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Abstract
This paper studies the optimality of the Follow-the-Perturbed-Leader (FTPL) policy in both adver-
sarial and stochastic K-armed bandits. Despite the widespread use of the Follow-the-Regularized-
Leader (FTRL) framework with various choices of regularization, the FTPL framework, which
relies on random perturbations, has not received much attention, despite its inherent simplicity. In
adversarial bandits, there has been conjecture that FTPL could potentially achieve O(

√
KT ) regrets

if perturbations follow a distribution with a Fréchet-type tail. Recent work by Honda et al. (2023)
showed that FTPL with Fréchet distribution with shape α = 2 indeed attains this bound and, notably
logarithmic regret in stochastic bandits, meaning the Best-of-Both-Worlds (BOBW) capability of
FTPL. However, this result only partly resolves the above conjecture because their analysis heavily
relies on the specific form of the Fréchet distribution with this shape. In this paper, we establish
a sufficient condition for perturbations to achieve O(

√
KT ) regrets in the adversarial setting, which

covers, e.g., Fréchet, Pareto, and Student-t distributions. We also demonstrate the BOBW achievabil-
ity of FTPL with certain Fréchet-type tail distributions. Our results contribute not only to resolving
existing conjectures through the lens of extreme value theory but also potentially offer insights into
the effect of the regularization functions in FTRL through the mapping from FTPL to FTRL.
Keywords: Multi-armed bandits, Best-of-both-worlds, Extreme value theory

1. Introduction

In the multi-armed bandit (MAB) problem, an agent plays an arm It from a set of K arms at each
round t ∈ [T ] := {1, . . . , T} over a time horizon T . The agent only observes the loss ℓt,It generated
from the played arm, where the loss vectors ℓt = (ℓt,1, . . . , ℓt,K)⊤ ∈ [0, 1]K are determined by the
environment. Given the constraints of partial feedback, the agent must handle the tradeoff between
gathering information about the arms and playing arms strategically to minimize total loss. The
performance of the policy is measured by pseudo-regret, defined as E[

∑
t ℓt,It ]−mini E[

∑
t ℓt,i].

There are two primary formulations of the environment to determine loss vectors: the stochastic
setting (Lai and Robbins, 1985; Katehakis and Robbins, 1995), and the adversarial setting (Auer
et al., 2002b; Audibert and Bubeck, 2009). In the stochastic setting, the loss vector ℓt is independent
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and identically distributed (i.i.d.) from an unknown but fixed distribution D over [0, 1]K . Therefore,
one can define the expected losses of arms µi := Eℓ∼D[ℓi] and the optimal arm i∗ ∈ argmini∈[K] µi.
The suboptimality gap of each arm is denoted by ∆i = µi − µ∗i and the optimal problem-dependent

regret bound is known to be
∑

i:∆i>0O
(
log T
∆i

)
(Lai and Robbins, 1985), which can be achieved

by several policies such as UCB (Auer et al., 2002a) and Thompson sampling (Agrawal and Goyal,
2017; Riou and Honda, 2020).

On the other hand, in the adversarial setting, an (adaptive) adversary determines the loss vector
based on the history of the decisions, and thus specific assumptions about the loss distribution
are not made. In this particular environment, the optimal regret bound stands at O(

√
KT ) (Auer

et al., 2002b) and some Follow-The-Regularized-Leader (FTRL) policies have demonstrated their
capability to attain this bound (Audibert and Bubeck, 2009; Zimmert and Lattimore, 2019).

In practical scenarios, a priori knowledge regarding the nature of the environment is often un-
available. Therefore, there arises a need for an algorithm that can adeptly address both stochastic and
adversarial settings at the same time. While several policies have been proposed to tackle this prob-
lem (Bubeck and Slivkins, 2012; Seldin and Lugosi, 2017), the Tsallis-INF policy, based on FTRL
framework, has demonstrated its effectiveness in achieving optimality in both setting (Zimmert and
Seldin, 2021), a status referred to as the Best-of-Both-Worlds (BOBW) (Bubeck and Slivkins, 2012).
Moreover, FTRL framework has been successfully adapted to achieve BOBW in various domains
such as combinatorial semi-bandits (Ito, 2021; Tsuchiya et al., 2023a), linear bandits (Lee et al.,
2021; Dann et al., 2023), dueling bandits (Saha and Gaillard, 2022) and partial monitoring (Tsuchiya
et al., 2023b).

However, FTRL policies require the explicit computation of the probability of arm selections
per step, by solving an optimization problem in general. In light of this limitation, the Follow-the-
Perturbed-Leader (FTPL) framework, which simply selects the arm with the minimum cumulative
estimated loss along with a random perturbation, has gained attention for its computational efficiency
in adversarial bandits (Abernethy et al., 2015), combinatorial semi-bandits (Neu, 2015), and linear
bandits (McMahan and Blum, 2004). It has been established that FTPL, when coupled with perturba-
tions satisfying several conditions, can achieve nearly optimal O

(√
KT logK

)
regret in adversarial

bandits (Poland, 2005; Abernethy et al., 2015; Kim and Tewari, 2019). Subsequently, Kim and Tewari
(2019) conjectured that if FTPL achieves minimax optimality, then the corresponding perturbations
should be of Fréchet-type tail distribution.

Recently, Honda et al. (2023) showed that FTPL with Fréchet perturbations with shape α = 2

indeed achieves O(
√
KT ) regret in adversarial bandits and O

(∑
i
log T
∆i

)
regret in stochastic bandits,

highlighting the effectiveness of FTPL. However, their analysis heavily relies on the specific form of
Fréchet distribution, providing only a partial solution to the above conjecture. It is noteworthy that
any FTPL policy can be expressed as FTRL policy (Abernethy et al., 2016). Therefore, investigating
the properties of more general perturbations not only extends our understanding of FTPL but also can
clarify the impact of regularization functions used in FTRL, where several regularization functions in
FTRL beyond Tsallis entropy have been used to achieve BOBW in various settings (Jin et al., 2023).

Contribution This paper proves that FTPL with Fréchet-type tail distributions satisfying some
mild conditions can achieve O(

√
KT ) regret in adversarial bandits, which resolves an open question

raised by Kim and Tewari (2019) comprehensively. Moreover, we provide a problem-dependent regret
bound in stochastic bandits, demonstrating that some of them can achieve BOBW, which generalizes
the results of Honda et al. (2023). Given that our analysis is grounded in the language of extreme
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value theory, we expect that our analysis can provide insights for constructing an FTPL counterpart
of FTRL in settings beyond the standard MAB. In particular, one main obstacle in constructing FTPL
counterparts to FTRL would be the use of hybrid regularization, such as combining Tsallis entropy,
Shannon entropy and log-barrier (Zimmert et al., 2019; Ito, 2021; Tsuchiya et al., 2023a), which
might correspond to the combination of Fréchet perturbation with other perturbation in FTPL. Our
results would be beneficial for such construction, as our results cover a broad class of perturbation
distributions.

2. Preliminaries

In this section, we formulate the problem and provide a brief overview of extreme value theory and
the framework of regular variation, based on which Fréchet-type tail is formulated. For a thorough
understanding of extreme value theory and related discussions, we refer the reader to Appendix A
and the references therein.

2.1. Problem formulation

At every round t ∈ [T ], the environment determines the loss vector ℓt = (ℓt,1, . . . , ℓt,K) ∈ [0, 1]K

through either a stochastic or adversarial process. Then the agent plays an arm It according to
their policy and observes the corresponding loss ℓt,It of the played arm. Then, the pseudo-regret, a
measure to evaluate the performance of a policy, is defined as

R(T ) = E

[
T∑
t=1

(ℓt,It − ℓt,i∗)

]
, i∗ ∈ argmin

i∈[K]
E

[
T∑
t=1

ℓt,i

]
,

where i∗ denotes the optimal arm. Since only partial feedback is available, FTRL and FTPL policies
use an estimator ℓ̂t of the loss vector ℓt specified in Section 2.2. We denote the cumulative loss at
round t by Lt =

∑t−1
s=1 ℓt and its estimation by L̂t =

∑t−1
s=1 ℓ̂s.

2.2. Follow-the-Perturbed-Leader policy

In the MAB problems, FTPL is a policy that plays an arm

It ∈ argmin
i∈[K]

{
L̂t,i −

rt,i
ηt

}
,

where ηt denotes the learning rate specified later and rt = (rt,1, . . . , rt,K) denotes the random
perturbation i.i.d. from a common distribution D with a distribution function F . Then, the probability
of playing an arm i ∈ [K] given L̂t is written as wt,i = ϕi(ηtL̂t;D), where for λ ∈ [0,∞)K

ϕi(λ;D) := Pr
r1,...,rK∼D

[
i = argmin

j∈[K]
{λj − rj}

]

=

∫ ∞

ν−minj∈[K] λj

∏
j ̸=i

F (z + λj) dF (z + λi)

=

∫ ∞

ν

∏
j ̸=i

F (z + λj) dF (z + λi), (1)
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Algorithm 1 FTPL with geometric resampling

Initialization :L̂1 = 0 and set distribution D
for t = 1 to T do

Sample rt = (rt,1, . . . , rt,K) i.i.d. from D.

Play It ∈ argmini∈[K]

{
L̂t,i − rt,i

ηt

}
.

Observe ℓt,It and set m = 0.
repeat
m := m+ 1. // Geometric resampling
Sample r′ = (r′1, . . . , r

′
K) i.i.d. from D.

until It = argmini∈[K]

{
L̂t,i −

r′i
ηt

}
Set ŵ−1

t,It
:= m and L̂t+1 := L̂t + ℓt,Itŵ

−1
t,It
eIt .

end

where ν denotes the left endpoint of the support of F . Here, underlines denote the gap of a vector
from its minimum, i.e., λ = λ− 1mini∈[K] λi for all-one vector 1.

For the unbiased loss estimator, FTRL policies often employ an importance-weighted estimator,
ℓ̂t = (ℓt,It/wt,It)eIt , where wt,It is explicitly computed. On the other hand in FTPL, we use an

unbiased estimator ŵ−1
t,i ofw−1

t,i by geometric resampling (Neu and Bartók, 2016), whose pseudo-code
is given in Lines 6–10 of Algorithm 1. Simply speaking, the process involves repeated samplings of

perturbations r′ until argmini

{
L̂t,i − r′t,i/ηt

}
coincides with It and ŵ−1

t,i is then set as the number
of resampling. For more details, refer to Neu and Bartók (2016) and Honda et al. (2023).

2.3. Fréchet maximum domain of attraction

In the adversarial setting, it has been conjectured that FTPL might achieve O(
√
KT ) regrets if

perturbations follow a distribution with a Fréchet-type tail (Kim and Tewari, 2019). In the following,
we explain the terminology and basic concepts related to this description.

Extreme value theory is a branch of statistics to study the distributions of maxima of random
variables. One of the most important results in this theory is that the distribution of the maxima
of i.i.d. random variables can only converge in distribution to three types of extreme value distri-
butions: Fréchet, Gumbel, and Weibull, after appropriate normalization (Fisher and Tippett, 1928;
Gnedenko, 1943). Among these, a distribution is called Fréchet-type if its limiting distribution is
Fréchet distribution. The family of Fréchet-type distributions is called Fréchet maximum domain
of attraction (FMDA), and its representation is known to be associated with the notion of regular
variation (Embrechts et al., 1997; Haan and Ferreira, 2006; Resnick, 2007) defined as follows.

Definition 1 (Regular variation (Haan and Ferreira, 2006)) An eventually positive function g, which
becomes positive after a certain point, is called regularly varying at infinity with index α, g ∈ RVα if

lim
x→∞

g(tx)

g(x)
= tα, ∀t > 0.

If g(x) is regularly varying with index 0, then g is called slowly varying.
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Table 1: Some well-known Fréchet-type tail distributions with parameters α, β,m, n > 0. SF (x)
denotes the corresponding slowly varying function that characterizes the tail distribution.
More examples such as LogGamma can be found in Beirlant et al. (2006, Table 2.1). Here,
B(a, b) and B(x; a, b) denote the Beta function and incomplete Beta function, respectively.

Distribution (D) 1− F (x) f(x) SF (x) Support Index

Fréchet (Fα) 1− e−x−α
α e−x−α

xα+1 xα(1− e−x−α
) x > 0 α

Pareto (Pα) x−α α
xα+1 1 x ≥ 1 α

Generalized Pareto (GPα,β)
(
1 + x

αβ

)−α
1
β

(
1 + x

αβ

)−(α+1)
(αβ)α

(
1 + αβ

x

)−α
x ≥ 0 α

Student-t (Tn)
∫ x
−∞

(1+t2/n)
−n+1

2

√
nB(n/2,1/2)

dt 1√
nB(n/2,1/2)

(
1 + x2

n

)−n+1
2 Γ((n+1)/2)√

πnΓ(n/2)
n

n−1
2

(
1− n2(n+1)

2(n+2) x
−2 + o(x−2)

)
R n

Snedecor’s F (Sm,n) 1− B( mx
mx+n

;m
2
,n
2 )

B(m
2
,n
2 )

(m/n)
m
2

B(m
2
,n
2 )
x

m
2
−1
(
1 + m

n x
)−m+n

2 (m/n)
m
2

B(m
2
,n
2 )

(
m
n + 1

x

)−m+n
2 (1 + o(1)) x > 0 n

2

From the definition, one can see that any regularly varying function with index α can be written with
a product of a slowly varying function and xα, i.e., if g ∈ RVα, then g = xαS(x) for some S ∈ RV0

and all x > 0. A necessary and sufficient condition for a distribution to belong to FMDA is known to
be expressed in terms of regular variation as shown below.

Proposition 2 (Gnedenko (1943); Resnick (2008)) A distribution Dα belongs to FMDA with index
α > 0 if and only if its right endpoint is infinite and the tail function, 1− F , is regularly varying at
infinity with index −α, i.e., 1− F ∈ RV−α. In this case,

Fn(anx) →

{
exp(−x−α), x ≥ 0,

0, x < 0,
n→ ∞, (2)

where an = inf
{
x : F (x) ≥ 1− 1

n

}
.

Let Dall
α denote the class of FMDA with index α > 0. From its definition, if D ∈ Dall

α , we can
express the tail distribution with SF ∈ RV0 as

1− F (x) = x−αSF (x), ∀x > 0. (3)

In other words, a Fréchet-type tail distribution can be characterized by a slowly varying function SF
and an index α, where Table 1 provides examples of well-known distributions and their associated
slowly varying functions.

Notably, Dall
α encompasses exceptionally diverse distributions since its definition generally allows

for any slowly varying functions, even those that are discontinuous. In this paper, we consider a set
of Fréchet-type distributions denoted by Dα ⊂ Dall

α , which is defined as follows.

Definition 3 Dα is a set of distributions that belong to FMDA with index α > 0 satisfying the
following assumptions.

Assumption 1 F (x) has a density function f(x) that is decreasing in x ≥ z0 for some z0 > ν.

Assumption 2 Dα is supported over [ν,∞) for some ν ≥ 0 and the hazard function f(x)
1−F (x) is

bounded.
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Assumption 3 There exist positive constants M =M(Dα) and m = m(Dα) satisfying

EX1,...,Xk∼Dα

[
max
i∈[k]

Xi/ak

]
≤M (4)

EX1,...,Xk∼Dα

[
1

maxi∈[k]Xi/ak

]
≤ m (5)

for ak = inf {x : F (x) ≥ 1− 1/k} and and it satisfies Alk
1
α ≤ ak ≤ Auk

1
α for some positive

constants Al, Au.

