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Abstract
Many algorithms for high-dimensional regression problems require the calibration of regularization
hyperparameters. This, in turn, often requires the knowledge of the unknown noise variance in order
to produce meaningful solutions. Recent works show, however, that there exist certain estimators
that are pivotal, i.e., the regularization parameter does not depend on the noise level; the most
remarkable example being the square-root lasso. Such estimators have also been shown to exhibit
strong connections to distributionally robust optimization. Despite the progress in the design of
pivotal estimators, the resulting minimization problem is challenging as both the loss function and
the regularization term are non-smooth. To date, the design of fast, robust, and scalable algorithms
with strong convergence rate guarantees is still an open problem. This work addresses this problem
by showing that an iteratively reweighted least squares (IRLS) algorithm exhibits global linear
convergence under the weakest assumption available in the literature. We expect our findings will
also have implications for multi-task learning and distributionally robust optimization.
Keywords: Sparse Regression, Square-root LASSO, Iteratively Reweighted Least Squares, Linear
Convergence Rate, Majorization-Minimization, Global Convergence, Convex Optimization

1. Introduction

High-dimensional regression problems are ubiquitous in machine learning, statistics, and signal
processing. In such scenarios, the number of attributes or features present in each data point ex-
ceeds the number of samples. This is the case in many applications, including computer vision,
econometrics, or genomics. A large amount of work in the last decades has been devoted to un-
derstanding which solutions to such problems are meaningful and how to find them. A common
strategy is to design regularizers that bias the variable selection process towards simpler models,
limiting the number of active variables within a larger family of predefined admissible features.
This approach became known as sparse regression. Enforcing such a parsimonious principle in the
regression model reduces overfitting, improves generalization, and enhances the interpretability of
the results Hastie et al. (2015). In particular, it is possible to identify which few predictors best
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explain a certain phenomenon Foucart and Rauhut (2013); Wright and Ma (2022). Mathematically
speaking, we consider the linear model given by

yi “ xxi, βy ` ei, (1)

where X P Rnˆp is the design matrix, y P Rn is the data, e P Rn is mean-zero random noise and
β P Rp is an unknown vector of coefficients. We consider the case that p " n, so there are many
coefficient vectors that fit this model. Driven by the guiding intuition of enhancing simplicity, one
often prefers solutions with a small number of non-zero coefficients, which is closely tied to a small
`1-norm, as it can be interpreted as a convex relaxation of the support size.

Arguably, the most studied method for regression tasks with such an objective is the LASSO
Chen and Donoho (1995); Tibshirani (1996). It is an estimator that achieves simultaneous variable
selection and estimation by penalizing large `1-norm among the estimated regression coefficients
given as a solution to the following optimization problem

β̂λ P arg min
βPRp

||Xβ ´ y||22 ` λ||β||1, (2)

where, without loss of generality, the design matrix X is normalized by 1{
?
n.

A lot of work has been done over the last years to understand this type of estimator from the
computational and statistical point of view. It was shown that this estimator attains optimal minimax
rates for the prediction error (Bickel et al., 2009, Section 6) as well as for the reconstruction error in
the `8-norm, e.g., Lounici (2008); Bellec and Zhang (2022). See also Bunea et al. (2007); Koltchin-
skii (2009); Ye and Zhang (2010); Raskutti et al. (2011); Dalalyan et al. (2017). The support size of
the LASSO minimizer was studied by Foucart et al. (2022), and the consistency of the LASSO in
terms of variable selection was established in Zhao and Yu (2006) and Wainwright (2009). More-
over, scalable algorithms were proposed to minimize this objective, e.g., Li et al. (2018); Kümmerle
et al. (2021) and debiased versions of the LASSO or its unrolled version were proposed and an-
alyzed in Javanmard and Montanari (2014, 2018); van de Geer et al. (2014); Hoppe et al. (2022,
2023); Bellec and Zhang (2022); Bellec and Tan (2024).

However, such optimal results depend on a regularization choice that relies on oracle knowledge
about the noise variance, which is usually not available and hard to estimate in many applications
(Giraud, 2015, Chapter 5). Estimating the error variance for LASSO-type problems is a non-trivial
problem that still attracts significant interest. See Giraud et al. (2012); Reid et al. (2016); Yu and
Bien (2019). The suboptimally tuned LASSO, however, can yield suboptimal recovery guarantees.
Besides that, the LASSO estimator lacks some important properties such as scale invariance, see,
e.g., (Giraud, 2015, Section 5.1), or asymptotic normality, see, e.g., (Javanmard and Montanari,
2018, Section 1) and references therein for a discussion.

To overcome some of the aforementioned issues, the seminal paper by Belloni et al. (2011)
proposed the square-root LASSO1. This new estimator, in the authors’ words “handles the unknown
scale, heteroscedasticity, and (drastic) non-Gaussianity of the noise”. Its main feature is that the
tuning parameter λ that leads to minimax oracle inequalities is independent of the noise level. It is
mathematically described by

β̂λ P arg min
βPRp

||Xβ ´ y||2 ` λ||β||1, (3)

1. Also called `2-lasso in the signal processing literature Oymak et al. (2013).
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which can be computed in polynomial time via second-order conic programming. The square-root
LASSO initiated a line of research on estimators for sparse regression that exhibit noise-blindness
under comparable assumptions, so-called pivotal estimators – see Section 3 for a detailed review.

Besides its statistical properties, the importance of this estimator lies in its interpretation as a
distributionally robust optimization (DRO) problem, which, roughly speaking, deals with the prob-
lem of finding a regression vector that minimizes the worst-case loss over an uncertainty set (see,
e.g., Xu et al. (2010); Bertsimas and Copenhaver (2018); Blanchet and Kang (2017); Olea et al.
(2022); Blanchet et al. (2024)). Such a problem has connections with optimal transport (Chu et al.,
2022, Section 2).

Although the square-root LASSO and its generalizations exhibit theoretical characteristics com-
parable to the original LASSO without requiring knowledge of the noise level and also inherit many
additional interesting theoretical properties, to our knowledge, none of them admits algorithmic
solutions with a provable global linear convergence rate as it has recently been established by
Kümmerle et al. (2021) for the original LASSO and its constrained variant, Basis Pursuit. The
reason why a computational solution to the square-root LASSO poses a greater challenge is the
non-differentiability of the loss term that is coupled with the non-smooth terms appearing in the `1
penalty. This coupling poses a challenge when designing optimization algorithms. While several
scalable alternative strategies have been proposed for noise-blind sparse regression - see Section
3 for a discussion - for essentially all of them, only empirical or, at best, local convergence
guarantees are available. In addition, these local guarantees usually rely on assumptions such as
restricted strong convexity and smoothness that are more restrictive than what is required in oracle
inequalities for the square-root LASSO; see, e.g., van de Geer (2016). Lastly, many of these algo-
rithms, while noise blind, still require some parameter tuning, such as a suitable initialization or a
smoothing strategy that is not universal.

Our contribution: We devise an Iteratively Reweighted Least Squares (IRLS) algorithm, which
minimizes non-smooth functions by solving several least squares problems in an iterative way that
provably solve the problem of (non-differentiable) noise-blind sparse regression with a global
linear rate. Our proof requires only the compatibility condition, which is the most general condition
to analyze this type of estimator; see, e.g., van de Geer and Bühlmann (2009); Stucky and van de
Geer (2017). This means that the devised algorithm exhibits linear convergence while at the
same time inheriting the noise-blindness and the oracle inequalities established for the square-
root LASSO. Furthermore, it comes with a universal smoothing strategy and does not require
any parameter tuning. Only the desired sparsity level is required as input. An informal version of
our main theorem reads as follows.

Theorem 1 Consider the linear model y “ Xβ˚` e and assume that the design matrix X satisfies
the compatibility condition. Let β˚0 be the minimizer of Equation (3). There exists a sequence tεku,
such that the sequence βk obtained by minimizing a smoothed version fεkpβq of the square-root
LASSO objective satisfies the following performance guarantee

1. Initially, when the objective is still far from its minimum, as quantified by the condition
k ď k̂ :“ min

 

k P Rp : fεkpβ
kq ´ f0pβ

˚
0 q ą 3λpp` 1qεk{4

(

, the gap of the objective is
decreasing at a linear rate

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď r1´ C1s

”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

.
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2. When the objective is close to its minimum, 0 ď fεkpβ
kq ´ f0pβ

˚
0 q ď 3λpp ` 1qεk{4, the

parameter vectors are also close to the true parameter value

}βk ´ β˚}1 ď C2 rλσspβ˚q`1 ` }e}2s ,

where C1, C2 ą 0 are absolute constants, σspβq`1 denotes the `1-error of the best s-term
approximation of a vector β P Rp, i.e., σspβq`1 “ inft}β ´ z}1 : z P Rp is s-sparseu.

We also obtain a sublinear convergence rate when no assumption is imposed on the design matrix.
A numerical comparison of the proposed algorithm with other state-of-the-art solutions confirms
our findings.

2. Minimizing the square-root LASSO objective with IRLS

In this paper, we devise a majorization-minimization strategy for the non-smooth objective function
in (3), i.e., we introduce a smoothed objective fεpβq that mitigates the non-smoothness of the }¨}1-
norm as well as the non-smoothness of the }¨}2-norm but that, at the same time, majorizes the
sqrt-LASSO objective function to be minimized. After that, we establish quadratic upper bounds
for fεpβq that can be optimized efficiently using iterative methods for least squares. Note that the
objective function (3) is non-smooth both at the points where the data fidelity term vanishes and
wherever an argument entry takes the value zero. Thus, smoothing the objective around these points
will yield a smooth function. As Beck and Teboulle (2012), we use a scaled Huber loss function
represented by jγ with parameter γ ą 0 as a proxy to the vanishing terms (which is related to the
η-trick, e.g., (Bach et al., 2012, Chapter 5)). This function is defined as

jγpxq :“

#

|x|, if |x| ě γ,
1
2

´

x2

γ ` γ
¯

, if |x| ă γ.
.

The smooth approximation function jγpxq is continuously differentiable with the Lipschitz gra-
dient with constant 1{γ. As noted by Beck and Sabach (2015), this function is a translation of
the Huber function Hγpxq, which, in turn, is the Moreau envelope of the absolute value function
|x|. Motivated by Nesterov (2005), Beck and Teboulle (2012) employed this smoothing to estab-
lish accelerated minimization schemes for certain max-type objectives, improving from a rate of
Op1{kq to Op1{k2q. This smoothing was leveraged by Kümmerle et al. (2021) to solve the basis
pursuit problem, a constrained variant of the LASSO, with a linear convergence rate, using an IRLS
approach. The key idea is to approximate the objective by the quadratic majorant given by

Qεpz, βq “ fεpβq ` x∇fεpβq, z ´ βy `
1

2
xz ´ β,Wεpβqpz ´ βqy, (4)

where fε is the smoothed objective, and Wε is a weight matrix tailored to its curvature. Exploiting
the fact that away from the points of non-smoothness, ∇fεpβq is a linear function, this majorant can
be transformed in a pure quadratic function whose minimization properties can then be exploited.

For the square-root LASSO, we work with smoothed objectives of the form

fεpβq “ jξp}Xβ ´ y}2q ` λ

p
ÿ

i“1

jδpβiq, ε “ pξ, δq, ξ, δ ě 0 (5)
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where due to the different nature of the terms, we allow for two different smoothing parameters ξ
and δ. That is, for ξ, δ ą 0 the gradient is given by

∇fεpβq “
XT pXβ ´ yq

maxt}Xβ ´ y}2, ξu
` λ

p
ÿ

j“1

βjej
maxt|βj |, δu

,

which is affine but no longer linear away from the points of non-smoothness. Consequently, one
does not obtain a pure quadratic function, and the IRLS strategy by Kümmerle et al. (2021) is not
directly applicable. To overcome this obstacle, we introduce the change of variables

Xβ ´ y “
“

´y X
‰

„

1
β



“ X̃β̃.

The embedding ṽ :“ p1, vT qT for vectors v P Rp will be used throughout this paper with the added
dimension indexed by zero, i.e., ṽ0 “ 1. With this change of variables, our objective function
becomes

fεpβq “ jξp}Xβ ´ y}2q ` λ

p
ÿ

i“1

jδpβiq “ jξp}X̃β̃}2q ` λ

p
ÿ

i“1

jδpβiq “: f̃εpβ̃q

and the unconstrained optimization of the proposed smoothed objective becomes

min fεpβq “ min
β̃PRp`1, β̃0“1

f̃εpβ̃q. (6)

The gradient of f̃εpβ̃q is now linear away from the points of non-smoothness so that an IRLS strategy
can be devised with a majorant of the form

Qεpz̃, β̃q : “ f̃εpβ̃q ` x∇f̃εpβ̃q, z̃ ´ β̃y `
1

2
xz̃ ´ β̃,Wεpβ̃qpz̃ ´ β̃qy

“ f̃εpβ̃q `
1

2
xz̃,Wεpβ̃qz̃y ´

1

2
xβ̃,Wεpβ̃qβ̃y.

(7)

where the positive semidefinite weight matrix Wε is given by

Wεpβ̃q “
X̃T X̃

maxt}X̃β̃}2, ξu
` λ

„

0 0

0 diagptmax´1t|β̃i|, δuui“1,...,pq



. (8)

In line with the IRLS strategy, this choice of Wε ensures that Qεpz̃, β̃q is a majorizer via the follow-
ing lemma, whose proof can be found in Appendix A.

