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Abstract

Explicit, momentum-based dynamics for optimizing functions defined on Lie groups was
recently constructed, based on techniques such as variational optimization and left trivial-
ization. We appropriately add tractable noise to the optimization dynamics to turn it into
a sampling dynamics, leveraging the advantageous feature that the trivialized momentum
variable is Euclidean despite that the potential function lives on a manifold. We then pro-
pose a Lie-group MCMC sampler, by delicately discretizing the resulting kinetic-Langevin-
type sampling dynamics. The Lie group structure is exactly preserved by this discretization.
Exponential convergence with explicit convergence rate for both the continuous dynamics
and the discrete sampler are then proved under W2 distance. Only compactness of the Lie
group and geodesically L-smoothness of the potential function are needed. To the best of
our knowledge, this is the first convergence result for kinetic Langevin on curved spaces,
and also the first quantitative result that requires no convexity or, at least not explicitly,
any common relaxation such as isoperimetry.

Keywords: left-trivialized kinetic Langevin dynamics; momentum Lie group sampler;
nonasymptotic error bound; nonconvex; no explicit isoperimetry

1. Introduction

Sampling is a classical field that is nevertheless still rapidly progressing, with new results
on quantitative and nonasymptotic guarantees, new algorithms, and appealing machine
learning applications. One type of methods is constructed by, or at least interpretable
as discretizing a continuous time SDE whose equilibrium is the target distribution. Some
famous examples are Langevin Monte Carlo (LMC), which originates from overdamped
Langevin SDE, and kinetic Langevin Monte Carlo (KLMC), which originates from kinetic
Langevin SDE. Both LMC and KLMC are widely used gradient-based methods. Similar to
the fact that momentum helps gradient descent (Nesterov, 2013), KLMC can be interpreted
as a momentum version of LMC.

Nonasymptotic error analysis of momentumless Langevin algorithm in Euclidean spaces
have be established by a collection of great works (e.g., Dalalyan, 2017; Cheng and Bartlett,
2018; Durmus et al., 2019; Vempala and Wibisono, 2019; Li et al., 2021). Samplers based
on kinetic Langevin are more difficult to analyze, largely due to the degeneracy of noise as
it is only added to the momentum but not the position, but many remarkable progress (e.g.,
Shen and Lee, 2019; Dalalyan, 2017; Ma et al., 2021; Zhang et al., 2023; Yuan et al., 2023;
Altschuler and Chewi, 2023) have been made too, showcasing the benefits of momentum.
More discussion of sampling in Euclidean spaces can be found in Sec. B.1.
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Sampling on a manifold that does not admit a global coordinate is much harder. Even
the exact numerical implementation of Brownian motion on it is difficult for general man-
ifolds (Hsu, 2002). Seminal results for general Riemannian manifolds with nonasymptotic
error guarantees include Cheng et al. (2022); Wang et al. (2020); Gatmiry and Vempala
(2022), leveraging either a discretization of the Brownian motion or assuming an oracle
that exactly implements Brownian motion (which is feasible for certain manifolds). How-
ever, all these results focused on the momentumless case.

For a problem closely related to sampling, namely optimization though, several great
results already exist for momentum accelerated optimization on Riemannian manifold, in-
cluding both in continuous time (e.g., Alimisis et al., 2020) and in discrete time (e.g., Ahn
and Sra, 2020). It is possible to formulate sampling as an optimization problem, where
the convergence of a sampling dynamics/algorithm is characterized as conducting optimiza-
tion in the infinite-dimensional space of probability densities (e.g., Vempala and Wibisono,
2019). However, when momentum is introduced to the manifold sampling problem, we
have to be considering the convergence of densities defined on the tangent bundle of the
manifold. This makes the analysis much more challenging. To the best of our knowledge,
no convergence result exists for kinetic Langevin on curved spaces, in neither continuous or
discrete time cases. See Sec. B.2 for more discussions of those difficulties.

This paper considers a special class of manifolds, known as the Lie groups. A Lie group
is a differential manifold with group structure. Many widely used manifolds in machine
learning indeed have Lie group structures; one example is the set of orthogonal matrices
(with det=1), i.e. SO(n); see e.g., Lezcano-Casado and Martınez-Rubio (2019); Tao and
Ohsawa (2020); Kong et al. (2023) for optimization on SO(n). However, fewer results have
been established for sampling on Lie groups, especially with momentum. The interesting
work by Arnaudon et al. (2019) might be the closest to ours in this regard, but the kinetic
Langevin dynamics that we are proposing was not explicitly worked out, nor its discretiza-
tion, and neither the uniqueness of invariant distribution or a convergence guarantee was
provided, let alone convergence rate. In fact, similar to the general manifold case, we are un-
aware of prior construction of kinetic-Langevin-type samplers for Lie groups, and certainly
not performance quantification.

1.1. A brief summary of main results

Our main contributions are:

1. We provide the first momentum version of Langevin-based algorithm for sampling
on the curved spaces of Lie groups, with rigorous and quantitative analysis of the
geometric ergodicities of both the sampling dynamics (i.e. in continuous time) on
which it is based, and the sampling algorithm per se (i.e. in discrete time)

2. The exponential convergence on Lie groups is proved under weaker assumptions than
considered in the literature for general manifolds, as we leverage their additional group
structure. Only compactness of the manifold and smoothness of the log density are
used. No (geodesic-)convexity or explicit isoperimetric inequalities are needed.

3. Our algorithm is fully implementable in the sense that it requires no implementation
of Brownian motion on curved spaces. It is also computationally efficient as it is
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based on explicit numerical discretization that preserves the manifold structure; that
is, unlike commonly done, no extra projection back to the manifold (which can be
computationally expensive) is needed. Note that our discretization is different from
exponential integrators commonly used in Euclidean cases, and requires new analysis.

More specifically, consider sampling from a target distribution with density ∝ ρ(g). Letting
U = − log ρ and calling it potential function (U ∶ G → R, where G is the Lie group), the
sampling dynamics we construct is:

⎧⎪⎪⎨⎪⎪⎩

ġ = TeLgξ
dξ = −γξdt − TgLg−1(∇U(g))dt +

√
2γdWt

(1)

It admits the following invariant distribution

ν∗(g, ξ) =
1

Z
exp(−U(g) − 1

2
⟨ξ, ξ⟩)dgdξ (2)

where dg is left Haar measure and dξ is Lebesgue. Its g marginal is the target distribution.
The sampling algorithm we propose is:

Algorithm 1: Kinetic Langevin Monte Carlo (KLMC) sampler on Lie groups

Parameter : step size h > 0, friction γ > 0, number of iterations N
Initialization: g0 ∈ G, ξ0 = 0
Output : A sample from Z−1 exp(−U(g))
for k = 0,⋯,N − 1 do

ξk+1 = exp(−γh)ξk − 1−exp(−γh)
γ TgLg−1∇U(gk) +N(0,1 − exp(−2γh))

gk+1 = gk exp(hξk)
end
return gN

The convergence guarantee for the sampling dynamics (eq.1; continuous time) is

Theorem 1 (Convergence of Kinetic Langevin dynamics on Lie groups (Informal version))
Suppose the Lie group G is compact, finite-dimensional and the potential function U is L-
smooth, then we have the exponential convergence of sampling dynamics (1) to the Gibbs
distribution ν∗, i.e.,

W2(νt, ν∗) ≤ Cρe
−ctWρ(ν0, ν∗)

where νt is the joint density of g(t) and ξ(t). For notations and more details, see Thm. 8.

The nonasymptotic error bound for our sampler (Alg.1; discrete time) is

Theorem 2 (Convergence of Kinetic Langevin Sampler on Lie groups (Informal version))
Suppose the Lie group G is compact, finite-dimensional and the potential function U is L-
smooth, then we have the exponential convergence of our KLMC algorithm to the Gibbs
distribution, i.e.,

W2(ν̃k, ν∗) ≤ Cρe
−ckhWρ(ν0, ν∗) +O(h1/2)

where ν̃k is the density for the sampler at step k, ν∗ is that target distribution in Eq. 2
and c is the contraction rate for the continuous dynamics. For notations Wρ, Cρ, a more
explicit expression of O(h1/2), and more technical details, see Thm. 16.
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2. Preliminaries

2.1. Lie group and Lie algebra

A Lie group, denoted as G, is a differentiable manifold with a group structure. A Lie
algebra is a vector space with a bilinear, alternating binary operation that satisfies the
Jacobi identity, known as Lie bracket. The tangent space at e (the identity element of the
group) is a Lie algebra, denoted as g ∶= TeG. The dimension of the Lie group G will be
denoted by m. Lie groups considered when proving the convergence of kinetic Langevin
dynamics and kinetic Langevin sampler will be assumed to satisfy the following:

Assumption 1 (General assumptions on geometry) We assume the Lie group G is
finite-dimensional, connected, and compact.

The property we will use to handle momentum on Lie groups is called left-trivialization,
which is an operation from the group structure and does not exist on a general manifold.
Left group multiplication Lg ∶ ĝ → gĝ is a smooth map from the Lie group to itself and its
tangent map TĝLg ∶ TĝG → TgĝG is a one-to-one map. As a result, for any g ∈ G, we can
represent the vectors in TgG by TeLgξ for ξ ∈ TeG. This operation gives us an optimization
dynamics on Lie groups in the next section.

2.2. Optimization dynamics based on left trivialization

Tao and Ohsawa (2020) proposed a Lie group optimizer based on constructing the following
ODE, which performs optimization in continuous time on a general Lie group:

⎧⎪⎪⎨⎪⎪⎩

ġ = TeLgξ
ξ̇ = −γξ + ad∗ξ ξ − TgLg−1(∇U(g))

(3)

ξ is the left-trivialized momentum (intuitively it could be thought of as angular momentum),
and TeLgξ is the momentum (intuitively, think it as gξ, i.e. position times angular momen-
tum gives momentum1). Potential U ∶ G→ R is the objective function of optimization. ∇U is
the Riemannian gradient of the potential, and TgLg−1(∇U(g)) is its left-trivialization. This
dynamics essentially models a damped mechanical system, where the total energy (sum of
some kinetic energy term and potential energy U) is drained by the frictional forcing term
−γξ, and U is minimized at t → ∞. Indeed, this is how Tao and Ohsawa (2020) proved
this ODE converges to a local minimum of U . The kinetic energy needs more discussion.
In the Euclidean space, we have a global inner product, which is not true in curved spaces.
In the Lie group case, we first define an inner product ⟨⋅, ⋅⟩ on g, which is flat, and then
move it around by the differential of left multiplication, i.e., the inner product at TgG is
for ξ1, ξ2 ∈ TgG, ⟨ξ1, ξ2⟩ ∶= ⟨TgLg−1ξ1, TgLg−1ξ2⟩. As a result, 1

2⟨ξ, ξ⟩ is the kinetic energy. γ
provides dissipation to the total energy (the sum of kinetic energy and potential energy). In
general, γ can be a positive function depending on time (e.g., NAG-C). However, we only
consider the case γ as a constant for simplicity.

For curved space, an additional term ad∗ξ ξ that vanishes in Euclidean space shows up
in Eq. (3). It could be understood as a generalization of Coriolis force that accounts for

1. Technically, momentum is the dual of velocity, and these quantities should called velocity instead for
rigor, but we will stick to the word ‘momentum’ by convention.
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curved geometry and is needed for free motion, see Sec. C.3 for more discussion. The
adjoint operator ad ∶ g × g → g is defined by adX Y ∶= [X,Y ]. Its dual, known as the
coadjoint operator ad∗ ∶ g × g→ g, is given by ⟨ad∗X Y,Z⟩ = ⟨Y,adX Z⟩,∀Z ∈ g.

2.3. Choice of inner product on g

The term ad∗ξ ξ in the optimization ODE (3) (and also the later sampling SDE Eq.4) is a
quadratic term and it will make the numerical discretization that will be considered later
difficult. Another more intrinsic drawback of this term is, it depends on the Riemannian
metric, and indicates an inconsistency between the Riemannian structure and the group
structure, i.e., the exponential map from the Riemannian structure is different from the
exponential map from the group structure. See Sec. D.1 for more details. Fortunately, the
following lemma shows a special metric on g can be chosen to make the term ad∗ξ ξ vanish.

Lemma 3 (ad skew-adjoint (Milnor, 1976)) Under Assumption 1, there exists an in-
ner product on g such that the operator ad is skew-adjoint, i.e., ad∗ξ = −adξ for any ξ ∈ g.
Rmk. 26 in Sec. D.1 gives an explicit expression for this inner product. Under this inner
product, ad∗ξ ξ = −adξ ξ = [ξ, ξ] = 0 because of the skew-symmetricity of the Lie-bracket. As
a result, we can choose this inner product to ensure ad∗ξ ξ vanishes for any ξ ∈ g. This choice
will be used throughout the rest of this paper. The diameter of G under such metric will
be denoted as D.

Under the left-invariant metric induced by this inner product on g, the Lie group always
has non-negative sectional curvature (Sec. D.2). Interestingly, different opinions exist about
whether positive or negative curvatures help optimization or sampling. Positive curvatures
help the quantification of discretization error via a modified cosine rule (Alimisis et al.,
2020), while negative curvatures make it easier to have geodesically convex potential.

2.4. Assumptions on the potential function

After selecting our inner product on g and using it to induce a left-invariant metric on G,
the Riemannian structure on G enables us to define distance and gradient on G. With these,
we can make the following smoothness assumption on the potential function U :

Assumption 2 (L-smoothness) Under the left-invariant metric induced by the inner
product in Lemma 3, there exist constants L ∈ (0,∞), s.t.

∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥ ≤ Ld(g, ĝ) ∀g, ĝ ∈ G
Although here we compare gradients using left-trivialization, Lemma 28 shows the L-
smoothness defined here is the same as the commonly used geodesic L-smoothness based
on parallel transport (Def. 27), given the left-invariant metric in Lemma 3.

3. The SDE for sampling dynamics on Lie groups

In Euclidean space, when noise is added to momentum gradient descent, we have kinetic
Langevin sampling SDE. Thanks to that our ξ is in a flat space, to obtain a Lie group
generalization we add noise analogously to the optimization ODE Eq.(3) to obtain the
following SDE on G × g ,whose invariant distribution is the Gibbs distribution (Thm. 22):

⎧⎪⎪⎨⎪⎪⎩

ġ = TeLgξ
dξ = −γξdt + ad∗ξ ξdt − TgLg−1(∇U(g))dt +

√
2γdWt

(4)
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Here dWt means ∑i eidW
i
t , with W i being i.i.d. Brownian motion and {ei}mi=1 being a set of

orthonormal basis of g under ⟨⋅, ⋅⟩. The Brownian motion in both cases is not on a manifold
but simply in a finite-dimensional vector space with an inner product, thus is well-defined.

The term ad∗ξ ξ is again due to the curved space, see Sec.C.2. It ensures the invariant
distribution (2) for any choice of inner product. See Thm. 22. However, if we use the inner
product in Lemma 3, this term vanishes and the sampling SDE reduces to Eq.1.

4. Convergence of sampling dynamics in continuous time

We now prove the convergence of sampling SDE (4) under Wasserstein-2 distance. To do
so, we first construct a coupling scheme by mixing synchronous coupling with reflection
coupling. We also design a semi-distance. Using semi-martingale decomposition, we then
prove the contractivity under this semi-metric, which induces convergence to the invariant
distribution. Finally, this will be used to obtain convergence in W2. The coupling scheme
is inspired by Eberle et al. (2019), but both our semi-distance and detailed coupling scheme
are different, which are specially designed to handle the curved space and to better utilize
the compactness of the Lie group.

4.1. Construction of coupling

Coupling is a powerful probabilistic technique for, e.g., studying the convergence of a dif-
fusion process. An easy example is synchronous coupling, i.e. consider dx = b(x)dt + dWt

and dy = b(y)dt + dWt with the same noise and y initialized at the invariant distribution;
when the drift term b provides contractivity, one can show x converges to y and hence the
invariant distribution. For Euclidean Langevin SDE, it works, for example, when b = −∇U
with a strongly convex potential U . However, when contractivity from the drift term is not
enough or noise is more complicated, we need more advanced coupling techniques:

Specifically, we consider (gt, ξt) and (ĝt, ξ̂t), both evolving in law as (4), given by:

⎧⎪⎪⎨⎪⎪⎩

dgt = TeLgtξtdt
dξt = −γξtdt − TgtLgt−1(∇U(gt))dt +

√
2γ rc(Zt, µt)dW rc

t +
√

2γ sc(Zt, µt)dW sc
t

(5)

⎧⎪⎪⎨⎪⎪⎩

dĝt = TeLĝt ξ̂tdt
dξ̂t = −γξ̂tdt − TĝtLĝ−1t (∇U(ĝt))dt +

√
2γ(Id − 2ete

⊺
t ) rc(Zt, µt)dW rc

t +
√

2γ sc(Zt, µt)dW sc
t

where Zt ∶= log ĝ−1t gt, µt ∶= ξt − ξ̂t and Qt ∶= Zt + 1
γµt. et = Qt/∥Qt∥ if Qt ≠ 0, otherwise et = 0.

