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Abstract
We consider the long-standing question of finding a parameter of a class of probability distributions
that characterizes its PAC learnability. While for many learning tasks (such as binary classification
and online learning) there is a notion of dimension whose finiteness is equivalent to learnability
within any level of accuracy, we show, rather surprisingly, that such parameter does not exist for
distribution learning.

Concretely, our results apply for several general notions of characterizing learnability and for
several learning tasks. We show that there is no notion of dimension that characterizes the sample
complexity of learning distribution classes. We then consider the weaker requirement of only char-
acterizing learnability (rather than the quantitative sample complexity function). We propose some
natural requirements for such a characterization and go on to show that there exists no characteri-
zation of learnability that satisfies these requirements for classes of distributions. Furthermore, we
show that our results hold for various other learning problems. In particular, we show that there is
no notion of dimension characterizing PAC-learnability for any of the tasks: classification learning
w.r.t. a restricted set of marginal distributions and learnability of classes of real-valued functions
with continuous losses.
Keywords: List of keywords

1. Introduction

The celebrated ‘fundamental theorem of statistical learning’ provides a clean characterization of
PAC learnability of binary classification in terms of the combinatorial Vapnik Chervonenkis dimen-
sion (VC-dimension) (Blumer et al., 1989). Furthermore, the learning rates for any class H of
binary valued functions are fully determined (up to constants) by the VC-dimension of that class.

That result sparked a quest for notions of dimension that similarly characterize the learnability
of other learning tasks. For some tasks, such as online learning of binary classifiers such dimen-
sions have indeed been established. For other statistical learning tasks, some parameters have been
proposed but not proven to provide the required characterizations.

In contrast, the results of (Ben-David et al., 2017) showed for the first time that for some type of
problems, such as EMX learnability1 no such characterization can be proved to exist by the common
axioms of mathematics (the ZFC set theory).

In this paper, we investigate the existence of characterizing dimensions for several statistical
learning problems for which that question remained open (most notably the learnability of classes
of discrete probability distributions). We show that, quite surprisingly, no such characterizations

1. EMX, or General Statistical Learning, is the problem in which given a class of random variables and an i.i.d. sample
generated by some unknown probability distribution P , the learner aims to find a member of that class that has close
to maximal expectation w.r.t. P
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exist. More concretely, we show that learnability of these problem cannot be characterized in a
scale-invariant way (Like the VC-dimension characterization of binary classification). Our results
do not rule out the existence of scale-sensitive characterization that depend on fixing the accuracy
parameter.

Our results answer some long-standing open questions; The survey paper by (Diakonikolas,
2016) asks (Open Problem 1.5.1): ”Is there a “complexity measure” of a distribution class C that
characterizes the sample complexity of learning C?”

(Hopkins et al., 2023) state ”Unlike the standard model, very little is known about distribution-
family learnability. While a number of works have made some progress on this front, a characteri-
zation of learnability remains elusive despite some 30 years of effort” (end of Section 4 there).

(Benedek and Itai, 1991) ask about the characterization of PAC learnability of binary-valued
classifiers w.r.t. a given class of probability distributions. They conjectured a characterization that
was refuted by (Dudley et al., 1994). The latter repeats the question of finding a characteriza-
tion for that task. Similar open questions are later stated by (Kulkarni and Vidyasagar, 1997) and
(Vidyasagar et al., 2001). It is worth noting that the earlier proposed characterizations were scale
sensitive. Our results show that there can be no scale invariant characterization of such learnability.

Of course, results showing the non-existence of some characterization, rely on a precise defini-
tion of such ”characterizations”. The notions we discuss in this paper are generalizations of a family
of well studied learnability characterizations that refer to learnability to an arbitrarily small inac-
curacy parameter. These include the fundamental Vapnik-Chervonenkis dimension, the Littlestone
dimension, and the notions discussed for EMX learning ((Ben-David et al., 2017)). However, our
definitions do not capture the so called ‘scale sensitive’ dimensions such as γ - fat shattering (Alon
et al. (1997)). We discuss this further in subsection 3.3 below.

1.1. Our contributions

The motivation for this research was to address the question of characterizing learnability, hopefully
via some appropriate parameter of a class (a.k.a. dimension) of various tasks for which no such
characterization have been shown.

• The main finding of our work is that for the tasks listed, there can be no characterization (or
learnability indicating dimension) that meets some natural requirements.

• As a secondary contribution, we propose formal requirements on what learnability charac-
terizations should satisfy. All the notions that are known to characterize PAC learnability
(rather than some form of weak learnability, or learnability up to some fixed accuracy) meet
our proposed requirements.

• We also present two novel techniques for proving such non-existence results that we hope
would find further applications.

1.2. Paper outline

In Section 2 we give a general definition for the kind of statistical learning models we will consider
(of which distribution learning is a special case) and review some general definitions of ordered sets
which we will use later in the paper. In Section 3 we introduce our notions of characterization of
learnability. In Subsection 3.1 we introduce quantitative notions of characterization for learnability,
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which aim to characterize the sample complexity. In Section 3.2 we define a qualitative notion
characterization of learnability (Definition 5), which is only required to distinguish learnable from
non-learnable classes.

We present our main general results in Section 4: We first state a combinatorial condition of
learning tasks that implies that no quantitative characterization (characterising the sample complex-
ity of learning classes) exists. This result is shown in Theorem 10.

We then show that there are some general conditions which imply un-characterizability of a
learning task in the qualitative sense (Theorem 11).

In Section 5, we use the theorems of Section 4 to show the impossibility of characterizing dis-
tribution learning, for both quantitative (Theorem 14) and qualitative (Theorem 11) notions of char-
acterization. We also show an impossibility result for characterizing classes of distributions which
are learnable with polynomial sample complexity for a slightly more restrictive notion of qualita-
tive characterization (Theorem 21). In Section 6 we show un-characterizability by scale-invariant
dimension for other learning tasks using the results from Section 4 and following the similar con-
struction ideas as in Section 5. In particular, we show impossibility of quantitative and qualitative
characterizations of classification learning of distribution classes (Theorem 23 and Theorem 24) and
learning of real-valued functions with continuous losses (Theorem 27 and Theorem 28). Lastly, we
discuss some implications of our results and perspectives for future research in Section 7.

2. Setup

2.1. Learning model

We consider a general notion of statistical learning tasks. These consist of the following elements

• a domain Z from which the input-instances/training-instances are sampled

• A class of benchmark models H (in some cases we denote it by Q).

• A class of permissible data generating distributions P ⊂ ∆(Z), where ∆(Z) denotes all
distributions over the domain Z .

• A set of possible outputs of a learner F . Usually, H ⊆ F .

• A loss/ approximation measure L : F × ∆(Z) → R+
0 (where R+

0 denotes the set of non-
negative real numbers).

The approximation error of a class H w.r.t. some data generating distribution P is defined as
opt(H,P ) = infh∈H L(h, P ).

Definition 1 (PAC learnability) The setup that we address here is more general than the common
PAC learning setup in that we consider a class of permissible data generating distributions on top
of the commonly discussed class of models. In the definition below we refer to a fixed set of learner
outputs F and a fixed loss function L : F ×∆Z → R+

0 .