Lemma 2 The function in Equation (7) with Wε as in (8) admits

i. Wεpβ̃qβ̃ “ ∇f̃εpβ̃q, ii. Qεpβ̃, β̃q “ f̃εpβ̃q, iii. Qεpz̃, β̃q ě f̃εpz̃q.

The minimizer of f̃ε can now be approximated by iteratively solving the least squares problem

β̃k`1 :“ arg min
z̃PRp`1, z̃0“1

Qεpz̃, β̃
kq. (9)
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Indeed, the objective function is decreasing:

0 ď f̃εpβ̃
k`1q ď Qεpβ̃

k`1, β̃kq ď Qεpβ̃
k, β̃kq “ f̃εpβ̃

kq.

As the value β̃k0 “ 1 is enforced by the constraint, we can then invert the change of variables to
obtain an approximating sequence βk to the minimizer of fε. We note that some previous works
considered local majorization-minimization strategies, i.e., majorization only in the neighborhood
of the current iterate βk, see Chouzenoux et al. (2023). However, it is challenging to establish a
convergence rate theory for such methods.

As discussed in the context of matrix completion, e.g., by Kümmerle and Mayrink Verdun
(2020); Kümmerle and Mayrink Verdun (2021), such a method can be seen as a variable metric prox-
imal gradient descent. There are some general convergence results available for such approaches
Park et al. (2020); Tran-Dinh et al. (2015), but mainly for the class of self-concordant functions,
which does not include the Huber loss. Despite (9) being a constrained optimization, its translation
back to the original coordinates can be seen as a classical least squares problem, as the following
lemma shows.

Lemma 3 The k`1-st iterate βk`1 of the approximating sequence arising from (9) is the minimizer
of the unconstrained least squares problem

min
zPRp

}Xz ´ y}22
maxt}Xβk ´ y}2, ξu

` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δu
.

Iterating these least squares problems will give rise to a solution to the smoothed objective. The
convergence speed can be characterized under very general conditions on the design matrix; see
Theorem 6 below.

In general, however, the smoothed objective will approach the non-smooth objective only for
ξ, δ Ñ 0. Hence, to minimize the non-smooth objective, one needs to update the smoothing param-
eters ξ, δ according to an appropriate decay rule, which constitutes Algorithm 1. More details can
be found in Appendix E.

Algorithm 1 Quadratic minimization for square-root LASSO

Input: Design matrix X P Rnˆp, data vector y P Rn, initial ε0 “ pξ0, δ0q.
for k “ 0, 1, 2, . . . do

βk`1 :“ arg min
zPRp

}Xz ´ y}22
maxt}Xβk ´ y}2, ξku

` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δku
. (10)

Update ξk`1, δk`1 such that 0 ă ξk`1 ď ξk and 0 ă δk`1 ď δk (11)

end for
return Sequence pβkqkě1.

Note that due to fε1pβq ď fε2pβq whenever 0 ď ξ1 ď ξ2 and 0 ď δ1 ď δ2, the monotonicity
argument above is still applicable, that is, 0 ď fεk`1

pβk`1q ď fεkpβ
k`1q ď fεkpβ

kq. While this
guarantees that Algorithm 1 eventually converges to a fixed value of the loss function, from this
qualitative argument, it is neither possible to infer the properties of the limit point nor quantify the
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convergence speed. Thus, a more involved analysis is needed. In this paper, we establish that a
suitably chosen decay rate allows for (i) a Op1{kq rate for very general design matrices and, our
main result, (ii) global linear convergence under the assumption that the design matrix X satisfies
the compatibility condition.

3. Related works

Pivotal estimators. Before the proposal of the square-root LASSO (3), there were other attempts
to design scale-invariant and pivotal estimators for the sparse regression problem. For example, the
work Städler et al. (2010) proposed an estimator that is scaling invariant and simultaneously esti-
mates the noise level to the sparse vector. However, this estimator called Scaled LASSO, still relies
on parameter tuning, and no algorithmic solutions were discussed. Inspired by robust regression
techniques (Huber, 1981, Chapter 7), Antoniadis (2010) proposed to minimize the scaling invariant
and jointly convex objective function

pβ̂λ, σ̂λq P arg min
βPRp,σą0

1

2σ
}y ´Xβ}22 `

σ

2
` λ}β}1, (12)

for simultaneous sparse regression and noise estimation. The paper suggested that using the estima-
tor (12) instead of the original Scaled LASSO proposed by Städler et al. (2010) could admit a more
efficient solution algorithm. In his own words “Do the authors think that such a parametrization
could lead to a more efficient optimization algorithm?”. Later, Sun and Zhang (2012) referred to the
estimator (12), as the Scaled LASSO, which led to some confusion in the literature as highlighted
in (van de Geer, 2016, Section 3.1). See also (Owen, 2007, Equation 8). Subsequent works have
referred to it as the Concomitant LASSO by Ndiaye et al. (2017) (in the following, we will also use
this name) or as SPICE (SParse Iterative Covariance-based Estimation) by Babu and Stoica (2014).
As noted in van de Geer (2016), the Concomitant LASSO is equivalent to the square-root LASSO.

Theory for the square-root LASSO. The most celebrated result for the square-root LASSO
estimator is in the form of noise-blind sharp recovery guarantees. Namely, it is possible to establish
that the square-root LASSO estimator attains optimal error for a certain choice of regularization
parameter λ that is independent from the noise level. For example, for Gaussian noise, it was
proven in (Belloni et al., 2011, Theorem 1), (Derumigny, 2018, Theorem 3.1) and (Stucky and
van de Geer, 2017, Corollary 13) that one can choose λ independently of σ, and obtain a solution
of the square-root LASSO βλ with an error of the order of s{n logpp{sq, which is known to be
sharp (see Bellec et al. (2018) and Raskutti et al. (2011)). In particular, Stucky and van de Geer
(2017) established this result for design matrices satisfying the compatibility condition, the weakest
possible assumption for establishing oracle inequalities. Later, this was generalized to adversarial
(worst case) noise for design matrices satisfying again the compatibility condition or, equivalently,
the so-called robust null space property (for a discussion of the equivalence, see Petersen and Jung
(2021)). In this work, we will also focus on this framework of adversarial noise. Under slightly
stronger assumptions on the design matrix, also bounds on the support size for the solutions of
Equation (3) are available Foucart (2023). Recently, Berk et al. (2023) studied the well-posedness
and parameter sensitivity of Equation (3).

Generalizations. Since its introduction, the square-root LASSO estimator has been extended to
encompass several variants of the sparse regression problem such as group sparse regression Bunea
et al. (2014), multivariate response linear regression Liu et al. (2015); Molstad (2022), square-root

7



VERDUN MELNYK KRAHMER JUNG

fused LASSO Jiang et al. (2021), matrix completion Klopp (2014), square-root sorted `1 penalized
estimation (SLOPE) Stucky and van de Geer (2017); Minsker et al. (2024), square-root Principal
Component Pursuit Zhang et al. (2021), and more broadly, any regression problem regularized by a
norm that fulfills the weak decomposability condition Stucky and van de Geer (2017).

Minimization algorithms and convergence rates. A study by Belloni et al. (2011) explores
minimizing (3) using the SDT3 implementation of an interior-point method by Toh et al. (2012) or
the first-order method for conic programs TFOCS by Becker et al. (2011). Later, an ADMM-based
solver was proposed by Li et al. (2015). To mitigate the costly sub-steps of ADMM, a Primal-
Dual Hybrid Gradient with a Op1{kq convergence rate was developed by Goldstein et al. (2015).
The equivalent Concomitant LASSO was addressed using a combination of gradient descent and
alternating minimization by Sun and Zhang (2012), and Ndiaye et al. (2017) proposed a coordinate
descent strategy, coupled with smoothing and a pathwise optimization for the tuning parameter to
enhance the empirical speed of convergence. Poon and Peyré (2023) proposed an algorithm based
on an overparametrized variational formulation that applies to (3), but did not establish a conver-
gence rate. Li et al. (2020) proposed proximal gradient descent and proximal Newton methods
for the square-root LASSO, admitting local linear and local quadratic convergence guarantees, re-
spectively, but required the strong assumption of a locally restricted strongly smooth condition for
their validity. More recently, Tang et al. (2020) presented a semismooth Newton-based method for
a class of minimization problems, including (3), with local superlinear convergence. There were
other attempts to define alternative pivotal estimators in high-dimensional problems specifically de-
signed for speed and scalability, e.g., the self-normalized conic estimator by Belloni et al. (2017)
and the self-tuned Dantzig estimator by Gautier and Tsybakov (2013). The latter admits a linear pro-
gramming formulation, which is solvable in polynomial time, but we are not aware of a thorough
numerical evaluation of these methods, and their convergence rates remain elusive.

IRLS algorithms. The method proposed in this paper is an Iteratively Reweighted Least
Squares (IRLS) algorithm. IRLS algorithms are an active area of research and have been suc-
cessfully applied for many problems beyond high-dimensional regression, such as in subspace pro-
totype learning Mankovich et al. (2022) and point cloud alignment problems Aftab and Hartley
(2015), manifold-valued image restoration Bergmann et al. (2016), system identification Brouillon
et al. (2022), joint learning of neural networks Zhang et al. (2019), numerical methods for elliptic
PDEs Diening et al. (2020), design of FIR filters Burrus et al. (1994), time-harmonic motion track-
ing Melnyk et al. (2024), learning sparse and low-rank priors for image problems Lefkimmiatis and
Koshelev (2023) and the recovery of low-rank matrices Mohan and Fazel (2012); Fornasier et al.
(2011); Kümmerle and Mayrink Verdun (2021). The work Ba et al. (2013) established a correspon-
dence between certain IRLS-type algorithms and a class of Expectation-Maximization algorithms.
The IRLS strategy can be traced back to the solution of the Fermat-Weber problem, i.e., the prob-
lem of finding the geometric median of a discrete set of points in a Euclidean space, proposed by
Weiszfeld (1937) in the 1930s, see also Beck and Sabach (2015). Great advantages of the IRLS
strategy include that it is tuning-free, does not require a sophisticated initialization, and relies on
efficient and simple linear algebra. In each iteration, one only needs to solve a linear system arising
from a quadratic problem. Key to its performance is a well-designed sequence of smoothing pa-
rameters adapted to the geometry of the problem (but not the data). At the same time, however, the
iterative nature with varying degrees of smoothing can make the analysis more complicated, which
is why IRLS and related problems have been of continuous interest in the optimization community.
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4. Global convergence with fixed smoothing parameter

In this section, we study the case that one does not update ε as in Equation (11), but it is fixed to be a
very small positive number. The analysis of this case does not need any structural assumption on the
design matrix X , and its proofs only require tools from convex analysis. Our first result establishes
global sublinear convergence of IRLS for the smoothed problem.

Theorem 4 Let ξ, δ ą 0 and k ě 2 and denote by β˚ε the minimizer of fε. Then the iterates βk of
Algorithm 1 satisfy the inequality

fεpβ
kq ´ fεpβ

˚
ε q ď max

"

2´
k´1
2 pfεpβ

0q ´ fεpβ
˚
ε qq,

8pξ´1}X}2 ` λδ´1qpfεpβ
0q ` f0pβ

˚
ε qq

2

λ2pk ´ 1q

*

.

The rate presented in Theorem 4 can be divided into two distinct components. While the first
term indicates a geometric decay for large objective gaps, it is unclear when the sublinear term
starts to dominate. The following theorem clarifies this issue, establishing linear convergence until
the objective gap falls below a fixed threshold.

Theorem 5 Let ξ, δ ą 0 and denote by β˚ε the minimizer of fε. If fεpβkq ´ fεpβ
˚
ε q ě γ for some

constant γ ą 0, then the iterates βk of Algorithm 1 satisfy the inequality

fεpβ
k`1q ´ fεpβ

˚
ε q ď

´

fεpβ
kq ´ fεpβ

˚
ε q

¯

«

1´
γ

2 maxt1
ξ ,

1
λδ uf

2
0 pβ

˚
ε q ` 4γ

ff

.

The necessity to step away from the minimum by γ can be observed in the linear rate in The-
orem 5, which deteriorates if γ is chosen smaller. We also note the similar dependency on the
smoothing parameters ξ and δ, which is why this result does not translate exactly to IRLS with
decaying smoothing parameters discussed in the next section.

5. Global convergence with decay of the smoothing parameter

This preceding analysis assumed a fixed regularization parameter and derived convergence results
towards the solution β˚ε of the regularized problem. However, the true potential of IRLS-type algo-
rithms lies in constructing a sequence of objective functions with decaying regularization parameters
εk “ pξk, δkq, as captured in Algorithm 1, allowing the iterates to converge towards the solution of
the original non-smooth function (3).

In analogy to constant ε, we again establish global sublinear convergence of fεkpβ
kq to f0pβ

˚
0 q.

However, the most general version of this statement is more technical, which is why we refer it to
Appendix C, see Theorem 19. Its essence is that by using appropriately tuned parameters, one can
achieve a convergence rate of k´1{2. Recent lower bounds by Chizat (2022) for a related smooth
problem class suggest that this rate may be optimal in the general framework that we are considering
in this section. Instead, we state a tuning-free variant of this theorem, also proved in Appendix C,
which still achieves a rate of k´1{3.

Theorem 6 Consider the sequences ξk “ λδk and

δk “
2 mins“0,...,k f0pβ

sq

λ
?
p` 1

?
k ` 1

, k ě 0.
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For k ě 1, the sequence βk generated by Algorithm 1 admits

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď max

!