Assumption 4 limx→∞
−xf ′(x)
f(x) = α+ 1 and −f ′(x)

f(x) is bounded almost everywhere on [ν,∞).

Assumption 5 f(x)
F (x) is monotonically decreasing in x ≥ ν.

These assumptions offer easy-to-check sufficient conditions for perturbations to achieve the optimal
order and verifying necessary conditions would be interesting for future work. In the following, we
explain the implication of the assumptions in Definition 3.

Assumption 1 states that the density eventually monotonically decreases and does not have a
fluctuated tail. This is known as a sufficient condition that Dα ∈ Dall

α satisfies von Mises condition
(von Mises, 1936, see also Resnick, 2008, Proposition 1.15), which is given by

lim
x→∞

xf(x)

1− F (x)
= α. (6)

The von Mises condition is known to play an important role in the analysis of the FMDA. For
example, it is known that any Dα ∈ Dall

α (possibly without a density) is tail-equivalent to some
distribution in Dall

α satisfying von Mises condition (Embrechts et al., 1997, Corollary 3.3.8). Here, a
distribution F (x) is called to be tail-equivalent to F ∗(x) if they have the same right endpoint xr and
limx→xr(1− F (x))/(1− F ∗(x)) = c for some constant c > 0.

In Assumption 2, the bounded hazard function is also assumed in the existing analysis of near-
optimality in adversarial bandits (Abernethy et al., 2015; Kim and Tewari, 2019). The assumption of
the nonnegative left-endpoint ν ≥ 0 is mainly for notational simplicity. This is because SF (x) in (3)
is not well-defined for x ≤ 0. Although the requirements in Assumption 2 are not satisfied for some
distributions such as t-distribution, we can easily construct a tail-equivalent distribution satisfying
the assumption by considering the truncated version F ∗ of F given by

F ∗(x) = Pr[X ≥ 1 + x|X > 1] =
F (x+ 1)− F (1)

1− F (1)
, x > 0, (7)

which is also considered in Abernethy et al. (2015, Appendix B.2).
Eq. (5) in Assumption 3 is the term that directly appears in the regret bound. As described

in Proposition 2, maxi∈[k]Xi/ak converges weakly to Fréchet distribution with shape α, which

satisfies EX∼Fα [X] = Γ
(
1− 1

α

)
, EX∼Fα [1/X] = Γ

(
1 + 1

α

)
and ak ≈ k

1
α . Therefore, (4) and (5)

roughly require that it also converges in the sense of expectation and expectation of the inverse. The
assumption of ak = Θ(k

1
α ) does not hold in general, but it holds if we ignore the sub-polynomial
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Table 2: Verification of distributions in (7) whether satisfying the assumptions. ✓ and × denote
whether the distribution satisfies the assumption or not, respectively, regardless of the
parameters. (∗) denotes that the truncated distribution in (7) satisfies the assumption.

Distribution (D) Fα Pα GPα,β Tn Sm,n

Assumption 1 ✓ ✓ ✓ ✓ ✓
Assumption 2 ✓ ✓ ✓ × (*) × (*)
Assumption 3 ✓ ✓ ✓ × (*) ✓
Assumption 4 ✓ ✓ ✓ ✓ ✓
Assumption 5 ✓ ✓ ✓ × (*) ✓

factor. As a result, if we remove this assumption the bound becomes sub-polynomially worse in
terms of K. An easy-to-verify sufficient condition for Assumption 3 is

lim sup
x→∞

SF (x) = lim sup
x→∞

xα(1− F (x)) <∞

lim inf
x→∞

SF (x) = lim inf
x→∞

xα(1− F (x)) > 0, (8)

while (8) becomes the necessary condition for a−1
k = O(k−

1
α ) if we replace lim inf with lim sup.

Note that both F and F ∗ in (7) for all distributions in Table 1 satisfy (8) with explicit forms of m
and Al as shown in Appendix A.2 and Lemma 10.

Assumptions 4 and 5 may appear somewhat restrictive, but many Fréchet-type distributions,
including several well-known examples such as Fα and Pα, satisfy this condition, as shown in Table 2.
Assumption 4 is a condition slightly stronger than von Mises condition, because −xf ′(x)

f(x) → α+ 1
implies (6) by L’hôpital’s rule. We expect that Assumption 5 can be relaxed to the monotonicity
of f(x)/F (x) in x > z1 for some z1 ≥ ν as in Assumption 1, which is satisfied in all examples in
Table 2. Still, this relaxation makes the case-analysis somewhat too long and is left as a future work.

In the rest of this paper, we always assume that the distribution satisfies ν ≥ 1 rather than
ν ≥ 0 for notational simplicity except for the specific analysis for Fréchet and Pareto distributions,
where the density functions are written in simple forms. This is without loss of generality because
the shifted distribution G(x) = F (x − 1) has the left-endpoint ν + 1 ≥ 1 and clearly satisfies
Assumptions 1–5, while the arm-selection probability is the same between F (x) and G(x).

3. Main result

In this section, we present our main theoretical results that show the optimality of FTPL with
perturbation distribution Dα ∈ Dα in adversarial bandits. Furthermore, we provide regret upper
bounds of FTPL with perturbations under a mild additional condition on Dα in stochastic bandits.

Theorem 4 In the adversarial bandits, there exist some constantsC1(Dα, c),C2(Dα) andC3(Dα, c,K)

such that FTPL with Dα ∈ Dα and learning rates ηt = c√
t
K

1
α
− 1

2 for c > 0 and α > 1 satisfies

R(T ) ≤ C1(Dα, c)
√
KT + C2(Dα) log(T + 1) +

MAu

√
K

c
.

This result shows the minimax optimality of FTPL with the Fréchet-type distributions including
Fréchet distributions and generalized Pareto distributions, which not only generalizes the results of
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Honda et al. (2023) but also resolves the open question in Kim and Tewari (2019) in the sense that
we provide conditions for a very large class of Fréchet-type perturbations.

Here, our result requires that α > 1 holds. This is because (4) in Assumption 3 does not hold
for α ≤ 1 since the extreme distribution of Dα (that is, Fα) has infinite mean. This corresponds
to the assumption of the finite expected block maxima EX1,...,Xk∼D[maxiXi] < ∞ considered
in Abernethy et al. (2015) and Kim and Tewari (2019).

The following result shows that FTPL with D2 can achieve the logarithmic regret in the stochastic
bandits. Note that all Fréchet-type tail distributions in Table 1 belong to Dα.

Theorem 5 Assume that i∗ = argmini∈[K] µi is unique and let ∆i = µi − µ∗i . Then, FTPL with
learning rate ηt = c√

t
for c > 0 and D ∈ D2 satisfies

R(T ) ≤ O

∑
i ̸=i∗

log T

∆i

.
This result shows that FTPL achieves BOBW if the limiting distribution of the perturbation under
mild conditions is Fréchet distribution with shape α = 2. It can be interpreted as a counterpart of
FTRL with Tsallis entropy regularization, where the logarithmic regret is known only for 1/2-Tsallis
entropy without any knowledge of the gaps (see Zimmert and Seldin, 2021, Remarks 5 and 6), while
Tsallis entropy with any parameter achieves the optimal adversarial regret.

Although there is no stochastic perturbation that yields the same arm-selection probability as
Tsallis entropy regularizer for K ≥ 4, in two-armed setting, it has been shown that β-Tsallis entropy
regularizer can be reduced to a Fréchet-type perturbation with index α = 1

1−β satisfying von Mises
condition (Kim and Tewari, 2019, Appendix C.2). Therefore, the success of α = 2 perturbation
seems intuitive since it roughly corresponds to 1/2-Tsallis entropy regularizer. In addition, β-Tsallis
entropy becomes the log-barrier for β → 0 (Zimmert and Seldin, 2021), which corresponds to α→ 1.
The BOBW achievability of log-barrier regularization without adaptive learning rate has not been
known, which seems to correspond to our requirement of α > 1.

Beyond the case α = 2, we obtain the following results.

Theorem 6 Assume that i∗ = argmini∈[K] µi is unique and let ∆i = µi − µ∗i . Then, FTPL with

learning rate ηt = c√
t
K

1
α
− 1

2 for c > 0 and Dα ∈ Dα for α > 2 satisfies

R(T ) ≤ O

∑
i ̸=i∗

1

α− 2

T
α−2

2(α−1) − 1

∆
1

α−1

i K
α−2

2(α−1)

.
If α ∈ (1, 2), then

R(T ) ≤ O

∑
i ̸=i∗

1

2− α

T 1−α
2 − 1

∆α−1
i K1−α

2

.
Although our regret upper bound for FTPL with index α ̸= 2 does not match the regret lower bound
for the stochastic case, this result shows that the regret of FTPL has better dependence on T in the
stochastic case than O(

√
T ) in the adversarial case because α−2

2(α−1) <
1
2 for α > 2 and 1− α

2 <
1
2

for α ∈ (1, 2).
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We expect that FTPL with α ̸= 2 can attain (poly-)logarithmic regret in the stochastic setting
by using arm-dependent learning rate as Jin et al. (2023) showed the BOBW results for FTRL
with β-Tsallis entropy regularization for β ∈ (0, 1). However, the results of Jin et al. (2023) in
the adversarial setting are O(

√
KT log T ) when β ̸= 1/2, which does not achieve the adversarial

optimality in the strict sense. It is highly nontrivial whether FTPL with α ̸= 2 can achieve both
logarithmic regret in the stochastic case and O(

√
KT ) regret in the adversarial case.

4. Proof Outline

In this section, we first provide a proof outline of Theorem 4 and then sketch the proof of Theorems 5
and 6, whose detailed proofs are given in Appendices C, D and E.

While our analysis draws inspiration from the structure in Honda et al. (2023), a naive application
of their analysis does not yield a bound for the general case. This is mainly because, while the
use of Fréchet distribution in Kim and Tewari (2019) and Honda et al. (2023) is inspired by the
extreme value theory, their actual analysis is not based on this theory. Instead, it is highly specific
to the Fréchet distribution with shape α = 2. Consequently, the representations of Fréchet-type
distributions in extreme value theory are not directly associated with their analysis. To address this
challenge, we demonstrate that the general representation in (3) under von Mises condition can be
specifically tailored for the regret analysis.

4.1. Regret decomposition

To evaluate the regret of FTPL, we first decompose regret into three terms, which generalizes
Lemma 3 of Honda et al. (2023). The proofs of lemmas in this section are given in Appendix B.

Lemma 7 For any α > 1 and Dα ∈ Dα,

R(T ) ≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E
[
rt+1,It+1 − rt+1,i∗

]
+
MAu

√
K

c
. (9)

The proof of this lemma is essentially the same as that of Honda et al. (2023), except that we need to
evaluate the block maxima EXi∼Dα [maxi∈[K]Xi] for general Dα ∈ Dα. Following the convention
in the analysis of BOBW policies (Zimmert and Seldin, 2021; Ito et al., 2022; Honda et al., 2023),
we refer to the first and second terms of (9) as stability term and penalty term, respectively.

Here, we can further decompose the stability term into two terms as follows.

Lemma 8 For any α > 1 and Dα ∈ Dα,∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
≤ 2C2(Dα) log

(
η1
ηT+1

)
+

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉]
,

(10)
where ϕ = (ϕ1, . . . , ϕK) for ϕi defined in (1),

C2(Fα) =
α

2
, and C2(Dα) ≤

ρ1(e
2 + 1)

2
, Dα ∈ Dα.

Here, ρ1 = ρ1(Dα) is a positive distribution-dependent constant satisfying

xf(x)

1− F (x)
≤ ρ1. (11)

9
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The proof of this lemma is based on the representation of the distribution function using the slowly
varying function in (3). Note that Assumption 2 under von Mises condition implies the existence of
ρ1 in (11). From this result, it remains to derive upper bounds of the second term of (10) and the
penalty term to conclude the proof of Theorem 4.

4.2. Stability term

The analysis of the arm-selection probability ϕ has been recognized as the central and most chal-
lenging aspect of the regret analysis for FTPL (Abernethy et al., 2015; Honda et al., 2023). The
key to the analysis of the stability for general Fréchet-type distribution is another representation
called Karamata’s representation, which is an essential tool to express the slowly varying func-
tions (Bingham et al., 1989). In the analysis, we interchangeably use this representation along with
the representation in (3) and von Mises condition in (6), which utilizes a coherent connection between
general representations and those under von Mises conditions. See Appendices A.1 and C for details
of Karamata’s representation and the proofs, respectively.

For the arm selection probability function ϕi(λ) in (1), define for any α > 0, ϕ′i(λ;Dα) =
∂ϕi

∂λi
(λ;Dα) and

Ii,n(λ;α) =

∫ ∞

0

1

(z + λi)n
exp

−
∑
j∈[K]

1

(z + λj)α

dz, (12)

Ji(λ;Dα) =

∫ ∞

1

f(z + λi)

(z + λi)

∏
j ̸=i

F (z + λj)dz. (13)

We will employ Ii,n and Ji to analyze the stability term for Fα and Dα\{Fα}, respectively. Although
the analysis for Ji can cover Fα, we consider the specific form of Fα in Ii without any truncation or
shift to derive a tighter upper bound.

Note that ϕ′i(λ) ≤ 0 holds since it denotes the probability of λi − ri < mini ̸=j {λi − rj} when
each ri is generated from Dα. By the same reason, ϕi(λ) is non-decreasing with respect to λj for
i ̸= j. To derive an upper bound of the stability term, we provide lemmas that are related to the
relation between the arm-selection probability and its derivatives, which plays a central role in the
regret analysis of FTPL.

Lemma 9 For any α > 0 and Dα ∈ Dα, Ii,α+2(λ;α)
Ii,α+1(λ;α)

and Ji(λ;Dα)
ϕi(λ;Dα)

are monotonically increasing
with respect to λj for any j ̸= i.

Assumption 5 plays a key role in simplifying the proof of this lemma. Still, we conjecture that it
can be weakened to the monotonicity of f(x)

F (x) in x ≥ z2 for some z2 > 0 rather than the current
assumption requiring z2 = ν. This is because the role of Lemma 9 is to control the behavior of the
algorithm when the perturbation becomes large.

Based on this result, the following lemma holds. To prove this lemma, we first examine the
Pareto distribution as the proof for the Pareto case offers insights into the proofs for general Fréchet-
type distributions. Specifically, we utilized the relationship between corresponding slowly varying
functions for tail functions and those for tail quantile functions.

10
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Lemma 10 If λi is the σi-th smallest among λ1, . . . , λK (ties are broken arbitrarily), then

Ii,α+2(λ;α)

Ii,α+1(λ;α)
≤ α

(α+ 1)λi
∧
Γ
(
1 + 1

α

)
α
√
σi

and
Ji(λ;Dα)

ϕi(λ;Dα)
≤ m

Al
σ
− 1

α
i ∧ α

α+ 1

eAu

Alλi
,

where m, Al, and Au are given in Assumption 3. Moreover, if Dα satisfies

xf(x)

1− F (x)
≤ α, (14)

then, m ≤ 2Γ
(
1 + 1

α

)
, Al = 1, and Au = limx→∞ S

1/α
F (x) holds

Note that all distributions in Table 1 satisfy (14) as shown in Appendix A.2. Similarly to (11), from
Assumption 4, there exists some constants ρ2 > 0 satisfying

−xf ′(x)
f(x)

≤ ρ2. (15)

Then, by following the same steps in Lemma 7 of Honda et al. (2023) based on our result in
Lemma 10, we obtain the following lemma.

