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Abstract
We study the complexity of sampling from the stationary distribution of a mean-field SDE, or
equivalently, the complexity of minimizing a functional over the space of probability measures
which includes an interaction term. Our main insight is to decouple the two key aspects of this
problem: (1) approximation of the mean-field SDE via a finite-particle system, via uniform-in-
time propagation of chaos, and (2) sampling from the finite-particle stationary distribution, via
standard log-concave samplers. Our approach is conceptually simpler and its flexibility allows for
incorporating the state-of-the-art for both algorithms and theory. This leads to improved guarantees
in numerous settings, including better guarantees for optimizing certain two-layer neural networks in
the mean-field regime. A key technical contribution is to establish a new uniform-in-N log-Sobolev
inequality for the stationary distribution of the mean-field Langevin dynamics.

1. Introduction

The minimization of energy functionals E over the Wasserstein space P2,ac(Rd) of probability mea-
sures has attracted substantial research activity in recent years, encompassing numerous application
domains, including distributionally robust optimization (Kuhn et al., 2019; Yue et al., 2022), sam-
pling (Jordan et al., 1998; Wibisono, 2018; Chewi, 2024), and variational inference (Liu and Wang,
2016; Lambert et al., 2022; Diao et al., 2023; Jiang et al., 2023; Lacker, 2023a; Yao and Yang, 2023).

A canonical example of such a functional is E(µ) =
∫
V dµ+

∫
logµdµ, where V : Rd → R

is called the potential. Up to an additive constant, which is irrelevant for the optimization, this
energy functional equals the KL divergence KL(µ ∥ π) with respect to the density π ∝ exp(−V ),
and the celebrated result of Jordan et al. (1998) identifies the Wasserstein gradient flow of E with the
Langevin diffusion. This link has inspired a well-developed theory for log-concave sampling, with
applications to Bayesian inference and randomized algorithms; see Chewi (2024) for an exposition.

The energy functional above contains two terms, corresponding to two of the fundamental
examples of functionals considered in Villani’s well-known treatise on optimal transport (Villani,
2003). Namely, they are the “potential energy” and the entropy, the latter being a special case of
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the “internal energy.” However, Villani identifies a third fundamental functional—the “interaction
energy”—with the pairwise form given by

E(µ) :=
∫

V (x)µ(dx) +

∫∫
W (x− y)µ(dx)µ(dy) +

σ2

2

∫
logµ(x)µ(dx) . (pE)

More generally, in this work we consider minimizing the generic entropy-regularized energy

E(µ) := F(µ) + σ2

2

∫
logµdµ (gE)

where F : P2,ac(Rd)→ R is a known functional. The minimization of the energy (gE) has recently
been of interest due to its role in analysing neural network training dynamics in the mean-field
regime, including with (Suzuki et al., 2022) and without (Chizat and Bach, 2018; Mei et al., 2018)
entropic regularization, as well as with Fisher regularization (Claisse et al., 2023).

For the sake of exposition, let us first focus on minimizing the pairwise energy (pE). A priori,
this question is more difficult than log-concave sampling; for instance, π does not admit a closed
form but rather is the solution to a non-linear equation

π(x) ∝ exp
(
− 2

σ2
V (x)− 2

σ2

∫
W (x− ·) dπ

)
. (1.1)

However, here too there is a well-developed mathematical theory which suggests a principled
algorithmic approach. Just as the Wasserstein gradient flow of (pE) in the case when W = 0 can
be identified with the Langevin diffusion, the Wasserstein gradient flow of (pE) in the case when
W ̸= 0 corresponds to a (pairwise) McKean–Vlasov SDE, i.e. an SDE whose coefficients depend on
the marginal law of the process, given below as

dXt = −
(
∇V (Xt) +

∫
∇W (Xt − ·) dπt

)
dt+ σ dBt , (pMV)

where πt = law(Xt), W is even, and {Bt}t≥0 is a standard Brownian motion on Rd. Since the
McKean–Vlasov SDE is the so-called mean-field limit of interacting particle systems, we can
approximately sample from the minimizer π by numerically discretizing a system of SDEs, which
describe the evolution of N particles{X1:N

t }t≥0 := {(X1
t , . . . , X

N
t )}t≥0 as:

dXi
t = −

(
∇V (Xi

t) +
1

N − 1

∑
j∈[N ]\i

∇W (Xi
t −Xj

t )
)
dt+ σ dBi

t , ∀ i ∈ [N ] , (pMVN )

where {Bi : i ∈ [N ]} is a collection of independent Brownian motions. Moreover, the error from
approximating the mean-field limit via this finite particle system has been studied in the literature on
propagation of chaos (Sznitman, 1991). Similarly, the Wasserstein gradient flow for (gE) corresponds
to the mean-field Langevin dynamics and admits an analogous particle approximation.

The bounds for propagation of chaos have been refined over time, with Lacker and Le Flem
(2023) recently establishing a tight error dependence O(1/N) on the total number of particles N .
These bounds, however, do not translate immediately into algorithmic guarantees. Existing sampling
analyses study the propagation of chaos and discretization as a single entangled problem, which thus
far have only been able to use weaker O(

√
1/N) rates for the former. Furthermore, there has been
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recent interest in using more sophisticated particle-based algorithms, e.g., “non-linear” Hamiltonian
Monte Carlo (Bou-Rabee and Schuh, 2023) and the mean-field underdamped Langevin dynamics (Fu
and Wilson, 2023) to reduce the discretization error. Currently, this requires repeatedly carrying out
the propagation of chaos and time discretization analyses from the ground up for each instance.

This motivates us to pose the following questions: (1) Can we incorporate improvements in the
propagation of chaos literature, such as the O(1/N) error dependence shown in Lacker and Le Flem
(2023), to improve existing theoretical guarantees? (2) Can we leverage recent advances in the theory
of log-concave sampling to design better algorithms?

Our main proposal in this work is to decouple the error into two terms, representing the propaga-
tion of chaos and discretization errors respectively. This simple and modular approach immediately
allows us to answer both questions in the affirmative. Namely, we show how to combine established
propagation of chaos bounds in various settings (including the sharp rate of Lacker and Le Flem,
2023) with a large class of sophisticated off-the-shelf log-concave samplers, such as interacting
versions of the randomized midpoint discretization of the underdamped Langevin dynamics (Shen
and Lee, 2019; He et al., 2020), Metropolis-adjusted algorithms (Chewi et al., 2021; Wu et al., 2022;
Altschuler and Chewi, 2023), and the proximal sampler (Lee et al., 2021; Chen et al., 2022b; Fan
et al., 2023). Our framework yields improvements upon prior state-of-the-art, such as Bou-Rabee
and Schuh (2023); Fu and Wilson (2023), and provides a clear path for future ones.

1.1. Contributions and Organization

Propagation of chaos at stationarity. We provide three propagation of chaos results which hold
in theW2,

√
KL, and

√
FI “metrics”; the rates reflect the distance of the k-particle marginal of the

finite-particle system from π⊗k: (1) In the setting of (pE), under strong displacement convexity, we
obtain a O(

√
k/N) rate by adapting techniques from Sznitman (1991); Malrieu (2001); (2) without

assuming displacement convexity, but assuming a weaker interaction, we obtain the sharp rate of
Õ(k/N) following Lacker and Le Flem (2023); (3) finally, in the general setting of (gE), and assuming
F is convex along linear interpolations, we obtain a O(

√
k/N) rate following Chen et al. (2022a).

Unlike prior works, our proofs are carried out at stationarity; thus, our proofs are self-contained,
streamlined, and include various improvements (e.g., weaker assumptions and explicit bounds). As a
result, our work also serves as a helpful exposition to the mathematics of propagation of chaos.

Discretization. Once the error due to particle approximation is controlled, we then obtain improved
complexity guarantees by applying recent advances in the theory of log-concave sampling to the
finite-particle stationary distribution. See Table 1 for a summary of our results, and the discussion in
§4 for comparisons with prior works and an application to neural network training.

Once again, the importance of our framework is its modularity, which allows for any combination
of uniform-in-time propagation of chaos bounds and log-concave sampler, provided that the finite-
particle stationary distribution satisfies certain isoperimetric properties needed for the sampling
guarantees. Toward this end, we also provide tools for verifying these isoperimetric properties with
constants that hold independently of the number of particles (see §3.2.1).

1.2. Related Work

Mean-field equations. The McKean–Vlasov SDE was first formulated in the works McKean
(1966); Funaki (1984); Méléard (1996), with origins dating to much earlier (Boltzmann, 1872). It has
applications in many domains, from fluid dynamics (Villani, 2002) to game theory (Lasry and Lions,
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2007; Carmona and Delarue, 2018); see Chaintron and Diez (2022a,b) for a comprehensive survey.
The kinetic version of this equation is known as the Boltzmann equation, and propagation of chaos
has similarly been studied under a variety of assumptions (Bolley et al., 2010; Monmarché, 2017;
Guillin and Monmarché, 2021; Guillin et al., 2022). One prominent application within machine
learning is the study of infinitely wide two-layer neural networks in the mean-field regime (see §4.2).

Propagation of chaos and sampling for (pE). The original propagation of chaos arguments of
Sznitman (1991) were first made uniform in time in Malrieu (2001, 2003) in both entropy andW2.
The aforementioned works all achieve an error of order Õ(

√
k/N), and require a strong convexity

assumption on V and W . These were later adapted for non-smooth potentials (Jabin and Wang, 2017,
2018; Bresch et al., 2023). Finally, Chen et al. (2022a) obtained an entropic propagation of chaos
bound under a higher-order smoothness assumption. See Chaintron and Diez (2022a) for a more
complete bibliography.

The breakthrough result of Lacker (2023b) obtained the sharp bound of Õ(k/N) when the
interaction is sufficiently weak, and this bound was made uniform in time in Lacker and Le Flem
(2023). Their approach differs significantly from previous proofs by considering a local analysis
based on the recursive BBGKY hierarchy. These results have been extended to other divergences,
e.g., the χ2 divergence, but without a uniform-in-time guarantee (Hess-Childs and Rowan, 2023). In
addition, Monmarché et al. (2024) showed an extension of this result under a “convexity at infinity”
assumption.

The question of sampling from minimizers of (pE) was first studied in Talay (1996); Bossy and
Talay (1997); Antonelli and Kohatsu-Higa (2002). These works focused on the Euler–Maruyama
discretization of the finite-particle system (pMVN ), under L∞-boundedness of the gradients. Subse-
quently, the convergence of the Euler–Maruyama scheme has been studied in many works, including
but not limited to Bao and Huang (2022); dos Reis et al. (2022); Li et al. (2023). The strategy of
disentangling finite particle error from time discretization also appears in Karimi Jaghargh et al.
(2024), which approaches the problem from the perspective of stochastic approximation. This work,
however, is not focused on obtaining quantitative guarantees. Finally, Bou-Rabee and Schuh (2023)
considered a non-linear version of Hamiltonian Monte Carlo; we give a detailed comparison with
their work in §4.

Propagation of chaos and sampling for (gE). The mean-field (underdamped) Langevin algorithm
for minimizing (gE) was proposed and studied in Chen et al. (2022a, 2024). Under alternative
assumptions (see §3.1.2), they established propagation of chaos with a O(

√
k/N) rate, for both the

overdamped and the underdamped finite-particle approximations. Recent works from the machine
learning community (Nitanda et al., 2022; Suzuki et al., 2022; Fu and Wilson, 2023; Suzuki et al.,
2023) studied the application of these algorithms for optimizing two-layer neural networks and
obtained sampling guarantees. We provide a detailed comparison with their works in §4.2.

2. Background and Notation

Let P2,ac(Rd) be the set of probability measures on Rd that admit a density with respect to the
Lebesgue measure and have finite second moment. We will also abuse notation and use the same
symbol for a measure and its density when there is no confusion. We use superscripts for the particle
index, and subscripts for the time variable. We will use O, Õ to signify upper bounds up to numeric
constants and polylogarithms respectively. We recall the definitions of convexity and smoothness:
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Definition 1 A function U : Rd → R is α-uniformly convex (allowing for α ≤ 0) and β-smooth if
the following hold respectively

⟨∇U(x)−∇U(y), x− y⟩ ≥ α ∥x− y∥2 for all x, y ∈ Rd ,

∥∇U(x)−∇U(y)∥ ≤ β ∥x− y∥ for all x, y ∈ Rd .

For two probability measures µ, ν ∈ P2,ac(Rd), we define the KL divergence and the (relative)
Fisher information by

KL(µ ∥ ν) := Eµ

[
log

µ

ν

]
and FI(µ ∥ ν) := Eµ

[∥∥∇ log
µ

ν

∥∥2] ,
with the convention KL(µ ∥ ν) = FI(µ ∥ ν) =∞ whenever µ ̸≪ ν.

We recall the definition of the log-Sobolev inequality, which is used both for propagation of
chaos arguments as well as mixing time bounds.

Definition 2 (Log-Sobolev Inequality) A measure π satisfies a log-Sobolev inequality with param-
eter CLSI if for all µ ∈ P2,ac(Rd),

KL(µ ∥ π) ≤ CLSI

2
FI(µ ∥ π) . (LSI)

When log(1/π) is α-uniformly convex for α > 0, it follows from the Bakry–Émery condition
that π satisfies (LSI) with constant CLSI ≤ 1/α (Bakry et al., 2014, Proposition 5.7.1).

