeffding bound, with probability at least 0.9 on the majority of elements x in
X2 we have f̂(x) = +1 and then T (fS , S)=No.

In particular, if S is obtained by picking M = 20.1d i.i.d. elements from {±1}d, we have∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS , S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ > 1

3
. (E.1)

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim
that for sufficiently large d the following two inequalities must hold∣∣∣∣∣∣ P

S∼Unif({±1}d)⊗M

Randomness of T

[T (−1, S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ ≤ N2

M
. (E.2)

∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS , S) = Yes]− P
S∼Unif({±1}d)⊗M

Randomness of T

[T (−1, S) = Yes]

∣∣∣∣∣∣ ≤ 2

(
3

4

)d

MN.

(E.3)
We observe that Equation E.2 follows immediately from Theorem 43, because if Equation E.2
didn’t hold, then we would be able to achieve advantage greater than M

N2 when distinguishing N
i.i.d. uniform samples from {±1}d from N i.i.d. uniform examples from S.

Now we prove Equation E.3. Let ST (fS ,S)
train denote the collection of pairs {(x, fS(x))} sampled

in Step 1 of T (fS , S). Analogously, let ST (−1,S)
train denote the collection of pairs (x,−1) in set used

in procedure T (−1, S). In either case, the elements in ST (fS ,S)
train and ST (−1,S)

train are i.i.d. uniformly
random elements in {±1}d. Let ET (−1,S) be the event, over the choice of S and the choice of
S
T (−1,S)
train , that for every (x,−1) ∈ S

T (−1,S)
train there is no z in S satisfying x ⪰ z. Analogously, let

ET (fS ,S) be the event, over the choice of S and the choice of ST (fS ,S)
train , that for every (x, fS(x)) ∈

43



KLIVANS STAVROPOULOS VASILYAN

S
T (fS ,S)
train there is no z in S satisfying x ⪰ z. We observe that

P
S∼Unif({±1}d)⊗M

Randomness of T

[
T (fS , S) = Yes

∣∣∣∣ET (fS ,S)

]
= P

S∼Unif({±1}d)⊗M

Randomness of T

[
T (−1, S) = Yes

∣∣∣∣ET (−1,S)

]
(E.4)

which is true because, subject to ET (fS ,S) or ET (−1,S), the function fS takes values of −1 on
every element x in S

T (fS ,S)
train and S

T (−1,S)
train respectively. We also see that the random variables

(S, S
T (fS ,S)
train ) and (S, S

T (−1,S)
train ) are identically distributed (conditioned on ET (fS ,S) and ET (−1,S)

respectively). We also observe that

P
S∼Unif({±1}d)⊗M

Randomness of T

[
ET (fS ,S)

]
= P

S∼Unif({±1}d)⊗M

Randomness of T

[
ET (−1,S)

]
≤
(
3

4

)d

MN, (E.5)

where the equality of the two probabilities follows immediately by definition, and the upper bound
of
(
3
4

)d
MN is true for the following reason. Let z and x be a pair of i.i.d. uniformly random

elements in {±1}d, then P[x ⪰ z] =
(
3
4

)d as each bit of x and z are independent and for each
of the bits we have x ≥ z with probability exactly 3/4. Now, taking a union bound over every
(x,−1) ∈ S

T (−1,S)
train and z ∈ S, we obtain the bound in Equation E.5.

Overall, combining Equation E.2 with Equation E.3 and substitutingN ≤ 20.04d andM = 20.1d

we get∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS , S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ ≤
N2

M
+ 2

(
3

4

)d

MN = 2−Ω(d),

which is in contradiction with Equation E.1 for a sufficiently large value of d. This proves that A is
not a (ϵ, δ)-TDS learning algorithm for monotone functions.

E.2. Lower Bound for Realizable TDS Learning of Convex Sets

We now prove Theorem 10 which we restate here for convenience.

Theorem 44 (Hardness of TDS Learning Convex Sets) Let the accuracy parameter ϵ be at most
0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable setting,
any TDS learning algorithm for the class of indicators of convex sets under the standard Gaussian
distribution on Rd requires either 20.04d training samples or 20.04d testing samples for all sufficiently
large values of d.

We will need the following standard facts about Gaussian distributions:
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Fact 45 (Concentration of Gaussian norm, see e.g. Lemma 8.1 in Birgé and Massart (1997)) For
any η > 0 it is the case that

P
x∈N (0,Id)

[
d− 2

√
d ln

(
2

η

)
≤ ∥x∥22 ≤ d+ 2

√
d ln

(
2

η

)
+ 2 ln

(
2

η

)]
≥ 1− η

Fact 46 (Concentration of Gaussian norm. See e.g. Rubinfeld and Vasilyan (2023).) For any r >
0 it is the case that

P
x1,x2∈N (0,Id)

[
∥x1 − x2∥2 ≤ r

]
≤
(
64r2

d

)d/2

Recall that we use Ba to denote the origin-centered closed ball in Rd of radius a. Using conv(·)
to denote the convex hull of a set of points, will state the following geometric observation of Rubin-
feld and Vasilyan (2023) about convex hulls of a collection of point.

Fact 47 (Rubinfeld and Vasilyan (2023)) For any a > 0, let {xi}Mi=1 be a collection of points in
Bb \Ba. If for every pair of points (xi,xj) the ∥xi−xj∥2 is greater than 2

√
b2 − a2, then for every

i and j we have
conv(xi,Ba) ∩ conv(xi,Ba) = Ba

and also
conv(x1, · · · ,xM ,Ba) = ∪iconv(x

i,Ba).

For the rest of the section we will set

a =

√√√√d− 2

√
d ln

(
1

50

)
b =

√√√√d+ 2

√
d ln

(
1

50

)
+ 2 ln

(
1

50

)
, (E.6)

and from Fact 45 we see that the norm a standard Gaussian vector in Rd falls in interval (a, b) with
probability at least 0.99.