• A pair of classes H × P is α-agnostic PAC learnable w.r.t. to L : F ×∆Z → R+
0 , if there

is a learner A :
⋃

m∈NZm → F and a sample complexity function mα
H : (0, 1)2 → N, such

that for every ϵ, δ > 0, every P ∈ P and every m ≥ mα
H(ϵ, δ), we have

L(A(S), P ) ≤ α · opt(H,P ) + ϵ
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with probability 1− δ over S ∼ Pm.

We omit the parameter α in the definition when we refer to α = 1.

• We denote by mH(ϵ, δ) the minimum number m that satisfies the above requirement for α = 1.

• We say a class of models H is learnable if H ×∆(Z) is learnable.

• We say H is PAC-learnable in the realizable case w.r.t. L if H × {P ∈ ∆(Z) : opt(H,P ) =
0} is PAC learnable with respect to L. We will sometimes refer to the sample complexity of
realizable learning by mrlzb to distinguish it from the sample complexity of agnostic learning.

• We say a class of distributions P is PAC-learnable with respect to L : F × ∆(Z) → R+
0 if

F × P is PAC learnable with respect to L.

We note that the standard definition PAC learning of a distribution class P with respect to total
variation(TV)-distance is captured by the above definition. In this case, we have H = P , F = ∆(Z)
and L = dTV : ∆(Z)×∆(Z) → R+

0 .

Definition 2 For a given learning task, we say that a class of outputs H ′ ⊂ F is an ϵ-approximation
for H×P w.r.t. to L, if for every (h, p) ∈ H×P , there is a h′ ∈ H ′ such that L(h′, p) ≤ L(h, p)+ϵ.
Using the same slight abuse of notation as in the definition of PAC learning, we will say that:

• H ′ is an ϵ-approximation for H if it is an ϵ-approximation for H ×∆(Z)

• H ′ is an ϵ-approximation for P if it is an ϵ-approximation for F × P

3. Notions of characterization of learning tasks

Towards showing the “characterization” of some learning tasks is impossible, we need clear defini-
tions of what such characterizations are.

We consider two common types of characterization of learning:

1. Quantitative notions that reflect the sample complexity of the learning task (the way the fun-
damental theorem of statistical learning shows that the Vapnik-Chervonenkis dimension char-
acterizes the learning rates of leaning w.r.t. a given hypothesis class).

2. Qualitative notions that distinguish between learnable and non-learnable classes of models.

Below, we propose formal requirements for both types of characterizations.
All the notions that are known to characterize PAC learnability (rather than some form of weak

learnability, or learnability up to some fixed accuracy) meet our proposed requirements. These
include VC-dimension, Littlestone dimension, Natarajan dimension and Graph dimension.

Our main results show that no such characterization is possible for a variety of learning tasks,
including the task of learning discrete distributions ((Kearns et al., 1994; Devroye and Lugosi,
2001; Silverman, 1986), learning of binary classifications w.r.t. a restricted sets of marginal dis-
tributions(Benedek and Itai (1991), Dudley et al. (1994)), and learnability of classes of real-valued
functions with continuous losses.

We now elaborate our definitions of such notions.
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3.1. Notions of quantitative characterization of statistical learning

Let C denote the family of all learnable classes w.r.t. some learning task.

Definition 3 A strong sample complexity dimension is a mapping from d : C → N ∪ {∞}, such
that a class Q of models is PAC learnable if and only if d(Q) ̸= ∞ and there are functions
f : N → N and g : (0, 1)2 → N such that for every PAC learnable class of distributions Q,
mQ(ϵ, δ) ≤ f(d(Q))g(ϵ, δ) for all (ϵ, δ) ∈ (0, 1). In other words, there is a sample complexity
upper bound function that factorizes into a factor depending only on the dimension of a class and a
factor depending only on the accuracy and confidence parameters.

Note that the fundamental theorem of statistical learning Blumer et al. (1989) shows that the
VC-dimension is a strong sample complexity dimension for binary classification.

Definition 4 A weak sample complexity dimension is a mapping from d : C → N ∪ {∞}, such
that a class Q of models is PAC learnable if and only if d(Q) ̸= ∞ and there are functions f :
N × (0, 1)2 → N such that for every PAC learnable class of distributions Q, and every (ϵ, δ) ∈
(0, 1), mQ(ϵ, δ) ≤ f(d(Q), ϵ, δ). In other words, all the information needed about a class of
distributions Q to determine (or upper bound) its sample complexity function mQ(ϵ, δ) is captured
in its dimension d(Q).

We will also sometimes refer to monotone real mappings d : C → R ∪ {∞} as ”weak sample
complexity dimensions” if there exists a corresponding f satisfying the condition in Definition 4.

Clearly, every strong sample complexity dimension is also a weak one. We also note that, for a
satisfying characterization, one might also require a lower bound of the sample complexity in terms
of f and d. However, as we are only presenting impossibility results, it suffices to show that even
this less ambitious goal is not achievable.

3.2. Notions of qualitative characterization of statistical learning

The notions of dimension that we have discussed above were quantitative - aiming to capture the
sample complexity functions of learning classes. We showed that such dimensions do not exist for
problems like distribution learning.

Lacking quantitative notions one can still seek qualitative characterizations of learnability. Namely,
conditions that distinguish learnable classes from non-learnable ones. In the case of binary classifi-
cation tasks, the distinction between finite and infinite VC-dimension serves as such a characteriza-
tion.

Definition 5 A finitary characterization of learnability for a learning task is a countable set of
formulas2 W such that:

1. A class H is not learnable if and only if it satisfies all the formulas in W .

2. formally, these are properties of the learning problem expressed as first order formulas in many-sorted logic that has
types/sorts for elements of the class of models F , generating distributions (members of P), domain elements and
rational numbers for values of the loss function L. For brevity we keep it be clarified by the examples below.
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2. For every α ∈ W and every H that satisfies α there is a finite subset Hα ⊆ H such that for
every H ′, if Hα ⊆ H ′ then H ′ satisfies α.

We say that a finitary characterization W is uniformly bounded if for every α ∈ W there is
a finite number nα such that for every H satisfying α there is a subset Hα ⊆ H as above of
size at most nα.

Note that most (if not all) of the known characterizations of learnability of learning tasks are
finitary.
Examples:

1. The characterization of binary classification learning by VC-dimension; The characterizing
W can be any set that contains the formulas stating ”H shatters a set of size d” for infinitely
many d’s.

2. The characterization of online learnability by the Littlestone dimension; The characterizing
W can be any set that contains the formulas stating ”H L-shatters a tree of depth d” for
infinitely many d’s. dimension characterizing robust learning

3. The characterization of multi-class learnability by the finiteness of the Natarajan dimension,
of by the finiteness of the graph dimension.

4. The characterizations by a combinatorial dimension based on the one-inclusion graph. In
these characterizations, the complexity of a problem is demonstrated by a finite graph (the
1-inclusion graph). However, there is no a-priori bound to the sizes of these graphs. The
resulting complexity parameters are reflected by either the maximum degree or maximum
out-degree of some orientation of that graph. Such a characterizations were shown for multi-
class learning Daniely and Shalev-Shwartz (2014), Brukhim et al. (2022), partial concept
classes Alon et al. (2021), and adversarially robust learning Montasser et al. (2022).