In all cases, we use log to define the inverse of the exponential map corresponding to the
minimum geodesic (any one will do when the minimum geodesic is not unique). Moreover,
rc, sc ∶ R2m → [0,1] are Lipschitz continuous functions such that rc2 + sc2 ≡ 1, and

rc(z, µ) =
⎧⎪⎪⎨⎪⎪⎩

0, if z + γ−1µ = 0 or ∥µ∥ ≥ γR + ϵ,
1, if ∥z + γ−1µ∥ ≥ ϵ and ∥µ∥ ≤ γR

(6)

The parameters R ∈ (0,∞) will be chosen later in Sec. 4.3. ϵ is a fixed positive constant,
and will go to 0 eventually (See the proof for Thm. 7).

The intuition of our design of coupling is illustrated in Fig. 1. The nonlinearly trans-
formed phase space is partitioned into four regions where different couplings are used. More
precisely -
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Z+γ -1µ=0 (II)

µ

Z

III

III

IV

Figure 1: Partition of
phase space using
different couplings

Region (III) is where two momenta are very different. Their
difference is so large that it is the main difference between (g, ξ)
and (ĝ, ξ̂). In this case, friction −γξ provides contractility and syn-
chronous coupling is sufficient for bringing the two copies together.

Region (II) is the ‘good’ part, which means the two points
(g, ξ) and (ĝ, ξ̂) will eventually stop at the same point under fric-
tion if the potential does nothing. Here, the momenta of the two
copies are pulling their position variables together, thus providing
contractivity. Synchronous coupling is enough for this region too.

Region (I) is the tricky part. None of the two ways above works,
and we use reflection coupling instead to obtain contractivity. An
intuition is the following: when reflection coupling is used, the
difference between trivialized momenta is no longer differentiable
in time but a diffusion process. Combined with the concavity of f in the semi-distance, which
will be introduce in Sec. 4.2, a negative Ito correction term shows up in the adapted finite-
variation process of a semi-martingale decomposition of the semi-distance, which provides
an extra negative drift and leads to contractivity if the parameters are chosen carefully.
More specifically, the helping term we are referring to is 4γ−1 rc(Z,µ)2f ′′(r) in K (defined
in Sec. F.1) in the semi-martingale decomposition of ectρt (Lemma 6).

Region (IV) is the transitional region between synchronous coupling and reflection cou-
pling, colored in gray in Fig. 1. Its has width ϵ and will eventually vanish when ϵ→ 0.

4.2. Design of semi-distance

Besides designing the coupling, we also need a quantification of how far two points are on
G × g. One of our innovations is, we do not necessarily need a distance but only a semi-
distance, i.e., no triangle inequality. We will construct the semi-distance carefully so that
the coupling leads to contractivity. More precisely, let the semi-distance ρ be given by

ρ((g, ξ), (ĝ, ξ̂)) ∶= f(r((g, ξ), (ĝ, ξ̂)))G(ξ, ξ̂), ∀g, ĝ ∈ G,∀ξ, ξ̂ ∈ g (7)

where f ∶ [0,∞) → [0,∞) is a continuous, non-decreasing, concave function satisfing f(0) =
0, f ′+(0) = 1, f ′−(R) > 0 2 and f is constant on [R,∞). r and G are defined as

r((g, ξ), (ĝ, ξ̂)) ∶= αd(g, ĝ) + ∥log ĝ−1g + γ−1(ξ − ξ̂)∥ (8)

G(ξ, ξ̂) ∶= 1 + β∥ξ̂ − ξ∥2 (9)

An explicit expression of f will be chosen later in Sec. F.3.1. The parameters α,β ∈ (0,∞)
will be given in Sec. F.3.2, whose values are chosen carefully together with other parameters
(f and R) to achieve contractivity.

As shown, the semi-distance ρ has a complicated form, and the triangle inequality is
sacrificed, which may lead to difficulties when analyzing numerical error from discretization
later. But before diving into more details, let’s provide some motivation for this complicated
design. and how this design of semi-distance is related to our coupling.

ρ is the product of two parts, f(r) and G. The function G is one plus the square of
Euclidean distance between ξ and ξ̂. It is designed for handling region (III), where friction

2. Here f− and f+ denote the left and right derivative of f , respectively.
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ensures the decrease of G. Unlike Eberle et al. (2019), our G does not depend on position
(g or ĝ). Besides the intuition we mentioned about friction, other reasons are: 1) In Eberle
et al. (2019), G also provide contractivity when the positions g and ĝ are far from each other
utilizing strong dispativity under synchronous coupling. However, as discussed in Sec. B.3,
in our case, we can not have convexity assumptions on the potential and including g and ĝ
in G does not help; 2) compactness ensures the distance between g and ĝ is bounded, and
in this case having G that only depends on the difference of momentum is enough to ensure
ρ is stronger than d2 (Lemma 4).

The other part of ρ is f(r). It is by design concave because, like mentioned earlier,
Ito’s correction will give an additional term based on f ′′, and concavity of f will provide
a negative sign and thus contractivity in region (I). Moreover, we make it first increasing
and then constant starting from r = R on. This way, min{r ∈ R ∶ f(r) = sup f} = R.
Meanwhile, the bound for the synchronous coupling (III) is defined by ∥ξ − ξ̂∥ ≥ γR. It
is not a coincidence that they both scale with R; instead, it is because the coupling and
semi-metric are carefully designed together: As mentioned earlier in Sec. 4.1, in region
(III), the friction term is large enough and synchronous coupling suffices, i.e., when µ ≥ γR,
we have r ≥ R. Therefore, the concavity of f in the interval of r < R is sufficient for creating
contractivity, and thus we simply set f to be constant on [R,∞).

Intuitively, r in Eq. (8) measures the ‘distance’ between points on G×g. The first parts
d(g, ĝ) is directly the distance on the Lie group. However, we do not measure the difference
between momenta directly, but by ∥log ĝ−1g + γ−1(ξ − ξ̂)∥, i.e. a twisted version with position
distance also leaked in. The reason is similar to why we use region (I): we are measuring
how far they will travel before eventually stopping due to friction without potential; this
is a manifold generalization of the existing Euclidean treatment (e.g., Dalalyan and Riou-
Durand, 2020; Eberle et al., 2019).

As a result, the design of ρ is a combination of functions that ensures contractivity in
different regions. Later, we will carefully select parameters α and β to perfectly balance
them. We will also discuss how to remedy the loss of triangle inequality and provide a
substitute formula in Lemma 12 when we consider the discretization error of our SDE.

For now, we first show ρ can control the standard geodesic distance. The standard
geodesic distance d in the product space G × g is defined by

d((g, ξ), (ĝ, ξ̂)) =
√
d2(g, ĝ) + ∥ξ̂ − ξ∥2 (10)

where d on the right-hand side is the distance on G given by the minimum geodesic length.
Since both the distance on G and the distance on G × g are derived from the inner product
on g, we will use the same notation when there is no confusion. We have the following
theorem showing d2 on G × g is controlled by ρ.

Lemma 4 (Control of d by ρ) Define Cρ as Eq. (48), we have

Cρd
2((g, ξ), (ĝ, ξ̂)) ≤ ρ((g, ξ), (ĝ, ξ̂)), ∀(g, ξ), (ĝ, ξ̂) ∈ G × g

Here are more intuitions about ρ. For simplified notation, use d to denote d((g, ξ), (ĝ, ξ̂)).
When d is small, we have r ∼ d and d2 ≲ d. Moreover, we have f ′− lower bounded from 0,
and ρ ≡ f(r) ∼ d. However, when d is large, we have r is also large and f(r) = f(R). In this
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case, ρ ∼ f(R)d2. To summarize, ρ is similar to d when d is small but similar to d2 when d
is large. This is why d2 but not d can be bounded by ρ in Lemma 4.

Remark 5 (Comparison with Eberle et al. (2019)) The coupling and semi-distance
used by Eberle et al. (2019) inspired our choices, but their version is not suitable for us.
The first reason is that their G (Eq. 3.10 in Eberle et al. (2019)) is specially designed
for the condition ‘convex outside a ball’, which is not available for Lie groups (Sec. B.3).
Also, technical issues appear for their semi-distance: d log (differential of logarithm) does
not exist on a zero-measured set N (Eq.25) on Lie groups, and on a small neighbour of N ,
the operator norm of d log can be unbounded, which leads to difficulties in calculation when
using their sem-distance. However, our design of coupling and semi-distance utilizes the
boundness of our Lie group. Consequently, in all our proof, what we only need for d log is
the properties in Cor. 31 and the fact that N is zero-measured is enough for our approach.

4.3. Contractivity of sampling dynamics under Wρ distance

We define the Wasserstein semi-distance between distributions on G×g asWρ, i.e., Wρ(ν1, ν2) ∶=
infπ∈Π(ν1,ν2) ∫ ρdπ where Π is the set of all distributions on (G × g)2 with marginal distri-
butions ν1 and ν2. We hope to prove the contractivity of densities under Wρ distance. The
proof uses the following idea:

For any pair of points (g, ξ) and (ĝ, ξ̂) that are coupled together in the way stated
in Sec. 4.1, we now construct a martingale decomposition bound of ectρ((g, ξ), (ĝ, ξ̂)),
where c is our target contraction rate that will be chosen later. More precisely, as will
be shown by Lemma 6, ectρ((g, ξ), (ĝ, ξ̂)) is decomposed as the sum of an adapted finite-
variation process and a continuous local martingale, where the former is upper bounded by

∫ t
0 e

csK((gs, ξs), (ĝs, ξ̂s))ds with K ∶ (G × g)2 → R defined later in Sec. F.1.

Lemma 6 Let c, ϵ ∈ (0,∞), and suppose that f ∶ [0,∞) → [0,∞) is continuous, non-
decreasing, concave, and C2 except for finitely many points. Then

ectρt ≤ ρ0 + ∫
t

0
ecsKsds +Mt ∀t ≥ 0 a.e., (11)

where (Mt) is a continuous local martingale, and Ks ∶=K((gs, ξs), (ĝs, ξ̂s))
By taking expectation, we only need K((gs, ξs), (ĝs, ξ̂s)) ≤ 0, a.e.,∀s when ϵ → 0, where
(gs, ξs) and (ĝs, ξ̂s) are coupled as in Sec. 4.1 . This will infer that Eectρ((gt, ξt), (ĝt, ξ̂t)) is
non-increasing and further gives us the convergence rate under Wρ distance. We summarize

the conditions needed for K((gs, ξs), f(ĝs, ξ̂s)) ≤ 0, a.e. in Sec. F.2 and later choose all the
parameters f , α, β, R and c in Sec. F.3 such that these conditions are met. The choice of γ
is also given to establish an explicit order of convergence rate. This gives our contractivity
result for sampling SDE Eq. (4) under semi-distance ρ:

Theorem 7 For any probability distributions ν0 and ν̂0 on G×g that is absolute continuous
w.r.t. dgdξ, if we evolve them by the sampling SDE (4), then, for some α, β, R, f , and
c > 0 (specified in Thm. 38), we have

Wρ(νt, ν̂t) ≤ e−ctWρ(ν0, ν̂0)
As we mentioned, Wρ is only a semi-distance and lacks triangle inequality since ρ is only

a semi-distance. However, what we only need for now is it controls W2 distance:

9
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4.4. Error bound for sampling SDE under W2 distance

Upon choosing ν̂0 in Thm.7 as the invariant distribution, obviously ν̂t = ν̂0 and Thm.7 thus
quantifies the convergence speed of the sampling dynamics in Wρ. Since Wρ is what we
invented and not a distance, we control d2 by ρ, which infers Wρ controls W 2

2 (Cor. 39), so
that we can have the following theorem for convergence in a more standard distance:

Theorem 8 (Error of sampling SDE under W2) Suppose the initial condition (g0, ξ0) ∼
ν0, where we assume ν0 is absolute continuous w.r.t. dgdξ. Denote by ν∗ the Gibbs distri-
bution Eq. (2) and by νt the distribution evolved by SDE Eq. (4). Then we have the W2

distance between νt and ν∗ is bounded by

W2(νt, ν∗) ≤ e−
c
2
t
√
CρWρ(ν0, ν∗)

The reason why we need absolute continuity of the initial condition is because this gives
us absolute continuity at any time t, which further enables us to ignore a bad set N where
log is not differentiable. However, this condition will not lead to infeasibility of our discrete
algorithm, which will be discussed later in Rmk. 36.

The contraction rate c is not explicitly expressed in the above theorem only because it
is lengthy. A detailed expression is given by Eq. (42) in Lemma 38 and Eq. (47) gives an
estimation of the order of c. How these results help choose γ is also discussed in Sec. F.4.

5. Convergence of sampling algorithm in discrete time

This section will first construct a sampler based on a time discretization of our sampling
SDE. Thanks to an operator splitting technique, this discretization will render the iterations
exactly satisfying the geometry of the curved space, which is a pleasant property referred
to as structure-preservation (Thm. 9). Then we will establish its error bound in W2 by:
1) quantifying local integration error in d (Thm. 10); 2) developing a modified triangle
inequality for our semi-distance ρ (Lemma 12) and estimating sampling error propagation
for the discrete sampler under Eρ (Thm. 13); 3) quantifying how local error accumulates
to establish a global nonasymptotic error estimate under Eρ (Cor. 14), and then turning
it into a nonasymptotic sampling error bound under Wρ (Thm. 15); 4) bounding sampling
error in W2 (Thm. 16) by the fact that W 2

2 can be controlled by Wρ (Cor. 39).

5.1. Sampler based on splitting discretization

We consider sampling SDE (4) with vanishing ad∗ξ ξ (due to Lemma 3). To obtain a time
discretization that respects the geometry, we write (4) as the sum of the following two SDEs,
each of which can be solved explicitly, and alternatively evolve them to approximate the
solution of (4), whose closed-form solution does not exist.

⎧⎪⎪⎨⎪⎪⎩

ġ = 0

dξ = −γξdt − TgLg−1(∇U(g))dt +
√

2γdWt

(12)

⎧⎪⎪⎨⎪⎪⎩

ġ = TeLgξ
dξ = 0

(13)

To implement our algorithm, we embed the Lie group in an ambient Euclidean space, and
the algorithm automatically keeps the iterates on the Lie group. Most algorithms in curved
spaces similarly rely on this embedding, but they need extra work to correct the deviation

10
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from manifold after each iteration, e.g., Cisse et al. (2017). In contrast, thanks to our specific
splitting discretization, no matter how large the step size h is, our algorithm ensures g stays
on the Lie group, and no artificial step that pulls the point back to the curved space is
needed. Specifically, by first evolving Eq. (12) for time h and then Eq. (13) for time h, we
obtain the following one step update:

⎧⎪⎪⎨⎪⎪⎩

g̃h = g0 exp(hξ̃h)
ξ̃h = exp(−γh)ξ0 − 1−exp(−γh)

γ TgLg−1∇U(g0) +
√

2γ ∫ h
0 exp(−γ(h − s))dWs

(14)

Iterating this update gives Algorithm 1.
Its general structure preservation is summarized below; an example is given in Rmk.40.

Theorem 9 The splitting discretization Eq. (14) is structure-preserving, i.e., for any step
size h and any initial point (g0, ξ0), the iteration (gk, ξk),∀k ≥ 0 has the property that gk
stays exactly on the Lie group and ξk stays exactly on the Lie algebra.

We remark that the commonly used exponential integrator (see Eq.49) doesn’t work
here due to the nonlinear geometry. For example, the matrix-group-embedded g dynamics is
ġ = gξ where both g and ξ are matrices; because ξ is time-dependent, g admits no analytical
solution. Existing tools for analyzing exponential-integrator-based samplers unfortunately
have technical difficulties to be generalized here too (see Sec. H.1).

5.2. Quantification of discretization error

Notation: starting from initial conditions (g0, ξ0) and (ĝ0, ξ̂0), we use (gt, ξt) and (ĝt, ξ̂t)
to denote the exact solutions of two SDEs that are coupled together (5) correspondingly.
(g̃h, ξ̃h) is for one iteration by our sampler (i.e. splitting discretization (14)) from initial
condition (g0, ξ0) with fixed step size h. (g̃k, ξ̃k) is the result of k iterations.

It is challenging to quantify discretization error directly in ρ, because ρ has a compli-
cated expression and lacks triangle inequality. We bypass the difficulty by using the natural
distance d on G × g instead. The following theorem will quantify the one-step mean square
error of our numerical scheme. The proof uses a new technique, namely to view the numer-
ical solution after just one-step, with step size h, as the exact solution of some shadowing
SDE at time h (Lemma 42), and then we only need to quantify the difference between the
sampling SDE (4) and the shadow SDE (50).

Theorem 10 (Local numerical error) Suppose the initial condition (g0, ξ0) ∼ ν0 is ab-
solute continuous w.r.t. dgdξ. (gt, ξt) is the solution of SDE (4) at time h and (g̃h, ξ̃h) is
the solution of the numerical discretization Eq. 14 with time step h. Then we have

Ed2((gh, ξh), (g̃h, ξ̃h)) ≤ x(h) + y(h)

where x(t) and y(t) are the solutions to an ODE given by Eq.52.