Lemma 11 For any i ∈ [K], if L̂t,i is the σt,i-th smallest among {L̂t,j}j , then for α > 1 and
Dα ∈ Dα

E
[
ℓ̂t,i

(
ϕi

(
ηtL̂t;Dα

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)
;Dα

))∣∣∣∣L̂t

]
≤ ψs(L̂t,i;Dα) ∧ 2ηt

ρ2mAu

Al
α
√
σi
, (16)

where ρ2 = α+ 1 holds for Fα and Pα, m(Fα) = Γ
(
1 + 1

α

)
, and

ψs(L̂t,i;Dα) =


2α
L̂t,i

if Dα = Fα,

2ρ2α
α+1

eAu

AlL̂t,i

if Dα ∈ Dα \ {Fα}.

The second term of RHS of (16) finally leads to the bound on the stability term, which is used for
both the adversarial and stochastic bandits. For the stochastic bandits, we use the tighter bound with
ψs to apply the self-bounding technique.

Lemma 12 For any L̂t and α > 1 and Dα ∈ Dα,

E
[〈
ℓ̂t, ϕ

(
ηtL̂t;Dα

)
− ϕ

(
ηt

(
L̂t + ℓ̂t

)
;Dα

)〉 ∣∣∣∣L̂t

]
≤ 2

αρ2
α− 1

mAu

Al
K1− 1

α ηt.

4.3. Penalty term

Next, we establish an upper bound for the penalty term.

Lemma 13 For any α > 1 and Dα ∈ Dα,

E
[
rt,It − rt,i∗

∣∣∣∣L̂t

]
≤ ψp(L̂t,i,Dα) ∧ C1,1(Dα)

α
√
K, (17)

11
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where C1,1(Dα) is a distribution-dependent constant, which satisfies C1,1(Fα) = C1,1(Pα)/e for

C1,1(Pα) =
2α3 + (e− 2)α2

(α− 1)(2α− 1)
,

and

ψp(L̂t,i;Dα) =


∑

i ̸=i∗
1

(ηtL̂t,i)
α−1

if Dα = Fα,

eρ1Aα
u

α−1

∑
i ̸=i∗

1
(ηtL̂t,i)

α−1
if Dα ∈ Dα \ {Fα}.

The expression of C1,1(Dα) for general Dα is given in the proof of this lemma in Appendix D.3,
which is expressed in terms of Au. For the adversarial bandits, we only utilize the bound with K1/α

in (17), which induces O(
√
KT ) regret by using learning rate ηT = O(K

1
α
− 1

2T− 1
2 ). Similarly to

the stability term, we use ψp to apply the self-bounding technique for the stochastic bandits.

Remark 14 Specifically, there are many characterizations and theories associated with general
Frechet-type distributions, such as (i) von Mises conditions, (ii) slowly varying functions and (iii)
Karamata’s representation, from which we carefully chose an adequate one depending on the desired
result. We also need to appropriately choose the representations based on (a) density function f , (b)
tail distribution 1−F , and (c) tail quantile function. For example, we choose (ii) with (b) and (c) for
Lemma 10 and choose (i) and (iii) with (c) for Lemma 13.

4.4. Proof of Theorem 4

By combining Lemmas 7, 8, 12 and 13 with ηt = c√
t
K

1
α
− 1

2 , we have

R(T ) ≤ 2αρ2mAuc
√
K

Al(α− 1)

T∑
t=1

1√
t
+
C1,1(Dα)

√
K

c

T∑
t=1

(√
t+ 1−

√
t
)

+ 2C2(Dα) log
(√

T + 1
)
+
MAu

√
K

c

≤
(
4αρ2mAuc

Al(α− 1)
+
C1,1(Dα)

c

)√
KT + C2(Dα) log(T + 1) +

MAu

√
K

c
,

where letting C1(Dα, c) =
4αρ2mAuc
Al(α−1) +

C1,1(Dα)
c concludes the proof.

4.5. Proof sketch of Theorems 5 and 6

Since the overall proof for α ≥ 2 and α ∈ (1, 2) are very similar, we provide a sketch for the case
α ≥ 2. Let us begin by restating the regret in stochastic bandits, which is

R(T ) = E

∑
t=1

∑
i ̸=i∗

∆iwt,i

.
To apply the proof techniques in Honda et al. (2023), we define an event Dt based on the tail quantile
function where L̂t,i is sufficiently large compared to that of the optimal arm so that L̂t,i∗ = 0.

12
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In Appendix E.2, we show that the stability term corresponding to the optimal arm is bounded by
O
(∑

i ̸=i∗ 1/L̂t,i

)
on Dt, which provides for α ≥ 2

R(T ) ≤ E

 T∑
t=1

O

1[Dt]
∑
i ̸=i∗

1

L̂t,i

+ 1[Dc
t ]
√
K/t

.
To apply the self-bounding technique, we obtain

R(T ) ≥ E

 T∑
t=1

Ω

1[Dt]
∑
i ̸=i∗

t
α
2 ∆i

K1−α
2 L̂

α
t,i

+ 1[Dc
t ]∆

,
where ∆ = mini ̸=i∗ ∆i, Ω denotes the big-Omega notation and the proof is given in Appendix E.1.
By combining these results, we have

R(T )

2
≤ E

 T∑
t=1

O

1[Dt]
∑
i ̸=i∗

(
1

L̂t,i

− t
α
2 ∆i

2K1−α
2 L̂

α
t,i

)+ E

[
T∑
t=1

O
(
1[Dc

t ](
√
K/t−∆/2)

)]
.

Since Ax−Bxα ≤ Aα−1
α

(
A
αB

) 1
α−1 holds for A,B > 0 and α > 1, we obtain

R(T ) ≤
T∑
t=1

O

∑
i ̸=i∗

K
2−α

2(α−1)

∆
1

α−1

i t
α

2(α−1)

+O(K),

which concludes the proof. Note that the dependency on K in the leading term stems from the choice
of learning rate.

5. Conclusion

In this paper, we considered FTPL policy with perturbations belonging to FMDA in the adversarial
and stochastic settings. We provided a sufficient condition for perturbation distributions to achieve
optimality, which solves the open problem by Kim and Tewari (2019) in a comprehensive direction.
Furthermore, we provide the stochastic regret bound for FTPL, where Fréchet-type distributions
with mild assumptions can achieve BOBW. While our analysis for FTPL with index α ̸= 2 does not
attain logarithmic stochastic regrets, these findings align with observations in FTRL policies, offering
insights that might help understand the effect of regularization of FTRL through the lens of FTPL.
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Appendix A. Details on extreme value theory

When contemplating the asymptotic properties of sample statistics, the sample means and central
limit theorem often comes to mind, elucidating the behavior of partial sums of samples. Conversely,
interest might shift towards extremes, focusing on maxima or minima of samples, particularly when
singular rare events pose challenges, such as substantial insurance claims arising from catastrophic
events like earthquakes and tsunamis. Extreme value theory is the field of studying the behavior of
maxima of random variables, especially the behavior of the distribution function in the tail. One of
the fundamental results in extreme value theory is the Fisher–Tippett–Gnedenko theorem, which
provides a general result regarding the asymptotic distribution of normalized extreme order statistics
of i.i.d. sequence of random variables.

Proposition 15 (Fisher–Tippett–Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943))
Let Mn = ∨n

i=1Xi where {Xi}ni=1 be an i.i.d. sequence of random variables with common distribu-
tion function F (x). Suppose there exist an > 0, bn ∈ R, n ≥ 1 such that

Pr[(Mn − bn)/an ≤ x] = Fn(anx+ bn) → G(x),

weakly as n→ ∞ where G is assumed nondegenerate. Then, G is of the type of one of the following
three classes:

(i) (Fréchet-type) Φα(x) =

{
0, x < 0,

exp(−x−α), x ≥ 0,
for some α > 0.

(ii) (Weibull-type) Ψα(x) =

{
exp(−(−x)α), x < 0,

1, x ≥ 0,
for some α > 0.

(iii) (Gumbel-type) Λ(x) = exp(−e−x) for x ∈ R.

Among these three types of extreme value distributions, we are interested in Fréchet-type distributions,
where the equivalence was established in Proposition 2, which states

Fn(anx) → Φα(x)

with an = inf
{
x : F (x) ≥ 1− 1

n

}
.

However, verifying whether a distribution belongs to a domain of attraction can often be chal-
lenging. Therefore, a convenient sufficient condition, known as the von Mises condition, is often
considered (von Mises, 1936; Beirlant et al., 2006), which is

lim
x→∞

xf(x)

1− F (x)
= α.

It is worth noting that Dall
α consists of distributions satisfying von Mises condition and their tail-

equivalent distributions (Embrechts et al., 1997).

Existence of the density Here, it is known that if g ∈ RVα, for α ̸= 0, then there exists g∗ that is
absolutely continuous, strictly monotone, and g(x) ∼ g∗(x) as x→ ∞, i.e., tail-equivalent (Resnick,
2008, Propostition 0.8.). Therefore, Assumption 1 implies that we fix our interest solely on distribu-
tion with a continuous density among their tail-equivalent distributions.

17



LEE HONDA ITO OH

Tail quantile function When 1 − F ∈ RV−α, its tail quantile function U is regularly varying
with index 1

α , i.e., U ∈ RV1/α, where U(t) = inf {x : F (x) ≥ 1− 1/t} on [1,∞) (Beirlant et al.,

2006). Therefore, one can directly obtain that an = n
1
αSU (n), where SU denotes the corresponding

slowly varying function. Here, it is known that SU is the de Bruijn conjugate (or de Bruyn in some
literature) of S−1/α

F , which satisfies SU (x)S
−1/α
F (xSU (x)) ∼ S

−1/α
F (x)SU (xS

−1/α
F (x)) → 1. This

implies that if SF is upper-bounded by some constants, then SU is also upper-bounded regardless
of K. For more details, we refer readers to Charras-Garrido and Lezaud (2013), which provides a
concise introduction to the extreme value theory.

Karamata’s theorem Since all tail distributions in FMDA are regularly varying, the following
results are useful to represent the regularly varying functions.

Proposition 16 (Karamata’s theorem (Haan and Ferreira, 2006, Theorem B.1.5)) Suppose f ∈
RVα. There exists t0 > 0 such that g(t) is positive and locally bounded for t ≥ t0. If α ≥ −1, then

lim
t→∞

tg(t)∫ t
t0
g(s)ds

= α+ 1.

If α < −1 and
∫∞
0 g(s)ds <∞, then

lim
t→∞

tg(t)∫∞
t g(s)ds

= −α− 1. (18)

Conversely, if (18) holds with α ∈ (−∞,−1), then g ∈ RVα.

Therefore, one can see that von Mises condition and the existence of density imply f ∈ RV−α−1.
Furthermore, from (18), Assumption 4 is equivalent to −f ′ ∈ RV−α−2 and boundedness of
−f ′(x)/f(x).

A.1. Karamata’s representation

From (3), one can specify a distribution in FMDA with index α and the slowly varying function
SF (x). Here, several representations of slowly varying functions can be considered (Galambos and
Seneta, 1973), and we follow Karamata’s representation described in Resnick (2008), which is

SF (x) = c(x) exp

(∫ x

1

εF (t)

t
dt

)
, x ≥ 1 (19)

where c(x) and ε(x) are bounded functions such that limx→∞ c(x) = c > 0 and limx→∞ εF (x) = 0.
Here, the representation is not unique and it depends on the choice of c(x), εF (x), and the interval of
the integral. For example, c(x) and εF (x) can be written as (Resnick, 2008, Corollary of Theorem
0.6.)

c(x) =
xSF (x)∫ x
0 SF (t)dt

∫ 1

0
SF (t)dt,

εF (x) =
xSF (x)∫ x
0 SF (t)dt

− 1.
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One can check that limx→∞ εF (x) → 0 from Proposition 16 with α = 0.
On the other hand, when F is absolutely continuous, we can rewrite the tail distribution as for

x ≥ 1

1− F (x) = exp(log(1− F (x))) = exp

(∫ x

1

−f(t)
1− F (t)

dt

)
. (20)

Since 1− F (x) = x−αSF (x) holds for x ≥ 1, it holds that

SF (x) = xα(1− F (x)) = xα exp

(∫ x

1

−f(t)
1− F (t)

dt

)
by (20)

= exp

(
α log x−

∫ x

1

f(t)

1− F (t)
dt

)
= exp

(∫ x

1

α

t
dt−

∫ x

1

f(t)

1− F (t)
dt

)
.

By letting ϱ(t) = tf(t)
1−F (t) , we obtain

SF (x) = exp

(∫ x

1

α

t
dt−

∫ x

1

ϱ(t)

t
dt

)
= exp

(∫ x

1

α− ϱ(t)

t
dt

)
. (21)

Here, from the definition of ϱ, von Mises condition can be written as ϱ(t) → α, as t→ ∞, which
satisfies limt→∞ α − ϱ(t) = 0 and thus indicates the existence of the upper bound of SF . In this
paper, we use the representation of SF in (21), where c(x) is given as the ultimate constant. Therefore,
when F satisfies (14), one can see that SF is monotonically increasing for x ≥ 1. Note that εF (t) in
(19) are not necessarily the same as ϱ(t)− α unless c(x) = 1− F (1).

The von Mises condition (6) with Assumption 1 implies f ∈ RV−1−α from Proposition 16 (see
Embrechts et al., 1997, Proposition A3.8), i.e., f = x−α+1Sf (x). Therefore, from 1 − F (x) =
x−αSF (x) with (21), we have

f(x) =
SF (x)α

xα+1
−
S′
F (x)

xα
=
SF (x)

xα+1
ϱ(x),

which implies
Sf (x) = SF (x)ϱ(x). (22)

One can check that Sf ∈ RV0 since limt→∞ ϱ(x) = α holds by von Mises condition and SF ∈ RV0.

A.2. Proofs for Table 2

It is straightforward to check whether the Fréchet, Pareto, and Generalized Pareto satisfy the
assumptions. Therefore, we showed that the Student-t distribution satisfies Assumption 3 but not
Assumption 5 and the Snedecor’s F distribution satisfies all Assumptions. In this section, we prove
Assumption 3 by showing xf(x)

1−F (x) ≤ α, which implies SF (x) is increasing so that satisfying the
sufficient condition (8).
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A.2.1. STUDENT-t

Since it is easy to verify Assumptions 1, 2 and 4, we focus on Assumptions 3 and 5

Assumption 3 Here, we show that (14) holds. Since xf(x)
1−F (x) ≤ 0 is obvious for x ≤ 0, let us

consider the case x > 0. In this case, 1− F (x) = 1
2

B
(

n
x2+n

;n
2
, 1
2

)
B(n

2
, 1
2)

holds. Therefore,

xf(x)

1− F (x)
=
x
(
n+x2

n

)−n+1
2

√
nB
(
n
2 ,

1
2

)
1

2

B
(

n
x2+n

; n2 ,
1
2

)
B
(
n
2 ,

1
2

)
−1

=
2√
n

x
(
x2+n
n

)−n+1
2

B
(

n
x2+n

; n2 ,
1
2

)

=
2√
n

x
(
x2+n
n

)−n+1
2

2
n

(
n

x2+n

)n
2
(

x2

x2+n

) 1
2

2F 1(
n+1
2 , 1; n+2

2 ; n
x2+n

)

(23)

=
n

2F 1(
n+1
2 , 1; n+2

2 ; n
x2+n

)
,

In (23), we used the results in (Olver et al., 2010, 8.17.8) that provide the relationship between the
incomplete Beta function and the (Gaussian) hypergeometric function 2F 1, which is

B(x; a, b) =
xa(1− x)b

a 2F 1(a+ b, 1; a+ 1;x). (24)

Here, the hypergeometric function is defined by the Gauss series, which is defined for |x| < 1 and
c > 0 by

2F 1(a, b; c;x) =
∞∑
s=0

(a)s(b)s
(c)ss!

xs = 1 +
ab

c
z + · · · ,

where (a)n denotes the rising factorial, i.e., (a)n = a(a+1) · · · (a+n−1) and (a)0 = 1. Therefore,
we have for x ≥ 0

xf(x)

1− F (x)
≤ n,

which verifies that Tn satisfies Assumption 3 by (14). Here, one can see that the hazard function
f(x)

1−F (x) diverges as x→ 0, while f∗(x)
1−F ∗(x) ≤ n holds.