There are also several conjectured characterizations that fall into this category. For example,
characterizing the learnability of a class of probability discrete distributions by the finiteness of the
VC-dimension of the Yatracos sets induced by that class. For a class F of functions from X to R,
their Yatracos class is the family of subsets of X defined as

Y (F ) := {{x ∈ X : f1(x) ≥ f2(x)} for some f1, f2 ∈ F}

.

3.3. Comparing the different notions of characterization

The two types of characterizations introduced above are related but none of them implies the other.
Sample complexity dimensions do not restrict the format (or syntax) of a characterization - the di-
mension function d can be any function (from classes to reals or natural numbers). In this respect,
the notion of finitary characterization is more restrictive - it restricts the format of the characteriza-
tion.

On the other hand, finitary characterizations are weaker, in the sense that they do not provide any
information about learning rates. They are only required to distinguish learnable from non-learnable
classes.
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In many cases, however, there are characterizations that meet both definitions. Every notion
of sample complexity dimension where the statements of the form d(H) ≥ k have finite size
‘evidences’ (like a set of members of H shattering a domain subset). In such case the finitary
characterization set W is just the set of statements {d(H) ≥ k : k ∈ N}.

The notion of finite character dimension of Ben-David et al. (2017) has two definitions there.
The first one requires that there is a class parameter, D(F ) such that a class F is PAC learnable if and
only if D(F ) is finite. They also require finite character. Namely, that the parameter (or dimension)
D(F ) has a “finite” character if for every d ∈ N and a class F , the statement D(F ) ≥ d can be
demonstrated by a finite set of domain points and a finite set of members of F ”. This definition is
clearly equivalent (for classes of functions) to our notion of finitary characterization.

The second definition there, requiring that the statements D(F ) ≥ d can be expressed by certain
first-order formulas, is more syntactically restrictive than our definition, but on the other hand, more
lenient as it does not require the existence of finite evidence sets.

Finally, it is worth mentioning again that all the types of characterizations that we discuss in the
paper refer to PAC Learnability. Namely, learnability to arbitrarily small accuracy parameter. In se-
tups where no such a characterization is known to exist, there is also a discussion of scale-sensitive
learnability dimensions (e.g., Alon et al. (1997)). Scale-sensitive characterizations allow setting a
separate condition for each level of accuracy. Our results do not rule out scale-sensitive characteri-
zations. One should note that in setups satisfying Boosting a scale-sensitive characterization is also
a PAC learnability characterization (and therefore ruled out by our results).

4. General un-charachterizability results

Our main tool for showing the impossibility of having sample complexity dimensions that provide
a quantitative characterization for learning tasks is the basic notion of cofinality of an ordered set.
We start by recalling its definition and some basic properties:

4.1. Some notions of ordered sets

Definition 6 (Cofinality)
Let (X,≤) be an ordered set.

• For subsets A,B ⊆ X , we say that A is cofinal in B if for every b ∈ B there exists some
a ∈ A such that b ≤ a.

• The cofinality of an ordered set (X,≤) is the minimal cardinality of a subset A that is cofinal
in X .

Note that for subsets A,B,C of X , if A is cofinal in B and B is cofinal in C then A is cofinal in C.

Definition 7 (Dominance ordering of functions) Let (X,≤X), (Y,≤Y ) be linearly ordered sets
where X has no maximal element. For functions f, g : X → Y , we say that f eventually dominates
g if there exists some x ∈ X such that for every x′ ∈ X , if x ≤X x′ then g(x′) ≤Y f(x′). We
denote this relation by g ≤ed f .

Claim 1 Consider NN (the set of all functions from the natural numbers to natural numbers). The
cofinality of (NN,≤ed) is uncountable.
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Proof Consider any countable A ⊆ NN, let {gn : n ∈ N} be an enumeration of the members of A.
Define f : N → N by f(n) = max{gi(n) : i ≤ n} + 1. Clearly f dominates every member of A
(and no member of A dominates f ) showing that A is not cofinal in (NN,≤ed).

4.2. A condition implying no qualitative characterization

The next lemma applies this notion to the existence of characterizing sample complexity (quantita-
tive) dimensions.

Lemma 8 Let C denote the family of all learnable classes w.r.t. some learning task. For any given
learnable class Q consider the function mQ(

1
· ,

1
7) : N → N that maps a natural number k to

mQ(
1
k ,

1
7).

If the set {mQ(
1
· ,

1
7) : Q ∈ C} is cofinal in NN (under the eventual dominance ordering) then

there exists no weak sample complexity dimension for that task.

Proof Let d : C → N be a weak sample complexity dimension. For any d ∈ N, let f ′
d(k) =

f(d, 1/k, 1/7) for all k. {f ′
d : Q ∈ C} is cofinal in the set of sample complexity functions

{mQ(1/·, 1/7) ∈ NN : Q ∈ C} (under the ≤ed ordering of functions). Thus the cofinality of
({mQ(1/·, 1/7) : N → N : Q ∈ C},≤ed) is at most countable. Since we assume that the set
{mQ(

1
· ,

1
7) : Q ∈ C} is cofinal in NN, we get a contradiction to the uncountable cofinality of NN.

Definition 9 For an ordered set (X ,≤), we say that a notion of dimension d : C → X is monotonic
if for every pair of classes Q1,Q2, the implied sample complexity functions f(d(Q), 1/k, 1/7) are
monotonically increasing. Namely,

d(Q1) ≥ d(Q2) implies that f(d(Q1), 1/k, 1/7) ≥ed f(d(Q2), 1/k, 1/7).

Theorem 10 If the set {mQ(
1
· ,

1
7) : Q ∈ C} is cofinal in NN (under the eventual dominance order-

ing) then there exists no monotonic real-valued function that is a weak sample complexity dimension
for that task.

Proof Noting that the real numbers have countable cofinality, the proof of the natural-valued dimen-
sion applies to the monotonic real-valued dimension as well.

4.3. A condition implying no sample complexity characterization

We now state and prove our main general result concerning our notion of qualitative characteriza-
tions of learnability.

Theorem 11 The learnability of any learning task that satisfies the following two properties cannot
be characterized by a finitary characterization.
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1. Every finite union of learnable classes of hypotheses is learnable.

2. There exists a learnable class H0 and non-learnable classes {Hk : k ∈ N} such that for
every k ∈ N, H0 is an ϵk approximation of Hk and limk→∞ ϵk = 0.

Proof Assume, b.w.o.c. that W is a finitary characterization of the learning task. Let W = {αk :
k ∈ N} be any enumeration of W . For each Hk let Ĥk be a finite subset of Hk be such that
every H ⊃ Ĥk satisfies αk and let Ĥ =

⋃
k∈N Ĥk. On one hand, since for every k, Ĥk ⊆ Ĥ , Ĥ

satisfies every αk and is therefore not learnable (by the first requirement from a characterizing W ).
Towards a contradiction, let us show that Ĥ is learnable. This holds because given any ϵ > 0, the
set Kϵ = {k : ϵk ≥ ϵ/2} is a finite set. Therefore by our assumptions on the learning task, the class
H0 ∪

⋃
k∈Kϵ

Ĥk is learnable. Therefore, for any given δ there is a learner A and some m(ϵ/2, δ)
so that training samples of larger size guarantee (ϵ/2, δ) success for A on such samples. Since H0

is an ϵ/2 approximation to each Hk for which k ̸∈ Kϵ (w.r.t. the given learning instance) so being
ϵ/2 off the minimum loss minimizer on H0 implies being within ϵ of the loss minimizer in Ĥ .

