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Abstract

We consider a weakly supervised learning problem called Learning from Label Proportions (LLP),
where examples are grouped into “bags” and only the average label within each bag is revealed
to the learner. We study various learning rules for LLP that achieve PAC learning guarantees
for classification loss. We establish that the classical Empirical Proportional Risk Minimization
(EPRM) learning rule (Yu et al., 2014) achieves fast rates under realizability, but EPRM and similar
proportion matching learning rules can fail in the agnostic setting. We also show that (1) a debiased
proportional square loss, as well as (2) a recently proposed EasyLLP learning rule (Busa-Fekete
et al., 2023) both achieve “optimistic rates” (Panchenko, 2002); in both the realizable and agnostic
settings, their sample complexity is optimal (up to log factors) in terms of ε, δ, and VC dimension.

Keywords: weak supervision, learning from label proportions, PAC learning, sample complexity

1. Introduction

We study Learning from Label Proportions (LLP), which is a framework for weakly supervised
learning. In the standard supervised learning framework, the learner has access to a dataset of n
i.i.d. labeled examples {(xi, yi)}ni=1 ∈ (X × Y)n, and the goal is to learn an accurate predictor
f̂ : X 7→ Y . In the LLP framework, the learner does not get access to the true labels {yi}ni=1;
instead, training data is organized into “bags” which contain multiple unlabeled examples, and only
the average (or “aggregated”) label within the bag is provided to the learner.

The LLP framework has been studied in a long line of work, dating back to Kück and de Freitas
(2005); Musicant et al. (2007). LLP is motivated by practical machine learning problems where
individual labels are expensive to obtain or unavailable, see, e.g., applications in high energy physics
(Dery et al., 2017), election prediction (Sun et al., 2017), and RADAR image classification (Ding
et al., 2017). More recently, LLP was proposed as a mechanism to provide user privacy (Diemert
et al., 2022); for example, in the Apple SKAN API (Apple, 2024) and Google Chrome’s Private
Aggregation API (Google, 2024), only aggregated labels are provided for ad conversion reporting.
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Problem Formulation. Let X represent the instance space and Y = {0, 1} denote the label
space. In LLP, we are given n bags of examples {(Bi, αi)}ni=1 where each bag Bi = {xi,j}kj=1

contains k instances and αi = 1
k

∑k
j=1 yi,j is the average label within the bag. We assume that

each instance (xi,j , yi,j) ∼ D is independently and identically distributed (i.i.d.) according to an
unknown distribution D. We also use (B,α) ∼ D to indicate that a bag is drawn from D. Unlike
supervised learning, in LLP the learner does not get individual labels yi,j , but only the aggregated
label αi for a collection of k random instances.

We study the PAC learning objective of finding an accurate instance-level predictor from label pro-
portion data that competes with the best predictor in specified function class F ⊆ YX . Given
parameters ε, δ ∈ (0, 1), we seek a predictor f̂ : X → Y that satisfies the following condition with
probability at least 1− δ:

L(f̂) ≤ inf
f∈F

L(f) + ε, where L(f) := E(x,y)∼D[ℓ
01(y, f(x))], (1)

and ℓ01 : Y ×Y → {0, 1} is the classification loss, defined as ℓ01(y, ŷ) = 1{y ̸= ŷ}. When the bag
size k = 1, this becomes the classic binary classification setup, for which it is known precisely that
the VC dimension of F characterizes the sample complexity of learning.

The fundamental question in LLP is to establish the sample complexity, i.e., the number of bags
n required to guarantee Eq. (1), in terms of the VC dimension of F , bag size k, and accuracy pa-
rameters ε, δ. Our paper investigates several proposed learning rules designed to directly minimize
classification loss. We establish generalization bounds for these learning rules under both the re-
alizable setting (where inff∈F L(f) = 0 and fast 1/n rates are possible) and the agnostic setting
(where inff∈F L(f) can be arbitrary, and one gets slow 1/

√
n rates). Specifically, we adopt the

optimistic rates framework (Panchenko, 2002; Srebro et al., 2010) which uses localized uniform
convergence bounds to show generalization guarantees that interpolate between the realizable and
agnostic setting.

Notation. We denote the marginal label proportion p = P[y = 1]. Whenever the function class F
is clear from the context, we denote d = VC(F). We adopt standard big-oh notation and use Õ(·)
to hide poly(log k, log n) dependencies in our bounds.

1.1. Our Contributions

We obtain the following results on LLP for the classification objective (1).

Success and Failure of Empirical Proportional Risk Minimization (Section 2): We study the
Empirical Proportional Risk Minimization (EPRM) learning rule (Yu et al., 2014), which is a natural
extension of Empirical Risk Minimization (ERM) to the LLP setting. Concretely we prove that
under realizability, f̂EPRM := argminf∈F

1
n

∑n
i=1 1{

1
k

∑k
j=1 f(xi,j) ̸= αt} achieves the sample

complexity guarantee

n = O

(
d log k · log(1/ε) + log(1/δ)

ε

)
.

However, in the agnostic setting we show that EPRM cannot attain polynomial (in k) sample com-
plexity, and similar “folklore” learning rules based on minimization of proportional square or log
losses even fail to return a predictor with constant suboptimality.
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Optimistic Rates for Debiased Square Loss (Section 3): To address the failure of proportional
loss learning rules in the agnostic setting, we consider a simple debiased variant of the proportional
square loss. We show that the debiased square loss learning rule f̂DSQ achieves the optimistic rate:

L(f̂DSQ) ≤ L⋆ + Õ

(
k2(d+ log(1/δ))

n
+

√
L⋆ · k2(d+ log(1/δ))

n

)
,

where we denote L⋆ = minf∈F L(f). Here, observe that under realizability (with L⋆ = 0), f̂DSQ

enjoys a fast 1/n rate, while in the agnostic setting we recover the 1/
√
n rate, both of which are

optimal (up to log factors) in terms of d, log(1/δ), and n.

Optimistic Rates for EasyLLP (Section 4): We study an alternative approach called EasyLLP,
which was recently proposed by Busa-Fekete et al. (2023). Specialized to the classification setting,
they show a 1/

√
n rate (hiding dependence on d, k, and δ). We improve upon their result to show an

optimistic rate similar to the one achieved by the debiased square loss, showing that EasyLLP can
indeed adapt to realizability. Our analysis reveals a curious phenomenon: in the realizable setting,
EasyLLP exhibits a separation between loss estimation (which is necessarily Ω(1/

√
n) even for the

optimal predictor f⋆) and learning (which is Õ(1/n) by the optimistic rates guarantee).

Lower Bounds (Section 5): We investigate the optimal dependence on the bag size k, since our
bounds are tight (up to log factors) in the other parameters. A trivial lower bound of n = Ω(1/k)
follows because LLP with n bags is only harder than supervised learning with nk bags. It turns out
this cannot be improved in general for all F , but we give an explicit example of a function class F
for which the minimax sample complexity has larger dependence on k.

Experiments (Appendix G): We empirically evaluate gradient-based versions of the learning
rules considered herein on binary classification versions of MNIST and CIFAR10 studied in Busa-
Fekete et al. (2023) for a wide range of NN architectures. We find that proportion matching and the
debiased square loss perform the best; furthermore, we demonstrate that the debiased square loss
enjoys faster optimization than proportion matching, as early in training the debiased square loss is
a better estimate of the true instance-level loss.

1.2. Related Work

Learning from Label Proportions. The problem of LLP has been studied in a long line of work
(Chen et al., 2006; Musicant et al., 2007; Kück and de Freitas, 2005; Quadrianto et al., 2008). Most
works either assume some kind of distributional assumptions on bag/label generation (Kück and
de Freitas, 2005; Quadrianto et al., 2008; Patrini et al., 2014; Scott and Zhang, 2020; Zhang et al.,
2022), construct bags adaptively (Chen et al., 2023; Javanmard et al., 2024b), or study approaches
to minimize a surrogate loss (Rueping, 2010; Yu et al., 2013; Qi et al., 2016; Shi et al., 2019; Dulac-
Arnold et al., 2019; Javanmard et al., 2024a). On the computational side, Saket (2021, 2022) shows
that even in the realizable setting learning linear thresholds for LLP is NP-hard and study SDP
relaxations for this task. Thus, the aforementioned papers are not directly relevant to the goals of
this work in providing distribution-free statistical guarantees on classification loss.

Several works provide guarantees on the instance-level classification loss. Yu et al. (2014) introduce
the EPRM learning rule. While their main focus is proving guarantees on the proportional risk, they
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show how to translate these to instance-level guarantees when the bags are “pure”—meaning the
label proportions αt are close to 0 or 1. They also give numerical bounds which indicate that
EPRM achieves instance-level guarantees under realizability. Chen et al. (2023) introduce a similar
debiased square loss learning rule and prove a O(1/

√
n) rate in the agnostic setting; while Busa-

Fekete et al. (2023) introduce the EasyLLP framework and prove a O(1/
√
n) rate.

Optimistic Rates. Optimistic rates date back to seminal work of Vapnik and Chervonenkis (2015)
and were expanded upon by Bousquet (2002); Koltchinskii and Panchenko (2000); Bartlett et al.
(2005) using the technique of localized Rademacher complexities. Optimistic rates have been stud-
ied in various other contexts such as optimization with smooth losses (Srebro et al., 2010), multi-
task learning (Yousefi et al., 2018; Watkins et al., 2023), vector-valued learning (Reeve and Kaban,
2020), and overparameterized regression (Zhou et al., 2021, 2022, 2023).

2. Empirical Proportional Risk Minimization

The most direct approach to finding a good predictor is the so-called empirical proportional risk
minimization (EPRM) approach, which simply returns a predictor that matches the most label pro-
portions (Yu et al., 2014). Concretely, we can consider the learning rule

f̂EPRM := argmin
f∈F

1

n

n∑
i=1

1

1

k

k∑
j=1

f(xi,j) ̸= αi

. (2)

Observe that in the setting of k = 1, EPRM recovers the classical empirical risk minimizer (ERM).

More generally, one can also define learning rules which minimize some other bag loss ℓ : [0, 1] ×
[0, 1] → R between the predicted label proportions α̂ = 1

k

∑
i f(xi) and the true label proportions

α, i.e., the square loss ℓSQ(α, α̂) = (α−α̂)2 or the log loss ℓLOG(α, α̂) = −α log α̂−(1−α) log(1−
α̂). In the literature, these are also called EPRM or proportion matching learning rules, and they
are a “folklore” approach which, in conjunction with gradient-based methods, are competitive in
practice (Busa-Fekete et al., 2023). To disambiguate, we exlusively refer to the learning rule (2) as
EPRM and call the more general class of these learning rules as proportion matching.

In this section, we provide theoretical results which substantiate conventional wisdom surrounding
EPRM. First, we show that under realizability, the EPRM learning rule attains fast rates for classifi-
cation. However, in the agnostic setting, we illustrate that proportion matching can be ill-behaved,
as we demonstrate an example for which minimizing the proportional risk gives no guarantees on
the instance-level classification performance.

2.1. Fast Rates for EPRM Under Realizability

We show the following generalization guaranteee for EPRM under realizability.

Theorem 1 Let F be a symmetric function class, i.e. if f ∈ F , then 1 − f ∈ F . Let bag
size k ≥ 11, ε ∈ (0, 1/(4k)), and δ ∈ (0, 1). As long as n = O(d log k·log(1/ε)+log(1/δ)

ε ), for any
realizable distribution D, with probability at least 1−δ over the draw of the sample, L(f̂EPRM) ≤ ε.

