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Abstract
We study a noise model for linear stochastic bandits for which the subgaussian noise parameter
vanishes linearly as we select actions on the unit sphere closer and closer to the unknown vector. We
introduce an algorithm for this problem that exhibits a minimax regret scaling as log3(T ) in the time
horizon T , in stark contrast the square root scaling of this regret for typical bandit algorithms. Our
strategy, based on weighted least-squares estimation, achieves the eigenvalue relation λmin(Vt) =
Ω(
√
λmax(Vt)) for the design matrix Vt at each time step t through geometrical arguments that

are independent of the noise model and might be of independent interest. This allows us to tightly
control the expected regret in each time step to be of the order O( 1t ), leading to the logarithmic
scaling of the cumulative regret.
Keywords: multi-armed bandit, linear stochastic bandit, adaptive noise, minimax regret

1. Introduction

Background. The linear bandit problem (see, e.g., Lattimore and Szepesvári (2020)) is one of
the most versatile supervised learning frameworks with both applications and strong theoretical
guarantees. In this setting, the learner interacts with an environment sequentially, and at each time
step t selects an action from a set At ⊂ Rd and receives a reward, rt. The reward is a random
variable that can be decomposed as rt = E[rt] + ϵt, where ϵt is statistical noise (with zero mean)
and the expectation, E[rt] = ⟨θ, at⟩, is given by the inner product of the action at ∈ At with an
unknown vector θ from a set of environments E ⊂ Rd. The goal of the learner is to minimize the
cumulative regret over T rounds, where the regret is the difference maxa∈At⟨θ, a⟩ − E[rt], for all
possible vectors θ ∈ E , i.e., the minimax regret. Here, we focus on the case where both the sets At

and E are continuous. The challenge posed by linear stochastic bandits lies in efficiently learning the
optimal action for θ while simultaneously choosing actions that minimize the accumulated regret,
an intriguing trade-off that our work aims to bring into a new regime.

Numerous algorithms have been proposed to address these challenges for the case of continuous
action sets, most prominently LinUCB (see Dani et al. (2008); Rusmevichientong and Tsitsiklis
(2010); Abbasi-Yadkori et al. (2011)) and Thompson sampling (see Abeille and Lazaric (2017)).
Both of these algorithms share the feature that they achieve a minimax regret scaling as Õ(

√
T ),

where we are neglecting logarithmic terms and ignoring the dependence on d. In fact, under the
prevalent assumption that ϵt follows a σ-subgaussian distribution for some finite σ > 0, this scaling
can be shown to be optimal for various choices of action and environment sets (see Dani et al.
(2008); Shamir (2015); Rusmevichientong and Tsitsiklis (2010)), where the latter work in particular
covers the case of unit ball that is of interest in our work. Bandits with heteroscedastic noise have
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also been studied (see Kirschner and Krause (2018)), where the learner has access to a link function
that maps each action to the subgaussian parameter of the noise. The main difference with our
model is that our noise also depends on the unknown vector.

Our model and main result. In this paper, we present the first non-trivial noise model and corre-
sponding algorithm that achieves a polylogarithmic regret scaling in the time horizon T for linear
bandits. We study a stochastic linear bandit with action and environment sets At = E = Sd =
{x ∈ Rd : ∥x∥2 = 1} and reward model given by rt = ⟨θ, at⟩ + ϵt where ϵt is conditionally
σt-subgaussian with

σ2
t ≤ 1− ⟨θ, at⟩2 ≈

∥∥θ − at
∥∥2
2
, (1)

where the approximation holds when ⟨θ, at⟩ is close to 1.
The proposed model using a noise parameter growing with the distance between unknown vec-

tor and action is natural in some contexts. For recommendation systems, for example, it is natural to
assume that the choice of a user becomes more certain when the recommendation (action) is close
to the user’s preference (unknown vector), and the reward may even become deterministic when
the recommendation fits the preference perfectly. However our original motivation for the noise
scaling comes from a very concrete problem in quantum information, specifically regret-optimal
tomography of an unknown pure quantum state (Lumbreras et al. (2022)). In quantum mechan-
ics measurement outcomes are random with probabilities determined by Born’s rule. However,
the variance of probabilistic measurement outcomes decreases quadratically for projections aligned
with the unknown pure state.

Beyond specific applications, we believe that a model with decaying noise should be of inde-
pendent interest as it allows to break the square root minimax regret barrier for continuous action
sets, and we believe this is the first model that does this.

Analytically, this noise model is interesting because the usual methods for deriving lower bounds
on the minimax regret fail. First, bounds where the unknown vector θ is taken from the unit ball as
in Rusmevichientong and Tsitsiklis (2010) or (Lattimore and Szepesvári, 2020, Chapter 24, Theo-
rem 24.2) do not apply since the worst-case unknown vectors they construct are far from the surface
of the ball. However, for finite and constant σ-subgaussian noise we provide an adaptation of the
lower bound for logistic bandits given in Abeille et al. (2021) and we obtain a minimax regret scal-
ing of Ω(σd

√
T ) in Appendix D. Nonetheless, these arguments fail for the noise model in (1) since

they rely crucially on the fact that the distributions induced by two close unknown states have large
overlap, which is no longer guaranteed when the noise vanishes. We discuss this in more detail in
Appendix E. The lack of applicable lower bounds opens the possibility that we can find algorithms
that break the Ω(

√
T ) barrier for the regret.

Indeed, our main result is an algorithm LinUCB-VN (see Algoirthm 1), based on LinUCB but
with a weighted least square estimator that adapts to the vanishing noise. Our algorithm achieves a
polylogarithmic scaling of the minimax regret. The main result can be stated as follows, and holds
in the model prescribed above. We give the precise statement of the result in Section 6.

Theorem 1 (main result, informal version) For any T ∈ N there exists an instance of LinUCB-
VN such that, for any θ ∈ E , we have

E[Regret(T )] = O
(
d4 log3(T )

)
. (2)
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Figure 1: Scheme for the choice of actions a+t , a
−
t of LinUCB-VN. The actions are selected as the

projections of the extremal points across the largest axis of the confidence region centered
around a weighted least squares estimator θ̃w

t of the unknown parameter θ. This choice
is sufficient to increase the minimum eigenvalue of Vt such that the relation λmin(Vt) =
Ω(
√
λmax(Vt)) is satisfied. Moreover, the actions a+t and a−t are sufficiently close to θ

to keep the regret small.

The common linear bandit model describes a well-tuned trade-off between exploration and ex-
ploitation. Our breaking of the square root regret barrier, which we also observe numerically (see
Figure 2), is due to the fact that exploitation can dominate in our model. This is due to the fact that
playing actions near the unknown parameter reduces the statistical noise and we will see that we
need to explore only the local neighborhood of our current estimate. One very rough way to think
about our algorithm is that it tries to select actions as if it were trying to tune into an analog radio
station. When we are tuning into a radio station we do not just randomly turn the knob but once
we have locked to a signal (the noise starts to decrease) we only need to do small rotations (local
exploration of the algorithm) to correct and find it exactly in a few steps.

Technical challenges. Our approach is based on an optimistic strategy like LinUCB, however,
the standard regret analysis fails to give tight bounds on the regret. More precisely, if regt is the
instantaneous regret, the usual technique for optimistic strategies used in the literature to bound
the cumulative regret is to use the Cauchy–Schwarz inequality, i.e., Regret(T ) =

∑T
t=1 regt ≤

(T
∑T

t=1 reg2t )
1
2 and then assert that

∑T
t=1 reg2t = O(log(T )) using the elliptical potential lemma.

This procedure always introduces a term
√
T and for that reason, we need to develop a new tech-

nique to upper bound the cumulative regret based on a tight control of the instantaneous regret.
Our approach is thus to bound the instantaneous regret regt with high probability for all t ∈ [T ].

The algorithm that we design satisfies regt ∼ ∥θ − at∥22 ∼ 1/λmin(Vt) where Vt is the design
matrix Vt =

∑t
s=1wsasa

T
s and ws is a weight associated to as. Thus, our regret analysis will

require to control the growth of λmin(Vt). From Banerjee et al. (2023) we take the idea that for
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smooth action sets (in particular the unit sphere) all strategies that minimize the regret must achieve
λmin(E[Vt]) = Ω(

√
t) and generalize it to an equivalent condition in terms of eigenvalues of Vt that

is noise independent. More precisely, we come up with a geometric construction that ensures that
λmin(Vt) = Ω(

√
λmax(Vt)) by choosing actions that explore the confidence region in the direction

of the current estimate in a structured way (see Figure 1). We then prove that when applying this
construction to our noise model we can achieve λmin(Vt) = Ω(t), which yields a polylogarithmic
cumulative regret since regt ∼ ∥θ − at∥22 ∼ 1/t.

2. Notation and model

We present the notation that we will use throughout the paper. For k ∈ N we use [k] = {1, ..., k}.
The set of strictly positive numbers is denoted as R>0 = {x ∈ R : x > 0} and the set of positive
semi-definite matrices as Pd

+ = {X ∈ Rd×d : X ≥ 0}. For two real vectors u, v ∈ Rd we denote its
inner product as ⟨u, v⟩ =

∑d
i=1 uivi and the Euclidean norm as ∥x∥22 = ⟨x, x⟩. The d-dimensional

unit sphere is Sd = {x ∈ Rd : ∥x∥2 = 1} and Bd
r(c) = {x ∈ Rd : ∥x−c∥2 ≤ r} is the ball of radius

r > 0 centered around c ∈ Rd. For a vector x ∈ Rd and semidefinite positive matrix A ≥ 0 we
denote the weighted norm of x by A as ∥x∥2A = ⟨x,Ax⟩. Given an Hermitian matrix X ∈ Rd×d we
denote λmax(X) and λmin(X) its maximum and minimum eigenvalues, respectively, and by λi(X)
its i-th smallest eigenvalue such that λmin(X) = λ1(X) ≤ λ2(X) ≤ · · · ≤ λd(X) = λmax(X).

We consider a stochastic linear bandit with unknown parameter θ ∈ Sd and action set At =
A = Sd. The learner interacts with the environment over a time horizon of length [T ]. At time step
t ∈ [T ] the learner selects an action at ∈ A and samples a reward

rt = ⟨θ, at⟩+ ϵt, (3)

where ϵt is σt-subgaussian, i.e., E[ϵt|Ft−1] = 0 and E[exp(λϵt)|Ft−1] ≤ exp(λ2σ2
t /2) where

Ft−1 = σ{a1, r1, ..., at−1, rt−1, at} is the filtration of all information up to time step t before
reward rt is observed. We consider a noise model such that the subgaussian parameter satisfies

σ2
t ≤ 1− ⟨θ, at⟩2. (4)

We call this bandit a stochastic linear bandit with linear vanishing noise. The learner uses a policy
π = (πt)

∞
t=1 where πt(a1, r1, ..., at−1, rt−1, at) maps the history up to time step t to a probability

distribution over A. The goal of the learner is to minimize the regret defined by

Regret(T ) :=
T∑
t=1

1− ⟨θ, at⟩ =
1

2

T∑
t=1

∥θ − at∥22. (5)

where we used that the maximum expected reward is maxa∈A⟨a, θ⟩ = 1 since at, θ ∈ Sd and the
last equality follows from ∥x− y∥22 = ⟨x− y, x− y⟩ = 2− 2⟨x, y⟩ for x, y ∈ Sd.