We can also define the p-Wasserstein distanceWp(µ, π), p ≥ 1, between µ, π as

Wp
p (µ, π) = inf

γ∈Γ(µ,π)

∫
∥x− y∥p γ(dx,dy),

where Γ(µ, π) is the set of all joint probability measures on Rd×Rd with marginals µ, π respectively.
Lastly, we recall that the celebrated Otto calculus interprets the space P2,ac(Rd), equipped with

theW2 metric, as a formal Riemannian manifold (Otto, 2001). In particular, the Wasserstein gradient
of a functional L : P2,ac(Rd)→ R ∪ {∞} is given as ∇W2L = ∇δL. Here, δL is the first variation
defined as follows: for all ν0, ν1 ∈ P2,ac(Rd), δL(ν0) : Rd → R satisfies

lim
t↘0

L((1− t) ν0 + t ν1)− L(ν0)
t

= ⟨δL(ν0), ν1 − ν0⟩ :=
∫

δL(ν0) d(ν1 − ν0) .

The first variation is defined up to an additive constant, but the Wasserstein gradient is unambiguous.
See Ambrosio et al. (2008) for a rigorous development. As a shorthand, we will write δL(ν0, x) :=
δL(ν0)(x) and similarly∇W2L(ν0, x) := ∇W2L(ν0)(x).

2.1. SDE Systems and Their Stationary Distributions

2.1.1. THE PAIRWISE MCKEAN–VLASOV SETTING

In the formalism introduced in the previous section, we note that (pMV) can be interpreted as
Wasserstein gradient flow for (pE). In this paper, we refer to (pMV) as the pairwise McKean–Vlasov
process. As noted in the introduction, it has the stationary distribution (1.1) which minimizes (pE).
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Recall also that the equation (pMV) is the mean-field limit of the finite-particle system (pMVN ).
This N -particle system has the following stationary distribution: for x1:N = [x1, . . . , xN ] ∈ Rd×N ,

µ1:N (x1:N ) ∝ exp
(
− 2

σ2

∑
i∈[N ]

V (xi)− 1

σ2 (N − 1)

∑
i∈[N ]

∑
j∈[N ]\i

W (xi − xj)
)
. (2.1)

The system (pMVN ) can be viewed as an approximation to (pMV), with the expectation term in the
drift replaced by an empirical average. Note that the measure µ1:N is exchangeable.1 While the
standard approach is to apply an Euler–Maruyama discretization to (pMVN ) in order to sample from
(pMV), our perspective is to write more sophisticated samplers for µ1:N directly. Indeed, unlike (1.1),
the finite-particle stationary distribution (2.1) is explicit and amenable to sampling methods.

2.1.2. THE GENERAL MCKEAN–VLASOV SETTING

More generally, we consider the functional (gE) where F is of the form F(µ) = F0(µ)+
λ
2

∫
∥·∥2 dµ

with λ ≥ 0. The second term acts as regularization and is common in the literature (Fu and Wilson,
2023; Suzuki et al., 2023). We can describe its Wasserstein gradient flow as the marginal law of a
particle trajectory satisfying the following SDE, which we call the general McKean–Vlasov equation:

dXt = {−∇W2F0(πt, Xt)− λXt} dt+ σ dBt , (gMV)

where πt = law(Xt), and {Bt}t≥0 is a standard Brownian motion on Rd. The stationary distribution
π of (gMV), and its linearization πµ around a measure µ ∈ P2,ac(Rd), satisfy the following equations:

π(x) ∝ exp
(
− 2

σ2
δF0(π, x)−

λ ∥x∥2

σ2

)
and πµ(x) ∝ exp

(
− 2

σ2
δF0(µ, x)−

λ ∥x∥2

σ2

)
. (2.2)

The latter is called the proximal Gibbs distribution with respect to µ. The general dynamics
corresponds to the mean-field limit of the following finite-particle system described by an N -tuple of
stochastic processes {X1:N

t }t≥0 := {(X1
t , . . . , X

N
t )}t≥0:

dXi
t = {−∇W2F0(ρX1:N

t
, Xi

t)− λXi
t} dt+ σ dBi

t , (gMVN )

and ρx1:N = 1
N

∑N
i=1 δxi is the empirical measure of the particle system. The stationary distribution

for (gMVN ) is given as follows (Chen et al., 2022a, (2.16)): for x1:N = [x1, . . . , xN ] ∈ Rd×N ,

µ1:N (x1:N ) ∝ exp
(
−2N

σ2
F0(ρx1:N )−

λ

σ2
∥x1:N∥2

)
. (2.3)

One can show that ∇xiF0(ρx1:N ) = 1
N ∇W2F0(ρx1:N , xi), and hence (gMVN ) is simply the

Langevin diffusion corresponding to stationary measure (2.3). Moreover, when λ = 0 and choosing
F0(µ) =

∫
V (x)µ(dx) +

∫∫
W (x − y)µ(dx)µ(dy), then the equations (gMV), (2.2), (gMVN ),

and (2.3) reduce to (pMV), (1.1), (pMVN ), and (2.1), respectively.

1. Exchangeability refers to the property that the law of [x1, . . . , xN ] equals the law of [xσ(1), . . . , xσ(N)] for any
permutation σ of {1, . . . , N}.
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3. Technical Ingredients

Our general approach for sampling from the stationary distribution π in either (1.1) or (2.2) is
to directly apply an off-the-shelf sampler for the finite-particle stationary distribution µ1:N . The
theoretical guarantees for this procedure require two main ingredients: (1) control of the “bias”—i.e.
the error incurred by approximating π by the 1-particle marginal of µ1:N—and (2) verification of
isoperimetric properties which allow for fast sampling from the measure µ1:N .

3.1. Bias Control via Uniform-in-Time Propagation of Chaos

In this section, we focus on the first ingredient, namely, obtaining control of the bias via uniform-in-
time propagation of chaos results. Proofs for this section are given in §A.

3.1.1. PAIRWISE MCKEAN–VLASOV SETTING

We first consider the pairwise McKean–Vlasov setting described in §2.1.1. Our first propagation of
chaos result uses the following three assumptions.

Assumption 1 The potentials V,W are βV , βW -smooth respectively.

Assumption 2 The distribution π satisfies (LSI) with parameter CLSI(π).

Assumption 3 The ratio ρ := σ4/8β2
WC2

LSI(π) is at least 3.

Remark 3 Note that from (1.1), we typically would expect C2
LSI(π) to also scale as σ4 (e.g., in

the case when V and W are α-uniformly convex for α > 0). Therefore, Assumption 3 is typically
invariant to the scaling of σ and can be satisfied even for σ ↘ 0.

Under these assumptions, we obtain a sharp propagation of chaos result via a similar argument
as Lacker (2022); Lacker and Le Flem (2023). We note that the former is more permissive regarding
the constant in Assumption 3 as compared to this work.

Theorem 4 (Sharp Propagation of Chaos) Under Assumptions 1, 2 and 3, for any N ≥ 100 and
k ∈ [N ], it holds that KL(µ1:k ∥ π⊗k) = Õ(dk2/N2). Thus, KL(µ1:k ∥ π⊗k) < ε2 if

N ≥ 100 ∨ Ω̃
(
k
√
d ε−1

)
. (3.1)

We note that the rate in Theorem 4 is sharp; see the Gaussian case in Example 1. A condition such
as Assumption 3 is in general necessary, since otherwise the minimizer of (pE) may not even be
unique (see the example and discussion in Lacker and Le Flem, 2023). However, it can be restrictive,
as it requires the interaction to be sufficiently weak. With the following convexity assumption, we
can obtain a propagation of chaos result without Assumption 3.

Assumption 4 The potentials V,W are αV , αW -uniformly convex with αV + α−
W > 0. Here,

α−
W := αW ∧ 0 denotes the negative part of αW .

The following weaker result consists of two parts. The first, a Wasserstein propagation of chaos
result, is based on Sznitman (1991). The second, building on the first, is a uniform-in-time entropic
propagation of chaos bound following from a Fisher information bound. The arguments are similar
to those in Malrieu (2001, 2003), albeit simplified (since we work at stationarity) and presented here
with explicit constants.
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Theorem 5 (Weak Propagation of Chaos) Under Assumptions 1 and 4, for any N ≥ αV −α−
W

αV +α−
W

∨2,
if we denote α := αV + α−

W , then

W2
2 (µ

1:k, π⊗k) ≤
4β2

Wσ2d

α3

k

N
, (3.2)

KL(µ1:k ∥ π⊗k) ≤ σ2

4α
FI(µ1:k ∥ π⊗k) ≤

132β2
W (βV + βW )2 d

α4

k

N
. (3.3)

3.1.2. GENERAL MCKEAN–VLASOV SETTING

In the more general case where we aim to minimize (gE) for a generic functional F of the form
F(µ) = F0(µ) +

λ
2

∫
∥·∥2 dµ, we impose the following assumptions. They can be largely seen as

generalizations of the conditions for the pairwise case, and they are inherited from Chen et al. (2022a);
Suzuki et al. (2023). There is an additional convexity condition (Assumption 5), which in the pairwise
McKean–Vlasov setting amounts to positive semidefiniteness of the kernel (x, y) 7→W (x− y) on
Rd × Rd; thus, in general, the following assumptions are incomparable with the ones in §3.1.1.

Assumption 5 The functional F0 is convex in the usual sense. For all ν0, ν1 ∈ P2,ac(Rd), t ∈ [0, 1],

F0((1− t) ν0 + t ν1) ≤ (1− t)F0(ν0) + tF0(ν1) .

Assumption 6 The functional F0 is smooth in the sense that for all x, y ∈ Rd, ν, ν ′ ∈ P2,ac(Rd),
there is a uniform constant β such that

∥∇W2F0(ν, x)−∇W2F0(ν
′, y)∥ ≤ β (∥x− y∥+W1(ν, ν

′)) .

Assumption 7 The proximal Gibbs measures satisfy (LSI) with a uniform constant: namely, it holds
that CLSI(π) ∨ supµ∈P2(Rd)CLSI(πµ) ≤ CLSI.

Remark 6 These assumptions taken together cover settings not covered in the preceding sections,
including optimization of two-layer neural networks. See Chen et al. (2022a, Remark 3.1) and §4.2.

Under these assumptions, we can derive an entropic propagation of chaos bound by following
the proof of Chen et al. (2022a). Through a tighter analysis, we are able to reduce the dependence on
the condition number κ := CLSIβ/σ

2 from κ2 to κ.

Theorem 7 (Propagation of Chaos for General Functionals) Under Assumptions 5, 6, and 7, for
N ≥ 160βCLSI/σ2, we have

1

2CLSI

W2
2 (µ

1:k, π⊗k) ≤ KL(µ1:k ∥ π⊗k) ≤ 33βCLSIdk

σ2N
.

Among these assumptions, the hardest to verify is the uniform LSI of Assumption 7. Fol-
lowing Suzuki et al. (2023), we introduce the following sufficient condition for the validity of
Assumption 7; see Lemma 20 for a more precise statement.

Assumption 8 There exists a uniform bound on the Wasserstein gradient of the interaction term
F0: for some constant B <∞ and all µ ∈ P2,ac(Rd), x ∈ Rd, ∥∇W2F0(µ, x)∥ ≤ B .

Lemma 8 (Informal) Assumptions 6 and 8 imply Assumption 7 with an explicit constant CLSI,
given in terms of B, β, λ, and σ.
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3.2. Isoperimetric Properties of the Stationary Distributions

In this section, we verify the isoperimetric properties of π, µ1:N in the (pMV) setting, with proofs
provided in §B.

3.2.1. PAIRWISE MCKEAN–VLASOV SETTING

If V , W satisfy Assumptions 1 and 4 (i.e. V and W have bounded Hessians), then the potential
for (1.1), i.e. log(1/π), is 2

σ2 (αV + αW )-convex and 2
σ2 (βV + βW )-smooth. By the Bakry–Émery

condition, π satisfies (LSI) with parameter CLSI(π) ≤ σ2/2 (αV +αW ).
Similarly, for the invariant measure µ1:N in (2.1), we can prove the following.

Lemma 9 If V and W satisfy Assumption 1, then log(1/µ1:N ) is 2
σ2 (βV + N

N−1 βW )-smooth.
If V and W satisfy Assumption 4, then log(1/µ1:N ) is 2

σ2 (αV + N
N−1 α

−
W )-convex.2

We now consider the non-log-concave case. It is standard in the sampling literature that the
assumption of (LSI) for the stationary distribution yields mixing time guarantees. Since our strategy
is to sample from (2.1), we therefore seek an LSI for µ1:N , formalized as the following assumption.

Assumption 9 The distribution µ1:N satisfies (LSI) with parameter CLSI(µ
1:N ).

In this section, we provide an easily verifiable condition, combining a Holley–Stroock condi-
tion (Holley and Stroock, 1987) with a weak interaction condition, for this assumption to hold with
an N -independent constant.

Assumption 10 The potentials V and W can be decomposed as V = V0 + V1 and W = W0 +W1

such V0, W0 satisfy Assumption 4 and osc(V1), osc(W1) <∞, where for a function U : Rd → R we
define osc(U) := supU − inf U . Furthermore, the following weak interaction condition holds:

σ2

βWCLSI

≥
√
6 , where CLSI :=

σ2

αV0 +
N

N−1 α
−
W0

exp
( 2

σ2

(
osc(V1) + osc(W1)

))
.

A careful application of the Holley–Stroock perturbation principle yields the following lemma.