Previous works have suggested that EPRM (or more generally, proportion matching learning rules)
can succeed under realizability: Yu et al. (2014) give numerical evidence to show that a guarantee
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on bag proportions can be translated to a guarantee on the instance-level classification error, and
Busa-Fekete et al. (2023) show that under some conditions on the loss function, minimizers for a
population proportion matching loss are also minimizers for the instance-level loss. However, to the
best of our knowledge, Theorem 1 is the first result which provides a concrete generalization bound
for bounded VC classes for the EPRM learning rule.

A few comments about Theorem 1 are in order.

• The assumption that F is symmetric is mild and due to technical reasons. Note that any
nonsymmetric F can be enlarged to a symmetric one with VC dimension at most 2d+ 1.

• The bag size assumption is technically required, and we conjecture it can be removed. It is a
mild assumption since if one has bags of size k ≤ 10, then one can preprocess the dataset to
combine sets of bags to form a larger bag of size at least 11, and then compute f̂EPRM on the
preprocessed dataset. This achieves the same guarantee (albeit with smaller range of ε).

Proof of Theorem 1. The proof has three steps. First, we show via standard uniform convergence
arguments that the predictor f̂EPRM must have small population proportional matching error. Next,
we relate the proportion matching error to the classification error to show that f̂EPRM must have
classification error L(f̂EPRM) /∈ [ε, 1 − ε]. Finally, we show that f̂EPRM must have classification
error L(f̂EPRM) ≤ ε, as otherwise we would have selected the predictor 1− f̂EPRM.

Step 1. We rewrite our problem as a binary classification problem and apply standard uniform
convergence guarantees. Define the function class G : X n × [0, 1] → {0, 1} as

G =

gf : (B,α) 7→ 1

1

k

k∑
j=1

f(xj) ̸= α

 : f ∈ F

.

We claim that VC(G) ≤ O(d log k). To show this, consider any X = {(B1, α1), · · · , (Bm, αm)},
and define the projection of G onto X as GX := {(gf (B1, α1), · · · , gf (Bm, αm)) : f ∈ F}. It
suffices to show that when m = O(d log k), the set of labellings for X is of size |GX | < 2m.
Observe that the labelling of X is determined by the labellings of F on the mk points, so by Sauer’s
lemma |GX | ≤ (emk/d)d. Therefore, when m = O(d log k) we have |GX | < 2m.

The EPRM can be written as f̂EPRM := argminf∈F
1
n

∑n
i=1 ℓ

01(0, gf (Bi, αi)). Applying the uni-
form convergence guarantee for VC classes (e.g., Shalev-Shwartz and Ben-David, 2014), we see
that as long as n = O(d log k·log(1/ε)+log(1/δ)

ε ), with probability at least 1− δ we have

P(B,α)∼D

[
1

k

k∑
j=1

f̂EPRM(xj) ̸= α

]
≤ ε. (3)

Henceforth, we will condition on the event in Eq. (3) holding.

Step 2. Now we show that a proportional risk guarantee of the form Eq. (3) translates to a guar-
antee on the instance-level loss L(·). Let f⋆ ∈ F be the optimal predictor that achieves L(f⋆) = 0,
and for any f ∈ F define dis(f, f⋆) := {x ∈ X : f(x) ̸= f⋆(x)} to be the disagreement region on
which f and f⋆ disagree. By definition, L(f̂EPRM) = Px∼D[x ∈ dis(f̂EPRM, f⋆)]. We will show
that L(f̂EPRM) /∈ [ε, 1− ε].
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To do so, we bound the probability that f̂EPRM does not match the proportion on a freshly sampled
bag. We already have an upper bound on this from Eq. (3). Now we compute a lower bound.

P(B,α)∼D

[
1

k

k∑
j=1

f̂EPRM(xj) ̸= α

]
≥ P(B,α)∼D

[ k∑
j=1

1

{
xj ∈ dis(f̂EPRM, f⋆)

}
is odd

]
=

1

2
− 1

2

(
1− 2L(f̂EPRM)

)k
. (4)

The first inequality follows because if the bag contains an odd number of points in the disagreement
set, then it is impossible for f̂EPRM and f⋆ to have the same proportional label.

For sake of contradiction, suppose that L(f̂EPRM) ∈ [ε, 1 − ε]. Then we know 1
2 − 1

2(1 −
2L(f̂EPRM))k ≥ 1

2 − 1
2(1 − 2ε)k. However, if ε ∈ (0, 1/2), we arrive at a contradiction, since

ε ∈ (0, 1/2) implies that for any bag size k ≥ 2, we have 1 − 2ε > (1 − 2ε)k, which implies
that ε < 1

2 − 1
2(1− 2ε)k, so Eqs. (3) and (4) cannot simultaneously hold. Therefore we must have

L(f̂EPRM) /∈ [ε, 1− ε].

Step 3. Now we establish that L(f̂EPRM) /∈ [1 − ε, 1]. We claim the following: for any near
optimal predictor f̃ ∈ Fε := {f ∈ F : L(f) ≤ ε}, we must have

1

n

n∑
i=1

1

1

k

k∑
j=1

f̃(xi,j) ̸= αi

 <
1

n

n∑
i=1

1

1

k

k∑
j=1

1− f̃(xi,j) ̸= αi

. (5)

Call this event E(f̃). From here, the result that L(f̂EPRM) /∈ [1−ε, 1] follows because if L(f̂EPRM) ∈
[1− ε, 1], then it could not have been the EPRM, as the predictor 1− f̂EPRM has strictly better em-
pirical proportional risk and also lies in the class F by the symmetric assumption.

We now prove Eq. (5). Consider any predictor f̃ ∈ Fε. Define the indicator variable Zi ∈ {0, 1} as
Zi = 1{ 1

k

∑k
j=1 f̃(xi,j) = αi} · 1{ 1

k

∑k
j=1 1 − f̃(xi,j) ̸= αi}. We see that

{
1
n

∑
i Zi > 1/2

}
⊆

E(f̃). We bound the expectation of Zi as:

E[Zi] ≥ P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̃ , f⋆) and α ̸= 1

2

]
.

To lower bound this, we can bound the two events separately. First we have

P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̃ , f⋆)

]
≥ (1− ε)k ≥ 3

4
,

where the last inequality is true whenever ε ≤ 1/(4k). In addition,

P(B,α)∼D[α ̸= 1/2] = 1− P(B,α)∼D[α = 1/2] ≥ 1− 2−k

(
k

k/2

)
≥ 1− 1√

3k/2 + 1/2
,

by Stirling’s approximation. Using the law of total probability we get

1 ≥ P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̂ , f⋆) or α ̸= 1

2

]
6
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= P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̂ , f⋆)

]
+ P(B,α)∼D

[
α ̸= 1

2

]
− PB

[
∀xj ∈ B : xj /∈ dis(f̂ , f⋆) and α ̸= 1

2

]
≥ 3

4
+ 1− 1√

3k/2 + 1/2
− P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̂ , f⋆) and α ̸= 1

2

]
,

so therefore

P(B,α)∼D

[
∀xj ∈ B : xj /∈ dis(f̂ , f⋆) and α ̸= 1

2

]
≥ 3

4
− 1√

3k/2 + 1/2
.

Whenever k ≥ 11 the RHS is at least 0.507. As a consequence by Hoeffding’s inequality, we have
P[E(f̃)c] ≤ P[ 1n

∑
i Zi ≤ 1/2] ≤ exp

(
−2n · 0.072

)
. By union bound, we have P[∃f ∈ Fε :

E(f̃)c] ≤ ΓF (nk) · exp
(
−2n · 0.072

)
, where ΓF : N → N is the growth function for F . Setting

the RHS to δ and using Sauer’s lemma we get that as long as n = O(d log k + log(1/δ)), the event
E(f̃) holds for all f̃ ∈ Fε.

Putting it together. Therefore, with probability at least 1 − 2δ, L(f̂EPRM) ≤ ε as long as ε ≤
1/(4k) and

n = O

(
d log k · log(1/ε) + log(1/δ)

ε

)
.

After rescaling δ, this concludes the proof of Theorem 1.

2.2. Proportion Matching Fails in Agnostic Setting

In the agnostic setting, we illustrate how proportion matching can perform quite poorly.

Example: EPRM may require Ω(2k) sample complexity. Fix any ε ∈ (0, 1/2) and consider the
input space X = {x}, with D given by (x, 1) with probability 1/2 + ε and (x, 0) with probability
1/2 − ε. Let F consist of two functions f0(x) = 0 and f1(x) = 1. The optimal predictor within
the class F is f1. However, observe that the loss estimates for proportion matching are L̂(f0) :=
1 − 1

n

∑n
i=1 1{αi = 0} and L̂(f1) := 1 − 1

n

∑n
i=1 1{αi = 1}. For small ε, unless the number of

bags is exponential in k, with constant probability we do not see any “pure” bags (with αi = 0 or
αi = 1), so we have no way of distinguishing which of f0 and f1 achieves smaller loss.

Proportion matching can fail. One may object that the previous failure mode is due to the fact
that we are using a noncontinuous measure of discrepancy between the predicted and true label
proportion, and such issues can be resolved if we minimize a continuous measure of discrepancy.
We show that this does not help, as proportion matching approaches can return a predictor with
constant suboptimality. This is because in the agnostic setting, the predictor which matches the
bag-level proportions may not be the optimal instance-level predictor.

Consider the learning rule that minimizes the proportional square loss:

f̂SQ := argmin
f∈F

L̂SQ(f) =
1

n

n∑
i=1

(
1

k

k∑
j=1

f(xi,j)− αi

)2

. (6)

7
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We show that in general, minimizing the proportional square loss can fail in the agnostic setting.

Proposition 2 There exists a F with VC(F) = 1 and distribution D such that for any δ ∈ (0, 1),
bag size k ≥ 7, and sample size n = Ω(log(1/δ)), with probability at least 1− δ, the learning rule
f̂SQ is 1/3-suboptimal.

The proportional square loss learning rule, as well as the proportional log loss learning rule

f̂LOG := argmin
f∈F

1

n

n∑
i=1

−αi · log
(
1

k

k∑
j=1

f(xi,j)

)
− (1− αi) · log

(
1− 1

k

k∑
j=1

f(xi,j)

)
(7)

are regarded as folklore learning rules, and they were evaluated in the context of gradient-based
learning (Busa-Fekete et al., 2023). Busa-Fekete et al. show that while gradient-based minimiza-
tion of either the proportional square or log loss performs well in practice, it can fail in synthetic
experimental settings. Proposition 2 demonstrates a simple theoretical failure mode for f̂SQ. For
completeness, in Appendix A we provide a similar result for the failure of f̂LOG on the same con-
struction, but note that even in the standard classification setting (k = 1) it is well known that
minimizing surrogate losses like the log loss do not necessarily give guarantees on the classification
error in the agnostic setting (Ben-David et al., 2012). Lastly, we remark that Appendix A of Scott
and Zhang (2020) shows an example of similar flavor that in the limit as the bag size k → ∞,
proportion matching learning rules can suffer constant suboptimality.

Proof of Proposition 2. Let X = {x(1), x(2)}. Let F = {f1, f2} where f1(x) = 1{x = x(1)}
and f2(x) = 1{x = x(2)}. The distribution D is (x, y) ∼ Unif({(x(1), 1), (x(1), 0), (x(2), 1)}).
We can calculate that L(f1) = 2/3 and L(f2) = 1/3. However we also have E f1 = 2/3 while
E f2 = 1/3, and p = 2/3. While f1 in expectation matches the marginal label proportion, it is
actually 1/3-suboptimal compared to f2.

We compute the expectations of the bag-level losses for f1 and f2. For f1 we have

E
[(1

k

∑
j

f1(xj)− α
)2]

=
1

k2
E
[(∑

j

f1(xj)− yi

)2]
=

1

k2
E
[∑

j

(f1(xj)− yj)
2

]
=

2

3k
.