3. Weighted regularized least squares estimator and confidence region

Our strategy is designed to select actions that are close to the unknown parameter and to quantify
it we use the confidence region based on the regularized least squares estimator (RLSE) used in the
LinUCB algorithm. Moreover, since our noise model is decreasing for actions near the unknown
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parameter we use a weighted version. In this Section, we review the basic results that we will use
later. The weights of our least squares estimator will be an estimator of the subgaussian parameter
σ̂2
t for the noise ϵt. This will allow us to bias our estimator to actions with less noise. We take

the idea of using a weighted least squares estimator from Kirschner and Krause (2018) where they
apply it to linear bandits with heteroscedastic noise where they can weight the actions with the exact
subgaussian parameter. In our setting we need an estimator since the noise depends on the unknown
parameter; however, our setting is more concrete and this allows us to design a simpler strategy with
theoretical guarantees on the regret.

At time step t ∈ [T ] for action at ∈ A we define the estimator of the noise as

σ̂2
t : Ht−1 ×A → R>0, (6)

whereHt−1 = (a1, r1, ..., at−1, rt−1) contains the past information of rewards and actions and it is
independent of the unknown parameter θ. To simplify the notation we will often not mention the
dependence on the past actions and rewards and simply write σ̂2

t (a).
The weighted version of the linear least square estimator is defined with the following mini-

mization problem

θ̃w
t := argmin

θ′∈Rd

t∑
s=1

1

σ̂2
s(a)

(
rs − ⟨θ′, as⟩

)2
+ λ∥θ′∥2, (7)

where λ ∈ R>0 is a regularization term. The analytical solution is

θ̃w
t = V −1

t (λ)
t∑

s=1

1

σ̂2
s(a)

asrs, (8)

where

Vt(λ) = λI +
t∑

s=1

1

σ̂2
s(a)

asa
T
s , (9)

is the design matrix. Using the above estimator for θ we can define a confidence region under the
condition that σ̂2

t is a good estimator for σ2
t for any t. The Lemma below formalizes this result. The

proof is an adaptation of the regularized least squares estimator confidence region in Lattimore and
Szepesvári (2020)[Chapter 20] and we include it in the Appendix A for completeness.

Lemma 2 Let δ ∈ (0, 1) and (at)
∞
t=1 be the actions selected by some policy with corresponding

rewards (rt)
∞
t=1 given by rt = ⟨θ, at⟩ + ϵt, where θ ∈ Sd is the unknown parameter and ϵt is

σt-subgaussian. Let σ̂2
t be an estimator of the form (6) and define the following event,

Gt :=
{(

(rs, as)
t−1
s=1, at

)
: σ2

s(as) ≤ σ̂2
s(a1, r1, . . . , as−1, rs−1, as) ∀s ∈ [t]

}
. (10)

Then we can define the following confidence region

Ct := {θ′ ∈ Rd : ∥θ′ − θ̃w
t ∥2Vt(λ)

≤ βt,δ}, (11)
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where Vt and θw
t are defined with σ̂2

s and

βt,δ =

(√
2 log

1

δ
+ log

(
det(Vt(λ))

det(V0(λ))

)
+
√
λ

)2

. (12)

Then

Pr
[
∀s ∈ [t] : θ ∈ Cwls

s

∣∣Gt

]
≥ 1− δ. (13)

4. Algorithm for linear bandits with vanishing noise: LinUCB-VN

In this Section, we give the specific algorithm that minimizes the regret for the stochastic linear
bandit with linear vanishing noise described in Section 2. The algorithm is based on the principle
of ”optimism in the face of uncertainty” (OFU) or upper confidence bounds (UCB). We name the
algorithm LinUCB-VN, where VN stands for vanishing noise. The idea is to design a strategy that
minimizes the regret (5) which means that we have to select actions close to θ keeping the trade-
off of exploration and exploitation. The LinUCB-VN algorithm is designed to keep the relation
λmin(Vt) = Ω(

√
λmax(Vt)) at each time step t in line with the result of Banerjee et al. (2023)

wich states that all strategies that minimize regret must achieve λmin(Vt) = Ω(
√
t). This will

allow us to bound the regret at each time step t without the need of using the Cauchy-Schwartz
inequality in combination with the elliptical potential lemma that gives immediately a O(

√
T ) regret

(see (Lattimore and Szepesvári, 2020, Chapter 19)). Now we state the exact algorithm and in the
subsequent sections we discuss the technical results that allow us to analyze the regret scaling.

Our algorithm works in batches of 2(d − 1) rounds and with a slightly abuse of notation we
will label each batch with t. At each batch t ≥ 1 the algorithm selects the following actions, for
i ∈ [d− 1]:

a±t,i :=
ã±t,i

∥ã±t,i∥2
, where ã±t,i := θwt−1 ±

1√
λt−1,1

vt−1,i and θwt :=
θ̃wt

∥θ̃wt ∥2
(14)

is the normalized least squares estimator of θ̃wt defined in (7), vt−1,i is the normalized eigenvector
with eigenvalue λt−1,i = λi(Vt−1(λ)). The design matrix Vt is updated at each batch t as

Vt(λ) := Vt−1(λ) + ω(Vt−1(λ))
d−1∑
i=1

(
a+t,i(a

+
t,i)

T + a−t,i(a
−
t,i)

T
)
, (15)

with

ω(Vt−1(λ)) =

√
λmax(Vt−1(λ))

12
√
d− 1βt−1,δ

, σ̂2
t (a

±
t,i) =

1

ω(Vt−1(λ))
, (16)

and βt,δ defined as in Lemma 2 with input Vt (15). When is clear from the context we will denote
Vt(λ) simply as Vt. We state the pseudo-code of LinUCB-VN below.
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Figure 2: We numerically test LinUCB and LinUCB-VN in a linear bandit with action set A = S2 and
reward model rt = N (⟨θ, at⟩, 1 − ⟨θ, at⟩2). Each point in the graphic is run independently and
averaged over 100 instances for random environments θ ∈ S2. Left plot: Scaling of the regret for
LinUCB algorithm and LinUCB-VN. We fit the functions R(t) = 1.86 log2 t for LinUCB-VN and
R(t) = 0.88

√
t log t for LinUCB. Right plots: Scaling of the maximum and minimum eigenvalue

of the matrix Vt for LinUCB-VN. The scaling shows the relation λmin = Ω(
√
λmax). We fit

the function λmin(Vt) = 0.2059t for the minimum eigenvalue and λmax(Vt) = 0.0012t2 for the
maximum eigenvalue. The behavior λmin(Vt) = Θ(t) is the one that gives us the theoretical
guarantee of polylogarithmic scaling of the regret.

Algorithm 1 LinUCB-VN
Require: λ0 ∈ R>0, ω : Pd

+ → R≥0

Set initial design matrix V0 ← λ0Id×d

Choose initial estimator θ0 ∈ Sd for θ at random
for t = 1, 2, · · · do

Optimistic action selection

for i = 1, 2, · · · d− 1 do
Select actions a+t,i and a−t,i according to Eq. (14)
Receive associated rewards r+t,i and r−t,i

end
Update estimator of sub-gaussian noise for a+t,i
σ̂2
t ← 1

ω(Vt−1(λ0))
for t ≥ 2 or σ̂2

t ← 1 for t = 1.
Update design matrix and RLSE

Vt(λ0)← Vt−1(λ0) +
1
σ̂2
t

∑d−1
i=1

(
a+t,i(a

+
t,i)

T + a−t,i(a
−
t,i)

T
)

θ̃w
t ← V −1

t (λ0)
∑t

s=1
1
σ̂2
t

∑d−1
i=1 (a

+
s,ir

+
t,i + a−s,ir

−
t,i)

end
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5. Actions and eigenvalue analysis of design matrix

In this Section, we present our first main result which is an analysis that shows that the actions of the
LinUCB-VN algorithm satisfy the relation λmin(Vt) = Ω(

√
λmax(Vt)) at each batch t. Moreover,

our result is very general since our analysis is independent of the randomness of the algorithm and
also the noise model. We give the main ideas of the proof and give details in Appendix B.

Theorem 3 Let d ≥ 2, {ct}∞t=0 ⊂ Sd be a sequence of normalized vectors and ω : Pd
+ → R≥0 a

function such that

ω(X) ≤ C
√

λmax(X) ∀X ∈ Pd
+, (17)

for some constant C > 0. Let λ0 ≥ max
{
2,
√

2
3(d−1)2dC + 2

3(d−1)

}
, and define a sequence of

matrices {Vt}∞t=0 ⊂ Rd×d as

V0 := λ0Id×d, Vt+1 := Vt + ω(Vt)
d−1∑
i=1

Pt,i, (18)

where

Pt,i := a+t+1,i(a
+
t+1,i)

T + a−t+1,i(a
−
t+1,i)

T, a±t+1,i :=
ã±t+1,i

∥ã±t+1,i∥2
, ã±t+1,i := ct ±

1√
λt,1

vt,i,

(19)

with λt,i = λi(Vt) the eigenvalues of Vt with corresponding normalized eigenvectors
vt,1, ..., vt,d ∈ Sd. Then we have

λmin(Vt) ≥

√
2

3(d− 1)
λmax(Vt) for all t ≥ 0. (20)

Proof sketch. The idea to prove this result is to use induction and analyse separately the cases when
λt,1 < λt,d and λt,1 ≈ λt,d for each t ≥ 1. The first case is the most delicate and we must quantify
the minimum (maximum) non-trivial perturbation that the terms Pt,i can contribute to the smallest
(biggest) eigenvalue when adding to the matrix Vt. For the second case, the idea is that if λt,1 ≈ λt,d

then if the inequality (20) holds at time step t, the term
∑d−1

i=1 Pt,i is not able to break the relation
even if it does not contribute to increase the minimum eigenvalue.

Case 1: λt,1 < λt,d. For this case, we want to establish a matrix inequality between Vt+1 and Vt

that is independent of the sequence {ct}∞t=0. A simple calculation shows ∥ã±t+1,i∥2 ≤ 1 + 1/
√

λt,1

and using that ã+t+1,i(ã
+
t+1,i)

T + ã−t+1,i(ã
−
t+1,i)

T does not depend on the cross terms ctv
T
t,i we can

show

Pt,i ≥
2

(1 +
√
λt,1)2

vt,iv
T
t,i, (21)

which quantifies how much Pt,i contributes to increase the eigenvalue on the direction vt,i. This
immediately leads to

Vt+1 ≥ Vt + pt

d−1∑
i=1

vt,iv
T
t,i, pt :=

2ω(Vt)

(1 +
√
λt,1)2

, (22)

8
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which is the matrix inequality that we will use to relate the eigenvalues of Vt+1 and Vt. In our proof
we distinguish the cases λt,d−1+pt ≤ λt,d and λt,d−1+pt < λt,d < λt,1+pt. However, since both
cases use the same technique (with some subtleties) we focus on the first case here and leave the
details of the second in the Appendix B. Using the inequality (22) in combination with the minimax
principle for eigenvalues in (Bhatia, 1997, Corollary III.1.2) we have

λt+1,i ≥ λt,i + pt for i = 1, ..., d− 1. (23)

Then we can control how much the maximum eigenvalue grows using the above bound and Tr(Vt+1) =
λt,d +

∑d−1
i=1 λt,i + 2(d− 1)ω(Vt). This allows us to establish that

λt+1,d ≤ λt,d + (2ω(Vt)− pt)(d− 1). (24)

We finalize this case showing that

(λt,1 + pt)
2 ≥ 2

3(d− 1)
(λt,d + (2ω(Vt)− pt)(d− 1)), (25)

under the assumption that induction relation (20) holds at time step t. Then the inequality at time
step t+ 1 λt+1,1 ≥

√
2/(3(d− 1)λt+1,d follows from (23) and (24).