Lemma 10 Under Assumption 10, π, µ1:N satisfy (LSI) with parameters

CLSI(π) ≤
σ2

2 (αV0 + αW0)
exp

( 2

σ2

(
osc(V1) + osc(W1)

))
≤ 1

2
CLSI , (3.4)

CLSI(µ
1:N ) ≤ CLSI .

In particular, Assumption 3 holds.

2. Only the negative part of αW contributes to the strong log-concavity of µ1:N . This is consistent with Villani (2003,
Theorem 5.15), which asserts that when αW > 0, the interaction energy µ 7→

∫∫
W (x − y)µ(dx)µ(dy) is αW -

strongly displacement convex over the subspace of probability measures with fixed mean, but only weakly convex over
the full Wasserstein space.
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3.2.2. GENERAL MCKEAN–VLASOV SETTING

In the setting (gE) with F(µ) = F0(µ) +
λ
2

∫
∥·∥2 dµ, we verify that Assumption 8 yields (LSI) for

π. See Corollary 23 for a more precise statement.

Lemma 11 (Informal) In the mean-field Langevin setting of §2.1.2, suppose that Assumption 8
holds. Then, Assumption 9 holds with CLSI(µ

1:N ) depending on d, B, β, λ, and σ, but not on N .

Obtaining Lemma 11 is not straightforward, and we rely on a novel argument combining heat
flow estimates from Brigati and Pedrotti (2024) with a generalized version of the propagation of
chaos result in Theorem 7; see §B.3 for details.

4. Sampling from the Mean-Field Target

In this section, we present results for sampling from π. As outlined in Algorithm 1, we use off-the-
shelf log-concave samplers to sample from µ1:N , during which we access the first-order3 oracle
for µ1:N (i.e. an oracle for evaluation of logµ1:N up to an additive constant, and for evaluation
of ∇ logµ1:N ). For N sufficiently large, the first particle given by Algorithm 1 is approximately
distributed according to π: for µ̂1:N the law of the output of the log-concave sampler and its 1-particle
marginal distribution µ̂1,

W2(µ̂
1, π) ≤ W2(µ̂

1, µ1) +W2(µ
1, π) ≤

√
1

N
W2(µ̂

1:N , µ1:N ) +W2(µ
1, π) ,

where the inequality follows from exchangeability (Lemma 25). A similar decomposition also holds
for KL, although the argument is more technical. We defer its presentation to §E.

Algorithm 1 Sampling from the Mean-Field Stationary Distribution
Input: the number N of total particles, a log-concave sampler LC-Sampler
Output: k particles X̂1:k

1: Sample X̂1:N ∼ µ̂1:N via LC-Sampler, so that µ̂1:N ≈ µ1:N , e.g., inW2 or
√
KL.

2: Output the first k particles X̂1:k.

To bound the second term by ε, it suffices to choose N according to the propagation of chaos
results in §3.1. Our results are summarized in Table 1, in which we record the total number of oracle
calls M for µ1:N made by the sampler M and the number of particles N needed to achieve ε
error in the desired metric, hiding polylogarithmic factors. Note that in the pairwise McKean–Vlasov
setting, each oracle call to µ1:N requires N calls to an oracle for V , and

(
N
2

)
calls to an oracle for W .

The algorithms in the table refer to: Langevin Monte Carlo (LMC); underdamped Langevin
Monte Carlo (ULMC); discretizations of the underdamped Langevin diffusion via the randomized
midpoint method (Shen and Lee, 2019) or the shifted ODE method (Foster et al., 2021) (ULMC+);
and implementation of the proximal sampler (Lee et al., 2021; Chen et al., 2022b) via the Metropolis-
adjusted Langevin algorithm or via ULMC (MALA–PS and ULMC–PS respectively). Note that
LMC applied to sample from µ1:N is simply the Euler–Maruyama discretization of (pMVN ), and
likewise ULMC is the algorithm considered in Fu and Wilson (2023). We refer to §E for proofs and
references.

3. For our results involving the proximal sampler, we also assume access to a proximal oracle for simplicity.
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Algorithm “Metric” Assumptions M N

LMC
√
α/σW2 1, 2, 3, 9

κ2d/ε2

d1/2/εMALA–PS κd3/4/ε1/2

ULMC–PS κ3/2d1/2/ε

ULMC+ √
α/σW2 1, 3, 4 κd1/3/ε2/3 d1/2/ε

LMC √
KL

1, 4

κ2d/ε2
κ4d/ε2

ULMC κ3/2d1/2/ε
LMC √

α/σW2
κd/ε2

κ2d/ε2
ULMC+ κd1/3/ε2/3

LMC √
KL 5, 6, 7, 9

κ2d/ε2
κd/ε2

ULMC–PS κ3/2d1/2/ε

Table 1: In this table, we record M , the total number of oracle queries to logµ1:N made by the log-concave
sampler, and N , the number of particles.

To streamline the rates, we simplify the notation by defining β = βV + βW if Assumption 1
holds, otherwise we use the value from Assumption 6. We let α = αV + α−

W under Assumption 4,
α = σ2/2max{CLSI(µ

1:N ),CLSI(π)} under Assumptions 2 and 9, and α = σ2/2max{CLSI(µ
1:N ),CLSI} in the

general McKean–Vlasov setting.
Finally, we let κ := β/α denote the condition number. We briefly justify this terminology.

If the target and all proximal Gibbs measures are strongly convex with parameter α/σ2, then the
Bakry–Émery condition implies that CLSI ≤ σ2

α . Hence, the scale-invariant ratio CLSIβ/σ
2 reduces

to the classical condition number β/α, the ratio of the largest to smallest eigenvalues of the Hessian
matrices for V and W . Therefore, CLSIβ/σ

2 is a generalization of the condition number to settings
beyond uniform strong convexity which allows us to state more interpretable bounds. The additional
assumption κ ≤

√
d/ε will be used to simplify some of the rates.

In the following subsections, we discuss some of the results in greater detail.

4.1. Pairwise McKean–Vlasov Setting

Example 1 (Gaussian Case) Consider a quadratic confinement and interaction,

V (x) =
1

2
xTAx =

1

2
∥x∥2A , W (x) =

λ

2
∥x∥2 ,

for some matrix A ∈ Rd×d with A ≻ 0, λ ≥ 0. The resulting stationary distributions can be
calculated explicitly to be Gaussians. We show in §C that for large N , KL(µ1:k ∥ π⊗k) = Θ̃(dk2/N2 ).
This shows that the rate in Theorem 4 is sharp.

Example 2 (Strongly Convex Case) Consider the strongly convex case where α = αV +α−
W > 0.

The prior work Bou-Rabee and Schuh (2023) also considered the problem of sampling from the
mean-field stationary distribution π, with σ2 = 2. If we count the number of calls to a gradient
oracle for V , their complexity bound reads Õ(κ5/3d4/3/ε8/3) to achieve

√
α/σW1(µ̂

1, π) ≤ ε. We
note that their assumptions are not strictly comparable to ours. They require the interaction W to be

11
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sufficiently weak, in the sense that βW ≲ α, which is similar4 to our Assumption 3; on the other
hand, they only assume αV > 0, rather than αV + α−

W > 0. Nevertheless, we attempt to make some
comparisons with their work below.

Without Assumption 3, ULMC+ achieves
√
α/σW2(µ̂

1, π) ≤ ε with complexity Õ(κ3d4/3/ε8/3),
which matches the guarantee of Bou-Rabee and Schuh (2023) up to the dependence on κ. We can
also obtain guarantees in

√
KL, at the cost of an extra factor of κ2.

With Assumption 3, MALA–PS has complexity Õ(κd5/4/ε3/2) and ULMC+ has complexity
Õ(κd5/6/ε5/3), which improve substantially upon Bou-Rabee and Schuh (2023).

To summarize, in the strongly convex case, we have obtained numerous improvements: (i) we
can obtain results even without the weak interaction condition (Assumption 3); (ii) when we assume
the weak interaction condition, we obtain improved complexities; (iii) our results hold in stronger
metrics; (iv) our approach is generic, allowing for the consideration of numerous different samplers
without needing to establish new propagation of chaos results (by way of comparison, Bou-Rabee and
Schuh (2023) developed a tailored propagation of chaos argument for their non-linear Hamiltonian
Monte Carlo algorithm).

Example 3 (Bounded Perturbations) Both the results of Bou-Rabee and Schuh (2023) as well as
our own allow for non-convex potentials, albeit under different assumptions—Bou-Rabee and Schuh
(2023) require strong convexity at infinity, whereas we require (LSI) for the stationary measures
µ1:N and π. In order to obtain sampling guarantees with low complexity, it is important for the LSI
constant of µ1:N to be independent of N . We have provided a sufficient condition for this to hold: V
and W are bounded perturbations of V0 and W0 respectively, where αV0 + α−

W0
> 0; see Lemma 10.

We also note that in this setting, both of our works require a weak interaction condition. This is
in general necessary in order to ensure uniqueness of the mean-field stationary distribution, see the
discussion in §3.1.1.

4.2. General McKean–Vlasov Setting

Example 4 (General Functionals) In the general setting, under Assumptions 5, 6, and 7, the work
of Suzuki et al. (2023) provided the first discretization bounds. They impose further assumptions and
their resulting complexity bound is rather complicated, but it reads roughly MN = Õ(poly(κ) d2/ε4)
for the discretization of (gMVN ). Subsequently, Fu and Wilson (2023) obtained an improved
complexity of MN = Õ(κ4d3/2/ε3) via ULMC in the averaged TV distance. In comparison, we
can improve this complexity guarantee to Õ(κ5/2d3/2/ε3), and the guarantee even holds in

√
KL if

we combine ULMC with the proximal sampler. It appears that we gain one factor of
√
κ through

sharper discretization analysis (via Zhang et al. (2023), or via the error analysis of the proximal
sampler in Altschuler and Chewi (2023)), and one factor of κ via a sharper propagation of chaos
result (Theorem 7).

We also note that the result of Fu and Wilson (2023) is based on a kinetic version of the
propagation of chaos argument from Chen et al. (2024), whereas our approach uses the original
“non-kinetic” argument from Chen et al. (2022a) in the form of Theorem 7.

Application to Two-Layer Neural Networks. Let us consider the problem of learning a two-layer
neural network in the mean-field regime. Let fθ : Rd → R be a function parameterized by θ ∈ Rp,

4. See eq. (2.24) therein; note that they have a scaling factor of ε in front of their interaction term, so that our parameter
βW is equivalent to their εL̃.
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and for any probability measure µ over Rp, let fµ :=
∫
fθ µ(dθ). For example, in a standard

two-layer neural network, we take θ = (a,w) ∈ R × Rd and fa,w(x) = aReLU(⟨w, x⟩). When
µ = 1

m

∑m
j=1 δ(aj ,wj) is an empirical measure, then fµ is the function computed by a two-layer

neural network with m hidden neurons. In this formulation, however, we can take µ to be any
probability measure, corresponding to the mean-field limit m→∞ (Chizat and Bach, 2018; Mei
et al., 2018; Chizat, 2022; Rotskoff and Vanden-Eijnden, 2022; Sirignano and Spiliopoulos, 2020).

Given a dataset {(xi, yi)}ni=1 in Rd × R and a loss function ℓ : R× R→ R, we can formulate
neural network training as the problem of minimizing the loss µ 7→

∑n
i=1 ℓ(fµ(xi), yi). To place

this within the general McKean–Vlasov framework, we add two regularization terms: (1) λ
2

∫
∥·∥2 dµ

corresponds to weight decay; and (2) σ2

2

∫
logµdµ is entropic regularization. We are now in the

setting of §2.1.2, with F0(µ) =
∑n

i=1 ℓ(fµ(xi), yi).
To minimize this energy, it is natural to consider the Euler–Maruyama discretization of (gMVN ),

which corresponds to learning the neural network via noisy GD, and was considered in Suzuki et al.
(2023). Recent works Fu and Wilson (2023); Chen et al. (2024) also considered the underdamped
version of (gMV) and its discretization. Under the assumptions common to those works as well as
our own, our results yield improved algorithmic guarantees for this task (see Example 4).

Unfortunately, the assumptions used for the analysis of the general McKean–Vlasov are restrictive
and limit the applicability to neural network training. For example, it suffices for ℓ to be convex
in its first argument (to satisfy Assumption 5), to have two bounded derivatives (w.r.t. its first
argument), and for θ 7→ fθ(xi) to have two bounded derivatives for each xi. The last condition
is satisfied, e.g., for fθ(x) = tanh(⟨θ, x⟩). For a genuinely two-layer example, we can take
fθ(x) = tanh(a) tanh(⟨w, x⟩) for θ = (a,w) ∈ R× Rd. Under these conditions, Assumptions 6
and 8 hold, which in turn furnish log-Sobolev inequalities via Lemmas 8 and 11.

Limitations. However, we note that there is a substantial limitation of our framework when applied
to the mean-field Langevin dynamics. Although we are able to establish a uniform-in-N LSI
for the stationary distribution µ1:N under appropriate assumptions (see Corollary 23 for a precise
statement), the dependence of the LSI constant scales poorly (in fact, doubly exponentially) in the
problem parameters. To fully benefit from the modularity of our approach, it is desirable to obtain a
uniform-in-N LSI with better scaling, and we leave this question open for future research.

5. Conclusion

In this work, we propose a framework for obtaining sampling guarantees for the minimizers of (pE)
and (gE), based on decoupling the problem into (i) particle approximation via propagation of chaos,
and (ii) time-discretization via log-concave sampling theory. Our approach leads to simpler proofs
and improved guarantees compared to previous works, and our results readily benefit from any
improvements in either (i) or (ii).