Now, we are ready to prove Theorem 10.
Proof [Proof of Theorem 9]

We fix δ ≤ 0.1 and also fix ϵ ≤ 0.1. Let A be an algorithm that takes N ≤ 20.04d testing
samples and N ≤ 20.04d training samples, and either outputs REJECT, or (ACCEPT, f̂ ) for a
function f̂ : Rd → {±1}. We argue that for, a sufficiently large d, the algorithm A will fail to be a
TDS-learning algorithm for convex sets under the Gaussian distribution on Rd.

For a set S we will define gS as the indicator of the convex set conv(S ∩ (Bb \Ba),Ba). And in
this section we denote the uniform distribution over S as US .

Let f be some function mapping Rd → {±1} and let a set D be a distribution over Rd. We
define H(f,D) to be a random variable supported on {Yes,No} determined as follows (informally,
if A is a TDS-learner for convex sets, then H(f,D) will allow us to distinguishD from the Gaussian
distribution over Rd):

1. Let Strain ⊂ Rd×{±1} consist ofN pairs (x, f(x)), where x are drawn i.i.d. from N (0, Id).

2. Let Xtest consist of N i.i.d. uniform samples from D.

3. The algorithm A is run on (Strain, Xtest).
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4. If A outputs REJECT, then output H(f, S) =No.

5. If A outputs (ACCEPT, f̂ ), then

(a) Obtain a new set X2 of 10000 i.i.d. samples from D.
(b) If, on the majority of points x in X2, we have f̂(x) = −1, then output No.
(c) Otherwise, output Yes.

First, we observe that if A is indeed a (ϵ, δ)-TDS learning algorithm for convex sets over Rd

under N (0, Id), then:

• H(g∅,N (0, Id))=Yes with probability at least 2
3 (from here on, by −1 we mean the func-

tion that maps every element in {±1}d into −1). This is true because, by the definition of
a TDS learner, since Strain comes from the uniform distribution over N (0, Id), with proba-
bility at least 1 − 2δ = 0.8 the algorithm A will output (ACCEPT, f̂ ) for some f̂ satisfying
Px∼Nd

[f̂(x) ̸= g∅(x)] ≤ ϵ = 0.1. Since a was chosen is such manner that Px∈N (0,Id)[x ∈
Ba] < 0.01, and g∅ is the indicator function of Ba, we have Px∈N (0,Id)[g∅(x) ̸= −1] < 0.01.
Via a union bound, we see that Px∼N (0,Id)[f̂(x) ̸= −1] ≤ 0.11. Then, via a standard Ho-
effding bound, with probability at least 0.9 on the majority of elements x in X2 we have
f̂(x) = −1 and then H(g∅,N (0, Id))=Yes.

• For any set S with elements in Rd, we have H(gS ,US) =No with probability at least 2
3 .

Indeed, from the definition of a TDS learning algorithm, we see that, with probability at least
1− δ = 0.9, the algorithm A will either

– Output reject, in which case H(gS ,US) =No.
– Output (ACCEPT, f̂ ) with Px∼US

[f̂(x) ̸= gS(x)] ≤ ϵ = 0.1. But we know that gS
takes values +1 on all elements in S. Therefore, Px∼US

[f̂(x) ̸= fS(x)] ≤ 0.1. Then,
via a standard Hoeffding bound, with probability at least 0.9 on the majority of elements
x in X2 we have f̂(x) = +1 and then H(gS ,US)=No.

In particular, if S is obtained by picking M = 20.1d i.i.d. elements from N (0, Id), we have∣∣∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(gS ,US) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ > 1

3
. (E.7)

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim
that for sufficiently large d the following two inequalities must hold∣∣∣∣∣∣ P

S∼N (0,Id)
⊗M

Randomness of H

[H(g∅,US) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ ≤ N2

M
. (E.8)

∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(gS ,US) = Yes]− P
S∼N (0,Id)

⊗M

Randomness of H

[H(g∅,US) = Yes]
∣∣∣∣

≤
(
64(b2 − a2)

d

)d/2

(M +N)2. (E.9)
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We observe that Equation E.8 follows immediately from Theorem 43, because if Equation E.8
didn’t hold, then we would be able to achieve advantage greater than M

N2 when distinguishing N
i.i.d. uniform samples from N (0, Id) and N i.i.d. uniform examples from S.

Now we prove Equation E.9. Let SH(gS ,US)
train denote the collection of pairs {(x, gS(x))} sampled

in Step 1 of H(gS ,US). Analogously, let SH(g∅,US)
train denote the collection of pairs (x,−1) in set used

in procedure H(g∅,US). In either case, the elements in SH(gS ,US)
train and SH(g∅,US)

train are i.i.d. elements
from N (0, Id). Let EH(gS ,US) be the event, over the choice of S and the choice of SH(gS ,US)

train ,
that for each pair of points x1 and x2 in S ∪ {x : (x, gS(x)) ∈ S

H(gS ,US)
train } we have ∥x1 −

x2∥2 > 2
√
b2 − a2. Analogously, let EH(gS ,US) be the event, over the choice of S and the choice

of SH(g∅,US)
train , that for each pair of points x1 and x2 in S ∪ {x : (x, g∅(x)) ∈ S

H(g∅,US)
train } we have

∥x1 − x2∥2 > 2
√
b2 − a2.