5. Impossibility of Characterizing Distribution Learning

For now, we consider learning over the domain X = N. Thus all subsets of our domain are mea-
surable. We consider learning of distribution classes with respect to total variation distance, i.e. our
distance measure over distributions is given by TV (p1, p2) = supA⊂X |p1(A)−p2(A)|. Concretely,
we consider the following PAC learning task.

Definition 12 ( (realizable) PAC learning of a distribution class) Silverman (1986); Devroye and
Lugosi (2001) We say that a class Q of probability distributions over some domain set X is PAC
learnable if there exists a function A :

⋃
m∈NXm → P and a function mrlzb

Q : (0, 1)2 → N such
that for every ϵ, δ ∈ (0, 1)2 and every Q ∈ Q, if m ≥ mrlzb

Q (ϵ, δ) then

PS∼Qm [TV (A(S), Q) > ϵ] ≤ δ.

Definition 13 (3-agnostic PAC learning of distribution class) Silverman (1986); Devroye and Lu-
gosi (2001) We say that a class Q of probability distributions over some domain set X is PAC learn-
able if there exists a function A :

⋃
m∈NXm → P and a function mQ : (0, 1)2 → N such that for

every ϵ, δ ∈ (0, 1)2 and every Q ∈ Q, if m ≥ mQ(ϵ, δ) then

PS∼Qm [TV (A(S), Q) > 3 · inf
Q′∈Q

(TV (Q,Q′)) + ϵ] ≤ δ.

We note that these definitions are special cases of the PAC learning definition in the Setup Section
(Definition 1), where Z = X = N, F = ∆(N), Q = H and L = TV : ∆(N) → ∆(N) → R+

0 .
We now state the two main theorems of this section, showing the impossibility of both quanti-

tative as well as quantitative characterizations of distribution learning.

Theorem 14 There is no weak sample complexity dimension for distribution learning (neither in
the realizable nor in the 3-agnostic case of distribution learning).
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Corollary 15 There exist no monotonic real-valued function that is a weak sample complexity di-
mension for distribution learning.

Corollary 15 follows directly from Theorem 14 and Theorem 10.

Theorem 16 The learnability of classes of discrete distributions cannot be characterized by a fini-
tary characterization. This statement holds both for realizable PAC learnability and for 3-agnostic
PAC learnability.

We note, that while we only consider constructions of discrete distributions in this section, the
corresponding results on uncharacterizability for general distribution learning follow directly from
these results.

We will show these theorems using Lemma 8 and Theorem 11 respectively. In order to do
so, we need to construct classes of distributions that meet the requirements of these more general
results. We will first describe a construction that can be used for both theorems. We then show
some properties of this construction which will be needed for both theorems, namely an upper
bound (Lemma 18) and a lower bound (Lemma 19) on its sample complexity. We will then state the
proofs of Theorem 14 and Theorem 16. Lastly, we will end the section with discussing an extension
of the qualitative impossibility result to classes of distributions with polynomial sample complexity.

Throughout this section we will also need the fact that finite classes are learnable. We state
Theorem 3.4 from Ashtiani et al. (2018), which is a slight rephrasing of Theorem 6.3 from Devroye
and Lugosi (2001).

Theorem 17 Ashtiani et al. (2018),Devroye and Lugosi (2001) For any finite class of distributions
Q = {q1, . . . , qm}, there exists a deterministic algorithm which 3-agnostic PAC learns Q with
sample complexity mQ(4ϵ, δ) ≤ log(3m2)+log(1/δ)

2ϵ2
.

We will now describe our construction. For a natural number n ∈ N and a (usually small)
mixture parameter γ ∈ (0, 1), we define the finite class,

Pγ,n = {(1− γ)δ0 + γUA : A ⊂ {1, . . . , n}},

where δ0 denotes the distribution with all its mass on point 0 and UA denotes a uniform distri-
bution over the set A. Intuitively, this class thus consists of a heavy non-flexible part ((1 − γ)δ0)
and a highly flexible part with low weight (γUA). For any distribution p the TV-distance to an ele-
ment of Pγ,n only depends in a small part on the low-weight component. However, the low-weight
flexible part, will make this class hard to learn for small ϵ. We now take union over these classes
Pγ,n for different combinations of γ and n, which allows us to control the behaviour of the sample
complexity and fulfill the requirements for both. For sequences γ̄ : N → [0, 1] and n̄ : N → N, we
define

Qγ̄,n̄ =

∞⋃
i=1

Pγ̄(i),n̄(i). (1)

We furthermore define γ̄−1(ϵ) = argmin{i ∈ N : for every j ≥ i, γ̄(j) ≤ ϵ} and nmax(i) =
maxj∈{1,...i} n̄(j). We will now show that infinite classes of this kind can be learnable, even as n
grows to infinity (and thus making the class in some sense ”infinitely flexible”), by controlling the
mixture parameter γ.
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Lemma 18 Let Q = Qγ̄,n̄ with limi→∞ γ̄(i) = 0. Then Q is 3-agnostic PAC learnable with
sample complexity mQ(ϵ, δ) ≤ (128(log(3(γ̄−1( ϵ4)nmax)γ̄

−1( ϵ4) + 1)n) + log(1δ )))/(ϵ
2).

Proof Assume limi→∞ γ̄(i) = 0. Let ϵ > 0. Then for every ϵ
4 > 0 there is an N , such that

for every N ′ ≥ N , γ̄(N ′) < ϵ
4 . We can now focus on 3-agnostic learning the finite class Q′ =

{δ0} ∪ (
⋃N

i=0 Pγ̄(i),n̄(i)), as learning as for any q ∈ Qγ̄,n̄, there is p ∈ Q′ with TV (p, q) < ϵ
4 . Thus

by triangle inequality for any q′ ∈ ∆(Z), we get infp∈Q′ TV (p, q′) ≤ infq∈Q TV (q, q′) + ϵ
4 . Thus

if we have a 3-agnostic PAC learner A for Q′ with sample complexity mQ′( ϵ4 , δ), we can use it as
a PAC learner for Q with sample complexity mQ(ϵ, δ). Now using Theorem 17, we can conclude

that Q is learnable with sample complexity mQ(ϵ, δ) ≤ 128
log(3(γ̄−1( ϵ

4
)nmax(γ̄−1( ϵ

4
)))2)+log(1/δ)

ϵ2
.

However, we can also lower bound the sample complexity of these kinds of classes in the fol-
lowing way.

Lemma 19 For Q = Pγ,4n, we have mQ(
γ
8 ,

1
7) ≥ mrlzb

Q (γ8 ,
1
7) ≥ n.

The construction and argument follow from a common no-free lunch style argument. For details we
refer the reader to Section B in the Appendices (in the supplementary file).