We conclude by listing some future directions of study. As discussed in §4.2, our uniform-in-N
LSI for the mean-field Langevin dynamics currently scales poorly in the problem parameters, and it
is important to improve it. We also believe there is further room for improvement in the propagation
of chaos results. For example, can the sharp rate in Theorem 4 be extended to stronger metrics such
as Rényi divergences, as well as to situations when the weak interaction condition (Assumption 3)
fails, e.g., in the strongly displacement convex case or in the setting of §3.1.2? For the sampling
guarantees, the prior works Bou-Rabee and Schuh (2023); Suzuki et al. (2023) considered different
settings, such as potentials satisfying convexity at infinity or the use of stochastic gradients; these
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extensions are compatible with our approach and could possibly lead to improvements in these cases,
as well as others. Finally, consider the case where

∫
∇W (Xt − ·) dπt in (pMV) is replaced with a

generic function
∫
bt(Xt, ·) dπt, bt : Rn × Rn → Rn. It would be interesting to extend our analysis

to this setting, as it arises in many applications (Arnaudon and Del Moral, 2020).
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Appendix A. Control of the Finite-Particle Error

In this section, we prove the results in §3.1 on the finite-particle error. We will make extensive use of
the following transport inequality, which arises as a consequence of (LSI).

Lemma 12 (Talagrand’s Transport Inequality, Otto and Villani (2000)) If a measure π satisfies
(LSI) with constant CLSI, then for all measures µ ∈ P2,ac(Rd),

W2
2 (µ, π) ≤ 2CLSI KL(µ ∥ π) . (TI)

A.1. LSI Case

We provide the proof of Theorem 4 under the assumption of (LSI) for the invariant measures of
(pMV) and (pMVN ). This relies on a BBGKY hierarchy based on the arguments of Lacker and
Le Flem (2023).

Recall that µ1:k is the k-particle distribution of the finite-particle system. Explicitly,

logµ1:k(x1:k) = log

∫
exp

(
− 2

σ2

N∑
i=1

V (xi)− 1

σ2 (N − 1)

N∑
i,j=1
i ̸=j

W (xi − xj)
)
dxk+1:N + const.

Using exchangeability, we can then compute the gradient of the potential for this measure as

− σ2

2
∇xi logµ1:k(x1:k)

= ∇V (xi) +
1

N − 1

k∑
j=1
i ̸=j

∇W (xi − xj) +
N − k

N − 1
Eµk+1|1:k(·|x1:k)∇W (xi − ·) .

Let X1:k ∼ µ1:k and introduce the notation

Kk := KL(µ1:k ∥ π⊗k) .

Invoking (LSI) of the mean-field invariant measure (and tensorizing) leads to

Kk ≤
CLSI(π)

2
FI(µ1:k ∥ π⊗k)

=
2CLSI(π)

σ4

k∑
i=1

E
[∥∥∥ 1

N − 1

k∑
j=1
j ̸=i

∇W (Xi −Xj)−
∫
∇W (Xi − ·) dπ

+
N − k

N − 1

∫
∇W (Xi − ·) dµk+1|1:k(· | X1:k)

∥∥∥2]
≤ 4k CLSI(π)

σ4 (N − 1)2
E
[∥∥∥ k∑

j=2

(
∇W (X1 −Xj)−

∫
∇W (X1 − ·) dπ

)∥∥∥2]︸ ︷︷ ︸
A

+
4k CLSI(π) (N − k)2

σ4 (N − 1)2
E
[∥∥∥∫ ∇W (X1 − ·)

(
dµk+1|1:k(· | X1:k)− dπ

)∥∥∥2]︸ ︷︷ ︸
B

,
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where the last line follows from exchangeability and ∥a + b∥2 ≤ 2 (∥a∥2 + ∥b∥2) for vectors
a, b ∈ Rd.

A.1.1. BOUNDING THE ERROR TERMS

We now handle terms A,B separately.

A =

k∑
j=2

E[∥∇W (X1 −Xj)− Eπ∇W (X1 − ·)∥2]

+

k∑
i,j=2
i ̸=j

E
〈
∇W (X1 −Xi)− Eπ∇W (X1 − ·), ∇W (X1 −Xj)− Eπ∇W (X1 − ·)

〉
=
(i)

(k − 1)E[∥∇W (X1 −X2)− Eπ∇W (X1 − ·)∥2]+

+ (k − 1) (k − 2)E
〈
∇W (X1 −X2)− Eπ∇W (X1 − ·),

∇W (X1 −X3)− Eπ∇W (X1 − ·)
〉

≤
(ii)

(k − 1)β2
W E[∥X − Y ∥2]

+ (k − 1)2 E
〈
∇W (X1 −X2)− Eπ∇W (X1 − ·), ∇W (X1 −X3)− Eπ∇W (X1 − ·)

〉
,

where we used the exchangeability of the particles in (i) and the smoothness of W in (ii). Here,
X ∼ µ1 and Y ∼ π are independent.

Let us deal with these two terms separately. For the first term, let Ȳ ∼ π be optimally coupled
with X . Then, by independence and sub-Gaussian concentration (implied by (LSI)),

E[∥X − Y ∥2] ≤ 2E[∥X − Ȳ ∥2] + 2E[∥Y − Ȳ ∥2] = 2W2
2 (µ

1, π) + 4E[∥Y − EY ∥2]
≤ 4CLSI(π)KL(µ

1 ∥ π) + 4dCLSI(π) ≤ 4CLSI(π) (K3 + d) , (A.1)

where the second inequality follows from (TI), and the last one follows from the data-processing
inequality for the KL divergence.

For the second term, the Cauchy–Schwarz inequality leads to

E
〈
∇W (X1 −X2)− Eπ∇W (X1 − ·), ∇W (X1 −X3)− Eπ∇W (X1 − ·)

〉
= E

〈
∇W (X1 −X2)− Eπ∇W (X1 − ·), Eµ3|1:2(·|X1:2)∇W (X1 − ·)− Eπ∇W (X1 − ·)

〉
≤ β2

W

√
E[∥X − Y ∥2]

√
EW2

2

(
µ3|1:2(· | X1:2), π

)
≤
(i)

β2
W

√
4CLSI(π) (K3 + d)

√
2CLSI(π)EKL

(
µ3|1:2(· | X1:2)

∥∥ π
)

≤
(ii)

3β2
WCLSI(π)

√
K3 + d

√
K3 (A.2)

≤ 3β2
WCLSI(π) (K3 + d) ,

where in (i) we applied the bound (A.1) as well as (TI), and in (ii) we used the chain rule for the KL
divergence.
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We return to the analysis of the term B. In a similar way, we obtain

B = E
[∥∥∥∫ ∇W (X1 − ·)

(
dµk+1|1:k(· | X1:k)− dπ

)∥∥∥2] ≤ β2
W EW2

2

(
µk+1|1:k(· | X1:k), π

)
≤ 2β2

WCLSI(π) (Kk+1 − Kk) .

A.1.2. INDUCTION

Putting our bounds on A and B together, we obtain for N ≥ 30,

Kk ≤
30k3β2

WC2
LSI(π)

σ4N2
(K3 + d) +

8kβ2
WC2

LSI(π)

σ4
(Kk+1 − Kk) . (A.3)

In particular, the case of k = N involves our bounds only on A, leading to

KN ≤
30Nβ2

WC2
LSI(π)

σ4
(K3 + d) .

By grouping together the Kk terms in (A.3),

Kk ≤
8kβ2

WC2
LSI(π)/σ

4

1 + 8kβ2
WC2

LSI(π)/σ
4︸ ︷︷ ︸

=:Ck

(
Kk+1 +

(2k
N

)2
(K3 + d)

)
. (A.4)

Iterating this inequality down to k = 3, for ρ := σ4/8β2
WC2

LSI(π),

K3 ≤
(N−1∏

k=3

Ck
) 30Nβ2

WC2
LSI(π)

σ4
(K3 + d) +

N−1∑
k=3

( k∏
ℓ=3

Cℓ
) (2k

N

)2
(K3 + d)

≤
[(N−1∏

k=3

Ck
) 4N

ρ
+

N−1∑
k=3

( k∏
ℓ=3

Cℓ
) (2k

N

)2]
︸ ︷︷ ︸

=:cN

(K3 + d) .

Now we show cN < 1/2, which implies K3 ≤ 2cNd. We require the following lemma.

Lemma 13 For 3 ≤ i ≤ k ≤ N ,

k∏
ℓ=i

Cℓ ≤
( i+ ρ

k + 1 + ρ

)ρ
.

Proof For Cℓ = ℓρ−1

1+ℓρ−1 , we have

C := log
k∏

ℓ=i

Cℓ =
k∑

ℓ=i

log
(
1− 1

1 + ℓρ−1

)
≤ −

k∑
ℓ=i

1

1 + ℓρ−1
.

As the summand is decreasing in ℓ, it follows that

C ≤ −
k∑

ℓ=i

∫ ℓ+1

ℓ

1

1 + xρ−1
dx = −

∫ k+1

i

1

1 + xρ−1
dx = −ρ log k + 1 + ρ

i+ ρ
.
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Therefore,

k∏
ℓ=i

Cℓ = expC ≤
(k + 1 + ρ

i+ ρ

)−ρ
,

which proves the lemma.

Using Lemma 13, we obtain

cN ≤ 4 (3 + ρ)ρ
(N1−ρ

ρ
+

1

N2

N−1∑
k=3

k2−ρ
)
.

Under Assumption 3, i.e. ρ ≥ 3, we may assume ρ = 3 since we can always take a worse bound on
the constants βW so that ρ = 3. As seen shortly, the rate does not improve even if ρ > 3.5 For ρ = 3
and N ≥ 100, we therefore obtain

cN ≤ 864
( 1

3N2
+

1

N2

N−1∑
k=3

1

k

)
≤ 1

2
,

and thus

K3 ≲
d logN

N2
. (A.5)

A.1.3. BOOTSTRAPPING

Substituting the bound (A.5) for K3 into the recursive inequality (A.4), we end up with a suboptimal
rate of Õ(k3/N2) for Kk. To improve the bound, we substitute our established bound (A.5) into
(A.2), which results in an improved recursive inequality. Indeed,

A ≲ kβ2
WC2

LSI(π) (KL3 + d) + k2β2
WCLSI(π)

√
KL3 + d

√
KL3 ≲ dkβ2

WCLSI(π)
√

logN

and therefore

Kk ≤ Õ
(dk2β2

WC2
LSI(π)

σ4N2

)
+

8kβ2
WC2

LSI(π)

σ4
(Kk+1 − Kk) .

For k = N this yields

KN ≤ Õ
(dβ2

WC2
LSI(π)

σ4

)
.

Regrouping Kk as before, we obtain

Kk ≤ Ck
(
Kk+1 + Õ

( dk
N2

))
.

Iterating this down to k = N ,

Kk ≤
(N−1∏

ℓ=k

Cℓ
)
KN +

N−1∑
ℓ=k

( ℓ∏
j=k

Cj
)
Õ
( dℓ

N2

)
5. Alternatively, one can show the bound in Lemma 13 decreases in ρ, so we can just substitute ρ = 3 therein.
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≤
(i)
Õ
( k3

N3

dβ2
WC2

LSI(π)

σ4
+

N−1∑
ℓ=k

k3

ℓ3
dℓ

N2

)
≤
(ii)
Õ
(dk2
N2

)
,

where in (i) we used Lemma 13 with ρ = 3, and (ii) follows from ρ ≥ 3 and
∑

ℓ≥k ℓ
−2 ≤ k−1.

Therefore, for some fixed k it suffices to take N = 100 ∨ Ω̃(k
√
d/ε) to achieve ε2-bias in KL,

completing the proof of Theorem 4.

A.2. Strongly Convex Case

The following propagation of chaos argument for the strongly log-concave case is based on Sznitman
(1991). Let (X1:N

t )t≥0 denote the stochastic process following the finite-particle stochastic differen-
tial equation (pMVN ). Let the corresponding semigroup be denoted (Tt)t≥0, defined as follows. For
any test function f : Rd×N → R,

Ttf(x1:N ) = E[f(X1:N
t ) | X1:N

0 = x1:N ] .

Then, the following simple lemma proves Wasserstein contraction for the finite-particle system.

Lemma 14 Under Assumption 4 and for N ≥ αV −α−
W

αV +(αW )−
, (Tt)t≥0 is a contraction in the 2-

Wasserstein distance with exponential rate at least α/2, where α := αV + α−
W . In other words, for

any measures µ1:N
0 , ν1:N0 in P2(Rd×N ),

W2(µ
1:N
0 Tt, ν1:N0 Tt) ≤ exp(−αt/2)W2(µ

1:N
0 , ν1:N0 ) .

Proof Note that (Tt)t≥0 corresponds to the time-scaled (by factor σ2/2) Langevin diffusion with
stationary distribution µ1:N , which is 2

σ2 (αV + N
N−1 α

−
W )-strongly log-concave by Lemma 9. The

condition on N ensures that this is at least α/σ2. Consequently, it is well-known (e.g., via syn-
chronous coupling) that the diffusion is a contraction in the Wasserstein distance with rate at least
α/2.

We next bound the error incurred in one step from applying the finite-particle semigroup to π⊗N .