We first observe that subject to EH(g∅,US) it is the case that for every {(x, gS(x))} in SH(gS ,US)
train it

is the case that gS = g∅(x). For x ∈ Ba∪(R\Bb) this is immediate because gS as the indicator of the
convex set conv(S ∩ (Bb \Ba),Ba). It remains to show this only for points (x, gS(x)) ∈ S

H(gS ,US)
train

that also satisfy x ∈ Bb \ Ba. Since x is outside Ba, we have g∅(x) = −1 and therefore we would
like to show that gS(x) also equals to −1. This is true because from Fact 47 it is the case that if
EH(g∅,US) takes place, then for every such x we have

conv(x,Ba)∩conv(S∩(Bb\Ba),Ba) = conv(x,Ba)∩

 ⋃
z∈S∩(Bb\Ba)

conv(z ∩ (Bb \ Ba),Ba)

 =

⋃
z∈S∩(Bb\Ba)

(conv(x,Ba) ∩ (conv(z ∩ (Bb \ Ba),Ba))) = Ba,

which in particular implies that x is not in the convex hull conv(S∩(Bb\Ba),Ba) and gS(x) = −1,
concluding the proof of our observation.

We therefore conclude that distributions of (S, SH(gS ,US)
train ) and (S, S

H(H(g∅,US)
train ) are identically

distributed conditioned on EH(gS ,US) and EH(g∅,US) respectively, which implies that

P
S∼N (0,Id)

⊗M

Randomness of H

[
H(gS ,US) = Yes

∣∣∣∣EH(gS ,US)

]
= P

S∼N (0,Id)
⊗M

Randomness of H

[
H(g∅,US) = Yes

∣∣∣∣EH(g∅,US)

]
,

(E.10)

We also observe that

P
S∼N (0,Id)

⊗M

Randomness of H

[
EH(gS ,US)

]
= P

S∼N (0,Id)
⊗M

Randomness of H

[
EH(g∅,US)

]
≤
(
64(b2 − a2)

d

)d/2

(M +N)2, (E.11)

where the equality of the two probabilities follows immediately by definition, and the upper bound

of
(
64(b2−a2)

d

)d/2
(M +N)2 is true by applying Fact 46 to each relevant pair of points. Therefore,

we obtain the bound in Equation E.11.
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Overall, combining Equation E.8 with Equation E.9 and substituting N ≤ 20.04d, M = 20.1d as

well as a =

√
d− 2

√
d ln

(
1
50

)
and b =

√
d+ 2

√
d ln

(
1
50

)
+ 2 ln

(
1
50

)
, we obtain

∣∣∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(fS , S) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ ≤
N2

M
+

(
64(b2 − a2)

d

)d/2

(M +N)2 = 2−0.02d +

(
O

(
1√
d

))d/2

= 2−Ω(d),

which is in contradiction with Equation E.7 for a sufficiently large value of d. This proves that A is
not a (ϵ, δ)-TDS learning algorithm for convex sets.

E.3. Lower Bound for the Agnostic Error Guarantee

We now focus on the agnostic setting and provide an information theoretic lower bound on the error
upon acceptance. Our lower bound is simple and demonstrates that a linear dependence on the error
factor λ (see Equation (A.1)) is unavoidable for TDS learning.

Theorem 48 (Lower Bound for the Error in the Agnostic Setting) Let X be any domain, D a
distribution over X and C a class of concepts that map X to {±1} that is closed under complement,
i.e., if f ∈ C then −f ∈ C. Then, for any η ∈ (0, 1/2), any ϵ ∈ (0, η/2) and δ ∈ (0, 1/3), no TDS
learning algorithm for C w.r.t. D with finite sample complexity and failure probability δ, can have
an error guarantee better than λ(1− 2η) + ϵ = Ω(λ) + ϵ.

Proof Let Dtrain
XY denote the training distribution and Dtest

XY the test distribution, which are both over
X × {±1}. Suppose that for η ∈ (0, 1/2) and ϵ ∈ (0, η/2) there exists an algorithm A, that, upon
acceptance and with probability at least 1 − δ, outputs f̂ ∈ C with err(f̂ ;Dtest

XY ) ≤ λ(1 − 2η) + ϵ
(λ = λ(C;Dtrain

XY ,Dtest
XY ), see Equation (A.1)). Let C > 0 be a sufficiently large universal constant.

We consider the following algorithm T . Algorithm T uses an oracle to A and accepts or rejects
according to the following criteria.

• If A rejects, then T rejects.

• If A accepts and outputs f̂ ∈ C, then T draws C
η2

log(1/δ) examples ST from Dtrain
XY and

rejects if P(x,y)∈ST [f̂(x) ̸= y] > 3η/4. Otherwise, T accepts.

Fix some f ∈ C and let Dtrain
XY be the distribution over X × {±1} whose marginal on X is D

and the labels are generated as y(x) = f(x). Consider the following two cases about Dtest
XY .

Case 1. First, suppose that Dtest
XY has D as marginal on X and y(x) = f(x). Then, A accepts

with probability at least 1 − δ, due to completeness. We have λ = 0 (attained by f ) and, hence,
upon acceptance, P(x,y)∼Dtrain

XY
[f̂(x) ̸= y] = P(x,y)∼Dtest

XY
[f̂(x) ̸= y] ≤ ϵ ≤ η/2 with probability at

least 1− δ. By a Hoeffding bound, we then have that T must accept with probability at least 1− δ.
Overall, T accepts with probability at least 1− 3δ > 1/2.
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Case 2. Second, suppose that Dtest
XY has D as marginal on X and y(x) = −f(x). Then, we have

that λ = 1 (because for any point x ∈ X , any classifier will either classify x incorrectly under Dtrain
XY

or under Dtest
XY ). By assumption, we have P(x,y)∼Dtest

XY
[f̂(x) ̸= y] ≤ λ(1− 2η) + ϵ ≤ 1− 2η + ϵ

with probability at least 1 − 2δ (by completeness and soundness). Since the test labels are the
negation of the train labels, we have P(x,y)∼Dtest

XY
[f̂(x) ̸= y] = 1 − P(x,y)∼Dtrain

XY
[f̂(x) ̸= y], and

P(x,y)∼Dtrain
XY

[f̂(x) ̸= y] ≥ 2η − ϵ ≥ η (since ϵ ≤ η/2). By a Hoeffding bound, T will reject with
probability at least 1− 3δ > 1/2.