We can now use this construction and bounds to prove Theorem 14.
Proof [Proof of Theorem 14] Based on the confinality considerations described above, it suffices to
show that the set {mQ(1/·, 1/7) ∈ NN : Q ∈ C} is cofinal in NN. Let g ∈ NN be arbitrary. Now
consider the class Q = Qγ̄,n̄ as constructed in the previous section, where γ̄(k) = 8

k and n̄(k) =
8(g(k) + 1). Then according to Lemma 18, Q is learnable, as limk→∞ γ̄(k) = 0. Furthermore,
we know that for every k ∈ N we have P 8

k
,n̄(k) ⊂ Q. Thus, by Lemma 19, for every k ∈ N:

g(k) < n̄(k)
4 ≤ mQ(

1
k ,

1
7). Thus, g ≤ed mQ(

1
· ,

1
7). Therefore {mQ(1/·, 1/7) : Q ∈ mC} is indeed

cofinal in NN. As the bounds of Lemma 18 and Lemma 19 both hold for the realizable distribution
learning, we can prove that {mrlzb

Q (1/·, 1/7) : Q ∈ mC} is cofinal in NN by the same construction
and argument. Thus, we have proved our claim.

We can now focus our attention the impossibility of qualitative characterization of distribution
learning and finally prove Theorem 16.
Proof [Proof of Theorem 16] We only need to show that the two conditions from Theorem 11
are fulfilled by the problem of distribution learning. Condition 1 holds, as according to Theorem 17
every finite class of distributions is learnable. This means we can define a learner for any finite union
of learnable sets, by running the learners for each of the learnable sets on the input to create a finite
set of candidates and then learn the candidate set. Condition 2 holds by the following construction:
H0 = {δ0} and Hk = Qγ̄n,n̄, as defined in equation (1), where γ̄k(i) = 1/k and n(i) = i. It is
clear that, H0 is an ϵk-approximation of Hk for ϵk = 1/k as all elements of Hk have k−1

k mass on
the point 0. Furthermore we have limk→∞ ϵk = 0. Lastly, we have to argue that every Hk is not
learnable. We now note that for every n ∈ N the class Pϵk,4n ⊂ Hk (as defined in Section 3). Thus
we can apply Lemma 19 to obtain, for every n ∈ N, mHk

( ϵk8 ,
1
7) ≥ n. We note that any instance of

the word ”learnable” in this proof can either mean ”realizeale PAC learnable” or ”3-agnostic PAC
learnable”. The proof is correct in both cases.

11
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5.1. Polynomial complexity distribution learning

Another, more restricted definition of learning, is one that requires specific bounds on the sample
complexity.

Definition 20 We say a class H is polynomially PAC learnable, if mH(ϵ, δ) ∈ poly(1/ϵ, 1/δ).

We note, that for many learning tasks, like binary classification, classes are polynomially PAC learn-
able, if and only if they are PAC learnable. However, we have seen in this section that for the task
of distribution learning, there are PAC learnable classes which are not polynomially PAC learnable.
Arguably, in many scenarios one is more interested in polynomially learnable classes. We therefore
pose the question, whether it is possible to give a qualitative characterization of polynomially learn-
able classes. In the case of distribution learning, we can give a partial answer, showing that there is
no uniformly-bounded finitary characterization of polynomial distribution learning.

Theorem 21 There is no uniformly-bounded finitary characterization of polynomial distribution
learning (w.r.t TV-distance). This result holds for both the realizable and the 3-agnostic case of
distribution learning.

6. Impossibility of Characterizing Other Learning Tasks

In this section we consider two learning problems different from distribution learning. In Section 6.1
we consider classification learning for fixed distribution classes, as proposed by Benedek and Itai
(1991), and in Section 6.2 we consider learning with real-valued functions and real-valued losses.
For both of theses settings we show that there is no scale-invariant dimension which characterizes
these learning tasks. Our results do not rule out the existence of scale-sensitive characterization that
depend on any fixed accuracy parameter.

6.1. Classification Learning with respect to a restricted class of distributions

The standard PAC learning definitions for classification learning are ‘distribution free’. Namely,
learnability requires success with respect to any data-generating probability distributions. Benedek
and Itai (1991) proposed a variant of that notion that requires success only w.r.t. some fixed prob-
ability distribution. They then raise the idea of extending the definitions by considering a class of
distributions. This idea is then picked up in Dudley et al. (1994) with the following definition:

Definition 22 A hypothesis class H is PAC-learnable with respect to a class of marginal distribu-
tions D, if there is a learner A and a sample complexity function mH,D : (0, 1)2 → N, if for every
ϵ, δ > 0, every D ∈ D and every labeling rule h ∈ H and every m ≥ m

0/1
H,D(ϵ, δ), with probability

1− δ over S ∼ (D,h)m, we have

L
0/1
P (A(S)) < ϵ.

(where L
0/1
P is the usual 0/1 loss).

We will say a class P = {(D,h) : D ∈ D, h ∈ H} of distribution classes is classification
learnable, if the class of labelling rules H is learnable with respect to D.

12
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We will denote D0/1 = {(D,h) : D ∈ D,h ∈ Hall}, where Hall = 2X is the class of all labelling
rules. We note, that while in this definition, the marginal and the labelling rules are independent, an
impossibility for characterizing this learning problem yields an impossibility for the more general
setting in which the marginal contains information about the labelling rule.

We will now construct classes and show uncharacterizability of both of these learning problems
in the sense of the previous chapters. Thus we show that the learning problem proposed by Benedek-
Itai(Benedek and Itai (1991)) cannot be characterized in the sense of our notions of scale-invariant
characterizing dimension. Using our results from the previous sections, we can get the following
uncharacterizability results for this learning task.

Theorem 23 There is no weak sample complexity dimension for classification learning of distri-
bution classes.

Theorem 24 There is no finitary characterization of classification learning for distribution classes.

Theorem 23 follows from Lemma 8 and Theorem 24 follows as a corollary of Theorem 11. Both
theorems use the same class Qγ̄,n̄ from Section 5. That is we consider learning the class of all
labelling functions Hall = 2X with respect to the class of marginal distributions Qγ̄,n̄. In other
words we consider the classification learnability of the class Q0/1

γ̄,n̄ = {(D, f) : D ∈ Qγ̄,n̄, f ∈
Hall}. For the proof of Theorem 16 we use the classes H0 = {ha : a ∈ {0, 1}, where ha(x) = a

for all a ∈ X} and Hk = Q0/1
γ̄k,n̄ = {(D,h), D ∈ Qγ̄k,n̄, h ∈ Hall}, where for all i ∈ N, we have

n̄(i) = i and γ̄k(i) = 1
k . We note that H0 is an ϵ-appoximation for every Hk in the sense of the

second bullet-point of Definition 2.

Lemma 25 If limi→∞ ¯γ(i) = 0, then the class Hall = 2X of all labelling rules is PAC learnable
with respect to the class Q = Qγ̄,n̄ is classification PAC learnable.

The proof follows the same idea as the proof of Lemma 18. The proof can be found in Section B.
Furthermore, we can show a lower bound on the sample complexity for a given Pγ,2n.

Lemma 26 For Q = Pγ,2n and H = Hall, we have m
0/1
H,Q(

γ
8 ,

1
7) ≥ n.

This Lemma follows directly from the proof of the no-free-lunch theorem in Shalev-Shwartz
and Ben-David (2014).

These two lemmas can now be used to show the theorems of this section. For more details on
the proof on this section we refer the reader to Section B.

6.2. Learning Real-Valued Functions with Real-Valued Losses

Let Z = X × Y . We will now PAC learning of real-valued functions with continuous losses. Let
ℓg : 2X ×X ×Y → R+

0 be a (point-wise) loss, such there is a continuous function g : R → R with

• for all x ∈ X , y ∈ Y, h ∈ 2X : ℓg(h, x, y) = g(|h(x)− y|).