Lemma 15 Under Assumptions 1 and 4, for any λ > 0, Th induces the following error in Wasser-
stein distance:

W2
2 (π

⊗NTh, π⊗N ) ≤
(1 + λ−1)β2

Wσ2dh2

α
exp

((1 + λ)β2
Wh2

2

)
.

Proof We resort to a coupling argument, noting that π is stationary under (pMV). Starting with
π⊗N , we evolve (X1:N

t )t≥0 and (Y 1:N
t )t≥0 according to (pMVN ) and (pMV) respectively, i.e.

X1:N
t ∼ π⊗NTt and Y 1:N

t ∼ π⊗N . This argument is adapted from the original propagation of chaos
proof by Sznitman (1991).

We can compute the evolution under a synchronous coupling as:

d(Xi
t − Y i

t ) = −
(
∇V (Xi

t)−∇V (Y i
t )
)
dt− 1

N − 1

N∑
j=1
j ̸=i

(
∇W (Xi

t −Xj
t )− Eπ∇W (Y i

t − ·)
)
dt
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= −
(
∇V (Xi

t)−∇V (Y i
t )
)
dt− 1

N − 1

N∑
j=1
j ̸=i

(
∇W (Xi

t −Xj
t )−∇W (Y i

t −Xj
t )
)
dt

− 1

N − 1

N∑
j=1
j ̸=i

(
∇W (Y i

t −Xj
t )−∇W (Y i

t − Y j
t )

)
dt

− 1

N − 1

N∑
j=1
j ̸=i

(
∇W (Y i

t − Y j
t )− Eπ∇W (Y i

t − ·)
)
dt .

Now let us denote by ∇W (x, y) := ∇W (x− y)− Eπ∇W (x− ·) the centered gradient (with
respect to π). By Itô’s formula and Assumption 4,

d∥Xi
t − Y i

t ∥2 = 2 ⟨Xi
t − Y i

t ,d(X
i
t − Y i

t )⟩
≤ −2 (αV + αW ) ∥Xi

t − Y i
t ∥2 dt

− 2

N − 1

N∑
j=1
j ̸=i

⟨Xi
t − Y i

t ,∇W (Y i
t −Xj

t )−∇W (Y i
t − Y j

t )⟩dt

− 2

N − 1

N∑
j=1
j ̸=i

⟨Xi
t − Y i

t ,∇W (Y i
t − Y j

t )− Eπ∇W (Y i
t − ·)⟩dt

≤ 2βW ∥Xi
t − Y i

t ∥
N − 1

N∑
j=1
j ̸=i

∥Xj
t − Y j

t ∥ dt+
2 ∥Xi

t − Y i
t ∥

N − 1

∥∥∥ N∑
j=1
j ̸=i

∇W (Y i
t , Y

j
t )

∥∥∥dt
or

d∥Xi
t − Y i

t ∥ ≤
βW

N − 1

N∑
j=1
j ̸=i

∥Xj
t − Y j

t ∥dt+
1

N − 1

∥∥∥ N∑
j=1
j ̸=i

∇W (Y i
t , Y

j
t )

∥∥∥dt .
Integrating and squaring,

∥Xi
t − Y i

t ∥2 ≤
∣∣∣∫ t

0

( βW
N − 1

N∑
j=1
j ̸=i

∥Xj
s − Y j

s ∥+
1

N − 1

∥∥∥ N∑
j=1
j ̸=i

∇W (Y i
s , Y

j
s )

∥∥∥)ds
∣∣∣2

≤
(1 + λ)β2

W t

N − 1

N∑
j=1
j ̸=i

∫ t

0
∥Xj

s − Y j
s ∥2 ds+

(1 + λ−1) t

(N − 1)2

∫ t

0

∥∥∥ N∑
j=1
j ̸=i

∇W (Y i
s , Y

j
s )

∥∥∥2 ds ,
where the last line follows from Young’s inequality.

Next, we take expectations. Note that ∇W (·, ·) is centered in its second variable, so for any
j ̸= k,

E⟨∇W (Y i
t , Y

j
t ),∇W (Y i

t , Y
k
t )⟩ = 0 .
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Otherwise, we can bound the terms via

E[∥∇W (Y i
t , Y

j
t )∥2] ≤ β2

W E
Y j
t ∼π
Z∼π

[∥Y j
t − Z∥2] ≤

β2
Wσ2d

α
.

Here, Z is an independent draw from π and so cannot be reduced via coupling. The second inequality
follows from a standard bound on the centered second moment of a strongly log-concave measure,
using the fact that π is 2α/σ2-strongly log-concave (c.f. Dalalyan et al., 2022).

Therefore, taking expectations and summing over the particles,

E[∥X1:N
t − Y 1:N

t ∥2] ≤ (1 + λ)β2
W t

∫ t

0
∥X1:N

s − Y 1:N
s ∥2 ds+

(1 + λ−1)β2
Wσ2dt2

α
.

By Grönwall’s inequality below,

E[∥X1:N
h − Y 1:N

h ∥2] ≤
(1 + λ−1)β2

Wσ2dh2

α
exp

((1 + λ)β2
Wh2

2

)
.

This concludes the proof.

Lemma 16 (Grönwall’s Inequality) For T > 0, let f : [0, T ] → R≥0 be bounded. Suppose that
the following holds pointwise for some functions a, b : [0, T ]→ R, where a is increasing:

f(t) ≤ a(t) +

∫ t

0
b(s)f(s) ds .

Then,

f(t) ≤ a(t) exp
(∫ t

0
b(s) ds

)
.

Composing Lemmas 14 and 15, we now prove our propagation of chaos results.

Proof of Theorem 5 Indeed, we have

W2(µ
1:N , π⊗N ) =W2(µ

1:NTh, π⊗N ) ≤ W2(µ
1:NTh, π⊗NTh) +W2(π

⊗NTh, π⊗N )

≤ exp(−αh/2)W2(µ
1:N , π⊗N ) +

√
(1 + λ−1)β2

Wσ2dh2

α
exp

((1 + λ)β2
Wh2

4

)
.

Rearranging,

W2(µ
1:N , π⊗N ) ≤ 1

1− exp(−αh/2)

√
(1 + λ−1)β2

Wσ2dh2

α
exp

((1 + λ)β2
Wh2

4

)
.

Let h↘ 0 first and then λ↗∞ to obtain

W2
2 (µ

1:N , π⊗N ) ≤
4β2

Wσ2d

α3
.

Finally, when k < N , we use exchangeability (see Lemma 25 below) to conclude the proof of (3.2).
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For (3.3), by the Bakry–Émery condition we have CLSI(π) ≤ σ2/2α, and tensorization (c.f. Bakry
et al., 2014, Proposition 5.2.7) leads to CLSI(π

⊗N ) ≤ σ2/2α. Thus, (TI) leads to

KL(µ1:N ∥ π⊗N ) ≤ σ2

4α
FI(µ1:N ∥ π⊗N ) .

However, one notes that the density of µ1:N is log-smooth with parameter 2
σ2 (βV + N

N−1 βW )

(Lemma 9). Likewise, π⊗N is log-smooth with parameter 2
σ2 (βV + βW ). Now consider a functional

F on the space of probability measures on P2,ac(Rd×N ) given by F : ν 7→ Eν [∥∇ log µ1:N

π⊗N ∥2]. Note
that log(µ1:N/π⊗N ) is smooth with parameter at most 4

σ2 (βV + N
N−1 βW ) ≤ 8

σ2 (βV + βW ), for
N ≥ 2.

Next, note that for Y 1:N ∼ π⊗N ,

F(π⊗N ) = Eπ⊗N [∥∇ logµ1:N −∇ log π⊗N∥2]

=
4N

σ4 (N − 1)2
E
[∥∥∥ N∑

j=2

(
∇W (Y 1 − Y j)−

∫
∇W (Y 1 − ·) dπ

)∥∥∥2]

=
4N

σ4 (N − 1)2
E
[∥∥∥ N∑

j=2

∇W (Y 1, Y j)
∥∥∥2] ,

by using exchangeability and the definition of∇W .
Subsequently, one derives the following inequality using the Wasserstein distance bound:

F(µ1:N ) ≤ 128

σ4
(βV + βW )2W2

2 (µ
1:N , π⊗N ) + 2F(π⊗N )

≤
512β2

Wd

α3σ2
(βV + βW )2 +

8N

σ4 (N − 1)2
E
[∥∥∥ N∑

j=2

∇W (Y 1, Y j)
∥∥∥2]

≤
512β2

Wd

α3σ2
(βV + βW )2 +

16β2
WN

σ4 (N − 1)
E[∥Y 1 − EY 1∥2]

≤
512β2

Wd

α3σ2
(βV + βW )2 +

16β2
Wd

ασ2
,

by using (3.2) and the fact that∇W (·, ·) is a centered random variable in its second argument. This
concludes the proof for k = N , and as in theW2

2 bound, Lemma 26 will conclude the proof for
k < N .

A.3. General Functional Case

For any measure µ, define its entropy as ent(µ) =
∫
logµdµ. We now provide a self-contained

propagation of chaos argument in the general McKean–Vlasov setting, following Chen et al. (2022a).
We begin with the following entropy toast inequality, i.e. half of the entropy sandwich inequality
from Chen et al. (2022a).
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Lemma 17 (Entropy Toast Inequality) Define the empirical total energy for an N -finite particle
system as follows. Given a measure ν1:N ∈ P2,ac(Rd×N ),

EN (ν1:N ) = N

∫
F(ρx1:N ) ν1:N (dx1:N ) +

σ2

2
ent(ν1:N ) .

Under Assumption 5, it holds for all measures ν1:N ∈ P2,ac(Rd×N )

σ2

2
KL(ν1:N ∥ π⊗N ) ≤ EN (ν1:N )−NE(π) ,

where E is the total energy (gE) and π is the stationary measure (2.2).

Proof By Assumption 5, we have

EN (ν1:N )−NE(π) = N Ex1:N∼ν1:N [F(ρx1:N )−F(π)] +
σ2

2

(
ent(ν1:N )−N ent(π)

)
≥ Ex1:N∼ν1:N

[
N

∫
δF(π, z) (ρx1:N (dz)− π(dz))

]
+

σ2

2

(
ent(ν1:N )−N ent(π)

)
= −σ2

2
Ex1:N∼ν1:N

[
N

∫
log π(z) (ρx1:N (dz)− π(dz))

]
+

σ2

2

(
ent(ν1:N )−N ent(π)

)
= −σ2

2
Ex1:N∼ν1:N

[
N

∫
log π(z) ρx1:N (dz)

]
+

σ2

2
ent(ν1:N )

= −σ2

2

∫ N∑
i=1

log π(xi) ν1:N (dx1:N ) +
σ2

2
ent(ν1:N ) .

However, this is just σ2

2 KL(ν1:N ∥ π⊗N ), so we are done.

Proof of Theorem 7 We bound EN (µ1:N )−NEN (π) via the following argument. First, define
the finite-particle mean-field functional as FN (ν1:N ) = N

∫
F(ρx1:N ) ν1:N (dx1:N ). In the sequel,

we also use the following notation for conditional measures: if x−i := (x1:i−1, xi+1:N ) ∈ Rd×(N−1),

µ1:N (x1:N ) = µi|−i(xi | x−i)× µ−i(x−i) .

We know that

EN (µ1:N )−NE(π) = FN (µ1:N )−NF(π) + σ2

2
ent(µ1:N )− Nσ2

2
ent(π) .

Furthermore, by Assumption 5,

FN (µ1:N )−NF(π) ≤ N Ex1:N∼µ1:N

∫
δF(ρx1:N , z) (ρx1:N (dz)− π(dz)) .

Using the subadditivity of entropy, we can therefore write

EN (µ1:N )−NE(π) ≤
N∑
i=1

Ex1:N∼µ1:N

[
δF(ρx1:N , xi)−

∫
δF(ρx1:N , ·) dπ
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+
σ2

2

(
ent(µi|−i(· | x−i))− ent(π)

)]
.

To decouple the terms, we now replace each δF(ρx1:N , ·) term with δF(ρx−i , ·):

EN (µ1:N )−NE(π)

≤
N∑
i=1

Ex1:N∼µ1:N

[
δF(ρx−i , xi)−

∫
δF(ρx−i , ·) dπ +

σ2

2

(
ent(µi|−i(· | x−i))− ent(π)

)]
︸ ︷︷ ︸

A

+

N∑
i=1

Ex1:N∼µ1:N

[
δF(ρx1:N , xi)− δF(ρx−i , xi)−

∫ (
δF(ρx1:N , ·)− δF(ρx−i , ·)

)
dπ

]
︸ ︷︷ ︸

B

.

We consider the two terms in turn, beginning with the first.
Note that by Fubini’s theorem,

Ex1:N∼µ1:N δF(ρx−i , xi) = Ex−i∼µ−i

∫
δF(ρx−i , ·) dµi|−i(· | x−i) .

In order to relate the first term A to a KL divergence, for each x−i ∈ Rd×(N−1) we introduce the
probability measure τx−i ∈ P2,ac(Rd) via

τx−i ∝ exp
(
− 2

σ2
δF(ρx−i , ·)

)
.

We can compute

KL
(
µi|−i(· | x−i)

∥∥ τx−i

)
=

∫ ( 2

σ2
δF(ρx−i , ·) + log µi|−i(· | x−i)

)
dµi|−i(· | x−i) + logZ(τx−i) ,

where Z(τx−i) is the normalization constant for τx−i ,

logZ(τx−i) = log

∫
exp

(
− 2

σ2
δF(ρx−i , z)

)
dz

= log

∫
exp

( 2

σ2

(
δF(π, z)− δF(ρx−i , z)

))
π(dz) + logZ(π)

≥ − 2

σ2

∫
δF(ρx−i , ·) dπ − ent(π) .