We have reached a contradiction, because in both cases, the input of T does not depend on the
test labels, and everything else remains the same in both cases. Therefore, T should have the same
behavior in both cases and we conclude that the algorithm A cannot exist as defined.

Remark 49 While the above lower bound demonstrates that the error of a TDS learning algorithm
can be necessarily high in certain settings, we emphasize that the construction corresponds to a
contrived case where the training distribution does not provide enough information about the test
distribution and, therefore, any meaningful notion of learning should be hopeless (see also Ben-
David and Urner (2012)).

Appendix F. Sample Complexity of TDS Learning

In the previous sections, we explored a number of computational aspects of TDS learning, deriving
dimension efficient algorithms for several instantiations of our setting. In this section, we focus on
the statistical aspects of TDS learning. There are several prior works in the literature of domain
adaptation that study the statistical landscape of the problem of learning under shifting distributions
(see, e.g., Ben-David et al. (2006); Blitzer et al. (2007); Mansour et al. (2009); Ben-David et al.
(2010); David et al. (2010)). All of the previous generalization upper bounds on this problem
involve some discrepancy term, which quantifies the amount of distribution shift, as well as some
additional terms that are typically considered small for reasonable settings. For a concept class
C : X → {±1}, considering that the error term λ (see Eq. (A.1)) is small is a standard assumption
in domain adaptation (see, e.g., Ben-David et al. (2006); Blitzer et al. (2007)). Furthermore, one
standard measure of discrepancy is defined as follows.

Definition 50 (Discrepancy Distance, Blitzer et al. (2007)) Let X ⊂ Rd and let C be a concept
class mapping X to {±1}. For distributions D,D′ over X , we define the discrepancy distance
discC(D,D′) as follows.

discC(D,D′) = sup
f,f ′∈C

∣∣∣P
D
[f(x) ̸= f ′(x)]− P

D′
[f(x) ̸= f ′(x)]

∣∣∣
In particular, Ben-David et al. (2006); Blitzer et al. (2007) observe that for any f ∈ C and distribu-
tions Dtrain

XY ,Dtest
XY over X × {±1} the following is true.

err(f ;Dtest
XY ) ≤ err(f ;Dtrain

XY ) + discC(Dtrain
X ,Dtest

X ) + λ(C;Dtrain
XY ,Dtest

XY ) (F.1)

The bound of Eq. (F.1) can be translated to a generalization bound for domain adaptation, through
the use Rademacher complexity, whose definition is provided below.
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Definition 51 (Rademacher Complexity) Let X ⊆ Rd, let D be a distribution over X and let C
be a concept class mapping X to {±1}. For a set of m samples X = (x(1),x(2), . . . ,x(m)) drawn
independently from D, we define the empirical Rademacher complexity of C w.r.t. X as follows

R̂X(C) = 2

m
E sup

f∈C

m∑
j=1

σjf(x
(j)) , where the expectation is over σ ∼ Unif({±1}d)

Moreover, we define the Rademacher complexity of C at m w.r.t. D as Rm(C;D) = E[R̂X(C)],
where the expectation is over X ∼ D⊗m.

Corollaries 6, 7 in Mansour et al. (2009), demonstrate that the discrepancy between two distri-
butions is upper bounded as follows.

Proposition 52 (Bounding the Discrepancy, Corollary 7 in Mansour et al. (2009)) Consider X ⊆
Rd, a concept class C ⊆ {X → {±1}d} and distributions D,D′ over X . Then for any δ > 0,
m,m′ ∈ N, if X,X ′ are independent examples from D,D′, respectively, of sizes m,m′, the follow-
ing is true.

discC(D,D′) ≤ discC(X,X
′) + 4R̂X(C) + 4R̂X′(C) + 3 (log(4/δ))1/2

√
1

m
+

1

m′

Combining inequality (F.1) with Proposition 52 and standard generalization bounds for classifi-
cation, yields a data-dependent generalization bound for domain adaptation whose only unknown
parameter is λ. In our setting this readily implies the following sample complexity upper bound in
terms of the Rademacher complexity of the concept class C.

Corollary 53 (Sample Complexity upper bound for TDS learning) Let C ⊆ {X → {±1}} be
a hypothesis class and D a distribution over X such that Rm(C;D) ≤ ϵ/10. The algorithm that
runs the Empirical Risk Minimizer on training data and accepts only when both the empirical dis-
crepancy distance between the training and test unlabelled examples, i.e. discC(Xtrain, Xtest), and
the Rademacher complexity with respect to the test examples, i.e. R̂Xtest(C), are O(ϵ), is an (ϵ, δ)-
TDS learning algorithm for C up to error 2λ + ϵ with sample complexity O(m + 1

ϵ2
log(1/δ)).

Moreover, if there is a concept in C with zero training error, the same is true up to error λ+ ϵ.

We emphasize that, while Corollary 53 readily follows from prior results in the literature of do-
main adaptation, it highlights an important distinction between domain adaptation and TDS learn-
ing: A TDS learning algorithm, upon acceptance, achieves error that does not scale with the dis-
crepancy between the training and test marginal distributions, but only a term that depends on the
quantity λ, which, as we show in Theorem 48, is unavoidable.

