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Abstract
Tree-based methods are popular nonparametric tools for capturing spatial heterogeneity and mak-
ing predictions in multivariate problems. In unsupervised learning, trees and their ensembles have
also been applied to a wide range of statistical inference tasks, such as multi-resolution sketching
of distributional variations, localization of high-density regions, and design of efficient data com-
pression schemes. In this paper, we study the spatial adaptation property of Bayesian tree-based
methods in the unsupervised setting, with a focus on the density estimation problem. We charac-
terize spatial heterogeneity of the underlying density function by using anisotropic Besov spaces,
region-wise anisotropic Besov spaces, and two novel function classes as their extensions. For two
types of commonly used prior distributions on trees under the context of unsupervised learning—
the optional Pólya tree (Wong and Ma, 2010) and the Dirichlet prior (Lu et al., 2013)—we calculate
posterior concentration rates when the density function exhibits different types of heterogeneity. In
specific, we show that the posterior concentration rate for trees is near minimax over the anisotropic
Besov space. The rate is adaptive in the sense that to achieve such a rate we do not need any prior
knowledge of the parameters of the Besov space.
Keywords: Multivariate Density Estimation, Tree-based Methods, Spatial Adaptation, Posterior
Concentration, Asymptotic Minimaxity

1. Introduction
Modern applications often involve data arising from complex generative distributions supported on
multivariate or even high-dimensional sample spaces. A fundamental inference objective of unsu-
pervised learning is to identify the nature and structure of the underlying data generative distribu-
tion. However, learning a multivariate distribution in a flexible, nonparametric fashion is known to
be challenging when the sample space grows beyond a handful of dimensions due to the so-called
“curse-of-dimensionality”, especially when the distribution involves complex structure—such as
non-linear dependency, spatially varying smoothness, and local features.

Tree-based methods are quite effective for nonparametric estimation, and have achieved great
success in supervised learning. Random forests (RF, Breiman 2001), tree boosting (Freund and
Schapire, 1997; Friedman, 2001), Bayesian classification and regression trees (Bayesian CART,
Chipman et al. 1997, 1998), and Bayesian additive regression trees (BART, Chipman et al. 2010)
have been widely in use due to their computational ease and desirable predictive accuracy. In the
last few years, there has been a burgeoning of interest in rigorously quantifying performance of
supervised trees, especially that for RF, thereby unraveling the myth of their success (Arlot and
Genuer, 2014; Biau, 2012; Scornet, 2016; Mentch and Zhou, 2020; Biau et al., 2008; Denil et al.,
2014; Lin and Jeon, 2006; Scornet et al., 2015; Chi et al., 2022; Cattaneo et al., 2023; Klusowski,
2020, 2021). For unsupervised learning, many estimation or inference techniques have also been
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developed on top of tree models, such as two-sample comparison through multi-resolution scanning
(Soriano and Ma, 2017; Ma and Wong, 2011), mode hunting and clustering (McKinnon, 2018; Ooi,
2002), and data compression (Huffman, 1952; Poggi and Olshen, 1995). However, the theoretical
analysis of tree-based methods for unsupervised problems such as density estimation is far less
sophisticated compared to what has been accomplished for supervised ones.

The Bayesian tree model has gained popularity in practice, as the Bayesian framework naturally
endows a stochastic search algorithm, and provides an elegant solution to accounting for model
uncertainty. Quite a few recent work on Bayesian tree models contributes to deriving posterior
concentration rates for trees over different function classes, as a way to investigate their spatial
adaptivity. However, the existing analysis for either supervised or unsupervised trees is not adequate
to provide a full picture of spatial adaptation properties of trees. For example, Liu et al. (2017, 2023)
study Bayesian unsupervised trees only when the underlying true density function lies in a Besov
space with homogeneous smoothness properties along different directions. Ročková and van der
Pas (2020); Jeong and Ročková (2023); Ročková and Rousseau (forthcoming) analyze posterior
concentration for Bayesian CART and BART when the regression function is isotropic Hölder,
anisotropic Hölder, or region-wise anisotropic Hölder continuous. These Hölder spaces allow the
smoothness of the function to vary spatially. However, they may not be a good model to describe
local spikes or sharp changes as functions in these spaces are uniformly continuous.

The purpose of this paper is to provide a more complete characterization of spatial adaptation
properties of tree-based methods, with a focus on the unsupervised setting. We will model spatial
heterogeneity by using anisotropic Besov spaces, region-wise anisotropic Besov spaces, or more
generally classes of density functions satisfying different types of sparsity condition in the spectral
domain. Our theoretical analysis is under the Bayesian framework. We consider two common types
of prior distributions on unsupervised trees: the optional Pólya tree prior (Wong and Ma, 2010)
and the Dirichlet prior (Lu et al., 2013; Liu et al., 2023). We will provide a thorough analysis of
posterior concentration properties under these two types of prior, in order to reveal spatial adaptation
properties of trees from the theoretical perspective.

Rigorously justified spatial adaptivity also distinguishes tree-based methods from the other cat-
egories of nonparametric methods for unsupervised learning. The kernel method (Rosenblatt, 1956;
Parzen, 1962) suffers from the curse-of-dimensionality and may have limited ability to capture inho-
mogeneous features in high-dimensional cases. More recently introduced generative models, such
as generative adversarial networks (GANs, Goodfellow et al. 2014; Uppal et al. 2019), variational
auto-encoders (VAEs, Kingma and Welling 2014), and normalizing flows (Rezende and Mohamed,
2015; Dinh et al., 2015), exhibit superior empirical performance, but spatial adaptation properties
of these methods remain unknown from the theoretical perspective.

We introduce some notations at the end of the introduction. On the measurable space (Rd,B)
equipped with the Lebesgue measure µ, we assume a density f0 for the distribution of interest
exists. After translation and scaling, we may assume that the sample space Ω is the unit cube in
Rd. The collection of all density functions on (Ω,B, µ) is denoted as F . We will derive posterior
concentration rates with respect to the Hellinger distance ρ, and will also use both the Kullback-
Leibler (KL) divergence and the L∞-norm, defined as KL(f, g) = Ef (log(f/g)(Y )) and ‖f −
g‖∞ = supy∈Ω |f(y) − g(y)| respectively. We will treat the dimension d as fixed, as it is very
challenging to estimate the density in an ultra-high dimensional space.

The rest of the paper is organized as the following. In Section 2, we provide detailed charac-
terizations of spatial heterogeneity of the density function. In Section 3, we introduce two types of
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prior distributions on trees. We summarize our main theoretical results of posterior concentration
rates for trees when the density exhibits different types of spatial features in Section 4, and provide
an outline of the proof in Section 5.

2. Characterization of spatial heterogeneity
We will first provide a characterization of spatial heterogeneity by using anisotropic Besov spaces,
or more generally, region-wise anisotropic Besov spaces. The Besov space is a rich function class
that is commonly considered under the context of nonparametric modeling. Both the Hölder space
and the class of functions of bounded variations can be embedded into Besov spaces (see Nikol’skii
2012 for more details). We will introduce the anisotropic Besov space based on the Besov norm,
and will provide an alternative definition by using multiresolution Haar wavelets. The second def-
inition in terms of decay of wavelet coefficients is particularly interesting, as it reflects a type of
sparsity in the spectral domain. This is also the motivation for providing the two other types of
characterizations of spatial heterogeneity in terms of Besov balls and weak-`p′ sparsity of wavelet
coefficients.