Upon taking expectations, we obtain

A ≤ σ2

2

N∑
i=1

Ex−i∼µ−i KL
(
µi|−i(· | x−i)

∥∥ τx−i

)
.

Moreover, we can recognize that τx−i is a proximal Gibbs measure. By Assumptions 6 and 7,

A ≤ CLSI σ
2

4

N∑
i=1

Ex−i∼µ−i FI
(
µi|−i(· | x−i)

∥∥ τx−i

)
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=
CLSI σ

2

4

N∑
i=1

Ex1:N∼µ1:N

[∥∥∥∇xi logµi|−i(xi | x−i) +
2

σ2
∇W2F(ρx−i , xi)

∥∥∥2]
=

CLSI σ
2

4

N∑
i=1

Ex1:N∼µ1:N

[∥∥∥∇xi logµ1:N (x1:N ) +
2

σ2
∇W2F(ρx−i , xi)

∥∥∥2]
=

CLSI

σ2

N∑
i=1

Ex1:N∼µ1:N [∥∇W2F(ρx1:N , xi)−∇W2F(ρx−i , xi)∥2]

=
CLSI

σ2

N∑
i=1

Ex1:N∼µ1:N [∥∇W2F0(ρx1:N , xi)−∇W2F0(ρx−i , xi)∥2]

≤ β2CLSI

σ2

N∑
i=1

Ex1:N∼µ1:N W2
1 (ρx1:N , ρx−i) .

To transport the mass from ρx1:N to ρx−i , we take the transport plan which moves 1
N (N−1) of the

mass from xi to each xj , j ̸= i. It yields

W1(ρx1:N , ρx−i) ≤
1

N (N − 1)

N∑
j=1
j ̸=i

∥xi − xj∥ . (A.6)

Hence,

A ≤ β2CLSI

σ2N2 (N − 1)2
Ex1:N∼µ1:N

N∑
i=1

( N∑
j=1
j ̸=i

∥xi − xj∥
)2

≤ β2CLSI

σ2N2 (N − 1)
Ex1:N∼µ1:N

∑
i ̸=j

∥xi − xj∥2 = β2CLSI

σ2N
Ex1:2∼µ1:2 [∥x1 − x2∥2] .

We then use the inequality

1

2
Ex1:2∼µ1:2 [∥x1 − x2∥2] ≤ 2W2

2 (µ
1:2, π⊗2) + Ex1:2∼π⊗2 [∥x1 − x2∥2]

≤ 4

N
W2

2 (µ
1:N , π⊗N ) + 2Ex∼π[∥x− Ex∥2]

≤ 8CLSI

N
KL(µ1:N ∥ π⊗N ) + 2dCLSI , (A.7)

where we used Lemma 25 and the Poincaré inequality for π. Hence,

A ≤ 2β2CLSI

σ2N

(8CLSI

N
KL(µ1:N ∥ π⊗N ) + 2dCLSI

)
.

Next, we turn toward term B. First, define a function ζi
x1:N : Rd → R by

ζix1:N (y) := δF(ρx−i , y)− δF(ρx1:N , y) = δF0(ρx−i , y)− δF0(ρx1:N , y) .
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It is clear from Assumption 6 that this function is Lipschitz with constant 2βW1(ρx1:N , ρx−i). Thus,
we obtain using this Lipschitzness, (A.6), and Young’s inequality,

B =

N∑
i=1

Ex1:N∼µ1:N

∫ (
ζix1:N (x

i)− ζix1:N (z)
)
π(dz)

≤
N∑
i=1

Ex1:N∼µ1:N

∫
2β

N (N − 1)

N∑
j=1
j ̸=i

∥xj − xi∥ ∥xi − z∥π(dz)

≤ β

N (N − 1)
Ex1:N∼µ1:N

∑
i ̸=j

∥xi − xj∥2 + β

N

N∑
i=1

E(xi,z)∼µ1⊗π[∥xi − z∥2]

= β Ex1:2∼µ1:2 [∥x1 − x2∥2] + β E(x,z)∼µ1⊗π[∥x− z∥2] .

For the first term, we can apply (A.7), and for the second term, we can apply (A.1). It yields

B ≤ 20βCLSI

N
KL(µ1:N ∥ π⊗N ) + 8βCLSId .

Putting the bounds together with Lemma 17,

KL(µ1:N ∥ π⊗N ) ≤ 33βCLSId

σ2

for all N ≥ 160βCLSI/σ
2. The result for k ≤ N follows from Lemma 26.

Appendix B. Isoperimetric Results for the Stationary Distributions

B.1. Convexity and Smoothness

Here, we verify the convexity and smoothness properties of µ1:N in the pairwise McKean–Vlasov
setting.

Proof of Lemma 9 For x1:N = [x1, . . . , xN ] ∈ Rd×N , the Hessian of log(1/µ1:N ) can be
explicitly computed as

− σ2

2
∇2 logµ1:N (x1:N ) =


∇2V (x1) 0 · · · 0

0 ∇2V (x2) · · · 0
...

...
. . .

...
0 0 · · · ∇2V (xN )



+
1

N − 1


∑N

j=2∇2W (x1 − xj) −∇2W (x1 − x2) · · · −∇2W (x1 − xN )

−∇2W (x2 − x1)
∑N

j=1
j ̸=2

∇2W (x2 − xj) · · · −∇2W (x2 − xN )

...
...

. . .
...

−∇2W (xN − x1) −∇2W (xN − x2) · · ·
∑N−1

j=1 ∇2W (xN − xj)


︸ ︷︷ ︸

=B

.
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Clearly, the first block matrix has eigenvalues between αV and βV . For the second block matrix B,
let us denote Ai,j := ∇2W (xi − xj) for i, j ∈ [N ]. Note that Ai,j = Aj,i since W is even, and each
Ai,j is clearly symmetric.

For B ∈ RdN×dN the second matrix and y = [y1, . . . , yN ] ∈ RdN , we have

yTBy =
∑
i≤N

yTi

( ∑
j∈[N ]\i

Ai,j

)
yi −

∑
i,j≤N
i ̸=j

yTi Ai,jyj

=
∑
i,j≤N
i<j

(
yTi Ai,jyi + yTj Aj,iyj − yTi Ai,jyj − yTj Aj,iyi

)
=

∑
i,j≤N
i<j

(yi − yj)
TAi,j(yi − yj) .

Using αW Id ⪯ Ai,j ⪯ βW Id and

M := ∇2
y

∑
i,j≤N
i<j

∥yi − yj∥2 = 2


N − 1 −1 · · · −1
−1 N − 1 · · · −1

...
...

. . .
...

−1 −1 · · · N − 1

⊗ Id ,

we have 1
2 αWM ⪯ B ⪯ 1

2 βWM. Since the circulant matrix in M is PSD due to diagonal dominance
and its largest eigenvalue is at most N , it follows that the eigenvalues of M lie between 0 and 2N .
Hence, the eigenvalues of B lie in the interval [ N

N−1 α
−
W , N

N−1 βW ].

B.2. Bounded Perturbations

In this section, we prove the isoperimetric results from §3.2.1. We again introduce the conditional
measure: if x−i := (x1:i−1, xi+1:N ) ∈ Rd×(N−1) we define

µ1:N (x1:N ) = µi|−i(xi | x−i)× µ−i(x−i)

for the conditional distribution of the i-th particle and the distribution of an N -particle system with
the i-th particle marginalized out.

Before proceeding to the proof of Lemma 10, we first state a result on log-Sobolev inequalities
under weak interactions due to Otto and Reznikoff (2007).

Lemma 18 (Otto and Reznikoff (2007, Theorem 1)) Consider a measure µ1:N on Rd×N , with
conditional measures µi|−i. Assume that

CLSI(µ
i|−i(· | x−i)) ≤ 1

τi
, for all i ∈ [N ], x−i ∈ Rd×(N−1) ,

∥∇xi∇xj logµ1:N (x1:N )∥ ≤ βi,j , for all x1:N ∈ Rd×N , i, j ∈ [N ], i ̸= j .

Then, consider the matrix A ∈ RN×N with entries Ai,i = τi, Ai,j = −βi,j for i ̸= j. If A ⪰ ρIN ,
then µ1:N satisfies (LSI) with constant 1/ρ.
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Proof of Lemma 10 We begin by proving the statement about π. The potential of the invariant
measure π can also be written as

log
1

π(x)
=

2

σ2

(
V0(x) + V1(x) +

∫ (
W0(x− ·) +W1(x− ·)

)
dπ

)
=

2

σ2

(
V0(x) +

∫
W0(x− ·) dπ

)
+

2

σ2

(
V1(x) +

∫
W1(x− ·) dπ

)
.

This is the sum of a 2
σ2 (αV0 + αW0)-convex function with a 2

σ2 (osc(V1) + osc(W1))-bounded
perturbation. Thus, π satisfies (LSI) with the claimed parameter.

We now prove the statement about µ1:N . Each conditional measure has a density of the form

µi|−i(· | x−i) ∝ exp
(
− 2

σ2
V (·)− 2

σ2 (N − 1)

∑
j∈[N ]\i

W (· − xj)
)
,

where both V and W are bounded perturbations of αV0 , αW0-strongly convex functions respectively,
irrespective of the conditional variables. Thus, by Holley–Stroock perturbation and the Bakry–Émery
condition, each µi|−i(· | x−i) satisfies (LSI) with parameter

τ−1
i ≤ τ−1 :=

σ2

2

(
αV0 +

N

N − 1
α−
W0

)−1
exp

( 2

σ2

(
osc(V1) + osc(V1)

))
.

Secondly, we note that from (2.1), we have

2

σ2 (N − 1)
sup
z∈Rd

∥∇2W (z)∥op ≤
2βW

σ2 (N − 1)
=: βi,j .

Thus, we have

A =


τ − 2βW

σ2 (N−1)
· · · − 2βW

σ2 (N−1)

− 2βW

σ2 (N−1)
τ · · · − 2βW

σ2 (N−1)

...
...

. . .
...

− 2βW

σ2 (N−1)
− 2βW

σ2 (N−1)
· · · τ

 .

Under Assumption 10, this matrix is strictly diagonally dominant and has a minimum eigenvalue of
at least τ/2. We can now apply Lemma 18 to complete the proof.

B.3. Logarithmic Sobolev Inequalities via Perturbations

In this section, we state log-Sobolev inequalities for Lipschitz perturbations of strongly log-concave
measures, which is used for the general McKean–Vlasov setting in §2.1.2.

Lemma 19 (LSI under Lipschitz Perturbations (Brigati and Pedrotti, 2024, Theorem 1.4))
Let µ ∝ exp(−H − V ) for an αV -strongly convex function V : Rd → R and an L-Lipschitz

function H : Rd → R. Then, µ satisfies (LSI) with constant CLSI(µ) given by

CLSI(µ) ≤
1

α
exp

(L2

α
+

4L√
α

)
.
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From this one derives the following log-Sobolev inequality for the proximal Gibbs measure.

Lemma 20 (Uniform LSI for the Proximal Gibbs Measure (Suzuki et al., 2023, Theorem 1))
For the proximal Gibbs measure (2.3) in the setting of §2.1.2, under Assumption 8, we have that

sup
µ∈P2(Rd)

CLSI(πµ) ≤ CLSI ,

where α can be bounded by

CLSI ≤
σ2

2λ
exp

(2B2

λσ2
+

8B√
2λσ

)
.

Obtaining a uniform-in-N LSI for µ1:N under Assumption 8 is more difficult, and we rely on
the recent heat flow estimates of Brigati and Pedrotti (2024). In their work, the authors showed the
existence of an L-Lipschitz transport map—the Kim–Milman map (Kim and Milman, 2012)—from
the standard Gaussian measure γ to a measure µ, under suitable assumptions on µ. By Bakry et al.
(2014, Proposition 5.4.3), this immediately implies that µ satisfies CLSI(µ) ≤ L2. The existence
of the Lipschitz transport map is based on estimates along the heat flow, and we summarize the
computation in a convenient form based on bounding the operator norm of the covariance matrix of
Gaussian tilts of the measure. The latter property is sometimes called tilt stability in the literature.
Note that we do not attempt to optimize constants here.

Lemma 21 (Lipschitz Transport Maps via Reverse OU) Let µ be a probability measure over Rd

and for any t > 0, y ∈ Rd, let µt,y denote the Gaussian tilt,

µt,y(dx) ∝ exp
(
−∥y − x∥2

2t
+
∥x∥2

2

)
µ(dx) , (B.1)

where we assume that this defines a valid probability measure for all t > 0 and y ∈ Rd. Suppose
there exist a,C > 0 such that the following “tilt stability” property holds:

∥covµt,y∥op ≤
( 1√

a+ 1/t
+

C

a+ 1/t

)2
, for all t > 0 , y ∈ Rd .

Then, there exists an L-Lipschitz transport map T : Rd → Rd such that T#γ = µ, where γ is the
standard Gaussian measure and L can be estimated by

L ≤ 1√
1 + a

exp
( C2

2 (1 + a)
+

2C√
1 + a

)
.