Appendix G. PQ Learning and Distribution-Free TDS Learning

In recent years, there has been a vast amount of work on the problem of learning under shifting
distributions. One of the most relevant models to TDS learning is PQ learning (see Goldwasser
et al. (2020); Kalai and Kanade (2021)), which was defined by Goldwasser et al. (2020). In this
section, we establish a connection between PQ learning and TDS learning and, in particular, we
show that TDS learning can be reduced to PQ learning, thereby inheriting all of the existing results
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in the latter framework. Unfortunately, to the best of our knowledge, most of the positive results on
the PQ learning framework make strong assumptions regarding oracle access to solvers of learning
primitives that are typically hard to solve. Nonetheless, PQ learning is an important theoretical
framework for learning under arbitrary covariate shifts and it is an interesting open question whether
our methods can be extended to provide positive results for the not-easier problem of PQ learning.

In the PQ learning framework, a learner outputs a pair (h,X), where h : X → {±1} is a
classifier and X ⊆ X is a subset of the feature space where one can be confident on the predictions
of h. In particular, the PQ learning model is defined as follows.

Definition 54 (PQ Learning, Goldwasser et al. (2020); Kalai and Kanade (2021)) Let X ⊆ Rd

be a set and C ⊆ X → {±1} a concept class. For ϵ, δ ∈ (0, 1) we say that algorithm A PQ learns
C up to error ϵ and probability of failure δ if for any distributions Dtrain

XY ,Dtest
XY over X × {±1}

such that there is some f∗ ∈ C so that y = f∗(x) for any (x, y) drawn from either Dtrain
XY or Dtest

XY ,
algorithm A, upon receiving a large enough number of labelled samples from Dtrain

XY and a large
enough number of unlabelled samples from Dtest

X , outputs a pair (h,X) such that h : X → {±1},
X ⊆ X and with probability at least 1− δ the following is true.

P
x∼Dtrain

X

[x ̸∈ X] ≤ ϵ and P
(x,y)∼Dtest

XY

[h(x) ̸= y and x ∈ X] ≤ ϵ

We note that the above definition of PQ learning is distribution-free, i.e., the guarantees hold
for any distribution and not with respect to a specific target distribution. In Definition 13 for TDS
learning, the completeness criterion is stated with respect to a particular target distribution that is
the same as the training distribution. However, in order to demonstrate a connection between PQ
learning and TDS learning, we now define Distribution-Free TDS learning.

Definition 55 (Distribution-free TDS Learning)) Let X ⊆ Rd and consider a concept class
C ⊆ {X → {±1}}. For ϵ, δ ∈ (0, 1), we say that an algorithm A testably learns C under distri-
bution shifts up to error ϵ and probability of failure δ if the following is true. For any distributions
Dtrain

XY ,Dtest
XY over X × {±1} such that there is some f∗ ∈ C such that y = f∗(x) for any (x, y)

drawn from either Dtrain
XY or Dtest

XY , algorithm A, upon receiving a large enough set of labelled sam-
ples Strain from the training distribution Dtrain

XY and a large enough set of unlabelled samples Xtest

from the test distribution Dtest
X , either rejects (Strain, Xtest) or accepts and outputs a hypothesis

h : X → {±1} with the following guarantees.

(a) (Soundness.) With probability at least 1− δ over the samples Strain, Xtest we have:

If A accepts, then the output h satisfies err(h;Dtest
XY ) ≤ ϵ.

(b) (Completeness.) Whenever Dtest
X = Dtrain

X , A accepts with probability at least 1− δ over the
samples Strain, Xtest.

We are now ready to prove that distribution-free TDS learning reduces to PQ learning.

Proposition 56 (TDS learning via PQ learning) Algorithm 6 reduces TDS to PQ learning. In
particular, for ϵ, δ ∈ (0, 1), PQ learning algorithm A and a concept class C, Algorithm 6, upon
receiving mP + C

ϵ2
log(1/δ) labelled examples Strain from the training distribution and mQ +

C
ϵ2
log(1/δ) unlabelled examples Xtest from the test distribution where mP ,mQ are such that A

is an (ϵ/4, δ)-PQ learning algorithm for C given mP training and mQ test examples, (ϵ, δ)-TDS
learns C.
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Proof Let C > 0 be a sufficiently large universal constant. For soundness, we observe that upon
acceptance, we have Px∼X2 [x ̸∈ X] and by a Hoeffding bound, since m2 ≥ C

ϵ2
log(1/δ), we have

Px∼Dtest
X

[x ̸∈ X] ≤ 2ϵ/3. By using the fact that err(h;Dtest
XY ) ≤ Px∼Dtest

X
[x ∈ X] + Px∼Dtest

X
[x ∈

X] and the guarantee of the PQ learner we obtain err(h;Dtest
XY ) ≤ ϵ, with probability at least 1− δ.

For completeness, we use the definition of PQ learning and a Hoeffding bound to show that with
probability at least 1− δ, Algorithm 6 accepts whenever Dtest

X = Dtrain
X .

Algorithm 6: TDS learning through PQ learning
Input: Sets Strain, Xtest, parameters ϵ, δ ∈ (0, 1), (ϵ′ = ϵ

4 , δ)-PQ learner A
Set m1 = mQ, m2 =

C
ϵ2
log(1/δ) and split Xtest in X1, X2 with sizes m1,m2.

Run algorithm A on (Strain, X1) and receive output (h,X).
Reject if Px∼X2 [x ̸∈ X] > ϵ/3.
Otherwise, output h and terminate.

The simple reduction we provided in Proposition 56 implies that all of the positive results on
PQ learning transfer to TDS learning. Moreover, note that the reduction does not alter the train-
ing and test distributions between the corresponding TDS and PQ algorithms and, therefore, would
hold even in the distribution specific setting. This is not true, however, about the following corol-
lary which is based on a reduction from PQ learning to reliable agnostic learning, which does not
preserve the marginal distributions.