• g(0) = 0, i.e. perfect prediction incurs loss 0.

• There is a > 0, such that g(a) > 0, i.e. some level of miss-estimation will incur positive loss.

13
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We now analyse PAC-learnability of a class H ⊂ YX with respect to Lg(h, P ) = E(x,y)∼P [ℓ
g(h, x, y)].

We now state the main theorems of this subsection.

Theorem 27 There is no weak sample complexity dimension for PAC learning real-valued function
classes with respect to Lg (in neither the realizable nor the 1-agnostic case).

Theorem 28 There is no finitary characterization of PAC learning real-valued function classes
with respect to Lg (in neither the realizable nor the 1-agnostic case).

We note that these results do not stand in contradition to the positive result on characterizing
learnability for real-valued functions given by Alon et al. (1997), as this result gives a characteriza-
tion for ϵ-weak learnability for every ϵ, rather than a characterization for PAC-learnability. To show
our theorems, we need a similar construction as before, which we then use to apply Lemma 8 and
Theorem 11 respectively.

The construction for this result is similar in spirit to our previous constructions and can be found
in Section A.

7. Discussion

We showed the uncharacterizability of learnability a variety of learning tasks, with respect to notions
of characterization that meet some intuitive requirements. We discussed both the quantitative and
quantitative characterizations and proposed some general properties of learning tasks that imply that
their learnability is not captured by such characterizations.

Our work inspired by the work of Ben-David et al. (2017) which was the first to show the
existence of a learning task that cannot be characterized. While their work laid the groundwork and
gave a first formal definition of general dimensions for statistical learnability, we extended those
definitions and also proposed a definition for quantitative characterizability.

Our work expands the understanding of uncharacterizability of learning problems in crucial
ways. The results from Ben-David et al. (2017) applied to a newly defined learning task - Expec-
tation Maximization - and relied on the existence of classes whose learnability is undecidable in
ZFC. In contrast, our results apply to several natural learning tasks whose characterizability have
thus far eluded the community (Diakonikolas (2016)) and are ‘absolute’ in not referring to notions
of provability.

Another distinction to the EMX learning task in Ben-David et al. (2017) is the fact that the
definition of EMX learning requires learning to be proper, i.e. the output of a successful learner
needs to be element of the class that is being learned. Without this requirement the EMX setting
becomes trivial, as any class can be learned by the constant learner that outputs the whole domain
set for any input. In contrast, our results address the more general case of learning (and can also be
easily extended to the proper case as well).

We note that all of our results rely on the construction of a sequence ϵ-weakly learnable classes
for decreasing ϵ, which are not fully PAC learnable. For most tasks with known characterizations,
there is an equivalence between weak learning and PAC learning. It might be interesting to further
explore the connection between that equivalence and the characterizability of a learning problem.

We believe that we have not exhausted the implications of our approach and that our definitions
of characterizations and our techniques are also applicable to more learning tasks.
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Appendix A. Learning Real-Valued Functions with Real-Valued Losses (Extended)

This section is an extended version of Section 6.2. We will restate all definitions and theorems of that
section and elaborate on the construction needed to prove the theorems. We will now PAC learning
of real-valued functions with continuous losses. Let ℓg : 2X ×X ×Y → R+

0 be a (point-wise) loss,
such there is a continuous function g : R → R with

• for all x ∈ X , y ∈ Y, h ∈ 2X : ℓg(h, x, y) = g(|h(x)− y|).

• g(0) = 0, i.e. perfect prediction incurs loss 0.

• There is a > 0, such that g(a) > 0, i.e. some level of miss-estimation will incur positive loss.

We now analyse PAC-learnability of a class H ⊂ YX with respect to Lg(h, P ) = E(x,y)∼P [ℓ
g(h, x, y)].

Definition 29 We say a class H ⊂ YX is 1-agnostic PAC-learnable w.r.t. Lg, if there exists a
learner A and a sample complexity function mH : (0, 1)2 → N, such that for every ϵ, δ > 0 and
every distribution P over X × Y , we have for every m ≥ mH(ϵ, δ),

PrS∼Pm [Lg
P (A(S)) ≤ inf

h∈H
Lg
P (h) + ϵ] ≤ 1− δ.

We say a class H is PAC-learnable w.r.t. Lg in the realizable case if it is learnable with respect to
all distributions P with infh∈H Lg(h) = 0. The sample complexity in the realizable case will be
denoted by mrlzb

H .

We now state the main theorems of this subsection.

Theorem 27 There is no weak sample complexity dimension for PAC learning real-valued function
classes with respect to Lg (in neither the realizable nor the 1-agnostic case).

Theorem 28 There is no finitary characterization of PAC learning real-valued function classes
with respect to Lg (in neither the realizable nor the 1-agnostic case).

We note that these results do not stand in contradition to the positive result on characterizing
learnability for real-valued functions given by Alon et al. (1997), as this result gives a characteriza-
tion for ϵ-weak learnability for every ϵ, rather than a characterization for PAC-learnability. To show
our theorems, we need a similar construction as before, which we then use to apply Lemma 8 and
Theorem 11 respectively.

We will now state the needed construction and then prove learnability as well as a lower bound
on the sample complexity needed for the theorems. Let gmax = min{maxa>0 g(a), 1} and g−1 :
[0, gmax] → R+

0 .
For every γ ∈ [0, gmax],n ∈ N and A ⊂ {1, . . . , n}, let

fA
γ,n(x) =

{
g−1(γ) if x ∈ A

0 otherwise

Now for a fixed γ and a fixed n, we define

Fγ,n = {fA
γ,n : A ⊂ {1, . . . , n}}.
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We then define Hγ̄,n̄ for sequences γ̄ : N → [0, gmax] and n̄ : N → N, as

Hγ̄,n̄ =
∞⋃
i=1

{fA
γ,n : A ⊂ {1, . . . , n̄(i)}}.

Lemma 30 If limi→∞ ¯γ(i) = 0, then Hγ̄,n̄ is classification is 1-agnostic PAC learnable with
respect to Lg.

Lemma 31 For F = Fγ,2n, we have mF (
γ
8 ,

1
7) ≥ mrlzb

F (γ8 ,
1
7) ≥ n.

Now following the same proof strategy as for our previous results, this construction can be
used fulfill the requirements needed to prove the theorems of this section. In particular we use
Theorem 11 with classes H0 = {h0 : h0(x) = 0 for all x ∈ X} and Hk = Hγ̄k,n̄ with n̄(i) = i and
γ̄k = 1

k . We refer the reader to Section B at the end of the paper.