Case 2: λt,1 ≈ λt,d. For this case, we do not need a tight control on the eigenvalues of Vt+1. It
suffices to use the following bounds

λt+1,1 ≥ λt,1, (26)

λt+1,d ≤ λt,d + 2ω(Vt)(d− 1), (27)

which follows from the inequalities λmin(A+B) ≥ λmin(A) + λmin(B) and
λmax(A + B) ≤ λmax(A) + λmax(B) for A,B ∈ Pd

+. Then combining the induction hypothesis
at time step t, (20) the condition ω(Vt) ≤ C

√
λt,d and λt,1 ≥ λ0, we can establish a series of

inequalities that lead to

λt+1,1 ≥ λt,1 ≥

√
2

3(d− 1)
(2(d− 1)ω(Vt) + λt,d) ≥

√
2

3(d− 1)
λt+1,d, (28)

where the first and last inequality follows from the trivial perturbation bounds (26). This concludes
the induction.

Note. In the Appendix B.2 we provide an alternative proof for the special case of d = 2
that slightly improves the constant in the relation λmin(Vt) = Ω(

√
λmax(Vt)). In this proof, we

compute the worst-case scenario depending on the centers ct and we provide an exact computation
of the eigenvalues of the matrix Vt.

6. Regret analysis

In this Section, we present the regret analysis of LinUCB-VN for a linear bandit with linear van-
ishing noise. We use the result of the previous section to show a polylogarithmic scaling of the
regret with high probability. We develop a new technique to analyze an algorithm based on upper
confidence bounds and we rely on the relation that our algorithm keeps the relation λmin(Vt) =
Ω(
√
λmax(Vt)).

9
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Theorem 4 Let d ≥ 2, δ ∈ (0, 1) and T = 2(d − 1)T̃ for some T̃ ∈ N. Let ω(X) defined as
in (16) using δ and λ0 satisfy the constraints in Theorem 3. Then if we apply LinUCB-VN 1(λ0, ω)
to a d dimensinal stochastic linear bandit with linear vanishing noise (4) with probability at least
1− δ the regret satisfies

Regret(T ) ≤ 4(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)
, (29)

where

βT,max :=

(
λ0 +

√
2 log

T

δ
+ d log

(
1

144λ0
T 2 +

1

6
√
λ0

T + 1

))2

. (30)

From the above Theorem we have that the scaling of the regret on d and T is

Regret(T ) = O(d4 log3(T )), (31)

and in Corollary 11 we prove that choosing δ = 1

T̃
gives

E[Regret(T )] = O(d4 log3(T )). (32)

Proof sketch. Using that the algorithm works in T̃ batches of 2(d − 1) actions we can express the
regret as

Regret(T ) =
1

2

T̃∑
t=1

d−1∑
i=1

(
∥θ − a+t,i∥

2
2 + ∥θ − a−t,i∥

2
2

)
. (33)

Thus, to upper bound the regret, we have to give a high probability bound on ∥θ − a±t,i∥22 for each

batch t ∈ [T̃ ]. For that, we can use triangle inequality to obtain

∥θ − a±t,i∥2 ≤ ∥θ − θ̃w
t−1∥2 + ∥θw

t−1 − θ̃w
t−1∥2 + ∥θw

t−1 − a±t,i∥2. (34)

Under the assumption that θ ∈ Ct−1 with Ct−1 defined as in Lemma 2 we can use that Ct−1 ⊆
Bd
r(θ̃

w
t−1) with r =

√
βt−1,δ

λmin(Vt)
and upper bound the three terms by r. The bound on ∥θ − θ̃w

t−1∥2
follows from the definition of Ct−1 and the remaining terms we provide geometrical proofs in the
Appendix C. Now the main idea is to use our previous result Theorem 3 (under a careful check of
the assumptions and fixing λ0) and use that our particular choice of actions allows us to keep the
inequality λmin(Vt) ≥

√
2

3(d−1)λmax(Vt). Then we can upper bound ∥θ − a±t,i∥22 as

∥θ − a±t,i∥
2
2 ≤

9βt−1,δ

λmin(Vt−1)
≤

12
√
d− 1βt−1,δ√
λmax(Vt−1)

. (35)

Thus, if we can control the growth of λmax(Vt) then we can bound the regret under the assumption
that θ ∈ Ct for all t ∈ [T̃ ]. In the Appendix C, we rigorously prove that in fact, we can apply
Lemma 2 and bound the probability that the following event holds

Et := {
(
r+s,1, a

+
s,1, r

−
s,1, a

−
s,1, ..., r

+
s,d−1, a

+
s,d−1, r

−
s,d−1, a

−
s,d−1)

)t
s=1

: ∀s ∈ [t] , θ ∈ Cs}. (36)
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To apply Lemma 2 we need that the event Gt (10) holds which means essentially that σ̂2
t (16) is a

good estimator of the subgaussian parameter of the noise. Using the definition of the subgaussian
parameter we have σ2

t (a
±
t,i) ≤ ∥θ − a±t,i∥22. and from the above argument we see that we can define

a ”good” estimator of the noise σ̂2
t (a

±
t,i) in the sense that

σ2
t (a

±
t,i) ≤ σ̂2

t (a
±
t,i) =

1

w(Vt−1)
if θ ∈ Ct−1. (37)

Thus, after bounding the probabilities that the events Gt and Et hold what remains to do is to provide
bounds for λmax(Vt). Our result will show λmax(Vt) = Θ(t2) and we provide a careful computation
in the Appendix C. To do that, we just need to use the rule update of Vt and our computation will
be independent of the algorithm. Here we provide the idea for a lower bound on λmax(Vt) that
is essentially what we need to upper bound the regret. A similar idea works for an upper bound
and we provide the full computation in the Appendix C. The upper bound is necessary to prove
βt ≤ βT,max. Let’s provide the main ideas for the lower bound.

From the definition of Vt and the choice of ω(Vt) (16) we have

Tr(Vt) ≥
t∑

s=2

2(d− 1)ω(Vs−1) ≥
√
d− 1

6βT̃ ,δ

t−1∑
s=1

√
λmax(Vs). (38)

Then we can use Tr(Vs) ≤ dλmax(Vs) and some algebra to establish the following inequality

λmax(Vt) ≥
1

1 + 6 d√
d−1

βT̃ ,δ

t∑
s=1

√
λmax(Vs). (39)

This inequality already gives the intuition that λmax(Vt) = Ω(t2) because if we propose λmax(Vt) ∼
tα and we substitute in the above inequality, a comparison of exponents shows that α ≥ 1 + α/2.
Solving this gives α ≥ 2. However, we have to formalize this idea. To do that we are going to
extend the function λmax(Vt) to the continuous on t and this will allow us to establish a differential
inequality that we can exactly solve. First, we define the following linear interpolation

g2(x) := (t+ 1− x)λmax(Vt) + (x− t)λmax(Vt+1) for x ∈ [t, t+ 1) and t ∈ {0, ..., T̃},
(40)

which satisfies g2(t) = λmax(Vt). Combining the above definition with the inequality (39) and
some algebra we can show that

g2(x) ≥
1

1 + 6 d√
d−1

βT̃ ,δ

∫ x

0

√
g2(s)ds. (41)

This leads to the following differential inequality

dG2(x)

dx
≥
√

1

1 + 6 d√
d−1

βT̃ ,δ

√
G2(x). (42)

11
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where dG2(x)
dx =

√
g2(x). Using a result of differential equations (more details in the Appendix C)

we can solve just the equality and show that

G2(x) ≥
1

4 + 24 d√
d−1

βT̃ ,δ

x2. (43)

This leads to the result λmax(Vt) = Ω(t2). Thus, from the expression of the regret, βt,δ =
O(log(T )) and (35) we have

Regret(T ) = O

polylog(T )
T̃∑
t=1

1√
λmax(Vt)

 = O

polylog(T )
T̃∑
t=1

1

t

 = O (polylog(T )) .

(44)

Note. Setting ω(Vt) = 1 allows the algorithm to deal with the usual 1-subgaussian noise. For
this case, our proof simplifies and leads to the usual Regret(T ) = Õ(

√
T ).

7. Open problems

• Our model can be extended in different ways, but we felt a focus on a relatively simple geome-
try would be more suitable to introduce new techniques. A generalisation to Locally Constant
Hessian (LCH) surfaces and locally convex action sets Banerjee et al. (2023) would require
us to replace the normalization of the actions by a projection to the corresponding surface.
We expect that this would still yield a relation λmin = Ω(λs

max) where s ∈ (0, 1/2] depends
on how well the action set approximates a LCH, and from there the analysis would be similar.
A relatively straight-forward generalisation of our analysis also works for noise decaying as
∥θ − at∥2α2 for α ∈ [0, 1]. This eventually leads to a regret scaling as T βpolylog(T ) with
β = 1−α

2−α . This behaviour interpolates between the
√
T seen in the constant noise case and

polylog(T) seen in our work.

• In Banerjee et al. (2023) the authors prove (under some mild assumptions) that any strategy
that minimizes the regret for linear bandits with continuous smooth action sets must satisfy
λmin(Vt) = Ω(

√
t) for constant noise models. This result does not apply to our model since

the noise is not constant. Our strategy achieves the relation λmin(Vt) = Ω(
√

λmax(Vt))
that is a more general condition independent of the noise. Thus, we propose the following
conjecture:

Conjecture 5 (informal) Consider a linear stochastic bandit with A ⊂ Rd a smooth con-
tinuous action set and reward model with arbitrary bounded noise. Then, any strategy that
minimizes the regret must achieve the relation λmin(Vt) = Ω(

√
λmax(Vt)).

• How can we extend the linear stochastic bandit techniques for minimax lower bound of the
regret to the non-constant noise setting? Our model misses a matching minimax lower bound.

• Our strategy plays batches of 2(d−1) actions. This is done to simplify the calculations of our
main Theorems. However, a technique that adapts at each time step could potentially reduce
the dimensional dependence of the regret.

12
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Appendix A. Proofs of Section 3

The proof of the confidence region for the regularized least squares estimator relies on the following
result about supermatingales.

Theorem 6 (Theorem 3.9 in Lattimore and Szepesvári (2020)) Let (Xt)
∞
t=0 be a supermartin-

gale with Xt ≥ 0 almost surely for all t. Then for any ϵ > 0,

Pr

(
sup
t

Xt ≥ ϵ

)
≤ E [X0]

ϵ
. (45)

A.1. Proof of Lemma 2

The proof below is an adaptation from the one presented in Lattimore and Szepesvári (2020)[Chap-
ter 20] to our setting. We refer to the reference for detailed computations.
Proof To simplify notation we use σ̂2

s = σ̂2
s(as). From now we will condition all our calculations

on the events Gt since we want to prove (13).
First let S̃t =

∑t
s=1

1
σ̂2
s
ϵsas and define the following process

M̃t(x) := exp

(
⟨x, S̃t⟩ −

1

2
∥x∥2

Ṽt

)
, (46)

for all x ∈ Rd and Vt = Vt(0). We want to check that M̃t(x) is a supermartingale, i.e E
[
M̃t(x)|Ft−1

]
≤

M̃t−1(x). From a direct calculation, we have

E
[
M̃t(x)|Ft−1

]
= M̃t−1(x)E

[
exp

(
ϵt
σ̂t

〈
x,

at
σ̂t

〉
− 1

2
∥x∥ 1

σ̂2
t
ata⊤t

) ∣∣Ft−1

]
. (47)

Then, using that in the definition of σ̂2
t (6) is defined only using the information up to time step

t− 1, the subgaussian property, and that the event Gt holds we have

E
[
exp

(
ϵt
σ̂t

〈
x,

at
σ̂t

〉) ∣∣Ft−1

]
≤ exp

(
1

2

〈
x,

at
σ̂t

〉2
)

= exp

(
1

2
∥x∥ 1

σ̂2
t
ata⊤t

)
. (48)

Inserting the above expression into (47) we immediately get E
[
M̃t(x)|Ft−1

]
≤ M̃t−1(x). Using

Lemma 20.3 in Lattimore and Szepesvári (2020)[Chapter 20] we have that

M̄t :=

∫
Rd

M̃t(x)dh(x) (49)

is a supermartingale where h is a probability measure on Rd. In particular we choose h = N (0, H−1)
with H = λId×d ∈ Rd×d and we get

M̄t =
1√

(2π)d det(H−1)

∫
Rd

exp

(
⟨x, S̃t⟩ −

1

2
∥x∥2Vt

− 1

2
∥x∥H

)
dx. (50)
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The above quantity can be exactly computed as

M̄t =

(
det(V0)

det(Vt(λ))

) 1
2

exp

(
1

2
∥S̃t∥2V −1

t (λ)

)
, (51)

where we used the solution for a Gaussian integral, we have completed the square inside the expo-
nential term and we used that Vt(λ) = H + Vt. Then we can use Theorem 6 in order to get

Pr

(
sup
t

log
(
M̄t

)
≥ log

(
1

δ

))
= Pr

(
sup
t

M̄t ≥
1

δ

)
≤ δ, (52)

where we used that by definition of M̃t−1(x) we have M̄t ≥ 0 almost surely and M̄0 = 1. Insert-
ing (51) into the above equation we have

Pr

(
sup
t
∥S̃t∥2V −1

t (λ)
≥ 2 log

(
1

δ

)
+ log

det(Vt(λ))

det(V0(λ))

)
≤ δ. (53)

Finally using the expression for the weighted least squares estimator (8) we have

∥θ̃wls
t − θ∥Vt(λ) ≤ ∥S̃t∥V −1

t (λ) +
√
λ, (54)

where we used triangle inequality and ∥θ∥22 = 1. And the result follows by combining the above
expression with (53) and conditioning under the event Gt.

