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Abstract
This paper studies reward-agnostic exploration in reinforcement learning (RL) — a scenario where
the learner is unware of the reward functions during the exploration stage — and designs an algo-
rithm that improves over the state of the art. More precisely, consider a finite-horizon inhomoge-
neous Markov decision process with S states, A actions, and horizon length H , and suppose that
there are no more than a polynomial number of given reward functions of interest. By collecting an
order of

SAH3

ε2
sample episodes (up to log factor)

without guidance of the reward information, our algorithm is able to find ε-optimal policies for all
these reward functions, provided that ε is sufficiently small. This forms the first reward-agnostic
exploration scheme in this context that achieves provable minimax optimality. Furthermore, once
the sample size exceeds S2AH3

ε2 episodes (up to log factor), our algorithm is able to yield ε accuracy
for arbitrarily many reward functions (even when they are adversarially designed), a task commonly
dubbed as “reward-free exploration.” The novelty of our algorithm design draws on insights from
offline RL: the exploration scheme attempts to maximize a critical reward-agnostic quantity that
dictates the performance of offline RL, while the policy learning paradigm leverages ideas from
sample-optimal offline RL paradigms.1
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