Appendix B. Proofs

Proof [Proof of Lemma 19] Our proof follows a typical no-free-lunch-style argument. Consider
Q′ = {(1− γ)δ0+ γUA : A ⊂ {1, . . . , 4n} and |A| = n}. We will show a lower bound of learning
this class of distributions and then conclude that this lower bound also holds for Q, as Q′ ⊂ Q. Now
let A be any learner. Furthermore, let S1, . . . Sk be the set of all sequences of size n with elements
in the set {0, . . . , 4n}. We have

ES∼qi [TV (qi,A(S))] =

k∑
j=1

qni (Sj)TV (qi,A(Sj))

Now for every Sj and every qi1 , qi2 ∈ Q′, we have that if Sj ∈ supp(qni1), then

qni2(Sj) =

{
qni1(Sj) if Sj ⊂ supp(qni2)

0 otherwise

Let us denote Cj = {x ∈ {1, . . . , 4n} : x ∈ Sj}. Furthermore for a set A = {x1, . . . , xp} with
Cj ⊂ A ⊂ {1, . . . , 4n} and |A| ≤ 2n, let Ā = {x′1, . . . , x′p′}, be such that xl1 < xl2 and x′l1 < x′l2
for l1 < l2. Now let us define gj(A) = Cj ∪{x′l ∈ Ā : xp−l ∈ A\Cj}. We note that |gj(A)| = |A|,
A ∩ gj(A) = Cj and gj(gj(A)) = A.

Now for any qi ∈ Q′, let us denote Ai = supp(qi) \ {0}. Now let us define

fj(qi) =

{
(1− γ)δ0 + γUgj(Ai) if Cj ∈ Ai

δ4n+1 otherwise.

We note that if qni (Sj) > 0, then Cj ∈ Ai and fj(fj(qi)) = qi and fj(qi) ∈ Q′. In this case we
furthermore have TV (qi, fj(qi)) ≥ γ

2 Furthermore if qni (Sj) = 0, then fj(qi)
n(Sj) = 0. Taking

both of these cases together we have for all i and for all j: qni (Sj) = fj(qi)
n(Sj).

Now we can put everything together into a no-free-lunch style argument.
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max
qi∈Q′

ES∼qi [TV (qi,A(S))] = max
qi∈Q′

k∑
j=1

qni (Sj)TV (qi,A(Sj))

≥ 1

T

T∑
i=1

k∑
j=1

qni (Sj)TV (qi,A(Sj))

=
1

2T

T∑
i=1

k∑
j=1

qni (Sj)TV (qi,A(Sj)) +
1

2T

T∑
i=1

k∑
j=1

fj(qi)
n(Sj)TV (fj(qi),A(Sj))

=
1

2T

T∑
i=1

k∑
j=1

qni (Sj)TV (qi,A(Sj)) + f(qi)
n(Sj)TV (fj(qi),A(Sj))

=
1

2T

T∑
i=1

k∑
j=1

qni (Sj)(TV (qi,A(Sj)) + TV (fj(qi),A(Sj)))

≥ 1

2T

T∑
i=1

k∑
j=1

qni (Sj)TV (qi, fj(qi))

≥ 1

2T

T∑
i=1

k∑
j=1

qni (Sj)
γ

2
=

γ

4
.

Now, by Lemma B.1 of Shalev-Shwartz and Ben-David (2014), we get

max
qi∈Q′

PS∼qni
[TV (qi,A(S)) ≥ γ

8
] = max

qi∈Q′
PS∼qni

[TV (qi,A(S)) ≥ 1− 7γ

8
]

≥ max
qi∈Q′

ES∼qni
[TV (qi,A(S))]− 1

8
7
8

≥ 1

7
.

Thus, mQ′(γ8 ,
1
7) ≥ n. Therefore mrlzb

Q (γ8 ,
1
7) ≥ n.

Proof [Proof of Theorem 21] Assume, b.w.o.c. that W is a uniformly bounded finitary charac-
terization of polynomial distribution learning. From W being uniformly bounded, we know that
for every α there is n, such that for every class H , there is a subset Hα with |Hα| ≤ n and
such that for every H ′ if H ′ ⊂ Hα, then H ′ satisfies α. Let W = {αk : k ∈ N} an enumer-
ation of W , that is ordered by the size of the corresponding nk, i.e. such that for every k ≤ k′,
we have nk ≤ nk′ . We define f(k) = k · nk Consider H0 = {δ0} and Hk = Qγ̄k,n̄ with
n̄(i) = i and γ̄k(i) = max{1/f(i), 1/f(k)}. Now Hk is not learnable as for every m ∈ N,
P1/f(k),4m ⊂ Hk, meaning that by Lemma 19 for every m, mHk

(1/(8f(k)), 1/7) ≥ m. From
the uniformly bounded finitary characterization, we know that there is Ĥk, with |Ĥk| = nk and
every H ′ if H ′ ⊂ Ĥk then H ′ satisfies αk. Let Ĥ = H0 ∪ (

⋃
k∈N Ĥk). By construction,

we have that Ĥ satisfies W . Furthermore, when aiming for (ϵ, δ)-success, it is sufficient to re-
strict our attention to learning the ϵ/4 approximation Hϵ/4 = H0 ∪ (

⋃γ̄−1(ϵ/4)
k=1 Ĥk) of Ĥ , where

γ̄−1(ϵ) = min{i : for all j > i, γ̄(j) < ϵ} = min{k : knk ≥ 1
ϵ}. Thus, |H ϵ

4
| ∈ poly(1ϵ ). From
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Theorem 17 we thus get that Hϵ/4 is polynomially learnable, which implies that Ĥ is polynomi-
ally PAC learnable w.r.t. to TV distance. Learning here can either mean 3-agnostic or realizable
learnability. The result holds for both cases.

Proof [Proof of Lemma 25] The proof is equivalent to the proof of Lemma 18. Let ϵ > 0. Q0/1
ϵ
2

=⋃
i:γ̄(i)> ϵ

2
P

0/1
γ̄(i),n̄(i). From limi→∞ γ̄(i) = 0, we know that this class is finite. For a class Q, define

the hypothesis class H(Q) = {h ∈ {0, 1}X : ∃q ∈ Q with q(x, 1) ≥ q(x, 0) if and only if h(x) =
1}. Now let us consider H = H(Q0/1

ϵ
2

). By construction, this class is finite and can therefore be PAC
learned (in the binary classification sense). Furthermore, we have constructed H in such a way that
for every q ∈ Q0/1, we can bound infh∈H L

0/1
q (h) ≤ infp∈Q ϵ

2
(TV (p, q) + infh∈H L

0/1
p (h)) ≤ ϵ

2 .
Thus, if we have a learner that (ϵ/2, δ)-successfully learns H , we can use it to successfully (ϵ, δ)
learned Q0/1 w.r.t. to L0/1.

Proof [Proof of Lemma 26]
Let us consider P ∈ P

0/1
γ,4n = {(D,h) : D = (1 − γ)δ0 + γU}. For any h ∈ 2N, we can

decompose the loss L0/1
(D,h′)(h) = (1− γ)1[h(0) ̸= h′(0)] + γL

0/1
U (h) ≥ γL

0/1
U (h). Now for every

learner A, we can derive the lower bound maxP∈Pγ,4n ES∼P [L
0/1
U,h(A(S))] ≥ 1

4 , according to the
same argument as in the no-free-lunch theorem in Shalev-Shwartz and Ben-David (2014). Thus we
have maxP∈Pγ,4n ES∼P [L

0/1
P (A(S))] ≥ γ

4 . Thus by Lemma B.1 of Shalev-Shwartz and Ben-David
(2014), we get the claimed result.