For f2 we have

E
[(1

k

∑
j

f2(xj)− α
)2]

=
1

k2
E
[∑

j

(f2(xj)− yj)
2

]
+

1

k2
E
[∑
j ̸=j′

(f2(xj)− yj)
(
f2(xj′)− yj′

)]
=

1

3k
+

k − 1

9k
=

k + 2

9k
.

Fix any k ≥ 7. Then the expectation of the bag-level loss of f1 is at most 2/21 while the
expectation of f2 is at least 1/9. By Hoeffding’s inequality, we have with probability at least
1 − δ, that L̂(f1) ≤ 2/21 +

√
2 log(1/δ)/n and L̂(f2) ≥ 1/9 −

√
2 log(1/δ)/n. So as long

as n = Ω(log(1/δ)), the proportional square loss learning rule will return the wrong predictor.
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3. Debiased Square Loss

In this section, we show that a simple debiasing of the square loss L̂SQ(·) results in a learning
rule that achieves optimal rates in both the realizable and the agnostic settings. Computing the
expectation of the square loss, for any predictor f ,

E
[
L̂SQ(f)

]
=

1

k2
· E(B,α)∼D

[∑
j

(f(xj)− yj)
2 +

∑
j ̸=j′

(f(xj)− yj)(f(xj′)− yj′)

]
(i)
=

1

k
· L(f) + k − 1

k
· E(x,y),(x′,y′)∼D

[
(f(x)− y)(f(x′)− y′)

]
(ii)
=

1

k
· L(f) + k − 1

k
· (E f − p)2. (8)

Equality (i) uses the fact that for any j, (f(xj) − yj)
2 = 1{f(xj) ̸= yj}. Equality (ii) uses

independence of the samples.

Rearranging Eq. (8), we can see that the quantity k · L̂SQ(f)− (k − 1) · (E f − p)2 is an unbiased
estimate of L(f). Of course, the caveat is that we do not have access to the values E f and p, but we
can replace them with their empirical counterparts, giving us the debiased square loss learning rule:

f̂DSQ := argmin
f∈F

L̂DSQ(f) =
1

n

n∑
i=1

k ·
(
1

k

k∑
j=1

f(xi,j)− αi

)2

− (k − 1)
(
Êf − p̂

)2
,

where Êf = 1
nk

∑n
i=1

∑k
j=1 f(xi,j) and p̂ = 1

n

∑n
i=1 αi are empirical estimates of E f and p

respectively. Strictly speaking, L̂DSQ(f) is not an unbiased estimate of L(f), but if n is large
enough, the second term approximates (E f − p)2 closely.

A similar debiasing idea for the proportional square loss was proposed by Chen et al. (2023), where
in their Theorem 2 they prove the 1/

√
n rate in the agnostic setting; due to difference in the bag

generation assumption (they consider generating bags by resampling a dataset without replacement),
our debiasing term takes a slightly different form.

3.1. Main Result: Optimistic Rates for Debiased Square Loss

Theorem 3 (Sample Complexity Bound for f̂DSQ) Let δ ∈ (0, 1). Fix any distribution D and
any function class F , and let L⋆ = inff∈F L(f). With probability at least 1− δ, we have

L(f̂DSQ) ≤ L⋆ + Õ

(
k2(d+ log(1/δ))

n
+

√
L⋆ · k2(d+ log(1/δ))

n

)
.

Theorem 3 shows that under realizability (with L⋆ = 0), f̂DSQ enjoys a fast 1/n rate, while in the
agnostic setting it achieves the 1/

√
n rate, both of which are optimal (up to log factors) in terms of

d, log(1/δ), and n. The dependence on k is certainly loose, as under realizability, f̂DSQ and f̂EPRM

are identical learning rules, and Theorem 1 only has a log k dependence. We leave sharpening the
dependence on k to future work.

The proof of Theorem 3 can be found in Appendix C. At a high level, we separately show uniform
convergence bounds for both the square loss and the bias correction term to their expectations, and

9
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then we combine the guarantees to get a optimistic rate bound for L̂DSQ(·), which is an unbiased
estimate of L(f), giving us the final guarantee.

Revisiting what happens if we minimize L̂SQ. Our analysis provides an answer to the question
raised by Busa-Fekete et al. (2023) on understanding when proportion matching is consistent. Sup-
pose the learner minimizes the square loss of Eq. (6), L̂SQ(f) =

1
n

∑n
i=1 k ·(

1
k

∑k
j=1 f(xi,j)−αi)

2.
(For sake of comparison, we multiply the loss by a factor of k.) One can show an optimistic-rate
style guarantee for f̂SQ, albeit one that is weaker than Theorem 3. Let LSQ(·) denote the expectation
of L̂SQ. In the proof of Theorem 3, we get the following guarantee on f̂SQ:

LSQ(f̂SQ) ≤ inf
f∈F

{
LSQ(f) + Õ

(
kd+ k2 log(1/δ)

n
+

√
LSQ(f) · k(d+ log(1/δ))

n

)}
.

This bound essentially replaces the instance-level classification error L(f) with the (larger) LSQ(f)
in Theorem 3. Applying the substitution LSQ(f) = L(f)+B(f), where B(f) := (k−1)(E f − p)2,
we see that this bound implies

L(f̂SQ) ≤ inf
f∈F

{
L(f) +B(f) + Õ

(
kd+k2 log(1/δ)

n +

√
(L(f)+B(f))·k(d+log(1/δ))

n

)}
. (9)

When is Eq. (9) a useful bound? Under realizability, we have L(f⋆) = 0 and B(f⋆) = 0, and since
any minimizer f̂EPRM is also a minimizer of L̂SQ(·) and vice versa, Eq. (9) recovers the guarantee
of Theorem 1, albeit with worse dependence on k. More generally, in the agnostic setting, as long as
it is possible to achieve a good trade-off between L(f) and B(f), we expect f̂SQ to generalize well.
This reasoning suggests why proportion matching learning rules perform well in practice (Busa-
Fekete et al., 2023), despite the negative result of Proposition 2. In the modern over-parameterized
regime, where the function class at hand (i.e., neural networks) are nearly realizable for the data
distribution, Eq. (9) delivers strong guarantees.

Lastly, observe that there is no contradiction between the guarantee of Eq. (9) and the lower bound
in Proposition 2: in Proposition 2, there is no predictor for which the two terms L(f) and B(f) are
both small, as the suboptimal predictor has larger classification loss but satisfies B(f) = 0.

4. EasyLLP Learning Rule

Recently, Busa-Fekete et al. (2023) proposed EasyLLP, a general recipe for constructing unbiased
estimators of any instance-level loss function ℓins : Y × R → R. Given predictor f ∈ F and bag
(B,α), the EasyLLP loss estimate of ℓins can be written as

ℓEZ(f, (B,α)) :=
1

k

k∑
j=1

(k(α− p) + p)ℓins(1, f(xj)) + (k(p− α) + (1− p))ℓins(0, f(xj)) (10)

Proposition 4.2 of Busa-Fekete et al. (2023) shows that for any loss ℓins, ℓEZ(f, (B,α)) is an unbi-
ased estimate of the population loss, e.g., E(B,α)∼D[ℓEZ(f, (B,α))] = E(x,y)∼D[ℓins(y, f(x))]. In
this work, we consider EasyLLP instantiated with the classification loss ℓins = ℓ01. The EasyLLP

10



OPTIMISTIC RATES FOR LLP

estimate takes the following form:

ℓEZ(f, (B,α)) = (k(α− p) + p)
(
1− 1

k

k∑
j=1

f(xj)
)
+ (k(p− α) + (1− p))

(1
k

k∑
j=1

f(xj)
)
.

(11)

The EasyLLP learning rule f̂EZ := argminf∈F L̂EZ(f) = 1
n

∑n
i=1 ℓEZ(f, (Bi, αi)) attains the

following guarantee (Theorem 5.2 of Busa-Fekete et al., 2023): with probability at least 1− δ,

L(f̂EZ) ≤ inf
f∈F

L(f) + Õ

(√
d+ k log(1/δ)

n

)
. (12)

However, the question of whether EasyLLP can adapt to realizability to achieve fast rates remained
open. The standard observation which enables fast rates under realizability is that loss estimates for
(nearly) optimal predictors converge to their expectations at a rate of O(1/n). As a consequence,
in supervised learning, one can show that any predictor f̂ which achieves training error 0 (i.e., any
ERM) has generalization error at most L(f̂) ≤ Õ(d/n).

In contrast, the EasyLLP loss estimate does not satisfy this property. Even for the optimal predictor
f⋆, the EasyLLP loss estimate of Eq. (11) is a random quantity, since

ℓEZ(f
⋆, (B,α)) = (k(α− p) + p) · (1− α) + (k(p− α) + (1− p)) · α

takes values depending on the bag label proportion α which itself is distributed as 1/k · Bin(k, p).
As the following proposition shows, the loss estimate only concentrates at a Θ(1/

√
n) rate.

Proposition 4 There exists a realizable distribution D such that for any ε ∈ (0, 1), the EasyLLP
loss estimate of f⋆ with bag size k = 2 requires Θ(1/ε2) samples in order for L̂EZ(f

⋆) ≤ ε with
constant probability.

Proof. Consider the setting X = {x0, x1} with D that returns (x0, 0) with probability 1/2 and
(x1, 1) with probability 1/2. Let f⋆(x) = 1{x = x1} be the optimal predictor achieving L(f⋆) =
0. For any bag (B,α) the EasyLLP estimate of the loss can be written as

ℓEZ(f
⋆, (B,α)) = (k(α− 1/2) + 1/2) · (1− α) + (k(1/2− α) + 1/2) · α

= −2kα2 + 2αk − k/2 + 1/2.

For bag size k = 2, we have ℓEZ(f
⋆, (B,α)) ∼ 1/2 ·Rad(1/2). From here, we can apply standard

anti-concentration bounds for sums of Rademacher random variables. We let xj = ℓEZ(f
⋆, (Bi, αi)),

and we can observe that by Paley-Zygmund (Theorem 20) that

P
[
1

n

n∑
i=1

xj ≥
0.1√
n

]
=

1

2
P
[∣∣∣ 1
n

n∑
i=1

xj

∣∣∣ ≥ 0.1√
n

]
≥ Ω(1).

Thus, if n = c/ε2 for sufficiently small c > 0 then with constant probability we have L̂EZ(f
⋆) ≥ ε.

On the flip side, we know that by Hoeffding’s inequality, n = O(1/ε2) suffices for L̂EZ(f
⋆) ≤ ε

with constant probability. This proves the proposition.

11
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4.1. Main Result: Optimistic Rates for EasyLLP

Despite the fact that the EasyLLP loss estimates only concentrate to their expectations at a rate of
O(1/

√
n), it is possible improve upon the guarantee in Eq. (12) and show that the EasyLLP learning

rule instantiated with the classification loss attains optimistic rates.

Theorem 5 (Sample Complexity Bound for f̂EZ) Let δ ∈ (0, 1). Fix any distribution D and
function class F , and let L⋆ := inff∈F L(f). With probability at least 1− δ we have

L(f̂EZ) ≤ L⋆ + Õ

(
k2(d+ log(1/δ))

n
+

√
L⋆ · k2(d+ log(1/δ))

n

)
.

The bound for EasyLLP is order-wise identical to that shown for the debiased square loss (Theo-
rem 3). In the agnostic setting, the guarantee in Theorem 5 is worse in terms of dependence on k
compared to Eq. (12); we leave sharpening the dependence on k to future work. In the realizable
setting, Proposition 4 and Theorem 5 together show that there is a separation between the rate of
estimation (which is necessarily Ω(1/

√
n)) and the rate of learning (which is Õ(1/n)).

We sketch the proof ideas for Theorem 5, and we defer the full proof to Appendix D.