Appendix B. Proofs of Section 5

We will need the following properties for positive semidefinite matrices A,B ∈ Pd
+:

λmin(A+B) ≥ λmin(A) + λmin(B), (55)

λmax(A+B) ≤ λmax(A) + λmax(B).

And the following mini-max characterization of eigenvalues for Hermitian matrices.

Corollary 7 ( Corollary III.1.2 in Bhatia (1997) ) Let A ∈ Cd×d be a Hermitian matrix, then

λk(A) = max
M⊂Cd

dim(M)=d−k+1

min
x∈M
∥x∥2=1

⟨x,Ax⟩ = min
M⊂Cd

dim(M)=k

max
x∈M
∥x∥2=1

⟨x,Ax⟩. (56)

In particular, if A ≥ B then λk(A) ≥ λk(B).

B.1. Proof of Theorem 3

Proof We start giving an upper bound of the Euclidean norm of ã±t+1,i (19) with the following
calculation

∥ã±t+1,i∥
2
2 = 1± 2√

λ1,t

⟨ct, vt,i⟩+
1

λt,1
(57)

≤ 1 +
2√
λt,1

+
1

λt,1
=

(
1 +

1√
λt,1

)2

, (58)
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where we used that ct, vt,i ∈ Sd. Thus using the definition of Pt,i (19),

Pt,i ≥

(
1 +

1√
λt,1

)−2 (
ã+t+1,i(ã

+
t+1,i)

T + ã−t+1,i(ã
−
t+1,i)

T
)
. (59)

From the definition of ã±t+1,i (19) we have

ã±t+1,i(ã
±
t+1,i)

T = ctc
T
t +

1

λt,1
vt,iv

T
t,i ±

1√
λt,1

(
ctv

T
t,i + vt,ic

T
t

)
. (60)

The above allow us to bound Pt,i as

Pt,i ≥ 2

(
1 +

1√
λt,1

)−2(
ctc

T
t +

1

λt,1
vt,iv

T
t,i

)
(61)

≥ 2

(1 +
√
λt,1)2

vt,iv
T
t,i, (62)

where we used ctc
T
t ≥ 0 and 1

λt,1

(
1 + 1√

λt,1

)−2

= (1 +
√

λt,i)
−2. Thus, from the abound bound

and the definition of Vt (18) we obtain the following matrix inequality

Vt+1 ≥ Vt +
2w(Vt)

(1 +
√
λt,1)2

d−1∑
i=1

vt,iv
T
t,i. (63)

We want to prove the result using induction. The case t = 0 is immediately satisfied since
λ0,d = λ0,1 ≥ 2

3(d−1) . Now we will assume that

λt,1 ≥

√
2

3(d− 1)
λt,d, (64)

is satisfied and we want to prove the same inequality for t+ 1. We distinguish cases depending on
the growth of the maximum eigenvalue of Vt.

Case 1: λt,d ≥ λt,d−1 +
2w(Vt)

(1+
√

λt,1)2

Using the hypothesis λt,d ≥ λt,d−1 +
2w(Vt)

(1+
√

λt,1)2
, the fact that Vt diagonalizes in the {vt,i}di=1 basis

and the ordering λt,1 ≤ .... ≤ λt,d−1 ≤ λt,d we have

λi

(
Vt +

2w(Vt)

(1 +
√

λt,1)2

d−1∑
i=1

vt,iv
T
t,i

)
= λt,i +

2w(Vt)

(1 +
√

λt,1)2
for i = 1, ..., d− 1 (65)

λd

(
Vt +

2w(Vt)

(1 +
√

λt,1)2

d−1∑
i=1

vt,iv
T
t,i

)
= λt,d. (66)
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Then combining with the mini-max principle for eigenvalues 7 and using that both sides of (63) are
real and symmetric, we arrive at

λi,t+1 ≥ λi,t +
2w(Vt)

(1 +
√
λt,1)2

for i = 1, ..., d− 1. (67)

From the expression for Vt+1 (18), we deduce that

Tr(Vt+1) =
(
λt+1,d +

d−1∑
i=1

λt+1,i

)
= λt,d +

d−1∑
i=1

λt,i + 2(d− 1)w(Vt). (68)

Also from (67)

Tr(Vt+1) ≥ λt+1,d +
d−1∑
i=1

λt,i +
2(d− 1)w(Vt)

(1 +
√

λt,1)2
. (69)

Combining the above we can bound the maximum eigenvalue as

λt+1,d ≤ λt,d +
d−1∑
i=1

λt,i + 2(d− 1)w(Vt)−

(
d−1∑
i=1

λt,i +
2(d− 1)w(Vt)

(1 +
√
λt,1)2

)
(70)

= λd,t + 2(d− 1)w(Vt)
λt,1 + 2

√
λt,1

(1 +
√
λt,1)2

. (71)

Recall that we want to check

λt+1,1 ≥

√
2

3(d− 1)
λt+1,d. (72)

Using (67) and (70) we can square the above and see that it suffices to check(
λ1,t +

2w(Vt)

(1 +
√

λt,1)2

)2

≥ 2

3(d− 1)
λd,t +

4w(Vt)(λt,1 + 2
√
λt,1)

3(1 +
√

λt,1)2
. (73)

Multiplying out the terms, this is equivalent to the condition

λ2
1,t −

2

3(d− 1)
λd,t︸ ︷︷ ︸

(i)

+
4w2(Vt)

(1 +
√
λt,1)4︸ ︷︷ ︸

(ii)

+
4w(Vt)

(1 +
√
λt,1)2

(λt,1 −
1

3
(λt,1 + 2

√
λt,1)︸ ︷︷ ︸

(iii)

≥ 0. (74)

It remains to observe that (i) is positive by induction at time step t (cf. (64)), (ii) is always positive
and (iii) is positive for λt,1 ≥ 1 and this is true since λt,1 ≥ λ0 ≥ 2, λt,1 is non-decreasing in t and
f(x) = x−

√
x is positive for x ≥ 1.
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Case 2.1: λt,1 +
2w(Vt)

(1+
√

λt,1)2
< λt,d < λt,d−1 +

2w(Vt)

(1+
√

λt,1)2

First we find k ∈ N, 1 < k ≤ d− 1 such that

λt,k−1 +
2w(Vt)

(1 +
√
λt,1)2

≤ λt,d ≤ λt,k +
2w(Vt)

(1 +
√
λt,1)2

. (75)

Then using that {vt,i}di=1 are the eigenvectors of Vt we have

λi

(
Vt +

2w(Vt)

(1 +
√
λt,1)2

d−1∑
i=1

vt,iv
T
t,i

)
= λt,i +

2w(Vt)

(1 +
√
λt,1)2

for i = 1, ..., k − 1 (76)

λk

(
Vt +

2w(Vt)

(1 +
√
λt,1)2

d−1∑
i=1

vt,iv
T
t,i

)
= λt,d (77)

λi

(
Vt +

2w(Vt)

(1 +
√
λt,1)2

d−1∑
i=1

vt,iv
T
t,i

)
= λt,i−1 +

2w(Vt)

(1 +
√
λt,1)2

for i = k + 1, ..., d. (78)

Again using the mini-max principle for eigenvalues 7 and that both sides of (63) are real and sym-
metric

λt+1,i ≥ λt,i +
2w(Vt)

(1 +
√
λt,1)2

if i ∈ {1, ..., k − 1}, (79)

λt+1,i ≥ λt,d if i = k, (80)

λt+1,i ≥ λt,i−1 +
2w(Vt)

(1 +
√
λt,1)2

if i ∈ {k + 1, ..., d}. (81)

Thus, using the above inequalities we can bound the trace of Vt+1 as

Tr(Vt+1) =

k−1∑
i=1

λt+1,i + λt+1,k +

d−1∑
i=k+1

λt+1,i + λt+1,d (82)

≥

(
k−1∑
i=1

λt,i

)
+

2(k − 1)w(Vt)

(1 +
√
λt,1)2

+ λt,d +

(
d−2∑
i=k

λt,i

)
+

2(d− k − 1)w(Vt)

(1 +
√
λt,1)2

+ λt+1,d

(83)

= λt+1,d + λt,d +
d−2∑
i=1

λt,i +
2(d− 2)w(Vt)

(1 +
√
λt,1)2

(84)

≥ λt+1,d +

d−1∑
i=1

λt,i +
2(d− 2)w(Vt)

(1 +
√
λt,1)2

, (85)

where in the last bound we used simply λt,d ≥ λt,d−1. From the expression of Vt+1 (18)

Tr(Vt+1) = λt,d +

d−1∑
i=1

λt,i + 2(d− 1)w(Vt), (86)
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and combining with the previous bound we obtain

λt+1,d ≤ λd,t + 2(d− 1)w(Vt)−
2(d− 2)w(Vt)

(1 +
√
λt,1)2

(87)

= λd,t +
2w(Vt)

(1 +
√

λt,1)2

(
λt,1(d− 1) + 2

√
λt,1(d− 1) + 1

)
(88)

≤ λd,t +
2(d− 1)w(Vt)

(1 +
√
λt,1)2

(
λt,1 + 2

√
λt,1 + 1

)
. (89)

Again to check

λt+1,1 ≥

√
2

3(d− 1)
λt+1,d, (90)

we can square both sides and using the above bounds on λt+1,1 and λt+1,d it suffices to check(
λ1,t +

2w(Vt)

(1 +
√

λt,1)2

)2

≥ 2

3(d− 1)
λd,t +

4w(Vt)(λt,1 + 2
√
λt,1 + 1)

3(1 +
√

λt,1)2
. (91)

Multiplying out the terms, this is equivalent to the condition

λ2
1,t −

2

3(d− 1)
λd,t︸ ︷︷ ︸

(i)

+
4w2(Vt)

(1 +
√
λt,1)4︸ ︷︷ ︸

(ii)

+
4w(Vt)

(1 +
√
λt,1)2

(λt,1 −
1

3
(λt,1 + 2

√
λt,1 + 1)︸ ︷︷ ︸

(iii)

≥ 0. (92)

Finally, we observe that (i) is positive by induction at time step t, (ii) is always positive and (iii) is
positive since λt,1 ≥ 2, λt,1 ≥ 2 is non-decreasing and f(x) = 2x− 2

√
x− 1 is positive for x ≥ 2.