Assumption 5 Since the density of Tn is symmetric, it holds for any t ≥ 0 that

f(t) = f(−t), F (t) = 1− F (−t).

Then, we have
f(−t)
F (−t)

=
f(t)

1− F (t)
≥ f(t)

F (t)
,
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where the inequality follows from F (t) ≥ 1
2 for t ≥ 0. Therefore, Tn does not satisfy Assumption 5.

However, when one considers only for t ≥ 0, f(t) is decreasing while F (t) is increasing, which
implies that f/F is decreasing for x ≥ 0. This implies that both the half-t distribution, |Tn| and
truncated one in (7) satisfy Assumption 5.

A.2.2. F DISTRIBUTION

Since it is easy to verify Assumptions 1, 2 and 4, we focus on Assumptions 3 and 5

Assumption 3 Here, we show that (14) holds. Let I(x; a, b) = B(x;a,b)
B(a,b) denote the regularized

incomplete beta function. From the definition of the incomplete beta function, one can see that
I(x; a, b) = 1− I(1− x; b, a) holds. Then, it holds that

xf(x)

1− F (x)
=

(
m
n

)m
2 x

m
2

(
mx+n

n

)−m+n
2

B
(
m
2 ,

n
2

)
I
(

n
mx+n ;

n
2 ,

m
2

) .
Since B(a, b) = B(b, a), we obtain(

m
n

)m
2 x

m
2

(
mx+n

n

)−m+n
2

B
(
m
2 ,

n
2

)
I
(

n
mx+n ;

n
2 ,

m
2

) =

(
m
n

)m
2 x

m
2

(
mx+n

n

)−m+n
2

B
(

n
mx+n ;

n
2 ,

m
2

)
=

(
m
n

)m
2 x

m
2

(
mx+n

n

)−m+n
2

2
n

(
n

mx+n

)n
2
(

mx
mx+n

)m
2

2F 1(
m+n
2 , 1; n2 + 1; n

mx+n)

by (24)

=
n

2

1

2F 1(
m+n
2 , 1; n2 + 1; n

mx+n)
≤ n

2
,

which verifies Assumption 3 by (14). Here, one can observe that the hazard function f(x)
1−F (x) diverges

as x→ 0, while f∗(x)
1−F ∗(x) ≤ n holds.

Assumption 5 If f/F is monotonically decreasing, it should hold that for any x ≥ y > 0

F (y)

F (x)
≤ f(y)

f(x)
.

Here, it holds that

F (y)

F (x)
=
B
(

my
my+n ;

m
2 ,

n
2

)
B
(

mx
my+n ;

m
2 ,

n
2

) =

(
my

my+n

)m
2
(

n
my+n

)n
2(

mx
mx+n

)m
2
(

n
mx+n

)n
2

2F 1

(
m+n
2 , 1; 1 + m

2 ;
my

my+n

)
2F 1

(
m+n
2 , 1; 1 + m

2 ;
mx

mx+n

) by (24)

=
(y
x

)m
2

(
mx+ n

my + n

)m+n
2 2F 1

(
m+n
2 , 1; 1 + m

2 ;
my

my+n

)
2F 1

(
m+n
2 , 1; 1 + m

2 ;
mx

mx+n

) ,
Therefore, we have for any x ≥ y > 0

F (y)

F (x)
≤
(y
x

)m
2

(
mx+ n

my + n

)m+n
2

.
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since mx
mx+n is increasing with respect to x > 0. We have for x ≥ y > 0

f(y)

f(x)
=
(y
x

)m
2
−1
(
mx+ n

my + n

)m+n
2

=
(y
x

)m
2

(
mx+ n

my + n

)m+n
2 x

y

≥
(y
x

)m
2

(
mx+ n

my + n

)m+n
2

≥ F (y)

F (x)
,

which verifies Assumption 5.

Appendix B. Proofs for regret decomposition

Here, we provide the proofs for Lemmas 7 and 8.

B.1. Proof of Lemma 7

Firstly, we present the regret decomposition that can be applied to general distributions.

Lemma 17 (Lemma 3 of Honda et al. (2023))

R(T ) ≤
∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
Ert+1∼D

[
rt+1,It+1 − rt+1,i∗

]
+

1

η1
Er1∼D[r1,I1 ],

where r1,I1 = maxi∈[K] r1,i.

Here, notice that Er1∼D[r1,I1 ] is the expected block maxima when K samples are given. For the
Fréchet distributions and Pareto distributions, we can explicitly compute the upper bound E[MK ] as
follows.

Lemma 18 For α > 1,

Er1,1,...,r1,K∼Dα [r1,I1 ] ≤


MAuK

1
α if Dα ∈ Dα

K
1
αΓ
(
1− 1

α

)
if Dα = Fα,

K
1
αΓ
(
1− 1

α

)
α

α−1 if Dα = Pα.

Proof The proof for the general Dα can be directly obtained by (4) in Assumption 3. As explained
in Appendix A, the tail quantile function U is regularly varying with index 1

α , which implies

aK = K
1
αSU (K)

for some SU ∈ RV0. Thus, Assumption 3 implies the boundedness of SU . Here, from the definition
of aK , it holds that

1− F (aK) =
1

K
=
SF (aK)

(aK)α
,

which implies

aK = K
1
αS

1
α
F (aK). (25)

Therefore, SU (K) = S
1
α
F (aK) holds. The upper-bounded assumption (the existence of Au) is not

restrictive from Karamata’s representation with von Mises condition in (21), where α−ϱ(t)
t → 0 as

t→ ∞ and c(x) is given as ultimate constants.
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Case 1. Fréchet distribution It is well-known that when Xi ∼ F(α, s,m) where (α, s,m) ∈
R+ × R+ × R denotes the shape, scale, and location of the Fréchet distribution, then Y =
max (X1, . . . , Xn) follows F

(
α, n1/α,m

)
. One can easily check by observing its CDF is given

by e−K/xα
or the max-stability of Fréchet distributions. The fact that the expected value of

F(α, s,m) = m+ sΓ
(
1− 1

α

)
for α > 1 and Fα = F(α, 1, 0) completes the proof.

Case 2. Pareto distribution Since r1,I1 = maxi∈[K] r1,i, its CDF is (1− z−α)
K with density

αK
zα+1 (1− z−α)K−1. By letting w = z−α,

Er∼Fα [r1,I1 ] =

∫ ∞

1

αK

zα
(1− z−α)K−1dz

= K

∫ 1

0
w− 1

α (1− w)K−1dw

= KB

(
1− 1

α
,K

)
= K

Γ
(
1− 1

α

)
Γ(K)

Γ
(
K + 1− 1

α

) , (26)

where B(z1, z2) :=
∫ 1
0 w

z1−1(1 − w)z2−1dw denotes the Beta function. Then, by applying
Lemma 27, Gautschi’s inequality, we obtain for α > 1

Γ
(
1− 1

α

)
Γ(K + 1)

Γ
(
K + 1− 1

α

) =
K

K − 1
α

Γ(K)

Γ
(
K − 1

α

)
≤ K

K − 1
α

Γ

(
1− 1

α

)
K

1
α

≤ α

α− 1
Γ

(
1− 1

α

)
K

1
α ,

where the last inequality follows from K ≥ 1. Here, one can directly apply Gautschi’s inequality in
(26), which results in Γ

(
1− 1

α

)
(K + 1)

1
α .

B.2. Proof of Lemma 8

From the definition of wt = ϕ(ηtL̂t;Dα), we have

wt − wt+1 = ϕ(ηtL̂t)− ϕ(ηt+1L̂t+1)

= ϕ(ηtL̂t)− ϕ(ηt+1(L̂t + ℓ̂t))

= ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t)) + ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t)),

which implies

∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
≤

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t) + ℓ̂t)

〉]
+

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t))

〉]
. (27)

Therefore, it remains to bound the second term of (27).
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Case 1. Fréchet distribution By explicitly substituting the density function and CDF of Fα,
ϕi(λ;Fα) is expressed by

ϕi(λ;Fα) := Pr
r∼Fα

[
i = argmin

j∈[K]
{λj − rj}

]
=

∫ ∞

−minj∈[K] λj

α

(z + λi)α+1
exp

−
∑
l∈[K]

1

(z + λl)α

dz

=

∫ ∞

0

α

(z + λi)
α+1

exp

−
∑
l∈[K]

1

(z + λl)
α

dz,

Then, for generic L ∈ RK , L = L− 1mini Li, and any i ∈ [K]

∂

∂η
ϕi(ηL;Fα)

= α

∫ ∞

0

 1

(z + ηLi)
α+1

∑
j∈[K]

αLj

(z + ηLj)
α+1

− (α+ 1)Li

(z + ηLi)
α+2

 exp

−
∑
j∈[K]

1

(z + ηLj)
α

dz

≤ α

∫ ∞

0

1

(z + ηLi)
α+1

exp

−
∑
j∈[K]

1

(z + ηLj)
α

 ∑
j∈[K]

αLj

(z + ηLj)
α+1

dz

≤ α

∫ ∞

0

1

(z + ηLi)
α+1

exp

−
∑
j∈[K]

1

(z + ηLj)
α

max
l∈[K]

αLl

(z + ηLl)

∑
j∈[K]

1

(z + ηLj)
α
dz

≤ α

∫ ∞

0

1

(z + ηLi)
α+1

exp

−
∑
j∈[K]

1

(z + ηLj)
α

α
η

∑
j∈[K]

1

(z + ηLj)
α
dz.

Let L = L̂t + ℓ̂t. Since ℓ̂t = ltŵ
−1
t eIt and lt,i ∈ [0, 1],

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t);Fα)− ϕ(ηt+1(L̂t + ℓ̂t));Fα

〉]
(28)

=

T∑
t=1

∑
i∈[K]

E
[
1[It = i]lt,iŵ

−1
t,i (ϕi(ηtL;Fα)− ϕi(ηt+1L;Fα))

]

=

T∑
t=1

E

∫ ηt

ηt+1

∑
i∈[K]

lt,i
∂

∂η
ϕi(ηL;Fα)dη


≤ α

T∑
t=1

E

∫ ηt

ηt+1

1

η

∫ ∞

0

∑
i∈[K]

lt,i
α

(z + ηLi)
α+1

exp

−
∑
j∈[K]

1

(z + ηLj)
α

 ∑
j∈[K]

1

(z + ηLj)
α
dzdη


≤ α

T∑
t=1

E

[∫ ηt

ηt+1

1

η

∫ ∞

0
we−wdwdη

] ∵ ℓt,i ≤ 1 and w =
∑
j∈[K]

1

(z + ηLj)
α


= α

T∑
t=1

log

(
ηt
ηt+1

)
= α log

(
η1
ηT+1

)
.
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Case 2. Distributions in Dα From the definition of ϕ in (1), for generic L ∈ RK , L = L −
1mini Li, and any i ∈ [K]

∂

∂η
ϕi(ηL) =

∫ ∞

1
Lif

′(z + ηLi)
∏
j ̸=i

F (z + ηLj)dz

+

∫ ∞

1

∑
j ̸=i

Ljf(z + ηLi)f(z + ηLj)
∏
l ̸=i,j

F (z + ηLl)

dz. (29)

Recall the definition of ϱ(x) = xf(x)
1−F (x) , which implies

f(x) =
ϱ(x)

x
(1− F (x)). (30)

Then, the first term of (29) can be bounded by

∫ ∞

1
Lif

′
α(z + ηLi)

∏
j ̸=i

F (z + ηLj)dz

≤
∫ z0

1
Lif

′
α(z + ηLi)

∏
j ̸=i

F (z + ηLj)dz (by Assumption 1)

= Lif(z + ηLi)
∏
j ̸=i

F (z + ηLj)

∣∣∣∣z=z0

z=1

−
∫ z0

1
Lif(z + ηLi)

∑
j ̸=i

f(z + ηLj)
∏
l ̸=i,j

F (z + ηLl)dz

≤ Lif(z0 + ηLi)
∏
j ̸=i

F (z0 + ηLj)

≤ Liϱ(z0 + ηLi)

z0 + ηLi

(1− F (z0 + ηLi)) ≤
ρ1
η
, (by (11) and (30))

Next, for the second term of (29), by representation in (21), we obtain

∏
l ̸=i,j

F (z + ηLl)) =
∏
l ̸=i,j

(
1− SF (z + ηLl)

(z + ηLl)
α

)

≤ exp

−
∑
l ̸=i,j

SF (z + ηLl)

(z + ηLl)
α

 (∵ 1− x ≤ e−x,∀x ≥ 0)

≤ e2 exp

−
∑
j∈[K]

(1− F (z + ηLj))

,
where the last inequality follows from F (x) ∈ [0, 1] for all x ∈ [1,∞), i.e., e1−F (x) ≤ e for any
x ∈ [1,∞).
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Then, we have

∫ ∞

1

∑
j ̸=i

Ljf(z + ηLi)f(z + ηLj)
∏
l ̸=i,j

F (z + ηLl)

dz

≤ e2
∫ ∞

1
f(z + ηLi)

∑
j∈[K]

(
Ljf(z + ηLj)

)
exp

−
∑
l∈[K]

(1− F (z + ηLj))

dz

= e2
∫ ∞

1
f(z + ηLi)

∑
j∈[K]

Ljf(z + ηLj)

 exp

−
∑
j∈[K]

(1− F (z + ηLj))

dz.

Here, by (30) again, for generic L ∈ RK , we obtain for z ∈ [1,∞)

∑
j∈[K]

Ljf(z + ηLj)) =
∑
j∈[K]

Ljϱ(z + ηLj)

z + ηLj

(1− F (z + ηLj))

≤
∑
j∈[K]

Ljρ1

z + ηLj

(1− F (z + ηLj)) ≤
∑
j∈[K]

ρ1
η
(1− F (z + ηLj)),

which implies

∂

∂η
ϕi(ηL) ≤

ρ1e
2

η

∫ ∞

1
f(z + ηLi)

∑
j∈[K]

(1− F (z + ηLj))

 exp

−
∑
j∈[K]

(1− F (z + ηLj))

dz +
ρ1
η
.

By noticing that ∑
i∈[K]

−f(z + ηLi) =
d

dz

∑
j∈[K]

(1− F (z + ηLj)),

one can reproduce the proof in Case 1 from (28), which implies

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t);Dα)− ϕ(ηt+1(L̂t + ℓ̂t);Dα)

〉]
≤ ρ1

T∑
t=1

E

[
lt,i

∫ ηt

ηt+1

e2

η

{∫ ∞

1

∑
i∈[k]

f(z + ηLi)

·

∑
j∈[K]

(1− F (z + ηLj))

 exp

−
∑
j∈[K]

(1− F (z + ηLj))

dz

}
+

1

η
dη

]

≤ ρ1

T∑
t=1

E

[∫ ηt

ηt+1

1

η

{
e2
∫ K

0
we−wdw + 1

}
dη

]

≤ ρ1
(
e2 + 1

) T∑
t=1

log

(
ηt
ηt+1

)
= ρ1

(
e2 + 1

)
log

(
η1
ηT+1

)
.
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Appendix C. Regret bound for adversarial bandits: Stability

Here, we provide the proofs for Lemmas 9–12.