If one wants a more explicit bound, the following Lemma gives a less tight but more succinct
one: Basically the local strong error is 3/2 = 1.5 order.

Lemma 11 (Order of local error)

Ed2((gh, ξh), (g̃h, ξ̃h)) = O(h3), h→ 0

i.e., ∃h0,Ah0 , s.t.∀h ≤ h0, x(h) + y(h) ≤ Ah0h
3 for x and y defined by Eq. 52.

11
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Then, in the next subsection, we will combine this local error in d2 and the contractivity of
the continuous dynamics to establish the contractivity of our sampler.

5.3. Local error propagation

A standard technique for analyzing the sampling error of a sampler based on the discretiza-
tion of a continuous dynamics is to transfer its infinite long time numerical integration error
to a Wasserstein control of the difference between the continuous and discrete dynamics.
To do so, one typically first seeks the contractivity of the continuous dynamics (Thm. 7),
and then use that to both control the accumulation of local integration errors into global
integration error, and bound the distance between the continuous dynamics and the target
distribution so that the distance between the discrete dynamics and the target can also be
bounded. For both tasks, triangle inequality is leveraged. However, as mentioned earlier in
Sec. 4.2, ρ is only a semi-distance and does not satisfy triangle inequality, and we develop
the following lemma as an alternation.

Lemma 12 (Modified triangle inequality for ρ) For any points (g, ξ), (ĝ, ξ̂) and (g̃, ξ̃),

ρ((ĝ, ξ̂), (g̃, ξ̃)) ≤ [1 +A1d((g, ξ), (g̃, ξ̃))]ρ((ĝ, ξ̂), (g, ξ)) +A2d
2((g, ξ), (g̃, ξ̃))

for some constants A1,A2 > 0 (their detailed expressions are given in Eq. 53).

Combining contractivity of continuous SDE (Thm.7), local discretization error (Thm.10)
and modified triangle inequality for ρ (Lemma 12), we have the following result quantifying
how error propagates after one step (more precisely, given two initial conditions, one evolving
under the continuous dynamics for time h and the other iterated by the discrete algorithm
(14) for one h-step, how the difference of the results changes from the initial difference):

Theorem 13 (Propagation of error under Eρ) Suppose Law(g0, ξ0) and Law(ĝ0, ξ̂0)
are absolute continuous w.r.t. dgdξ. After one iteration from (g̃0, ξ̃0) = (g0, ξ0) to (g̃h, ξ̃h)
by Eq.(14) with step size h, and exact evolution of ĝ0, ξ̂0 by time h, we have, ∀h > 0,

Eρ((ĝh, ξ̂h), (g̃h, ξ̃h)) ≤ exp(−ch)Eρ((ĝ0, ξ̂0), (g0, ξ0)) +E(h)

where E(h) is given by

E(h) ∶= ( A1

2h
3
2

+A2)(x(h) + y(h)) +
A1

2
f(R)2(1 + 8C2 + 16C4)h

3
2 (15)

using the notation x(h) and y(h) from Lemma 10.

5.4. Mixing in Wρ

By applying this local error propagation recurrently, we can obtain a global result:

Corollary 14 (Nonasymptotic error bound under Eρ) Under the same condition as
Thm. 13, we have, for k = 0,1,⋯,

Eρ((ĝkh, ξ̂kh), (g̃k, ξ̃k)) ≤ e−ckhEρ((ĝ0, ξ̂0), (g̃0, ξ̃0)) +
E(h)

1 − exp(−ch)

12
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The two semi-distances Wρ and Eρ are closely related, and we can derive the following
error bound in Wρ, for measuring the difference between distributions.

Theorem 15 (Nonasymptotic error bound under Wρ) Given Assumption 1, 2 and
the inner product on g chosen as Lemma 3, if the initial condition (g0, ξ0) ∼ ν0 satisfies
Wρ(ν0, ν∗) < ∞ and ν0 is absolute w.r.t. dgdξ, then ∀k = 1,2, . . . , the density of scheme Eq.
(14) starting from ν0 has the following W2 distance from the target distribution:

Wρ(ν̃k, ν∗) ≤ e−ckhWρ(ν0, ν∗) +
E(h)

1 − exp(−ch) ,

where E(h) is defined in Eq.15. Note this holds ∀h > 0, but E(h) can grow exponentially.

5.5. Global sampling error in W2

Via the global Wρ error bound (Thm.15) and the property that d2 is controlled by ρ (Lemma
4), we can also have a nonasymptotic control of the sampling error in a more common way
of measurement, namely W2, which is a true distance between distributions this time:

Theorem 16 (Nonasymptotic error bound under W2) Under the same assumption
as Thm. 15, we have

W2(ν̃k, ν∗) ≤ Cρ (e−ckhWρ(ν0, ν∗) +
E(h)

1 − exp(−ch))

The requirement that initial condition is absolute continuous w.r.t. dgdξ is only for technical
reasons for the proof but not needed in implementation. See Rmk. 36 for details.

Remark 17 Notice that E(h) in Eq. (15) is of order h
3
2 and 1 − exp(−ch) is of order h,

which means the bias in the second term created by discretization error converges to 0 when
step size is infinitely small, and the bias is asymptotically of order h0.5.

6. Numerical demonstration

Consider an example of sampling on the Lie group SO(n), which we embed in the ma-
trix space Rn×n, i.e., SO(n) ∶= {X ∈ Rn×n ∶X⊺X = I,det(X) = 1} (Example 2). The in-
ner product in Lemma 3 is given by ⟨A,B⟩ = tr(A⊺B). Under this innner product, the
left-trivialized gradient TgLg−1∇U(g) can be calculated as follows: suppose SO(n) is rep-
resented by n × n matrices, and U is a real valued function defined on a subset of Rn×n.
Denote its Euclidean gradient ∇EU , which can be calculated either by backward propa-
gation or by closed-form solution. In this case, the Riemannian gradient ∇U(X) is given
by ∇EU(X) −X (∇EU(X))⊺X and the left-trivialized gradient TgLg−1∇U(g) is given by

X−1∇U(X) =X⊺∇EU(X) − (∇EU(X))⊺X.

Now we numerically experiment on a specific potential U(X) = −10X2
1,1. We let n = 10,

and the dimension of the group is thus 45. Note even though the potential might appear
like a convex function, the target distribution is actually multimodal, and we recall again
there is nonconstant geodesic convex function on this manifold (e.g., Sec.B.3).
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The parameters for our sampler Algo. 1 are γ = 1 and h = 0.1. All the Markov chains
are initialized by a fixed random generated orthogonal matrix. We focus on the variable
X[0,0] (the top left element of the matrix).

Fig. 2(a) compares the samples from our sampler to the ground truth samples generated
by rejection sampling, showing our sampler is sampling the correct Gibbs distribution.
Fig. 2(b) is another evidence that our sampler is dynamically sampling from a multimodal
distribution. Exponential convergence of our sampler can be observed from Fig. 2(c), as
theoretically proved in Thm. 8 and 16 despite of the multimodality. Fig. 2(d) and 2(e)
visualize how the density evolves as our discrete process mixes and equilibrates.
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Figure 2: Visualizing the exponential convergence of our Lie group sampler (Alg.1) for
sampling a multimodal distribution on SO(10).
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Theodor Bröcker and Tammo Tom Dieck. Representations of compact Lie groups, volume 98.
Springer Science & Business Media, 2013.

Xiang Cheng and Peter Bartlett. Convergence of langevin mcmc in kl-divergence. In
Algorithmic Learning Theory, pages 186–211. PMLR, 2018.

Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped
langevin mcmc: A non-asymptotic analysis. In Conference on learning theory, pages
300–323. PMLR, 2018.

Xiang Cheng, Jingzhao Zhang, and Suvrit Sra. Efficient sampling on riemannian manifolds
via langevin mcmc. Advances in Neural Information Processing Systems, 35:5995–6006,
2022.

Sinho Chewi. Log-concave sampling. draft, 2024. URL https://chewisinho.github.io/

main.pdf.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In International con-
ference on machine learning, pages 854–863. PMLR, 2017.

15

https://chewisinho.github.io/main.pdf
https://chewisinho.github.io/main.pdf


Kong Tao

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-
concave densities. Journal of the Royal Statistical Society Series B: Statistical Methodol-
ogy, 79(3):651–676, 2017.

Arnak S Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using
kinetic langevin diffusions. 2020.
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Category Notation Location Description

Basic G Lie group
g Lie algebra
g Sec. 2.1 Element in Lie group
ξ Element in Lie algebra
m dimension of Lie groups /algebra

Group ad Sec. 2.2 Adjoint operator

structure ckij Def. 20 Structural constant

C Eq. (21) Operator norm of ad
N Eq. (25) Set that d log do not exist

Riemannian ad∗ Sec. 2.2 Coadjoint operator

structure Γk
ij Sec. D.2 Christoffel symbol

∇ Gradient or Levi-Civita connection
d3 Eq. (10) distance on G or G × g
D Sec. 2.3 Diameter of G

Convergence (gt, ξt), (ĝt, ξ̂t) Sec. 4.1 Coupled r.v. following sampling SDE

(g̃t, ξ̃t) Sec. 5.1 R.v. from discretization

Ck Lemma 46 Upper bound for E∥ξ∥k
x, y Eq. (52) ODE quantifying local numerical error
h Step size for discretization

Others ω Eq. (18) symplectic 2-form
{ei}mi=1 A set of orthonormal basis in g
p and p−1 Eq. (22), (23) power series for d log and d exp

α, β, R, et, Zt, Qt Sec. 4.1, 4.2 coupling and semi-distance
K Sec. F.1 drift term in decomposition of ρ

Table 1: A list of notations

Appendix A. Notation and map

Please see Table 1 for a list of notations and Fig. 3 for a graph showing the dependence of
theorems.

3. We use d for distance and d for differential (please note the different fonts).
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General assumptions:
 Compact, finite dim 

(Assumption 1)

Gibbs as Invariant distribution 
(Thm. 22)

Verify 
invariant distribution

Convergence of 
discrete algorithm

(Sec. 5)

Discrete algorithm error
 propagation in ρ (Thm. 13)

Splitting discretizing (Eq. 14)

local error bound in W2

(Thm. 10)
Modified Triangular Inequality

(Lemma 12)

Structure preserving
(Thm. 9)

MCMC sample error under W2

(Thm. 16)

Design of semi-distance
(Sec. 4.2)

Semi-martingale decomposition of  ect ρ
(Lemma 6)

SDE Contractivity in WΡ (Thm. 7)

Inner product makes ad skew-adjoint 
(Lemma 3)

Convergence of  sampling dynamics
(Sec. 4)

 L-smoothness of potential
(Assumption 2)

Differential of logarithm
(Cor. 29)

Existence of differential of logarithm
(Lemma 33)

Dynamics sample error
(Thm. 8)

Choice of parameters (Sec. F.3)

Construction of coupling
(Sec 4.1)

Absolute continuity of density
(Cor. 35)

ρ controls d2 (Lemma 4)

Figure 3: Diagram of the dependence of theorems

Appendix B. More discussion on related works

B.1. More discussion on Langevin sampling in Euclidean spaces

In order to analyze the convergence of Langevin-type sampling algorithms, at least two
common ways of quantification have been used, based on different conditions and analysis
techniques. 1) When convergence is quantified under Wasserstein distance, coupling meth-
ods provide useful tools. 2) When convergence is measured via f-divergence, a Lyapunov
approach that quantifies convergence in the space of probability densities is often employed.
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Roughly speaking, 2) requires weaker conditions than 1), but is more challenging to work
with when momentum is involved. Here are some more details.

Wasserstein metric is a distance between measures. Coupling methods are usually used
for proving the convergence rate due to the definition of Wasserstein distance. For over-
damped Langevin, it is a standard proof that synchronous coupling can establish its con-
tractivity under a strong convexity assumption of the potential. Kinetic Langevin is a
little more complicated, but it was also known that when its friction coefficient is con-
stant, contractivity still stands after a constant linear coordinate transformation, for both
the continuous SDE and its discretization (e.g., Dalalyan and Riou-Durand, 2020; Cheng
et al., 2018). Contractivity allows the convergence analysis of a continuous dynamics in
Wasserstein distance to carry over to the analysis of its time-discretization, i.e. sampling
algorithms (e.g., Li et al., 2021), and it was known that the sampling accuracy can be im-
proved via good numerical discretization (e.g., Shen and Lee, 2019). In addition, coupling
method can be generalized to potential function under weaker conditions, e.g., convex-
ity outside a ball. For example, reflection coupling worked well for overdamped Langevin
(Eberle, 2016), and the momentum case (i.e. kinetic Langevin) is later considered (Eberle
et al., 2019). The clever but complicated design of coupling and semi-distance function
employed in these approaches makes it nontrivial to obtain an explicit convergence rate for
the discrete algorithm.

Another quantification of convergence is based on some f-divergence from one measure
to another. For example, Langevin dynamics and its discretization of Langevin Monte Carlo
can be shown convergent in various f-divergences under various isoperimetric inequality as-
sumption on the target distribution, such as in KL under Logarithmic Sobolev Inequality
(LSI) and in chi-square under Poincare inequality (PI) (e.g., Vempala and Wibisono, 2019;
Erdogdu et al., 2022; Chewi, 2024). Since PI is weaker than LSI, and LSI is weaker than
convexity outside a ball, in some sense convergence in f-divergence requires a weaker con-
dition than that in Wasserstein distance4. The proof of the convergence by Vempala and
Wibisono (2019), for instance, is based on splitting the Markov kernel into a deterministic
part and a Brownian motion part. The deterministic part keeps the KL/Renyi divergence
unchanged and only ensures the invariant distribution is correct. The Brownian motion
part mollifies the density and leads to a monotonic decrease in the KL divergence between
the current distribution and the target distribution. However, this approach for example is
difficult to generalize to the momentum case (i.e. kinetic Langevin, frequently referred to as
underdamped Langevin too) due to the degeneracy of noise. Unlike in the {Wasserstein dis-
tance + strong convexity} case where a constant linear change of coordinates helps recover
contractivity, the analysis of convergence in f-divergence under isoperimetric inequalities is
often a case-by-case study. For example, Ma et al. (2021) proved the convergence of KLMC
in KL divergence under LSI assumption by adding a carefully designed cross term to the
joint KL divergence. Zhang et al. (2023) provided additional tools that allow improved
analysis of the convergence of KLMC (e.g., the smoothness assumption on Hessian in Ma
et al. (2021) is no longer needed), and convergence in both KL and Renyi is provided.
Altschuler and Chewi (2023) proposed an innovative technique based on Renyi divergence
with Orlicz-Wasserstein shifts and used it to prove many great results, such as the conver-

4. Although better convergence rates can be established under stronger conditions (e.g. Dalalyan, 2017;
Cheng and Bartlett, 2018; Durmus et al., 2019; Li et al., 2021).
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gence rate with improved dimensional dependence of Metropolis-adjusted KLMC, under a
variety of metric including total variance, Chi-square and KL divergence and W2 distance
with the assumption that the target distribution satisfies either LSI or PI.

B.2. When momentum meets curved spaces

Both curved space and momentum (which renders the underlying Markov process for sam-
pling no longer reversible) lead to extra difficulties. Quantifying numerical error in curved
spaces is much harder compared to the cases in flat spaces (e.g., Gatmiry and Vempala,
2022; Cheng et al., 2022), and momentum leads to the degeneracy of noise, which means ex-
tra techniques are needed (e.g., Dalalyan and Riou-Durand, 2020; Cheng and Bartlett, 2018;
Shen and Lee, 2019; Ma et al., 2021; Zhang et al., 2023; Yuan et al., 2023; Altschuler and
Chewi, 2023). However, when both curved space and momentum show up together, there is
an extra difficulty: when studying kinetic Langevin, we are considering the convergence of
measures on the phase space, i.e., the product space of position and momentum. When the
space is curved, momentum is a vector in the tangent space5 of the current position, and
the phase space becomes the tangent bundle. Convergence analysis on the tangent bundle
is challenging, due to different reasons in the f-divergence case and the Wasserstein distance
case, and we will discuss them separately now.

When quantifying convergence in f-divergence, we are considering the ratio between
the current density and the density of the invariant distribution, and the Fokker-Planck
equation governs the density evolution, which involves the (spatial) gradient of density.
Therefore, we can not bypass the need of calculating the gradient on the tangent bundle.
However, a Riemannian metric is required to calculate the gradient, and in this case, we
need a Riemannian metric for the entire tangent bundle instead of just the curved space.
Although one can induce a Riemannian metric of the tangent bundle from the Riemannian
metric of the manifold (e.g., Sasaki metric), how to apply it to construct and analyze a
kinetic-type Langevin dynamics or its discretization is an open problem.

When quantifying convergence in Wasserstein distance, we need to compare how far two
points are in the phase space, which is typically then used as the cost function to induce
a Wasserstein distance. In the manifold case, one can compare momenta (i.e. vectors in
tangent space) via parallel transport, which however could be path-dependent, i.e., different
paths connecting the two points give different linear isomorphisms between tangent spaces.
In other words, a uniform way to compare momenta at different positions does not exist.
This difficulty is not severe in optimization, since we only consider a trajectory in that case.
A natural choice is to move the momentum along the position trajectory (e.g., Ahn and Sra
(2020)). However, in sampling tasks, the position as a random variable takes values over
the whole manifold, and as a result, we need a uniform way to compare momenta, and so far
we do not know how to do so. To the best of our knowledge, there is no known result that
extends kinetic Langevin dynamics or KLMC to the manifold case, let alone any analysis
of the convergence.