Proof We follow the calculations of Brigati and Pedrotti (2024). Let (Pt)t≥0 denote the heat
semigroup, and (Qt)t≥0 the Ornstein–Uhlenbeck semigroup. Then, if γ denotes the standard
Gaussian measure, the identity Qtf = P1−exp(−2t)f(exp(−t) ·) and

− I

exp(2t)− 1
⪯ ∇2 logQt

(µ
γ

)
= exp(−2t)

[
∇2 logP1−exp(−2t)

(µ
γ

)]
(exp(−t) ·)

=
1

exp(2t)− 1

(covµ1−exp(−2t), exp(−t) ·

1− exp(−2t)
− I

)
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⪯ I

exp(2t)− 1

[( 1/
√
1− exp(−2t)√

a+ 1/(1− exp(−2t))
+

C/
√
1− exp(−2t)

a+ 1/(1− exp(−2t))

)2
− 1

]
⪯

[ 1− α

α (exp(2t)− 1) + 1
+

C2 exp(2t)

(α (exp(2t)− 1) + 1)2

+
2C exp(2t)

(exp(2t)− 1)1/2 (α (exp(2t)− 1) + 1)3/2

]
I

where a = α − 1. Note that we can identify this with the bound of Brigati and Pedrotti (2024,
Corollary 3.2) with C = L. Thus, by following the calculations in the proof of Brigati and Pedrotti
(2024, Theorem 1.4), we obtain the desired result.

We next verify the tilt stability condition, leveraging the propagation of chaos result in Theorem 7.

Lemma 22 (Tilt Stability) For any t > 0 and y1:N ∈ Rd×N , let µt,y1:N be the Gaussian tilt of
µ1:N as defined in (B.1) with µ1:N in place of µ. Here, µ1:N is the stationary distribution (1.1) of the
mean-field Langevin diffusion. Then, under Assumptions 5, 6, and 8, and assuming that 2λ > σ2 and

N ≳
βd

2λ− σ2
exp

( 8B2/σ4

2λ/σ2 − 1

)
(B.2)

for a sufficiently large implied (but universal) constant, we have

∥covµ
t,y1:N

∥op ≤
[ 1√

2λ/σ2 − 1 + 1/t
+

1

2λ/σ2 − 1 + 1/t
O
(B

σ2
+

√
βd

σ
exp

8B2/σ4

2λ/σ2 − 1

)]2
.

Proof We introduce the auxiliary measures

πt,yi(x
i) ∝ exp

(
−∥y

i − xi∥2

2t
−
( λ

σ2
− 1

2

)
∥xi∥2 − 2

σ2
δF0(π̄t,y1:N , x

i)
)
, i ∈ [N ] , (B.3)

where π̄t,y1:N := 1
N

∑N
i=1 πt,yi . To see that these auxiliary measures are well-defined, note that any

minimizer of the functional

(π1, . . . , πN )

7→
N∑
i=1

∫ [σ2 ∥yi − xi∥2

4t
−
(λ
2
− σ2

4

)
∥xi∥2

]
πi(dxi) +NF0

( 1

N

N∑
i=1

πi
)
+

σ2

2

N∑
i=1

ent(πi)

satisfies the system of equations (B.3), and that the minimizer is unique because the functional is
strictly convex. We also let πt,y1:N :=

⊗N
i=1 πt,yi .

Then, for any unit vector θ1:N ∈ Rd×N ,

⟨θ1:N , covµ
t,y1:N

θ1:N ⟩ ≤ Ex1:N∼µ
t,y1:N

[⟨θ1:N , x1:N − Ex̄1:N∼π
t,y1:N

x̄1:N ⟩2]

≤
(
W2(µt,y1:N , πt,y1:N ) +

√
⟨θ1:N , covπ

t,y1:N
θ1:N ⟩

)2

≤
(
W2(µt,y1:N , πt,y1:N ) + max

i∈[N ]

√
∥covπt,yi

∥op
)2

,
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where we used the fact that πt,y1:N is a product measure. Also, introduce

π̆t,yi(x
i) ∝ exp

(
−∥y

i − xi∥2

2t
−
( λ

σ2
− 1

2

)
∥xi∥2

)
,

so that πt,yi ∝ exp(− 2
σ2 δF0(π̄t,y1:N , ·)) π̆t,yi . The same argument as above then yields

⟨θi, covπt,yi
θi⟩ ≤

(
W2(πt,yi , π̆t,yi) +

√
⟨θi, covπ̆t,yi

θi⟩
)2

.

Since π̆t,yi is (2λ/σ2 − 1 + 1/t)-strongly log-concave, ∥covπ̆t,yi
∥op ≤ 1/(2λ/σ2 − 1 + 1/t) by

the Brascamp–Lieb inequality (Brascamp and Lieb, 1976). Also, since 2
σ2 δF0(π̄t,y1:N , ·) is 2B/σ2-

Lipschitz under Assumption 8, then Khudiakova et al. (2024, Corollary 2.4) yields

W2(πt,yi , π̆t,yi) ≤ W∞(πt,yi , π̆t,yi) ≤
2B/σ2

2λ/σ2 − 1 + 1/t
.

Hence,

∥covπt,yi
∥op ≤

( 1√
2λ/σ2 − 1 + 1/t

+
2B/σ2

2λ/σ2 − 1 + 1/t

)2
.

Finally, it remains to controlW2(µt,y1:N , πt,y1:N ). Note that when t =∞, this essentially reduces
to Theorem 7, so the task is to prove a generalization thereof. Note that by Lemma 19, in Theorem 24
below, we can take

CLSI ≤
1

2λ/σ2 − 1 + 1/t
exp

( 4B2/σ4

2λ/σ2 − 1 + 1/t
+

8B/σ2√
2λ/σ2 − 1 + 1/t

)
≤ 3

2λ/σ2 − 1 + 1/t
exp

( 8B2/σ4

2λ/σ2 − 1 + 1/t

)
≤ 3

2λ/σ2 − 1
exp

( 8B2/σ4

2λ/σ2 − 1

)
.

In particular, under the assumption (B.2) for N , the preconditions of Theorem 24 are met and it
yields the bound

W2(µt,y1:N , πt,y1:N ) ≲
CLSI
√
βd

σ
≲

√
βd

σ (2λ/σ2 − 1 + 1/t)
exp

( 8B2/σ4

2λ/σ2 − 1

)
.

Putting everything together completes the proof.

Corollary 23 (Uniform LSI for the Stationary Measure) Under Assumptions 5, 6, and 8, if

N ≳
βd

λ
exp

(8B2

λσ2

)
(B.4)

for a sufficiently large implied (but universal) constant, then

CLSI(µ
1:N ) ≲

σ2

λ
exp

(
O
( B2

λσ2
+

βd

λ
exp

16B2

λσ2

))
.
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Proof To meet the conditions of Lemma 22, we perform a rescaling. We abuse notation and denote
by η : Rd → Rd the scaling map x 7→ ηx. Then,

µ1:N
η (x1:N ) := η#µ

1:N (x1:N ) ∝ µ1:N (η−1x1:N ) ∝ exp
(
−2N

σ2
Fη
0 (ρx1:N )−

λ

η2σ2
∥x1:N∥2

)
,

where Fη
0 (ν) := F0((η

−1)#ν). We see that µ1:N
η is also the stationary measure for mean-field

Langevin dynamics, with the following new parameters: β ← β/η2; λ ← λ/η2; B ← B/η. In
particular, if we take η2 = λ/σ2, then Lemma 22 applies to µ1:N

η provided that (B.4) holds. Together
with Lemma 21 with a = 1 and C ≲ B/(λ1/2σ) + (βd/λ)1/2 exp(8B2/(λσ2)), it implies

CLSI(µ
1:N
η ) ≲ exp

(
O(C2)

)
= exp

(
O
( B2

λσ2
+

βd

λ
exp

16B2

λσ2

))
.

The result for µ1:N follows from contraction mapping (Bakry et al., 2014, Proposition 5.4.3).

It remains to prove the following generalized propagation of chaos result.

Theorem 24 (Generalized Propagation of Chaos) For each i ∈ [N ], let Vi : Rd → R and let
F0 : P2(Rd)→ R. Define probability measures

µ1:N (x1:N ) ∝ exp
(
− 2

σ2

N∑
i=1

Vi(x
i)− 2N

σ2
F0(ρx1:N )

)
,

πi(xi) ∝ exp
(
− 2

σ2
Vi(x

i)− 2

σ2
δF0(π̄, x

i)
)
,

where π̄ := 1
N

∑N
i=1 πi, π

1:N :=
⊗N

i=1 π
i, and we assume that these measures are all well-defined.

Furthermore, assume that F0 satisfies Assumptions 5 and 6, and that for all i ∈ [N ] and all
ν ∈ P2(Rd), the proximal Gibbs measure

πi
ν ∝ exp

(
− 2

σ2

(
Vi + δF0(ν, ·)

))
satisfies (LSI) with constant CLSI. Then, for all N ≳ βCLSId/σ

2,

1

2CLSI

W2
2 (µ

1:N , π1:N ) ≤ KL(µ1:N ∥ π1:N ) ≲
βCLSId

σ2
.

Proof Since the proof closely follows the proof of Theorem 7, to avoid repetition we only highlight
the main changes. We define the following energy functionals:

EN (ν1:N ) :=
N∑
i=1

∫
Vi dν

i +N

∫
F0(ρx1:N ) ν1:N (dx1:N ) +

σ2

2
ent(ν1:N ) ,

E(ν1:N ) :=

N∑
i=1

∫
Vi dν

i +NF0(ν̄) +
σ2

2
ent(ν1:N ) ,
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where for a measure ν1:N on Rd×N , we use the notation ν̄ := 1
N

∑N
i=1 ν

i for the average of the
marginals. The first step is to establish the analogue of the entropy toast inequality (Lemma 17).
Letting Z :=

∏N
i=1

∫
exp(− 2

σ2 Vi − 2
σ2 δF0(π̄, ·)) denote the normalizing constant for π1:N ,

KL(ν1:N ∥ π1:N ) =
2

σ2

N∑
i=1

∫
Vi dν

i +
2N

σ2

∫∫
δF0(π̄, z) ρx1:N (dz) ν1:N (dx1:N ) + ent(ν1:N )

+ logZ

=
2

σ2

N∑
i=1

∫
Vi d(ν

i − πi) +
2N

σ2
Ex1:N∼ν1:N

∫
δF0(π̄, ·) d(ρx1:N − π̄)

+ ent(ν1:N )− ent(π1:N )

≤ 2

σ2

N∑
i=1

∫
Vi d(ν

i − πi) +
2N

σ2
Ex1:N∼ν1:N [F0(ρx1:N )−F0(π̄)]

+ ent(ν1:N )− ent(π1:N )

≤ 2

σ2

(
EN (ν1:N )− E(π1:N )

)
.

From here, we find that

Ex1:N∼ν1:N [F0(ρx1:N )−F0(π̄)] ≤ Ex1:N∼ν1:N

∫
δF0(ρx1:N , ·) d(ρx1:N − π̄) .

Now, moving on to the propagation of chaos part of this argument, we have

EN (µ1:N )− E(π1:N )

≤
N∑
i=1

Ex1:N∼µ1:N

[∫
Vi d(µ

i|−i(· | x−i)− πi) +

∫
δF0(ρx1:N , ·) d(ρx1:N − πi)

]
+

σ2

2

N∑
i=1

Ex−i∼µ−i

[
ent(µi|−i(· | x−i))− ent(πi)

]
=

N∑
i=1

Ex1:N∼µ1:N

[∫
Vi d(µ

i|−i(· | x−i)− πi) + δF0(ρx1:N , xi)−
∫

δF0(ρx1:N , ·) dπi
]

+
σ2

2

N∑
i=1

Ex−i∼µ−i

[
ent(µi|−i(· | x−i))− ent(πi)

]
.

To decouple, introduce a new variable zi ∼ µi independent of all the others and define as a shorthand
x̃1:Ni as the vector x1, . . . , xi−1, zi, xi+1, . . . , xN .

EN (µ1:N )− E(π1:N )

≤
N∑
i=1

Ex1:N∼µ1:N

[∫
Vi d(µ

i|−i(· | x−i)− πi) +
σ2

2

(
ent(µi|−i(· | x−i))− ent(πi)

)]
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+
N∑
i=1

Ex1:N∼µ1:N

[
Ezi∼µi δF0(ρx̃1:N

i
, xi)−

∫
Ezi∼µi δF0(ρx̃1:N

i
, ·) dπi

]
+

N∑
i=1

Ex1:N∼µ1:N

[
δF0(ρx1:N , xi)− Ezi∼µi δF0(ρx̃1:N

i
, xi)

−
∫ (

δF0(ρx1:N , ·)− Ezi∼µi δF0(ρx̃1:N
i

, ·)
)
dπi

]
.

We group the terms in the first two lines as A, and the terms in the last two lines as B.
Let us first look at A. If we introduce the proximal Gibbs measure for ρx̃1:N

i
(in the i-th

coordinate), defined via

τ i
x̃1:N
i
∝ exp

(
− 2

σ2

(
Vi + δF0(ρx̃1:N

i
, ·)

))
,

one obtains as before

A ≤ σ2

2

N∑
i=1

Ex1:N∼µ1:N Ezi∼µi KL
(
µi|−i(· | x−i)

∥∥ τ i
x̃1:N
i

)
.

Applying the log-Sobolev inequality, it yields

A ≤ β2CLSI

σ2

N∑
i=1

Ex1:N∼µ1:N Ezi∼µiW2
1 (ρx1:N , ρx̃1:N

i
) .