Case 2.2: λt,d ≤ λt,1 +
2w(Vt)

(1+
√

λt,1)2

From the statement of the theorem we have

λt,1 ≥ λ0 ≥

√
2

3(d− 1)
2dC +

2

3(d− 1)
. (93)

Multiplying both sides by λt,1 we have

λ2
t,1 ≥

√
2

3(d− 1)
2dCλt,1 +

2

3(d− 1)
λt,1 (94)

≥ 2

3(d− 1)

(
2dC

√
λt,d + λt,1

)
(95)

≥ 2

3(d− 1)
(2dw(Vt) + λt,1) (96)

=
2

3(d− 1)
(2(d− 1)w(Vt) + 2w(Vt) + λt,1) (97)

≥ 2

3(d− 1)
(2(d− 1)w(Vt) + λt,d) , (98)
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where the second inequality follows from the induction hypothesis λt,1 ≥
√

2
3(d−1)λt,d, the third

inequality from w(Vt) ≤ C
√
λt,d and the fourth inequality from the assumption λt,d ≤ λt,1 +

2w(Vt)

(1+
√

λt,1)2
≤ λt,1 + 2w(Vt). Thus taking the square root in both sides we have

λt,1 ≥

√
2

3(d− 1)
(λt,d + 2(d− 1)w(Vt)), (99)

and the induction at time step t+ 1, λt+1,1 ≥
√

2
3(d−1)λt+1,d follows from the bounds

λt+1,1 ≥ λt,1, (100)

λt+1,d ≤ λt,d + 2w(Vt)(d− 1), (101)

where we used the inequalities (55) and the definition of Vt (18).

B.2. Alternative proof for special case d = 2

We present an alternative proof of the previous result for the particular case of d = 2 where the
main difference is that we provide an exact calculation of the eigenvalues of the matrix Vt+1. This
technique can slightly improve the constant on the lower bound λmin(Vt) = Ω(

√
λmax(Vt)).

Theorem 8 Let {ct}∞t=0 ⊂ S2 be a sequence of normalized vectors and ω : P2
+ → R≥0 a function

such that

ω(X) ≤ C
√
λmax(X), (102)

for a constant C > 0 and any X ∈ P2
+. Let λ0 ≥ 4

√
2C + 2, and define a sequence of matrices

{Vt}∞t=0 ⊂ R2×2 as

V0 := λ0I2×2, Vt+1 := Vt + ω(Vt)
(
a+t+1(a

+
t+1)

T + a−t+1(a
−
t+1)

T
)
, (103)

where a+t+1, a
−
t+1 ∈ S2 are defined as

a+t+1 :=
ct +

1√
λmin(Vt)

vt,min√
1 +

2⟨ct,vt,min⟩√
λmin(Vt)

+ 1
λmin(Vt)

, a−t+1 :=
ct − 1√

λmin(Vt)
vt,min√

1− 2⟨ct,vt,min⟩√
λmin(Vt)

+ 1
λmin(Vt)

, (104)

and vmin,t is the normalized eigenvector corresponding to the minimum eigenvalue . Then we have

λmin(Vt) ≥
√

2λmax(Vt) for all t ≥ 0. (105)

Proof To simplify the notation in the proof we define

λmin,t := λmin(Vt), λmax,t := λmax(Vt), (106)

with corresponding normalized eigenvectors vt,min, vt,max ∈ S2.
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We are going to prove the result by induction. At time step t = 0 we have λmin,t = λmax,t = λ0

and the inequality λ0 ≥
√
2λ0 holds since λ0 ≥ 2. Then at time step t ≥ 1 we can express Vt as

Vt =

(
λt,min 0
0 λt,max

)
, (107)

using the basis {vt,min, vt,max}. Then we assume that the inequality λt,min ≥
√
2λmax,t is satisfied

and we want to check the same inequality at time step t + 1. We express the vectors that update
Vt+1 (103) on the same basis as

a+t+1 =

(
⟨a+t+1, vt,min⟩
⟨a+t+1, vt,max⟩

)
a−t+1 =

(
⟨a−t+1, vt,min⟩
⟨a−t+1, vt,max⟩

)
, (108)

and define the following quantities,

xt := ⟨a+t+1, vt,min⟩2 + ⟨a−t+1, vt,min⟩2, (109)

yt := ⟨a+t+1, vt,max⟩2 + ⟨a−t+1, vt,max⟩2, (110)

zt := ⟨a+t+1, vt,min⟩⟨a+t+1, vt,max⟩+ ⟨a−t+1, vt,min⟩⟨a−t+1, vt,max⟩. (111)

Using that a+t+1, a
−
t+1 ∈ S2 we get the following relation

yt = 2− xt. (112)

Thus the perturbation at time step t+ 1 can be written as

a+t+1(a
+
t+1)

T + a−t+1(a
−
t+1)

T =

(
xt zt
zt yt

)
, (113)

and Vt+1 as

Vt+1 =

(
λt,min + ω(Vt)xt ω(Vt)zt

ω(Vt)zt λt,max + ω(Vt)(2− xt)

)
. (114)

In order to analyze the eigenvalue of Vt+1 we have to control the overlap ⟨vt,min, ct⟩, so we define
the following variable

αt := ⟨vt,min, ct⟩ ∈ [−1, 1], (115)

and using that

⟨vt,min, a
+
t+1⟩ =

αt +
1√

λmin,t√
1 + 2√

λmin,t
αt +

1
λmin,t

, ⟨vt,min, a
−
t+1⟩ =

αt − 1√
λmin,t√

1− 2√
λmin,t

αt +
1

λmin,t

(116)

we can express xt, zt in terms of αt as

xt(αt) =

(
αt +

1√
λmin,t

)2
1 + 2√

λmin,t
αt +

1
λmin,t

+

(
αt − 1√

λmin,t

)2
1− 2√

λmin,t
αt +

1
λmin,t

, (117)

zt(αt) =

 αt +
1√

λmin,t

1 + 2√
λmin,t

αt +
1

λmin,t

+
αt − 1√

λmin,t

1− 2√
λmin,t

αt +
1

λmin,t

√1− α2
t . (118)
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Then we can directly compute the minimum eigenvalue of Vt+1 as

λmin,t+1(αt) =
λmax,t + λmin,t

2
+ ω(Vt)−

1

2

√
(λmax,t − λmin,t + 2ω(Vt)(1− xt(αt)))2 + 4ω2(Vt)z2t (αt).

(119)

Now we define the difference of eigenvalues at time step t,

ϕt := λmax,t − λmin,t, (120)

and analyze two different regimes for the induction to hold at time step t+ 1.

Case 1: ϕt ≥ 2ω(Vt)

For this case we want to justify that λmin,t+1(αt) ≥ λmin,t+1(0) for αt ∈ [−1, 1], and later prove
the induction using this lower bound. Defining the following

f(αt) := (ϕt + 2ω(Vt)(1− x(αt)))
2 + 4ω2(Vt)z

2(αt) (121)

= ϕ2
t + 4ω(Vt)

(
ϕt(1− x(αt)) + ω(Vt)(1− x(αt))

2 + ω(Vt)z
2(αt)

)
, (122)

and comparing with the exact minimum eigenvalue (119) we see that it suffices to prove that
f(αt) achieves a maximum at αt = 0 in the range αt ∈ [−1, 1] in order to have λmin,t+1(αt) ≥
λmin,t+1(0) for all αt ∈ [−1, 1]. A direct computation shows that

f(αt) = ϕ2
t + 4ω(Vt)g(αt), g(αt) :=

2
(
λmin,t − 1

)
λmin,tϕtα

2
t + (1− λ2

min,t)ϕt − (1− λmin,t)
2ω(Vt)

4λmin,tα2
t −

(
1 + λmin,t

)2 .

(123)

We have that g(αt) is of the form g(x) = ax2+b
cx2+d

which has an unique maximum at x = 0 if
ad− bc < 0. Then identifying the coefficients we have to check that

p := 2(1− λmin,t)λmin,t(1 + λmin,t)
2ϕt − 4λmin,t(1− λ2

min,t)ϕt + 4λmin,t(1− λmin,t)
2ω(Vt) < 0.

(124)

Using that λmin,t ≥ 2 and ω(Vt) ≤ ϕt

2 we can bound the above as

p ≤ ϕt

(
2(1− λmin,t)λmin,t(1 + λmin,t)

2 − 4λmin,t(1− λ2
min,t) + 2λmin,t(1− λmin,t)

2
)
. (125)

Finally summing all the terms we get,

p ≤ −2ϕt

(
λ2
min,t(1− λmin,t)

2
)
≤ 0, (126)

where the inequality follows from ϕt ≥ 0. Thus, we conclude that

λmin,t+1(αt) ≥ λmin,t+1(0). (127)

Using that

xt(0) =
2

1 + λmin,t
, zt(0) = 0, (128)
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and ϕt ≥ 2ω(Vt) we have

λmin,t+1(0) = λmin,t +
2ω(Vt)

1 + λmin,t
. (129)

Thus, using (127)(129) and

Tr(Vt+1) = λmin,t+1(αt) + λmax,t+1(αt) = λmax,t + λmin,t + 2ω(Vt), (130)

we can upper bound the maximum eigenvalue as

λmax,t+1(αt) = λmax,t + λmin,t − λmin,t+1(αt) + 2ω(Vt) (131)

≤ λmax,t + λmin,t − λmin,t+1(0) + 2ω(Vt) (132)

= λmax,t + 2ω(Vt)
λmin,t

1 + λmin,t
. (133)

Finally in order to check the induction step at t + 1, λmin,t+1 ≥
√
2λmax,t+1 we can use the

bounds (127)(131) and it suffices to check

λmin,t +
2ω(Vt)

1 + λmin,t
≥

√
2

(
λmax,t + 2ω(Vt)

λmin,t

1 + λmin,t

)
. (134)

Squaring both sides and rearranging we obtain

λ2
min,t − 2λmax,t︸ ︷︷ ︸

(i)

+
4ω2(Vt)

(1 + λmin,t)2︸ ︷︷ ︸
(ii)

≥ 0, (135)

where (i) is positive because we assume λmin,t ≥
√
2λmax,t to hold at time step t and (ii) is always

positive. This concludes the case ϕt ≥ 2ω(Vt) induction.

Case 2: ϕt ≤ 2ω(Vt)

From the definition of λ0 we have

λmin,t ≥ λ0 ≥ 4
√
2C + 2. (136)

Multiplying both sides by λmin,t,

λ2
min,t ≥ 4

√
2Cλmin,t + 2λmin,t (137)

≥ 2
(
4C
√
λmax,t + λmin,t

)
(138)

≥ 2 (λmin,t + 4ω(Vt)) (139)

≥ 2 (λmin,t + ϕt + 2ω(Vt)) (140)

= 2 (λmax,t + 2ω(Vt)) , (141)
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where in the second inequality we used the induction hypothesis λmin,t ≥
√

2λmax,t, the third
inequality ω(Vt) ≤ C

√
λmax,t, the fourth inequality ϕt ≤ 2ω(Vt) and the last equality the definition

ϕt = λmax,t − λmin,t. Thus, we have

λmin,t ≥
√
2(λmax,t + 2ω(Vt)), (142)

and the inequality at time step t+ 1, λmin,t ≥
√
2λmax,t+1 follows from the bounds

λmin,t+1 ≥ λmin,t, (143)

λmax,t+1 ≤ λmax,t + 2ω(Vt), (144)

where we used (55) with λmin(ata
T
t ) = λmin(btb

T
t ) = 0 and λmax(ata

T
t ) = λmax(btb

T
t ) = 1.