All those difficulties due to curved spaces and momentum still need to be addressed
when we construct and analyze kinetic Langevin Monte Carlo on Lie groups. What further

5. Rigorously speaking, momentum should be in the cotangent space while velocity is in the tangent space,
but we will follow the convention and not distinguish velocity and momentum.
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complicates the problem is, the additional group structure is not free lunch. For example,
here is one chain of complications: 1) Lie groups with left-invariant metric and sectional
curvature negative everywhere are very limited (Milnor, 1976). 2) On many Lie groups,
there exists two points such that there are more than one geodesics connecting them. This
further implies: 3) (geodesic) strong convexity is too strong for many Lie groups as there
is no nontrivial convex function along a closed geodesic. As a result, we do not want to
make assumptions about the potential function other than smoothness. See Sec. B.3 for
more details. However, despite all those difficulties from Lie groups, we can enjoy a useful
technique, namely (left) trivialization, to establish a uniform way of comparing momenta
in the tangent spaces at different points. Trivialization provides an alternative tool for
bijection between tangent spaces, by related both to a fixed linear space known as the
Lie algebra, and plays a key role in this paper. We will build the sampling dynamics by
trivialized momentum and then have our structure-preserving discretization based on it.
Our proofs will also heavily rely on trivialization.

B.3. Discussion on commonly used conditions for the potential function

As mentioned earlier, normally some assumptions are required for the potential function. L-
smoothness is the most commonly assumed one, and our work also assumes it to compare the
gradients of potential at different positions. Meanwhile, in most existing results, additional
assumptions are used to ensure geometric ergodicity. More precisely -

In Euclidean space, when U is strongly convex, one can prove the convergence of kinetic
Langevin by showing the contractivity of dynamics after a constant coordinate transfor-
mation (Dalalyan and Riou-Durand, 2020). It is unclear to us how to do the coordinate
transformation in curved spaces, because it can no longer be constant due to the nonlin-
earity of space, but then additional challenges arise (e.g., it no longer induces a metric as
essentially done in (Dalalyan and Riou-Durand, 2020)). In fact, even discussing what hap-
pens under convexity is vacuous on Lie groups because there is no nontrivial geodesically
convex function on compact Lie group (Yau, 1974). An intuition for this is, any convex
function on a closed geodesic must be constant.

One relaxation of strong convexity is distant-dissipativity (Cheng et al., 2022). In flat
space, it is called strong-dissipativity (Eberle, 2016; Erdogdu et al., 2022), defined by

⟨∇U(x) − ∇U(y), x − y⟩ ≥m1∥x − y∥2,∀∥x − y∥ ≥ R1 for some m1,R1 > 0 (16)

also known as ‘strongly convexity outside a ball’. Although such condition is widely used
and helpful in allowing us to bypass nonconvexity by containing it inside a ball, it is however
still a rather strong assumption. The reason is, a function with distant-dissipativity is still
convex at a large scale, but no nontrivial (i.e. nonconstant) geodesically convex function
exists on manifolds with closed geodesic. Fig.4 illustrates why this is the case.

There are weaker conditions, such as log-Soblev inequality (LSI) and Poincare inequality
(PI), but it is unclear how to use them together with coupling methods for manifolds.

To summarize, the commonly used assumptions on the potential function are not neces-
sarily suitable for our compact Lie group case, and this is why we only make the L-smooth
assumption on the potential function.
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θ

S1

(a) Parameterization of SO(2) ≅ S1

0 2π θ

U(θ)
Non-convex

(b) Red solid: a function on SO(2) that might be
mistaken as convex outside a ball; Blue solid:
its ‘convexification’ which is not convex; Dashed
lines: what periodicity and convexity would re-
quire, which create inconsistency.

Figure 4: An illustration of the non-existence of strongly convex or distant-dissipative
function on a manifold with closed geodesics. The intuition is a convex function (if any)
would grow in both sides, but along a loop, increasing θ eventually leads to θ reset to 0 and
increasing it again, which means the function needs to be both increasing and decreasing
as θ grows (e.g., the yellow region), which is a contradiction.

Appendix C. More details about Sec. 2 and 3

C.1. Examples for Lie groups

In this section, we give some examples of Lie groups. The most well-known Lie group is the
Matrix group:

Example 1 (General Linear group) Denote general linear group by GL(n,R) ∶=
{X ∈ Rn×n ∶ detX ≠ 0} with the group multiplication defined by matrix multiplication. The
corresponding Lie algebra gl(n,R) ∶= Rn×n has the matrix commutator: [A,B] ∶= AB −BA
as its Lie bracket. Consequently, TeLgξ is gξ (matrix multiplication of two n-by-n matrices)
and the exponential map is the matrix exponential.

An natural choice of the inner product on gl is ⟨A,B⟩ = tr(A⊺B). Under the left-
invariant metric induced by this inner product, ad∗AB = BA⊺ −A⊺B. Note that the operator
ad is not skew-adjoint in this case. In fact, the inner product that makes ad∗ skew-adjoint
does not exist. A necessary and sufficient condition for the existence of such inner product
is provided in Milnor (1976).

The definition of general Lie groups as manifolds in Sec. 2.1 may sound abstract, but in
fact, the following remark shows all compact Lie groups can be viewed as a subgroup of a
matrix group in Example 1.

Remark 18 (Matrix representation of Lie groups/Lie algebra) Peter–Weyl theorem
implies that every compact Lie group is a closed subgroup of GL(n,R) for some n. Ado’s
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theorem (Ado, 1947) states that every finite-dimensional Lie algebra on R can be viewed as
a Lie subalgebra of gl(n,R) for some n.

Although the general linear group is not compact making our assumption 1 fails, many
of its Lie subgroups are compact. A nice example is the following:

Example 2 (Special Orthogonal group SO(n)) The special orthogonal group is de-
fined as

SO(n) ∶= {X ∈ Rn×n ∶X⊺X = I,det(X) = 1}

The corresponding Lie algebra is so(n) ∶= {ξ ∈ Rn×n ∶ ξ⊺ + ξ = 0}. Since it is a Lie subgroup,
the group operation, left translation, and exponential map are the same as general linear
group (Example 1). The inner product that makes ad skew-adjoint in Lemma 3 is given by
⟨A,B⟩ ∶= tr(A⊺B).

We also give an explicit example such that an inner product that makes ad skew adjoint
(Lemma 3) may not exist when assumption 1 does not hold:

Example 3 (Lie group with constant negative curvature) We consider a 2-dim Lie
group whose Lie algebra has basis e1 and e2. Define a linear operator as l ∶ G → R by
l(xe1 + ye2) ∶= ax + by,∀x, y for some constants a, b ≠ 0 and the Lie bracket as [e1, e2] =
l(e1)e2 − l(e2)e1. Example 1.7 in Milnor (1976) shows this Lie group has strictly negative
sectional curvature for any left-invariant metric.

We can explicitly express this example as a Lie subgroup of the general linear group
using adjoint representation. Denote G ∶= {xe1 + ye2 ∶ x, y ∈ R} ⊂ GL(2,R) where the basis

are defined as e1 = (
0 0
−b a

) and e2 = (
b −a
0 0

). Together with Eq. 20, this tells us the inner

product in Lemma 3 that makes ad skew-adjoint does not exist.

The flat Euclidean space is a trivial Lie group and our sampling dynamics recover kinetic
Langevin dynamics in the Euclidean space.

Example 4 (Lie group structure for Euclidean spaces) Euclidean space is a trivial
(commutative) Lie group, i.e., when G = Rn with the group multiplication defined as g1g2 ∶=
g1+g2 (vector summation). The corresponding Lie algebra is g = Rn with vanish Lie bracket.
The exponential map is the identity map on Rn.

The left-trivialization in the Euclidean space is the identity map, and Eq. (4) in Euclidean
spaces becomes

⎧⎪⎪⎨⎪⎪⎩

q̇ = p
dp = −γpdt −∇U(q)dt +

√
2γdW

(17)

which is the well-known kinetic Langevin dynamics.

Although many elegant results have been established for the Euclidean case (Sec. B.1,
especially Eberle et al. (2019)), our analysis only focuses on compact Lie groups and cannot
be applied to the Euclidean sampler (despite that our algorithm does).
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C.2. Symplectic structure on Lie groups

The tangent bundle of a Lie group TG ≅ G×g has a natural symplectic structure (Abraham
and Marsden, 1978, Prop. 4.4.1). More specifically, at (g, µ) ∈ G × g, the symplectic 2-form
is given by

ω(g,µ)((v,α), (w,β)) = ⟨β,TgLg−1v⟩ − ⟨α,TgLg−1w⟩ + ⟨µ, [TgLg−1v, TgLg−1w]⟩ (18)

for any (v,α), (w,β) ∈ G × TgG.
Given the symplectic structure above, we can provide the optimization dynamics with

a mechanic view. Setting the Hamiltonian H ∶ G×g→ R as H(g, ξ) ∶= U(g)+ 1
2⟨ξ, ξ⟩ gives a

Hamiltonian field XH , defined as the unique vector field on G× g satisfying dH = ω(XH , ⋅).
The Hamiltonian flow d

dt(gt, ξt) = XH is exactly Eq. (3) with γ = 0. The term adξ ξ in
Eq. (3), which does not show in flat Euclidean spaces, comes from the third term in the
symplectic 2-form in Eq. (18).

On a symplectic manifold, there is always a natural volume form ωm ∶= ω∧ ⋅ ⋅ ⋅∧ω, which
provides a base measure. Arnaudon et al. (2019) uses ωm as the base measure distribution
when proving the invariant distribution. How is this symplecticity-based measure ωm related
to the group-structure-based measure dgdξ in Thm.22? They are identical, as proved in
Thm. 19. Note that this theorem do not depend our special choice of inner product that
makes ad skew-adjoint in Lemma 3.

Theorem 19 (Equivalence of base measure) The product measure on G × g, i.e., the
product of left Haar measure on G and Lebesgue measure on g, is identical to the measure
induced by the volume form ωm up to a constant.

Proof [Proof of Thm. 19] The outline of this proof is: we will choose 2m vector fields on
the tangent space of 2m-dim manifold G × g, and we calculate the ratio of the two volume
forms corresponding to those two different vector fields when applying to the 2m vector
fields. We will prove the ratio is constant, showing the two measures are identical up to a
constant.

We fix the following 2m vector fields, {(TeLgei,0)}i=1,...,m and {(0, ej)}j=1,...,m, where
vector fields TeLgei on G are left invariant vector fields generated by ei. In the following,
we prove that ωm

(g,µ) ((TeLge1,0), . . . , (TeLgem,0), (0, e1), . . . , (0, em)) is constant.

By the expression of ω in Eq. (18),

ω(g,µ)((TeLgei,0), (TeLgej ,0)) = ⟨[ei, ej], µ⟩
ω(g,µ)((TeLgei,0), (0, ej)) = δij
ω(g,µ)((0, ei), (TeLgej ,0)) = −δij
ω(g,µ)((0, ei), (0, ej)) = 0

The definition of exterior product gives

ωm
(g,µ) ((TeLge1,0), . . . , (TeLgem,0), (0, e1), . . . , (0, em))

= 1

(2m)! ∑σ∈S2m

sgn(σ)ωm
(g,µ)σ ((TeLge1,0), . . . , (TeLgem,0), (0, e1), . . . , (0, em))
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By the fact that ω(g,µ)((0, ei), (0, ej)) and ω(g,µ)((TeLgei,0), (TeLgej ,0))+ω(g,µ)((TeLgej ,0), (TeLgei,0))
vanishes, we have that all the non-vanish terms must have the form ω(g,µ)((TeLgei,0), (0, ei)),
and

ωm
(g,µ) ((TeLge1,0), . . . , (TeLgem,0), (0, e1), . . . , (0, em))

= 1

(2m)! ∑σ∈Sm

2m ∏
i=1,...,m

ω(g,µ)σ ((TeLgei,0), (0, ei))

= m!2m

(2m)! ∏
i=1,...,m

ω(g,µ)σ ((TeLgei,0), (0, ei))

= m!2m

(2m)!
Since both ωm and

dgdξ = d(TeLge1,0) ∧ ⋅ ⋅ ⋅ ∧ d(TeLgem,0) ∧ d(0, e1) ⋅ ⋅ ⋅ ∧ d(0, em)

applied to our 2m independent vector fields gives a non-zero constant function, they are
identical up to a constant.

C.3. Discussion on the term ad∗ξ ξ

There are several reasons why the term ad∗ξ ξ is required in both optimization dynamics Eq.
(3) and sampling dynamics Eq. (4):

1. From the view of mechanics (discussed in Sec. C.2), it comes from the third term of
the natural symplectic 2-form Eq. (18).

2. From the view of Riemannian geometry (will be discussed later in Sec. D.1), it is a
term from the definition of geodesics.

3. Another technical reason is the term is required to ensure the invariant distribution
is correct because the divergence of left-invariant vector fields does not always vanish,
see more details in the proof of Thm. 22.

However, despite the necessity of the term ad∗ξ ξ on a general left-invariant metric, we can
carefully choose the inner product to make it vanish (Lemma 3 and Rmk. 26), and all the
above still hold.

C.4. Gibbs as invariant distribution of sampling dynamics

This section will be devoted to showing that the Gibbs distribution G × g Eq. (2) is an
invariant distribution of our sampling dynamics Eq. (4) under mild conditions. Unlike the
stronger Assumption 1 we made for convergence, we do not require the special choice of
inner product on g in Lemma 3 nor the compactness of Lie group in this section.

Definition 20 (Structural constant) By denoting {ei}mi=1 as a set of orthonormal basis
of g under inner product ⟨⋅, ⋅⟩, the structural constant of Lie algebra g defined as

ckij = ⟨[ei, ej], ek⟩
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Lemma 21 For any ξ ∈ g, we have

divg(TeLgξ) + divξ (ad∗ξ ξ) = 0

where TeLgξ is the left-invariant vector field generated by ξ.

Proof [Proof of Lemma 21] Consider the local chart on G at g given by {g exp(xiei)}mi=1 for
xi ∈ [−ε, ε]m. We have

divg(TeLgξ) = ∑
i

∂iξi +∑
ij

Γj
jiξi

By Eq. (19), Γj
ji = 0,∀i, j , and the term ∑ij Γj

jiξi vanishes consequently. By our choice of
the local coordinate,

∂iξi = Lei⟨TeLĝξ, ei⟩∣ĝ=e
= ⟨LeiTeLĝξ, ei⟩∣ĝ=e + ⟨TeLĝξ,Leiei⟩∣ĝ=e
= ⟨[ei, ξ], ei⟩ + ⟨TeLĝξ, [ei, ei]⟩
= ⟨[ei, ξ], ei⟩

where L is the Lie derivaitve. In the first line of equation, TeLĝξ is the left-invariant vector
field generated by ξ. ∣ĝ=e means we evaluate the Lie derivative at e.

After taking summation w.r.t. i, we have divg(TeLgξ) = ∑i ∂iξi = ⟨ξ,∑k ad∗ek ek⟩.
For divξ (ad∗ξ ξ), the divergence is taken in the Euclidean space g and a direct calculation

gives

div ad∗ξ ξ = ∑
i

∂i (ad∗ξ ξ)i

= ∑
ijk

∂iξjξk⟨ad∗ej ek, ei⟩

= −∑
i

⟨ξj ,ad∗ei ei⟩

= −divg(TeLgξ)

Now we are ready to prove Thm. 22. The outline for the proof is: 1) calculate the
infinitesimal generator L by definition; 2) find its adjoint operator L∗ under L2; 3) verify
that the Gibbs distribution is a fixed point of the adjoint of the infinitesimal generator.

Theorem 22 Suppose the Lie group G is finite dimensional, then the sampling dynamics
Eq.(4) has invariant distribution ν∗ in Eq. (2).