2.1. Anisotropic Besov spaces
Generally, to define the anisotropic Besov space Bσp,q(R, L) on the domain R = ⊗dl=1(al, bl), let
el = (δl1, . . . , δld)

> (δll′ = 1{l=l′}) be the l-th unit vector. The first difference of the function f
along the direction of yl is defined as ∆l,hf(y) = f(y + hel)− f(y), and the second difference is
∆2
l,hf(y) = ∆l,h(∆l,hf(y)) = f(y + 2hel) − 2f(y + hel) + f(y). For each l, sl = bσlc denotes

the largest integer strictly less than σl. In the one-dimensional case, For q < ∞, the Besov norm
along the direction of yl is defined as

‖f‖bσll,pl,q
=

(∫ ∞
0
|h|(sl−σl)q−1

∥∥∥∥∆2
l,h

(
∂sl

∂(yl)sl
f

)∥∥∥∥q
Lpl (Rl,h)

dh

)1/q

,

and for q =∞,

‖f‖bσll,pl,∞
= sup

h≥0

{
|h|sl−σl

∥∥∥∥∆2
l,h

(
∂sl

∂(yl)sl
f

)∥∥∥∥
Lpl (Rl,h)

}
,

where Rl,h = ⊗l−1
l′=1(al′ , bl′) ⊗ (al, al ∨ (bl − 2h)) ⊗dl′=l+1 (al′ , bl′). For σ = (σ1, . . . , σd)

> and
p = (p0, p1, . . . , pd)

>, the norm associated with the anisotropic Besov space Bσp,q is

‖f‖Bσp,q = ‖f‖Lp0 (R) +

d∑
l=1

‖f‖bσll,pl,q
.

We define the anisotropic Besov space as

Bσp,q(R, L) = {f : ‖f‖Bσp,q ≤ L}, for some L > 0.

According to the definition above, in the one-dimensional case, the Besov norm ‖·‖bσp,q measures
the regularity of the function by using the Lp-norm. The larger p is, the stronger the norm is.
When p = ∞, the density function lying in the Besov space is Hölder continuous in the sense that
‖ · ‖bα∞,∞ < ∞ is equivalent to α-Hölder continuity when 0 < α /∈ N. For smaller p, as a weak
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metric is applied, the density function in the Besov space is allowed to have more local variations.
This way, the space can cover those density functions with sharp changes and local spikes. Last
but not the least, the anisotropic Besov space allows different smoothness levels along different
directions, which is a reflection of spatial heterogeneity.

In this paper, we will focus on the case that p0 = · · · = pd = p ≥ 2, which means the same norm
is considered along different directions. We require p ≥ 2 as the Hellinger distance or equivalently
the L2-norm for bounded densities will be applied to quantify the posterior concentration rate. We
also assume σl ∈ (0, 1], as the tree-supported density function has limited approximation ability.
Usually, the domainR is a subset of Ω = [0, 1]d.

2.2. Region-wise anisotropic Besov spaces
We further introduce region-wise anisotropic Besov spaces to accommodate richer spatial features
of the density function. On a dyadic partition A? = {Ωs}Ss=1 of the domain Ω with S subregions
(more details about the dyadic partition will be introduced in Section 3), we allow the density
function to have different smoothness properties in different regions. More specifically, we denote
the restriction of a function f on a set A as f |A and assume f |Ωs ∈ Bσsp,q(Ωs, L), where σs =
(σsl)1≤l≤d. The smoothness parameters (σ1, . . . ,σS) for Besov spaces over S regions are from
either of the following two sets,

Σσ =

{
(σ1, . . . ,σS) : σsl ∈ (0, 1] for all s and l,

d∑
l=1

1

σsl
=
d

σ
for all 1 ≤ s ≤ S

}
, (1)

where σ ∈ (0, 1], and

Σ = {(σ1, . . . ,σS) : σsl ∈ (0, 1] for all 1 ≤ s ≤ S, 1 ≤ l ≤ d} . (2)

It is easy to see that Σσ ⊂ Σ. The region-wise anisotropic Besov space with parameters in Σ
characterizes higher level of spatial heterogeneity.

2.3. Multiresolution wavelet basis and Besov balls
In Section 2.1 and Section 2.2, we have introduced two characterizations of spatial heterogeneity.
The purpose of this subsection is to provide a multiresolution description of the Besov space and
extend our characterization of spatial features to a more general case, called the Besov balls. We
start with a description for the one dimensional multiresolution analysis (MRA).

In the one dimensional case, it is well known that a function φ can be constructed to satisfy the
following properties (Meyer, 1990):

F1. The sequence {φ(· − k), k ∈ Z} is an orthonormal family of L2(R). Let V0 be the function
space spanned by it.

F2. For all j ∈ Z, Vj ⊂ Vj+1 if Vj denotes the space spanned by {φjk, k ∈ Z}, where φjk =
2j/2φ(2j · −k).

F3. φ is r times weakly differentiable, and the derivative φ(r) is rapidly decreasing.

One example of such a function is the scaling function for Haar wavelet φ = 1[0,1)(y). Then we
have ∩j∈ZVj = {0}, and L2(R) = ∪j∈ZVj . Under these conditions, the space Wj is defined by
Vj+1 = Vj ⊕Wj . There exists a function ψ (the “wavelet”) such that
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M1. {ψ(· − k), k ∈ Z} is an orthonormal basis of W0.
M2. {ψjk, j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R), where ψjk = 2j/2(2j · −k).
M3. ψ has the same regularity property as φ.

Then L2(R) can be decomposed in the following way, for some fixed integer j0 ∈ Z:

L2(R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · . (3)

In this paper, we will focus on the Haar wavelet ψ(y) = 1[0,1/2)−1[1/2,1), as it is closely related to
tree-based methods.

Moving to the multivariate case, to characterize the anisotropic Besov spaces, we can introduce
multiresolution wavelet basis in a similar way. We will focus on the construction by Leisner (2003);
Garrigós and Tabacco (2002). Let φjk and ψjk be scaling and translation of φ and ψ respectively,
defined as φjk = 2j/2φ(2j · −k) and ψjk = 2j/2ψ(2j · −k). With smoothness parameter σ, let
σmin = min1≤l≤d σl and σ′l = σmin/σl. σ̄ is the value that satisfies (σ̄)−1 = 1

d

∑d
l=1 σ

−1
l . We

define the multiresolution scaling function at level j as ξ0
jk(y) =

∏d
l=1 φbjσ′lc,kl . The space Vj is

Vj = spanLp(Rd)

{
ξ0
jk : k ∈ Zd

}
= ⊗dl=1Vbjσ′lc,

and the basis functions for Vj are naturally

Φ
(j)
σ =

{
ξ0
jk : k ∈ Zd

}
, where ξ0

jk(y) =
d∏
l=1

φbjσ′lc,kl .

In the definition, we use the subscript σ to emphasize that the basis functions in Φ
(j)
σ depends on

the parameter σ. Similar to the one-dimensional case, we define, for each j ∈ Z, the complement
spaceWj to be the orthogonal complement in Vj+1 of Vj . Let Λj = {l ∈ [d] : bjσ′lc < b(j+ 1)σ′lc
and γjl = 1l∈Λj . We have the decomposition

Vj+1 = ⊗dl=1(γjl(Vbjσ′lc ⊕Wbjσ′lc)⊕ (1− γjl)Vbjσ′lc)

= Vj ⊕
⊕

εj :εj∈{0,1}d\{(0,...,0)},εjl(1−γjl)=0

⊗dl=1(εjlWbjσ′lc ⊕ (1− εjl)Vbjσ′lc),

where by convention for any subspace H of L2(R), 1 · H = H and 0 · H = {0}. The condition
εjl(1− γjl) = 0 is understood as, along those directions with bjσ′lc = b(j + 1)σ′lc, εjl’s are forced
to be 0. It follows thatWj consists of 2|Λj | − 1 pieces, and for each piece an orthonormal basis can
be obtained by tensor product. In specific, for any j ∈ Z, we define

Ξ
(j)
σ =

{
ξ
εj
jk : εj = (εl)1≤l≤p ∈ {0, 1}d \ {(0, . . . , 0)}, εjl(1− γjl) = 0, k ∈ Zd

}
,

where ξεjjk(y) =
d∏
l=1

ψ
εjl
bjσ′lc,kl

(yl) · φ
1−εjl
bjσ′lc,kl

(yl). (4)

Then Φ
(j0)
σ ∪∞j=j0 Ξ

(j)
σ is an orthonormal basis of L2(Rd), and the following decomposition holds:

L2(Rd) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · .
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This implies that for all g ∈ L2(Rd),

g =
∑

ξ0
j0k
∈Φ

(j0)
σ

〈g, ξ0
j0k〉ξ

0
j0k +

∑
j≥j0

∑
ξ(j)∈Ξ

(j)
σ

〈g, ξ(j)〉ξ(j), (5)

where the expansion holds under the norm of the space L2(Rd).
Assume j ∈ N is an index of the resolution. With the multiresolution Haar basis introduced

above, for any function g ∈ L2(Rd), we define P (j) to the be projection operator onto Vj and
E(j) = P (j+1) − P (j). According to Leisner (2003), for σ ∈ (0, 1]d with max1≤l≤d σl < 1/p,
2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, g lies in the Besov space Bσp,q if and only if

∥∥P (j0)g
∥∥
p

+

∑
j≥j0

(
2jσmin

∥∥E(j)g
∥∥
p

)q1/q

<∞.