Corollary 57 (Combination of Theorem 5 in Kalai and Kanade (2021) and Proposition 56) If a
concept class C is distribution -free reliably learnable, then it is TDS learnable in the distribution-
free setting.

We remark that, in fact, (distribution-free) PQ learning is equivalent to (distribution-free) reli-
able learning (see Theorems 5, 6 in Kalai and Kanade (2021)). For a definition of reliable learning
we refer the reader to Kalai et al. (2012). It is known that reliable learning is no harder than agnostic
learning and no easier than PAC learning.

Appendix H. Amplifying success probability

We will now demonstrate that it is possible to amplify the probability of success of a TDS learner
through repetition. Note that this is not immediate for TDS learning as it is, for example, in agnostic
learning, where one may repeat an agnostic learning algorithm and choose the hypothesis with the
smallest error estimate among the outputs of the independent runs. The main obstacle is that test
labels are not available. Nonetheless, we obtain the following theorem regarding amplifying the
probability of success.

Proposition 58 (Amplifying Success Probability) Let C be a hypothesis class, D a distribution
and suppose A is a TDS learner for C with respect to D with error guarantee ψ(λ) + ϵ and failure
probability at most 0.1. Then, there is a TDS learner A′ for C with respect to D with error guarantee
4ψ(λ) + 4ϵ and failure probability at most δ. In particular, A′ repeats A for T = O(log( 1

ϵδ )) times
and rejects if most of the repetitions reject. If most repetitions accept, A′ outputs the hypothesis
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h = maj(h1, . . . , hT/2) (h outputs the majority vote of hi), where h1, . . . , hT/2 are the outputs of
the first T/2 repetitions of A that accepted.

Proof We split the proof into two parts, one for soundness and one for completeness.

Soundness. For soundness, suppose that A′ accepts. We denote with P̂ (resp. Ê) the probabilities
(resp. expectations) over the randomness of h1, . . . , hT/2 (which originates to the randomness of the
samples given to A) and with P (resp. E) the probabilities (resp. expectations) over the randomness
of a pair (x, y) drawn from Dtest

XY . In what follows, let η = ψ(λ) + ϵ. We have that for any
i = 1, 2, . . . , T/2, P̂[err(hi,Dtest

XY ) ≤ η] ≥ 0.9, by the guarantees of A′. We will show that
P̂[err(h,Dtest

XY ) ≤ 4η] ≥ 1− δ for a sufficiently large T = O(log( 1
ϵδ )).

We define Gi to be the event (over the randomness of hi) that hi is ‘good’, i.e., that P[hi(x) ̸=
y] ≤ η. We define Z to be the ‘bad’ region of (x, y), i.e., Z = {(x, y) ∈ X × {±1} : P̂[h1(x) ̸=
y|G1] > 1/3}. Note that Z would be the same even if we substituted (h1,G1) above with an arbitrary
(hi,Gi).

First, we observe that P[h(x) ̸= y] ≤ P[(x, y) ∈ Z] + P[h(x) ̸= y|(x, y) ̸∈ Z].
We now observe that P[(x, y) ∈ Z] = P[P̂[h1 ̸= y|G1] > 1/3] ≤ 3E P̂[h1(x) ̸= y|G1] by

Markov’s inequality. Now, we may swap the expectations to obtain P[(x, y) ∈ Z] ≤ 3Ê[P[h1(x) ̸=
y]|G1] ≤ 3η.

So far, we have shown P[h(x) ̸= y] ≤ 3η + P[h(x) ̸= y|(x, y) ̸∈ Z]. We will bound the
probability over h1, . . . , hT/2 that P[h(x) ̸= y|(x, y) ̸∈ Z] > η. In particular, we have the following
due to Markov’s inequality P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1

η Ê[P[h(x) ̸= y|(x, y) ̸∈ Z]]. Once

more, we may swap the expectations to obtain P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1
η E[P̂[h(x) ̸=

y]|(x, y) ̸∈ Z].
Moreover, if we fix (x, y) ̸∈ Z, then P̂[hi(x) = y] ≥ P̂[hi(x) = y and Gi] ≥ 2

3 · 9
10 ≥ 3/5.

Because P̂[Gi] ≥ 0.9 and P̂[hi(x) = y|Gi] ≥ 2/3 whenever (x, y) ̸∈ Z, by the definition of Z.
Therefore, since h1, . . . , hT/2 are independent, we have that P̂[h(x) ̸= y] ≤ exp(−T/C) for some
sufficiently large universal constant C > 0, for any (x, y) ̸∈ Z.

Therefore, in total, P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1
η exp(−T/C). We set T = C ln( 1

ϵδ ) ≥
C ln( 1

ηδ ) to obtain P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ δ and, hence, with probability at least 1 − δ
over the randomness of h we overall have P[h(x) ̸= y] ≤ 4η.

Completeness. Completeness follows by a standard Hoeffding bound.

Appendix I. Auxiliary Propositions

Let N (0, Id) denote the standard multivariate Gaussian distribution over Rd and Unif({±1}d)
denote the uniform distribution over the hypercube {±1}d. For each of these distributions, we
show that the sandwiching polynomials of any binary concept have coefficients that are absolutely
bounded, that the empirical moments concentrate around the true ones and that the empirical squared
error of polynomials with bounded degree and coefficients uniformly converges to the true squared
error. These properties are used in order to apply Theorem 8 to obtain TDS learning algorithms for
a number of classes under the Gaussian and Uniform distributions.
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I.1. Properties of Gaussian Distribution

We prove the following fact about the Gaussian distribution.

Lemma 59 (Properties of the Gaussian Distribution) Let D be the standard Gaussian N (0, Id)
over Rd. Then the following are true.