Proof [Proof of Thm. 22] We first write down the infinitesimal generator L for SDE (4).
For any f ∈ C2(G × g), L is defined as

Lf(g, ξ) ∶= lim
δ→0

E [f(gδ, ξδ)∣(g0, ξ0) = (g, ξ)] − f(g, ξ)
δ

=⟨∇gf, TeLgξ⟩ + ⟨∇ξf,−γξ + ad∗ξ ξ − TgLg−1(∇U(g))⟩ + γ∆ξf

=⟨ξ, TgLg−1∇gf⟩ − γ⟨∇ξf, ξ⟩ + ⟨∇ξf,ad∗ξ ξ⟩ − ⟨∇ξf, TgLg−1(∇U(g))⟩ + γ∆ξf
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We denote the adjoint operator of L by L∗, i.e., L∗ ∶ C2 → C2 satisfying ∫G×g νLfdgdξ =
∫G×g fL∗νdgdξ for any f, ν ∈ C2

0(G × g). By the divergence theorem, we have

∫
G×g

νLf dgdξ

= ∫
G×g
−f divg(νTeLgξ) − f divξ (ν ad∗ξ ξ) + f divξ (νTgLg−1(∇U(g)))dgdξ

+ γ ∫
G×g

f divξ(νξ) + f∆ξνdgdξ

Here TeLgξ stands for the left-invariant vector filed on G generated by ξ. As a result, we
have

L∗ν = −divg(νTeLgξ) − divξ (ν ad∗ξ ξ) + divξ (νTgLg−1(∇U(g))) + γ (divξ(νξ) +∆ξν)
= −⟨∇gν, TeLgξ⟩ − ⟨∇ξν,ad∗ξ ξ⟩ + ⟨∇ξν, TgLg−1(∇U(g))⟩ + γ divξ(νξ +∇ξν)
− ν divg(TeLgξ) − ν divξ (ad∗ξ ξ)

We emphasize that the divergence of the left-invariant vector does not necessarily vanish,
and Lemma 21 shows divg(TeLgξ) + divξ (ad∗ξ ξ) = 0, which means the term ad∗ξ ξ is nec-
essary to cancel with the divergence of left-invariant vector field and ensure the invariant
distribution is correct.

L∗ν = −⟨∇gν, TeLgξ⟩ − ⟨∇ξν,ad∗ξ ξ⟩ + ⟨∇ξν, TgLg−1∇U(g)⟩ + γ divξ(νξ +∇ξν)

The last step is verifying that ν∗ given in Eq. (2) is a fixed point of L∗. By direct calculation,
we have ∇gν∗ = ν∗∇U and ∇ξν∗ = −ν∗ξ. Together with expression L∗, we have L∗ν∗ = 0,
which means ν∗ given in Eq. (2) is an invariant distribution.

The following remark gives the left Haar measure an intuition.

Remark 23 (Left Haar measure) The base measure dg we used is called the ‘left Haar
measure’. Roughly speaking, if we have a ‘measure’ at e (rigorously speaking, a volume form
at e), we can expand it to the whole Lie group by left multiplication, thanks to the group
structure. This measure is the left Haar measure, rigorously defined as the measure that
is invariant under the pushforward by left multiplication, which is unique up to a constant
scaling factor. The reason why it is ‘left’ is because our SDE Eq. (1) and later (4) depends
on left trivialization and our metric on G is left-invariant.

Appendix D. Riemannian structure on Lie groups with left-invariant
metric

D.1. More discussion on Lemma 3

In the beginning of Sec. 2.3, we mentioned that Lemma 3 means the Riemannian structure
and the group structure are ‘compatible’. Here we provide more details: it means the
exponential map from the group structure and the exponential map from the Riemannian
structure are the same.
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Definition 24 (Exponential map (group structure)) The exponential map exp ∶ g→
G is given by exp(ξ) = γ(1) where γ ∶ R → G is the unique one-parameter subgroup of G
whose tangent vector at the group identity e is equal to ξ.

Definition 25 (Exponential map (Riemannian structure)) The exponential map exp ∶
TgG → G is given by expg(TeLgξ) = γ(1) where γ ∶ R → G is the unique geodesic satisfying
γ(0) = g with initial tangent vector γ′(0) = TeLgξ.

To compare the two exponential maps, we can write down the ODEs characterising
these two exponential maps. Starting from g0 with initial direction TeLg0ξ0, the trajectory
of two exponential maps expg0(tξ0), t ∈ [0,1] are given by the ODEs with initial condition
g(0) = g0 and ξ(0) = ξ0:

The exponential map from the group structure (Def. 24) is given by

⎧⎪⎪⎨⎪⎪⎩

ġ = gξ
ξ̇ = 0

The exponential map from the Riemannian structure (Def. 25) is given by

⎧⎪⎪⎨⎪⎪⎩

ġ = gξ
ξ̇ = ad∗ξ ξ

If we choose the inner product that makes ad skew-adjoint (Lemma 3), the two expo-
nential maps are identical by comparing their ODEs. This means the Riemannian structure
and the group structure are compatible and will be our default choice in the following. As
a result, we will no longer differentiate the two exponential.

Remark 26 (Explicit expression of the inner product in Lemma 3) The condition
that ad is skew adjoint (Lemma 3) is equal to the requirement that the metric is bi-invariant,
i.e., a metric that is both left-invariant and right-invariant. A left-invariant metric is not
always bi-invariant because of the non-commutativity of the group structure. However, a
connected Lie group admits such a bi-invariant metric if and only if it is isomorphic to
the Cartesian product of a compact group and a commutative group (Milnor, 1976). On a
compact Lie group, an explicit expression for a bi-invariant metric is

⟨u, v⟩ = ∫
G
(Adg(u),Adg(v))ϑ(dg)

where (⋅, ⋅) is an arbitrary inner product on g and ϑ is the right Haar measure. See Milnor
(1976); Lezcano-Casado and Martınez-Rubio (2019) for more details.

D.2. Connection and curvature of Lie groups with left-invariant metric

Given left-invariant vector fields X and Y , the Levi-Civita connection on Lie groups with
a left-invariant metric is given by (Milnor, 1976):

∇XY =
1

2
([X,Y ] − ad∗X Y − ad∗Y X)
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which leads to the following Christoffel symbols

Γk
ij ∶= ⟨∇eiej , ek⟩ =

1

2
(ckij − c

j
ik − c

i
jk) (19)

Here ei stands for the left-invariant vector field generated by ei.
Under the inner product in Lemma 3, Levi-Civita connection has a simpler expression

given by ∇XY = 1
2[X,Y ], i.e., Levi-Civita connection is half of the Lie derivative. The

Christoffel symbols becomes Γk
ij = 1

2c
k
ij .

The Riemannian curvature tensor is defined by R(X,Y )Z ∶= ∇X∇Y Z − ∇Y∇XZ −
∇[X,Y ]Z. The sectional curvature on a general manifold is defined as κ(X,Y ) = ⟨R(X,Y )Y,X⟩

⟨X,X⟩⟨Y,Y ⟩−⟨X,Y ⟩2

Under the condition that the operator ad∗ is skew-adjoint (Lemma 3), and X,Y are
orthonormal, the simplified Levi-Civita expression ∇XY = 1

2[X,Y ] gives us

κ(ei, ej) =
1

4
∥[ei, ej]∥2 (20)

Therefore the sectional curvature is non-negative. If we denote K as the upper bound for
the absolute value of sectional curvature, i.e., K = sup ∣κ∣, and let

C ∶= max
∥X∥2=1

∥adX∥op (21)

Then Eq. (20) leads to K = 1
4C

2. Note C = 0 in the flat Euclidean space.

D.3. About L-smoothness on Lie groups

The commonly used geodesic L-smooth on a manifoldM is given by the following definition
(e.g., Zhang and Sra, 2016, Def. 5):

Definition 27 (Geodesically L-smooth) U ∶ G→ R is geodesically L-smooth if for any
g, ∈̂M,

∥∇U(g) − Γg
ĝ∇U(ĝ)∥ ≤ Ld(g, ĝ)

where Γg
ĝ is the parallel transport from ĝ to g.

The following lemma, quoted from Kong and Tao (2024) just for completeness, shows it
is equal to the commonly used geodesic L-smoothness under the left-invariant metric in
Lemma 3:

Lemma 28 (Equivalence of trivialized smoothness and geodesic smoothness) Un-
der the assumption of ad∗X is skew-adjoint ∀X ∈ g, Assumption 2 is identical to Def. 27.

Proof [Proof of Lemma 28, from Kong and Tao (2024)] For any g, ĝ ∈ G, consider the
shortest geodesic ϕ ∶ [0,1] → G connecting g and ĝ and denote ξ = TgLg−1∇U(g). Using the

condition ad is skew-adjoint, we have ϕ̇(t) = 0 and TeLϕ(t)ξ is parallel along ϕ by checking
the condition for parallel transport (Guigui and Pennec, 2021, Thm. 1):

d

dt
ξ = 0 = −1

2
[Tϕ(t)−1Lϕ(t)−1−1 ϕ̇(t), ξ]
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This tells that

TgLg−1Γĝ
g∇f(g) = TĝLĝ−1∇f(ĝ)

Together with the metric is left-invariant, we have

∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥ ≤ Ld(g, ĝ)

which is identical to Assumption 2.

D.4. Non-commutativity of Lie groups

Comparing with the Euclidean space, Lie groups lack of commutativity, i.e., for g, ĝ ∈ G,
gĝ and ĝg are not necessarily equal. This can also be characterized by the non-trivial
Lie bracket. This non-commutativity leads to the fact that exp(X) exp(Y ) ≠ exp(X +
Y ). An explicit expression for log(exp(X) exp(Y )) is given by Dynkin’s formula (Dynkin,
2000). In the matrix group case, exp is matrix exponentiation and multiplication is matrix
multiplication, and for matrices A,B, we no longer have exp(A) exp(B) = exp(A +B).

We will not use Dynkin’s formula directly but only 2 corollaries of it, Cor. 29 and 30.
By defining power series

p(x) ∶= x

1 − exp(−x) =
∞
∑
k=0

Bk(1)
k!

xk (22)

and its inverse

p−1(x) ∶= 1 − exp(−x)
x

=
∞
∑
k=0

(−1)k
(k + 1)!x

k (23)

where Bn are Bernoulli polynomials, we have

Corollary 29 (Differential of exponential) The differential of matrix exponential is
given by

d expX(Y ) = TeLexpX [p−1(adX)Y ] , ∀X,Y ∈ g (24)

Thm. 2.2 in Bröcker and Tom Dieck (2013) shows that the group exponential is surjective
on compact connected Lie groups. Thus, We can define logarithm logg ∶ G → TgG as the
inverse of an exponential map. Since the exponential map is not injective in general cases,
its inverse, logarithm is not uniquely defined. In this paper, we use all the log to denote
the one corresponding to the minimum geodesic, i.e., d(g, h) = ∥logg h∥,∀g, h. In the cases
that the minimum geodesic is not unique, we use log to denote any one of them. We omit
the subscript when the base point is identity, i.e., log ∶= loge. Note that we do not require
the uniqueness of the geodesic connecting 2 points.

We also need to consider the differential of the logarithm. However, since the exponential
map is not an injection, the logarithm is not always differentiable. We denote the set that
the differential of logarithm does not exist as

N ∶= {g ∈ G ∶ d logg is not well defined} (25)

For g ∈ G/N , we have the following expression for d logg
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Corollary 30 (Differential of logarithm) For any g ∉ N , any ξ ∈ g, we have the dif-
ferential of log is given by d logg ∶ TgG→ g is given by

d logg(TeLgξ) = p(adlogg)ξ

The main property of d log we are going to use is the following corollary, which is useful
later in the proof of Lemma 6.

Corollary 31 Under the choice of inner product in Lemma 3, for any g ∉ N and ξ ∈ g, we
have

⟨d logg(TeLgξ), log g⟩ = ⟨log g, ξ⟩ (26)

⟨d logg(TeLgξ), ξ⟩ ≤ ∥ξ∥2 (27)

Proof [Proof of Cor. 31] Proof for Eq. (26): By Cor. 30, we have

⟨d logg(TeLgξ), log g⟩ = ⟨p(adlogg)ξ, log g⟩

Using the fact that ad∗ is skew-adjoint, ⟨(adlogg)
k
ξ, logg⟩ = ⟨(adlogg)

k−1
ξ,ad∗logg logg⟩ = 0

for any k ≥ 1. Since the 0-order term in p is 1,

⟨d logg(TeLgξ), log g⟩ = ⟨ξ, log g⟩

Proof for Eq. (27): By Cor. 30, we have

⟨d logg(TeLgξ), ξ⟩ = ⟨p(adlogg)ξ, ξ⟩

adlogg(g∗) is a linear map from g to itself. Since the operator is skew-adjoint, it has all

eigenvalues pure imagine or 0. By the assumption that p(adlogg(g∗)) converges, we have

all the eigenvalues in the interval (−2πi,−2πi). Since R[p(xi)] = x sin(x)
2(1−cos(x)) ≤ 1 for x ∈

(−2π,2π), the eigenvalues of p(adlogg(g∗)) are smaller or equal to 1, which gives us Eq.

(27).

By Cor. 30, the set N in Eq. (25) is also equal to the set where the power series p(adlogg)
does not converge. We have the following lemma showing this set is zero-measured under
the left Haar measure.

Lemma 32 By choosing the inner product in Lemma 3, the pushforward measure of dξ
on g by exp is absolute continuous w.r.t. dg, i.e.,

dg ≪ exp♯(dξ)

Proof The pushforward measure by exp ∶ g → G is given by dg = det(p−1(adX))dξ where
p−1 is defined in Eq. 23. Since we have ∥p−1(xi)∥ ≤ 1,∀x ∈ R, we have det(p−1(adξ)) is
upper bounded, which means exp pushes any zero-measured set in g to a zero-measured set
in G, i.e., dg ≪ exp♯(dξ).
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Lemma 33 p(adlog g) is well defined for g ∈ G almost everywhere under measure dg.

Proof [Proof of Lemma 33] By the expression of p in Eq. (22), we have p(x) diverges when
x ≠ 0 and exp(−x) = 1, i.e., x = 2kπi for k ≠ 0. As a result, p(adξ) is well defined if ξ ∈ P ,

P ∶= {ξ ∈ g ∶ λ ≠ 2kπi,∀λ ∈ σ(adξ),∀k ≠ 0}

where σ(adξ) denotes the set of all eigenvalues of the linear operator adξ.
The Lebesgue measure of P is given by

∫
g
1P (ξ)dξ

= Area(∂B1(0))∫
∂B1(0)

∫
∞

0
1P (te)td−1dtde

Since we have the operator adξ is linear in ξ, which gives us that σ(adtξ) = tσ(adξ) (σ is the
set of eigenvalues for operators). Using the assumption that g is finite dimensional, we have
for a fixed e ∈ g, only countable many t makes te ∈ P , which means ∫ ∞0 1P (te)td−1dt = 0, this
gives P has zero measure. By Lemma 32, exp(P ) has measure 0 under left Haar measure
on G.

This lemma proves that we have d log well defined almost everywhere on G. Later in our
proof of convergence using coupling method, the lemma ensures that we can ignore the
pairs (g, ĝ) that d log ĝ−1g do not exist when we consider the coupling of 2 trajectories in
G× g since a zero-measured set will be negligible when taking expectation. See the proof of
Thm. 7.

Appendix E. Absolute continuity w.r.t. dgdξ

As shown in Lemma 33, the set that d log is not well-defined is zero-measured under the
left Haar measure. To rule out this pathological part, we need to show that the density
for sampling SDE Eq. (4) (νt) and the numerical scheme Eq. (14) (ν̃k) are both absolute
continuous w.r.t. dgdξ, and then N is also zero-measured under νt and ν̃k.

The KL divergence between two probability measures ν1 and ν2 is defined by

KL (ν1∥ν2) ∶= ∫
G×g

ln(ν1
ν2
)dν1

A direct conclusion is that ν1 is absolute continuous w.r.t. ν2 if KL (ν1∥ν2) < ∞. Using the
data processing inequality, we are going to show KL (νt∥ν∗) < ∞ and KL (ν̃k∥ν∗) < ∞, which
further induces νt and ν̃k is absolute continuous w.r.t. ν∗ (and also dgdξ), respectively.

Lemma 34 (Data processing inequality) For any Markov transitional kernel P , and
any probability distributions ν1 and ν2,

KL (ν1P ∥ν2P ) ≤ KL (ν1∥ν2)

Corollary 35 Given initial condition (g0, ξ0) is absolute continuous w.r.t. dgdξ, (gt, ξt)
(evolution of SDE Eq. (4)) and (g̃k, ξ̃k) (evolution of numerical scheme Eq. (14) with step
size h) are both absolute continuous w.r.t. dgdξ for any t ≥ 0.
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Although Cor. 35 requires the absolute continuity of (g0, ξ0) to ensure the density
(g̃k, ξ̃k) is absolutely continuous in later steps, this can be challenging in practice and we do
not require our initialization to be absolute continuous w.r.t. dgdξ in our proposed Algo.
1 for the following reason:

Remark 36 (About absolute continuity of initialization) In our implementation of
Algo. 1, we use the simplest initialization that g0 is an arbitrary point and ξ0 = 0 but did
not require the absolute continuouity as in the proof of convergence rate in Thm. 16. This
is because the absolute continuity will be automatic after several iterations: In the first
iteration, we first update ξ0 by Eq. (12), which is an Ornstein–Uhlenbeck process and at
time h, the density of ξ̃1 is absolute continuous w.r.t. dξ. As a result, since g1 = g0 exp(hξ1),
we have the density of g̃1 is densities absolute continuous w.r.t. dg (Lemma 32). In the
second iteration, since noise is added to ξ̃1 again, we have the joint distribution (g1, ξ2)
is already absolute continuous w.r.t. dgdξ. And by the data processing inequality (Lemma
34), we have from then on, the density will always be absolute continuous w.r.t. dgdξ. As
a result, the requirement for initialization does not matter in practice and will be satisfied
in two iterations automatically.