With the multiresolution wavelet basis,

P (j0)g =
∑

ξ0j0k
∈Φ

(j0)
σ

〈g, ξ0
j0k〉ξ

0
j0k, E(j)g =

∑
ξ(j)∈Ξ

(j)
σ

〈g, ξ(j)〉ξ(j).

Therefore, an equivalent norm for the Besov space in terms of wavelet coefficients is

∥∥g∥∥
Bσp,q

:=
∥∥P (j0)g

∥∥
p

+

∑
j≥j0

(
2jσmin+(1/2−1/p)

∑d
l=1bjσ′lc

∥∥{〈g, ξ(j)〉}
ξ(j)∈Ξ

(j)
σ

∥∥
`p

)q1/q

. (6)

For the Besov space defined on a domain R, we can define multiresolution basis on R, denoted as
Φ

(j)
σ |R and Ξ

(j)
σ |R, by using those basis functions in Φ

(j)
σ and Ξ

(j)
σ whose support overlap with R,

and perform multiresolution analysis in a similar way.
For σ ∈ (0, 1/p)d, it has been shown by Leisner (2003) that the definition above matches that

in the literature (Nikol’skii, 2012), and is equivalent to the definition of Besov spaces based on the
Besov norm in Section 2.1 and Section 2.2. For σ with σl ≥ 1/p, although it may not be consistent
with the standard description of the Besov space, we can still introduce a space of functions with
fast decaying wavelet coefficients, called an anisotropic Besov ball, in the following way. The
anisotropic Besov ball B̃σp,q, σl > 0, 2 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ with radius L is defined as

B̃σp,q(R, L) =
{
g : ‖g‖Bσp,q ≤ L, where the norm ‖ · ‖Bσp,q is defined in (6)

}
.

For anisotropic Besov balls, we would like to allow some entries of the smoothness parameter equal
to∞. According to our definition of multiresolution basis, it means that for the function along the
direction l with σl =∞, one does not perform MRA at all.

We can also introduce region-wise anisotropic Besov balls. For a fixed dyadic partition A? =
{Ωs}Ss=1, f lies in anisotropic Besov balls region-wise if f |Ωs ∈ B̃σsp,q(Ωs, L) and smoothness
parameters (σ1, . . . ,σS) are from either of the following two sets

Σ̃σ =

{
(σ1, . . . ,σS) : σsl > 0,

d∑
l=1

1

σsl
=
d

σ
for all 1 ≤ s ≤ S

}
, (7)
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for some σ ∈ (0, 1], and

Σ̃ = {(σ1, . . . ,σS) : σsl > 0 for all 1 ≤ s ≤ S, 1 ≤ l ≤ d} . (8)

The anisotropic Besov ball and its region-wise representation are a more general characteriza-
tion of spatial heterogeneity. They can cover the anisotropic Besov space as a special case. The
intuition behind this characterization is that with respect to a sequence of carefully designed mul-
tiresolution Haar basis, high resolution wavelet coefficients decay very fast. An extreme case is that
with respect to the Haar wavelet a piecewise constant function defined on a dyadic partition A0 lies
in a Besov ball with arbitrarily large σl’s.

2.4. Weak-`p′ sparsity in the spectral domain
Besov balls are collections of functions with fast decaying wavelet coefficients. This is essentially
a reflection of sparsity of wavelet coefficients. Now we further generalize our definition of spatial
heterogeneity by imposing a weaker sparsity condition on Haar coefficients, namely, the weak-`p′
condition.

With respect to a mutiresolution Haar basis Φ(j0)
σ |Ω ∪ (∪∞j=j0Ξ

(j)
σ |Ω) as defined in Section 2.3,

for any function f ∈ L2(Ω), the expansion (5) holds. We can rearrange wavelet coefficients in
expansion (5) according to their size: |〈g, ξ(1)〉| ≥ |〈g, ξ(2)〉| ≥ · · · ≥ |〈g, ξ(k)〉| ≥ · · · . Then the
sparsity condition imposed on f is that the decay of wavelet coefficients follows a power law,

|〈g, ξ(k)〉| ≤ Ck−1/p′ for all k ∈ N and 0 < p′ < 2, (9)

whereC is a constant. The condition (9) is called the weak-`p′ condition in the literature (Abramovich
et al., 2006). It has been commonly imposed to characterize the sparsity of images (Candès and
Tao, 2006; DeVore et al., 1992), as well as the sparsity of signals in a Gaussian sequence model
(Abramovich et al., 2006). Compared to Besov balls, the weak-`p′ condition allows more local
spikes, as wavelet coefficients in the Besov ball are organized according to resolutions and exhibit
a fast decay from low resolutions to high ones, while for those satisfying the weak-`p′ condition, a
high-resolution coefficient is allowed to have a larger size. A similar condition has been introduced
by Liu et al. (2023) to describe regularity of density functions. In our paper, the condition (9) can
cover more different types of spatial heterogeneity, as we allow scaling of the basis function to rely
on a parameter σ.

In order to avoid extremely local peaks that cannot be efficiently captured by trees, we further
impose a constraint on how local or equivalently high resolution a leading coefficient can be.

Condition 2.1 (Moderate Resolution) Let ξ(k) be the multiresolution wavelet basis correspond-
ing to the k-th largest coefficient in size in expansion (5), we assume that there exist constants
cv, cµ > 0, such that the volume of the supporting rectangle for ξ(k) satisfies

µ
(
supp(ξ(k))

)
≥ cµk−cv . (10)

The Condition 2.1 is quite mild in the sense that it does allow a high resolution wavelet coefficient
to have a larger size than a low resolution one.

We define the weak-`p′ ball as

wlp
′
σ (Ω, C) = {f ∈ L2(Ω) : f satisfies (9) and (10) with respect to

the multiresolution Haar basis Φ(j0)
σ |Ω ∪ (∪∞j=j0Ξ

(j)
σ |Ω)}.
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j = 0

j = 1

j = 2

...
Figure 1: Recursive partitions of [0, 1]2 up to level 2 without stopping. The recursion is with respect

to tree depth.

Between characterizations of spatial heterogeneity in terms of anisotropic Besov balls and weak-`p′
sparsity in the spectral domain, the latter one is more general, in the sense that the former function
class can be embedded into a weak-`p′ ball with appropriately chosen p′ and constant C. In specific,
for σ = (σl)1≤l≤d, we have B̃σp,q(Ω, L) ⊂ wlp

′
σ (Ω, C) with p′ = 1/(σ̄/d+ 1/2) and C = 2dL.

3. Prior distributions on trees
In this section, we introduce partitions or tree topologies of the sample space, and present two types
of priors on density functions defined on trees.

3.1. Optional Pólya tree
Under the Bayesian framework, a natural conjugate prior for probability measures is the optional
Pólya tree prior (OPT, Wong and Ma 2010), which is an extension of the Pólya tree (Ferguson,
1974). By introducing a stopping rule, the prior can flexibly adjust the probability mass on trees of
different depths, which plays a key role in variance reduction.