Proof Sketch. There is no hope for us to prove Theorem 5 through the usual route of showing
uniform convergence bound like the following:

for all f ∈ F , |L(f)− L̂EZ(f)| ≤ Õ

(
k2(d+ log(1/δ))

n
+

√
L(f) · k2(d+ log(1/δ))

n

)
,

since the previous display directly contradicts Proposition 4 for f⋆ = argminf∈F L(f).

Instead, we make the critical observation that the offset empirical losses concentrate at the optimistic
rate. Even though the learner does not know the identity of f⋆, it is still true that minimizing L̂EZ(·)
is the same as minimizing the offset loss Γ̂(·, f⋆) := L̂EZ(·) − L̂EZ(f

⋆), so we can equivalently
think of the learning rule as minimizing Γ̂(·, f⋆). The following lemma shows that one can prove
an optimistic rate for the offset empirical losses. In the lemma, we use Γ(f, f⋆) := L(f) − L(f⋆)
to denote the expected difference in classification error.

Lemma 6 Let f⋆ = argminf∈F L(f). Then with probability at least 1− δ we have for all f ∈ F

∣∣∣Γ̂(f, f⋆)− Γ(f, f⋆)
∣∣∣ ≤ Õ

(
kd+ k2 log(1/δ)

n
+

√
L(f) · k2(d+ log(1/δ))

n

)
.

Lemma 6 says that while the EasyLLP empirical estimate L̂EZ is only O(1/
√
n) close to the true

classification error, the estimate of the difference in classification error with that of f⋆ is more
accurate, as much of the fluctuations in the bag estimates L̂EZ(·) gets canceled out by subtraction.

In light of Lemma 6, Theorem 5 follows from standard approach of translating uniform convergence
bounds to guarantees on the returned predictor f̂EZ, see Appendix D.3 for more details.

12



OPTIMISTIC RATES FOR LLP

Estimating the Marginal Label Proportion. The EasyLLP learning rule requires knowledge of
the marginal label proportion p = P[y = 1]. We demonstrate that the optimistic rate guarantee in
Theorem 5 can be attained without knowledge of p, instead splitting the dataset into half to estimate
p̂ from a separate dataset (this was claimed without proof by Busa-Fekete et al. (2023)).

Corollary 7 (Sample Complexity Bound for f̂EZ with Sample Splitting) Let δ ∈ (0, 1). Fix any
distribution D and function class F , and let L⋆ := inff∈F L(f). Then with probability at least 1−δ
the EasyLLP learning rule with sample splitting satisfies

L(f̂EZ) ≤ L⋆ + Õ

(
k2(d+ log(1/δ))

n
+

√
L⋆ · k2(d+ log(1/δ))

n

)
.

The details of the sample splitting procedure and the proof of Corollary 7 are shown in Appendix D.4.
In contrast to the debiased square loss learning rule, where we could estimate square loss and bias
terms from the same dataset, here our analysis requires a separate dataset in order to estimate p̂.
However, we conjecture that sample splitting is not required for the guarantee in Corollary 7.

5. Lower Bounds

The sample complexity bounds we prove in Theorem 1, 3, and 5 are optimal (up to log factors) in
terms of the dependence on d, n, and log(1/δ). However, the question remains of resolving the
optimal dependence on the bag size k.

For every function class F , we have the trivial lower bound on the minimax sample complexity of
n = Ω(d log(1/δ)/(kε)) for the realizable setting and n = Ω

(
d log(1/δ)/(kε2)

)
for the agnostic

setting, since LLP with n bags is only harder than supervised learning with nk examples. In general,
the 1/k dependence in the lower bound cannot be improved, as there are function classes for which
it is tight. For example, consider the function class F = {f0, f1} where fi(x) = i for i ∈ {0, 1}.
For this class F , observing the label proportion α allows us to compute the average instance-level
classification loss over the bag for both f0 and f1. Therefore, LLP with n bags is no harder than
supervised learning with nk labeled examples, so F can be PAC learned with Õ(1/(kε)) samples
in the realizable setting and Õ(1/(kε2)) in the agnostic setting.

For specific function classes F , it is possible to improve the 1/k lower bound.

Theorem 8 For any d ≥ 3, there exists a function class F with VC(F) = d such that any learning
rule for LLP that PAC learns F for bag size k ≤ O(2d/ log d) with ε ≤ 1/16, and δ ≤ 1/15

requires Ω
(

d
log k

)
samples in the realizable setting and Ω

(
max

(
d

log k ,
d√
kε2

))
samples in the ag-

nostic setting.

The proof of Theorem 8 can be found in Appendix E. In the realizable setting, Theorem 8 gives
a stronger lower bound when the accuracy parameter ε is a constant; however it is open to show a
lower bound which dominates the trivial one of Ω(d/(kε)) for ε → 0. In the agnostic setting, the
lower bound in Theorem 8 dominates the trivial one for all ε ≤ 1/16.
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6. Discussion

Our work studies various learning rules for minimizing classification loss in the LLP framework.
We show that EPRM attains fast rates under realizability, but EPRM and other proportion matching
approaches can fail in the agnostic setting. For the debiased square loss and EasyLLP learning
rules, we prove optimistic rate sample complexity bounds which are optimal (up to log factors)
in terms of the dependence on d, n, and log(1/δ) in both the realizable and agnostic settings. In
addition, we investigate the optimal dependence on k from the lower bound side. We also compare
the empirical performance of gradient-based versions of these learning rules and demonstrate the
benefits of debiasing for optimization (deferred to Appendix G due to space considerations).

For clarity of exposition, we focus on binary classification, but we note that both the debiased
square loss and EasyLLP learning rules can be extended to the multi-label multi-class setting (as
also observed in Chen et al. (2023); Busa-Fekete et al. (2023)) by using one-hot encoding to write
the label as a binary vector. In this way the learning task decouples into multiple binary classification
tasks, and it would be straightforward to extend our analysis to this more general setting.

Our work leaves open several future directions. The most immediate one is to resolve the optimal
dependence on k. On the upper bound side, we believe that the dependence on k can be improved
in our analysis, and leave this to future work. Our optimistic rate results (Theorem 3 and 5) are
stated for a more general setting, and their proofs do not use the combinatorial structure of the LLP
problem in the way that the proof of Theorem 1 does, thus hinting at a source of looseness. On the
lower bound side, there is room to improve upon the construction in Theorem 8. Other directions
for future work include understanding the debiased square loss and EasyLLP learning rules in a
more unified manner, designing a debiased variant of log loss for LLP, and studying the role of
optimization in gradient-based algorithms for LLP.
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Appendix A. Failure of Proportional Log Loss in Agnostic Setting

Proposition 9 There exists a F with VC(F) = 1 and distribution D such that as long as n, k, and
δ satisfy the relationship k ≥ 18 log(2n/δ), with probability at least 1− δ, the learning rule f̂LOG

is 1/3-suboptimal.

Therefore, unless n is exponentially large in the bag size k, the proportional log loss learning rule
will return a suboptimal predictor.

Proof. We will use the same construction as in the proof of Proposition 2. For every bag (Bi, αi)
we will calculate the difference in proportional log loss for f1 and f2. For any i ∈ [n], let βi :=
1
k

∑k
j=1 1

{
xi,j = x(1)

}
. Then we have

ℓLOG(f1, (Bi, αi)) = −αi log βi − (1− αi) log(1− βi)

ℓLOG(f2, (Bi, αi)) = −αi log(1− βi)− (1− αi) log βi.

Therefore the difference between the two losses is

ℓLOG(f2, (Bi, αi))− ℓLOG(f1, (Bi, αi)) = (2αi − 1) log
βi

1− βi
.

We now show that with high probability, for all i ∈ [n] we have ℓLOG(f2, (Bi, αi))−ℓLOG(f1, (Bi, αi)) ≥
0. By Hoeffding’s inequality (Theorem 19) and union bound we have

P[∃i ∈ [n] : αi < 1/2 or βi < 1/2] ≤ 2n exp

(
− k

18

)
.

Thus as long as k ≥ 18 log(2n/δ), with probability at least 1 − δ we have ℓLOG(f2, (Bi, αi)) −
ℓLOG(f1, (Bi, αi)) ≥ 0 for all i ∈ [n]. This implies that f̂LOG = f1, the predictor which is 1/3-
suboptimal.

Appendix B. Technical Background for Optimistic Rates

B.1. Uniform Convergence via Local Rademacher Complexity

In this section, we establish technical several results on uniform convergence using local Rademacher
complexities. Recall the worst-case Rademacher for a function class G ⊆ RX for any n ∈ N

Rn(G) = sup
x1,··· ,xn∈Xn

Eσ

[
sup
f∈G

1

n

n∑
i=1

σif(xj)

]
,

where {σi}ni=1 are i.i.d. Rademacher random variables. For any g, we denote E[g] to denote its ex-
pectation and Ên[g] to denote the empirical average over a sample {xi}ni=1 where xi are i.i.d. drawn.

Lemma 10 (Modified Version of Lemma 6.2 in Bousquet (2002)) Let G ⊆ RX be a class of
functions such that ∥g∥∞ ≤ b for all g ∈ G and let (Gk)n∈N be a sequence of subsets of G such that
supg∈Gk

E[g2] ≤ A+Bγk, where γk = b/2k and A,B > 0 are constants.

18
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Then for all δ ∈ (0, 1) with probability at least 1− δ, for all k ≥ 0 and g ∈ Gk:

|E[g]− Ên[g]| ≤ 6Rn(Gk) +

√√√√2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
6b
(
log 1

δ + c log log b
γk

)
n

.

Here, c > 0 is an absolute constant.

Lemma 10 is a trivial modification of Lemma 6.2 in Bousquet (2002), so we omit the proof details.

Definition 11 (Sub-Root Function) The function ϕ : R≥0 → R is said to be a sub-root function if
ϕ is non-negative, non-decreasing, not identically zero, and ϕ(r)/

√
r is non-increasing.

Assumption 1 (Variance-Expectation Bound) The function class G ⊆ RX satisfies the following
properties: (1) E[g] ≥ 0 for all g ∈ G and (2) there exists constants A,B ≥ 0 such that for all
g ∈ G, E[g2] ≤ A+B E[g].

Assumption 1 is a slight generalization of the variance-expectation bound stated in Assumption 1.4
from Bousquet (2002); the difference is that we allow an additional constant offset A ≥ 0.

Theorem 12 (Modified Version of Theorem 6.2 in Bousquet (2002)) Let G be a class of func-
tions such that for all g ∈ G, ∥g∥∞ ≤ b and G satisfies Assumption 1 with parameters (A,B).

Let ϕn be a sub-root function such that

Eσ

[
sup

g:Ên[g2]≤r

1

n

n∑
i=1

σig(xi)

]
≤ ϕn(r).

Define r⋆n to be the largest solution of ϕn(r) = r. For any δ > 0, we have with probability at least
1− δ for all g ∈ G:

|E[g]− Ên[g]| ≤ C

br⋆n +
√
r⋆n(A+B E[g]) +

√
B E[g]

(
log 1

δ + c log logn
)

n
+ r0

.

where C > 0 is an absolute numerical constant and r0 :=

√
2b2A

(
log

1
δ+c log logn

)
n +

22b2
(
log

1
δ+c log logn

)
n .

Proof. For all k ∈ N define γk = b/2k. We define Gk := {g ∈ G : γk+1 < E[g] ≤ γk}, so that
G = ∪k≥0Gk.

By Lemma 10 and Assumption 1, we have with probability at least 1− δ for all k ≥ 0 and g ∈ Gk:

|Ên[g]− E[g]| ≤ 8Rn(Gk) +

√√√√2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
20b
(
log 1

δ + c log log b
γk

)
n

.