The Wasserstein distance is bounded by

W1(ρx1:N , ρx̃1:N
i

) ≤ 1

N
∥xi − zi∥ .

It eventually yields, as before,

A ≲
β2CLSI

σ2N

(CLSI

N
KL(µ1:N ∥ π1:N ) + dCLSI

)
.

As for the term B, a straightforward modification of the proof of Theorem 7 readily yields

B ≲
βCLSI

N
KL(µ1:N ∥ π1:N ) + βCLSId .

Putting everything together yields the result.

Appendix C. Explicit Calculations for the Gaussian Case

Here we provide complete details for Example 1: for any k ≤ N ,

dk2

N2
≲ KL(µ1:k ∥ π⊗k) ≲

dk2

N2
logN .
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Note that for C ∈ RN×N with Ci,i = N − 1 and Ci,j = −1 if i ̸= j,

µ1:N = N
(
0,

σ2

2

(
IN ⊗A+

λ

N − 1
C⊗ Id

)−1︸ ︷︷ ︸
=:Σ1

)
and π = N

(
0,

σ2

2
(A+ λId)

−1︸ ︷︷ ︸
=:Σ2

)
.

The k-particle marginal µ1:k is a Gaussian with zero mean and covariance being the upper-left
(kN × kN)-block matrix of Σ1, which we denote by Σ1,k. Clearly, π⊗k is also a Gaussian with zero
mean and covariance Σ2,k := Ik ⊗ Σ2. From a well-known formula for the KL divergence between
two Gaussian distributions,

KL(µ1:k ∥ π⊗k) =
1

2

(
− log det(Σ−1

2,kΣ1,k)− dk + tr(Σ−1
2,kΣ1,k)

)
. (C.1)

Let 1p ∈ Rp be the p-dimensional vector with all entries 1. From C = NIN − 1N1TN ,

2

σ2
Σ1 =

(
IN ⊗

(
A+

λN

N − 1
Id︸ ︷︷ ︸

=:Aλ

)
− λ

N − 1
(1N1TN )⊗ Id

)−1

=
(i)

(
IN ⊗Aλ −

λ

N − 1
(1N ⊗ Id)(1

T
N ⊗ Id)

)−1

=
(ii)

(IN ⊗Aλ)
−1

− (IN ⊗Aλ)
−1(1N ⊗ Id)

×
(
Id + (1TN ⊗ Id)(IN ⊗Aλ)

−1(1N ⊗ Id)
)−1

(1TN ⊗ Id)(IN ⊗Aλ)
−1

=
(iii)

IN ⊗A−1
λ − (1N ⊗A−1

λ )
(
Id + (1TN1N )⊗A−1

λ

)−1
(1TN ⊗A−1

λ )

= IN ⊗A−1
λ − (1N ⊗A−1

λ )(Id +NA−1
λ )

−1
(1TN ⊗A−1

λ )

= IN ⊗A−1
λ − (1N1TN )⊗ (A2

λ +NAλ)
−1

,

where in (i) we used (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD), (ii) follows from the Woodbury matrix
identity, and (iii) used (A⊗B)−1 = A−1 ⊗B−1. Hence it follows that

2

σ2
Σ1,k = Ik ⊗A−1

λ − (1k1
T
k )⊗ (A2

λ +NAλ)
−1

.

By the spectral decomposition of A, we can write A = UDUT for a diagonal D ∈ Rd×d and an
orthogonal matrix U ∈ Rd×d such that {σi := Di,i}i∈[d] correspond to the eigenvalues of A. Since
log det(·) and tr(·) in (C.1) are orthogonally invariant, let us look at the orthogonal conjugate of
Σ−1
2,kΣ1,k by Ik ⊗ UT ∈ Rdk×dk. Using (A⊗B)T = AT ⊗BT and denoting Dλ := D + λN

N−1 Id,

(Ik ⊗ UT)Σ−1
2,kΣ1,k(Ik ⊗ U)

= (Ik ⊗ UT)
(
Ik ⊗ (A+ λId)

)(
Ik ⊗A−1

λ − (1k1
T
k )⊗ (A2

λ +NAλ)
−1)

(Ik ⊗ U)

=
(
Ik ⊗ (D + λId)

)(
Ik ⊗D−1

λ − (1k1
T
k )⊗ (D2

λ +NDλ)
−1)

= Ik ⊗
(
(D + λId)D

−1
λ

)
− (1k1

T
k )︸ ︷︷ ︸

=:Jk

⊗
(
(D + λId)(D

2
λ +NDλ)

−1)︸ ︷︷ ︸
=:Sλ
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= Idk −
( λ

N − 1
Ik ⊗D−1

λ + Jk ⊗ Sλ︸ ︷︷ ︸
=:M

)
.

For σd := mini∈[d] σi, α := σd + λ, and ε := λ/(N − 1), we have D−1
λ ≾ 1

α Id and Sλ ≾ 1
α+N Id

due to

((Dλ)
−1)i,i ≤

1

α+ ε
and (Sλ)i,i ≤

α

(α+ ε) (α+ ε+N)
.

Since the eigenvalues of A ⊗ B consist of all possible combinations arising from the product of
eigenvalues, one from A and one from B, the largest eigenvalue η1 of M is less than 1:

η1 ≤
λ

N − 1
∥D−1

λ ∥+ k ∥Sλ∥ ≤
ε

α+ ε
+

αN

(α+ ε) (α+ ε+N)
=

ε+N

α+ ε+N
.

Denoting the eigenvalues of M by ηi, it follows from (C.1) that

2KL(µ1:k ∥ π⊗k) = −
(
log det(Idk −M) + dk − tr(Idk −M)

)
= −

dk∑
i=1

(
log(1− ηi) + ηi

)
=

dk∑
i=1

∑
n≥2

ηni
n

.

Then, we have a trivial lower bound of 1
2

∑dk
i=1 η

2
i , and as for the upper bound,

dk∑
i=1

∑
n≥2

ηni
n
≤

dk∑
i=1

(
η2i +

∑
n≥1

ηn+2
i

n

)
=

dk∑
i=1

η2i log
( e

1− ηi

)
≲

(
1 ∨ log

N

α

)
tr(M2) ,

where the last inequality follows from (1− ηi)
−1 ≤ (1− η1)

−1.
Using tr(A⊗B) = tr(A) · tr(B), and D−1

λ ≾ 1
α Id and Sλ ≾ 1

α+N Id, we have

tr(M2) ≲
λ2

(N − 1)2
tr(Ik) tr(D

−2
λ ) + tr(J2

k ) tr(S
2
λ)

≲
λ2

α2

dk

N2
+

dk2

(α+N)2
≲

dk2

N2
.

As for the lower bound, since (Sλ)i,i ∼ 1
N for large N , we have

tr(M2) ≳
dk2

N2
,

which completes the proof.

Appendix D. Additional Technical Lemmas

In our proofs, we used the following general lemmas on exchangeability.
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Lemma 25 Let µ1:N , ν1:N be two exchangeable measures over Rd×N . For any k ≤ N ,

W2
2 (µ

1:k, ν1:k) ≤ k

N
W2

2 (µ
1:N , ν1:N ) .

Proof Let (X1:N , Y 1:N ) be optimally coupled for µ1:N and ν1:N . For each subset S ⊆ [N ] of size
k, it induces a coupling (XS , Y S) of µ1:k and ν1:k (by exchangeability). In particular, the law of
(XS, Y S), where S is an independent and uniformly random subset of size k, is also a coupling of
µ1:k and ν1:k. Hence,

W2
2 (µ

1:k, ν1:k) ≤ E[∥XS − Y S∥2] = 1(
N
k

) ∑
|S|=k

E[∥XS − Y S∥2]

=
1(
N
k

) N∑
i=1

∑
|S|=k : i∈S

E[∥Xi − Y i∥2] =
(
N−1
k−1

)(
N
k

) N∑
i=1

E[∥Xi − Y i∥2]

=
k

N
W2

2 (µ
1:N , ν1:N ) ,

which completes the proof.

Lemma 26 (Information Inequality (Csiszár, 1984)) If X 1, . . . ,XN are Polish spaces and µ1:N ,
ν1:N are probability measures on X 1×· · ·×XN , where ν1:N = ν1⊗· · ·⊗νN is a product measure,
then for the marginals µi of µ, it holds that

N∑
i=1

KL(µi ∥ νi) ≤ KL(µ1:N ∥ ν1:N ) .

In particular when µ1:N , ν1:N are both exchangeable, this states that KL(µ1 ∥ ν1) ≤ 1
N KL(µ1:N ∥

ν1:N ).

Note that Lemma 26 follows from the chain rule and convexity of the KL divergence.

Appendix E. Sampling Guarantees

Here, we show how to obtain the claimed rates in §4. We begin with some preliminary facts.

KL divergence guarantees. To obtain our guarantees in KL divergence, we use the following
lemma.

Lemma 27 (Zhang et al. (2023, Proof of Theorem 6)) Let µ̂, µ, and π be three probability mea-
sures, and assume that µ satisfies (LSI) with constant CLSI(µ). Then,

KL(µ̂ ∥ π) ≤ 2χ2(µ̂ ∥ µ) + KL(µ ∥ π) + CLSI(µ)

4
FI(µ ∥ π) .

We instantiate the lemma with µ̂1:N , µ1:N , and π⊗N respectively. In the setting of Theorem 5, it
is seen that KL(µ1:N ∥π⊗N ) and CLSI(µ

1:N )FI(µ1:N ∥π⊗N ) are of the same order and can be made at
most Nε2 if we take N ≍ κ4d/ε2. Thus, if we have a sampler that achieves χ2(µ̂1:N ∥µ1:N ) ≤ Nε2,
it follows from exchangeability (Lemma 26) that KL(µ̂1 ∥ π) ≲ ε2.
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Guarantees using the sharp propagation of chaos bound. Here, we impose Assumptions 1, 2, 3,
and 9. It follows from Theorem 4 that N = Θ̃(

√
d/ε) suffices in order to make

√
α/σW2(µ

1, π) ≤ ε.
For the first term, we use exchangeability (Lemma 25) to argue that

W2(µ̂
1, µ1) ≤ N−1/2W2(µ̂

1:N , µ1:N ) ,

and hence we invoke sampling guarantees to ensure that
√
α/σW2(µ̂

1:N , µ1:N ) ≤ N1/2ε under (LSI).

• LMC: We use the guarantee for Langevin Monte Carlo from Vempala and Wibisono (2019).

• MALA–PS: We use the guarantee for the Metropolis-adjusted Langevin algorithm together
with the proximal sampler from Altschuler and Chewi (2023). Note that the iteration complex-
ity is Õ(κd1/2N1/2), and we substitute in the chosen value for N .

• ULMC–PS: Here, we use underdamped Langevin Monte Carlo to implement the proximal
sampler. To justify the sampling guarantee, note that since logµ1:N is β-smooth, if we choose
step size h = 1

2β for the proximal sampler, then the RGO is β-strongly log-concave and
3β-log-smooth. According to Altschuler and Chewi (2023, Proof of Theorem 5.3), it suffices
to implement the RGO in each iteration to accuracy N1/2ε/κ1/2 in

√
KL. Then, from Zhang

et al. (2023), this can be done via ULMC with complexity Õ(κ1/2d1/2/ε). Finally, since the
number of outer iterations of the proximal sampler is Õ(κ), we obtain the claim.

• ULMC+: Here, we use either the randomized midpoint discretization (Shen and Lee, 2019) or
the shifted ODE discretization (Foster et al., 2021) of the underdamped Langevin diffusion. We
also replace the LSI assumptions (Assumptions 2 and 9) with strong convexity (Assumption 4).

Guarantees under strong displacement convexity. Here, we impose Assumptions 1 and 4.
As discussed above, to obtain KL guarantees, we require log-concave samplers that can achieve
χ2(µ̂1:N ∥ µ1:N ) ≤ Nε2. ForW2 guarantees, by Theorem 5 we take N ≍ κ2d/ε2 and we require
log-concave samplers that can achieve

√
α/σW2(µ̂

1:N , µ1:N ) ≤ N1/2ε.

• LMC: For Langevin Monte Carlo, we use the χ2 guarantee from Chewi et al. (2022) and the
W2 guarantee from Durmus et al. (2019).

• ULMC: For underdamped Langevin Monte Carlo, we use the χ2 guarantee from Altschuler
and Chewi (2023).

• ULMC+: Here, we use the W2 guarantees for either the randomized midpoint discretiza-
tion (Shen and Lee, 2019) or the shifted ODE discretization (Foster et al., 2021) of the
underdamped Langevin diffusion.

Guarantees in the general McKean–Vlasov setting. In the setting of Theorem 7, we take
N ≍ κd/ε2. We use the same sampling guarantees under (LSI) as in the prior settings.

We also note that in order to apply the log-concave sampling guarantees, we must check that
µ1:N is log-smooth. This follows from Assumption 6. Indeed,

∥∇ logµ1:N (x1:N )−∇ logµ1:N (y1:N )∥ = 2

σ2

√√√√ N∑
i=1

∥∇W2F(ρx1:N , xi)−∇W2F(ρy1:N , yi)∥2
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≤ 2
√
2β

σ2

√√√√ N∑
i=1

(
∥xi − yi∥2 +W2

1 (ρx1:N , ρy1:N )
)

≤ 4β

σ2
∥x1:N − y1:N∥ .
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