C.1. Proof of Lemma 9: monotonicity

Let us consider the Fréchet distributions first.

C.1.1. FRÉCHET DISTRIBUTION

From the definitions of ϕ and I ,

ϕi(λ;Fα) = αIi,α+1(λ;α), ϕ′i(λ;Fα) = −α(α+ 1)Ii,α+2(λ;α) + α2Ii,2(α+1)(λ;α). (31)

Here, ϕ′i(λ;Dα) ≤ 0 holds for anyα > 0 as it denotes the probability of {λi−ri < mini ̸=j {λj − rj}}
when each ri follows Dα.

Define

Ii,j,n(λ;α) =

∫ ∞

0

1

(z + λi)n
1

(z + λj)α+1
exp

−
∑
j

1

(z + λj)α

dz.

For simplicity, we write Ii,j,n(λ;α) = Ii,j,n(λ) and Ii,n(λ;α) = Ii,n(λ) when n is written with α.
Then,

d

dλj

Ii,α+2(λ)

Ii,α+1(λ)
= α

Ii,j,α+2(λ)Ii,α+1(λ)− Ii,j,α+1(λ)Ii,α+2(λ)

I2i,α+1(λ)
. (32)

By letting k(z) = 1
(z+λi)α+1 exp

(
−
∑

j
1

(z+λj)α

)
, each term of the numerator of (32) is written as

Ii,j,α+2(λ)Ii,α+1(λ) =

∫∫
z,w≥0

k(z)k(w)

(z + λi)(z + λj)α+1
dzdw

=
1

2

∫∫
z,w≥0

k(z)k(w)

(
1

(z + λi)(z + λj)α+1
+

1

(w + λi)(w + λj)α+1

)
dzdw,

Ii,j,α+1(λ)Ii,α+2(λ) =

∫∫
z,w≥0

k(z)k(w)

(z + λi)(w + λj)α+1
dzdw

=
1

2

∫∫
z,w≥0

k(z)k(w)

(
1

(z + λi)(w + λj)α+1
+

1

(w + λi)(z + λj)α+1

)
dzdw.

Then, the integrand for Ii,j,α+2(λ)Ii,α+1(λ)− Ii,j,α+1(λ)Ii,α+2(λ) is expressed as

1

(z + λi)(z + λj)α+1
+

1

(w + λi)(w + λj)α+1
− 1

(z + λi)(w + λj)α+1
− 1

(w + λi)(z + λj)α+1

=
(w + λi)(w + λj)

α+1 + (z + λi)(z + λj)
α+1 − (w + λi)(z + λj)

α+1 − (z + λi)(w + λj)
α+1

(z + λi)(z + λj)α+1(w + λi)(w + λj)α+1

= (w − z)
(w + λj)

α+1 − (z + λj)
α+1

(z + λi)(z + λj)α+1(w + λi)(w + λj)α+1
.

Here, one can see that when w ≥ z, the integrand is non-negative since λj > 0 and α > 0. On the
other hand, if w < z, then both (w − z) and (w + λj)

α+1 − (z + λj)
α+1 becomes negative, i.e.,

integrand is again positive. Therefore, Ii,j,α+2(λ)Ii,α+1(λ)− Ii,j,α+1(λ)Ii,α+2(λ) is an integral of
a positive function, which concludes the proof.
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C.1.2. FRÉCHET-TYPE DISTRIBUTIONS

As discussed in Appendix A.1, when F is absolute continuous and satisfies von Mises condition,
f ∈ RV−α−1, which implies f(x) = x−α−1Sf (x) for some Sf ∈ RV0. Let gi(z) =

Sf (z+λi)

(z+λi)α+2 .
Then, for Dα ∈ Dα, we can rewrite Ji as

Ji(λ;Dα) =

∫ ∞

1

Sf (z + λi)

(z + λi)α+2

∏
j ̸=i

F (z + λj)dz.

For simplicity, let fi(z) = f(z + λi) and Fi(z) = F (z + λi) for any i ∈ [K], which denotes the
density function and CDF of Dα, respectively. From the definition of ϕ in (1) and Ji in (13), we have

d

dλj
Ji(λ;Dα) =

∫ ∞

1

Sf (z + λi)

(z + λi)α+2

d

dλj

∏
j ̸=i

F (z + λj)dz

=

∫ ∞

1

Sf (z + λi)

(z + λi)α+2
f(z + λj)

∏
l ̸=i,j

F (z + λl)dz

and
d

dλj
ϕi(λ;Dα) =

∫ ∞

1
f(z + λi)

d

dλj

∏
j ̸=i

F (z + λj)dz

=

∫ ∞

1
f(z + λi)f(z + λj)

∏
l ̸=i,j

F (z + λl)dz.

Then, we have for k(z) =
∏

l ̸=i,j Fl(z)

d

dλj

Ji(λ;Dα)

ϕi(λ;Dα)
=

1

ϕ2i (λ;Dα)

(∫∫
w,z≥1

gi(z)fj(z)

∏
l ̸=i,j

Fl(z)

fi(w)
∏

l ̸=i

Fl(w)

dwdz

−
∫∫

w,z≥1
gi(z)

∏
l ̸=i

Fl(z)

fi(w)fj(w)
∏

l ̸=i,j

Fl(w)

dwdz

)

=
1

ϕ2i (λ;Dα)

(∫∫
w,z≥1

gi(z)fj(z)k(z)fi(w)k(w)Fj(w)dwdz

−
∫∫

w,z≥1
gi(z)k(z)Fj(z)fi(w)fj(w)k(w)dwdz

)
.

Here, one can see that∫∫
w,z≥1

gi(z)fj(z)k(z)fi(w)k(w)Fj(w)dwdz

=

∫∫
w,z≥1

k(z)k(w)

2
(gi(z)fj(z)fi(w)Fj(w) + gi(w)fj(w)fi(z)Fj(z))dwdz,∫∫

w,z≥1
gi(z)k(z)Fj(z)fi(w)fj(w)k(w)dwdz

=

∫∫
w,z≥1

k(z)k(w)

2
(gi(z)Fj(z)fi(w)fj(w) + gi(w)Fj(w)fi(z)fj(z))dwdz.

28
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Then, by elementary calculation, we obtain

gi(z)fj(z)fi(w)Fj(w) + gi(w)fj(w)fi(z)Fj(z)− (gi(z)Fj(z)fi(w)fj(w) + gi(w)Fj(w)fi(z)fj(z))

= Fj(z)fj(w)(gi(w)fi(z)− gi(z)fi(w)) + Fj(w)fj(z)(gi(z)fi(w)− gi(w)fi(z))

= (gi(w)fi(z)− gi(z)fi(w)) · (Fj(z)fj(w)− Fj(w)fj(z)). (33)

Obviously, (33) becomes 0 when z = w.
Firstly, let us consider the case z ≥ w, where Assumption 5 implies

f(z + Lj)

F (z + Lj)
≤
f(w + Lj)

F (w + Lj)
=⇒ Fj(w)fj(z) ≤ Fj(z)fj(w).

On the other hand, we have

gi(z)fi(w) =
Sf (z)

zα+2

Sf (w)

wα+1
,

which implies

gi(w)fi(z)− gi(z)fi(w) =
Sf (z)

zα+2

Sf (w)

wα+1
−
Sf (w)

wα+2

Sf (z)

zα+1

=
Sf (w)Sf (z)

wα+1zα+1

(
1

w
− 1

z

)
≥ 0, z ≥ w.

Therefore, when z ≥ w, the integrand becomes positive. For the case z ≤ w, one can easily
reverse the inequalities above, which results in the positive integrand again. Therefore, Ji(λ;Dα)

ϕi(λ;Dα)
is

monotonically increasing.

C.2. Proof of Lemma 10

Here, we assume λ1 ≤ . . . ≤ λK without loss of generality, where σi = i holds.

C.2.1. FRÉCHET DISTRIBUTION

By the monotonicity of Ii,α+2(λ)/Ii,α+1(λ) in Lemma 9, we have

Ii,α+2(λ)

Ii,α+1(λ)
≤ Ii,α+2(λ

∗)

Ii,α+1(λ∗)
, where λ∗j =

{
λi, j ≤ i,

∞, j > i.

From the definition of Ii,n(λ;α) in (12), we have

Ii,n(λ
∗;α) =

∫ ∞

0

1

(z + λi)
n
exp

(
− i

(z + λi)
α

)
dz

=
i−

n−1
α

α

∫ i
λα
i

0
u

n−1
α

−1e−udu

=
i−

n−1
α

α
γ

(
n− 1

α
,
i

λαi

)
,

where γ(n, x) =
∫ x
0 t

n−1e−tdt denotes the lower incomplete gamma function.
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By substituting this result, we obtain

Ii,α+2(λ;α)

Ii,α+1(λ;α)
≤ 1

α
√
i

γ
(
1 + 1

α ,
i
λα
i

)
γ
(
1, i

λα
i

) .

Note that γ(1, x) = 1− e−x holds for any x > 0, and for any α > 0

γ

(
1 +

1

α
, x

)
≤

α
√
x

1 + 1/α
(1− e−x) =

α
√
x

1 + 1/α
γ(1, x)

by Lemma 26, which proves the first inequality of Lemma 10.
Then, let us assume there exists a constant C <∞ satisfying for any x > 0

γ(1 + 1/α, x)− (1− e−x)C ≤ 0. (34)

The derivative of the LHS of (34) is given as

α
√
xe−x − Ce−x,

which achieves the minimum at x = Cα, i.e., its maximum is achieved at x = 0 or x = ∞. Applying
this finding in (34) gives C ≥ Γ

(
1 + 1

α

)
, which concludes the proof.

C.2.2. FRÉCHET-TYPE DISTRIBUTIONS

By the monotonicity of Ji(λ;Dα)
ϕi(λ;Dα)

in Lemma 9, we have

Ji(λ;Dα)

ϕi(λ;Dα)
≤ Ji(λ

∗;Dα)

ϕi(λ∗;Dα)
, where λ∗j =

{
λi, j ≤ i,

∞, j > i.

From the definition of Ji(λ;Dα) in (13), we have

Ji(λ
∗;Dα) =

∫ ∞

1

Sf (z + λi)

(z + λi)
α+2

F i−1(z + λi)dz

and
ϕi(λ

∗;Dα) =

∫ ∞

1
f(z + λi)F

i−1(z + λi)dz.

Here, we begin by examining the Pareto distribution, as the proof for this case offers insights into the
generalization of our results.

Pareto distribution Let us consider the Dα = Pα, where

Ji(λ
∗;Pα) =

∫ ∞

1

α

(z + λi)
α+2

(
1− 1

(z + λi)
α

)i−1

dz

=

∫ 1
(1+λi)

α

0
w

1
α (1− w)i−1dw

= B

(
1

(1 + λi)
α
; 1 +

1

α
, i

)
,
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where B(x; a, b) =
∫ x
0 t

a−1(1− t)b−1dt denotes the incomplete Beta function. Similarly,

ϕi(λ
∗;Pα) =

∫ ∞

1

α

(z + λi)
α+1

(
1− 1

(z + λi)
α

)i−1

dz

=

∫ 1
(1+λi)

α

0
w0(1− w)i−1dw

= B

(
1

(1 + λi)
α
; 1, i

)
.

Therefore, by Lemma 28

Ji(λ
∗;Pα)

ϕi(λ∗;Pα)
=
B
(

1
(1+λi)

α ; 1 +
1
α , i
)

B
(

1
(1+λi)

α ; 1, i
) ≤

B
(
1 + 1

α , i
)

B(1, i)
.

Since B(x, y) = Γ(x)Γ(y)
Γ(x+y) , i ≥ 1, and α > 1, applying Gautschi’s inequality provides

B
(
1 + 1

α , i
)

B(1, i)
=

Γ
(
1 + 1

α

)
Γ(i+ 1)

Γ
(
1 + 1

α + i
) =

Γ
(
1 + 1

α

)
i+ 1

α

Γ(i+ 1)

Γ
(
i+ 1

α

) (35)

≤
Γ
(
1 + 1

α

)
i+ 1

α

(i+ 1)1−
1
α

≤ 2α

α+ 1
Γ

(
1 +

1

α

)
1

(i+ 1)
1
α

≤ 2Γ

(
1 +

1

α

)
1
α
√
i
.

On the other hand, for x ∈ [0, 1] it holds that B(x; 1, i) = (1− (1− x)i) and

B

(
x; 1 +

1

α
, i

)
=

∫ x

0
t
1
α (1− t)i−1dt ≤

∫ x

0
t
1
α e−t(i−1)dt

≤ e

∫ x

0
t
1
α e−tidt

=
e

i1+
1
α

∫ xi

0
w

1
α e−wdw =

e

i1+
1
α

γ

(
1 +

1

α
, xi

)
.

Then, by Lemma 26, we have

B
(
x; 1 + 1

α , i
)

B(x; 1, i)
≤ e

i1+
1
α

(xi)
1
α

1 + 1/α

1− e−xi

(1− (1− x)i)
≤ e

i

(x)
1
α

1 + 1/α
, (36)

where the last inequality follows from limx→0
1−e−xi

(1−(1−x)i)
= 1 and limx→1

1−e−xi

(1−(1−x)i)
< 1. Therefore,

by substituting x = 1
(1+λi)

α , we have

B
(

1
(1+λi)

α ; 1 +
1
α , i
)

B
(

1
(1+λi)

α ; 1, i
) ≤ eα

α+ 1

1

1 + λi
≤ eα

α+ 1

1

λi
.
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Generalization to Dα Let us define a function for x ≥ 1

k(x) = k(x;Dα) :=

∫∞
x

Sf (z)

zα+2 F
i−1(z)dz∫∞

x f(z)F i−1(z)dz
.

Then, it holds that

dk(x)

dx
=

1(∫∞
x f(z)F i−1(z)dz

)2(f(x)F i−1(x)

∫ ∞

x

Sf (z)

zα+2
F i−1(z)dz

−
Sf (x)

xα+2
F i−1(x)

∫ ∞

x
f(z)F i−1(z)dz

)
=

F i−1(x)(∫∞
x f(z)F i−1(z)dz

)2(f(x)∫ ∞

x

Sf (z)

zα+2
F i−1(z)dz −

Sf (x)

xα+2

∫ ∞

x
f(z)F i−1(z)dz

)
≤ F i−1(x)(∫∞

x f(z)F i−1(z)dz
)2(Sf (x)xα+1

∫ ∞

x

Sf (z)

zα+2
F i−1(z)dz −

Sf (x)

xα+2

∫ ∞

x

Sf (z)

zα+1
F i−1(z)dz

)
=

F i−1(x)(∫∞
x f(z)F i−1(z)dz

)2 Sf (x)xα+2

(∫ ∞

x

xSf (z)

zα+2
F i−1(z)dz −

∫ ∞

x

Sf (z)

zα+1
F i−1(z)dz

)
=

F i−1(x)(∫∞
x f(z)F i−1(z)dz

)2 Sf (x)xα+2

(∫ ∞

x

(x
z
− 1
)(Sf (z)

zα+1
F i−1(z)

)
dz

)
≤ 0,

which implies k(x) is decreasing with respect to x ≥ 1. Therefore,

Ji(λ
∗;Dα)

ϕi(λ∗;Dα)
≤
∫∞
1

Sf (z)

zα+2 F
i−1(z)dz∫∞

1 f(z)F i−1(z)dz
= i

∫ ∞

1

f(z)

z
F i−1(z)dz

= E
[

1

Mi

]
≤ m

Al
α
√
i
, (37)

where (37) follows from Assumption 3.
Next, let us consider the case (14) holds, where SF (x) is increasing. Let 1− F (z) = t, which

implies z = U(1/t) for t ∈ [1,∞). Then, we have∫ ∞

1

f(z)

z
F i−1(z)dz =

∫ 1

0

1

U(1/t)
(1− t)(i−1)dt

=

∫ 1

0

t
1
α

SU (1/t)
(1− t)(i−1)dt, (38)

≤ B

(
1 +

1

α
; i

)
.

where (38) follows from SU ∈ RV1/α. Here, SU (1/t) = S
1
α
F (U(1/t)) holds from (25), which

implies that 1
SU (1/t) is increasing when SF is increasing function since U(1/t) is decreasing. From

the definition of U(1) = 1 = 1
1
αSU (1), we obtain SU (1) = 1, i.e., Al = 1. Therefore, the analysis

of the Pareto distributions from (35) implies that m ≤ 2Γ
(
1 + 1

α

)
.
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Next, we obtain∫ ∞

1+λi

f(z)F i−1(z)dz =
1

i

(
1− F i(1 + λi)

)
= B(1− F (1 + λi); 1, i).