When constructing a tree, we consider a recursive procedure with respect to the tree depth. To
simplify the theoretical analysis, we assume that the partition of the sample space is dyadic. The tree
growth starts from splitting the root Ω into two equally sized disjoint rectangles along the midpoint
of a randomly selected dimension: Ω = Ωκ,0∪Ωκ,1, κ ∈ [d], where each Ωκ,ε, ε ∈ {0, 1} is called a
level-1 elementary region, and can in turn be divided into level-2 elementary regions, while Ω itself
can also be viewed as a level-0 elementary region. In general, for any level-j elementary region A,
the volume is 2−j , and there are always d ways to partition it; that is,

A = Aκ,0 ∪Aκ,1, where κ ∈ [d]. (11)

The collection of all possible level-j elementary regions is denoted as R(j). Figure 1 displays all
possible partitions of Ω up to level 2 without stopping in the two-dimensional case.

To grow an optional Pólya tree, a recursive procedure is employed to generate a random recur-
sive partition of Ω and a random probability measure Q. Suppose after j steps of the recursion,
we have obtained a random recursive partition {Ωk}tk=1, 1 ≤ t ≤ 2j . In addition, we have also
obtained a random probability measureQ(j) on Ω which is uniformly distributed within each region
Ωk, 1 ≤ k ≤ t. In the (j + 1)-th step, the random recursive partition and the random probability
measure Q(j+1) are obtained by further partitioning non-stopped level-j regions in {Ωk}tk=1 and
randomly assigning probability mass to child regions. In specific, for each non-stopped level-j
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t = 1

t = 2

t = 3

...
Figure 2: All recursive partitions of [0, 1]2 of size up to 3. The recursion is with respect to the

number of terminal nodes.

region A, we introduce a stopping rule as an independent Bernoulli random variable,

S(A) ∼ Bernoulli (τ(A)) , stopping rule for a level-j region A,

where the parameter τ(A) can be region specific. If S(A) = 0, stop further partitioning of A.
Otherwise, select a dimension uniformly from {1, . . . , d} and split A along the midpoint of the
selected dimension κ as described in (11). Note that once a region is stopped, it will remain intact in
later steps. To generate the random probability Q(j+1), on any stopped region, Q(j+1) is the same
as Q(j). If non-stopped level-j region A is split into Aκ,0 and Aκ,1 in the (j + 1)-th step, then we
assign probability mass randomly according to an independent beta random variable:

Q(j+1)(Aκ,0) = Q(j)(A) · ω(A), Q(j+1)(Aκ,1) = Q(j)(A) · (1− ω(A)),

where ω(A) ∼ Beta(a(A, κ), b(A, κ)).

The parameters of the beta random variable may depend on the region A and the selected way of
partitioning.

The collection of hyper-parameters for the OPT prior is

Φ = {τ(A), a(A, κ), b(A, κ)}A∈∪j≥0R(j),κ∈[d] .

In this paper, we consider the following specification of hyper parameters. For any level-j elemen-
tary region A, we set the stopping parameter τ(A) = cτ2−νj for some constants 0 < cτ ≤ 1/2 and
ν ≥ 1, and the parameters for the beta distribution a(A, κ) = b(A, κ) = α0, 0 < α0 < 1 for all A
and κ. This way, we impose a penalty on complexity of tree topology by penalizing the depth: the
larger j is, the more unlikely a level-j region will be further split. This specific type of OPT prior is
denoted as πOPT(·).

For the rest, we will use the simplified notation A = {Ωk}tk=1 to denote a tree structure. A tree
A is of depth D if all leaf nodes Ωk’s are elementary regions of level at most D and at least one leaf
node is exactly level-D. Intuitively, the depth roughly characterizes the complexity of tree topology.

3.2. The Dirichlet prior
As opposed to imposing a penalty on tree depth, the Dirichlet prior (Lu et al., 2013; Liu et al., 2023)
directly penalizes the number of terminal nodes in a tree. When growing the tree, we still only
allow dyadic partitions and employ a recursive partitioning procedure. But for the Dirichlet prior

9
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0 1

1

0 1

1

Figure 3: The two tree topologies are of same size, but different depths. Both trees are of size 11.
The left tree is of depth 4, while the right one is of depth 7.

we assume the recursion is with respect to the number of terminal nodes, instead of the depth: at
every step, one region or node will be randomly selected and divided into two along the midpoint
of a randomly chosen dimension. We refer the number of terminal nodes in a partion as the size.
Figure 2 presents all recursive partitions of size up to 3 in the two-dimensional case.

To impose a prior on tree-supported densities, we first assign a prior to different tree topologies;
and given a tree structure, we sample probability weights associated with leaf nodes from a Dirichlet
distribution. More specifically, we assume all tree topologies of the same size share the same prior,
and the prior probability on a size t tree At is proportional to exp(−λt log t) for some λ > 0.
Given the partitionAt, the prior on leaf node probabilities is the Dirilet distribution with parameters
α1 = · · ·αt = α0 for some α0 ∈ (0, 1). We denote this prior as πDir(·).

3.3. A comparison between the two types of priors
We provide a simple example to illustrate the difference between the two types of prior distributions,
namely πOPT and πDir. In summary, the major difference is how the prior imposes a penalty on tree
complexity: the OPT penalizes the depth, while the Dirichlet prior penalizes the size. In Figure 3,
we show two tree topologies of the same size, but different depths. The Dirichlet prior assigns equal
probability to the two tree structures, while the OPT is in favor of the left one. This toy example also
suggests the Dirichlet prior may have a stronger ability to capture local features. We will further
explain this property when we present the results on posterior concentration rates.

4. Spatial adaptation properties
Assume we have an i.i.d. sample Yn = {Y1, . . . , Yn} from the unknown distribution f0. Under
a prior distribution π on the space of densities F , the posterior distribution on F is the random
measure

Π(B|Yn) =

∫
B

∏n
i=1 f(Yi)dπ(f)∫

F
∏n
i=1 f(Yi)dπ(f)

,

for any measurable set B ⊂ F . We will derive the posterior concentration rate, denoted as εn → 0,
such that for a sequence {Mn}n≥1 that increases at most as polynomials of log n,

Π(f : ρ(f, f0) ≥Mnεn|Yn)→ 0, in Pnf0
-probability.

In order to guarantee that on average there are enough number of data points in each leaf node,
we assume that for the OPT prior the probability of making a further split is 0 beyond depth D =

10
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blog2(n/ log n)c, and for the Dirichlet prior the probability vanishes on tree topologies with size
larger than t̄ = bn/ log nc.

For the Besov space Bσp,q(R, L) or the Besov ball B̃σp,q(R, L) with smoothness parameter σ,
σ̄ is the value that satisfies (σ̄)−1 = (

∑d
l=1 σ

−1
l )/d. In the following, we always assume that

2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. In order to avoid an assumption that restricts f0 to be bounded away
from zero, or obtaining a density function taking negative values after truncating an L2-expansion
of form (5), we choose to describe spatial features of g0 =

√
f0 instead of f0. We first present our

results when the heterogeneity is modeled by the anisotropic Besov space or the anisotropic Besov
ball.

Theorem 1 Assume g0 ∈ Bσp,q(Ω, L) with σ ∈ (0, 1]d or g0 ∈ B̃σp,q(Ω, L) with σ ∈ (0,∞]d.
Under both the OPT prior and the Dirichlet prior, the posterior concentration rate for unsupervised
trees is εn = (Ld)

d
2σ̄+dn−

σ̄
2σ̄+d .