(i) (Coefficient Bound) Suppose that for some ϵ ∈ (0, 1], k > 0 and some concept class C ⊆
Rd → {±1}, the ϵ-approximate L2 sandwiching degree of C w.r.t. N (0, Id) is at most k.
Then, the coefficients of the sandwiching polynomials for C are bounded by B = O(d)k.

(ii) (Concentration) For any δ ∈ (0, 1),∆ > 0 and k > 0, if X is a set of independent samples
from D with size at least mconc = O(dk)k

∆2·δ then, with probability at least 1 − δ over the
randomness of X , for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [xα]− ED[x

α]| ≤ ∆.

(iii) (Generalization) For any ϵ > 0, δ ∈ (0, 1), B > 0, k > 0, and any distribution DXY over
Rd × {±1} whose marginal on Rd is D, if S is a set of independent samples from DXY with
size at least mgen = Õ(B

8

ϵ4δ
) · dO(k) then, with probability at least 1− δ over the randomness

of S, for any polynomial p of degree at most k and coefficients that are absolutely bounded
by B it holds |ES [(y − p(x))2]− EDXY [(y − p(x))2]| ≤ ϵ.

Proof We will prove each part of the Lemma separately.
Part (i). Suppose that pup, pdown are 1-sandwiching polynomials for some concept f ∈ C with
degree at most k. Then, we have the following.

∥pdown∥L2(D) ≤ ∥pup − f∥L2(D) + ∥f∥L2D

≤ ∥pup − pdown∥2 + 1 ≤ 2

Since D is the standard Gaussian distribution, the quantity ∥pdown∥2L2(D) equals to the sum of the
squares of the coefficients of the Hermite expansion of pdown (see e.g. O’Donnell (2014)). There-
fore, each Hermite coefficient of pdown is absolutely bounded by 2. Each Hermite polynomial of
degree at most k has coefficients that are absolutely bounded by 2k. Since pdown has degree at most
k, each coefficient of pdown is absolutely bounded by dO(k).
Part (ii). Suppose that α ∈ Nd with ∥α∥1 ≤ k. Then, the worst case regarding moment concentra-
tion is α1 = k. For a sample X from D, we apply Chebyshev’s inequality on the random variable
z = |EX [xk

1]−ED[x
k
1]| and by bounding E[z2] by ED[x

2k
1 ] we have that for any ∆ > 0, z ≤ ∆ with

probability at least 1− (Ck)k

|X|∆2 , where the randomness is over the random choice of X and C > 0 is
a sufficiently large universal constant (for bounds on the Gaussian moments, see, e.g., Proposition
2.5.2 in Vershynin (2018)). Since we need the result to hold for all α simultaneously, the result
follows by a union bound.
Part (iii). We define P to be the class of polynomials over Rd with degree at most k and coefficients
that are absolutely bounded by B. Let T > 0 to be disclosed later and m = |S|. We will first show
that with probability at least 1− δ/2 over the choice of S, we have

E
DXY

[(y − p(x))2] ≤ E
S
[(y − p(x))2] + ϵ for all p ∈ P
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We aim to apply some standard uniform convergence argument, but in order to do so we first need
to ensure certain boundedness conditions as follows.

E
DXY

[(y − p(x))2] = E
DXY

[(y − p(x))2 · 1{∀q ∈ P : |q(x)| ≤ T}]

+ E
DXY

[(y − p(x))2 · 1{∃q ∈ P : |q(x)| > T}]

where we have EDXY [(y − p(x))2 · 1{∀q ∈ P : |q(x)| ≤ T}] ≤ EDXY [(y − p(x))2 | ∀q ∈
P : |q(x)| ≤ T ]. Let D′

XY be the distribution that corresponds to DXY conditioned on the event
{∀q ∈ P : |q(x)| ≤ T} and let S′ = {(x, y) ∈ S : |q(x)| ≤ T, ∀q ∈ P}. By standard arguments
using Rademacher complexity bounds for bounded losses (see, e.g., Theorems 5.5 and 10.3 in Mohri
et al. (2018)) we have that for some sufficiently large universal constant C > 0, with probability at
least 1− δ/4, we have for any p ∈ P

E
D′

XY

[(y − p(x))2] ≤ E
S′
[(y − p(x))2] + T 4 ·

B +
√
log(1/δ)√
m/C

(I.1)

We now need to link ES′ [(y − p(x))2] to ES [(y − p(x))2]. We have the following.

E
S
[(y − p(x))2] ≥ (1− P

S
[∃q ∈ P : |q(x)| > T ]) E

S′
[(y − p(x))2]

≥ E
S′
[(y − p(x))2]− P

S
[∃q ∈ P : |q(x)| > T ] · 2T 2 (since y ∈ {±1} and p ∈ P)

We will upper bound the quantity PS [∃q ∈ P : |q(x)| > T ]. We have

P
S
[∃q ∈ P : |q(x)| > T ] = P

S

[
∃(qα)∥α∥1≤k ∈ [−B,B]d

k
:
∣∣∣∑

α

qαx
α
∣∣∣ > T

]
≤

∑
α:∥α∥1≤k

P
S

[
|xα| ≥ T

Bdk

]
≤

∑
α:∥α∥1≤k

P
D

[
|xα| ≥ T

Bdk

]
+

dk√
2m

log
(8
δ

)
, w.p. at least 1− δ/4

(I.2)

In the last step, we used a standard Chernoff-Hoeffding bound. We now bound
∑

α:∥α∥1≤k PD[|xα| ≥
T

Bdk
]. Recall that D = N (0, Id) and therefore the worst case for α regarding concentration is the

case α1 = k. We therefore obtain the following via Gaussian concentration.∑
α:∥α∥1≤k

P
D

[
|xα| ≥ T

Bdk

]
≤ dk P

D

[
|xk

1| ≥
T

Bdk

]
≤ dk exp

(
− 1

2
· T

1/k

B1/kd

)
(I.3)

It remains to bound the term EDXY [(y − p(x))2 · 1{∃q ∈ P : |q(x)| > T}]. By applying
the Cauchy-Schwarz, it is sufficient to bound

√
EDXY [(y − p(x))4] ·

√
PD[∃q ∈ P : |q(x)| > T ].