Proof [Proof of Theorem 23] Let C be the collection of all classification-learnable distribution
classes. According to Lemma 8 it is sufficient to show that {mQ(

1
· ,

1
7) : Q ∈ C} is cofinal

in NN. Let g ∈ NN be arbitrary. Now consider the class Q = Qγ̄,n̄ with γ̄(k) = 8
k and

n̄(k) = 8(g(k) + 1). Then, according to Lemma 25 is learnable. Furthermore, since for every
k ∈ N, we have P 8

k
,n̄(k) ⊂ Q, by Lemma 26 we have g(k) ≤ n̄(k)

4 < mQ(1/k, 1/7). This shows

that {mQ(
1
· ,

1
7) : Q ∈ C} is indeed cofinal in NN, which concludes the proof of our claim.

Proof [Proof of Theorem 24] We will again use Theorem 11 to show this claim. Thus we only need
to show the conditions for Theorem 11 hold.

• Any union of finitely many learnable classes is learnable: Let us denote this class by Q =⋃
i=1Q

i. For every Qi there is a learner Ai with sample complexity mi. Let ϵ > 0, δ > 0 and

let mmax = max({mi(ϵ/2, δ/2) : 1 ≤ i ≤ k} ∪ {4(log(k)+ 2
δ
)

ϵ2
}). Now for some q ∈ Q, let

S ∼ qmmax . For every i ∈ {1, . . . , k}, we run Ai on S and denote the output hypothesis by
hi. We know that there is j ∈ {1, . . . , k}, such that q ∈ Qj . By the success-guarantee of Aj ,
we know that with probability 1− δ

2 , L0/1
q (hj) ≤ ϵ

2+L
0/1
q (fq). We can now use a PAC-learner

for the finite class H = {hi : 1 ≤ i ≤ k} (which we know to exist from PAC learnability of
binary classification of hypothesis classes (see Shalev-Shwartz and Ben-David (2014)). We
know that a sample complexity of mmax guarantees a (ϵ/2, δ/2)-learning success for learning
H . Taking everything together, we have constructed a learner that guarantees (ϵ, δ)-success
for learning Q.
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• We let H0 = {ha : a ∈ {0, 1} where for all x ∈ N : ha(x) = a}. Furthermore, we let
Hk be Hk = Qγ̄k,n̄, where γ̄k(i) = 1/k and n(i) = i for all i ∈ N. By Lemma 26 all
Hk are not learnable. Furthermore, by construction, we have that for every ϵk = 1

k , H0 is
an ϵk approximation for Hk. Since limk→∞ ϵk = 0, the second condition of Theorem 11 is
fulfilled. This concludes our proof.

Proof [Proof of Lemma 30] Let h0 be the all-zero function, i.e. h0(x) = 0 for all x ∈ N. We start
by noting that for every γ, every n and every A ⊂ {1, . . . , n} if P = (D, fA

γ,n) for any marginal
D over N, then Lg

P (h0) ≤ g(g−1(γ)) = γ. Furthermore, we know that finite hypothesis classes
of hypotheses with finite range are learnable due to uniform convergence (which we get from first
using Hoeffding on each of the elements of the class and then using a union bound). We can now
use the same proof idea as in Lemma 18. Let ϵ > 0. Since limi→∞ γ̄(i) = 0, there is N , such
that for every M ≥ N , γ̄(M) ≤ ϵ

2 . Thus we know that for every P and every h ∈ Fγ̄,n̄, there
is h′ ∈

⋃N
i=1{fA

γ̄(i),n̄(i) : A ⊂ {1, . . . , n}}, such that Lg
P (h

′) ≤ Lg
P (h) +

ϵ
2 . We now use the

fact that H ′ =
⋃N

i=1{fA
γ̄(i),n̄(i) : A ⊂ {1, . . . , n}} is a finite class of hypotheses with finite range

and can therefore be successfully PAC-learned w.r.t. Lg. Now we can use the learner for H ′ with
sample complexity mH′ on an i.i.d. sample of size m ≥ mH′(ϵ/2, δ), to guarantee (ϵ, δ)-success
for learning Hγ̄,n̄. This

Proof [Proof of Lemma 31] For this lower bound, let us only consider the realizable case. The
agnostic case follows directly from it. We note that for a fixed γ and n, for every h1, h2 ∈ Fγ,2n,
every x ∈ N, we have either ℓg(h1, x, h2(x)) = γ or ℓg(h1, x, h2(x)) = 0. We can thus treat lg as
a binary loss. We see that the statement now becomes equivalent to the No-Free-Lunch Theorem
for binary classification (see Theorem 5.1 in Shalev-Shwartz and Ben-David (2014)) with the ϵ-
parameter in the sample complexity being scaled by γ. Thus we can conclude mrlzb

F (γ8 ,
1
7) ≥ n.

This concludes our proof.

Proof [Proof of Theorem 27] Let C be the class of all PAC-learnable function classes with respect
to Lg. We know from Lemma 8 that it is sufficient to show that {mH(1/·, 1/7) : H ∈ C} is
cofinal in NN. Now let g ∈ NN be arbitrary. We now construct a class H , such that mH(1· ,

1
7)

eventually dominates g. Let H = Hγ̄,n̄, with γ̄(k) = 8/k and n̄ = 4(g(k) + 1) for every k ∈ N.
From Lemma 25 we know that the class is learnable as limk→∞

8
k = 0. From Lemma 31 we get

g(k) < n̄(k)
4 < mH(1/k, 1/7). We note that the notion of ”learnability” used here can either

refer to the realizable case and sample complexity function mrlzb
H or the 1-agnostic case and sample

complexity function mH . In either case, the statements are true, giving us both claims.

Proof [Proof of Theorem 28] We use Theorem 11 to prove the claim. We thus only need to show that
the two conditions of the theorem are fulfilled. We will focus on the sub-task of learning function
classes with range bounded by 1. Since we only use function classes of the form Hγ̄,n̄ and those all
consist of functions with range in [0, 1], this does not cause any issue.

• Every finite union of learnable classes of hypotheses is learnable:Let H =
⋃k

i=1H
i be a

union of learnable classes. Let Ai denote the learner and mi denote the sample complexity for
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learning Hi. Now define mmax(ϵ, δ) = max({mi(ϵ/2, δ/2)} ∪ {4k+4 log 2/δ
ϵ2

}). Let A be the
learner that first runs every Ai on an input sample to create a finite hypothesis class H ′(S) =
{Ai(S) : 1 ≤ i ≤ k} of candidates of size k and then runs ERM on the finite hypothesis class.
Now P be some distribution over X ×Y and let m ≥ mmax(ϵ, δ). Furthermore let S ∼ Pm.
We know that there is j, such that infh∈Hj L

g
P (h) = infh∈H Lg

P (h). Now Aj guarantees
that infh∈H′(S) L

g
P ≤ ϵ

2 . Furthermore, from Hoeffding’s inequality and union bound, we get
that a sample size of mmax(ϵ, δ) is sufficient for an ERM to guarantee ( ϵ2 ,

δ
2)-success, when

learning any finite hypothesis class of size k with functions with range [0, 1]. Thus the learner
A successfully PAC learns H with sample complexity mmax.

• We define H0 = {h0}, with h0(x) = 0 for all x ∈ N. Furthermore we let Hk = Hγ̄k,n̄,
where γ̄k(i) = 1/k and n̄(i) = i. From Lemma 31 we know that none of the classes Hk are
learnable. Furthermore for every k ∈ N, H0 is an ϵk = 1

k approximation of Hk, as argued in
the proof of Lemma 30. Lastly limk→∞ ϵk = 0. This concludes our proof.
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