(13)

In addition, we can apply Lemma 10 to the squares of g ∈ Gk to get that with probability at least
1− δ for all k ≥ 0 and every g ∈ Gk:

|Ên[g
2]− E[g2]| ≤ 8Rn(G2

k) +

√√√√2b2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
20b2

(
log 1

δ + c log log b
γk

)
n
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≤ 16bRn(Gk) +

√√√√2b2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
20b2

(
log 1

δ + c log log b
γk

)
n

,

(14)

where the last inequality uses the fact that x 7→ x2 is 2b-Lipschitz and centered at 0.

Now we condition on Eq. (13) and (14), which happens with probability at least 1−2δ. By Eq. (14)
and Assumption 1, for all g ∈ Gk,

Ên[g
2] ≤ (A+Bγk) + 16bRn(Gk) +

√√√√2b2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
20b2

(
log 1

δ + c log log b
γk

)
n

.

Define the RHS of the previous display to be Uk. By definition of ϕn, we know that

Rn(Gk) ≤ sup
x1,··· ,xn

Eσ

[
sup

g:Ên[g2]≤Uk

1

n

n∑
i=1

σig(xi)

]
≤ ϕn(Uk),

so therefore

Uk ≤ (A+Bγk) + 16bϕn(Uk) +

√√√√2b2(A+Bγk)
(
log 1

δ + c log log b
γk

)
n

+
20b2

(
log 1

δ + c log log b
γk

)
n

.

Let us define k0 to be the largest value such that γk0+1 ≥ b
n . For all k ≤ k0, we have c log log b

γk
≤

c log logn. Therefore

Uk ≤ A+Bγk + 16bϕn(Uk) +

√
2b2(A+Bγk)

(
log 1

δ + c log logn
)

n
+

20b2
(
log 1

δ + c log logn
)

n

≤ A+ 2Bγk + 16bϕn(Uk) +

√
2b2A

(
log 1

δ + c log log n
)

n
+

22b2
(
log 1

δ + c log logn
)

n︸ ︷︷ ︸
=:r0

.

If Uk ≥ r⋆n, then by definition of the sub-root function ϕn(Uk)/
√
Uk ≤ ϕn(r

⋆
n)/

√
r⋆n =

√
r⋆n, so

Uk ≤ 16b
√

Ukr⋆n +A+ 2Bγk + r0 ≤ C
(
b2r⋆n +A+Bγk + r0

)
=: rn(γk)

for some absolute constant C > 0. The last inequality holds by Fact 1. In addition if Uk < r⋆n, the
conclusion of the previous display trivially holds.

By Eq. (13), we also know that for any g ∈ Gk

E[g] ≤ Ên[g] + 8Rn(Gk) +

√√√√2Bγk

(
log 1

δ + c log log b
γk

)
n

+ r0

≤ Ên[g] + 8ϕn(rn(γk)) +

√√√√2Bγk

(
log 1

δ + c log log b
γk

)
n

+ r0.
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By definition of Gk and γk, we know that γk ≤ 2E[g] so that

E[g] ≤ Ên[g] + 8 · ϕn(rn(2E[g])) +

√√√√4B E[g]
(
log 1

δ + c log log b
γk

)
n

+ r0

≤ Ên[g] + 8
√

r⋆n ·
√
C(b2r⋆n +A+B E[g] + r0) +

√√√√4B E[g]
(
log 1

δ + c log log b
γk

)
n

+ r0

≤ Ên[g] + C ′
(
br⋆n +

√
r⋆n(A+B E[g])

)
+

√
4B E[g]

(
log 1

δ + c log log n
)

n
+ 2r0,

for some absolute numerical constant C ′ > 0. When k ≥ k0, we have γk ≤ b
n , so the previous

display also trivially holds.

Lastly, we can repeat the same argument with the function class G′ = {−g : g ∈ G} to get the two-
sided bound. This concludes the proof of Theorem 12.

B.2. Calculating the Complexity Radius for LLP Losses

Now we present results which allow us to calculate the complexity radius r⋆n for function classes
with bounded VC dimension.

Lemma 13 (Refined Dudley’s Inequality, Lemma A.1 from Srebro et al. (2010)) For any func-
tion class F : X → R,

Rn(F) ≤ inf
η>0

4η + 12

∫ supf∈F

√
Ên[f2]

η

√
logN2(F , ε, n)

n
dε

.

Lemma 14 (Theorem 2.14 in Mendelson (2003)) Let F ⊆ {0, 1}X with VC dimension d. Then

logN2(F , ε, n) ≤ d log

(
4e2 log

2e2

ε

)
+ (2d) · log

(
1

ε

)
.

We next present a lemma which allows us to calculate the local Rademacher complexity for various
loss functions for LLP. Fix any F ⊆ YX with VC dimension d. Consider any loss ℓ : [0, 1]×[0, 1] →
R. Define the constrained loss class

Lℓ(r) :=

(B,α) 7→ ℓ

1

k

k∑
j=1

f(xj), α

 : f ∈ F , Ên

ℓ
1

k

k∑
j=1

f(xj), α

2 ≤ r

.

We also let Lℓ denote the unrestricted loss class which contains all bag-level losses for f ∈ F .

Lemma 15 Let ℓ : [0, 1]× [0, 1] → R be any λ-Lipschitz (in the first argument) bag loss. For any
n > d and any r > 0, we have

Rn(Lℓ(r)) ≤ C

√
rd log

(
λn
r

)
n
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for some absolute numerical constant C > 0. Furthermore, if we denote the sub-root function

ϕn(r) := C

√
rd log(λn

r
)

n , and let r⋆n be the largest number such that ϕn(r) = r, we have

r⋆n ≤ O

(
d log(λn)

n

)
.

Proof. We use Lemma 13 applied to Lℓ(r). This gives

Rn(Lℓ(r)) ≤ inf
η>0

{
4η + 12

∫ √
r

η

√
logN2(Lℓ(r), ε, n)

n
dε

}
. (15)

From here we bound the covering numbers of the loss class in terms of the function class as

logN2(Lℓ(r), ε, n) ≤ logN2(Lℓ, ε, n) ≤ logN2(F , ε/λ, nk).

The last inequality follows because for any f, fε and (B1, α1), · · · , (Bn, αn):√√√√√ 1

n

n∑
i=1

ℓ

1

k

k∑
j=1

f(xi,j), α

− ℓ

1

k

k∑
j=1

fε(xi,j), α

2

≤ λ ·

√√√√ 1

n

n∑
i=1

(
1

k

∑
i

f(xi,j)− fε(xi,j)

)2

≤ λ

√√√√ 1

nk

n∑
i=1

k∑
j=1

(f(xi,j)− fε(xi,j))
2,

where we use the λ-Lipschitz property of ℓ as well as Jensen’s inequality. Thus, an empirical ℓ2
cover of F at scale ε/λ for nk points implies an empirical ℓ2 cover of L at scale ε for n points.

From here, we can apply the covering number bound of Lemma 14 to get

logN2(F , ε/λ, nk) ≤ d log

(
4e2 log

2e2λ

ε

)
+ (2d) · log

(
λ

ε

)
≤ Cd log

(
λ

ε

)
,

for some absolute numerical constant C > 0.

Now we can plug the covering number bound back into Eq. (15) to get

Rn(Lℓ(r)) ≤ inf
η>0

4η + 12
√
C

∫ √
r

η

√
d log λ

ε

n
dε

.

Choosing η = Θ(
√
rd/n) gives

Rn(Lℓ(r)) ≤ C ′

√
rd log

(
λn
r

)
n

,

for some absolute numerical constant C ′ > 0. For the proof of the second part, it is easy to see that

the solution to the equation C ′

√
r⋆nd log(

λn
r⋆n

)

n = r must satisfy r⋆n ≤ C ′′ · d log(λn)
n for some absolute

constant C ′′ > 0. This concludes the proof of Lemma 15.
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Appendix C. Proof of Theorem 3

C.1. Notation and Preliminaries

We define several quantities which will be used in the proof. The loss function L̂DSQ(f) is the
difference between a proportion matching term and a debiasing term. For a given bag (B,α) and
function f , we let ℓSQ(f, (B,α)) := k · ( 1k

∑k
j=1 f(xj)− α)2 and let

L̂SQ(f) :=
1

n

n∑
i=1

ℓSQ(f, (Bi, αi)), and LSQ(f) := EB[ℓSQ(f, (B,α))].

In addition, we let

B̂(f) := (k − 1) · (Êf − p̂)2, and B(f) := (k − 1) · (E f − p)2.

Written in this notation, we have L̂DSQ(f) := L̂SQ(f) − B̂(f). In addition, recall that we showed
in Section 3 that for any predictor f we have L(f) = LSQ(f)−B(f).

We also establish several elementary facts about B̂(f), L̂SQ, and L̂DSQ.

Lemma 16 The following statements are true for any predictor f and dataset {(Bi, αi)}ni=1.

1. B̂(f) ≤ k−1
k · L̂SQ(f).

2. L̂DSQ(f) ≥ 0.

3. L̂SQ(f) ≤ k · L̂DSQ(f).

Proof. Fix any predictor f . For the first statement, using Jensen’s inequality we can compute that

B̂(f) = (k − 1) ·

 1

n

n∑
i=1

1

k

k∑
j=1

f(xi,j)− αi

2

≤ (k − 1) · 1
n

n∑
i=1

1

k

k∑
j=1

f(xi,j)− αi

2

=
k − 1

k
L̂SQ(f).

The second statement is a simple consequence of the first statement. For the third statement we have

L̂SQ(f) = L̂DSQ(f) + B̂(f) ≤ L̂DSQ(f) +
k − 1

k
· L̂SQ(f),

and rearranging yields the statement. This proves Lemma 16.

C.2. Showing Optimistic Rates

To prove Theorem 3, we separately prove optimistic rates for the square loss and debiasing terms,
and then combine the guarantees. Consider the function class

G :=

(B,α) 7→ k ·

1

k

k∑
j=1

f(xj)− α

2

: f ∈ F

.
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For any function g ∈ G, we know that ∥g∥ ≤ k and that g is k-Lipschitz in the first argument;
furthermore, by nonnegativity, G satisfies Assumption 1 with parameters A = 0, B = k. Thus we
apply Theorem 12 to G to get that with probability at least 1− δ for all g ∈ G,

|E[g]− Ên[g]| ≤ C

kr⋆n +
√

r⋆n(kE[g]) +

√
kE[g]

(
log 1

δ + c log logn
)

n
+

k2
(
log

1
δ+c log logn

)
n

.

where r⋆n is the critical radius and C > 0 is an absolute numerical constant. Applying Lemma 15,
we can also calculate the critical radius as

r⋆n ≤ O

(
d log(kn)

n

)
,

so therefore we have with probability at least 1− δ for any f ∈ F :

∣∣∣L̂SQ(f)− LSQ(f)
∣∣∣ ≤ Õ

kd+ k2 log 1
δ

n
+

√
LSQ(f) · k

(
d+ log 1

δ

)
n

. (16)

Next, we show a uniform convergence bound which relates B̂(f) to B(f). Consider the partition

G+ := {(x, y) 7→ f(x)− y : f ∈ F ,E f ≥ p},
G− := {(x, y) 7→ y − f(x) : f ∈ F ,E f < p}.