Appendix C. Proofs of Section 6

In our regret analysis, we need to control the distance between the regularized least squares estimator
and the normalized version. The Lemma below is the technical result that we use.

Lemma 9 Given two normalized vectors c, v ∈ Sd, a positive constant λ > 1 and the following
vectors

ã± = c± 1√
λ
v, a± =

ã±

∥ã±∥2
. (145)

Then we have

∥a± − c∥22 ≤
2

λ
. (146)

Proof We are going to give the proof for a−. The one for a+ follows from an identical calculation.
First, we can relate the distance to the inner product of the vectors as

∥a− − c∥22 = ⟨a− − c, a− − c⟩ = 2− 2⟨a−, c⟩. (147)

Using the normalization factor is

∥ã−∥22 = 1− 2√
λ
⟨c, v⟩+ 1

λ
, (148)

then

⟨a−, c⟩ =
1− 1√

λ
α√

1 + 1
λ −

2√
λ
α
, where α := ⟨c, v⟩ ∈ [−1, 1]. (149)

In order to study the behavior of (147) in terms of the overlap ⟨c, v⟩ we define

f(α, λ) := 2

1−
1− 1√

λ
α√

1 + 1
λ −

2√
λ
α

 (150)
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and we are going to check the maximum in the range α ∈ [−1, 1]. Note that f(α, λ) = ∥a− − c∥22.
Taking the derivative respect to α,

∂f(α, λ)

∂α
= 2

1√
λ

√
1 + 1

λ −
2√
λ
α−

(
1− 1√

λ
α
)

1√
λ
√

1+ 1
λ
− 2√

λ
α

1 + 1
λ −

2√
λ
α

(151)

Then we can find the extremal points of f(α) as

∂f(α, λ)

∂α
= 0⇔ 1 +

1

λ
− 2√

λ
α = 1− 1√

λ
α (152)

⇔ α =
1√
λ

(153)

Using that λ > 1 we have the following inequalites

∂f(α, λ)

∂α

∣∣∣∣
α=1

= − 2

λ
(
1− 1√

λ

)2 < 0,
∂f(α, λ)

∂α

∣∣∣∣
α=0

=
2

√
λ
√
1 + 1

λ

(
1− 1

1 + 1
λ

)
> 0.

(154)

Thus, α = 1√
λ

(150) is a maximum and it is achieved at

f

(
1√
λ
, λ

)
= 2

(
1−

√
1− 1

λ

)
. (155)

Using the original definition of f(α, λ) we can conclude that

∥a− − c∥22 ≤ 2

(
1−

√
1− 1

λ

)
≤ 2

λ
, (156)

where the last inequality follows from λ > 1, and 1− x ≤
√
1− x for 0 ≤ x < 1.

In our regret analysis, we will check the scaling of λmax(Vt) and to do it we will prove a
differential inequality involving λmax(Vt). The Lemma below will help us to solve that inequality.

Theorem 10 (Petrovitch (1901)) If u satisfies the differential inequality du(t)
dt ⋚ f(u(t), t), and y

is the solution to the ordinary differential equation (ODE) dy(t)
dt = f(y(t), t) under the boundary

condition u(t0) = y(t0), then:

∀t > t0, u(t) ⋚ y(t). (157)

C.1. Proof of Theorem 4

Proof To simplify notation we use

λmin,t := λmin(Vt), λmax,t := λmax(Vt) (158)
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First, we fix

λ0 = max

{
2,

√
2

3(d− 1)

d

6
√
d− 1

+
2

3(d− 1)

}
, (159)

and later we will justify this choice. Note that the regret can be written as

Regret(T ) =
1

2

T̃∑
t=1

d−1∑
i=1

(
∥θ − a+t,i∥

2
2 + ∥θ − a−t,i∥

2
2

)
, (160)

so to upper bound the regret, we need to quantify the distance ∥θ − a+t,i∥22 between the unknown

parameter and the actions we select at each batch t. The history up to batch t ≤ T̃ is defined as

Ht :=
(
r+s,1, a

+
s,1, r

−
s,1, a

−
s,1, ..., r

+
s,d−1, a

+
s,d−1, r

−
s,d−1, a

−
s,d−1

)t
s=1

. (161)

Lemma 2 gives us this distance with a certain probability under the assumption that the event

Gt :={
(
Ht−1, a

±
s,i

)
: σ2

s(a
±
s,i

)
) ≤ σ̂2

s(Hs−1, a
±
s,i) ∀s ∈ [t]}, (162)

holds. Using the definition of the subgaussian parameter for the noise ϵt (4) we can upper bound it
for our choice of actions as

σ2
t (a

±
t,i) ≤ 1− ⟨a±t,i, θ⟩

2 = 1− (1− 1

2
∥θ − a±t,i∥

2
2)

2

= ∥θ − a±t,i∥
2
2 −

1

4
∥θ − a±t,i∥

4
2 ≤ ∥θ − a±t,i∥

2
2. (163)

Thus, we need to use an estimator of the form (6) that upper bounds the distance ∥θ − a±t,i∥22.
This quantity depends on the unknown parameter θ, thus we can not guarantee that Gt holds with
probability one at each time step t. The other event that we will need to hold to quantify the distance
is the following

Et := {Ht : ∀s ∈ [t] , θ ∈ Cs}, (164)

which is guaranteed to hold with probability at least 1 − δ if Gt holds by Lemma 2. We leave the
probability computation that both events hold for the end of the proof.

Choosing w(VT ) and instantaneous regret bound under Et

For now, we will assume that Et always holds to justify our choice of weights through a bound on
∥θ − a±t,i∥2. This also will allow us to bound the instantaneous regret. From triangle inequality we
have

∥θ − a±t,i∥2 ≤ ∥θ − θ̃w
t−1∥2 + ∥θ̃w

t−1 − θw
t−1∥2 + ∥θw

t−1 − a±t,i∥2

≤

√
βt−1,δ

λmin,t−1︸ ︷︷ ︸
(i)

+

√
βt−1,δ

λmin,t−1︸ ︷︷ ︸
(ii)

+

√
2

λmin,t−1︸ ︷︷ ︸
(iii)

≤ 3

√
βt−1,δ

λmin,t−1
, (165)

where for the above bounds we use:
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a+t

a−t

θ

θ̃w
t−1

θw
t−1

r
=
√ β

t
−

1
,δ

λ
m

in
,t
−

1

B2
r(θ̃

w
t−1)

Ct−1

Figure 3: Sketch for the triangle inequality used to bound ∥θ − a±t,i∥2 in (165). The red lines
represent the distances (i), (ii) and (iii). Under the event θ ∈ Ct−1 we can use
Ct−1 ⊆ Bd

r(θ̃
w
t−1) with r being the longest axis of the ellipsoid and bound all distances by

the diameter 2r.

• (i). Since θ ∈ Ct−1, by definition of Ct−1 (11) we have ∥θ − θ̃w
t−1∥Vt−1 ≤

√
βt−1,δ and then

the inequality follows from λmin,t−1Id×d ≤ Vt−1.

• (ii). Since θ ∈ Ct−1 and θ ∈ Sd this implies that Bd
r(θ̃

w
t−1) ∩ Sd is non-empty with r =√

βt−1,δ

λmin,t−1
(the longest axis of the ellipsoid). Then using that Ct−1 ⊆ Bd

r(θ̃
w
t−1) and θwt−1 is

the normalized vector of θ̃wt−1 which is the center of Ct−1 we get θwt−1 ∈ Bd
r(θ̃

w
t−1).

• For (iii). We apply Lemma 9 using the expression of a±t (14) with c = θw
t−1 and λ = λmin,t−1.

The last inequality follows from βt ≥ 2. For t = 0,

β0,δ =

(√
λ0 +

√
2 log

(
1

δ

))
. (166)

Note that at batch t we use that Et−1 holds instead of Et since we want to define σ̂t such that only
depends on past information up to time step t − 1. Thus, a choice that will guarantee the event Gt

to hold under the assumption that Et−1 holds is σ̂2
t :=

9βt−1,δ

λmin,t−1
. However our particular update of

Vt with the choices of actions a+t,i, a
−
t,i guarantees that

λmin,t ≥

√
2

3(d− 1)
λmax,t, (167)
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if we use Theorem 3 (later we will check that we are under the right assumptions to use it). It is
important to note that the above bound is independent of the events Gt, Et and it is a consequence
only of our particular choice of actions (14). Combining (167) and (165)

∥θ − a±t,i∥
2
2 ≤ 9

βt−1,δ

λmin,t−1
≤

9
√
3
√
d− 1βt−1,δ√

2
√
λmin,t−1

. (168)

Thus, using that 9
√
3√
2
≤ 12 we see that with our definitions of estimator (8) and weights

σ̂2
t (a

±
t,i) =

12
√
d− 1βt−1,δ√
λmax,t−1

, ω(Vt−1) =
1

σ̂2
t

, (169)

are well defined since only depends on the historyHt−1, and

σ2
t (a

±
t,i) ≤ σ̂2

t (a
±
t,i) if θ ∈ Ct−1. (170)

To bound the regret our technique uses upper and lower bounds on the scaling of Tr(Vt) as
a function of the number of rounds. In the standard LinUCB technique if the actions are bounded
(∥at∥2 = Θ(1)) and this immediately gives the linear scaling Tr(Vt) = Θ(t). Since we are updating
Vt using ω(Vt) we need to do some extra work, and we will see that Tr(Vt) = Θ̃(t2).

Upper bound for Tr(Vt)

The reason why we need an upper bound for Tr(Vt) is because we will need an upper bound for βt,δ
that depends on Tr(Vt). A direct calculation shows

Tr(Vt) = λ0 +

t∑
s=1

2(d− 1)ω(Vs−1) (171)

= λ0 +

t∑
s=1

2(d− 1)

12
√
d− 1βs−1,δ

√
λmax,s−1 (172)

≤ λ0 +

√
d− 1

6β0.δ

t−1∑
s=0

√
λmax,s, (173)

where we used β0,δ ≤ βt,δ. Then using λmax,t ≤ Tr(Vt) and β0,δ ≥ 1 we have

λmax,t ≤ λ0 +

√
d

6

t−1∑
s=0

√
λmax,s. (174)

Now we want to extend λmax,t to a monotonic function on the interval [0, T̃ ]. In order to do that we
define the linear interpolation g1 : [0, T̃ ]→ R≥0 as

g1(x) := (t+ 1− x)λmax,t + (x− t)λmax,t+1 for x ∈ [t, t+ 1) and t ∈ {0, ..., T̃}.
(175)
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Then using (174) and g1(t) = λmax,t we have

g1(t) ≤ λ0 +

√
d

6

t−1∑
s=0

√
g1(s) ≤ λ0 +

√
d

6

∫ t

0

√
g1(x)dx for t ∈ {0, ..., T̃}. (176)

Now we want to prove the above inequality but for g1(x) with x ∈ [0, T̃ ]. From the above inequality
and the definition of g1(x) (175) we have that for x ∈ [t, t+ 1)

g1(x) ≤ λ0 +

√
d

6

t−1∑
s=0

√
g1(s) +

√
d

6
(x− t)

√
g1(t) (177)

≤ λ0 +

√
d

6

∫ t

0

√
g1(x)dx+

√
d

6
(x− t)

√
g1(t). (178)

Then we can use the above relation and∫ x

t

√
g1(s)ds =

∫ x−t

0

√
g1(s+ t)ds =

∫ x−t

0

√
(1− s)g1(t) + sg1(t+ 1)ds (179)

≥
∫ x−t

0

√
g1(t) ≥ (x− t)

√
g1(t), (180)

where the second equality follows from the definition of g1(x) (175) and the first inequality g1(t) =
λmax,t ≤ λmax,t+1 = g1(t+ 1). We conclude that

g1(x) ≤ λ0 +

√
d

6

∫ x

0

√
g1(s)ds. (181)