4
a

p` 1fε0pβ
0q, 10epfε0pβ

0q ´ f0pβ
˚
0 qq

)

k´
1
3 .

6. Global convergence under the compatibility condition

The square-root LASSO is mainly used to retrieve sparse regressors in a noise-blind way. It is, there-
fore, standard in the literature to assume that the design matrix X P Rnˆp is, in some sense, well-
conditioned on the set of sparse vectors or that the kernel of such matrices has a benign geometry.
The common concept to capture this is the compatibility condition, which is also the sharpest con-
dition to obtain oracle inequalities for estimation and prediction, see (van de Geer and Bühlmann,
2009, Figure 1).

Definition 7 A matrix X P Rnˆp is said to satisfy the (L,S)-compatibility condition if there exists
L P p1,8q such that for the set ∆L,S :“

 

v P RN : }vSc}1 ď L}vS}1 and }vS}1 ‰ 0
(

the condition

infvP∆L,S

|S|}Xv}22
}vS}

2
1
ą 0 holds true.

Note that many random designs have this property, even for heavy-tailed distributions (Dirksen
et al., 2018, Theorem 5.1). An equivalent formulation of this condition, more commonly used in ad-
versarial noise models (see (Petersen and Jung, 2021, Proposition 6.1) for the proof of equivalence),
is the robust null space property (NSP).

Definition 8 (Foucart and Rauhut, 2013, Definition 4.17) A matrix X P Rnˆp is said to satisfy the
robust null space property (NSP) of order s P rps with constants 0 ă ρ ă 1 and τ ą 0 if for any set
S Ă rps of cardinality |S| ď s, it holds that

}vS}1 ď ρ}vSc}1 ` τ}Xv}2, for all v P Rp. (13)

In particular, this property implies that sparse recovery via Basis Pursuit, the constrained equivalent
of the LASSO, is robust with respect to adversarial perturbations (Foucart and Rauhut, 2013, Chap-
ter 4); in the noiseless case, it has even been shown to be a necessary condition for the success of
Basis pursuit. See also (Petersen and Jung, 2021, Section 3.3) for an extensive discussion.

Our main theorem, proved in Appendix D, establishes the global linear convergence rate of
IRLS for (3) under NSP:

Theorem 9 Consider the linear system y “ Xβ˚ ` e, where matrix X P Rnˆp satisfies the
null space property with constants 0 ă ρ ď 1

6 and 0 ă τ ď 7
6 . Let λ ď 1{7 and let δk “

min
 

δk´1,
}Xβk´y}2`λσspβkq`1

λpp`1q

(

and ξk “ λδk for k ě 0 and δ´1 “ `8 be the sequence of the
smoothing parameters. Then, for

k ď k̂ :“ min
!

k P N : fεkpβ
kq ´ f0pβ

˚
0 q ą 3λpp` 1qδk{4

)

it holds that the iterates βk of Algorithm 1 admit

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď

„

1´
1

1250pp` 1q



”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

.

Moreover, for 0 ď fεkpβ
kq ´ f0pβ

˚
0 q ď 3λpp` 1qδk{4, we have

}βk ´ β˚}1 ď 18
`

σspβ˚q`1 ` λ
´1}e}2

˘

.
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We consider it a crucial feature of our result that it does not impose a parameter choice but works
for all values of λ ď 1

7 . The reason is that for a random noise model, one may also consider smaller
values of λ: it has been shown that for the square-root LASSO, there is a trade-off between the
parameter λ and the success probability. To achieve a success probability of 1 ´ α, one should

choose λ “
b

2 logp2p{αq
n´1 , see (van de Geer, 2016, Lemma 8.2). This is in line with our worst-case

bound above. If one uses a covering argument over the set of admissible error vectors – as the
covering size is exponential in n, one needs an exponentially small α, which yields a constant λ.

7. Numerical results

In this section, we numerically investigate the convergence properties of our method and compare
it with other state-of-the-art algorithms for solving the square-root LASSO. First, we examine the
convergence rate for multiple decay rates of the smoothing parameter εk. Then, we compare our
approach against different state-of-the-art algorithms (reviewed in Appendix F below) for minimiz-
ing the square-root LASSO objective function in terms of accuracy and running time. The design
matrix X P R200ˆ5000 is a standard Gaussian random matrix normalized by 1{

?
n. We generate

data y that admits a linear model y “ Xβ˚ ` e for some sparse parameter vector β˚ with s “ 20
and e being Gaussian noise. The final version of the code is available in a Github repository2, and
for further implementation details on IRLS, we refer the reader to Appendix E.

7.1. Comparing decay rates of the smoothing parameter

In our first set of experiments, we consider the noiseless scenario and put Theorem 9 into perspective
by investigating the convergence to the true parameter vector β˚ for λ “ 1

7 and different decay
strategies for the parameters εk “ pξk, δkq. We compare seven different rules to decrease δk and
always choose ξk “ λδk in line with Theorem 9. For better readability, we only provide a qualitative
description and refer to the table in Figure 1 for the precise formulations of the rules.

The first choice is the theoretical decay rate that leads to our linear convergence rate results,
Theorem 9 based on the best-s-term approximation error in `1, here denoted by best-s-`1. As
it does not impact the validity of Theorem 9 and only affects constants in it as discussed in Re-
mark 28, we also explore modifying the constant by a multiplicative factor, rule best-s-`1-alt.
Inspired by Daubechies et al. (2010), we also include the corresponding rule with the best-s-term
approximation error in `8, denoted best-s-`8.

The fourth and fifth strategies, sqrt and min-iter, guarantee sublinear convergence in a
more general context, see Appendix C and Theorem 6. The sixth rule suggested by Chartrand and
Yin (2008) implementing geometric decay was the first parameter decay strategy for IRLS sug-
gested in the context of sparse recovery. Lastly, we consider a basic restarting scheme sqrt +
restart, where the algorithm is restarted after every K “ 100 iteration. As it has been known
since the seminal work by Nemirovskii and Nesterov (1985) that restarting strategies can improve
the convergence rate, e.g., O’donoghue and Candes (2015); Roulet and d’Aspremont (2017); Rene-
gar and Grimmer (2022), we find it an interesting follow-up question whether or not it theoretically
improves the more general sublinear IRLS guarantees.

Each algorithm was executed for 1000 iterations, and the resulting objective function gap fεpβtq´
f0pβ

˚q is depicted in Figure 1. The numerical results confirm that the IRLS version with rules

2. https://github.com/claudioverdun/sqrt-lasso
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0 200 400 600 800 1,000
10−15
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105

Number of iterations, k

Objective gap, fεk(β
k)− f0(β∗)

best-s-ℓ1
best-s-ℓ1-alt

best-s-ℓ∞
sqrt

min-iter
exp

sqrt-restart

Name Rule Reference

best-s-`1 δk “ min
 

δk´1,
||Xβk´y||2`λσspβkq`1

λpp`1q

(

Theorem 9

best-s-`1-alt δk “ min
 

δk´1,
1
2

||Xβk´y||2`λσspβkq`1
λpp`1q

(

Remark 28 with c “ 1
2

best-s-`8 δk “ min
 

δk´1,
1
2
||Xβk´y||2`λσspβkq`8

λpp`1q

(

See Daubechies et al. (2010).

sqrt δk “ δ0{
?

1` k Theorem 19 with θ “ 1{2

min-iter δk “
2 min`“0,...,k´1 f0pβ

`q

λpp`1q1{2p1`kq1{2
Theorem 6

exp δk “ δ02´k See Chartrand and Yin (2008).

sqrt-restart δt,k “ δt,0{
?

1` k, δt,0 “ δt´1,K t = 1,. . . , 10.

Figure 1: Convergence of IRLS with different strategies to decrease δk. n “ 5000, m “ 200, s “
20. The table illustrates the different decays of the smoothing parameter. δ0 “ 10´4, δ0,K “ 10´3.

best-s-`1, best-s-`1-alt and best-s-`8 attain linear convergence. Moreover, the restarted
sqrt-restart improves the sublinear convergence of sqrt to a linear rate.

7.2. Comparison with alternative methods

We compare the IRLS algorithm with some of the parameter choice rules described above, namely,
sqrt, best-s-`1-alt, and sqrt-restart, against other state-of-the-art algorithms in the
presence of noise. We refer the reader to Appendix F for more details on the alternative methods.

We run the methods both for the parameter λ “ 1
7 and the smaller parameter λ “ 1

100 (cf. the
discussion after Theorem 9) Every point is an average of 30 trials, and the stopping criterion was a
runtime of 60 seconds, or a relative step size of }βk`1 ´ βk}2{}β

k}2 ď 10´5. The only exception
was ITEM, where we enforced a relative error of 10´8, which works best for smaller step sizes.

We report the relative error of the parameter vector }βk ´ β˚}2{}β˚}2, the relative prediction
error }Xβk ´ y}2{}y}2, the runtime, the effective sparsity }βk}21{}β

k}22 and the support failure rate
SFR “ 1´ |J X S|{|S|, where S is the support of β˚ and J are the indices of the s entries of βk

largest in magnitude. Figure 2, depicts all these measures as a function of the signal-to-noise ratio
SNR “ 10 log10p}y}

2
2{ν

2q, where ν2In is the covariance matrix of the noise.
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Figure 2: Impact of noise on the reconstruction. p “ 5000, s “ 20, n “ 200.
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We observe that IRLS is comparable to the Concomitant LASSO in all metrics and outperforms
all other methods in terms of recovery performance. As the gradient methods require more iterations
to converge, this may be partly due to the time limit of 60 seconds. Yet all the methods consistently
agree in terms of the same support recovery rate. The Frank-Wolfe algorithm, in particular, has
a remarkably short runtime. However, it has a worse relative error as the algorithm reaches the
relative step size stopping criterion. While decreasing the threshold value improves the accuracy, the
runtime deteriorates as the exhibited convergence rate is sublinear. Thus, we see the great potential
of Frank-Wolfe as an initialization for other methods. One of the remarkable advantages of IRLS
that is not visible in this graph is that we had to tune the parameters for many of the algorithms
here presented, including the concomitant LASSO, for each λ individually, while our method (with
best-s-`1-alt decay strategy) is tuning-free.

8. Conclusion

We presented the first global linear convergence guarantees for a robust and scalable algorithm
solving the square-root LASSO problem. Numerical experiments confirmed the linear rate and
showed that our method is on par with state-of-the-art methods in terms of accuracy, convergence
speed, and noise robustness. Among them, our approach sticks out as the only method with the
desired sparsity as the sole variable parameter that does not require any additional parameter tuning.
Our theoretical result highlights a linear rate under minimal assumptions.

We believe that our result may serve as a role model for obtaining global fast rates for other
minimization problems with coupled non-smooth summands in the objective. Additional interesting
topics for follow-up work include the analysis of restarting strategies, as well as the application to
multitask problems, distributionally robust optimization, and out-of-sample analysis.
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Supplementary material of
Fast, blind, and accurate: Noise-blind sparse regression with global linear convergence.

Appendix A. Proof of Theorem 2

In this appendix, we establish the majorization property of the functionQεpz̃, β̃q described in Theo-
rem 2 as well as the connection between the weight matrix Wεpβ̃q and the derivative of the function
fεpβ̃q. Here, we repeat the theorems’ statement for the reader’s convenience.

Lemma 10 The function in Equation (7) with Wε as in (8) admits

i. Wεpβ̃qβ̃ “ ∇f̃εpβ̃q, ii. Qεpβ̃, β̃q “ f̃εpβ̃q, iii. Qεpz̃, β̃q ě f̃εpz̃q.

Proof: The first derivative of the smoothed objective function is given by

∇f̃εpβ̃q “
X̃T X̃β̃

maxt}X̃β̃}2, ξu
` λ

p
ÿ

j“1

βjej
maxt|βj |, δu

, (14)

with teiui“0,...,p being the standard basis vectors in R1`p. In view of the first condition, it is natural
to define Wεpβ̃q as in (8). The second condition follows directly from Equation (7). To show that
Qεpz̃, β̃q majorizes fεpz̃q for all z P Rp, we first rewrite Equation (7) as

Qεpz̃, β̃q :“ f̃εpβ̃q ` x∇f̃εpβ̃q, z̃y ´ x∇f̃εpβ̃q, β̃y `
1

2
xz̃,Wεpβ̃qz̃y `

1

2
xβ̃,Wεpβ̃qβ̃y ´ xz̃,Wεpβ̃qβ̃y

“ f̃εpβ̃q `
1

2
xz̃,Wεpβ̃qz̃y ´

1

2
x∇f̃εpβ̃q, β̃y, (15)

where we used the second condition. Thus, in order to establish the majorization property iii., we
need to prove the inequality

0 ď Qεpz̃, β̃q ´ f̃εpz̃q “ f̃εpβ̃q ´ f̃εpz̃q ´
1

2
x∇f̃εpβ̃q, β̃y `

1

2
xz̃,Wεpβ̃qz̃y

“ jξp}X̃β̃}2q ´ jξp}X̃z̃}2q ´
}X̃β̃}22 ´ }X̃z̃}

2
2

2 maxt}X̃β̃}2, ξu
` λ

p
ÿ

i“1

„

jδpβiq ´ jδpziq ´
|βi|

2 ´ |zi|
2

2 maxt|βi|, δu



.