Appendix F. Proof of Thm. 7

F.1. Semi-martingale decomposition

In this section, we use the following shorthand notation

rt ∶= r((gt, ξt), (ĝt, ξ̂t))
ρt ∶= ρ((gt, ξt), (ĝt, ξ̂t))
Gt ∶= G(ξt, ξ̂t)
δt ∶= δ((gt, ξt), (ĝt, ξ̂t))
Kt ∶=K((gt, ξt), (ĝt, ξ̂t))

where (gt, ξt) and (ĝt, ξ̂t) are coupled using reflection coupling in Sec. 4.1.
The function K ∶ (G × g)2 → R is defined by

K ∶= [cf(r) + (αγ∥Q∥ − θLγ−1∥Z∥ + 1{ĝ−1t gt∈N}δ) f
′
−(r) + 4γ−1 rc(Z,µ)2f ′′(r)] (1 + β∥µ∥2)

+ βf(r) [−2γ∥µ∥2 + 2L∥µ∥∥Z∥ + 8γ rc(Z,µ)2∥µ∥2]
+ 16β∥µ∥ rc(Z,µ)2f ′−(r)

where δ ∶ (G × g)2 → R is defined by δ ∶= (α + 2)∥µ∥ + αγ∥Z∥ − αγ∥Q∥ and θ ∈ R is defined
by θ ∶= αγ2L−1 − 1. This definition for K comes from the calculation of semi-martingale
decomposition in Lemma 6.
Proof [Proof of Lemma 6] Bound the time derivative for ∥Zt∥: For ĝ−1t gt ∉ N , the
paths of the process (Zt) are almost surely continuously differentiable with derivative

d

dt
Zt = d logĝ−1t gt

d

dt
g − d logĝ−1t gt

d

dt
ĝ

= d logĝ−1t gt(ξt − ξ̂t)
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Using the property of d log in Cor. 31,

d

dt
∥Zt∥ =

1

∥Zt∥
⟨Zt,

d

dt
Zt⟩ =

1

∥Zt∥
⟨Zt,d logĝ−1g(ξt − ξ̂t)⟩

= 1

∥Zt∥
⟨Zt, µt⟩ =

1

∥Zt∥
⟨Zt,−γZt + γQt⟩

≤ −γ∥Zt∥ + γ∥Qt∥

When ĝ−1t gt ∈ N , we won’t have d
dtZt. However, a bound for d

dt∥Zt∥ can still be derived by
the triangle inequality:

d

dt
∥Zt∥ ≤ ∥µt∥

In summary,

d

dt
∥Zt∥ ≤ −γ∥Zt∥ + γ∥Qt∥ + 1{ĝ−1t gt∈N} (∥µt∥ + γ∥Zt∥ − γ∥Qt∥)

Semimartingale decomposition for ∥Qt∥: Suppose ∥Qt∥ satisfies the following inequal-
ity almost surely

∥Qt∥ ≤ ∥Q0∥ +AQ
t + M̃

Q
t for all t ≥ 0,

where (AQ
t ) and (M̃Q

t ) are the absolutely continuous process and the martingale to be
determined.

By our choice of coupling in Sec. 4.1, µt follows the SDE

dµt = −γµtdt − (TgtLgt−1∇U(gt) − TĝtLĝ−1t ∇U(ĝt))dt +
√

8γ rc(Zt, µt)ete⊺t dW rc
t (28)

When ĝ−1t gt ∈ N , by d
dt∥Zt∥ ≤ ∥µt∥dt, we have

d

dt
AQ

t ≤ 2∥µt∥dt + γ−1∥TgtLgt−1∇U(gt) − TĝtLĝ−1t ∇U(ĝt)∥

When ĝ−1t gt ∉ N , by the fact that Q = Z + γ−1µ, The process (Qt) satisfies the following
SDE:

dQt = dZt − µtdt − γ−1 (TgtLgt−1∇U(gt) − TĝtLĝ−1t ∇U(ĝt))dt +
√

8γ−1 rc(Zt, µt)ete⊺t dW rc
t .

Notice that by (6), the noise coefficient vanishes if Qt = 0. Cor. 31 gives us

⟨ d

dt
Zt − µt,Qt⟩ = ⟨d logĝ−1t gt µt − µt, logĝ−1t gt +γ

−1µt⟩

= ⟨d logĝ−1t gt µt, logĝ−1t gt⟩ + ⟨d logĝ−1t gt µt, γ
−1µt⟩ − ⟨µt, logĝ−1t gt⟩ − ⟨µt, γ

−1µt⟩

≤ 0

and we have in this case

d

dt
AQ

t ≤ γ−1∥TgsLgs−1∇U(gs) − TĝsLĝ−1s ∇U(ĝs)∥
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Therefore, combining the 2 cases and apply Itô’s formula to get

AQ
t = γ−1∫

t

0
∥TgsLgs−1∇U(gs) − TĝsLĝ−1s ∇U(ĝs)∥ + 21{ĝ−1s gs∈N}∥µs∥ds

M̃Q
t =
√

8γ−1∫
t

0
rc(Zs, µs)e⊺sdW rc

s

Notice that there is no Itô correction, because ∂2q/∥q∥∥q∥ = 0 for q /= 0 in both cases and
the noise coefficient vanishes for Qt = 0.

By the L-smoothness of U , we have

d

dt
AQ

t ≤ Lγ−1∥Zt∥ + 21{ĝ−1s gs∈N}∥µs∥

Semimartingale decomposition for f(rt): By the definition of rt in Eq. (8)

rt ∶= α∥Zt∥ + ∥Qt∥ = ∥Q0∥ + α∥Zt∥ +AQ
t + M̃

Q
t

where t ↦ α∥Zt∥ + AQ
t is almost surely absolutely continuous with time derivative upper

bounded by

d

dt
(α∥Zt∥ +AQ

t ) ≤ −(αγ −Lγ−1)∥Zt∥ + αγ∥Qt∥ + 1{ĝ−1g∈N}δt

= −θLγ−1∥Zt∥ + αγ∥Qt∥ + 1{ĝ−1t gt∈N}δt

Since by assumption, f is concave and C2, we can now apply the Ito-Tanaka formula to
f(rt) and obtain a semi-martingale decomposition

ectf(rt) ≤ f(r0) + Ãf
t + M̃

f
t

with the absolute continuous process (Ãt) and the martingale M̃f
t given by

dÃf
t = ect (cf(rt) + (αγ∥Qt∥ − θLγ−1∥Zt∥ + 1{ĝ−1t gt∈N}δt) f

′
−(rt) + 4γ−1 rc(Zt, µt)2f ′′(rt))dt

M̃f
t =
√

8γ−1∫
t

0
ecsf ′−(rs) rc(Zs,Ws)e⊺sdW rc

s

Semimartingale decomposition for Gt: By the SDE for µt in Eq. (28), the SDE
for µt gives the decomposition for Gt:

Gt = G0 +AG
t + M̃G

t for all t ≥ 0,

where (AG
t ) and (M̃G

t ) are the absolutely continuous process and the martingale given by

Aµ
t = ∫

t

0
−2γ∥µs∥2 − 2µ⊺s ⋅ (TgsLgs−1∇U(gs) − TĝsLĝ−1s ∇U(ĝs)) + 8γ⟨µs, es⟩2 rc(Zs, µs)2ds,

M̃µ
t =
√

32γ ∫
t

0
⟨µs, es⟩ rc(Zs, µs)e⊺sdW rc

s .

Using the L-smoothness of U , we have

Aµ
t ≤ −2γ∥µt∥2 + 2L∥Zt∥∥µt∥ + 8γ rc(Zt, µt)2∥µt∥2
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Semimartingale decomposition for ectρt: We combine the semimartingale decompo-
sition for ectf(rt) and ∥µt∥ to have the following semimartingale decomposition for ectρt

ectρt = ectf(rt) (1 + β∥µt∥2) = ρ0 +Mt +At

where the continuous process At satisfies d
dtAt ≤ ectKt.

Kt = [cf(rt) + (αγ∥Qt∥ − θLγ−1∥Zt∥ + 1{ĝ−1t gt∈N}δt) f
′
−(rt) + 4γ−1 rc(Zt, µt)2f ′′(rt)] (1 + β∥µt∥2)

+ βf(rt) [−2γ∥µt∥2 + 2L∥µt∥∥Zt∥ + 8γ rc(Zt, µt)2∥µt∥2]
+ 16β∥µt∥ rc(Zt, µt)2f ′−(rt)

This gives us the definition for K ∶ (G × g)2 → R at the beginning of Sec. F.1

F.2. Conditions for contractivity

In the following lemma, we find the sufficient condition for f , η (α), β, R to ensure Kt ≤ 0.
Note that we ignore the part 1{ĝ−1g∈N}δt because we has shown it has zero measure at any
time (Cor. 35) and will not affect the contraction under Wρ in Thm. 7 later.

Lemma 37

Kt ≤ ϵαγ (1 + β∥µt∥2)

when ĝ−1g ∉ N if the following conditions Eq. (29), (32), (31)are satisfied:

A0f(r) +A1rf
′
−(r) +A2f

′′(r) ≤ 0, ∀r ∈ [0,R] (29)

for
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A0 ∶= c + β [6γ3R2 + 2γLRD]
A1 ∶= αγ + 16βγmax{1, α−1}
A2 ∶= 4γ−1

(30)

c − β(2γ − c − 2LDγ−1R−1)γ2R2 ≤ 0 (31)

θ

1 + θγrf
′
−(r) ≥ A0f(r), ∀r ∈ [0,R] (32)

Proof We prove this by dividing (G × g)2 in to 3 regions (Fig. 1).
Region I: ∥µ∥ ≤ γR and ∥Q∥ ≥ ϵ (Reflection coupling) (Corresponding to Condition

Eq. (29))
rc ≡ 1 in this case and we have

Kt = [cf(rt) +Lγ−1 ((1 + θ)∥Qt∥ − θ∥Zt∥) f ′−(rt) + 4γ−1f ′′(rt)] (1 + β∥µt∥2)
+ βf(rt) [−2γ∥µt∥2 + 2L∥µt∥∥Zt∥ + 8γ∥µt∥2] + 16β∥µt∥f ′−(rt)
≤ (c + β [2L∥µt∥∥Zt∥ + 6γ∥µt∥2] f(rt)) (1 + β∥µt∥2)
+ (Lγ−1 ((1 + θ)∥Qt∥ − θ∥Zt∥) + 16β∥µt∥) f ′−(rt) (1 + β∥µt∥

2)
+ 4γ−1f ′′(rt) (1 + β∥µt∥2)
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∥Z∥ ≤D and ∥µ∥ ≤ γR give us

c + β [2L∥µt∥∥Zt∥ + 6γ∥µt∥2] ≤ c + β [2LγRD + 6γ(γR)2]

By the fact ∥µ∥ ≤ γmax{1, α−1}r and ∥Q∥ ≤ r

Lγ−1 ((1 + θ)∥Q∥ − θ∥Z∥) + 16β∥µ∥
≤ Lγ−1∥Q∥ + 16β∥µ∥
≤ Lγ−1r + 16βγmax{1, α−1}r

As a result, by setting A0, A1, A2 as in Eq. (30), we have

Kt ≤ [A0f(r) +A1rtf
′
−(rt) +A2f

′′(rt)] (1 + β∥µ∥2)

When Eq. (29) is satisfied, Kt ≤ 0 in this region.

Region II & III: ∥µ∥ ≥ γR + ϵ (Synchronous coupling) (Corresponding to Condition
Eq. (31))

In the case, we have r ≥ R, which means f ′−(r) = f ′′(r) = 0.

Kt = cf(rt) (1 + β∥µt∥2) + βf(rt) [−2γ∥µt∥2 + 2L∥µt∥∥Zt∥]
≤ f(rt) [c − β(2γ − c − 2LDγ−1R−1)∥µt∥2]

which is non-negative given condition Eq. (31).

Region IV: ∥µ∥ ≤ γR and ∥Q∥ < ϵ or γR < ∥µ∥ < γR+ ϵ (Mix between synchronous and
reflection coupling) (Corresponding to Condition Eq. (32))

0 ≤ rc ≤ 1 in this case and we have

Kt ≤ rc(Zt, µt)2 [A0f(rt) +A1rtf
′
−(rt) +A2f

′′(rt)] (1 + β∥µt∥2)
+ (1 − rc(Zt, µt)2) [(c − 2βγ∥µt∥2 + 2βL∥µt∥∥Zt∥) f(rt) + (αγ∥Qt∥ − θLγ−1∥Zt∥)f ′−(rt)] (1 + β∥µt∥

2)
≤ [(c − 2βγ∥µt∥2 + 2βL∥µt∥∥Zt∥) f(rt) + (αγ∥Qt∥ − θLγ−1∥Zt∥)f ′−(rt)] (1 + β∥µt∥

2)
≤ [A0f(rt) + (αγϵ − θLγ−1∥Zt∥)f ′−(rt)] (1 + β∥µt∥

2)
≤ [A0f(rt) − α−1θLγ−1rtf ′−(rt)] (1 + β∥µt∥

2) + αγϵf ′−(rt) (1 + β∥µt∥
2)

Since f ′− ≤ 1 gives the desired result.

F.3. Choose the parameters

In order to make sure the conditions in Lemma 37 satisfied, the parameters α (θ), β, R,
the contraction rate c and the function f are needed to be carefully selected. The idea of
choosing parameters here is inspired by Eberle (2016); Eberle et al. (2019).
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F.3.1. Choose f

At first glance, choosing f seems to be the most difficult part since the condition Eq. (29)
is not very intuitive and we do not have a parametrization for function f . So, we start by
giving f an explicit expression heuristically.

Denote φ as

φ(s) ∶= exp(− A1

2A2
s2)

i.e., φ is the solution of ODE A1rφ(r) +A2φ
′(r) = 0. An intuition for this equation on φ is

by imaging φ = f ′ in Eq. (29) with the term A0f disregarded.

Since the ODE for φ omitted the positive A0f term, f(r) cannot be simply set as

∫ r
0 φ(s)ds. Instead, a correction term ψ is introduced and f has the following form:

f(r) = ∫
min{r,R}

0
φ(s)ψ(s)ds (33)

ψ ≤ 1 is a function to be determined later. By denoting

Φ(r) ∶= ∫
r

0
φ(s)ds (34)

we have f ≤ Φ and when r ≤ R,

A0f +A1rf
′
− +A2f

′′ = A0f +A1r(φψ) +A2(φψ′ + φ′ψ)
= A0f +A2φψ

′

≤ A0Φ +A2φψ
′

This shows that A0Φ(r) + A2φ(r)ψ′(r) ≤ 0 is a sufficient condition for Eq. (29), which
inspires us to choose ψ as

ψ(r) = 1 − A0

A2
∫

r

0
Φ(s)φ(s)−1ds, ∀r ∈ [0,R] (35)

Now we have an expression for f , we need to find a set of parameters α(θ), β, R and c s.t.
Eq. (31), (32) is satisfied.

F.3.2. Choose α(θ), β, R

First, we focus on condition Eq. (31). We set λc = β(6γ3R2+2γLRD) where λ is a constant
to be determined, i.e., A0 is assumed to be of the same order as c. Under such assumption,
Eq. (31) can be simplified as

c − β(2γ − c − 2LDγ−1R−1)γ2R2 ≤ 0

⇔ β(6γ3R2 + 2γLRD) ≤ λβ(2γ − c − 2LDγ−1R−1)γ2R2

⇔ 6γ2R + 2LD ≤ λ(2γ2R − cγR − 2LD)
⇔ [2(λ − 3)γ − cλ]γR ≥ 2(1 + λ)LD
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The left-hand side must be positive, which means λ > 3. After simply choosing λ = 4
and assuming

c ≤ γ/4 (36)

we can choose R as

R = 10LDγ−2 (37)

to make Eq. (31) satisfied. After R is chosen, solving 4c = β(6γ3R2 + 2γLRD) gives an
explicit expression for β:

β = 1

155
cγL−2D−2 (38)

Before we proceed, we give φ a lower bound by adding more constraints to the param-
eters. The benefit is that we will have a better estimate for the conditions depending on φ
(Φ) and f , i.e., Eq. (32). A1

2A2
= α

8 γ
2 + 2βγ2 max{1, α−1} and we have

φ(s) = exp(−Ls
2

8
(1 + θ) − 2γ2βmax{1, α−1}s2)

And we want to make sure

φ(s) ≥ exp(−2 − Ls
2

8
) , ∀s ∈ [0,R] (39)

Since this only need to be satisfied on [0,R], it can be achieved by ensuring 2βγ2R2 max{1, α−1} ≤
1 and θLR2/8 ≤ 1, which further leads to the following choice of θ

θ = 8L−1R−2 = 0.08L−3D−2γ4 (40)

and one more condition on c:

c ≤ 31

40
min{γ, (1 + θ)Lγ−1} (41)

To summarize, comparing with the conditions in Lemma 37 (Eq. (29), (31), (32)), we
made some artificial conditions and have a set of more explicit choice of constants (Eq.
(37), (38), (40)) with conditions (Eq. (32), (36), (41)).