The function class G+ is 1-Lipschitz, bounded in [−1,+1], and satisfies Assumption 1 with A = 0,
B = 1. Applying Theorem 12 to G+ and using Lemma 15 we get that with probability at least 1− δ
for any f ∈ F such that E f ≥ p:

∣∣∣|Êf − p̂| − |E f − p|
∣∣∣ ≤ Õ

√(E f − p)
(
d+ log 1

δ

)
nk

+
d+ log 1

δ

nk

. (17)

This implies

(Êf − p̂)2 ≤ (E f − p)2 + Õ

√(E f − p)3
(
d+ log 1

δ

)
nk

+
d+ log 1

δ

nk


⇒ B̂(f) ≤ B(f) + Õ

√B(f)
(
d+ log 1

δ

)
n

+
d+ log 1

δ

n

. (18)

Likewise, for the reverse inequality we can also get that

(E f − p)2 ≤ (Êf − p̂)2 + Õ

|Êf − p̂| ·

√
(E f − p)

(
d+ log 1

δ

)
nk

+
d+ log 1

δ

nk


≤ (Êf − p̂)2 + Õ

√(E f − p)3
(
d+ log 1

δ

)
nk

+
d+ log 1

δ

nk


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⇒ B(f) ≤ B̂(f) + Õ

√B(f)
(
d+ log 1

δ

)
n

+
d+ log 1

δ

n

, (19)

where the second inequality uses the bound in Eq. (17).

Combining Eq. (18) and (19), we get the two-sided bound for all f ∈ F such that E f ≥ p:

|B(f)− B̂(f)| ≤ Õ

√B(f)
(
d+ log 1

δ

)
n

+
d+ log 1

δ

n

 (20)

Following the same approach, we can show that the Eq. (20) also holds for any f ∈ F such that
E f < p, as the function class G− also is 1-Lipschitz, bounded in [−1,+1] and satisfies Assump-
tion 1 with A = 0, B = 1. Therefore we conclude that with probability at least 1−δ, Eq. (20) holds
uniformly for all f ∈ F .

Now we use Eqs. (16) and (20) to get

L(f̂DSQ) = LSQ(f̂DSQ)−B(f̂DSQ)

≤ L̂SQ(f̂DSQ)− B̂(f̂DSQ)

+ Õ

kd+ k2 log 1
δ

n
+

√
LSQ(f̂DSQ) · k

(
d+ log 1

δ

)
n

+

√
B(f̂DSQ)

(
d+ log 1

δ

)
n


≤ L̂SQ(f̂DSQ)− B̂(f̂DSQ) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂DSQ) · k2

(
d+ log 1

δ

)
n


≤ L̂SQ(f

⋆)− B̂(f⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂DSQ) · k2

(
d+ log 1

δ

)
n


≤ L(f⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂DSQ) · k2

(
d+ log 1

δ

)
n

.

The third inequality uses the fact that for any predictor f , we have kLSQ(f) + B(f) = kL(f) +
(k+1)B(f) ≤ (k2+ k− 1)L(f). The fourth and fifth inequalities uses the optimality of f̂DSQ and
f⋆ for the empirical and population minimization problems respectively.

Finally, using the inequality Fact 1 we get that

L(f̂DSQ) ≤ L(f⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂DSQ) · k2

(
d+ log 1

δ

)
n


≤ L(f⋆) + Õ

k2
(
d+ log 1

δ

)
n

+

√
L(f⋆) +

kd+ k2 log 1
δ

n
·

√
k2
(
d+ log 1

δ

)
n


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= L(f⋆) + Õ

k2
(
d+ log 1

δ

)
n

+

√
L(f⋆) · k2

(
d+ log 1

δ

)
n


This concludes the proof of Theorem 3.

Appendix D. Proofs for Section 4

D.1. Offset Loss Class

To analyze the performance of f̂EZ, we consider an offset version of the EasyLLP loss estimate.
Specifically, let f⋆ := inff∈F L(f). We define the offset loss

Γ̂(f, f⋆) := L̂EZ(f)− L̂EZ(f
⋆) =

1

n

n∑
i=1

(k(2αi − 2p) + (2p− 1)) ·

1

k

k∑
j=1

f⋆(xi,j)− f(xi,j)


Moreover, we use Γ(f, f⋆) to denote its expectation, and we have E[Γ̂(f, f⋆)] = L(f) − L(f⋆).
Clearly, minimizing the original EasyLLP loss is equivalent to minimizing Γ̂(f, f⋆).

We also define the (empirical) second moment of the Γ function as

Γ̂2(f, f⋆) :=
1

n

n∑
i=1

(k(2αi − 2p) + (2p− 1))2 ·

1

k

k∑
j=1

f⋆(xi,j)− f(xi,j)

2

,

and use Γ2(f, f⋆) to denote E
[
Γ̂2(f, f⋆)

]
.

We show that the offset loss class

G :=

(B,α) 7→ (k(2α− 2p) + (2p− 1)) ·

1

k

k∑
j=1

f⋆(xj)− f(xj)

 : f ∈ F


satisfies Assumption 1.

Lemma 17 The function class G satisfies Assumption 1 with A = 8k2L(f⋆) and B = 4k2.

Proof. First we observe that because f⋆ = argminf∈F L(f), we have Γ(f, f⋆) ≥ 0 for all f ∈ F .
For the variance bound we can compute that

Γ2(f, f⋆) ≤ 4 · E

 k∑
j=1

f⋆(xj)− f(xj)

2 ≤ 4k2 E
[
(f⋆(x)− f(x))2

]
= 4k2 E

[
(f⋆(x)− y + y − f(x))2

]
≤ 4k2(L(f) + L(f⋆))

= 8k2L(f⋆) + 4k2Γ(f, f⋆).

The first inequality uses the fact that (k(2α− 2p) + (2p− 1)) ∈ [−2k + 1, 2k − 1]. The second
inequality uses the independence of the {xj} as well as Jensen’s inequality. The third inequality uses
the fact that (f(x)−y)2 = 1{f(x) ̸= y}, and that the cross terms satisfy (f⋆(x)−y)(y−f(x)) ≤ 0.
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This concludes the proof of Lemma 17.

D.2. Uniform Convergence for Offset Loss Class

Now we are ready to prove a uniform convergence bound for the function class G.

Lemma 18 (Lemma 6, restated) Let f⋆ = argminf∈F L(f). Then with probability at least 1− δ
we have for all f ∈ F

∣∣∣Γ̂(f, f⋆)− Γ(f, f⋆)
∣∣∣ ≤ Õ

kd+ k2 log 1
δ

n
+

√
L(f) · k2

(
d+ log 1

δ

)
n

.

Proof. By Lemma 17, we know that the function class G satisfies Assumption 1 with A = 8k2L(f⋆)
and B = 4k2. We also know that ∥g∥∞ ≤ k for all g ∈ G. Therefore, we can apply Theorem 12 to
get that with probability at least 1− δ for all f ∈ F ,∣∣∣Γ̂(f, f⋆)− Γ(f, f⋆)

∣∣∣
≤ C

kr⋆n +
√
r⋆n · 2k2L(f) +

√
k2L(f)

(
log 1

δ + c log log n
)

n
+

k2
(
log

1
δ+c log logn

)
n

. (21)

where r⋆n is the critical radius and C > 0 is an absolute numerical constant.

Since the function (B,α) 7→ (k(2α− 2p) + (2p− 1))·
(
1
k

∑k
j=1 f

⋆(xj)− f(xj)
)

is 2k-Lipschitz,
we have by Lemma 15 that

r⋆n = O

(
d log(kn)

n

)
.

Plugging this into Eq. (21) we get the conclusion of Lemma 6.

D.3. Proof of Theorem 5

Now we will prove the final generalization bound for EasyLLP. Using Lemma 6, we get that

Γ(f̂EZ, f
⋆) ≤ Γ̂(f̂EZ, f

⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂EZ) · k2

(
d+ log 1

δ

)
n



= Γ̂(f̂EZ, f
⋆) + Õ

kd+ k2 log 1
δ

n
+

√√√√(Γ(f̂EZ, f⋆) + L(f⋆)
)
· k2
(
d+ log 1

δ

)
n


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In fact, we know that since f⋆ ∈ F , we must have Γ̂(f̂EZ, f
⋆) ≤ Γ̂(f⋆, f⋆) = 0, so using Fact 1 we

can further upper bound this as

Γ(f̂EZ, f
⋆) ≤ Õ

k2
(
d+ log 1

δ

)
n

+

√
L(f⋆) · k2

(
d+ log 1

δ

)
n

.

Plugging in the definition of Γ proves the bound.

D.4. Proof of Corollary 7

We describe the sample splitting version of the EasyLLP learning rule, which allows us to use an
estimate p̂ instead of the true marginal label proportion p. We assume that we are given a dataset of
size 2n, denoted S = {(Bi, αi)}2ni=1. We split it randomly into two equally-sized parts S and S′. In
the proof, we will use i ∈ [n] to index bags in S and i′ ∈ [n] to index bags in S′.

1. Using S, estimate marginal label proportion p̂ = 1
n

∑n
i=1 αi.

2. Return f̂EZ := argminf∈F
1
n

∑n
i′=1 ℓEZ(f, (Bi′ , αi′)) using S′, where ℓEZ(·, ·) is defined

with the plug-in estimate p̂ instead of p:

ℓEZ(f, (B,α)) = (k(α− p̂) + p̂) ·

1− 1

k

k∑
j=1

f(xj)

+ (k(p̂− α) + (1− p̂)) ·

1

k

k∑
j=1

f(xj)

.

For any q ∈ [0, 1] let us define the quantity

Γ̂q(f, f
⋆) :=

1

n

n∑
i′=1

(k(2αi′ − 2q) + (2q − 1)) ·

1

k

k∑
j=1

f⋆(xi′,j)− f(xi′,j)

,

which represents the empirical offset loss estimated on S′ if we plugged in the value q for the
marginal label proportion.

By Lemma 6 we know that for any f ∈ F

Γp(f, f
⋆) ≤ Γ̂p(f, f

⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f) · k2

(
d+ log 1

δ

)
n

.

From here, we need to relate Γ̂p(f, f
⋆) to Γ̂p̂(f, f

⋆). We can bound the difference as:

∣∣∣Γ̂p(f, f
⋆)− Γ̂p̂(f, f

⋆)
∣∣∣ ≤ (2k − 2) · |p̂− p| ·

∣∣∣ 1
n

n∑
i′=1

1

k

k∑
j=1

f⋆(xi′,j)− f(xi′,j)︸ ︷︷ ︸
=:Ξ(f)

∣∣∣.

By Hoeffding’s inequality (Theorem 19), with probability at least 1− δ over S, we have |p̂− p| ≤√
2 log(2/δ)

nk . Henceforth we condition on this event holding over S.
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Now we prove a uniform convergence bound on |Ξ(·)| for all f ∈ F . For any f ∈ F we write that

|Ξ(f)| =

∣∣∣∣∣∣ 1n
n∑

i′=1

1

k

k∑
j=1

f⋆(xi′,j)− f(xi′,j)

∣∣∣∣∣∣ ≤
√

1

nk
·

√√√√ n∑
i′=1

k∑
j=1

(
f⋆(xi′,j)− f(xi′,j)

)2
≤
√

1

nk
·

√√√√ n∑
i′=1

k∑
j=1

(
f⋆(xi′,j)− yi′,j

)2
+ (yi′,j − f(xi′,j))2 =

√
L̂(f⋆) + L̂(f).

Here, we use L̂(·) to denote the empirical classification loss on S′. The first inequality follows by
Cauchy-Schwarz. The second inequality uses the fact that for a, b, c ∈ {0, 1} we have (a − b)(b −
c) ≤ 0. The last equality follows because (f(x) − y)2 = 1{f(x) ̸= y}. Now we use the standard
uniform convergence guarantee: with probability at least 1− δ over S′, for any f ∈ F :

|L(f)− L̂(f)| ≤ Õ

(
L(f) +

d+ log 1
δ

nk

)
.

So therefore with probability at least 1− δ over S′ we have for all f ∈ F :

|Ξ(f)| ≤
√
L̂(f⋆) + L̂(f) ≤ Õ

√L(f) +
d+ log 1

δ

nk

.