As all summands have a similar structure, we can prove that for M P Rpˆq, γ ą 0 and for all
v, u P Rq, it holds that

jγp}Mv}2q ´ jγp}Mu}2q ´
}Mv}22 ´ }Mu}22
2 maxt}Mv}2, γu

ě 0. (16)

Then, note that the theorem will be established by applying Equation (16), first with M “ X̃
and γ “ ξ and finally with M “ Ei,i, i “ 1, . . . , p and γ “ δ, where Ei,i is a matrix with a single
non-zero element Ei,ii,i “ 1.

In order to prove Equation (16), we consider four different values that the left-hand side may
take depending on }Mv}2, }Mu}2 and γ. Let us consider each of them separately.
Case 1: }Mv}2 ă γ, }Mu}2 ă γ. Then, the left-hand side is given by

}Mv}22
2γ

`
γ

2
´
}Mu}22

2γ
´
γ

2
´
}Mv}22 ´ }Mu}22

2γ
“ 0.
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Case 2: }Mv}2 ă γ, }Mu}2 ě γ. Using the arithmetic-geometric mean inequality, we get

}Mv}22
2γ

`
γ

2
´ }Mu}2 ´

}Mv}22 ´ }Mu}22
2γ

“
}Mu}22

2γ
`
γ

2
´ }Mu}2 ě 0.

Case 3: }Mv}2 ě γ, }Mu}2 ě γ. Likewise, as in the previous case,

}Mv}2 ´ }Mu}2 ´
}Mv}22 ´ }Mu}22

2}Mv}2
“
}Mv}2

2
`
}Mu}22
2}Mv}2

´ }Mu}2 ě 0.

Case 4: }Mv}2 ě γ, }Mu}2 ă γ. We have

}Mv}2 ´
}Mu}22

2γ
´
γ

2
´
}Mv}22 ´ }Mu}22

2}Mv}2
“

1

2

„

}Mv}2 ´ γ ` }Mu}22

„

1

}Mv}2
´

1

γ



.

Since }Mv}2 ě γ, the second term is negative, and we can further decrease it by applying }Mu}2 ă
γ, which gives

}Mv}2 ´
}Mu}22

2γ
´
γ

2
´
}Mv}22 ´ }Mu}22

2}Mv}2
ě

1

2

„

}Mv}2 ´ γ ` γ
2

„

1

}Mv}2
´

1

γ



“
1

2

„

}Mv}2 `
γ

}Mv}2
´ 2γ



ě 0,

where the last inequality is the arithmetic-geometric mean inequality again. ˝

Appendix B. Global Convergence With Smoothing Parameter Decay

In this section, we present a proof of Theorem 4. The first step is to quantify the function value
decay for a single iteration.

Lemma 11 (General function value decay rate) Fix ξ, δ ą 0 and let β P Rp. If the iterate βk of
Algorithm 1 satisfies x∇f̃εpβ̃kq, β̃ ´ β̃ky ď 0 and β ‰ βk, then we have

fεpβ
k`1q ´ fεpβ

kq ď Qεpβ̃
k`1, β̃kq ´ fεpβ

kq ď ´
|x∇f̃εpβ̃kq, β̃ ´ β̃ky|2

2xWεpβ̃kqpβ̃ ´ β̃kq, β̃ ´ β̃ky
.

Proof: By construction, fεpβk`1q “ Qεpβ̃
k`1, β̃kq ď Qεpz̃, β̃

k`1q for any z̃ P Rp`1 such that
z̃0 “ 1. Consider vk “ β̃ ´ β̃k and let us evaluate the difference Qεpβ̃k ` tvk, β̃kq ´ f̃εpβ̃

kq for
some t ą 0. The idea is that for a properly chosen t ą 0, the difference Qεpβ̃k ` tvk, β̃kq ´ f̃εpβ̃kq
will be negative, which will imply that f̃εpβ̃k`1q ă f̃εpβ̃

kq. Expanding Qεpβ̃k ` tvk, β̃kq yields

Qεpβ̃
k ` tvk, β̃kq ´ f̃εpβ̃

kq “ tx∇f̃εpβ̃kq, vky `
t2

2
xWεpβ̃

kqvk, vky “ bt` at2. (17)

This is a quadratic polynomial with a positive leading coefficient. Indeed,

a “
1

2
xWεpβ̃

kqvk, vky “
1

2

}X̃vk}22
maxt}X̃β̃k}2, ξu

`
λ

2

p
ÿ

j“1

|vkj |
2

maxt|β̃kj |, δu
ě 0.
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The equality is possible if and only if all summands are equal to zero. This means that vk “ 0, i.e.,
β “ βk which contradicts our assumption. Hence, the quadratic polynomial Qεpβ̃k ` tvk, β̃kq ´
f̃εpβ

kq attains its minimum at t “ ´b{2a. Therefore, we have that

fεpβ
k`1q ´ fεpβ

kq ď Qεpβ̃
k`1, β̃kq ´ fεpβ

kq “ min
z s.t. z0“1

Qεpz̃, β̃
kq ´ fεpβ

kq

ď Qεpβ̃
k ` tvk, β̃kq ´ fεpβ

kq ď ´
b2

4a
“ ´

|x∇f̃εpβkq, vky|2
2xWεpβ̃kqvk, vky

.

˝

Remark 12 The essence of Theorem 11 shares similarities with the sufficient decrease lemma
(Beck, 2017, Lemma 10.4), which is commonly employed to establish convergence properties of
the proximal gradient descent method. However, the latter introduces the gradient mapping GL
as a generalization of the traditional gradient concept, which enables the establishment of conver-
gence guarantees tailored specifically for the proximal gradient descent algorithm, while here, for
the sake of completeness, we established it directly for the square-root LASSO objective.

With the help of Theorem 11, we can establish the first result regarding the sublinear conver-
gence of IRLS. In particular, we will show that the sequence tβku converges sublinearly to the
minimizer of the regularized problem, here denoted by β˚ε .

Theorem 13 Let ξ, δ ą 0 and k ě 2 and denote by β˚ε the minimizer of fε. Then the iterates βk of
Algorithm 1 satisfy the inequality

fεpβ
kq ´ fεpβ

˚
ε q ď max

"

2´
k´1
2 pfεpβ

0q ´ fεpβ
˚
ε qq,

8pξ´1}X}2 ` λδ´1qpfεpβ
0q ` f0pβ

˚
ε qq

2

λ2pk ´ 1q

*

.

Proof: We apply Theorem 11 with β “ β˚ε . Let vk “ β̃˚ε ´ β̃
k. Note that convexity of f̃ε gives

fεpβ
˚
ε q “ f̃εpβ̃

˚
ε q ě f̃εpβ̃

kq ` x∇f̃εpβ̃kq, vky “ fεpβ
kq ` x∇f̃εpβ̃kq, vky,

or, equivalently,

x∇f̃εpβ̃kq, vky ď fεpβ
˚
ε q ´ fεpβ

kq ď 0 and |x∇f̃εpβ̃kq, vky| ě fεpβ
kq ´ fεpβ

˚
ε q. (18)

Hence, Theorem 11 yields

fεpβ
k`1q ´ fεpβ

kq ď ´
|x∇f̃εpβ̃kq, vky|2
2xWεpβ̃kqvk, vky

ď ´
pfεpβ

kq ´ fεpβ
˚
ε qq

2

2xWεpβ̃kqvk, vky
. (19)

Let us show that the denominator is bounded from above. By construction, we have

xW pβ̃kqvk, vky “
}X̃vk}22

maxt}X̃β̃k}2, ξu
` λ

p
ÿ

j“1

|vkj |
2

maxt|β̃kj |
2, δu

ď
}Xpβ˚ε ´ β

kq}22

ξ
`
λ

δ

p
ÿ

j“1

|pβ˚ε ´ β
kqj |

2 ď pξ´1}X}2 ` λδ´1q}β˚ε ´ β
k}22.
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Consequently, we only need to bound }β˚ε ´ β
k}2. This can be done by contradiction. Assume that

}β˚ε ´ β
k}2 ą λ´1pf0pβ

kq ` f0pβ
˚
ε qq. Then, by the reverse triangle inequality, we have

f0pβ
kq “ }Xβk ´ b}2 ` λ}β

k}1

ě }Xpβ˚ε ´ β
kq}2 ´ }Xβ

˚
ε ` b}2 ` λ}β

˚
ε ´ β

k}1 ´ λ}β
˚
ε }1.

The first term is nonnegative. The second and the fourth terms together are equal to ´f0pβ
˚
ε q. The

third term can be bounded from below by λ}β˚ε ´ βk}2 by monotonicity of the `p-norms. Hence,
using the assumption }β˚ε ´ β

k}2 ą λ´1pf0pβ
kq ` f0pβ

˚
ε qq, we get

f0pβ
kq ě 0` λ}β˚ε ´ β

k}2 ´ f0pβ
˚
ε q ą λλ´1pf0pβ

kq ` f0pβ
˚
ε qq ´ f0pβ

˚
ε q “ f0pβ

kq,

which is a contradiction. Therefore,

}β˚ε ´ β
k}2 ď λ´1pf0pβ

kq ` f0pβ
˚
ε qq ď λ´1pfεpβ

kq ` f0pβ
˚
ε qq ď λ´1pfεpβ

0q ` f0pβ
˚
ε qq,

where we used that fεpβkq ě fεpβ
k`1q ě f0pβ

k`1q for all k ě 0. Now, we substitute the obtained
bound in (19), which leads to

rfεpβ
k`1q ´ fεpβ

˚
ε qs ´ rfεpβ

kq ´ fεpβ
˚
ε qs ď ´

λ2pfεpβ
kq ´ fεpβ

˚
ε qq

2

2pξ´1}X}2 ` λδ´1qpfεpβ0q ` f0pβ˚ε qq
2

ď ´
λ2pfεpβ

k`1q ´ fεpβ
˚
ε qq

2

2pξ´1}X}2 ` λδ´1qpfεpβ0q ` f0pβ˚ε qq
2

(20)

The result of the theorem follows by applying (Beck, 2015, Lemma 3.8) for the sequence tfεpβkq´
fεpβ

˚qukě0. ˝

Remark 14 Theorem 13 is similar in its nature to (Beck, 2015, Theorem 4.2). The difference is
that in (Beck, 2015, Theorem 4.2), the proof is given for an alternating minimization strategy. This
would correspond to the regularized Scaled LASSO objective function, while here, we establish it
directly for the regularized square-root LASSO formulation without an alternating procedure.

We can now establish a new linear convergence analysis when the objective gap is away from
zero.

Theorem 15 Let ξ, δ ą 0 and denote by β˚ε the minimizer of fε. If fεpβkq ´ fεpβ
˚
ε q ě γ for some

constant γ ą 0, then the iterates βk of Algorithm 1 satisfy the inequality

fεpβ
k`1q ´ fεpβ

˚
ε q ď

´

fεpβ
kq ´ fεpβ

˚
ε q

¯

«

1´
γ

2 maxt1
ξ ,

1
λδ uf

2
0 pβ

˚
ε q ` 4γ

ff

.

Proof: We start by noticing that it would be possible to obtain a linear decay rate by substituting
the assumption fεpβkq ´ fεpβ

˚
ε q ě γ into (20). However, such a rate would depend on f0pβ

0q,
which can potentially be large. Thus, we take a step back to (19) and bound the denominator
xWεpβ̃

kqvk, vky with vk “ β̃˚ε ´ β̃k differently. More precisely, we first decompose it into two
parts and connect it with the first derivative x∇f̃εpβ̃kq, vky by using that Wεpβ̃qβ̃ “ ∇f̃εpβ̃q and
that Wεpβ̃q is a self-adjoint and positive semidefinite matrix,
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xWεpβ̃
kqvk, vky “ xWεpβ̃

kqvk, β̃˚ε y ´ xWεpβ̃
kqvk, β̃ky

“ xWεpβ̃
kqpβ̃˚ε ´ β̃

kq, β̃˚ε y ´ x∇f̃εpβ̃kq, vky
“ xWεpβ̃

kqβ̃˚ε , β̃
˚
ε y ´ xWεpβ̃

kqβ̃k, β̃˚ε ˘ β̃
ky ´ x∇f̃εpβ̃kq, vky

“ xWεpβ̃
kqβ̃˚ε , β̃

˚
ε y ´ xWεpβ̃

kqβ̃k, β̃ky ´ 2x∇f̃εpβ̃kε q, vky
ď xWεpβ̃

kqβ̃˚ε , β̃
˚
ε y ` 2|x∇f̃εpβ̃kq, vky|.

(21)

Next, the term xWεpβ̃
kqβ̃˚ε , β̃

˚
ε y is bounded from above as

xWεpβ̃
kqβ̃˚ε , β̃

˚
ε y “

}X̃β̃˚ε }
2
2

maxt}X̃β̃k}2, ξu
` λ

p
ÿ

j“1

|pβ˚ε qj |
2

maxt|βkj |, δu

ď
}X̃β̃˚ε }

2
2

ξ
`
λ2

λ

p
ÿ

j“1

|pβ˚ε qj |
2

δ

ď max

"

1

ξ
,

1

λδ

*

«

}Xβ˚ε ´ y}
2
2 ` λ

2
p
ÿ

j“1

|pβ˚ε qj |
2

ff

ď max

"

1

ξ
,

1

λδ

*

«

}Xβ˚ε ´ y}2 ` λ

p
ÿ

j“1

|pβ˚ε qj |

ff2

“ max

"

1

ξ
,

1

λδ

*

f2
0 pβ

˚
ε q.