Using the fundamental theorem of calculus

g1(x) ≤ λ0 +

√
d

6
(G1(x)−G1(0)) where

dG1

dx
=
√

g1(x). (182)

Fixing G(0) = 0 and rearranging

dG1

dx
≤

√
λ0 +

√
d

6
G1(x). (183)

Now solving for the equality with G(0) = 0 and using Theorem 10 we arrive at

G1(x) ≤
√
d

24
x2 +

√
λ0x. (184)

Finally inserting the above into (182) using that g1(t) = λmax,t

λmax,t = g1(t) ≤
d

144
t2 +

√
dλ0

6
t+ λ0, (185)

and this gives the following bound on Tr(Vt)

Tr(Vt) ≤ dλmax,t ≤ d

(
d

144
t2 +

√
dλ0

6
t+ λ0

)
. (186)
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Upper bound for βt,δ

In order to give an upper bound for βt,δ (12) we have to give an upper bound for det(Vt). The
inequality of arithmetic and geometric means gives

det(Vt) ≤
(
Tr(Vt)

d

)d

, (187)

which combined with (186) and (12) gives

βt,δ ≤

λ0 +

√√√√2 log
1

δ
+ d log

(
d

144λ0
t2 +

√
d√
λ06

t+ 1

)2

. (188)

Lower bound for λmax,t

In order to give an upper bound for regret our main technique is to control the growth of λmax,t

through a lower bound for λmax,t. We will employ the same technique as in the previous part. For
the lower bound we are only interested in the leading terms so we start by lower bounding Tr(Vt)
as

Tr(Vt) ≥
t∑

s=2

2(d− 1)ω(Vs−1) (189)

=
t∑

s=2

√
d− 1

√
λmax,s−1

6βs−1,δ
(190)

≥
√
d− 1

6β
T̃ ,δ

t−1∑
s=1

√
λmax,s. (191)

where we used βt,δ ≤ β
T̃ ,δ

. Then since our problem is restricted to Rd we have that for the
maximum eigenvalue of Vt,

λmax,t ≥
Tr(Vt)

d
. (192)

Thus combining with the above expressions we have

λmax,t ≥
√
d− 1

6dβ
T̃ ,δ

t−1∑
s=1

√
λmax,s. (193)

Addding each side by
√
d−1

6dβ
T̃ ,δ

√
λmax,t and using the fact that λmax,t ≥

√
λmax,t since λmax,t ≥ 1

we have

λmax,t +

√
d− 1

6dβ
T̃ ,δ

√
λmax,t ≥

√
d− 1

6dβ
T̃ ,δ

t−1∑
s=1

√
λmax,s +

√
d− 1

6dβ
T̃ ,δ

√
λmax,t, (194)(

1 +

√
d− 1

6dβ
T̃ ,δ

)
λmax,t ≥ λmax,t +

√
d− 1

6dβ
T̃ ,δ

√
λmax,t ≥

√
d− 1

6dβ
T̃ ,δ

t∑
s=1

√
λmax,s, (195)

λmax,t ≥
1

1 + 6 d√
d−1

β
T̃ ,δ

t∑
s=1

√
λmax,s. (196)
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As before we want to extend λmax,t to a monotonic function on the interval [0, T̃ ] and define the
lower linear interpolation g2 : [0, T̃ ]→ R≥0 as

g2(x) := (t+ 1− x)λmax,t + (x− t)λmax,t+1 for x ∈ [t, t+ 1) and t ∈ {0, ..., T̃}.
(197)

Then we have that

g2(t) ≥
1

1 + 6 d√
d−1

β
T̃ ,δ

t∑
s=1

√
g2(s) (198)

≥ 1

1 + 6 d√
d−1

β
T̃ ,δ

∫ t

0

√
g2(x)dx for t ∈ {0, ..., T̃}, (199)

since g2(t) = λmax,t for t ∈ {0, ...., T̃}. Then we can check that the above inequality also holds for
x ∈ [0, T̃ ]. If x ∈ [t, t+ 1) we have

g2(x) ≥
1

1 + 6 d√
d−1

β
T̃ ,δ

(
t∑

s=1

√
g2(s) + (x− t)

√
g2(t+ 1)

)
(200)

≥ 1

1 + 6 d√
d−1

β
T̃ ,δ

(∫ t

0

√
g2(x)dx+ (x− t)

√
g2(t+ 1)

)
, (201)

where the first inequality we applied the definition of g2(x) (197) and the inequality for λmax,t (193).
Then, ∫ x

t

√
g2(s)ds =

∫ x−t

0

√
g2(s+ t)ds =

∫ x−t

0

√
(1− s)g2(t) + sg2(t+ 1)ds (202)

≤
∫ x−t

0

√
g2(t+ 1)ds ≤ (x− t)

√
g2(t+ 1), (203)

where the second equality follows from the definition of g2(x) and the first inequality from g2(t) =
λmax,t ≤ λmax,t+1 ≤ g2(t+ 1). Combining with (200) we have

g2(x) ≥
1

1 + 6 d√
d−1

β
T̃ ,δ

∫ x

0

√
g2(s)ds. (204)

Using the fundamental theorem of calculus

g2(x) ≥
1

1 + 6 d√
d−1

β
T̃ ,δ

(G2(x)−G2(0)) where
dG2(x)

dx
=
√
g2(x). (205)

Fixing G2(0) = 0 and rearranging

dG2(x)

dx
≥
√

1

1 + 6 d√
d−1

β
T̃ ,δ

√
G2(x). (206)
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Now solving the equality with G2(0) = 0 and using Theorem 10

G2(x) ≥
1

4 + 24 d√
d−1

β
T̃ ,δ

x2. (207)

Using that g2(t) = λmax,t and inserting the above result into (205)

λmax,t = g2(t) ≥
1

4(1 + 6 d√
d−1

β
T̃ ,δ

)2
t2. (208)

Bounding the regret

From the weight update (16) we have

ω(Vt) =

√
λmax,t−1

12
√
d− 1βt,δ

≤ 1

12
√
d− 1

√
λmax,t−1, (209)

so to use Therorem 3 we can choose C = 1
12

√
d−1

, our choice of λ0 (159), actions (14) and the

sequence {θw
t }∞t=0 ⊂ Sd. Then our update given by (15) satisfies all conditions of Theorem 3 and

our choice of actions guarantees

λmin,t ≥

√
2

3(d− 1)
λmax,t. (210)

Then from (188) we can upper bound βt,δ as

βt,δ ≤ βT,max where βT,max :=

λ0 +

√√√√2 log
1

δ
+ d log

(
d

144λ0
T 2 +

√
d√
λ06

T + 1

)2

.

(211)

Finally, we can use the bound from (163)(165) (under the assumptions that Et and Gt hold) com-
bined with (210) to arrive at

∥θ − a±t,i∥
2
2 ≤

9βT,max

λmin,t−1
(212)

≤
12
√
d− 1βT,max√
λmax,t−1

(213)

≤
24
√
d− 1βT,max(1 + 6 d√

d−1
βT,max)

t− 1
(214)

=
144dβ2

T,max + 24
√
d− 1βT,max

t− 1
(215)
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where we used the lower bound for λmax,t (208) and 9
√
3√
2
≤ 12. Then using the above result we can

bound the regret as

Regret(T ) =
1

2

T̃∑
t=1

d−1∑
i=1

(
∥θ − a+t,i∥

2
2 + ∥θ − a−t,i∥

2
2

)
(216)

≤ 4(d− 1) +
1

2

T̃∑
t=2

d−1∑
i=1

(
∥θ − a+t,i∥

2
2 + ∥θ − a−t,i∥

2
2

)
(217)

≤ 4(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

) t̃∑
t=2

1

t− 1
(218)

≤ 4(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)
. (219)

Using that βT,max = O(d log(T )) we have that

Regret(T ) = Õ(d4 log3(T )). (220)

Success probability analysis

From the computations in (163)(165)(169)(170) and our choice of σ2
t (at) (16) we have that

if θ ∈ Cs−1 ⇒ σ2
s(a

±
s,i) ≤

12
√
d− 1βt−1,δ√
λmax,t−1

= σ̂2
s(a

±
s,i), (221)

thus,

Pr(Gt) ≥ Pr(Et−1) (222)

where we have used the definitions of the events Gt (162),Et (164).
The initial choice σ̂2

1 = 1 implies σ2 ≤ σ̂2
1 and using Lemma 2 we have

Pr(G1) = 1, (223)

Pr(E1) ≥ 1− δ. (224)

Using Bayes theorem

Pr(Et) =
Pr(Et|Gt)Pr(Gt)

Pr(Gt|Et)
= Pr(Et|Gt)Pr(Gt), (225)

where in the last equality we used

Pr(Gt|Et) = 1. (226)

From Lemma 2 we have

Pr(Et|Gt) ≥ 1− δ. (227)
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Thus, applying recursively the above inequalities

Pr(G2) ≥ Pr(E1) ≥ 1− δ, (228)

Pr(E2) = Pr(E2|G2)Pr(G2) ≥ (1− δ)2 (229)
...

Pr(Gt) ≥ Pr(Et−1) ≥ (1− δ)t−1 (230)

Pr(Et) = Pr(Et|Gt)Pr(Gt) ≥ (1− δ)t (231)

Finally to bound the regret we used the assumption that θ ∈ Ct for any t ∈ {1, ..., T̃ − 1}. Thus we
can bound the probability that the obtained bound holds as

Pr

(
Regret(T ) ≤ 4(d− 1) +

(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

))
(232)

≥ Pr(E
T̃
∩G

T̃
) = Pr(G

T̃
)Pr(E

T̃
|G

T̃
). (233)

≥ (1− δ)T̃−1(1− δ) = (1− δ)T̃ . (234)

The result follows choosing δ = δ′

T̃
for some 0 < δ′ < 1, the inequality

(
1− δ′

T̃

)T̃
≥ 1 − δ′ and

√
d

d−1 ≤ 2.

Corollary 11 Under the same assumptions of Theorem 4, we can choose δ = 1

T̃
and Algorithm 1

achieves

E[Regret(T )] ≤ 8(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)
, (235)

or

E[Regret(T )] = O(d4 log3(T )). (236)

Proof Defining the event

RT =

{
H

T̃
: Regret(T ) ≤ 4(d− 1) +

(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)}
(237)

we have by Theorem 4 that

Pr(RT ) ≥ 1− δ = 1− 1

T̃
, (238)

Pr(RC
T ) ≤

1

T̃
. (239)
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Then

E[Regret(T )] = E [Regret(T )I{RT }] + E
[
Regret(T )I{RC

T }
]

≤ 4(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)
+ 4(d− 1)T̃Pr

(
RC

T

)
(240)

≤ 8(d− 1) +
(
144d2β2

T,max + 24(d− 1)
3
2βT,max

)
log

(
T

2(d− 1)

)
, (241)

and the results follows using that for δ = 1

T̃
, βT,max = O(d log(T )).