For the anisotropic Besov space, the rate is minimax up to a logarithmic term (near minimax). The
theorem suggests that unsupervised trees under both types of priors can well adapt to this type of
spatial heterogeneity. The statement in Theorem 1 for anisotropic Besov balls also covers the vari-
able screening property by trees as a special case. As we explained before, a smoothness parameter
σl =∞ means there is no need to perform MRA along that direction, and in the density estimation
problem this is equivalent to saying that, the density function does not show any variations along that
direction. In this case, if we denote d′ = |{l ∈ [d] : σl < ∞}| and (σ̄′)−1 = (

∑
l:σl<∞ σ

−1
l )/d′,

then the rate in this special case is εn = (Ld)
d′

2σ̄′+d′ n
− σ̄′

2σ̄′+d′ , implying that tree-based methods can
successfully identify effective dimensions, and achieve a rate mainly determined by d′ instead of
the full dimension d. The rate in Theorem 1 is also adaptive in the sense that to achieve such a rate,
one does not need any prior knowledge of σ.

Next, we consider region-wise anisotropic Besov spaces and region-wise anisotropic Besov
balls. For a tuple of smoothness parameters (σ1, . . . ,σS), we define σ̄min = min1≤s≤S σ̄s, where
each σ̄s is calculated based on σs.

Theorem 2 Given a fixed dyadic partition A? = {Ωs}Ss=1 of Ω, assume g0|Ωs ∈ Bσsp,q(Ωs, L) or
g0 ∈ B̃σp,q(Ω, L) with unknown (σ1, . . . ,σS). When the tuple of smoothness parameters (σ1, . . . ,σS)

∈ Σσ for region-wise anisotropic Besov spaces or lies in Σ̃σ for region-wise anisotropic Besov balls,
under both the OPT prior and the Dirichlet prior the posterior concentration rate for unsupervised
trees is εn = (Ld)

d
2σ+dS

σ+d
2σ+dn−

σ
2σ+d . When (σ1, . . . ,σS) ∈ Σ for anisotropic Besov spaces or in

the set Σ̃ respectively for anisotropic Besov balls, under the Dirichlet prior the posterior concen-

tration rate for unsupervised trees is at least εn = (Ld)
d

2σ̄min+dS
σ̄min+d

2σ̄min+dn
− σ̄min

2σ̄min+d .

Theorem 2 reveals how strong spatial adaptivity tree-based methods have. This is especially the
case when spatial features are described by region-wise anisotropic Besov balls. In this case, we
only require that in each region Ωs one can find a system of multiresolution Haar basis functions
whose scaling and translation at different levels are determined by some unknown parameter σs,
such that the density function has fast decaying coefficients with respect to those basis functions
as the resolution increases. Extremely flexible designs of multiresolution basis suggest the wide
range of spatial heterogeneity that can be characterized by this condition. When applying tree-
based methods, we do not need any information of the specific design of the basis, nor the decay

11
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rate of the wavelet coefficients. The methods will learn a partition that best adapt to the unknown
spatial features. Note that given the embedding between the Hölder space and the Besov one, our
results can cover adaption to anisotropic Hölder classes or region-wise anisotropic Hölder ones as a
special case.

Our last result will be spatial adaptation by trees under the weak-`p′ characterization of the
spatial heterogeneity.

Theorem 3 With respect to a system of multiresolution Haar basis on Ω, denoted by Φj0
σ |Ω ∪

(∪j≥j0Ξ
(j)
σ |Ω), assume that g0 ∈ wlp

′
σ (Ω, C). Under the Dirichlet prior, the posterior concentration

rate for unsupervised trees is εn = Cp
′/2n−

1−p′/2
2 .

Except for the region-wise characterization, the weak-`p′ sparsity is the most general characteri-
zation of the spatial heterogeneity, in the sense that for σ ∈ (0, 1/p)d, Bσp,q(Ω, L) ⊂ B̃σp,q(Ω, L)

and for σ ∈ (0,∞]d B̃σp,q(Ω, L) ⊂ wlp
′
σ (Ω, C) with p′ = 1/(σ̄/d + 1/2). The embedding also

shows that under the Dirichlet prior tree-based methods have stronger ability to adapt to spatial
features in the sense that they can achieve fast convergence over a larger function class. This is
mainly due to the different way of imposing penalty on tree complexity. Similar to Theorem 2, the
result in Theorem 3 is adaptive in the sense that trees can successfully capture spatial heterogeneity
described by a system of multiresolution basis with unknown parameter σ. For Besov balls, region-
wise anisotropic Besov balls and weak-`p′ balls, the rate can be near the parametric rate, provided
organized wavelet coefficients show fast decay. This is different from results obtained under the
Hölder-continuity based characterization of spatial heterogeneity, where the rate usually takes the

form (Ld)
d′

2α+d′ (S/n)
α

2α+d′ , with α representing the smoothness level and taking value at most 1,
and d′ being interpreted as the effective dimension (Jeong and Ročková, 2023). By using the other
characterization, the rate cannot be very close to

√
n. Empirically, we do observe tree-based meth-

ods can perform quite well, especially when the underlying density has a simple structure. From
the semiparametric efficiency perspective (van der Vaart, 2000), it should be possible to achieve
near parametric rate by trees. For example, this would be the case if the underlying density can
be parametrized by finite number of wavelet basis functions. Therefore, we think the characteri-
zation of spatial heterogeneity by decay of wavelet coefficients can better reveal spatial adaptation
properties of trees.

5. Outline of the proof
The machinery for analyzing posterior concentration rates has been introduced in the landmark
works by Ghosal et al. (2000) and by Shen and Wasserman (2001). In specific, we will apply The-
orem 2.1 in the paper by Ghosal et al. (2000) here. Assume Πn is a prior distribution on the infinite
dimensional space F of density functions, where the subscript n indicates that the specification of
the prior can be data dependent, which is the case when we apply a truncation to both πOPT and
πDir. Suppose that for a sequence of εn with εn → 0 and nε2n → ∞, a constant D > 0 and a sieve
Fn ⊂ F , we have

logN(εn/2,Fn, ρ) ≤ nε2n, (12)

Πn(F \ Fn) ≤ exp(−nε2n(D + 4)), (13)

12
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Πn

(
f : KL(f0, f) ≤ ε2n,

∫
f0(log f0/f)2 ≤ ε2n

)
≥ exp(−Dnε2n). (14)

Then for a sequence of Mn that increases at most as polynomials of log n, we have that Πn(f :
ρ(f0, f) ≥ Mnεn|Yn) → 0 in Pnf0

-probability. The condition (12) is a bound of the covering
number for the sieve Fn’s, where N(ε,F , ρ) is the minumum number of ε-balls under the metric ρ
that are needed to cover the space F . Condition (13) requires that the tree prior should decay fast
enough as the tree complexity increases, while the last condition is to guarantee that the prior puts
enough probability mass around the true density and is also called the condition on prior thickness.
We will first show the following proposition for the OPT prior in Appendix A by checking these
three conditions.

Proposition 4 Assume that for any function f lying in a function class G, we can find a sequence
of depth-D tree-supported densities fD’s, such that ρ(f, fD) ≤ capproxD2−rD for all D, where
capprox > 0 and r > 0 are some constants. Then for f0 ∈ G, the posterior concentration rate of

Bayesian unsupervised trees under the OPT prior is εn = (capprox)
1

2r+1n−
r

2r+1 up to a logarithmic
term.

Similarly, if f in a function class can by approximated by a size-t tree-supported density at a
rate capprox(t/ log t)−r under the Hellinger distance, then the posterior concentration rate under the

Dirichlet prior is also εn = (capprox)
1

2r+1n−
1

2r+1 . This is exactly Theorem 4 in the paper by Liu
et al. (2023). These two results imply, as long as we can obtain the approximation rate for different
function spaces, we can directly obtain the posterior concentration rate. The approximation results
will be presented in Appendix B.

6. Discussion
In this paper, we introduce multiple ways to characterize spatial features of a data distribution, and
show how tree-based methods can effectively adapt to the unknown structure. Our analysis is under
the Bayesian framework, and we mainly examine two types of priors on trees. Our characterization
of spatial heterogeneity can also be extended to the supervised learning setting, to describe spa-
tial properties of the conditional mean in either a regression or a classification problem. It would
be interesting to perform the analysis for supervised trees in future work, which can help better
understand this class of widely used learning methods.
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Appendix A. Proof of Proposition 4

The proof is finished by checking conditions (12), (13) and (14). We use Θt to denote the collection
of size-t tree supported density functions. The sieve Fn is set to be Θtn with
tn = b(c2

approxn/ log n)
1

2r+1 c.