Thus with probability at least 1− 2δ over the draws of S1 and S2, we have for all f ∈ F :

∣∣∣Γ̂p(f, f
⋆)− Γ̂p̂(f, f

⋆)
∣∣∣ ≤ Õ

d+ log 1
δ

n
+

√
L(f) · k log 1

δ

n

 (22)

Now we are ready to prove the final guarantee. Similar to the proof of Theorem 5 we compute that

Γp(f̂EZ, f
⋆) ≤ Γ̂p(f̂EZ, f

⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂EZ) · k2

(
d+ log 1

δ

)
n


≤ Γ̂p̂(f̂EZ, f

⋆) + Õ

kd+ k2 log 1
δ

n
+

√
L(f̂EZ) · k2

(
d+ log 1

δ

)
n


≤ Õ

kd+ k2 log 1
δ

n
+

√
L(f̂EZ) · k2

(
d+ log 1

δ

)
n

,

where the second line uses Eq. (22) and the last line follows from the fact that Γ̂p̂(f̂EZ, f
⋆) ≤

Γ̂p̂(f
⋆, f⋆) = 0. From here, the proof concludes similarly as the proof of Theorem 5 in Ap-

pendix D.3 by using Fact 1 and plugging in the definition of Γp(·, f⋆).

Appendix E. Proof of Theorem 8

First, we describe the construction, then separately prove the lower bound for both the realizable
and agnostic settings.
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E.1. Construction

We define the instance space X = {0, 1}2d and let F = {fi : i ∈ [2d]} where the function fi is
defined as fi(x) = x[i]. It is clear that VC(F) ≤ d. Now we define a family of distributions Di

for i ∈ [2d]. For some parameter choice γ ∈ [0, 1/2], each Di is defined as follows: the example
x ∼ Unif({0, 1}2d) and y = fi(x) with probability 1/2+γ, y = 1−fi(x) with probability 1/2−γ.
For any predictor f the classification loss for distribution Di can be written as

LDi(f)− inf
f ′∈F

LDi(f
′) = 2γ · E

x∼Unif({0,1}2d )[1{f(x) ̸= x[i]}].

Furthermore, for any predictor f , as well as distributions Di and Dj we have the separation condition

LDi(f)− inf
f ′∈F

LDi(f
′) + LDj (f)− inf

f ′∈F
LDj (f

′)

= 2γ · E
x∼Unif({0,1}2d )[1{f(x) ̸= x[i]}+ 1{f(x) ̸= x[j]}] ≥ γ. (23)

E.2. Realizable Setting

For the realizable setting result, we use the construction with γ = 1/2. We claim that for any
learning rule for LLP that PAC learns F , there exists a distribution Di for which it requires n =
Ω(d/ log k) samples in expectation. Let us define D̄ to be the averaged distribution where one first
draws i ∼ Unif([2d]) then samples the bag (B,α) ∼ Di. Using the separation condition of Eq. (23),
we invoke Fano’s inequality (e.g., Lemma 3 of Yu (1997)) to get

inf
f̂

sup
i∈[2d]

EDi

[
LDi

(
f̂
)]

≥ 1

4

(
1−

n · 1
2d

∑2d

i=1KL
(
Di∥D̄

)
+ log 2

d

)
=

1

4

(
1−

n ·KL
(
D1∥D̄

)
+ log 2

d

)
,

(24)

where the equality follows by symmetry of the distributions Di.

From here we need to estimate KL
(
D1∥D̄

)
. By chain rule for KL divergence, we see that

KL
(
D1∥D̄

)
= KL(PD1 [B]∥PD̄[B]) + EB∼D1 [KL(PD1 [α | B]∥PD̄[α | B])]

= EB∼D1 [KL(PD1 [α | B]∥PD̄[α | B])]

= E
B∼Unif({0,1}2d )[KL(PD1 [α | B]∥PD̄[α | B])],

since all of the Di have the same marginal over X . Fix a bag B = {x1, · · · , xk}, and let us define
the vector z = 1

k

∑k
j=1 xj ∈ [0, 1]2

d
. We calculate that

KL(PD1 [α | B]∥PD̄[α | B]) =
∑

α∈{0, 1k ,··· ,1}

Pα∼D1 [α | B] · log Pα∼D1 [α | B]

Pα∼D̄[α | B]

= log
1

Pα∼D̄[α = z[1] | B]

= log
1

1
2d

+ 1
2d

∑
i>1 Pα∼Di [α = z[1] | B]
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= log
1

1
2d

+ 1
2d

∑
i>1 1{z[i] = z[1]}

≤ min

{
d, log

2d∑
i>1 1{z[i] = z[1]}

}
.

The second line follows from the fact that once we fix B, the value of α = z[1] is deterministic
under D1. Putting it together we get that, we get

KL
(
D1∥D̄

)
≤ E

B∼Unif({0,1}2d )

[
min

{
d, log

2d∑
i>1 1{z[i] = z[1]}

}]
.

Observe that k · z[i] is distributed as independent Bin(k, 1/2) variables for all i ∈ [2d]. Using
Lemma 21, we have for all i > 1 that PB[z[i] = z[1]] ≥ 1/(k + 1), since the random variable z[i]
takes at most k + 1 values. Thus, applying Chernoff bounds we have for any δ ∈ (0, 1),

PB

[∑
i>1

1{z[i] = z[1]} ≥ (1− δ)
2d − 1

k + 1

]
≥ 1− exp

(
−δ2

2
· 2

d − 1

k + 1

)
.

Let us pick δ =
√

2(k + 1) log d/(2d − 1); by our assumption on k we have δ ≤ 1/2. This
guarantees that the above event, call it E , happens with probability at least 1 − 1/d. Therefore, we
get

KL
(
D1∥D̄

)
≤ d · 1

d
+ log

2d · 2(k + 1)

2d − 1
≤ 2 + log(k + 1). (25)

Therefore, plugging in Eq. (25) into Eq. (24) we see that

inf
f̂

sup
i∈[2d]

EDi

[
LDi

(
f̂
)]

≥ 1

4

(
1− n(2 + log(k + 1)) + log 2

d

)
.

For n = C ′d/(log(k+1)) where C ′ > 0 is a sufficiently small constant we have inf
f̂
supi∈[2d] EDi

[
LDi

(
f̂
)]

≥
1
8 . Fix any learning rule f̂ , and let Di⋆ be the distribution which witnesses the supremum. We have

1

8
≤ EDi⋆

[
LDi⋆

(
f̂
)]

≤ PDi⋆

[
LDi⋆

(
f̂
)
>

1

16

]
+

1

16
· PDi⋆

[
LDi⋆

(
f̂
)
≤ 1

16

]
which implies that PDi⋆

[
LDi⋆

(
f̂
)
> 1

16

]
≥ 1/15. We conclude that any learning rule which PAC

learns F with parameters (ε, δ) = (1/16, 1/15) requires n = Ω(d/ log k) samples.

E.3. Agnostic Setting

For the agnostic setting result we use the construction with γ = ε. Again, by Fano’s inequality we
get

inf
f̂

sup
i∈[2d]

EDi

[
LDi

(
f̂
)
− inf

f ′∈F
LDi(f

′)

]
≥ ε

2

(
1−

n · 1
2d

∑2d

i=1KL
(
Di∥D̄

)
+ log 2

d

)
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=
ε

2

(
1−

n ·KL
(
D1∥D̄

)
+ log 2

d

)
, (26)

where the equality follows by symmetry of the distributions Di.

From here we need to estimate KL
(
D1∥D̄

)
. By chain rule for KL divergence, we see that

KL
(
D1∥D̄

)
= E

B∼Unif({0,1}2d )[KL(PD1 [α | B]∥PD̄[α | B])].

From here we can bound this in two ways. The first way is to use the data-processing inequal-
ity for KL divergence. Observe that in distribution Di, the label proportion α is distributed as
Bin(kz[i], 1/2 + ε) + Bin(k − kz[i], 1/2− ε). Therefore, by the data processing inequality

KL(PD1 [α | B]∥PD̄[α | B]) ≤ KL(PD1 [αclean | B]∥PD̄[αclean | B])

≤ min

{
d, log

2d∑
i>1 1{z[i] = z[1]}

}
,

where αclean = z[i] in distribution Di. From here, the proof proceeds similarly as in the realizable
setting. We get the lower bound of Ω(d/ log k), with no dependence on ε.

Alternatively, we can directly calculate the bound on the KL divergence:

KL(PD1 [α | B]∥PD̄[α | B])

≤ 1

2d

2d∑
i=1

KL(PD1 [α | B]∥PDi [α | B])

=
2d − 1

2d
·KL(PD1 [α | B]∥PD2 [α | B])

≤ max{kz[1]− kz[2], 0} · kl(1/2 + ε∥1/2− ε) + max{kz[2]− kz[1], 0} · kl(1/2− ε∥1/2 + ε)

≤ |z[1]− z[2]| ·O(kε2).

The first line uses the convexity of KL. The second line uses the symmetry of the distributions Di.
The third line follows because under Di, kα ∼ Bin(kz[i], 1/2 + ε) + Bin(k − kz[i], 1/2 − ε),
then applying chain rule for KL divergence. The last line applies the bound on the KL divergence
between two Bernoulli random variables.

Now we investigate the expected difference between z[1] and z[2]. Note that both of these are
independently distributed as Bin(k, 1/2)/k. By Hoeffding’s inequality, we see that for any i ∈ [2d],

PB

[∣∣∣∣z[i]− 1

2

∣∣∣∣ ≥
√

log(2k)

2k

]
≤ 1

k
,

so by union bound, with probability at least 1− 2/k we have |z[1]− z[2]| ≤
√

2 log(2k)
k . Using this,

we can compute the bound that

KL
(
D1∥D̄

)
≤ O(kε2) · EB[|z[1]− z[2]|]

32



OPTIMISTIC RATES FOR LLP

≤ O(kε2) ·

(
2

k
+

√
2 log(2k)

k

)
≤ O(ε2) ·

(
2 +

√
2k log(2k)

)
.

Plugging the previous display into Eq. (26), we see that if n = C ′d/(
√
kε2) where C ′ > 0 is a

sufficiently small constant we have inf
f̂
supi∈[2d] EDi

[
LDi

(
f̂
)
− inff ′∈F LDi(f

′)
]
≥ ε

4 . As with
the realizable setting proof, we can translate this to a lower bound for PAC learning; we omit the
details.

Appendix F. Technical Lemmas

Fact 1 For any A,B,C ≥ 0 if A ≤ B + C
√
A then A ≤ B + C2 +

√
BC ≤ 2B + 2C2.

Theorem 19 (Hoeffding’s Inequality) Let Z1, · · · , Zn be independent bounded random variables
with Zi ∈ [a, b] for all i ∈ [n]. Then

P

[∣∣∣∣∣ 1n
n∑

t=1

Zi − E[Zi]

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2nt2

(b− a)2

)
.

Theorem 20 (Paley-Zygmund) Let Z ≥ 0 be a random variable with finite variance. For any
θ ∈ [0, 1],

P[Z ≥ θ · EZ] ≥ (1− θ)2
E[Z]2

E[Z2]
.

Lemma 21 Let X and Y be two i.i.d. discrete random variables which are supported on a set of
size k. Then P[X = Y ] ≥ 1/k.

Let Ω be the support. The probability that X = Y can be calculated as

P[X = Y ] =
∑
x∈Ω

P[X = x]2 ≥ 1

k
·

(∑
x∈Ω

P[X = x]

)2

=
1

k
.

The inequality uses the fact that ∥v∥1 ≤
√
k∥v∥2 for any v ∈ Rk.

Appendix G. Experiments

In this section we empirically evaluate the performance of the learning rules discussed herein and
present results which illustrate the differences of the learning rules in practical implementations.