Appendix D. Minimax lower bound for linear bandit A = Sd, θ ∈ Sd and constant
noise

In this section, we prove that any small perturbation in our noise model leads to Ω(
√
T ) regret. We

study a minimax lower bound for the following reward model

rt = ⟨at, θ⟩+N
(
0, σ2

t,θ

)
+N

(
µ̃, σ̃2

)
= N (µ̃t,θ, σ̃

2
t,θ), (242)

where θ ∈ Sd, µ̃, σ̃2 ∈ R, σ̃2 > 0, and

σ2
t,θ := 1− ⟨at, θ⟩2, µ̃t,θ := ⟨at, θ⟩+ µ̃t,θ, σ̃2

t,θ := σ2
t,θ + σ̃2. (243)

Recall that the regret is given by

Regret(T ) =
T∑
t=1

1− ⟨at, θ⟩. (244)

Our lower bound proof is an adaptation of the lower bound given in Abeille et al. (2021) that was
introduced for logistic bandits and this provides a lower bound for linear bandits with A = Sd, θ ∈
Sd. For completeness, in Lemma 12 we reproduce the main steps and we note that in our setting
some parts simplify. In order to state the result we define {ei}di=1 the standard basis in Rd and the
flip operator. Given θ ∈ R, i ∈ [d] the flip operator is defined as

Flipi(θ) := (θ1, θ2, ...,−θi, ..., θd). (245)

Lemma 12 Given a stochastic linear bandit with action set A = Sd = {x ∈ Rd : ∥x∥2 = 1}, a
policy π, a reference parameter θ∗ = ∥θ∗∥2e1 ∈ Rd and the set of parameters

Ξ =

{
θ∗ + ϵ

d∑
i=2

viei, vi ∈ {−1, 1}

}
, (246)
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where 0 < ϵ ≤ 1
d−1 . Then the average of the expected regret over the set can be lower bounded as

1

|Ξ|
∑
θ∈Ξ

Eθ [Regret(T )] ≥ Tϵ2

d

8
−
√
d

4

√√√√ 1

|Ξ|
∑
θ∈Ξ

d∑
i=2

DKL

(
Pθ,PFlipi(θ)

) , (247)

where Pθ,PFlipi(θ) are the probability measures of actions and rewards obtained by the interaction
of the policy π with the environments θ,Flipi(θ) respectively. Moreover, ϵ can be fixed such that for
all θ ∈ Ξ then θ ∈ Bd2 .

Proof First, we note that for any θ ∈ Ξ it has a constant norm, i.e

∥θ∥ =
√
∥θ∗∥2 + (d− 1)ϵ2, for θ ∈ Ξ. (248)

Thus, we fix

∥θ∗∥ =
√
1− (d− 1)ϵ2 (249)

and we have that

if θ ∈ Ξ⇒ θ ∈ Sd−1. (250)

Note that when choosing ϵ we will have the following restriction

ϵ2 ≤ 1

d− 1
. (251)

From the expression of the regret we have

Eθ [Regretθ(T )] =
1

2
Eθ

[
T∑
t=1

∥θ − at∥2
]
=

1

2
Eθ

[
d∑

i=1

T∑
t=1

[θ − at]
2
i

]
(252)

≥ 1

2
Eθ

[
d∑

i=1

T∑
t=1

[θ − at]
2
i 1{Ai(θ)}

]
= (a) (253)

where the event Ai(θ) is defined as

Ai(θ) :=

{[
θ − θ∗
∥θ∗∥

]
i

[
T∑
t=1

θ∗
∥θ∗∥

− at

]
i

≥ 0

}
, (254)

for i = 1, 2, ..., d. Then we want to compare with the reference environment θ∗, and we can
introduce it as

(a) =
1

2
Eθ

[
d∑

i=1

T∑
t=1

[
θ − θ∗
∥θ∗∥

+
θ∗
∥θ∗∥

− at

]2
i

1{Ai(θ)}

]
(255)

≥ 1

2
Eθ

[
d∑

i=1

T∑
t=1

[
θ − θ∗
∥θ∗∥

]2
i

1{Ai(θ)}

]
=

T

2
Eθ

[
d∑

i=1

[
θ − θ∗
∥θ∗∥

]2
i

1{Ai(θ)}

]
(256)
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where the last inequality follows from the identity (x + y)2 = x2 + 2xy + y2 with x = θ − θ∗
∥θ∗∥ ,

y = θ∗
∥θ∗∥ − at and the definition of the event Ai(θ). Using the above computation and that θ ∈ Ξ,

Eθ [Regretθ(T )] ≥
T

2
Eθ

[
d∑

i=2

[
θ − θ∗
∥θ∗∥

]2
i

1{Ai(θ)}

]
(257)

≥ Tϵ2

2

d∑
i=2

Eθ [1{Ai(θ)}] =
Tϵ2

2

d∑
i=2

Pθ (Ai(θ)) . (258)

Now we want to apply the averaging hammer technique that was introduced in (Lattimore and
Szepesvári, 2020, Chapter 24, Theorem 24.1). Let i ∈ {2, ..., d}, fix θ ∈ Ξ then using that [θ∗]i = 0
it is easy to check that

Ai(Flipi(θ)) = AC
i (θ). (259)

Then using the definition of the total variation distance and Pinsker inequality we have

PFlipi(θ)(Ai(Flipi(θ)) ≥ Pθ(Ai(Flipi(θ)))−DTV (Pθ,PFlipi(θ)) (260)

≥ Pθ(A
C
i (θ))−

√
1

2
DKL(Pθ,PFlipi(θ)). (261)

Then applying the above results we have

1

|Ξ|
∑
θ∈Ξ

d∑
i=2

Pθ (Ai(θ)) ≥
1

2|Ξ|

d∑
i=2

∑
θ∈Ξ

(
Pθ(Ai(θ)) + PFlipi(θ)(Ai(Flipi(θ))

)
(262)

≥ 1

2|Ξ|

d∑
i=2

∑
θ∈Ξ

1−
√

1

2
DKL(Pθ,PFlipi(θ)). (263)

Using Jensen inequality, Cauchy-Schwartz, and the fact that d ≥ 1 we have

1

|Ξ|
∑
θ∈Ξ

d∑
i=2

Pθ (Ai(θ)) ≥
d

4
−
√
d

2

√√√√ 1

|Ξ|
∑
θ∈Ξ

d∑
i=2

DKL

(
Pθ,PFlipi(θ)

)
(264)

And the result follows from combining (257) and (264).

Before proving the main theorem we need a formula for the KL divergence between two normal
distributions. Given N (µ1, σ

2
1) and N (µ2, σ

2
2) it follows from a direct calculation that

DKL

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)
=

1

2

(
log

(
σ2
2

σ2
1

)
+

σ2
1

σ2
2

− 1

)
+

(µ1 − µ2)
2

σ2
2

. (265)

With these results, we are ready to prove the main theorem.

Theorem 13 Given a stochastic linear bandit with action set A = Sd = {x ∈ Rd : ∥x∥2 = 1} and
reward model given by (242), then there exists an unknown parameter θ ∈ Rd such that ∥θ∥2 = 1
and

Eθ[Regret(T )] ≥ 1

100
σ̂d
√
T , (266)

for T ≥ 1
6400d

2σ̃2.
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Proof First we suppose that for any θ ∈ Ξ,

Eθ[Regret(T )] ≤ Cdσ̃
√
T , (267)

for some constant C > 0 that without loss of generality we set to C = 1. We see from Lemma 12
that we need to compute DKL

(
Pθ,PFlipi(θ)

)
. From Lattimore and Szepesvári (2020)[Chapter 24,

Theorem 24.1] we have

DKL

(
Pθ,PFlipi(θ)

)
= Eθ

[
T∑
t=1

DKL

(
N (µ̃t,θ, σ̃

2
t,θ),N (µ̃t,Flipi(θ), σ̃

2
t,Flipi(θ)

)
)]

. (268)

Using (243) and (265) we have

DKL

(
N (µ̃t,θ, σ̃

2
t,θ),N (µ̃t,Flipi(θ), σ̃

2
t,θ′)
)
= (269)

1

2

log

(
1− ⟨at,Flipi(θ)⟩2 + σ̃2

1− ⟨at, θ⟩2 + σ̃2

)
︸ ︷︷ ︸

(a)

+
1− ⟨at, θ⟩2 + σ̃2

1− ⟨at,Flipi(θ)⟩2 + σ̃2︸ ︷︷ ︸
(b)

−1

 (270)

+
⟨at, θ − Flipi(θ)⟩2

1− ⟨at,Flipi(θ)⟩2 + σ̃2
. (271)

Now we are going to upper bound the terms (a) and (b).

(a) = log

(
1 +
⟨at, θ⟩2 − ⟨at,Flipi(θ)⟩2

1− ⟨at, θ⟩2 + σ̃2

)
≤ ⟨at, θ⟩

2 − ⟨at,Flipi(θ)⟩2

1− ⟨at, θ⟩2 + σ̃2
(272)

≤ ⟨at, θ⟩
2 − ⟨at,Flipi(θ)⟩2

σ̃2
(273)

(b) = 1 +
⟨at,Flipi(θ)⟩2 − ⟨at, θ⟩2

1− ⟨at,Flipi(θ)⟩2 + σ̃2
≤ 1 +

⟨at,Flipi(θ)⟩2 − ⟨at, θ⟩2

σ̃2
(274)

Thus, we have that (a) + (b)− 1 ≤ 0 and

DKL

(
N (µ̃t,θ, σ̃

2
t,θ),N (µ̃t,Flipi(θ), σ̃

2
t,θ′)
)
≤ 4ϵ2

σ̃2
[at]

2
i . (275)

Inserting the above into DKL

(
Pθ,PFlipi(θ)

)
we have

d∑
i=2

DKL

(
Pθ,PFlipi(θ)

)
≤ 4ϵ2

σ̃2

d∑
i=2

Eθ

[
T∑
t=1

[θ − at + θ]2i

]
(276)

≤ 8ϵ2

σ̃2
Eθ

[
T∑
t=1

d∑
i=2

[θ − at]
2
i + [θ]2i

]
≤ 8ϵ2

σ̃2
Eθ

[
T∑
t=1

d∑
i=1

[θ − at]
2
i +

T∑
t=1

d∑
i=2

[θ]2i

]
(277)

=
8ϵ2

σ̃2

(
2Eθ[Regret(T )] + T (d− 1)ϵ2

)
≤ 16ϵ2σ̃d

√
T

σ̃2
+

8dϵ4T

σ̃2
(278)
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where we have used that d ≥ 1, θ ∈ Ξ, and (267). Thus, inserting the above into the result of
Lemma 12,

1

|Ξ|
∑
θ∈Ξ

Eθ [Regret(T )] ≥ dTϵ2

1

8
− 1

4

√
16σ̃ϵ2

√
T + 8ϵ4T

σ̃2

 (279)

Finally, choosing ϵ2 = σ̃
80

√
T

we have

1

|Ξ|
∑
θ∈Ξ

Eθ [Regret(T )] ≥ σ̃d
√
T

(
1

8
− 1

4

√
16

80
+

8

6400

)
(280)

≥ 1

100
σ̃d
√
T . (281)

We note that in order to have ϵ2 ≤ 1
d−1 we need T ≥ 1

6400d
2σ̃2. Note that we proved the result

under the hypothesis that (267) holds. If (267) does not hold the result follows trivially.

Appendix E. Failure of lower-bound methods for vanishing noise

Specifically, we encounter the problem that these calculations rely on the computation of the KL
divergences DKL(Pθ,Pθ′) for two “close” unknown parameters θ, θ′ ∈ Sd and it is not possible to
give a non-trivial bound since their variance is arbitrarily close to 0 when we select actions near the
unknown parameters. We can easily see this fact for example if we consider Gaussian distributed
rewards and use the divergence decomposition lemma that leads to

DKL(Pθ,Pθ′) = Eθ

[
T∑
t=1

DKL

(
N (⟨θ, at⟩, 1− ⟨θ, at⟩2),N (⟨θ′, at⟩, 1− ⟨θ′, at⟩2)

)]
, (282)

where N (µ, σ2) is a Gaussian probability distribution with mean µ ∈ R and variance σ2 ≥ 0. The
proof requires to upper bound of the above divergence but a simple computation shows that the
divergence DKL for the reward distributions cannot be upper bounded since the variances can go
arbitrarily close to 0 and we only get the trivial bound DKL ≤ ∞.
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