(22)

Now, turning to the nominator in Equation (19), the bound in (18) gives

|x∇f̃εpβ̃kq, vky|2 ě |x∇f̃εpβ̃kq, vky|rfεpβkq ´ f0pβ
˚
ε qs. (23)

By plugging Equation (21), Equation (22) and Equation (23) into Equation (19), we obtain

fεpβ
k`1q ´ fεpβ

˚
ε q ď

”

fεpβ
kq ´ fεpβ

˚
ε q

ı

«

1´
|x∇f̃εpβ̃kq, vky|

2 maxt1
ξ ,

1
λδ uf

2
0 pβ

˚
ε q ` 4|x∇f̃εpβ̃kq, vky|

ff

,

The second term of the right-hand side has the form 1 ´ t
a`4t “

3
4 `

a
4a`16t , where t “

|x∇f̃εpβ̃kq, vky| ě γ. The function a
4a`16t is decreasing and, thus, attains its maximum at t “ γ.

This gives

fεpβ
k`1q ´ fεpβ

˚q ď

”

fεpβ
k`1q ´ fεpβ

˚q

ı

«

1´
γ

2 maxt1
ξ ,

1
λδ uf

2
0 pβ

˚q ` 4γ

ff

, (24)

˝

In contrast to the previous theorem, in the case with decreasing εk, we require a more intricate
analysis since the condition x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky ď 0 used in Theorem 11 may no longer hold.
Yet, in the following, we obtain a similar result, where the bound on the objective gap varies with
smoothing parameters.
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Theorem 16 Let tξkukě0 and tδkukě0 be two non-increasing sequences and set β˚0 as the mini-
mizer of f0. If fεpβkq ´ fεpβ

˚
ε q ě γpλpδk ` ξkq for some constant γ ą 1, then the iterates βk of

Algorithm 1 satisfy the inequality

fεkpβ
k`1q´f0pβ

˚
0 q ď

´

fεkpβ
kq ´ f0pβ

˚
0 q

¯

«

1´
pγ ´ 1q2pλpδk ` ξkq

2γmaxt 1
ξk
, 1
λδk
uf2

0 pβ
˚
0 q ` 4pγ ´ 1q2pλpδk ` ξkq

ff

.

Proof: The proof follows a similar structure to that of Theorems 4 and 5 discussed earlier. More
specifically, we employ Theorem 11 and establish an upper bound for the denominator, analogous
to the approach utilized in Theorem 5. However, Theorem 11 relies on Equation (18), which is no
longer true for β˚0 . As a consequence, we derive an alternative bound to address this issue. Similarly
to the previous case, the convexity of f̃ε yields

fεkpβ
˚
0 q “ f̃εkpβ̃

˚
0 q ě f̃εkpβ̃

kq ` x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky “ fεkpβ
kq ` x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky

Then, by f0pβq ď fεpβq ď f0pβq ` ξ ` λpδ and fε1pβq ď fε2pβq whenever 0 ď ξ1 ď ξ2,
0 ď δ1 ď δ2 and the assumption fεkpβ

kq ´ f0pβ
˚
0 q ě γpλpδk ` ξkq, we obtain

´x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky ě fεkpβ
kq ´ fεkpβ

˚
0 q ě fεkpβ

kq ´ f0pβ
˚
0 q ´ pλpδk ` ξkq (25)

ě pγ ´ 1qpλpδk ` ξkq ě 0,

and

´x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky ě fεkpβ
kq ´ f0pβ

˚
0 q ´ pλpδk ` ξkq ě p1´ 1{γqrfεkpβ

kq ´ f0pβ
˚
0 qs.

The use of these bounds instead of (18) leads to the desired result. ˝

Without additional assumptions on the decay of smoothing parameters, we can only guarantee
that the steps βk`1 ´ βk converge to zero, similarly to the standard results for gradient descent.

Theorem 17 Let tξkukě0 and tδkukě0 be two non-increasing sequences. Then, the iterates βk

generated by Algorithm 1 satisfy

lim
kÑ8

}βk`1 ´ βk}2 “ 0 and min
k“0,...,K´1

}βk`1 ´ βk}22 ď
2 maxtλδ0, fε0pβ

0qu

λ2K
rfε0pβ

0q ´ f0pβ
˚
0 qs.

Proof: We start by quantifying the difference between fεk`1
pβk`1q and fεkpβ

kq, i.e., by proving
that

fεk`1
pβk`1q ´ fεkpβ

kq ď Qεkpβ̃
k`1, β̃kq ´ fεkpβ

kq “ ´1
2xWεkpβ̃

kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky.

If βk`1 “ βk, the first inequality is trivial. Otherwise, we apply Theorem 11 with β “ βk`1

instead of β “ β˚0 as it was done in the previous proofs. Note that by the convexity of f̃εk and
definition of βk`1, the assumption of Theorem 11 is satisfied,

x∇f̃εkpβ̃kq, βk`1 ´ βky ď fεkpβ
k`1q ´ fεkpβ

kq ď 0. (26)
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Thus, we get

Qεkpβ̃
k`1, β̃kq ´ fεkpβ

kq ď ´
|x∇f̃εkpβ̃kq, β̃k`1 ´ β̃ky|2

2xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky

.

Substituting the definition of Qεkpβ̃
k`1, β̃kq and combining it with (26) gives

´|x∇f̃εkpβ̃kq, β̃k`1 ´ β̃ky| `
1

2
xWεkpβ̃

kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky

ď ´
|x∇f̃εkpβ̃kq, β̃k`1 ´ β̃ky|2

2xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky

.

Let us denote

a :“ |x∇f̃εkpβ̃kq, β̃k`1 ´ β̃ky| ě 0 and b :“ xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky ą 0.

Then, the inequality above is equivalent to´2ab`b2 ď ´a2 and pa´bq2 ď 0, which is only possible
if a “ b. Another way of seeing that this holds is to look at the KKT conditions of the problem
minzPRp`1, z0“1Qεkpz̃, β̃

kq. In fact, it holds that xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, vy “ ´x∇f̃εkpβ̃kq, vy for

all v P Rp`1 such that v0 “ 0. Substituting the obtained equality into Qεkpβ̃
k`1, β̃kq gives

Qεkpβ̃
k`1, β̃kq “ f̃εkpβ̃

kq ´ a` b
2 “ f̃εkpβ̃

kq ´ 1
2xWεkpβ̃

kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky.

Together with the majorization property from Theorem 2, it yields the inequality stated at the be-
ginning of the proof, namely,

f̃εk`1
pβ̃k`1q ď f̃εkpβ̃

k`1q ď Qεkpβ̃
k`1, β̃kq “ f̃εkpβ̃

kq ´ 1
2xWεkpβ̃

kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky.
(27)

Now, we bound the quadratic term from below in terms of the squared distance }βk`1´βk}22. Using
the definition of Wεkpβ̃

kq, we get

xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky “

}X̃pβ̃k`1 ´ β̃kq}22
maxt}X̃β̃k}22, ξku

` λ

p
ÿ

j“1

|pβ̃k`1 ´ β̃kqj |
2

maxt|β̃kj |, δku

ě 0` λ

p
ÿ

j“1

|pβk`1 ´ βkqj |
2

maxt|βkj |, δku
ě

λ}βk`1 ´ βk}22
maxt}βk}8, δku

.

Furthermore, by construction, we have ξk ď ξ0 and δk ď δ0 so that

λ}βk}8 ď λ}βk}1 ď }Xβ
k ´ y}2 ` λ}β

k}1 “ f0pβ
kq ď fεkpβ

kq ď fε0pβ
0q.

Consequently, the quadratic term satisfies

xWεkpβ̃
kqpβ̃k`1 ´ β̃kq, β̃k`1 ´ β̃ky ě

λ}βk`1 ´ βk}22
maxtλ´1fε0pβ

0q, δ0u
“

λ2}βk`1 ´ βk}22
maxtfε0pβ

0q, λδ0u
.

Returning to Equation (27), we obtain

λ2}βk`1 ´ βk}22
2 maxtfε0pβ

0q, λδ0u
ď f̃εkpβ̃

kq ´ f̃εk`1
pβ̃k`1q “ fεkpβ

kq ´ fεk`1
pβk`1q
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Summing up for k “ 0, . . . ,K ´ 1, for some K P N, leads to

K´1
ÿ

k“0

λ2}βk`1 ´ βk}22
2 maxtfε0pβ

0q, λδ0u
ď

K´1
ÿ

k“0

rfεkpβ
kq ´ fεk`1

pβk`1qs “ fε0pβ
0q ´ fεkpβ

Kq.

By taking λ2

2 maxtfε0 pβ
0q,λδ0u

to the right-hand side, we observe that the partial sum of the series is
bounded from above by

K´1
ÿ

k“0

}βk`1´βk}22 ď
2 maxtfε0pβ

0q, λδ0u

λ2
rfε0pβ

0q´fεkpβ
Kqs ď

2 maxtfε0pβ
0q, λδ0u

λ2
rfε0pβ

0q´f0pβ
˚
0 qs.

This bound is independent of K and, thus, the series
ř8
k“0 }β

k`1 ´ βk}22 is convergent. As a result
its summands }βk`1 ´ βk}22 converge to zero as k Ñ 8. Finally, we bound the minimum of the
first K summands by their mean,

min
k“0,...,K´1

}βk`1 ´ βk}22 ď
1

K

K´1
ÿ

k“0

}βk`1 ´ βk}22 ď
2 maxtfε0pβ

0q, λδ0u

λ2K
rfε0pβ

0q ´ f0pβ
˚
0 qs.

˝

Appendix C. Discussion on the smoothing parameter decay

An important element of Theorem 16 is the condition fεkpβ
kq´f0pβ

˚
0 q ě γpλpδk`ξkq, which plays

a crucial role in establishing convergence. While Theorem 5 and Theorem 16 share similarities, the
latter exhibits a convergence rate that approaches one as δk and ξk tend to zero. However, depending
on the rate at which the smoothing parameters approach zero, the bound presented in Theorem 16
may not always yield a meaningful convergence result. In this section, we establish a connection
between the decay of smoothing parameters and the convergence rate, providing further insights
into the analysis. We start by proving one lemma that illustrates the importance of the regularization
parameter in the convergence rate.

Lemma 18 Let K ě 1, γ ą 1 and 0 ă ν ă 1. Assume that ξk “ λδk and define

c :“ γλpp` 1q and d :“
2γf2

0 pβ
˚
0 q

λ2pγ ´ 1q2pp` 1q
(28)

Then, the iterate βK`1 of Algorithm 1 admits

fεK`1pβ
K`1q ´ f0pβ

˚
0 q ď max

$

&

%

cδtKν u, pfε0pβ
0q ´ f0pβ

˚
0 qq

K
ź

k“tKν u

«

1´
1

dδ´2
k ` 4

ff

,

.

-

,

where δtKν u is the regularization parameter δk at the iteration k “ tKνu for a certain 0 ă ν ă 1.
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Proof: The proof differentiates between two possible cases depending on how many times the
inequality fεkpβ

kq ´ f0pβ
˚
0 q ă cδk is satisfied. Firstly, assume that it is satisfied for at least tKνu

indices k and denote the largest one of them by k0, i.e., k0 ě tKνu. Then, by the inequality
0 ď fεk`1

pβk`1q ď fεkpβ
k`1q ď fεkpβ

kq, we have

fεK`1pβ
K`1q ď fεkpβ

Kq ď . . . ď fεk0 pβ
k0q ď fεtKν u

pβtKν uq ă f0pβ
˚
0 q ` cδtKν u.

Now, let us assume that the opposite holds, i.e., that there are less than tKνu indices k for which
fεkpβ

kq ´ f0pβ
˚
0 q ă cδk. Then, there are at least K ´ tKνu ` 1 indices k such that the opposite

inequality fεkpβ
kq ´ f0pβ

˚
0 q ě cδk holds. Let us denote all these indices by a set K. If k R K, we

can use the bound fεk`1
pβk`1q ´ f0pβ

˚
0 q ď fεkpβ

kq ´ f0pβ
˚
0 q that holds due to the monotonicity

of δk. Otherwise, by Theorem 16, we have

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď fεkpβ

kq ´ f0pβ
˚
0 q

«

1´
1

dδ´2
k ` 4

ff

.

Combining these two bounds yields

fεk`1
pβK`1q ´ f0pβ

˚
0 q ď pfε0pβ

0q ´ f0pβ
˚
0 qq

ź

kPK

«

1´
1

dδ´2
k ` 4

ff

By construction, δk`1 ď δk. Thus, the product on the right-hand side is the largest when the set K
is ttKνu, . . . ,Ku, which gives

fεk`1
pβK`1q ´ f0pβ

˚
0 q ď pfε0pβ

0q ´ f0pβ
˚
0 qq

K
ź

k“tKν u

«

1´
1

dδ´2
k ` 4

ff

.

˝

We first note that assumption ξk “ λδk is only used to simplify the formulas. Theorem 18
highlights the impact of δk. If δk decays slowly, the product quickly becomes small, and the first
term dominates. On the other hand, if δk decays fast, the product may converge to a nonzero value.

By (Little et al., 2022, Theorem 2.2.2), the infinite product
ś

kě0

„

1´ 1
dδ´2
k `4



diverges to zero 3 if

and only if the series
ř

kě0rdδ
´2
k `4s´1 diverges. The latter, in turn, is equivalent to the divergence

of the series
ř

kě0 δ
2
k.