F.3.3. Choose c

Now, the last part is to choose a suitable parameter c. We use all the choice of parameters
mentioned earlier in Sec. F.3.1 and F.3.2. Given Lemma 37, we only need to check Eq.
(29), (31), (32) are satisfied.

Lemma 38 By our choice of f (Eq. (33)), θ (Eq. (40)), β (Eq. (38)), R (Eq. (37)), we
have conditions in Lemma 37 ( (29), (31), (32)) are satisfied for

c ≤ c∗ ∶=min{γ
4
,
31

40
(1 + θ)Lγ−1, L

3/2R

5
√

2πγ
e−

LR2

8 ,
θγ

5(1 + θ) min{e−
5
2 ,

√
LR√
2π

e−
LR2

8 }} (42)
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Proof [Proof of Lemma 38] Condition Eq. (29) is satisfied by our choice of f in Eq. (33).
Eq. (31) is satisfied by Eq. (36), with extra condition Eq. (36).
The rest of the proof will be devoted to finding an appropriate c for Eq. (32).
We first ensure a lower bound by ψ ≥ 1/2. By the explicit expression of ψ in Eq. (35),

this is equal to
2A2

A0
≤ ∫

R

0
Φ(s)φ(s)−1ds (43)

Our choice of β gives A0 = 5c. Consequently, Eq. (43) is satisfied when

c ≤ 8

5
γ−1/∫

R

0
Φ(s)φ(s)−1ds

Since our the property Eq. (39) is guaranteed by our choice of β and extra condition on
c in Eq. (41), we have the following upper bound of Φ from the definition of Φ in Eq. (34)

Φ ≤ ∫
∞

0
exp(−2 −Ls2/8)ds = e−2

√
2π/L

This upper bound of Φ gives an upper bound of ∫ R
0 Φ(s)φ(s)−1ds:

∫
R

0
Φ(s)φ(s)−1ds

≤ Φ(R)∫
R

0
φ(s)−1ds

≤ Φ(R)e2∫
R

0
exp(Ls2/8)ds

≤ Φ(R)e2 8

LR
exp(LR2/8)

≤
√

2π/L 8

LR
exp(LR2/8)

In the end, an sufficient condition for Eq. (43) is

c ≤ L3/2R

5
√

2πγ
exp(−LR2/8) (44)

By our choice of θ in Eq. (40) and apply condition Eq. (41), we have Eq. (39).
Next, we are ready to make Eq. (32) satisfied. By the expression for f , we have f ≤ Φ.

Using the property ψ ≥ 1/2 guaranteed by Eq. (44), we have f ′ = φψ ≥ 1
2φ. Together with

A0 = 5c and Eq. (39), we know Eq. (32) is satisfied given

5c(1 + θ)
θγ

≤ inf
r∈[0,R]

rφ(r)
Φ(r)

Now we estimate a lower bound for infr∈[0,R]
rφ(r)
Φ(r) . First we notice that

rφ(r)
Φ(r) ≥

r exp(−2 −Lr2/8)
∫ r
0 exp(−2 −Ls2/8)ds =

r exp(−Lr2/8)
∫ r
0 exp(−Ls2/8)ds
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For r ≥ 2√
L

, we have d
drr exp(−Lr2/8) = (1−Lr2/4) exp(−Lr2/8) ≤ 0 and

rφ(r)
Φ(r) ≥

R exp(−LR2/8)
∫ R
0 exp(−Ls2/8)ds

≥

R exp(−LR2/8)/
√

2π/L.

For r ≤ 2√
L

, we have r/Φ ≤ 1 and
rφ(r)
Φ(r) ≥ φ(r) ≥ exp(−5/2).

As a result, a sufficient condition for Eq. (32) is

c ≤ θγ

5(1 + θ) min{exp(−5/2),R exp(−LR2/8)/
√

2π/L} (45)

Since we added extra conditions on c in Eq. (36), (41)), a summary of all the conditions
on c, Eq. (36), (41), (44), (45) give us the desired result.

F.4. More discussion on the convergence rate c

Here we discuss the order of c∗, the upper bound of convergence rate defined in Eq. (42).
By denoting

Λ ∶= LR
2

8
∼ L3D2γ−4 (46)

We have an estimate of the order of c∗:

c∗ ∼min{γ,Lγ−1, Lγ−1
√

Λe−Λ, γΛ−1, γΛ−
1
2 e−Λ} (47)

Notice that the inner product in Lemma 3 can be rescaled ⟨⋅, ⋅⟩ → a⟨⋅, ⋅⟩, and in this case
L → a−2L and D → aD, but the value LD2 will remain the same. As a result, we consider
dependence of the convergence rate c∗ on γ and LD2 when LD2 →∞:

• For the critical choice γ ∼
√
L, we have c∗ ∼ D−

1
2 e−LD

2
. This is also the common

choice in the Euclidean case.

• For the underdamped choice γ ≲
√
L, we have c∗ ∼ γmin{Λ−1,Λ− 1

2 e−Λ}, which is

slower than the kinetic choice when LD2 →∞.

• For the overdamped choice γ ≳
√
L, it is hard to simplify the expression for c∗.

One may suggest γ ∼ (L3D2) 14 to make Λ ∼ 1. In this case, we have c∗ ∼ Lγ−1 ∼
D

1
2L−

1
4 . However, the research in Euclidean kinetic Langevin suggest this will lead

to the requirement of small step size and will not remove the exponential decay of
convergence rate when D is large.

In summary, our recommendation is γ ∼
√
L, and we have the convergence rate c decays

exponentially when D (diameter of Lie group) grows. One may worry that our rate is slow,
but it actually should be slow because we only assumed compactness and smooth log density,
and metastability can exist: without convexity conditions on U , the potential barriers
between the potential wells of the non-convex potential function U stops the Langevin
dynamics from mixing fast. We can see that by comparing, for example, our rate with some
existing results by Gaussian mixture models (GMM).
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We consider the mixture of 2 Gaussians N(x,σI) and N(y, σI) with equal weight in
Euclidean space. Schlichting (2019) provides an estimate of LSI constant ϱ for this GMM
model showing an exponential ϱ ≳ exp(−∥x − y∥2/σ), and Ma et al. (2021) showing a conver-
gence rate ϱ. This means the result Ma et al. (2021) has a convergence rate exponentially
decaying w.r.t. the distance between 2 Gaussian models. In other words, exponential long
time is required to jump between potential well when they are far, and since we have no
convexity assumption on potential function, this slow rate cannot be avoided.

Our choice of γ and the quantification of convergence rate are consistent with the Eu-
clidean case (Eberle et al., 2019, Sec. 2.6).

Appendix G. Proof for Thm. 7

Proof [Proof for Thm. 7] By Cor. 35, we have both the density of (gt, ξt) and (ĝt, ξ̂t) are
absolute continuous w.r.t. dgdξ for any t ∈ [0,∞), which gives us E(gt,ξt,ĝt,ξ̂t)1{ĝ−1t gt∈N}δt ≡
0,∀t ∈ [0,∞).

As a result, by taking expectation to Eq. (11) and choosing the parameters α, β and R
as stated in Lemma 38, we have

Eρt ≤ e−ctEρ0 + ϵαγ ∫
t

0
E (1 + β∥µs∥2)ds

By the fact that E∥µs∥2 is upper bounded by 4C2 (Lemma 46) since ∥µs∥2 ≤ 2∥ξs∥2+2∥ξ̂s∥
2
,

we can take the limit when ϵ→ 0 and have

Eρt ≤ e−ctEρ0

By choosing the optimal joint distribution for initial distribution ν0 = Law(g0, ξ0) and
ν̂0 = Law(ĝ0, ξ̂0), we have

Wρ(ν0, ν̂0)
= Eρ((g0, ξ0), (ĝ0, ξ̂0))
≥ ectEρ((gt, ξt), (ĝt, ξ̂t))
≥ ectWρ(Law(gt, ξt),Law(ĝt, ξ̂t))
= ectWρ(νt, ν̂t)

Proof [Proof of Lemma 4] We consider 2 cases separately: 1)∥ξ − ξ̂∥ ≥ 2D; 2) ∥ξ − ξ̂∥ < 2D,
where D is the diameter of the Lie group.

Case 1: ∥ξ − ξ̂∥ ≥ 2D. In this case, we have

∥ξ − ξ̂∥2 ≥ 1

2
∥ξ − ξ̂∥2 + 1

2
D2 ≥ 1

2
∥ξ − ξ̂∥2 + 1

2
d2(g, ĝ)
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The definition of r in Eq. (8) gives

r((g, ξ), (ĝ, ξ̂))
≥min{α,1} (d(g, ĝ) + ∥log ĝ−1g + γ−1(ξ̂ − ξ)∥)
≥min{α,1}γ−1∥ξ̂ − ξ∥
≥ 2 min{α,1}γ−1D

which infers by the definition of ρ,

ρ((g, ξ), (ĝ, ξ̂))
≥ f(2 min{α,1}γ−1D)(1 + βd2((g, ξ), (ĝ, ξ̂))/2)

≥ β
2
f(2 min{α,1}γ−1D)d2((g, ξ), (ĝ, ξ̂))

Case 2: ∥ξ − ξ̂∥ < 2D. In this case, r ≤ (α + 1+ 2γ−1)D. By the concavity of f , we have

f(r) ≥ f((α + 1 + 2γ−1)D)
(α + 1 + 2γ−1)D r ≥ f((α + 1 + 2γ−1)D)

((α + 1 + γ−1)2D2
r2

Since

r((g, ξ), (ĝ, ξ̂))

= α
2
d(g, ĝ) + α

2
d(g, ĝ) + ∥log ĝ−1g + γ−1(ξ̂ − ξ)∥

≥ α
2
d(g, ĝ) + γ−1 min{1, α/2}∥ξ − ξ̂∥

we have

ρ ≥ f(r) ≥ f((α + 1 + 2γ−1)D)
(α + 1 + γ−1)2D2

r2 ≥ f((α + 1 + 2γ−1)D)
(α + 1 + γ−1)2D2

min{α
2

4
,

1

γ2
,
α2

4γ2
}d2

By defining Cρ as

Cρ =min{β
2
f(2 min{α,1}γ−1D), f((α + 1 + 2γ−1)D)

(α + 1 + γ−1)2D2
min{α

2

4
,

1

γ2
,
α2

4γ2
}} (48)

we have Cρd
2 ≤ ρ.

From Lemma 4, we directly have the following corollary, which bounds W2 by Wρ, and
further gives us convergence under W2 (Thm. 8).

Corollary 39 (Control of W2 by Wρ) For any distributions ν and ν̂ on G × g, we have

CρW
2
2 (ν, ν̂) ≤Wρ(ν, ν̂)
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Proof [Proof of Cor. 39] Suppose π ∈ Π(ν, ν̂) is the optimal coupling between ν and ν̂
under ρ, i.e., ∫ ρ(x, y)dγ =Wρ(ν, ν̂). Lemma 4 gives

Wρ(ν, ν̂) = ∫ ρdπ

≥ ∫ Cρd
2dπ

≥ CρW
2
2 (ν, ν̂)

Proof [Proof of Thm .8] This is a direct corollary for Thm. 7 and Cor. 39.

Appendix H. More details about Sec. 5

H.1. More discussion on the splitting discretization

Splitting discretization is less commonly used when discretizing kinetic Langevin SDE in the
Euclidean space. This is because another discretization, which we will refer to as the ‘ex-
ponential integrator discretization’ (Eq.49) is easier to analyze. However, that exponential
integrator discretization works in Euclidean space but not on Lie groups.

More precisely, in the existing literature studying kinetic Langevin in Euclidean spaces,
time discretization of SDE Eq. (17) is commonly done by the explicit solution of

⎧⎪⎪⎨⎪⎪⎩

q̇ = p
dp = −γpdt −∇U(q0)dt +

√
2γdW

(49)

i.e., by viewing ∇U as constant and using a closed-form solution for the rest. The only
numerical error it introduces is the error in the gradient of the potential function. This
special discretization also is of key importance in many proofs, e.g., Ma et al. (2021);
Altschuler and Chewi (2023).

However, although in the Euclidean case, it is a linear SDE and admits a closed-form
solution, in the Lie group case it becomes

⎧⎪⎪⎨⎪⎪⎩

ġ = TeLgξ
dξ = −γξdt − TgLg−1∇U(g0)dt +

√
2γdW

It is no longer a linear SDE due to the involvement of the operator TeLg, and this SDE does
not have a closed-form solution, hence not implementable as a numerical algorithm.

To see this more clearly, let’s consider the matrix group case in Example 1. In this case,
TeLgξ = gξ, where both g and ξ are n × n matrices and gξ is the matrix multiplication.
As a result, even though the ξ equation can be analytically solved, resulting in a precise
expression ξ as a function of time, the equation ġ = gξ is a non-autonomous linear system
with coefficient (ξ) not necessarily commuting at different times, and hence g does not admit
a closed-form solution.

Due to the nonlinearity of the gξ term, we use the splitting discretization Eq. (14)
instead, where we step g and ξ separately. In that case, when we evolve ġ = gξ in the matrix
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group, we view ξ as constant and that is a linear equation in g, which admits a closed-form
solution. However, extra numerical errors other than the error in the gradient of potential
may be introduced compared to the exponential integrator discretization Eq. (49), which
makes our analysis more non-trivial.

At the end of this section, we give proof for the property of structure-preserving for
splitting discretization Thm. 9.

Proof [of Thm. 9]. Our numerical scheme is given by alternatively evolving the two SDEs.
Suppose (gk, ξk) preserves the manifold structure, i.e., g ∈ G and ξ ∈ g. For the first step
when updating ξ by evolving Eq.12, since it is an SDE in g, which is a linear space, we
have ξk+1 ∈ g. For the second step when updating g by evolving Eq. (13), since the group
exponential is always in the group, i.e., exp(hξk+1) ∈ G, we have gk+1 = gk exp(hξk+1) is in
G since the group is closed under multiplication.

By induction, We have if g0 ∈ G and ξ0 ∈ g, the group structure is preserved for the
whole trajectory, i.e., gk ∈ G and ξk ∈ g for any k.

Remark 40 (Example of structure preserving on SO(n)) When we use matrix rep-
resentation for SO(n) (Example 2), we have the Lie group structure is X⊺X = I, ξ + ξ⊺ = 0.
As a result, Thm. 9 tell us X⊺kXk = I, ξk + ξ⊺k = 0 for all k under any step size h.

Remark 41 (Comparison with (Cheng et al., 2022)) In a brilliant paper by Cheng
et al. (2022), a quantification of the discretization of the Langevin on the manifold (without
momentum) is proposed. However, our Lie group has the group structure and our error
bound can be more explicit. What’s more, our discretization is not simply geometric Euler-
Maruyama discretization but a two-stage splitting. How to expand the bound for numerical
error for exponential integrator in their work to splitting discretization is unclear yet.

H.2. Proof of Thm. 10

The proof of Thm. 10 will be in several steps: 1) we find a shadow SDE whose distribution
at t is the distribution of our numerical method evolve one step with step size t (Lemma
42); 2) we upper bound some terms in Lemma 43, 44, 45, 46; 3) using those estimations,
we derive an ODE whose solution at time t is the upper bound of one step numerical error
of our numerical scheme (Thm. 10).

Lemma 42 (Exact SDE for splitting scheme) Denote (g̃h, ξ̃h) as the one-step evolu-
tion of our splitting numerical scheme Eq. (14) with step size t starting from (g0, ξ0). Then
(g̃h, ξ̃h) is the solution of the following SDE at time h:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dg̃t = TeLg̃t (ξ̃tdt + t1−e
ad

tξ̃t

adtξ̃t
(−γξ̃tdt − Tg0Lg0−1∇U(g̃0)dt +

√
2γdWt) + γt2∑ij d2 exp(ξ̃t)(ei, ej)dt)

dξ̃t = −γξ̃tdt − Tg0Lg0−1∇U(g̃0)dt +
√

2γdWt

(50)
where d2 exp ∶ g × g→ g is defined as

d2 exp(x)(ξ, ξ̂) = lim
h→0
⟨d exp(x + hξ), ξ̂⟩ − ⟨d exp(x), ξ̂⟩ (51)
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Proof The SDE for ξ is from the definition of the numerical discretization directly. We
focus on the SDE for g. The update of g gives g̃t = g exp(tξ̃t), and we will first write down
the SDE tξ̃t satisfied as the following:

dtξ̃t = (1 − tγ)ξ̃tdt − tTg0Lg0−1∇U(g̃0)dt + t
√

2γdWt

By Ito’s formula and the expression of d exp in Eq. (24),

dg̃t = d exp(tξ̃t)

= TeLexp(tξ̃t)
⎛
⎝

d exptξ̃t
(dtξ̃t) + γt2∑

ij

d2 exp(tξ̃t)(ei, ej)dt
⎞
⎠

where the second term in the bracket is Ito’s correction drift term.

Lemma 43 (Upper bound for d2 exp) The map d2 exp(X) ∶ g × g → g defined in Eq.
(51) has upper bound C, i.e.,

∥d2 exp(X)∥
op
≤ C

where C is defined in Eq. (21) and ∥⋅∥op is the operator norm (maximum eigenvalue of a
linear operator).