A.1. An upper bound for the covering number

The purpose of the subsection is to obtain an upper bound for the covering number of the tree space,
and verify the condition (12).

Lemma 5 Take ρ to be the Hellinger distance. Let
ΘAt = {f : f is a density defined on the partition A = {Ωk}tk=1}. Then,

logN(u,ΘAt , ρ) ≤ t

2
log t+ t log

2

u
+ bentropy, (15)

where bentropy is a constant not dependent on the recursive partition.

The lemma is a direct consequence of Lemma 14 in Liu et al. (2023), as the covering number is
always bounded by the covering number with bracketing. Based on this bound, we can obtain an
upper bound for the covering number of Θt.

Lemma 6 For the space of piecewise constant densities Θt,

logN(u,Θt, ρ) ≤ (bpath +
1

2
)t log t+ t log d+ tlog(2/u) + bentropy, (16)

where bpath > 0 is a constant.

Proof As Θt = ∪A:A is a size-t partition ΘAt , the covering number for Θt is bounded by

N(u,Θt, ρ) ≤
∑

A:A is a size-t partition
N(u,ΘAt , ρ).

Different number of partitions of size t is bounded by dtt!. In combination with the bound (15), we
obtain (16).

By applying the upper bound (15), after some simple calculation, we can verify that the condi-
tion (12) is satisfied when εn = ηn

r
2r+1 , where η > 1 is allowed to increase at most as polynomials

of log n.

A.2. Prior thickness

The purpose of this subsection is to verify the condition (14). We will first provide some analysis of
the OPT prior.
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A.2.1. PRIOR ON A NON-STOPPED TREE TOPOLOGY

We consider a special type of tree topologies of depth exactly equal to D, generated under the
OPT prior by growing the tree without stopping any intermediate nodes at all lower levels j < D,
and stopping all level-D regions. This implies that the volume of all terminal nodes is 2−D. We
denote such a depth-D tree as T , and assume it is generated through non-stopped intermediate
trees T (0), T (1), . . . , T (D−1) of depth 0, 1, . . . ,D− 1 respectively (T (0) is simply Ω). The terminal
depth-D tree can also be denoted as T (D) with a convention T = T (D). The size of T (j) is equal to
2j as there is no stopping at lower levels. We use F{T (j):0≤j≤D} to denote the collection of density
functions defined on T grown as T (0), T (1), . . . , T (D) . We have the following lemma for prior
probability mass on F{T (j):0≤j≤D}.

Lemma 7 Under the OPT prior, the prior on a non-stopped tree topology defined as above satisfies

(τD/d)2D · πOPT(F{T (j):0≤j≤D}) ≤ πOPT(F{T (j):0≤j≤D+1}) ≤ (2τD/d)2D · πOPT(F{T (j):0≤j≤D}),

and this holds for all D ≥ 0.

Proof First, we can show the following recursion for the prior on non-stopped tree structures

πOPT(F{T (j):0≤j≤D+1}) =

(
τD(1− τD+1)2

d(1− τD)

)2D

· πOPT(F{T (j):0≤j≤D}), for D ≥ 0,

where τD is the probability of making a further split at level D. According to our specification of
hyper-parameters, the stopping rule for all level-j regions is solely a function of j. The proof is
based on the observation that the level-(D + 1) non-stopped tree is obtained by making a further
split of every terminal node in the level-D tree. When making the further split, we also need to
randomly choose a dimension for splitting at each node.

As 2τD+1 ≤ τD (ν ≥ 1) and 1−τD ≥ 1/2 (cτ ≤ 1/2), it is not hard to see that 2 ≥ (1−τD+1)2

1−τD =
1−2τD+1+τ2

D+1

1−τD ≥ 1. The desired result follows.

Lemma 8 Under the OPT prior, we have the following lower and upper bounds for the prior on a
non-stopped tree,

log πOPT(F{T (j):0≤j≤D}) ≥ log(1− cτ ) + (2D − 2) log(cτ/d)− ν log 2
(

(D− 1)2D − 2D + 2
)
,

log πOPT(F{T (j):0≤j≤D}) ≤ log(1− cτ ) + (2D − 2) log(2cτ/d)− ν log 2
(

(D− 1)2D − 2D + 2
)
.

Proof We will show the upper bound, and the proof for the lower bound is similar. According to
the result of Lemma 7 and the fact that τj = cτ2−νj , for all D ≥ 0,

log πOPT(F{T (j):0≤j≤D+1}) ≤ 2D log (2/d)− (νD)2D log 2 + 2D log cτ + log πOPT(F{T (j):0≤j≤D}).

Since πOPT(FT (0)) = 1− cτ , based on simple calculations we have

log πOPT(F{T (j):0≤j≤D+1}) ≤ log(1− cτ ) +

D∑
j=1

(
2j log(2cτ/d)− νj · 2j log 2

)
= log(1− cτ ) + (2D+1 − 2) log(2cτ/d)

−ν log 2
(
D2D+1 − 2D+1 + 2

)
.
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This finished the proof.

A.2.2. A LOWER BOUND FOR THE OPT PRIOR

Assume T is a non-stopped tree topology as described in the previous subsection. It is grown as
T (0), T (1), . . . , T (D). Let g(D) be the L2-projection of an arbitrary density g onto F{T (j):0≤j≤D}.
In the following, we consider an L∞-ball around g(D), and derive a lower bound for the prior
probability on this ball. For a density function f and a set A, we denote µf (A) =

∫
A fdµ, where µ

is the Lebesgue measure. For some constant η ≥ 1, we define a ball around g(D) to be the collection
of tree-supported densities that are uniformly close to g(D) on all leaf nodes, and are bounded away
from 0:

BD(g) :=
{
f ∈ F{T (j):0≤j≤D} : |µf (A)− µg(A)| ≤ ηD/n

and µf (A) ≥
(

1

2
η/n

)D

for all A ∈ T (D)
}
.

As T is non-stopped with each leaf node of volume 2−D, the set BD(g) can be equivalently written
as

BD(g) :=

{
f ∈ F{T (j):0≤j≤D} : ‖f − g(D)‖∞ ≤ ηD2D/n, and f ≥

(
1

2
η/n

)D

2D

}
.

Then, we will show the following lemma for the prior probability on BD(g).

Lemma 9 Under the OPT prior, for the set BD(g) defined above,

log πOPT(BD(g)) ≥ log πOPT(F{T (j):0≤j≤D})− 2D log n+ 2D log((η/2) · Γ(2α)/(2Γ(α))).

Proof Under the OPT prior, sampling of a density function can be finished by the following two
steps: first, sample a tree topology from the prior; second, conditional on the tree topology, split
probabilities on each node according to a beta random variable. Under this view, it suffices to obtain
a lower bound for πOPT(BD(g)|F{T (j):0≤j≤D}).

We claim that a sufficient condition for obtaining a density function in BD(g) is to split prob-
ability mass at all intermediate nodes A ∈ T (j), 0 ≤ k < D in a way that is close to how g(D)

splits. More specifically, for an intermediate node Aint being split into left child Aint
0 and right

child Aint
1 , to split the probability mass, g(D) will split according to µg(Aint

0 )/µg(A
int), while the

OPT splits according to an independent beta random variable ω(Aint) ∼ Beta(a, a). If |ω(Aint) −
µg(A

int
0 )/µg(A

int)| ≤ η/n holds for all intermediate nodes, then we that claim the sampled density
f satisfies |µf (A)−µg(A)| ≤ ηD/n for all terminal nodes A. This is because under the OPT prior,
µf (A) can always be written as a product of D weights. Without loss of generality, we may assume
a path from the root Ω to A is {A(j), 0 ≤ j < D}, where A(0) = Ω. Let εj = 1 if A(j+1) is the left
child of A(j) and to be 0 otherwise. Then

µf (A) =

D−1∏
j=0

ω(A(j))εj (1− ω(A(j)))1−εj .
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Simple calculation shows

|µf (A)− µg(A)| ≤
D−1∑
j=0

∣∣∣ω(A(j))− µg(A(j+1))/µg(A
(j))
∣∣∣ .