For instance, consider a sequence δk “ δ0p1 ` kq´θ with starting value δ0 ą 0 and decay
parameter θ ą 0. Consequently, if θ ą 1{2, the product does not diverge to zero. Yet, Theorem 18
only provides an upper bound for the rate and does not imply that f0pβ

˚
0 q is not the limit of fεkpβ

kq.
When θ ď 1{2, the product diverges to zero. However, even if the product vanishes quickly, the
right-hand side is proportional to δk, which decays sublinearly. In general, we are able to establish
the following sublinear convergence rate.

3. We follow the standard denomination from the theory of infinite products that treats zero as a special case since the
product diverges to zero if and only if the series

ř8

n“1 logpanq diverges to ´8.
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Theorem 19 Consider the sequences ξk “ λδk and δk “ δ0p1 ` kq´θ with starting value δ0 ą 0
and decay parameter and 0 ă θ ď 1{2. For K ě 1 and γ ą 1, the sequence βk generated by
Algorithm 1 admits the following decay

fεK`1pβ
K`1q ´ f0pβ

˚
0 q ď max

!

cδ0, e
δ20{dp6` 4d´1δ2

0q
δ20{dpfε0pβ

0q ´ f0pβ
˚
0 qq

)

K
´

θδ20
dθ`δ20 .

where constants c and d are defined in Equation (28).

Proof: Let q “ d´1δ2
0 and 0 ă ν ă 1, whose precise value of which will be determined later.

Then, an application of Theorem 18 gives

fεK`1pβ
K`1q´f0pβ

˚
0 q ď max

$

&

%

cδ0ptK
νu` 1q´θ, pfε0pβ

0q ´ f0pβ
˚
0 qq

K
ź

k“tKν u

„

1´
1

q´1pk ` 1q2θ ` 4



,

.

-

.

The first term is already of the desired form since

cδ0ptK
νu` 1q´θ ď cδ0pK

ν ´ 1` 1q´θ “ cδ0K
´νθ.

Hence, we look at the second term and estimate the product. Note that this product is increasing in
θ, and we can bound it by

K
ź

k“tKν u

„

1´
1

q´1pk ` 1q2θ ` 4



ď

K
ź

k“tKν u

„

1´
1

q´1pk ` 1q ` 4



“

K
ź

k“tKν u

„

1´
q

k ` 1` 4q



ď

K
ź

k“tKν u

„

1´
q

k ` 1` 4rqs



“

K`1`4rqs
ź

k“tKν u`1`4rqs

”

1´
q

k

ı

.

Let N “ K ` 4rqs, P “ tKνu` 4rqs, t “ tqu and r “ q ´ t. Then, the product can be expressed
in terms of gamma function Γ,

N`1
ź

k“P`1

”

1´
q

k

ı

“

N`1
ź

k“P`1

k ´ q

k
“
pN ` 1´ qq ¨ . . . ¨ pP ` 1´ qq

pN ` 1q ¨ . . . ¨ pP ` 1q
¨

ΓpP ` 1´ qq

ΓpP ` 1´ qq
¨
P !

P !

“
ΓpN ` 2´ qq P !

pN ` 1q! ΓpP ` 1´ qq
“

ΓpN ´ t` 1` 1´ rq P !

pN ` 1q! ΓpP ´ t` 1´ rq
.

Note that all factors here are strictly positive since

pN ` 1´ qq ě . . . ě pP ` 1´ qq “ tKνu` 4rqs` 1´ q ě tKνu` 3rqs` 1 ě 2 ą 0.

The next step is to bound the Gamma functions using Gautschi’s double inequality, e.g., see Gautschi
(1959); Qi (2010). This leads to

Γpj ` 1qpj ` 1q´p1´αq ď Γpj ` αq ď Γpj ` 1qj´p1´αq, j P N, 0 ď α ď 1.
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Its application for j “ N ´ t` 1 and j “ P ´ t with α “ 1´ r gives

ΓpN ´ t` 1` 1´ rq P !

pN ` 1q! ΓpP ´ t` 1´ rq
ď

ΓpN ´ t` 2q pN ´ t` 1q´r P !

pN ` 1q!ΓpP ´ t` 1q pP ´ t` 1q´r

“
pN ´ t` 1q! P ! pP ´ t` 1qr

pN ` 1q! pP ´ tq! pN ´ t` 1qr
.

Recall that for the binomial coefficient
`

j
k

˘

:“ j!
k!pj´kq! , the bound jk

kk
ď

`

j
k

˘

ď
ekjk

kk
holds. In our

case, this leads to

pN ´ t` 1q! P ! pP ´ t` 1qr

pN ` 1q! pP ´ tq! pN ´ t` 1qr
“

`

P
t

˘

pP ´ t` 1qr
`

N`1
t

˘

pN ´ t` 1qr
ď

etP tpP ´ t` 1qr

pN ` 1qtpN ´ t` 1qr
.

To simplify the resulting fraction, we note that et ď er`t, P t ď pP ` 1qt, pP ´ t` 1qr ď pP ` 1qr

and that
N ` 1 ě N ` 1´ t “ K ` 4rqs` 1´ tqu ě K ` 3q ` 1 ě K.

Consequently, these estimates yield

etP tpP ´ t` 1qr

pN ` 1qtpN ´ t` 1qr
ď
et`rpP ` 1qt`r

Kt`r
“
eqpP ` 1qq

Kq
“
eqptKνu` 4rqs` 1qq

Kq

ď eqp2` 4rqsqqKνqK´q ď eqp6` 4qqqK´p1´νqq.

Combining everything together, we arrive at

fεk`1
pβK`1q ´ f0pβ

˚
0 q ď max

!

cδ0K
´νθ, eqp6` 4qqqpfε0pβ

0q ´ f0pβ
˚
0 qqK

´p1´νqq
)

.

The last step is to select ν such that the powers νθ and p1´ νqq coincide. This gives ν “ q{pθ` qq,
which implies that 0 ă ν ă 1 and

K´p1´νqq “ K´νθ “ K´θq{pθ`qq.

Substituting q “ d´1δ2
0 concludes the proof. ˝

Theorem 19 derives a sublinear convergence rate, which is slightly worse than K´θ, which is
the decay rate of δk. As the power θδ2

0{pdθ ` δ2
0q is increasing as a function of δ0, K´θq{pθ`qq

will converge asymptotically to K´θ as δ0 Ñ `8. However, in this case, the constant eδ
2
0{dp6 `

4d´1δ2
0q
δ20{d blows up at a much faster pace. In any case, it is important to understand the rate given

by the previous theorem. Indeed, the maximum of the exponent ´θq{pθ ` qq is given by

max
q,θ

θq

θ ` q
“ max

q,θ

pθ ` qqq

θ ` q
´

q2

θ ` q
“ max

q,θ
q ´

q2

θ ` q
. (29)

Since θ P p0, 1{2s. the maximum above, as a function of θ, is attained when θ “ 1{2. Hence, this
yields

max
q
q ´

q2

1{2` q
“ max

q

1

2

q

q ` 1{2
. (30)

When q Ñ 8, the maximum of the expression above is 1{2. Therefore, K´1{2 is, in principle, the
best possible rate that one can obtain by using this technique.

Now, we consider a construction of δk that, to a certain extent, optimizes the constant involved
in the previous theorem. We choose a sequence δk that makes the rate established in Theorem 19
independently from d “

2γf20 pβ
˚
0 q

λ2pγ´1q2pp`1q
.
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Corollary 20 Consider the sequences ξk “ λδk and

δk “
2fεk´1

pβkq

λ
?
p` 1p1` kqθ

, k ě 0,

where, for convenience, δ´1 ą 0 and 0 ă θ ď 1{2. For K ě 1, the sequence βk generated by
Algorithm 1 admits

fεk`1
pβK`1q ´ f0pβ

˚
0 q ď max

!

4
a

p` 1fε0pβ
0q, 10epfε0pβ

0q ´ f0pβ
˚
0 qq

)

K´ θ
θ`1 .

Proof: The proof is similar to the proof of Theorem 19 with only minor changes. An application
of Theorem 18 with γ “ 2 and any 0 ă ν ă 1 gives

fεk`1
pβK`1q ´ f0pβ

˚
0 q ď max

#

2cfεtKν u´1
pβtKν uq

λ
?

2p` 2
ptKνu` 1q´θ,

pfε0pβ
0q ´ f0pβ

˚
0 qq

K
ź

k“tKν u

«

1´
1

2´2df´2
εk´1pβ

kqλ2p2p` 2qpk ` 1q2θ ` 4

ff

,

.

-

,

where c and d are defined in (28). The first term is again bounded by

2cfεtKν u´1
pβtKν uq

λ
?
p` 1

ptKνu` 1q´θ ď 4
a

p` 1fε0pβ
0qpKν ´ 1` 1q´θ “ 4

a

p` 1fε0pβ
0qK´νθ.

For the second term, we observe that

2´2df´2
εk´1

pβkqλ2p2p` 2q “
f2

0 pβ
˚
0 q

f2
εk´1

pβkq
ď 1, for all k ě 0.

Using this bound for the product, the rest of the proof repeats the steps from Theorem 19 with q “ 1
and ν “ 1{p1` θq. ˝

Remark 21 The proof above can be carried out identically for the monotone sequence δk “
2 mins“0,...,k f0pβ

sq

λ
?
p`1p1`kqθ

instead of δk “
2fεk´1

pβkq

λ
?
p`1p1`kqθ

which yields Theorem 6.

Without any additional assumptions, deriving a global linear convergence rate result for IRLS,
aimed at minimizing the loss fεpβq, appears to be unattainable, both in cases with a fixed ε and with
a decaying ε, as we expect that similar lower bounds as the one by Chizat (2022) can be obtained.
However, it is possible to establish such convergence rate for a fixed ε by choosing, instead of the
Huber function jαpxq, the smoothing function

a

|x|2 ` α2, which leads to the objective

f̂εpβq :“
b

}Xβ ´ y}22 ` ξ
2 ` λ

p
ÿ

j“1

b

|βj |2 ` δ2.

In this context, we outline a concise explanation for establishing the linear convergence rate by
utilizing the KL property. See Attouch et al. (2010); Yu et al. (2022).
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Definition 22 (Kurdyka-Łojasiewicz property) We say that a proper closed function h : X Ñ

R Y t8u satisfies the Kurdyka-Łojasiewicz (KL) property at β̂ P dom Bh if there are a P p0,8s, a
neighborhood V of β̂ and a continuous concave function ϕ : r0, aq Ñ r0,8q with ϕp0q “ 0 such
that

1. ϕ is continuously differentiable on p0, aq with ϕ1 ą 0 on p0, aq;

2. For any β P V with hpβ̂q ă hpβq ă hpβ̂q ` a, it holds that

ϕ1phpβq ´ hpβ̂qqdistp0, Bhpβqq ě 1. (31)

If h satisfies the KL property at β̂ P dom Bh and the ϕpsq in (31) can be chosen as c̄ s1´α for some
c̄ ą 0 and α P r0, 1q, then we say that h satisfies the KL property at β̂ with exponent α.

A proper closed function h satisfying the KL property at every point in dom Bh is said to be a
KL function, and a proper closed function h satisfying the KL property with exponent α P r0, 1q at
every point in dom Bh is said to be a KL function with exponent α.

Firstly, note that the results of Theorem 5 remain true for IRLS applied to f̂ε. Next, we establish
a local linear convergence rate of IRLS based on (Bolte and Pauwels, 2016, Proposition 4). For that,
we need three conditions to be satisfied:

1. f̂εpβk`1q ´ f̂εpβ
kq ď ´C1}β

k`1 ´ βk}2 for some constant C1 ą 0;

2. }∇f̂εpβkq}2 ď C2}β
k`1 ´ βk}2 for some constant C2 ą 0;

3. f̂ε satisfies KL property with exponent 1{2 or less; see Lemma 2.2 of Yu et al. (2022).

The first property follows similarly to Theorem 17. The second property follows from the 1{α-
smoothness of

a

|x|2 ` α2 (see (Beck, 2017, Example 10.44)) combined with Karush-Kuhn-Tucker
conditions for the constrained problem described in Equation (9). Lastly, unlike the scaled Huber
function jαpxq, the function

a

|x|2 ` α2 can be represented via linear matrix inequalities Yu et al.
(2022), and, by (Yu et al., 2022, Theorem 4.3), the loss f̂ε has KL exponent 1{2. Thus, by (Beck and
Shtern, 2017, Lemma 2.5), the KL constant c̄ ą 0 can be estimated and, therefore, by following an
argument similar to the one developed in Bolte et al. (2017), it is possible to show that there exists
a neighborhood of β˚ε , estimated via c̄ ą 0, in which IRLS admits a linear convergence rate. Then,
by selecting ε in Theorem 5 appropriately, the IRLS algorithm designed to minimize the function f̂ε
admits a linear convergence rate to this neighborhood, which implies that IRLS has a global linear
convergence rate to a solution of the smoothed square-root LASSO problem. However, this solution
potentially differs from the solution of the true square-root LASSO objective function. Moreover,
this proof will not remain true for a decaying sequence εk as the smoothness of f̂ε deteriorates as εk
vanishes and, therefore, the second property no longer holds. We leave the characterization of the
set of smoothed versions of the square-root LASSO for future investigation, for which the technique
above can be applied.