For the second term, we use Equation (I.3). For the first term, we have the following for some
sufficiently large constant C > 0.
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E
D
[(y − p(x))4] ≤ 8 + 8E

D
[p4(x)]

≤ 8 +B4d4k
∑

∥α∥1≤4k

∏
i:αi>0

E
D
[xαi

i ] (since deg(p4) ≤ 4k and |(p4)α| ≤ B4d4k)

≤ B4d8k(Ck)2k

(since D = N (0, Id), see Proposition 2.5.2 in Vershynin (2018))

Using the above inequality along with (I.1), (I.2) and (I.3) we obtain that EDXY [(y − p(x))2]−
ES [(y − p(x))2] is upper bounded by the following quantity for some sufficiently large universal
constant C > 0

T 4 ·
B +

√
log(1/δ)√
m/C

+ 2T 2dk exp

(
−1

2
·
(

T

Bdk

)1/k
)
+

+ 2T 2 dk√
2m

log
(10
δ

)
+B2d4k(Ck)kdk/2 exp

(
−1

4
·
(

T

Bdk

)1/k
)
,

which is at most ϵ when we choose m,T as follows for some universal constant C > 0 (possibly
larger than the previously defined constants for which we used the same letter) for the choice T =
CB(4d)kk log(Bdk

ϵ ) and m = C
ϵ2
(B2+log(1δ ))B

8(4d)8kk8 log(Bdk
ϵ ) = Õ(B

ϵ2
) ·O(d)8k · log(1/δ).

In order to bound the symmetric difference, we also need to bound the quantity ES [(y−p(x))2]−
EDXY [(y−p(x))2], which we may do following a similar reasoning, but requiring, at times, bounds
on quantities that correspond to empirical expectations (instead of expectations over the population
distribution). In particular, we will require a bound on ES [(y − p(x))4], which can be reduced to
bounding ES [p

4(x)], for which we may use part (ii), demanding m ≥ dO(k)/δ to obtain

E
S
[p4(x)] ≤ 2B4d4k(Ck)k

Overall, this step will introduce the additional requirement that m ≥ B8

ϵ4δ
d16k(Ck)4k log2(1δ ).

Therefore, overall, for m ≥ mgen = Õ(B
8

ϵ2δ
) · dO(k) · log2(1δ ), we have the desired result.

I.2. Properties of Uniform Distribution

We prove the following fact about the uniform distribution.

Lemma 60 (Properties of the Uniform Distribution) Let D be the uniform distribution over the
hypercube Unif({±1}d) and C > 0 some sufficiently large constant. Then the following are true.

(i) (Coefficient Bound) Suppose that for some ϵ ∈ (0, 1], k > 0 and some concept class C ⊆
Rd → {±1}, the ϵ-approximate L2 sandwiching degree of C w.r.t. D is at most k. Then, the
coefficients of the sandwiching polynomials for C are absolutely bounded by B = 2.

(ii) (Concentration) For any δ ∈ (0, 1),∆ > 0 and k > 0, if X is a set of independent samples
from D with size at least mconc = Ck

∆2 log(
d
δ ) then, with probability at least 1 − δ over the

randomness of X , for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [xα]− ED[x
α]| ≤ ∆.
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(iii) (Generalization) For any ϵ > 0, δ ∈ (0, 1), B > 0, k > 0, and any distribution DXY over
Rd × {±1} whose marginal on Rd is D, if S is a set of independent samples from DXY with
size at least mgen = Õ( 1

ϵ2
) · BO(1) · dO(k) · log(1δ ) then, with probability at least 1− δ over

the randomness of S, we have that for any polynomial p of degree at most k and coefficients
that are absolutely bounded by B it holds |ES [(y − p(x))2]− EDXY [(y − p(x))2]| ≤ ϵ.

Proof We will prove each part of the Lemma separately.
Part (i). Suppose that pup, pdown are 1-sandwiching polynomials for some concept f ∈ C with
degree at most k. Then, we have the following.

∥pdown∥L2(D) ≤ ∥pup − f∥L2(D) + ∥f∥L2D

≤ ∥pup − pdown∥2 + 1 ≤ 2

Since D is the uniform distribution, the quantity ∥pdown∥2L2(D) equals to the sum of the squares
of the coefficients of pdown (see e.g. O’Donnell (2014)). Therefore, each coefficient of pdown is
absolutely bounded by 2.
Part (ii). Suppose that α ∈ {0, 1}d with ∥α∥1 ≤ k. For a sample X from D, we apply Hoeffding’s
inequality on the random variable z = |EX [xα] − ED[x

α]| and by observing that xα ∈ {±1} we
have that the probability that z > ∆ is at most 2 exp(−|X|∆2/10). We obtain the desired result by
a union bound.
Part (iii). We define P to be the class of polynomials over {±1}d with degree at most k and
coefficients that are absolutely bounded by B. Let T > 0 to be disclosed later and m = |S|. We
will show that with probability at least 1− δ over the choice of S, we have

| E
DXY

[(y − p(x))2]− E
S
[(y − p(x))2]| ≤ ϵ for all p ∈ P

We apply some standard uniform convergence argument, by observing that (y−p(x))2 ≤ 2+2B2dk.
In particular by standard arguments using Rademacher complexity bounds for bounded losses (see,
e.g., Theorems 5.5 and 10.3 in Mohri et al. (2018)) we obtain the desired result.
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