This shows our claim. µf (A) is a product of D beta random variables. If each of them is bounded
from below by η/(2n), then the lower bound for µf (A) holds.

Generally, for a random variable W following the beta distribution with parameter (α, α)(0 <
α < 1), for any w ∈ [0, 1] and n large enough

P(|W − w| ≤ η/n,W ≥ 1

2
η/n, (1−W ) ≥ 1

2
η/n)

=

∫ min{1− 1
2
η/n,w+η/n}

max{ 1
2
η/n,w−η/n}

Γ(2α)

2Γ(α)
uα−1(1− u)α−1du

≥ Γ(2α)

2Γ(α)

(
1

2
η/n

)
.

The inequality is based on the observation that for α < 1 the integrand is larger than 1 on an interval
of length at least (η/2n). On the non-stopped tree T grown as {T (j) : 0 ≤ j ≤ D}, there are 2D−1
such beta random variables. This implies that

πOPT(BD(g)|F{T (j):0≤j≤D}) ≥
(

Γ(2α)

2Γ(α)
· η

2n

)2D−1

.

In combination with the lower bound for πOPT(F{T (j):0≤j≤D}), we obtain the lower bound for
πOPT(BD(g)).

The following lemma show that the density function in BD(g) is close to f0 under the Hellinger
distance, as long as g(D) is close.

Lemma 10 For any f ∈ BD(g), ρ(f0, f) ≤ ρ(f0, g
(D)) +

(
4ηD2D/n

)1/2.

Proof First, we provide a bound for the Hellinger distance between f and g(D). Let ε2 = ηD2D/n.
For any f ∈ BD(g),

ρ2(g(D), f) =

∫
f :f≤ε2/2

(

√
g(D) −

√
f)2 +

∫
f :f>ε2/2

(

√
g(D) −

√
f)2

≤ ε2/2 + ε2/2 + ε2 +

∫
f :f>ε2/2

(g(D) − f)2/(

√
g(D) +

√
f)2

≤ 2ε2 + 2ε2.

Therefore, the desired result holds by the triangle inequality of the Hellinger distance.

In next step, we show that for any f ∈ BD(g), both the KL divergence KL(f0, f) and
∫
f0(log(f0/f))2

can be bounded by the squared Hellinger distance up to a logarithmic factor. This is a direct result
of Theorem 5 in the paper by Wong and Shen (1995).
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Lemma 11 Let f , f0 be two densities, ρ2(f0, f) ≤ ε2. Suppose thatM2
δ =

∫
{f0/f≥e1/δ} f0(f0/f)δ <

∞ for some δ ∈ (0, 1]. Then for all ε2 ≤ 1
2(1− e−1)2, we have∫

f0 log (f0/f) ≤
(

6 +
2 log 2

(1− e−1)2
+ (8/δ) max {1, log (Mδ/ε)}

)
ε2,

∫
f0 (log (f0/f))2 ≤ 5ε2

(
1

δ
max {1, log (Mδ/ε)}

)2

.

Proof See the paper by Wong and Shen (1995), Theorem 5 in Section 6.

In our case, to apply Lemma 11 for f ∈ BD(g) to bound KL(f0, f) and
∫
f0(log(f0/f))2, we may

set δ = 1. Note that any f ∈ BD(g) is bounded from below. When D is at the order log n, log(Mδ)
is at the order (log n)2.

To verify the condition (14), as in our paper the spatial heterogeneity assumption is imposed on√
f0, the L2-approximation to

√
f0 is exactly approximation to f0 under the Hellinger distance. If

there is a depth-D tree supported density fD such that ρ(f0, fD) ≤ capprox2−rD, then we can always
find a non-stopped depth-D tree, satisfying that the f (D)

D achieves the same approximation error.
If we set D = Dn = blog2(c2

approxn/ log n)
r

2r+1 c, then for η increases at most as polynomials of
log n,

BDn(fDn) ⊂ {f : KL(f0, f) ≤ (ηεn)2,

∫
f0(log(f0/f))2 ≤ (ηεn)2}.

This is a result of Lemmas 10 and 11. Then by applying Lemma 8 and Lemma 9, we can obtain the
desired lower bound for the prior probability on BDn(fDn).

A.3. Decay of the OPT prior

The purpose of this subsection is to verify the condition (13).
First, we would like to obtain an upper bound in the following form,

Π (Θt) ≤ exp(−λt log t) for some λ > 0. (17)

Assume the tree topology At of size t is generated by a specific path A(1)
t ,A(2)

t , . . . ,A(Da)
t , where

each A(j)
t , 1 ≤ j ≤ Da is a partition obtained after j steps of recursion with respect to the depth as

we grow an OPT. The random measures supported by At grown in this specific way is denoted as
F{A(j)

t :0≤j≤Da}
.

A.3.1. A SHALLOW TREE IS PREFERRED

Our first lemma is to rigorously justify the intuition we described in Section 3.3.

Lemma 12 For any two equal sized partitions At and Bt of depths Da and Db respectively,

πOPT

(
F{A(j)

t :0≤j≤Da}

)
≥ πOPT

(
F{B(j)

t :0≤j≤Db}

)
if Da < Db. (18)
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Proof The proof is based on the observation that when we prune a pair of higher level leaves in Bt,
and make a further split of a lower level node, the prior on the modified tree will never decrease.
We call such an operation as prune and split. As the size of At and Bt are the same, we can always
find a pair of leave nodes in Bt of level Db, denoted as B(Db)

1,left and B(Db)
1,right, as two children of an

intermediate node B(Db−1)
1 . We can find another terminal node leave node B(j)

2 in Bt of level j
no larger than Db − 1. Assume B(Db)

1,left and B(Db)
1,right are pruned and B(j)

2 is further split into two

subregions, leading to a new partition B̃t with the path B̃(1)
t , . . . , B̃(D̃b)

t , where D̃b = Db or Db − 1.
Then

πOPT(F{B̃(j)
t :1≤j≤D̃b}

) = πOPT(F{B(j)
t :0≤j≤Db}

) · 1− τDb−1

(1− τDb)2τDb−1
· (1− τj+1)2τj

1− τj
,

since the assumption τj = cτ2−νj for some ν > 1, it is easy to show

(1− τDb−1)(1− τj+1)2

(1− τj)(1− τDb)2
≥ 1 and

τj
τDb−1

≥ 1.

Another useful observation is that if for one split or several consecutive splits, different dimen-
sions are chosen for making the split, the prior on the set of random measures supported by the
modified partition remains the same. We call this type of operation as reshaping.

Note that the partition At under the path A(0)
t ,A(1)

t , . . . ,A(Da)
t can be obtained by applying a

number of “prune and split” and “reshaping” operations to Bt, and these operations will not lower
the prior.

A.3.2. AN UPPER BOUND FOR Θt

Generally, given a size t, with 2j ≤ t < 2j+1 for some j ∈ N, we can define a partition At that
is close to a non-stopped one as the following: first, the tree grows without stopping for the first j
levels as T (0)

j+1, T
(1)
j+1, . . . , T

(j)
j+1; then at level j, the split for t − 2j level-j regions will continue for

one more step, while the remaining 2j+1 − t ones being stopped. The complete path for obtaining
At is still denoted as A(0)

t ,A(1)
t , . . . ,A(j+1)

t . It is easy to see,

πOPT

(
F{A(l)

t :0≤l≤k+1}

)
≤ πOPT

(
F{T (j):0≤j≤D}

)
.