Learning Rule Implementations. Since minimizing the 0-1 loss is computationally intractable,
we consider algorithmic variants of LLP learning rules which minimize a surrogate loss using mini-
batch stochastic gradient descent (SGD). Fix a parameterized function class F = {fθ : θ ∈ Θ} ⊆
[0, 1]X . For EasyLLP, we minimize the loss (10) with ℓins : Y × R → R instantiated to be the
square loss EZ.Sq or the log loss EZ.Log. Directly minimizing the debiased square loss via SGD is
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Figure 1: Training curves of various algorithms for LLP, using the large CNN architecture and bag
size k = 100. One standard deviation confidence bands are plotted.

not straightforward: for every gradient update, the second term in the loss requires computing Êfθ
(i.e., the average prediction of fθ over the entire dataset). We approximate it with an exponential
moving average v̂ with parameter β ∈ (0, 1). Given a minibatch S = {(B1, α1), · · · , (Bℓ, αℓ)}, we
perform the updates

v̂+ = β · v̂ + (1− β) · 1

ℓk

ℓ∑
i=1

k∑
j=1

fθ(xi,j), (27)

θ+ = θ − η · ∇θ

1

ℓ

ℓ∑
i=1

k ·
(
1

k

k∑
j=1

fθ(xi,j)− αi

)2

− (k − 1)
(
v̂+ − p̂

)2. (28)

When performing backpropagation for the gradients on the debiasing term (k − 1)(v̂+ − p̂)
2, the

backpropagation does not go through v̂, only the summation over fθ(xi,j). We refer to this as
DebiasedSq. For DebiasedSq, EZ.Log, and EZ.Sq, the label proportion p̂ is estimated as the
average of the training set labels. Lastly, we also consider algorithms that minimize the proportion
matching square loss (6) and log loss (7), which we refer to as PM.Sq and PM.Log respectively.

G.1. Comparison of LLP Learning Rules

The goal of this experiment is to understand how these learning rules perform under various bag
sizes and function classes.

Experimental Setup. We adopt a similar experiment setup as in (Busa-Fekete et al., 2023). We
run LLP algorithms on the MNIST odd vs. even task and the CIFAR10 animal vs. machine task
(binary classification versions of the MNIST and CIFAR10). We consider 5 architectures: a lin-
ear model, small two layer NN (with 100 hidden units), a large two layer NN (with 1000 hid-
den units), a small CNN, and a large CNN. We experiment with bag sizes k ∈ {10, 100, 1000}.
For each dataset, model, bag size, and algorithm, we run 10 trials with different random seeds.
To select the learning rate, we report the best average achieved test error for learning rates in
{0.01, 0.005, 0.001, 0.0005, 0.0001}. In all of our experiments we use the Adam optimizer (Kingma
and Ba, 2014) with minibatches of size 1000 and train for 100 epochs. For DebiasedSq, we use the
approximate version in Eqs. (27)-(28) with β = 0.99. Further details can be found in Appendix G.3.
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Figure 2: Left: Loss estimates throughout training. We run a single trial of EZ.Sq and De-
biasedSq on MNIST Odd vs. Even using the large CNN architecture, bag size k = 10,
and optimally chosen learning rate. Using the test set, we plot the averaged true square loss
1

ntest

∑ntest
i=1

1
k

∑k
j=1(fθ(xi,j) − yi,j)

2 vs. the estimated square loss 1
ntest

∑ntest
i=1 ℓ̂est(Bi, αi), where

ℓ̂est is either the EZ.Sq/DebiasedSq loss estimate. Middle and Right: Histogram of true per-
bag square losses { 1

k

∑k
j=1(fθ(xi,j)− yi,j)

2}ntest
i=1 and per-bag loss estimates {ℓ̂est(Bi, αi)}ntest

i=1 for
EZ.Sq/DebiasedSq loss estimates at epoch 10.

Discussion of Results. In Figure 1 as well as Table 1 and 2 (in the Appendix), we see that the
best algorithm is a tossup between DebiasedSq, PM.Sq, and PM.Log.1 In light of our discussion
in Section 3.1, this may be not that surprising, since the model classes we work with are expressive
enough to minimize both the proportion matching loss and the bias, so we do not have the failure
mode shown in Proposition 2. Furthermore, in Figure 1 we see that both versions of EasyLLP
exhibits overfitting as training progresses, thus necessitating early stopping; this was also observed
in (Busa-Fekete et al., 2023). We observe that DebiasedSq, PM.Sq, and PM.Log also sometimes
exhibits overfitting (see Figure 1b), but to a much less degree.

One hypothesis for why DebiasedSq performs better than EZ.Sq is that is that the debiased square
loss is a more accurate estimate of the true loss than the EasyLLP loss (see Proposition 4 and the
discussion before it). In Figure 2, we compare how well the estimated losses track the true square
loss on the test set. Although we plot a single trial, we found that the behavior was similar across
different random seeds. In Figure 2a, the DebiasedSq loss closely tracks the true square loss, but
EZ.Sq is consistently an overestimate of the true square loss. (Interestingly, we observe that the
“shape” of the loss curve is still preserved). An explanation for this phenomenon can be found
in Figure 2b and Figure 2c, where we plot the histogram of ground-truth per-bag square losses as
well as the corresponding per-bag square loss estimates in the test set. The histogram of per-bag
loss estimates for DebiasedSq is quite similar to the histogram of ground-truth per-bag losses. On
the other hand for EZ.Sq, the histogram of per-bag loss estimates has large variance and a heavy
left tail. Since the randomness in the loss estimates is due to the bag generation procedure, it is
likely that the bags with highly negative EZ.Sq loss estimates (i.e., taking values < −2) were not
generated, so the sample mean overestimates the true square loss.

1. The results in (Busa-Fekete et al., 2023) suggest that EasyLLP and the proportion matching baselines have similar
performance; however, note that they only train for 20 epochs. We find that EasyLLP is competitive in early stages
of training but eventually DebiasedSq, PM.Sq, and PM.Log outperform it.
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(b) CIFAR Animal vs. Machine

Figure 3: Training curves for PM.Sq and DebiasedSq with various β for bag size k = 10 on
the small CNN architecture. We use a fixed learning rate of 0.001 and run full-batch GD for 1000
epochs. Each line is an average over 10 trials with different random seeds.

G.2. Benefits of Debiasing for Optimization

The previous results suggest that the performance of PM.Sq and DebiasedSq is similar, and that
there might not be a need for debiasing in practice, as the failure mode in Proposition 2 is arguably
pathological. On the contrary, we present evidence that (accurate) debiasing can improve optimiza-
tion. In Figure 3, we compare the performance of PM.Sq and DebiasedSq with varying β for
full-batch GD. (We also investigated large batch SGD, but we found this effect was more striking
with larger batches, so we only report the full-batch GD results.) Here, we can compute Êfθ in
every epoch at no additional cost, so the debiasing term can be exactly computed for every gradient
update.

We find that in early stages of training, debiasing results in faster optimization. For CIFAR Animal
vs. Machine, GD on PM.Sq seems to get stuck at a bad local minimum near initialization and only
escapes after ∼25 epochs, but GD on DebiasedSq is able to escape the local minimum much faster.
Early in training, the model fθ does not fit the label proportion p̂ well, so the debiasing term B(fθ)
is large, and therefore the PM.Sq loss will overestimate the true instance-level square loss. On
the contrary, DebiasedSq uses more accurate estimates of the instance-level square loss, which is
why we see benefits of debiasing. Later in training, as B(fθ) → 0, the PM.Sq/DebiasedSq loss
estimates are more similar, explaining why the different lines seem to converge to similar test errors.

G.3. Implementation Details

Our code can be found on GitHub at https://github.com/GXLI97/llp_experiments.
All experiments were run on an NVIDIA RTX A6000 GPU using Tensorflow and Keras.

We elaborate on the architectures used in our experiments.

• The linear model has a single dense output layer with 1 unit and sigmoid activation.

• The small two layer NN comprises of a dense layer with 100 units and ReLU activation,
followed by a dense output layer with 1 unit and sigmoid activation.
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• The large two layer NN comprises of a dense layer with 1000 units and ReLU activation,
followed by a dense output layer with 1 unit and sigmoid activation.

• The small CNN is the same architecture in (Busa-Fekete et al., 2023):

– Convolutional layer with 32 kernels of size 3× 3 and ReLU activation.

– Max pooling layer with pool 2× 2.

– Convolutional layer with 64 kernels of size 3× 3 and ReLU activation.

– Max pooling layer with pool size 2× 2.

– Flatten layer.

– Dropout layer with drop rate 0.5.

– Dense output layer with 1 unit and sigmoid activation.

• The large CNN is the same architecture in (Busa-Fekete et al., 2023):

– Convolutional layer with 32 kernels of size 3× 3 and ReLU activation.

– Convolutional layer with 32 kernels of size 3× 3 and ReLU activation.

– Max pooling layer with pool 2× 2.

– Dropout layer with drop rate 0.25.

– Convolutional layer with 64 kernels of size 3× 3 and ReLU activation.

– Convolutional layer with 64 kernels of size 3× 3 and ReLU activation.

– Max pooling layer with pool 2× 2.

– Dropout layer with drop rate 0.25.

– Flatten layer.

– Dense layer with 512 units and ReLU activation.

– Dropout layer with drop rate 0.5.

– Dense output layer with 1 unit and sigmoid activation.
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G.4. Results Summary

EZ.Log EZ.Sq PM.Log PM.Sq DebiasedSq
k
=

10
Linear 10.9 10.2 9.47 9.51 9.50
Two Layer Small 5.32 3.93 1.56 1.56 1.56
Two Layer Large 4.56 3.50 1.28 1.18 1.19
CNN Small 3.89 2.47 1.06 1.08 1.02
CNN Large 3.54 1.58 0.417 0.416 0.422

k
=

1
00

Linear 14.2 12.9 11.8 11.8 11.8
Two Layer Small 8.72 8.33 3.77 3.84 3.80
Two Layer Large 9.29 8.50 3.21 2.80 2.80
CNN Small 6.89 5.82 2.11 2.12 2.08
CNN Large 5.86 4.63 0.826 0.774 0.841

k
=

10
00

Linear 21.3 21.5 19.9 19.9 19.9
Two Layer Small 20.5 20.5 20.1 20.2 20.2
Two Layer Large 19.6 21.0 18.2 18.5 18.4
CNN Small 16.1 16.3 14.1 14.4 14.3
CNN Large 15.3 15.2 13.1 13.7 13.7

Table 1: MNIST Test Error (%) for LLP Algorithms. Best error is reported in bold.

EZ.Log EZ.Sq PM.Log PM.Sq DebiasedSq

k
=

10

Linear 19.2 18.7 18.4 18.4 18.4
Two Layer Small 16.3 15.8 14.6 14.7 14.7
Two Layer Large 18.0 16.5 13.2 13.4 13.4
CNN Small 10.5 10.2 8.30 8.09 8.23
CNN Large 10.5 10.2 8.19 8.11 8.18

k
=

10
0

Linear 22.1 21.0 20.5 20.4 20.4
Two Layer Small 20.1 20.1 19.3 19.3 19.3
Two Layer Large 20.3 24.5 19.5 19.7 19.7
CNN Small 17.4 17.3 13.0 13.0 12.9
CNN Large 20.4 18.7 13.2 13.3 13.4

k
=

10
00

Linear 24.0 45.7 28.5 28.5 28.5
Two Layer Small 37.2 49.8 36.8 36.7 36.7
Two Layer Large 27.1 54.0 35.1 37.9 37.4
CNN Small 33.5 33.6 35.7 35.8 35.6
CNN Large 36.1 36.1 35.9 36.8 36.6

Table 2: CIFAR Test Error (%) for LLP Algorithms. Best error is reported in bold.
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