Proof [Proof of Lemma 43] By the definition of d2 exp given by Eq. (51) and d exp in Eq.
24, we have

d2 exp(X)(Y,Z) = lim
h→0
⟨d exp(X + hY ), Z⟩ − ⟨d exp(x), Z⟩

= lim
h→0

1 − exp(−adX+hY )
adX+hY

Z − 1 − exp(−adX)
adx

Z

Setting Y = Z,

∥d2 exp(X)(Y,Y )∥ ≤ ∥adY ∥op∥Y ∥max{ d

dx
R

1 − exp(xi)
xi

} ≤ C∥Y ∥2

Lemma 44 (Upper bound ∂2

∂ei∂ej
d2(⋅, g)) Define

∂2

∂ei∂ej
d2(g̃, g) ∶= lim

h→0

d2(g̃ exp(hei) exp(hej), g exp(hei)) − d2(g̃ exp(hej), g)
h2

Then we have

∂2

∂ei∂ej
d2(g̃, g) ≤ Cd(g̃, g)
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Proof [Proof of Lemma 44]

∂2

∂ei∂ej
d2(g̃, g) ∶= lim

h→0

d2(g̃ exp(hei) exp(hej), g exp(hei)) − d2(g̃ exp(hej), g)
h2

= lim
h→0

d2(g̃ exp(hei) exp(hej) exp(−hej), g) − d2(g̃, g)
h2

= lim
h→0

d2(g̃ exp(h2[ei, ej]), g) − d2(g̃, g)
h2

≤ 2d(g̃, g)∥[ei, ej]∥
≤ 2Cd(g̃, g)

Lemma 45 The operator norm for d exp is bounded by

∥d expX∥op ≤ 1

Proof [Proof of Lemma 45] This can be derived from Eq.(24). Since ∥1−exixi ∥ ≤ 1,∀x and

all the eigenvalue of adX is pure imaginary by the skew-symmetricity of adX operator, we
have the desired result.

Lemma 46 Suppose we initialize ξ(0) ≡ 0 and we have ∥∇f∥ is upper bounded by LD.
Then we have E∥ξ∥k < ∞ for both SDE Eq. (4) and splitting scheme Eq. (14).

Proof [Proof of Lemma 46] The drift term for momentum has magnitude ≤ LD and by
Tanaka formula, we have

d

dt
E∥ξ∥ = −γE∥ξ∥ −E⟨ ξ∥ξ∥ ,∇f⟩

≤ −γE∥ξ∥ +LD

as a result, E∥ξ∥ ≤ LD
γ ∶= C1.

d

dt
E∥ξ∥2 = −2γE∥ξ∥2 − 2E⟨ξ,∇f⟩ +m

≤ −2γE∥ξ∥2 + 2LDC1 +m

As a result,

E∥ξ∥2 ≤ 2LDC1 +m
2γ

∶= C2

We prove by induction. Suppose for i = 1, . . . k − 1 E∥ξ∥i ≤ Ci, we have for k ≥ 3

d

dt
E∥ξ∥k = −γkE∥ξ∥k − kE∥ξ∥k−2⟨ξ,∇f⟩ + γE∆∥ξ∥k

= −γkE∥ξ∥k − kE∥ξ∥k−2⟨ξ,∇f⟩ + γk(k − 1)E∥ξ∥k−2

≤ −γkE∥ξ∥k + kLDCk−1 + γk(k − 1)Ck−2
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Since we have ξ(0) ≡ 0, we have E∥ξ∥k ≤ LDCk−1

γ + (k − 1)Ck−2 ∶= Ck < ∞

Proof [Proof of Thm. 10] We consider the evolution of Ed2((gt, ξt), (g̃t, ξ̃t)), where (gt, ξt)
and (g̃t, ξ̃t) are 2 trajectories strating from the same point (g0, ξ0).

d

dt
Ed2((gt, ξt), (g̃t, ξ̃t))

= d

dt
Ed2(gt, g̃t) +

d

dt
Ed2(ξt, ξ̃t)

We quantify d
dtEd

2(ξt, ξ̃t) first:

d

dt
E∥ξ̃t − ξt∥

2 ≤ 2E [∥ξ̃t − ξt∥∥∇U(gt) − ∇(g0)∥]

≤ 2LE [∥ξ̃t − ξt∥d(gt, g0)]

≤ 2LE [∥ξ̃t − ξt∥∫
t

0
∥ξt∥dt]

≤ LE∥ξ̃t − ξt∥
2 +LE(∫

t

0
∥ξt∥dt)

2

≤ LE∥ξ̃t − ξt∥
2 + t2LC2

where the last line is because Cauchy-Schwarz inequality and Lemma 46 gives us

E(∫
t

0
∥ξt∥dt)

2

≤ t∫
t

0
E∥ξt∥2dt ≤ t2C2

Gronwall’s inequality gives E∥ξ̃t − ξt∥
2 ≤ x where x is the solution of ODE ẋ = Lx+C2Lt

2

with initial condition x(0) = 0.

Next, we bound Ed2(g̃t, gt). When we have g̃−1t gt ∉ N , Ito’s formula gives

dd2(g̃t, gt)

= 2⟨log g−1t g̃t,dg̃t − dgt⟩dt + γt2∑
ijk

⟨1 − e
adtξ̃t

adtξ̃t

ek, ei⟩⟨
1 − eadtξ̃t

adtξ̃t

ek, ej⟩
∂2

∂ei∂ej
d2(g̃t, gt)dt

where the second term is the Ito’s correction. It can be bounded by Lemma 44 and 45.

∑
ijk

⟨1 − e
adtξ̃t

adtξ̃t

ek, ei⟩⟨
1 − eadtξ̃t

adtξ̃t

ek, ej⟩
∂2

∂ei∂ej
d2(g̃t, gt) ≤ 2Cm3d(g̃t, gt)

After taking expectations, we only need to consider g̃−1t gt ∈ G/N since N is zero measured
(Cor. 35). Also, the local martingale part can be eliminated. Using Lemma 43 and 46 we
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have

d

dt
Ed2(g̃t, gt) =

d

dt
Eg̃−1t gt∉Nd

2(g̃t, gt)

= 2E⟨log g−1t g̃t, ξ̃t − ξt + t
1 − eadtξ̃t

adtξ̃t

(−γξ̃t − Tg0Lg0−1∇U(g̃0)) + γt
2∑

ij

d2 exp(tξ̃t)(ei, ej)⟩

+ γt2∑
ijk

⟨1 − e
adtξ̃t

adtξ̃t

ek, ei⟩⟨
1 − eadtξ̃t

adtξ̃t

ek, ej⟩
∂2

∂ei∂ej
d2(g̃t, gt)

≤ Ed2(g̃t, gt) +E
XXXXXXXXXXX
ξ̃t − ξt + t

1 − eadtξ̃t
adtξ̃t

(−γξ̃t − Tg0Lg0−1∇U(g̃0)) + γt
2∑

ij

d2 exp(tξ̃t)(ei, ej)
XXXXXXXXXXX

2

+ 2γt2Cm3Ed(g̃t, gt)

≤ Ed2(g̃t, gt) + 4 (E∥ξ̃t − ξt∥
2 + γ2t2E∥ξ̃t∥

2 + t2∥∇U(g̃0)∥2 + γ2t4C2m2)

+ γt2Cm3Ed2(g̃t, gt) + γt2Cm3

≤ Ed2(g̃t, gt) + 4 (E∥ξ̃t − ξt∥
2 + γ2t2C2 + t2LD + γ2t4C2m2) + γt2Cm3Ed2(g̃t, gt) + γt2Cm3

= (1 + γCm3t2)Ed2(g̃t, gt) + 4E∥ξ̃t − ξt∥
2 + (4γ2C2 + 4LD + γCm3) t2 + 4γ2C2m2t4

Gronwall’s inequality gives Ed2(g̃t, gt) ≤ y(t) where y is the solution of ODE

ẏ = (1 + γCm3t2) y + 4x + (4γ2C2 + 4LD + γCm3) t2 + 4γ2C2m2t4

with initial condition y(0) = 0.
To summarize, the ODE for x(t) and t(t) are given by

⎧⎪⎪⎨⎪⎪⎩

ẋ = Lx +C2Lt
2

ẏ = (1 + γCm3t2) y + 4x + (4γ2C2 + 4LD + γCm3) t2 + 4γ2C2m2t4

⎧⎪⎪⎨⎪⎪⎩

x(0) = 0

y(0) = 0
(52)

Its solution can be analytically obtained, but omitted for the sake of length.

H.3. Proof of Thm. 13

Proof [Proof of Lemma 12] By the definition of semi-distance ρ in Eq. (7), we have

ρ((ĝ, ξ̂), (g̃, ξ̃)) − ρ((ĝ, ξ̂), (g, ξ))

= f(r((ĝ, ξ̂), (g̃, ξ̃))) (1 + β∥ξ̂ − ξ̃∥2)

− f(r((ĝ, ξ̂), (g, ξ)) (1 + β∥ξ̂ − ξ∥2)

= βf(r((ĝ, ξ̂), (g̃, ξ̃))) (∥ξ̂ − ξ̃∥2 − ∥ξ̂ − ξ∥2)

+ (f(r((ĝ, ξ̂), (g̃, ξ̃))) − f(r((ĝ, ξ̂), (g, ξ)) (1 + β∥ξ̂ − ξ∥2)

We will bound the 2 terms in the last equation separately.
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The first term:

∥ξ̂ − ξ̃∥2 − ∥ξ̂ − ξ∥2

= ∥ξ̃ − ξ∥∥2ξ̂ − ξ̃ − ξ∥
≤ 2δ∥ξ̂ − ξ∥ + δ2

≤ ∥ξ̂ − ξ∥2 + 2δ2

and as a result,

βf(r((ĝ, ξ̂), (g, ξ))) (∥ξ̂ − ξ̃∥2 − ∥ξ̂ − ξ∥2)

≤ βf(r((ĝ, ξ̂), (g, ξ))) (∥ξ̂ − ξ∥2 + 2δ2)

≤ ρ((ĝ, ξ̂), (g, ξ))δ + 2βf(R)δ2

The second term: Because f ′ ≤ 1

(f(r((ĝ, ξ̂), (g̃, ξ̃))) − f(r((ĝ, ξ̂), (g, ξ)))) (1 + β∥ξ̂ − ξ∥2)

≤ (r((ĝ, ξ̂), (g̃, ξ̃))) − r((ĝ, ξ̂), (g, ξ))) (1 + β∥ξ̂ − ξ∥2)

≤ (1 + α + γ−1) (1 + β∥ξ̂ − ξ∥2) δ

≤ (1 + α + γ−1) f(r((ĝ, ξ̂), (g, ξ))))
f(R) (1 + β∥ξ̂ − ξ∥2) δ

= (1 + α + γ−1) 1

f(R)ρ((ĝ, ξ̂), (g, ξ))δ

Sum them up we have

ρ((ĝ, ξ̂), (g̃, ξ̃)) − ρ((ĝ, ξ̂), (g, ξ))

≤ (1 + 1 + α + γ−1
f(R) )ρ((ĝ, ξ̂), (g, ξ))δ + 2βf(R)δ2

We have the desired result by defining

⎧⎪⎪⎨⎪⎪⎩

A1 ∶= 1 + 1+α+γ−1
f(R)

A2 ∶= 2βf(R)
(53)

Proof [Proof of Lemma 11] We focus on x first. Since ẋ ≤ Lx + C2Lt
2
0, we have x(t) ≤

C2t
2
0(eLt − 1) = O(t3).
For y, we have

ẏ ≤ (1 + γCm3t20) y + 4x + (4γ2C2 + 4LD + γCm3) t20 + 4γ2C2m2t40

≤ (1 + γCm3t20) y + 4C2t
2
0e

Lt + (4γ2C2 − 4C2 + 4LD + γCm3) t20 + 4γ2C2m2t40
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Solving the ODE explicitly, we have

y ≤ 4γ2C2 − 4C2 + 4LD + γCm3 + 4γ2C2m2t20
1 + γCm3t20

t20 (e(1+γCm3t20)t − 1) + e
(1+γCm3t20)t − eLt
1 + γCm3t20 −L

4C2t
2
0

Since we have et − 1 = O(t), we have y(t) = O(t3).

Corollary 47 Suppose the Lie group G is compact with diameter D. For any (g, ξ) and
(ĝ, ξ̂) in the following cases:

• (g, ξ) is the solution of sampling SDE Eq. (4) at time t for any t ≥ 0.
(ĝ, ξ̂) is the solution of sampling SDE Eq. (4) at time s for any s ≥ 0.

• (g, ξ) is the solution of numerical discretization Eq. (14) at step k for any k ∈ N.
(ĝ, ξ̂) is the solution of numerical discretization Eq. (14) at step l for any l ∈ N.

• (g, ξ) is the solution of sampling SDE Eq. (4) at time t for any t ≥ 0.
(ĝ, ξ̂) is the solution of numerical discretization Eq. (14) at step k for any k ∈ N.

then we have

Eρ2((ĝ, ξ̂), (g, ξ)) ≤ f(R1)2(1 + 8C2 + 16C4)
where C2 and C4 are given in Lemma 46.

Proof [Proof of Cor. 47] By our design that f is upper bounded by f(R), we have

ρ((g, ξ), (ĝ, ξ̂)) ≤ f(R1)(1 + ∥ξ − ξ̂∥
2)

≤ f(R1)(1 + 2∥ξ∥2 + 2∥ξ̂∥2)
and by Cauchy-Schwarz inequality

ρ2((g, ξ), (ĝ, ξ̂)) ≤ f(R1)2 (1 + 4∥ξ∥2 + 4∥ξ̂∥2 + 8∥ξ∥4 + 8∥ξ̂∥4)

By taking expectation and Lemma 46, we have the corollary proved.

Proof [Proof of Thm. 13] In this proof, we denote δ ∶= d((g̃t, ξ̃t), (gt, ξt)). Using the
modified triangle inequality (Lemma 12),

Eρ((ĝt, ξ̂t), (g̃t, ξ̃t))
≤ E [(1 +A1δ)ρ((ĝt, ξ̂t), (gt, ξt)) +A2δ

2]
≤ exp(−ct)Eρ((ĝ0, ξ̂0), (g0, ξ0)) +A1Eδρ((ĝt, ξ̂t), (gt, ξt)) +A2Eδ2

≤ exp(−ct)Eρ((ĝ0, ξ̂0), (g0, ξ0)) +
A1

2
E [δ

2

t
3
2

+ t
3
2 ρ2((ĝt, ξ̂t), (gt, ξt))] +A2Eδ2

where the last step is because of the Cauchy-Schwarz inequality. By Cor. 47, we have Eρ
and Eρ2 is bounded and

Eρ((ĝt, ξ̂t), (g̃t, ξ̃t))

≤ exp(−ct)Eρ((ĝ0, ξ̂0), (g0, ξ0)) + (
A1

2t
3
2

+A2)Eδ2 +
A1

2
f(R)2(1 + 8C2 + 16C4)t

3
2
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H.4. Proof of Cor. 14, Thm. 15 and Thm. 16

Proof [Proof of Cor. 14] We apply Thm. 13 recurrently, which gives

Eρ((ĝkh, ξ̂kh), (g̃k, ξ̃k))
≤ e−chEρ((ĝ(k−1)h, ξ̂(k−1)h), (g̃(k−1)h, ξ̃(k−1)h)), (g̃k−1, ξ̃k−1)) +E(h)
≤ e−2chEρ((ĝ(k−2)h, ξ̂(k−1)h), (g̃(k−2)h, ξ̃(k−2)h)), (g̃k−2, ξ̃k−2)) + (1 + e−ch)E(h)
≤ ⋯

≤ e−ckhEρ((ĝ0, ξ̂0), (g̃0, ξ̃0)), (g̃0, ξ̃0)) +
k

∑
i=0
e−cihE(h)

≤ e−ckhEρ((ĝ0, ξ̂0), (g̃0, ξ̃0)), (g̃0, ξ̃0)) +
E(h)

1 − exp(−ch)

Proof [Proof of Thm. 15] Let Law(ĝ0, ξ̂0) follows the target distribution and (ĝt, ξ̂t) is
the solution of the sampling dynamics (4). As a result, Law(ĝt, ξ̂t) ∼ ν∗,∀t. We make
(ĝ0, ξ̂0) and (g̃0, ξ̃0) are paired in the optimal way under ρ, i.e., Eρ((ĝ0, ξ̂0), (g̃0, ξ̃0)) =
Wρ(Law(ĝ0, ξ̂0),Law(g̃0, ξ̃0)).

Cor. 14 gives

Wρ(ν̃k, ν∗)
Wρ(Law(ĝk, ξ̂k),Law(g̃k, ξ̃k))
≤ Eρ((ĝkh, ξ̂kh), (g̃k, ξ̃k))

≤ e−ckhEρ((ĝ0, ξ̂0), (g̃0, ξ̃0)) +
E(h)

1 − exp(−ch)

= e−ckhWρ(Law(ĝ0, ξ̂0),Law(g̃0, ξ̃0)) +
E(h)

1 − exp(−ch)

Proof [Proof of Thm. 16] This is a direct corollary of Lemma 39 and Thm. 15.
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