Applying Lemma 8, we have

πOPT

(
F{A(l)

t :0≤l≤k+1}

)
. exp

(
−νt

2
log t+ νt log 2− t log d

)
.

As shown before, such a non-stopped partition of shallow depth is preferred in the sense that (18)
holds. Within the papameter space Θt, there are at most dtt! such paths. This is because we
may consider obtaining a size t partition as the following: at each step a subregions is randomly
selected for partitioning, and for the chosen subregions the split is along the midpoint of a randomly
chosen dimension. This type of recursive partitioning is repeated for t − 1 steps. If we denote the
decisions made at these t− 1 steps as (J1, . . . , Jt−1), then each sequence of decisions can uniquely
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determine a partition with a specific path. For each path, there is at least one sequence of decisions
corresponding to it. Therefore, the number of paths is bounded by the number of different decisions,
which is in turn bounded by dtt!.

Combining the bounds together, we have

πOPT (Θt) ≤ dtt! · exp

(
−νt

2
log t+ νt log 2− t log d

)
≤ exp (−(ν/2− 1)t log t+ νt log 2) . (19)

Then we can set t = tn and verify condition (13) by using (19).

Appendix B. Approximation results

In this section, we provide approximation results to different function classes.

B.1. Anisotropic Besov spaces and balls

The anisotropic Besov space has been rigorously studied. Researchers have derived approximation
results by using wavelet basis, see for example book by Nikol’skii (2012). We summarize the
existing results here.

Lemma 13 For any f ∈ Bσp,q(Ω, L) or f ∈ B̃σp,q(Ω, L), we can find a depth-D tree-supported
function fD, such that ρ(f, fD) ≤ capprox2−σ̄/d·D, where capprox can be chosen as 2d+1Ld.

Proof In our case, as we have assume p ≥ 2, and for both Besov spaces and Besov balls the follow-
ing embedding holds for any p′ ≥ p and 1 ≤ q ≤ ∞: Bσp′,q(Ω, L) ⊂ Bσp,q(Ω, L) ⊂ Bσp,∞(Ω, L). It
suffices to obtain a bound for f ∈ Bσ2,∞(Ω, L). At depth D, we can define the wavelet basis at level
JD = (bDσ̄/σ1c, . . . , bDσ̄/σdc) as

Ξ(JD) =
{ d∏
l=1

φjl,kl , jl = bDσ̄/σlc, kl ∈ Z
}
.

Then, for any f ∈ Bσ2,∞(Ω, L), there exists an approximation to fD in the space spanned by Ξ(JD),
denoted as P (JD)f =

∑
ξ(JD)∈Ξ(JD)〈f, ξ(JD)〉ξ(JD), such that

‖f − P (JD)f‖2 ≤

(
d∑
l=1

2−σljl

)
‖f‖Bσ2,∞ ≤ 2dLd · 2−σ̄/d·D.

Set f = g0 and gD = P (JD)g0, then we obtain a bound for L2-distance between them. g2
D may not

be an appropriate density function, we scale g2
D to g̃2

D = g2
D/(
∫
g2
D), then

ρ(f0, g̃
2
D) ≤ 2d+1Ld · 2−σ̄/d·D.

This finishes the proof for anisotropic Besov space. For anisotropic Besov balls, the proof is similar.

If we can obtain depth-D approximation, then it is also a size-t approximation by setting t = 2D.
Therefore, we have the following corollary immediately.
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Corollary 14 For any f ∈ Bσp,q(Ω, L) or f ∈ B̃σp,q(Ω, L), we can find a size-t tree-supported
function ft, such that ρ(f, ft) ≤ capproxDt

−σ̄/d, where capprox can be chosen as 2d+2Ld.

Theorem 1 can be obtained by Proposition 4 and Theorem 4 in Liu et al. (2023) in combination
with Lemma 13 and Corollary 14 respectively.

B.2. Regionwise anisotropic Besov spaces and balls

In this subsection, we derive approximation rate to functions lying in a region-wise anisotropic
Besov space or region-wise anisotropic Besov ball.

Lemma 15 Given a fixed dyadic partition {Ωs}Ss=1 of Ω, assume g0|Ωs ∈ Bσsp,q(Ωs, L) or g0 ∈
B̃σp,q(Ω, L) with unknown (σ1, . . . ,σS). When the tuple of smoothness parameters (σ1, . . . ,σS) ∈
Σσ or lies in Σ̃σ in the case of region-wise anisotropic Besov ball, there exists a sequence of depth-D
approximations fD, such that ρ(f0, fD) ≤ capproxS · 2−σ/d·(D−blog2 Sc).

The lemma can be shown by applying Lemma 13 to each region Ωs separately.
For the case with unequal “average” smoothness parameters, we derive an upper bound for the

approximation error.

Lemma 16 Given a fixed dyadic partition {Ωs}Ss=1 of Ω, assume g0|Ωs ∈ Bσsp,q(Ωs, L) or g0 ∈
B̃σp,q(Ω, L) with unknown (σ1, . . . ,σS). Let σ̄min = min1≤s≤S σ̄s. When (σ1, . . . ,σS) ∈ Σ or in
the set Σ̃ respectively for Besov balls, there exists a sequence of size-t approximations ft, such that
ρ(f0, fD) ≤ capproxS · (t/S)−σ̄min/d.

Proof The approximation result can be obtained by allocating t/S terminal nodes to each region
Ωs.

Theorem 2 can be obtained by Proposition 4 and Theorem 4 in Liu et al. (2023) in combination
with Lemma 15 and Lemma 16 respectively.

B.3. Weak -`p′ balls

Lemma 17 Assume for a d-dimensional density functionf0, g0 =
√
f0 ∈ wlp

′
σ (Ω, C). Then there

exists a sequence of approximations ft ∈ Θt, such that ρ(f0, ft) . capproxt
−(1/p′−1/2)(log t)1/p′−1/2,

where capprox can be chosen as (2d + 1 + log cµ + cv)
1/p′−1/2C

√
2/(2/p′ − 1). cµ and cv are con-

stants from Condition 2.1.

Proof Let gK =
∑K

k=1〈g0, ξ(k)〉ξ(k). From condition (9) we have

‖g0 − gK‖22 =
∥∥∥ +∞∑
k=K+1

〈g0, ξ(k)〉ξ(k)

∥∥∥2

2
=

+∞∑
k=K+1

〈g0, ξ(k)〉2

≤ C2
+∞∑

k=K+1

k−2/p′ ≤ C2

2/p′ − 1
K−(2/p′−1).
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g2
K make not be an appropriate density function. We consider normalizing g2

K to g̃2
K as g̃2

K =
g2
K/(

∫
g2
K). Then,

ρ2(f0, g̃
2
K) = ‖g0 − g̃K‖22 = ‖g0 − gK‖22 +

(
1− 1

‖gK‖2

)2
‖gK‖22

≤ ‖g0 − gK‖22 + 1− ‖gK‖22

≤ 2‖g0 − gK‖22 ≤
2C2

2/p′ − 1
K−(2/p′−1). (20)

Clearly, g̃K is a tree-supported density function. We would like to derive a bound for the size of
the tree. Note that for a multivariate Haar basis function, the positive and negative parts can further
divide its supporting rectangle into smaller subregions, and the total number of such subregions
is upper bounded by 2d. Based on the moderate resolution assumption (Condition 2.1), the basis
function ξ(k) can be viewed as function define on a tree of size at most 2d + dcv log2 k + log cµe.
Moreover, as basis function are defined in a specific way according to a vector σ, supporting rectan-
gles for all basis functions are about of the same shape. Introducing more individual basis functions
will only increase the size of the partition in a linear way. Therefore, (2d+1+log cµ)K+cvK logK
is the largest possible sized partition on which the density function g̃K is piecewise constant. Re-
placingK in (20) by (2d+1+log cµ+cv)

−1t/ log t, we get the desired result of the approximation
rate.

Theorem 3 can be obtained by combining Lemma 17 and Theorem 4 in Liu et al. (2023).
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