Appendix D. Proofs for Section 6

Before we start the convergence analysis, we state a few facts connected to the NSP. The first one is
an equivalent formulation, which is more suitable for our analysis.
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Lemma 23 (Foucart and Rauhut, 2013, Lemma 4.20) The matrix X P Rnˆp satisfies the robust
null space property with constants 0 ă ρ ă 1 and τ ą 0 if and only if for any set S Ă rps of
cardinality |S| ď s we have

}z ´ β}1 ď
1` ρ

1´ ρ
p}z}1 ´ }β}1 ` 2}βSc}1q `

2τ

1´ ρ
}Xpz ´ βq}2 (32)

for all vectors β, z P Rp.

The first benefit of NSP, when used in the convergence analysis, is that it is possible to track the
distance to the ground truth signal β˚ in terms of the function value gap.

Lemma 24 (Error bound in terms of function value gap) Let X P Rnˆp admit the robust null
space property with constants 0 ă ρ ă 1 and τ ą 0 of order s. If λ ď p1`ρq

2τ , then for all z P Rn
we have

}z ´ β˚}1 ď
2p1` ρq

p1´ ρqλ

„

λσspβ˚q`1 ` }e}2 `
1

2
pf0pzq ´ f0pβ˚qq



,

where β˚ is the ground truth signal that gives origin to the data y “ Xβ˚ ` e.

Proof: By Theorem 23 and the choice of λ, we get

}z ´ β˚}1 ď
1` ρ

1´ ρ
p}z}1 ´ }β˚}1 ` 2σspβ˚q`1q `

2τ

1´ ρ
}Xpz ´ β˚q}2

ď
1` ρ

p1´ ρqλ
rλp}z}1 ´ }β˚}1 ` 2σspβ˚q`1q ` }Xpz ´ β˚q}2s

Since β˚ is the true signal, we haveXβ˚ “ y´e and }e}2 “ }Xβ˚´y}2. Hence, triangle inequality
gives

}z ´ β˚}1 ď
1` ρ

p1´ ρqλ
r2λσspβ˚q`1 ` λ}z}1 ` }Xz ´ y}2 ` }e}2 ´ λ}β˚}1s

“
1` ρ

p1´ ρqλ
r2λσspβ˚q`1 ` 2}e}2 ` f0pzq ´ f0pβ˚qs .

˝

For the iterates of IRLS, a consequence of Theorem 24 is the following statement:

Corollary 25 Under assumptions of Theorem 24 for all ξ, δ ě 0, the iterates βk generated by
Algorithm 1 admit

}βk ´ β˚}1 ď
2p1` ρq

p1´ ρqλ

„

λσspβ˚q`1 ` }e}2 `
1

2
pfεkpβ

kq ´ f0pβ
˚
0 qq



.

Proof: It follows Theorem 24 combined with inequalities f0pβ˚q ě f0pβ
˚
0 q and f0pβ

kq ď fεkpβ
kq.

˝

As a consequence, the minimization of the objective function (3) implies that the distance be-
tween the iterates and the ground truth is being minimized. Furthermore, the bounds established
in Section 4 and Section 5 can be combined with Theorem 25 to derive the convergence results in
terms of the distance to the ground truth. A similar inequality can be derived for the minimizer of
the square-root LASSO, Equation (3).
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Corollary 26 Under assumptions of Theorem 24 solution β˚0 of square-root LASSO admits

}β˚0 ´ β˚}1 ď
2p1` ρq

p1´ ρqλ
rλσspβ˚q`1 ` }e}2s

and

}Xβ˚0 ´ y}2 ď

„

1`
2p1` ρq

p1´ ρq



}e}2 `
2p1` ρqλ

p1´ ρq
σspβ˚q`1 .

Proof: The first inequality follows from Theorem 24 with z “ β˚0 . For the second inequality, we
use the optimality of β˚0 ,

}Xβ˚0 ´ y}2 ` λ}β
˚
0 }1 ď }Xβ˚ ´ y}2 ` λ}β˚}1 “ }e}2 ` λ}β˚}1. (33)

By bringing }β˚0 }1 to the right-hand side and applying the first inequality, we get

}Xβ˚0 ´ y}2 ď }e}2 ` λp}β˚}1 ´ }β
˚
0 }1q ď }e}2 ` λ}β˚ ´ β

˚
0 }1

ď }e}2 `
2p1` ρq

1´ ρ
rλσspβ˚q`1 ` }e}2s

“

„

1`
2p1` ρq

1´ ρ



}e}2 `
2p1` ρqλ

1´ ρ
σspβ˚q`1 .

˝ The first bound was proven in (Petersen and Jung, 2021, Theorem 3.1). We re-derive it for
the sake of completeness4. It implies that if the noise is absent and β is sparse, square-root LASSO
recovers β uniquely. The second bound is rather a technical result, which will be useful later in this
section. We can now proceed to formally state the main theorem of this work.

Theorem 27 Let X satisfies NSP with constants 0 ă ρ ă 1
4 and τ ą 0 and assume that y “

Xβ˚ ` e. Consider the sequence δk “ min
 

δk´1,
}Xβk´y}2`λσspβkq`1

λpp`1q

(

and ξk “ λδk for k ě 0

and δ´1 “ `8. Then, for k ď k̂ :“ min
 

k P N : fεkpβ
kq ´ f0pβ

˚
0 q ą 3λpp` 1qδk{4

(

it holds
that the following is true for the iterates βk of Algorithm 1 with λ ď ρ{τ :

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď

„

1´
p1´ ρq4

96p1` ρq2p2` ρq2pp` 1q



”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

.

Moreover, for 0 ď fεkpβ
kq ´ f0pβ

˚
0 q ď 3λpp` 1qδk{4 , it holds that

}βk ´ β˚}1 ď
2p1` ρq

p1´ ρqλ

„

1`
3p1` ρq

2´ 8ρ



rλσspβ˚q`1 ` }e}2s .

The proof consists of two complementary parts. In the first part, we will establish that outside
a certain region, i.e., when fεkpβ

kq ´ f0pβ
˚
0 q ą Cδk for a certain C ą 0, we obtain a linear decay

on the function value. Then, in the second part, we will prove that when the basin of attraction is
reached, the iterates βk are already close enough to the ground truth of the sparse linear regression
problem.

The proof of Theorem 9 is based on Theorem 11 with β “ β˚0 , vk “ β˚0 ´ βk and ṽk “
p0, vkq “ β̃˚0 ´ β̃k. Let us denote by S the support of the k largest entries of βk in absolute value.
The first part consists of three main steps:

4. The original theorem was stated with the condition λ ě 2
1`ρ

τ . Here, for our convenience, we performed the change

of variable λ ÞÑ 1
λ

and state it under the assumption λ ď p1`ρq
2τ

.
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1. Bound the first order term ´|x∇f̃εkpβ̃kq, β̃˚0 ´ β̃ky| from below.

2. Bound the second order term xWεpβ̃
kqṽk, ṽky from above.

3. Show that the function value gap fεkpβ
k`1q ´ fεkpβ

kq is bounded by δk.

4. To finish, by using a suitable choice of δk together with the three bounds above, the conver-
gence rate will be finally obtained.

Proof: The proof will be divided into two parts. First, assume that fεkpβ
kq ´ f0pβ

˚
0 q ą 3λpp `

1qδk{4 holds. In this case, the idea of the proof is based on Theorem 5 and Theorem 16.
Part I: Bounding the linear term: By assuming that ξk “ λδk, the first-order term can be
rewritten as

x∇f̃εkpβkq, ṽky “
xṽk, X̃T X̃β̃ky

maxt}X̃β̃k}2, λδku
` λ

p
ÿ

i“1

vki β
k
i

maxt|βki |, δku
“ λ

p
ÿ

i“0

xMiṽ
k,Miβ̃

ky

maxt}Miβ̃k}2, δku
,

with M0 “ λ´1X̃ and Mi “ Ei,i for i “ 1, . . . , p, where Ei,i is a matrix with a single non-zero
entry Ei,ii,i “ 1. For a single summand, we have,

xMiṽ
k,Miβ̃

ky

maxt}Miβ̃k}2, δku
“

xMiβ̃
˚
0 ,Miβ̃

ky

maxt}Miβ̃k}2, δku
´

}Miβ̃
k}22

maxt}Miβ̃k}2, δku

ď
}Miβ̃

˚
0 }2}Miβ̃

k}2

maxt}Miβ̃k}2, δku
´

}Miβ̃
k}22

maxt}Miβ̃k}2, δku

ď }Miβ̃
˚
0 }2 ´

}Miβ̃
k}22

maxt}Miβ̃k}2, δku
.

If }Miβ̃
k}2 ě δk, then

xMiṽ
k,Miβ̃

ky

maxt}Miβ̃k}2, δku
ď }Miβ̃

˚
0 }2 ´ }Miβ̃

k}2 “ }Miβ̃
˚
0 }2 ´ jδkp}Miβ̃

k}2q.

Otherwise, if }Miβ̃
k}2 ă δk, we have

xMiṽ
k,Miβ̃

ky

maxt}Miβ̃k}2, δku
ď }Mĩ̃β

˚
0 }2 ´

}Miβ̃
k}22

δk

“ }Miβ̃
˚
0 }2 ´

}Miβ̃
k}22

2δk
´
δk
2
`
δk
2
“ }Miβ̃

˚
0 }2 ´ jδkp}Miβ̃

k}2q `
δk
2
.

Thus, in any case, the latter bound applies since δk
2 ą 0. Hence, the first-order term can be bounded

by

x∇f̃εkpβkq, ṽky ď λ

p
ÿ

i“0

”

}Miβ̃
˚
0 }2 ´ jδkp}Miβ̃

k}2q `
δk
2

ı

“ }X̃β̃˚0 }2 ` λ}β
˚
0 }1 ´ jδk,0p}X̃β̃

k}2q ` λ

p
ÿ

i“1

jδkpβ
k
j q `

1
2λpp` 1qδk

“ f0pβ
˚
0 q ´ fεkpβ

kq ` 1
2λpp` 1qδk.
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Now, by using the hypothesis fεkpβ
kq ´ f0pβ

˚
0 q ą

3
4λpp` 1qδk, it follows that

x∇f̃εkpβkq, ṽky ď f0pβ
˚
0 q ´ fεkpβ

kq ` 1
2λpp` 1qδk ď ´

1
4λpp` 1qδk ď 0,

and

x∇f̃εkpβkq, ṽky ď f0pβ
˚
0 q ´ fεkpβ

kq `
1

2
λpp` 1qδk

ď f0pβ
˚
0 q ´ fεkpβ

kq `
2

3
rfεkpβ

kq ´ f0pβ
˚
0 qs ď

1
3 rf0pβ

˚
0 q ´ fεkpβ

kqs ď 0.

Hence, for βk ‰ β˚0 we apply Theorem 11, which gives

fεkpβ
k`1q ´ fεkpβ

kq ď ´
|x∇f̃εkpβ̃kq, ṽky|2
2xWεkpβ̃

kqṽk, ṽky
ď ´

λpp` 1qδkpfεkpβ
kq ´ f0pβ

˚
0 qq

24xWεkpβ̃
kqvk, vky

. (34)

Now, we need to bound the denominator xWεkpβ̃
kqvk, vky.

Part II: Bounding the quadratic term: From the definition of Wε, we obtain

xWεpβ̃
kqṽk, ṽky “

}X̃ṽk}22
maxt}X̃β̃k}2, λδku

` λ

p
ÿ

j“1

|vkj |
2

maxt|βkj |, δku

ď
}Xvk}22
λδk

`
λ2

λδk
}vk}22 “

1

λδk

”

}Xvk}22 ` λ
2}vk}22

ı

ď
1

λδk

”

}Xvk}2 ` λ}v
k}2

ı2
ď

1

λδk

”

}Xpβ˚0 ´ β
kq}2 ` λ}β

˚
0 ´ β

k}1

ı2
.

Next, we bound the term }Xpβ˚0 ´ β
kq}2 ` λ}β

˚
0 ´ β

k}1 by using the NSP. Theorem 23 yields

}Xpβ˚0 ´ β
kq}2 ` λ}β

˚
0 ´ β

k}1

ď
λp1` ρq

1´ ρ

”

}β˚0 }1 ´ }β
k}1 ` 2σspβ

kq`1

ı

`

„

1`
2τλ

1´ ρ



}Xpβ˚0 ´ β
kq}2

ď
λp1` ρq

1´ ρ

”

}β˚0 }1 ´ }β
k}1 ` 2σspβ

kq`1

ı

`

„

1`
2τλ

1´ ρ



p}Xβ˚0 ´ y}2 ` }Xβ
k ´ y}2q

Since β˚0 is the minimizer of f0, we have

}Xβ˚0 ´ y}2 ` λ}β
˚
0 }1 ď }Xβ

k ´ y}2 ` λ}β
k}1,

which is equivalent to

λp}β˚0 }1 ´ }β
k}1q ď }Xβ

k ´ y}2 ´ }Xβ
˚
0 ´ y}2.

Thus, we get

}Xpβ˚0 ´ β
kq}2 ` λ}β

˚
0 ´ β

k}1 ď
2λp1` ρq

1´ ρ
σspβ

kq`1

`

„

1`
2τλ

1´ ρ
`

1` ρ

1´ ρ



}Xβk ´ y}2 `

„

1`
2τλ

1´ ρ
´

1` ρ

1´ ρ



}Xβ˚0 ´ y}2.
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By assumption λ ď ρ{τ , which implies that
„

1`
2τλ

1´ ρ
´

1` ρ

1´ ρ



ď 0 and
„

1`
2τλ

1´ ρ
`

1` ρ

1´ ρ



ď
2p1` ρq

1´ ρ
.