By Assumption 3 and (38), we have∫ ∞

1+λi

Sf (z)

zα+2
F i−1(z)dz ≤ 1

Al
B

(
1− F (1 + λi); 1 +

1

α
, i

)
.

Therefore, following the same steps from (36), we have∫∞
1+λi

Sf (z)

zα+2 F
i−1(z)dz∫∞

1+λi
f(z)F i−1(z)dz

≤ 1

Al

B
(
1− F (1 + λi); 1 +

1
α , i
)

B(1− F (1 + λi); 1, i)

≤ 1

Al

e

i

α

α+ 1

(
SF (1 + λi)

(1 + λi)
α

) 1
α

(39)

≤ αe

Al(α+ 1)

Au

1 + λi

≤ αe

Al(α+ 1)

Au

λi
.

where (39) follows from Assumption 3. Here, when SF is an increasing function, then Au =

limx→∞ S
1
α
F (x) from (25).

Remark 19 When one considers the shifted distribution, (14) does not necessarily hold even when
its original distribution satisfies it. In such cases, it suffices to consider the shifted distribution
function after the conditioning trick, where we have

G(x) = F ∗(x− 1) =
F (x)− F (1)

1− F (1)
, x ≥ 1,

which implies

1−G(x) =
1− F (x)

1− F (1)
= x−αSG(x), x ≥ 1.

Therefore, SG(x) = 1
1−F (1)SF (x) holds for x ≥ 1 and thus they are tail-equivalent. Furthermore, if

F satisfies (14), then
xg(x)

1−G(x)
=

xf(x)

1− F (x)
≤ α, x ≥ 1

holds. Therefore, SG(x) is monotonically increasing for x ≥ 1 with SG(1) = 1, which implies that
A = 1 and m ≤ 2Γ

(
1 + 1

α

)
.

C.3. Proof of Lemma 11

Although the overall proof is almost the same and follows the proofs of Honda et al. (2023), we
provide the proofs for completeness.
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C.3.1. FRÉCHET DISTRIBUTION

From the definition of ℓ̂t =
(
ℓt,Itŵ

−1
t,It

)
eIt , when It = i, we have

ϕi

(
ηtL̂t;Fα

)
− ϕi

(
ηt

(
L̂t +

(
ℓt,iŵ

−1
t,i

)
ei

)
;Fα

)
=

∫ ηtℓt,iŵ
−1
t,i

0
−ϕ′i(ηtL̂t + xei;Fα)dx

≤ α(α+ 1)

∫ ηtℓt,iŵ
−1
t,i

0
Ii,α+2(ηtL̂t + xei;α)dx (by (31))

≤ α(α+ 1)

∫ ηtℓt,iŵ
−1
t,i

0
Ii,α+2(ηtL̂t;α)dx (40)

= α(α+ 1)ηtℓt,iŵ
−1
t,i Ii,α+2(ηtL̂t;α),

where (40) follows from the monotonicity of Ii,α. Since ŵ−1
t,i follows the geometric distribution with

mean w−1
t,i given L̂t and It, it holds that

E
[
ŵ−1
t,It

2
∣∣∣∣L̂t, It

]
=

2

w2
t,It

− 1

wt,It

≤ 2

w2
t,It

.

Since It ̸= i implies ℓ̂t,i = 0, we obtain

E
[
ℓ̂t,i

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
= E

[
1[It = i]ℓ̂t,i

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
= E

[
1[It = i]ℓt,iŵ

−1
t,i

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
≤ E

[
wt,iℓt,iŵ

−1
t,i · α(α+ 1)ηtℓt,iŵ

−1
t,i Ii,α+2(ηtL̂t)

∣∣∣∣L̂t

]
≤ 2α(α+ 1)ηtE

[
wt,i

ℓ2t,iIi,α+2(ηtL̂t)

w2
t,i

∣∣∣∣L̂t

]

≤ 2(α+ 1)ηtE

[
Ii,α+2(ηtL̂t)

Ii,α+1(ηtL̂t)

∣∣∣∣L̂t

] (
by wt,i = αIi,α+1(ηtL̂t), ℓt,i ≤ 1

)
≤ 2α

ηL̂t,i

∧ 2(α+ 1)ηt
Γ
(
1 + 1

α

)
α
√
σi

,

where the last inequality follows from Lemma 10 for Fα.

C.3.2. FRÉCHET-TYPE DISTRIBUTIONS

From the definition of ϕ in (1) and (15) from Assumption 4, we have

−ϕ′i(λ;Dα) =

∫ ∞

1
−f ′(z + λi)

∏
j ̸=i

F (z + λj)dz

34
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≤
∫ ∞

1
ρ2
f(z + λi)

z + λi
F i−1(z + λi)dz = ρ2Ji(λ;Dα).

Therefore, we can replace α(α+ 1)Ii,α+2 with ρ2Ji, which gives

E
[
ℓ̂t,i

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
≤ E

[
wt,iℓt,iŵ

−1
t,i · ηtℓt,iŵ−1

t,i ρ2Ji(ηtL̂t;Dα)

∣∣∣∣L̂t

]
≤ 2ηtE

[
wt,i

ℓ2t,iρ2Ji(ηtL̂t;Dα)

w2
t,i

∣∣∣∣L̂t

]

≤ 2ρ2ηtE

[
Ji(ηtL̂t;Dα)

ϕi(ηtL̂t;Dα)

∣∣∣∣L̂t

]
,

where Lemma 10 concludes the proof.

C.4. Proof of Lemma 12

By Lemmas 10 and 11, for Fα, we have

E
[
ℓ̂t

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
≤
∑
i∈[K]

2(α+ 1)ηt
Γ
(
1 + 1

α

)
α
√
σi

≤ 2(α+ 1)ηtΓ

(
1 +

1

α

)(
1 +

∫ K

1
x−1/αdx

)
= 2(α+ 1)ηtΓ

(
1 +

1

α

)
αK1−1/α − 1

α− 1

≤ 2α(α+ 1)

α− 1
ηtΓ

(
1 +

1

α

)
K1−1/α.

Similarly, for Dα ∈ Dα, we have

E
[
ℓ̂t

(
ϕi

(
ηtL̂t

)
− ϕi

(
ηt

(
L̂t + ℓ̂t

)))∣∣∣∣L̂t

]
≤ 2αρ2
α− 1

ηt
m

Al
K1−1/α.

Appendix D. Regret bound for adversarial bandits: Penalty

This section provides the proofs on Lemma 13.

D.1. Penalty term analysis for the Fréchet distributions

By letting kα(z) =
∑

i
1

(z+ηtL̂t,i)
α
∈
(
0, K

zα

]
, we have

E
[
rt,It − rt,i∗

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

E
[
1[It = I]rt,i

∣∣∣∣L̂t

]
= α

∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
e−kα(z)dz
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≤ α

∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
dz =

α

α− 1

∑
i ̸=i∗

1

(ηtL̂t,i)
α−1

.

On the other hand,

α

∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
e−kα(z)dz ≤ α

∫ ∞

0
kα(z)e

−kα(z)dz

= α

∫ α√K

0
kα(z)e

−kα(z)dz + α

∫ ∞

α√K
kα(z)e

−kα(z)dz (41)

≤ α

∫ α√K

0
e−1dz + α

∫ ∞

α√K

K

zα
e−

K
zα dz

= αe−1 α
√
K +

α
√
K

∫ 1

0
w− 1

α e−wdw

=

(
αe−1 + γ

(
1− 1

α
, 1

))
α
√
K,

where the first term of (41) follows from the fact that xe−x ≤ e−1 and the second term follows from
the fact that xe−x is increasing for x ≤ 1 and kα(z) ≤ 1 holds for z ≥ α

√
K. From the definition of

the lower incomplete gamma function, one can obtain

γ(s+ 1, x) = sγ(s, x)− xse−x =⇒ γ

(
2− 1

α
, 1

)
=

(
1− 1

α

)
γ

(
1− 1

α
, 1

)
− e−1,

which implies

γ

(
1− 1

α
, 1

)
=

α

α− 1
γ

(
2− 1

α
, 1

)
+
αe−1

α− 1

≤ α

α− 1

α

2α− 1
(1− e−1) +

αe−1

α− 1

by Lemma 26 again. Therefore, by doing elementary calculations, we obtain that

α

∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
e−kα(z)dz ≤

(
0.74α3 + 0.27α2

(α− 1)(2α− 1)

)
α
√
K.

D.2. Penalty term analysis for the Pareto distributions

By letting kα(z) =
∑

i
1

(z+ηtL̂t,i)
α
∈
(
0, K

zα

]
, we have

E
[
rt,It − rt,i∗

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

E
[
1[It = I]rt,i

∣∣∣∣L̂t

]

= α

∫ ∞

1

∑
i ̸=i∗

 1

(z + ηtL̂t,i)
α

∏
j ̸=i

(
1− 1

(z + ηtL̂t,j)
α

)dz

≤ eα

∫ ∞

1

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
e−kα(z)dz.

Therefore, the proof in Section D.1 immediately concludes the Pareto case.
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D.3. Penalty term for the Fréchet-type distributions

Here, let us consider the inverse of the tail function, which is the tail quantile function defined as

U(t) := inf

{
x : F (x) ≥ 1

t

}
. (42)

Note that when F and U are continuous, 1− F (U(t)) = 1
t holds. Then, as in the other cases, we

have

E
[
rt,It − rt,i∗

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

E
[
1[It = I]rt,i

∣∣∣∣L̂t

]

=

∫ ∞

1

∑
i ̸=i∗

(z + ηtL̂t,i)f(z + ηtL̂t,i)
∏
j ̸=i

F (z + ηtL̂t,j)

dz

=

∫ U(K)

1

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

+

∫ ∞

U(K)

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz. (43)

The first term of (43) can be bounded as

∫ U(K)

1

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

=

∫ U(K)

1

∑
i ̸=i∗

ϱ(z + ηtL̂t,i)SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz by (22)

≤
∫ U(K)

1

∑
i ̸=i∗

ρ1SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

≤ eρ1

∫ U(K)

1

∑
i∈[K]

SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

 exp

−
∑
i∈[K]

SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

dz

≤ ρ1e

∫ U(K)

1
e−1dz ≤ ρ1U(K) ≤ ρ1AuK

1
α

where the second last inequality follows from xe−x ≤ e−1.
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For the second term of (43), from Sf (x) = ϱ(x)SF (x) in (22), we have

∫ ∞

U(K)

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

=

∫ ∞

U(K)

∑
i ̸=i∗

ϱ(z + ηtL̂t,i)SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

≤ ρ1

∫ ∞

U(K)

∑
i ̸=i∗

SF (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

= ρ1

∫ ∞

U(K)

∑
i∈[K]

(1− F (z + ηtL̂t,i))
∏
j ̸=i

F (z + ηtL̂t,j)

dz

≤ ρ1

∫ ∞

U(K)

∑
i∈[K]

(1− F (z + ηtL̂t,i)) exp

−
∑
j ̸=i

(1− F (z + ηtL̂t,j))

dz

≤ eρ1

∫ ∞

U(K)

∑
i∈[K]

(1− F (z))

 exp

−
∑
j∈[K]

(1− F (z))

dz (44)

= eρ1

∫ ∞

U(K)
K(1− F (z)) exp(−K(1− F (z)))dz

= eρ1

∫ ∞

U(K)
K
SF (z)

zα
exp

(
−KSF (z)

zα

)
dz,

where (44) holds since xe−x is increasing with respect to x ∈ [0, 1] and
∑

i∈[K](1−F (z+ηtL̂t,i))) ≤∑
i∈[K](1 − F (z)) ≤ 1 for z ≥ U(K). Here, SF (z) is increasing function with respect to z ≥ ν,

which implies

eρ1

∫ ∞

U(K)
K
SF (z)

zα
exp

(
−KSF (z)

zα

)
dz

≤ eρ1

∫ ∞

U(K)
K
SF (z)

zα
exp

(
−KSF (U(K))

zα

)
dz

=
eρ1
α

∫ ∞

U(K)

SF (z)z

SF (U(K))

KαSF (U(K))

zα+1
exp

(
−KSF (U(K))

zα

)
dz

=
eρ1
α

∫ ∞

U(K)

SF (z)z

SF (U(K))

(
− d

dx

KSF (U(K))

zα

)
exp

(
−KSF (U(K))

zα

)
dz.

By Potter’s bound (Lemma 29) with arbitrary chosen δ > 0, there exists some constants bδ such that
for any z ≥ U(K)

SF (z)

SF (U(K))
≤ bδ

(
z

U(K)

)δ

.
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Therefore, for δ > 0

eρ1

∫ ∞

U(K)
K
SF (z)

zα
exp

(
−KSF (z)

zα

)
dz

≤ eρ1
α

∫ ∞

U(K)
bδ

z1+δ

U δ(K)

(
− d

dx

KSF (U(K))

zα

)
exp

(
−KSF (U(K))

zα

)
dz

=
eρ1
α

∫ ∞

U(K)
bδ
K

1+δ
α

U δ(K)
SF (U(K))

1+δ
α

(
K
SF (U(K))

zα

)− 1+δ
α

·
(
− d

dx

KSF (U(K))

zα

)
exp

(
−KSF (U(K))

zα

)
dz

=
eρ1
α

∫ ∞

U(K)
bδK

1
αSF (U(K))

1
α

(
K
SF (U(K))

zα

)− 1+δ
α
(
− d

dx

KSF (U(K))

zα

)
· exp

(
−KSF (U(K))

zα

)
dz,

where the last equality follows from the definition of the tail quantile function,

1− F (U(K)) =
1

K
=
SF (U(K))

Uα(K)
⇐⇒

S
δ
α
F (U δ(K))

U(K)
= K− δ

α .

By letting w = K SF (U(K))
zα , we have for any δ ∈ (0, α− 1) and K ≥ 2

eρ1

∫ ∞

U(K)
K
SF (z)

zα
exp

(
−KSF (z)

zα

)
dz ≤ eρ1

α

∫ 1

0
bδK

1
αS

1
α
F (U(K))w− 1+δ

α e−wdw

=
eρ1
α
bδS

1
α
F (U(K))K

1
αγ

(
1− 1 + δ

α
, 1

)
≤ eρ1

α
bδAuγ

(
1− 1 + δ

α
, 1

)
K

1
α .

Letting C1,1(Dα) = minδ∈(0,α−1)
eρ1
α bδAuγ

(
1− 1+δ

α , 1
)
+ ρ1Au concludes the proof.
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D.4. Penalty term analysis dependent on the loss estimation

Similarly to Section D.3, we have

E
[
rt,It − rt,i∗

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

E
[
1[It = i]rt,i

∣∣∣∣L̂t

]

=

∫ ∞

1

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz

≤
∫ ∞

1

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α
dz

≤
∫ ∞

1

∑
i ̸=i∗

(
ρ1A

α
u

(z + ηtL̂t,i)
α

)
dz (45)

≤ ρ1A
α
u

α− 1

∑
i ̸=i∗

1

(ηtL̂t,i)
α−1

, ‘

where (45) follows from (22), Sf (x) = SF (x)ϱ(x), and the boundedness of SF (x) and ϱ(x).

Remark 20 When ν < 0, the perturbation rt,i can be negative. In such cases, we have

∑
i ̸=i∗

E
[
1[It = I]rt,i − rt,i∗

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

E
[
1[It = i]rt,i

∣∣∣∣L̂t

]
− E

[
rt,i∗

∣∣∣∣L̂t

]

=
∑
i ̸=i∗

E
[
1[It = i]rt,i

∣∣∣∣L̂t

]
− E[rt,i∗ ]

≤
∫ ∞

0

∑
i ̸=i∗

Sf (z + ηtL̂t,i)

(z + ηtL̂t,i)
α

∏
j ̸=i

F (z + ηtL̂t,j)

dz − E[rt,i∗ ].

Therefore, when ν < 0, adding a constant is enough (at most) to provide the upper bound.

Appendix E. Regret bound for stochastic bandits

In this section, we provide the proof of Theorem 5 based on the self-bounding technique, which
requires a regret lower bound of the policy (Zimmert and Seldin, 2021). We first generalize the
results of Honda et al. (2023) to Fréchet distributions with index α > 1 and then generalize it to Dα.
Here, we consider two events Ft and Dt, which are defined by

Ft :=

∑
i ̸=i∗

1

(ηtL̂t,i)
α
≤ 1

,
Dt :=

∑
i ̸=i∗

1− F (U(2) + ηtL̂t,i) ≤ 1− F (U(2) + 1)

,
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where U(2) denotes the median of Dα. Note that F (U(2) + 1) < 1 holds since F (x) < 1 holds for
any finite x if Dα ∈ Dall

α . The key property on these events are

L̂t,i∗ = 0, and ηtL̂t,j ≥ 1, ∀j ̸= i∗. (46)

Note that the choice of RHS, 1 and 1− F (U(2) + 1) is not mandatory, and thus one can choose any
real values for Ft and 1− F (U(b) + 1) with b > 1 for Dt.

E.1. Regret lower bounds

Here, we provide the regret lower bounds for Fα and Dα, respectively.

Lemma 21 Let ∆ := mini ̸=i∗ ∆i. Then, for any α > 1, there exists some constants cs,1(Fα) ∈
(0, 1) that only depend on α such that

(i) On Ft,
∑

i ̸=i∗ ∆iwt,i ≥ cs,1(Fα)
∑

i ̸=i∗
∆i

(ηtL̂t,i)
α

and wt,i∗ ≥ 1/e.

(ii) On F c
t ,
∑

i ̸=i∗ ∆iwt,i ≥ ∆
2α+1+1

.

Proof Let L̂
′
= mini ̸=i∗ L̂t,i. Then, for any b > 0 we have

∑
i ̸=i∗

∆iwt,i = α

∫ ∞

0

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

−
∑
i∈[K]

1

(z + ηtL̂t,i)
α

dz

≥ α

∫ ∞

bηtL̂
′

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

−
∑
i∈[K]

1

(z + ηtL̂t,i)
α

dz.

(i) Consider the case
∑

i ̸=i∗
1

(ηtL̂t,i)
α
≤ 1, we have

∑
i ̸=i∗

∆iwt,i ≥ α

∫ ∞

bηtL̂
′

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

−
∑
i∈[K]

1

(z + ηtL̂t,i)
α

dz

≥ α

∫ ∞

bηtL̂
′

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

− 1

(bηtL̂
′
)α

−
∑
i ̸=i∗

1

(z + ηtL̂t,i)
α

dz

≥ α

∫ ∞

bηtL̂
′

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

−
(
1 +

1

bα

)∑
i ̸=i∗

1

(z + ηtL̂t,i)
α

dz

≥ α

∫ ∞

bηtL̂
′

∑
i ̸=i∗

∆i

(z + ηtL̂t,i)
α+1

 exp

(
−
(
1 +

1

bα

))
dz

= exp

(
−
(
1 +

1

bα

))∑
i ̸=i∗

∆i

(bηtL̂
′
+ ηtL̂t,i)

α


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≥

∑
i ̸=i∗

∆

((1 + b)ηtL̂t,i)
α

 exp

(
−
(
1 +

1

bα

))

=
exp
(
−
(
1 + 1

bα

))
(1 + b)α

∑
i ̸=i∗

∆

(ηtL̂t,i)
α

.
Since b > 0 is arbitrary chose, we can set cs,1(Fα) = maxb>0

exp(−(1+ 1
bα ))

(1+b)α ∈ (0, 1).

Since L̂t,i∗ = 0 holds on Ft, we have

wt,i∗ =

∫ ∞

0

α

zα+1
exp

−
∑
i∈[K]

1

(z + ηtL̂t,i)
α

dz

≥
∫ ∞

0

α

zα+1
exp

−
∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
− 1

zα

dz

≥ e−1

∫ ∞

0

α

zα+1
exp

(
− 1

zα

)
dz =

1

e
,

which concludes the proof of the case (i).
(ii) When

∑
i ̸=i∗

1
(ηtL̂t,i)

α
≥ 1, we have for any z ≥ bηtL̂

′

∑
i∈[K]

1

(z + ηtL̂t,i)
α
≤
∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
+

1

zα

≤
∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
+

1

( z+bηtL̂
′

2 )α

≤
∑
i ̸=i∗

1

(z + ηtL̂t,i)
α
+
∑
i ̸=i∗

2α

(z + bηtL̂t,i)
α
.

Therefore, by letting b = 1, we obtain that

∑
i ̸=i∗

∆iwt,i ≥ α∆

∫ ∞

ηtL̂
′

∑
i ̸=i∗

1

(z + ηtL̂t,i)
α+1

 exp

−
∑
i ̸=i∗

2α + 1

(z + ηtL̂t,i)
α

dz

=
∆

2α + 1

1− exp

−
∑
i ̸=i∗

2α + 1

(ηtL̂
′
+ ηtL̂t,i)

α

dz


≥ ∆

2α + 1

1− exp

−
∑
i ̸=i∗

2α + 1

2α(ηtL̂t,i)
α

dz


≥ ∆

2α + 1

(
1− e−

2α+1
2α

)
≥ ∆

2α + 1

2α + 1

2α+1 + 1
=

∆

2α+1 + 1
,
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where the last inequality follows from x
1+x < 1− e−x for x > −1.

Lemma 22 Let ∆ := mini ̸=i∗ ∆i. Then, for any α > 1 and Dα ∈ Dα, there exists some
distribution-dependent constants cs,1(Dα), cs,2(Dα) ∈ (0, 1) such that

(i) On Dt,
∑

i ̸=i∗ ∆iwt,i ≥ cs,1(Dα)
∑

i ̸=i∗
∆i

(ηtL̂t,i)
α

and wt,i∗ ≥ 0.14.

(ii) On Dc
t ,
∑

i ̸=i∗ ∆iwt,i ≥ cs,2(Dα)∆.

Proof Here, for any L̂t, we have

∑
i ̸=i∗

∆iwt,i =

∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)
∏
j ̸=i

F (z + ηtL̂t,j)

dz

≥
∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 ∏
j∈[K]

F (z + ηtL̂t,j)dz

≥
∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j∈[K]

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

dz (47)

≥
∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

where (47) holds since e−
x

1−x < 1− x holds for x < 1.
(i) When Dt holds, we obtain∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ e−1

∫ ∞

U(2)

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−2
∑
j ̸=i∗

(1− F (z + ηtL̂t,i))

dz

≥ e−1

∫ ∞

U(2)

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

dz

= e−1
∑
i ̸=i∗

∆i

(
1− F

(
U(2) + ηtL̂t,i

))

= e−1
∑
i ̸=i∗

∆i

SF

(
U(2) + ηtL̂t,i

)
(
U(2) + ηtL̂t,i

)α
≥ e−1

∑
i ̸=i∗

∆i
Aα

l(
U(2) + ηtL̂t,i

)α
≥ e−1 Aα

l

(U(2) + 1)α

∑
i ̸=i∗

∆i

(ηtL̂t,i)
α
= cs,1(Dα)

∆i

(ηtL̂t,i)
α
,
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where the last inequality holds for ηtL̂t,j ≥ 1 holds for j ̸= i∗ on Dt. When SF is increasing, one
can replace Aα

l with SF (U(2)), where cs,1(Dα) ≈ e−1

2 holds. Note that one can replace U(2) with
U(b) for any b > 1 and choose

cs,1(Dα) = min
b>1

e1−b SF (U(b))

(U(b) + 1)α
∈ (0, 1),

which will provide a tighter lower bound.
Since L̂t,i∗ = 0 holds on Dt, we have

wt,i∗ ≥ e−1

∫ ∞

U(2)
f(z) exp

−
∑
i ̸=i∗

1− F (z + ηtL̂t,i)

dz

≥ e−1

∫ ∞

U(2)
f(z) exp

−
∑
i ̸=i∗

1− F (z + ηtL̂t,i)− (1− F (z))

dz

≥ e−1

∫ ∞

1
f(z) exp(F (z)− 1) exp(F (U(2) + 1)− 1)dz

≥ e−1

∫ ∞

1
f(z) exp(F (z)− 1) exp(F (U(2))− 1)dz

= e−
3
2 (1− e−1) ≥ 0.14

which concludes the proof of the case (i).
(ii) Recall the definition of the tail quantile function U(x) defined in (42). Then, we have

∫ ∞

1

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ ∆

∫ ∞

U(2)

∑
i ̸=i∗

f(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ ∆e−1

∫ ∞

U(2)

∑
i ̸=i∗

f(z + ηtL̂t,i)

 exp

−2
∑
j ̸=i∗

(1− F (z + ηtL̂t,i))

dz (48)

= ∆
e−1

2

1− exp

−2
∑
j ̸=i∗

(1− F (U(2) + ηtL̂t,j))


≥ ∆

e−1

2
(1− exp(−2(1− F (U(2) + 1)))) = cs(Dα)∆

where (48) holds since e−
1−x
x is increasing with respect to x ∈ [0, 1], and z ≥ U(b) and F (z) ≥ 1

b
for z ≥ B. Note that cs(Dα) ∈ (0, 1) is a distribution-dependent constant and can be approximated
as e−1

2 (1− e−1).
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E.2. Regret for the optimal arm

To apply the self-bounding technique to FTPL, it is necessary to represent the regret associated with
the optimal arm in terms of statistics of the other arms. We begin by extending the findings of Honda
et al. (2023) to Fréchet distributions with an index α > 1 and subsequently generalize it to Dα.
Before diving into the proofs, we first introduce the lemma by Honda et al. (2023).

Lemma 23 (Partial result of Lemma 11 in Honda et al. (2023)) For any L̂t and ζ ∈ (0, 1), it
holds that

E
[
1

[
ℓ̂t,i∗ >

ζ

ηt

]
ℓ̂t,i∗

∣∣∣∣L̂t

]
≤ 1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
and when ηt = cK

1
α− 1

2√
t

∞∑
t=1

1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
≤ O

(
c2K

2
α
−1
)
.

Lemma 24 On Ft, for any ζ ∈ (0, 1) and α > 1, we have

E
[
ℓ̂t,i∗

(
ϕi∗(ηtL̂t;Fα)− ϕi∗(ηt(L̂t + ℓ̂t);Fα)

)∣∣∣∣L̂t

]
≤ 2αe

(1− ζ)α+1

∑
j ̸=i∗

1

L̂t,j

+
1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
.

Proof Recall (46), which shows that any j ̸= i∗ satisfies L̂t,j ≥ 1
ηt

and argmini∈[K] L̂t = L̂t,i∗

holds on Ft. Following Honda et al. (2023), we consider the cases (a) ŵ−1
t,i∗ ≤ ζ

ηt
and (b) ŵ−1

t,i∗ >
ζ
ηt

,
separately.

(a) Let us consider the first case, where argmini∈[K] L̂t + xei∗ = i∗ holds since L̂t ≥ 1
ηt

and

ℓ̂t,i∗ = ℓt,i∗ŵ
−1
t,i∗ ≤ ζ

ηt
<

1

ηt
≤ min

i ̸=i∗
L̂t,i.

Therefore, we have for x ≤ ζ
ηt

ϕi∗(ηt(L̂t + xei∗)) =

∫ ∞

0

α

zα+1
exp

−
∑
i∈[K]

1

(z + ηt(L̂t,j − x))α

dz,

which implies

d

dx
ϕi∗(ηt(L̂t + xei∗)) =

∫ ∞

0
− α

zα+1

∑
j ̸=i∗

αηt

(z + ηt(L̂t,j − x))α+1
exp

−
∑
j ̸=i∗

1

(z + ηt(L̂t,j − x))α
− 1

zα

dz

≥
∫ ∞

0
− α

zα+1

∑
j ̸=i∗

αηt

(z + ηt(L̂t,j − x))α+1
exp

−
∑
j ̸=i∗

1

(z + ηt(L̂t,j − x))α
− 1

zα

dz
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Then, we obtain

ℓ̂t,i∗
(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)
= ℓ̂t,i∗

∫ ℓ̂t

0
− d

dx
ϕi∗(ηt(L̂t + xei∗))dx

≤ ℓ̂t,i∗

∫ ℓ̂t

0

∫ ∞

0

α

zα+1

∑
j ̸=i∗

αηt

(z + ηt(L̂t,j − x))α+1
exp

−
∑
j ̸=i∗

1

(z + ηt(L̂t,j − x))α
− 1

zα

dzdx

≤ ℓ̂t,i∗

∫ ℓ̂t

0

∫ ∞

0

α

zα+1

∑
j ̸=i∗

αηt

(z + ηt(L̂t,j − x))α+1
exp

(
− 1

zα

)
dzdx

≤ ℓ̂t,i∗

∫ ℓ̂t

0

∫ ∞

0

α

zα+1

∑
j ̸=i∗

1

(1− ζ)α+1

αηt

(ηtL̂t,j)
α+1

exp

(
− 1

zα

)
dzdx (by x ≤ ζ/ηt, and L̂t,i ≥ 1/ηt)

= ℓ̂t,i∗

∫ ℓ̂t

0

∑
j ̸=i∗

1

(1− ζ)α+1

αηt

(ηtL̂t,j)
α+1

dx

= ℓ̂2t,i∗
∑
j ̸=i∗

1

(1− ζ)α+1

αηt

(ηtL̂t,j)
α+1

≤ ℓ̂2t,i∗
∑
j ̸=i∗

1

(1− ζ)α+1

α

L̂t,j

,

where the last inequality comes from L̂t,i ≥ 1
ηt

. Therefore, we have

E
[
1[ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣∣L̂t

]

≤ E

1[ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂
2
t,i∗

∑
j ̸=i∗

α

(1− ζ)α+1L̂t,j

∣∣∣∣L̂t


≤ E

2ℓ2t,i∗
wt,i∗

∑
j ̸=i∗

α

(1− ζ)α+1L̂t,j

∣∣∣∣L̂t


≤ 2αe

∑
j ̸=i∗

1

(1− ζ)α+1L̂t,j

. (49)

(b) When ŵ−1
t,i∗ >

ζ
ηt

, by Lemma 23, we have

E
[
1[ℓ̂t,i∗ > ζ/ηt]ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣∣L̂t

]
≤ E

[
1[ℓ̂t,i∗ > ζ/ηt]ℓ̂t,i∗

∣∣∣∣L̂t

]
≤ 1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
.

(50)

Combining (49) and (50) concludes the proof.
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Lemma 25 On Dt, for any ζ ∈ (0, 1), Dα ∈ Dα and α > 1, we have

E
[
ℓ̂t,i∗

(
ϕi∗(ηtL̂t;Dα)− ϕi∗(ηt(L̂t + ℓ̂t);Dα)

)∣∣∣∣L̂t

]
≤ 14.4Aα

uρ1e(1− e−1)

(1− ζ)α+1

∑
j ̸=i∗

1

L̂t,j

+
1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
.

Proof As the proof of Lemma 24, we consider two cases (a) ŵ−1
t,i∗ ≤ ζ

ηt
and (b) ŵ−1

t,i∗ >
ζ
ηt

, separately.
For case (b), one can see that Lemma 23 can be directly applied as Lemma 24.

(a) When ŵ−1
t,i∗ ≤ ζ

ηt
, we have

ϕi∗(ηt(L̂t + ei∗x);Dα) =

∫ ∞

1
f(z)

∏
j ̸=i∗

F
(
z + ηt(L̂t,j − x)

)
dz,

which implies for x ≤ ζ
ηt

,

− d

dx
ϕi∗
(
ηt(L̂t + ei∗x);Dα

)
=

∫ ∞

1
f(z)

∑
i ̸=i∗

ηtf(z + ηt(L̂t,j − x)
) ∏

j ̸=i,i∗

F
(
z + ηt(L̂t,j − x)

)dz

≤
∫ ∞

1
f(z)

∑
i ̸=i∗

ηtf(z + ηt(L̂t,i − x)
)
exp

−
∑
j ̸=i,i∗

(
1− F

(
z + ηt(L̂t,j − x)

))dz

≤ e2
∫ ∞

1
f(z)

∑
i ̸=i∗

ηtf
(
z + ηt(L̂t,i − x)

)
exp

−
∑
j ̸=i∗

(
1− F

(
z + ηt(L̂t,j − x)

))
− (1− F (z))

dz

≤ e2
∫ ∞

1
f(z)

∑
i ̸=i∗

ηtf
(
z + ηt(L̂t,i − x)

)
exp(−(1− F (z)))dz

= e2
∫ ∞

1
f(z)

∑
i ̸=i∗

ηt
SF (z + ηt(L̂t,i − x))ϱ(z + ηt(L̂t,i − x))

(z + ηt(L̂t,i − x))α+1
exp(−(1− F (z)))dz

≤ e2ηtA
α
uρ1

∫ ∞

1
f(z) exp(−(1− F (z)))

∑
i ̸=i∗

1

(z + ηt(L̂t,i − x))α+1
dz (51)

≤ e2ηtA
α
uρ1

∫ ∞

1
f(z) exp(−(1− F (z)))

∑
i ̸=i∗

1

(1− ζ)α+1(ηtL̂t,i)
α+1

dz

≤ Aα
uρ1e

2
∑
i ̸=i∗

ηt

(1− ζ)α+1(ηtL̂t,i)
α+1

(1− e−1)

≤ Aα
uρ1e

2(1− e−1)
∑
i ̸=i∗

1

(1− ζ)α+1L̂t,i

(by ηtL̂t,i ≥ 1, ∀i ̸= i∗),
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where (51) follows from the boundedness of SF ≤ S and Assumption 2. Therefore, we have

E
[
ℓ̂t,i∗

(
ϕi∗(ηtL̂t;Dα)− ϕi∗(ηt(L̂t + ℓ̂t);Dα)

)∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

14.4Aα
uρ1e(1− e−1)

(1− ζ)α+1L̂t,i

+
1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
.

Here, 14.4 is introduced by 2
0.14 by following the same steps in (49).

E.3. Proof of Theorems 5 and 6

Although the overall proofs are identical for Fα and Dα in essential, we provide the proof of Fα first
and then Dα for completeness.

E.3.1. FRÉCHET DISTRIBUTION WITH α ≥ 2

For simplicity, let Kα = K
1
α
− 1

2 so that ηt = cKα√
t

. Combining the results obtained thus far, the regret
is bounded by

R(T ) ≤
∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E
[
rt+1,It+1 − rt+1,i∗

]
+
K

1
αΓ
(
1− 1

α

)
η1

+
α

2
log(T + 1) (by Lemmas 7 and 8)

≤
T∑
t=1

E
[
E
[〈
ℓ̂t, wt − wt+1

〉
+

(
1

ηt+1
− 1

ηt

)
(rt+1,It+1 − rt+1,i∗)

∣∣∣∣L̂t

]]

+

√
KΓ
(
1− 1

α

)
c

+
α

2
log(T + 1)

≤
T∑
t=1

E
[
E
[〈
ℓ̂t, wt − wt+1

〉
+
rt+1,It+1 − rt+1,i∗

2cKα

√
t

∣∣∣∣L̂t

]]
+

√
KΓ
(
1− 1

α

)
c

+
α

2
log(T + 1),

(52)

where the last inequality follows from

1

ηt+1
− 1

ηt
=

1

cKα
(
√
t+ 1−

√
t) =

√
t

cKα
(
√
1 + 1/t− 1) ≤ 1

2cKα

√
t
.

Note that wt = ϕ(ηtL̂t) and wt+1 = ϕ(ηt(L̂t + ℓt)) by definition of ϕ.
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On Ft, where ηtL̂t,j ≥ 1 for j ̸= i∗, we have for α ≥ 2

E
[〈
ℓ̂t, wt − wt+1

〉
+
rt+1,It+1 − rt+1,i∗

2cKα

√
t

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

2α

L̂t,i

+
1

2cKα

√
t

α

α− 1

1

(ηtL̂t,i)
α−1

+
2αe

(1− ζ)α+1

1

L̂t,i

+

T∑
t=1

(1− e−1)
ζ
ηt

1− e−1

(
ζ

ηt
+ e

)
(by Lemmas 13, 11, and 24)

≤
∑
i ̸=i∗

2α

L̂t,i

+
1

2cKα

√
t

α

α− 1

1

(ηtL̂t,i)
+

2αe

(1− ζ)α+1

1

L̂t,i

+
T∑
t=1

(1− e−1)
ζ
ηt

1− e−1

(
ζ

ηt
+ e

)
(53)

≤
∑
i ̸=i∗

2α

L̂t,i

+
1

2(cKα)2
α

α− 1

1

L̂t,i

+
2αe

(1− ζ)α+1

1

L̂t,i

+
T∑
t=1

(1− e−1)
ζ
ηt

1− e−1

(
ζ

ηt
+ e

)

≤
∑
i ̸=i∗

2α+ 2αe
(1−ζ)α + α

2(cKα)2(α−1)

L̂t,i

+O
(
c2K2

α

)
(by Lemma 23)

=
∑
i ̸=i∗

2α(1 + e2) + α
2(cKα)2(α−1)

L̂t,i

+O
(
c2K2

α

)
(54)

where (53) follows from ηtL̂t,i ≥ 1 for all i ̸= i∗ on Ft and α ≥ 2 and we chose ζ = 1−e−
1
α ∈ (0, 1)

for simplicity.
On F c

t , we have

E
[〈
ℓ̂t, wt − wt+1

〉
+
rt+1,It+1 − rt+1,i∗

2cKα

√
t

∣∣∣∣L̂t

]
≤ 2α(α+ 1)

α− 1
Γ

(
1 +

1

α

)
K1− 1

α ηt +
K

1
α

2cKα

√
t

α2(2α+ e− 2)

(α− 1)(2α− 1)e
(by Lemmas 13 and 12)

=

(
2cα(α+ 1)

α− 1
Γ

(
1 +

1

α

)
+

α2(2α+ e− 2)

2ce(α− 1)(2α− 1)

)√
K

t
. (55)

Combining (54) and (55) with (52) provides

R(T ) ≤
T∑
t=1

E

[
1[Ft]

∑
i ̸=i∗

2α(1 + e2) + α
2(cKα)2(α−1)

L̂t,i

+ 1[F c
t ]

(
2cα(α+ 1)

α− 1
Γ

(
1 +

1

α

)
+

α2(2α+ e− 2)

2ce(α− 1)(2α− 1)

)√
K

t

]

+

√
KΓ
(
1− 1

α

)
c

+
α

2
log(T + 1) +O

(
c2K2

α

)
. (56)
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On the other hand, by Lemma 21, we have

R(T ) ≥
T∑
t=1

E

[
1[Ft]cs,1(Fα)

∆it
α
2

(cKαL̂t,i)
α
+ 1[F c

t ]
∆

2α+1 + 1

]
. (57)

By applying self-bounding technique, (56) - (57)/2, we have

R(T )

2
≤

T∑
t=1

E

1[Ft]
∑
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(
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∆it

α
2

2(cKαL̂t,i)
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E

[
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2cα(α+ 1)
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(
1 +

1

α

)
+
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+
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2
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)
. (58)

For the first term of (58), we have

(
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α
2
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)

≤
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) 1
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(
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1
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)(4α(1 + e2) + α
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) 1
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∆
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i K
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α
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, (59)

since Ax−Bxα ≤ Aα−1
α

(
A
αB

) 1
α−1 holds for A,B > 0 and α > 1.

For the second term of (58), we have
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(
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)
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∆
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K = O(K) (60)
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Therefore, by combining (59) and (60) with (58), we obtain

R(T )

2
≤ O

∑
i ̸=i∗
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1

∆
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i K
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2
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√
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c

+
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1
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T
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∆
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i K

α−2
2(α−1)

)
, if α > 2,

which concludes the proof for Fα with α ≥ 2.

E.3.2. FRÉCHET DISTRIBUTION WITH α ∈ (1, 2)

The proof for α ∈ (1, 2) begin by modifying (53), where we obtain

E
[〈
ℓ̂t, wt − wt+1

〉
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2cKα

√
t

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

2α

L̂t,i

+
1

2cKα

√
t

α

α− 1

1
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2αe
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∑
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(by Lemma 23)
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∑
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1
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(
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)
.

By following the same steps from (55), one can obtain
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+
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Here, the first term can be written as
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The first term of (61) can be bounded in the same way of (59) and the second term is bounded as
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,
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α

A
B
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for A,B > 0 and α > 1. Therefore, (61) is bounded by

(
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(62)

Since α
2(α−1) > 1, the summation over the first term in (62) is constant. Therefore, by following the

same steps from (60), we can obtain for α ∈ (1, 2) that
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c
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2
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which concludes the proof.

E.3.3. FRÉCHET-TYPE DISTRIBUTIONS WITH BOUNDED SLOWLY VARYING FUNCTION

Let us begin by replacing terms in (52) with the corresponding terms for Dα, which gives
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On Dt, where ηtL̂t,j ≥ 1 for j ̸= i∗, we have for α ≥ 2

E
[〈
ℓ̂t, wt − wt+1

〉
+
rt+1,It+1 − rt+1,i∗

2cKα

√
t

∣∣∣∣L̂t

]
≤
∑
i ̸=i∗

2eαAuρ2
Al(α+1)

L̂t,i

+
1

2cKα

√
t

eρ1A
α
u

α− 1

1

(ηtL̂t,i)
α−1

+
14.4Aα

uρ1e(1− e−1)

(1− ζ)α+1

1

L̂t,i

+
T∑
t=1

(1− e−1)
ζ
ηt

1− e−1

(
ζ

ηt
+ e

)
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(by Lemma 23)
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)
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where (64) follows from ηtL̂t,i ≥ 1 for all i ̸= i∗ on Dt and α ≥ 2 and we chose ζ = 1− e
−1
α+1 ∈

(0, 1) in (65) for simplicity.
On Dc

t , we have
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Combining (65) and (66) with (63) provides
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On the other hand, by Lemma 22, we have

R(T ) ≥
T∑
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By applying self-bounding technique, (67) - (68)/2, we have
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Therefore, following the same steps as the Fréchet distribution from (58) concludes the proof. For
α ∈ (1, 2), one can follow the same steps in the Fréchet case.

Appendix F. Numerical validation

This section presents simulation results to verify our theoretical findings. Following Zimmert and
Seldin (2021) and Honda et al. (2023), we consider the stochastically constrained adversarial setting.
The results in this section are the averages of 100 independent trials. Following Honda et al. (2023),
we consider FTPL with a stable variant of geometric resampling (GR 10). In the stable variant,
resampling (Lines 7–9 in Algorithm 1) is iterated ten times, and the mean is calculated, leading

to a reduction in the variance of ŵ−1
t,i . We consider this stable variant to examine the effect of

perturbations in FTPL more accurately.
Since K perturbations are independently generated from a common distribution, the behavior of

FTPL is influenced by the distribution of maximum perturbations. Therefore, in this experiment, we
consider perturbations whose limiting distribution converges to the same Fréchet distribution with
shape α. Since one can rewrite (2) as

Pr[MK/aK ≥ x]
K→∞→ 1[x ≥ 0] exp

(
−x−α

)
,

for aK = inf {x : F (x) ≥ 1− 1/K}, we use denormalized perturbations X = raK instead of r
generated from a common distribution Dα. This ensures that normalized block maxima of different
perturbations converge to the same extreme distribution as K increases.

Figures 1, 2, and 3 are the results examining the behavior of FTPL in the adversarial setting
using distributions from FMDA with index α = 2. In these figures, the legends represent the original
perturbations denoted by r, while FTPL employs denormalized perturbations X . Despite the absence
of variance in r for α = 2, the behavior of FTPL is almost the same as K becomes sufficiently large.
This experimental observation supports our theoretical findings, demonstrating that the dominating
factor in the behavior of FTPL is determined by the limiting distributions.
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Figure 1: Adversarial setting with K = 8. Figure 2: Adversarial setting with K = 16.

Figure 3: Adversarial setting with K = 32.
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Appendix G. Technical lemmas

Lemma 26 (Equation 8.10.2 of Olver et al. (2010)) For x > 0 and a ≥ 1,

γ(a, x) ≤ xa−1

a
(1− e−x).

Lemma 27 (Gautschi’s inequality) For x > 0 and s ∈ (0, 1),

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

Lemma 28 For any α > 1,
B(x;1+ 1

α
,i)

B(x;1,i) is monotonically increasing with respect to x ∈ (0, 1].

Proof From the definition of the incomplete Beta function, B(x; a, b) =
∫ x
0 t

a−1(1− t)b−1dt, we
obtain

d

dx

B
(
x; 1 + 1

α , i
)

B(x; 1, i)
=

1

B2(x; 1, i)

(
x

1
α (1− x)i−1

∫ x

0
(1− t)i−1dt−

∫ x

0
t
1
α (1− t)i−1dt(1− x)i−1

)
=

(1− x)i−1

B2(x; 1, i)

(∫ x

0
x

1
α (1− t)i−1dt−

∫ x

0
t
1
α (1− t)i−1dt

)
≥ 0,

which concludes the proof.

Lemma 29 (Potter bounds (Beirlant et al., 2006)) Let S(x) be a slowly varying function. Given
A > 1 and δ > 0, there exists a constant x0 such that

S(y)

S(x)
≤ Amax

{(y
x

)δ
,

(
x

y

)δ
}
, ∀x, y ≥ x0.
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