Therefore, we obtain

}Xpβ˚0 ´ β
kq}2 ` λ}β

˚
0 ´ β

k}1 ď
2p1` ρq

1´ ρ

”

}Xβk ´ y}2 ` λσspβ
kq`1

ı

,

and

xWεpβ̃
kqṽk, ṽky ď

4p1` ρq2

λδkp1´ ρq2

”

}Xβk ´ y}2 ` λσspβ
kq`1

ı2
. (35)

The remaining major step of this part is to bound }Xβk ´ y}2 ` λσspβ
kq`1 in terms of δk. Recall

that, by hypothesis, δk “ min
 

δk´1,
}Xβk´y}2`λσspβkq`1

λpp`1q

(

. If the minimum is attained by the
second term, the bound is trivial since

}Xβk ´ y}2 ` λσspβ
kq`1 “ λpp` 1qδk ď

2` ρ

p1´ ρq
λpp` 1qδk.

Otherwise, there exists index j ă k, such that

δk “ δj “
}Xβj ´ y}2 ` λσspβ

jq`1

λpp` 1q
.

By using that f0pβq ď fεpβq ď f0pβq ` ξ ` λpδ and fε1pβq ď fε2pβq whenever 0 ď ξ1 ď ξ2,
0 ď δ1 ď δ2 and by the construction of the iterates, we have

f0pβ
kq ď fεkpβ

kq ď fεj pβ
jq ď f0pβ

jq ` λpp` 1qδj .

Expanding both the right- and left-most parts leads to

}Xβk ´ y}2 ` λ}β
k}1 ď 2}Xβj ´ y}2 ` λ}β

j}1 ` λσspβ
jq`1

Let us denote by Sj the set of indices corresponding to the best-s term approximation of βj . That
is, we have }βjScj }1 “ σspβ

jq`1 and }βkScj }1 ě σspβ
kq`1 . Thus, by splitting the norms }βt}1 “

}βtSj}1 ` }β
t
Scj
}1, for t “ j, k, we arrive at

}Xβk ´ y}2 ` λ}β
k
Sj}1 ` λ}β

k
Scj
}1 ď 2}Xβj ´ y}2 ` λ}β

j
Sj
}1 ` 2λσspβ

jq`1 .

Hence, bringing λ}βkSj}1 to the right-hand side, yields

}Xβk ´ y}2 ` λ}β
k
Scj
}1 ď 2

“

}Xβj ´ y}2 ` λσspβ
jq`1

‰

` λr}βjSj}1 ´ }β
k
Sj}1s

ď 2
“

}Xβj ´ y}2 ` λσspβ
jq`1

‰

` λ}pβj ´ βkqSj}1. (36)

Moreover, the definition of NSP gives

}pβj ´ βkqSj}1 ď ρ}pβj ´ βkqScj }1 ` τ}Xpβ
j ´ βkq}2

ď ρ}βjScj
}1 ` ρ}β

k
Scj
}1 ` τ}Xβ

j ´ y}2 ` τ}Xβ
k ´ y}2

ď ρσspβ
jq`1 ` ρ}β

k
Scj
}1 `

ρ
λ}Xβ

j ´ y}2 `
ρ
λ}Xβ

k ´ y}2.
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Incorporating this bound in Equation (36) leads to

}Xβk ´ y}2 ` λ}β
k
Scj
}1 ď p2` ρq

“

}Xβj ´ y}2 ` λσspβ
jq`1

‰

` ρ}Xβk ´ y}2 ` λρ}β
k
Scj
}1,

which, in turn, is equivalent to

}Xβk ´ y}2 ` λ}β
k
Scj
}1 ď

2` ρ

1´ ρ

“

}Xβj ´ y}2 ` λσspβ
jq`1

‰

.

Since }βkScj }1 ě σspβ
kq`1 , we obtain

}Xβk ´ y}2 ` λσspβ
kq`1 ď

2` ρ

1´ ρ

“

}Xβj ´ y}2 ` λσspβ
jq`1

‰

“
2` ρ

p1´ ρq
λpp` 1qδk.

Returning to the bound for the quadratic term (35), this gives

xWεpβ̃
kqṽk, ṽky ď

4p1` ρq2p2` ρq2λpp` 1q2δk
p1´ ρq4

. (37)

Adding the pieces together: Now, the bound for the quadratic term can be combined with the
inequality (34). This finally gives

fεkpβ
k`1q ´ fεkpβ

kq ď ´
λpp` 1qδkp1´ ρq

4

96p1` ρq2p2` ρq2λpp` 1q2δk

”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

.

As for the last step, we add and subtract f0pβ
˚
0 q and rearrange all the terms, which gives

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď fεkpβ

k`1q ´ f0pβ
˚
0 q

ď

„

1´
p1´ ρq4

96p1` ρq2p2` ρq2pp` 1q



”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

.

In the proximity of global minimum: Next, we assume that 0 ď fεkpβ
kq ´ f0pβ

˚
0 q ď 3λpp `

1qδk{4 holds. Since λ ď ρ{τ “ 2ρ{2τ ď p1` ρq{2τ , by Theorem 25, we have

}βk ´ β˚}1 ď
2p1` ρq

p1´ ρqλ

„

λσspβ˚q`1 ` }e}2 `
1

2
pfεkpβ

kq ´ f0pβ
˚
0 qq



ď
2p1` ρq

p1´ ρqλ

“

λσspβ˚q`1 ` }e}2 `
3
8λpp` 1qδk

‰

. (38)

To finish the proof, we will establish a bound of the form

}Xβk ´ y}2 ` λσspβ
kq`1 ď c1r}e}2 ` λσspβ˚q`1s,

for a given c1 ě 0. Since β˚0 is the minimizer of f0, we have

f0pβ
kq ď fεkpβ

kq ď f0pβ
˚
0 q `

3
4λpp` 1qδk ď f0pβ˚q `

3
4 r}Xβ

k ´ y}2 ` λσspβ
kq`1s.

Expanding f0 and rearranging terms gives

p1´ 3
4q}Xβ

k ´ y}2 ` λ}β
k}1 ´

3λ
4 σspβ

kq`1 ď }Xβ˚ ´ y}2 ` λ}β˚}1 “ }e}2 ` λ}β˚}1.
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In a similar way to what was done above, let us denote by S the set of indices corresponding to the
best-s term approximation of β˚. That is, we have }pβ˚qSc}1 “ σspβ˚q`1 and }βkSc}1 ě σspβ

kq`1 .
Thus, by splitting the norms }v}1 “ }vS}1 ` }vSc}1 for v “ βk and v “ β˚, we arrive at

p1´ 3
4q}Xβ

k ´ y}2 ` λ}β
k
S}1 ` λ}β

k
Sc}1 ´

3λ
4 σspβ

kq`1 ď }e}2 ` λ}pβ˚qS}1 ` λσspβ˚q`1 .

This, together with reverse triangle inequality, yields

p1´ 3
4q}Xβ

k ´ y}2 ` λ}β
k
Sc}1 ´

3λ
4 σspβ

kq`1 ď }e}2 ` λr}βS}1 ´ }β
k
S}1s ` λσspβ˚q`1

ď }e}2 ` λr}pβ˚ ´ β
kqS}1s ` λσspβ˚q`1

By the definition of the NSP, (8), we have

}pβ˚ ´ β
kqS}1 ď ρ}pβ˚ ´ β

kqSc}1 ` τ}Xpβ˚ ´ β
kq}2

ď ρ}pβ˚qSc}1 ` ρ}β
k
Sc}1 ` τ}Xβ˚ ´ y}2 ` τ}Xβ

k ´ y}2

ď ρσspβ˚q`1 ` ρ}β
k
Sc}1 `

ρ
λ}e}2 `

ρ
λ}Xβ

k ´ y}2.

Thus,

p1´ 3
4 ´ ρq}Xβ

k ´ y}2 ` p1´ ρqλ}β
k
Sc}1 ´

3λ
4 σspβ

kq`1 ď p1` ρqr}e}2 ` λσspβ˚q`1s

Since, by assumption, 1´ 3
4 ´ ρ ą 0 and }βkSc}1 ě σspβ

kq`1 , we get

}Xβk ´ y}2 ` λσspβ
kq`1 ď }Xβ

k ´ y}2 `
1´ ρ

1´ 3
4 ´ ρ

λ}βkSc}1 ´
3λ
4

1´ 3
4 ´ ρ

σspβ
kq`1

ď
1` ρ

1´ 3
4 ´ ρ

r}e}2 ` λσspβ˚q`1s.

Thus, λpp` 1qδk is bounded from above as

λpp` 1qδk ď r}Xβ
k ´ y}2 ` λσspβ

kq`1s ď
p1` ρq

1´ 3
4 ´ ρ

r}e}2 ` λσspβ˚q`1s.

By applying this bound to (38), we finally conclude that

}βk ´ β˚}1 ď
2p1` ρq

p1´ ρqλ

„

1`
3p1` ρq

2´ 8ρ



rλσspβ˚q`1 ` }e}2s .

˝

This concludes linear convergence rate proof.

Remark 28 The null space constant ρ ă 1{4 and the constant 3
4 in fεkpβ

kq ´ f0pβ
˚
0 q ą 3λpp `

1qδk{4 are not optimized. In fact, inspired by Aravkin et al. (2019), one could choose the smoothing

parameter δk as δk “ min
 

δk´1, c
}Xβk´y}2`λσspβkq`1

λpp`1q

(

for a certain constant 0 ă c ă 2. This

constant would appear in the definition of the null space constant in the form 0 ă ρ ă 1 ´ 3c
4
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and in the hypothesis for the “basis of attraction” that would be given by fεkpβ
kq ´ f0pβ

˚
0 q ą

mint1, c´1uλpp` 1qδk. Hence, in this case, the convergence results read as

fεk`1
pβk`1q ´ f0pβ

˚
0 q ď

„

1´
c2p1´ ρq4

96p1` ρq2p1` c` ρq2pp` 1q



”

fεkpβ
kq ´ f0pβ

˚
0 q

ı

,

and

||βk ´ β˚||1 ď
2p1` ρq

p1´ ρqλ

„

1`
3cp1` ρq

8´ 6c´ 8ρ



rλσspβ˚q`1 ` ||η||2s .

As shown in Theorem 26, the oracle inequality for the square-root LASSO is given by

}β˚0 ´ β˚}1 ď
2p1` ρq

p1´ ρqλ
rλσspβ˚q`1 ` }e}2s

The second part of this theorem shows that IRLS achieves, by only assuming the compatibility
condition, the same oracle inequality as the one above up to a constant factor. Finally, we derive
Theorem 9 as a corollary to Theorem 27.

Proof: Since X fulfills the null space property with constants ρ ď 1{6 and τ ď 6{7, by (13), the
same property with larger constants ρ “ 1{6 and τ “ 7{6 applies. By plugging those values into
Theorem 27, we derive the condition λ ď 1{7, and the result follows. ˝

Appendix E. Iteratively Reweighted Least Squares (IRLS) implementation

In order to describe the IRLS implementation, we first include the proof of Lemma 3, which shows
that the minimization step stated in Equation (9) is equivalent to solving least squares.

Lemma 29 The iterate βk`1 defined in (9) is the minimizer of the unconstrained least squares
problem

min
zPRp

}Xz ´ y}22
maxt}Xβk ´ y}2, ξu

` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δu
.

Proof: of Theorem 3 In view of (15), the minimizer of Qεpz̃, β̃kq is also the minimizer of

xz̃,Wεpβ̃qz̃y “
}X̃z̃}22

maxt}X̃β̃k}2, ξu
` λ

p
ÿ

j“1

|z̃j |
2

maxt|β̃kj |, δu

“
}Xz ´ z̃0y}

2
2

maxt}Xβk ´ β̃k0y}2, ξu
` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δu
.

Reversing the change of variables from z̃ to z with the equalities z̃0 “ β̃k0 “ 1 gives the desired
unconstrained least squares problem,

arg min
z̃PRp`1, z̃0“1

Qεpz̃, β̃
kq “ arg min

z̃PRp`1, z̃0“1

}Xz ´ z̃0y}
2
2

maxt}Xβk ´ β̃k0y}2, ξu
` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δu

“ arg min
zPRp

}Xz ´ y}22
maxt}Xβk ´ y}2, ξu

` λ

p
ÿ

j“1

|zj |
2

maxt|βkj |, δu
.
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˝

The resulting least squares problem can be further rewritten in the following way. Let us define

sk :“
´

maxt}Xβk ´ y}2, ξku
¯´1

and σkj :“
´

maxt|βkj |, δku
¯´1

.

Furthermore, let Σk be a diagonal matrix formed by vector σk. Then, the least squares problem in
Theorem 3 can be rewritten as

arg min
β

›

›

›

›

›

« ?
skX

?
λΣ

1{2
k

ff

β ´

„?
sky
0



›

›

›

›

›

2

2

The corresponding solution βk`1 to the above problem is given by

βk`1 “ pskX
TX ` λΣkq

´1?skX
T y “

?
skλpλ

´1skX
TX ` Σkq

´1XT y, (39)

where the inverse matrix is well-defined as Σk is positive definite. Standard solvers for equation
of the form (39), e.g., LSQR solver for least squares developed by Paige and Saunders (1982),
which is algebraically equivalent to the conjugate gradient method on the normal equations, require
multiple multiplications of vectors with the matrix λ´1skX

TX ` Σk. This has a computational
cost of Opnpq operations, which can be costly for large p. Since square-root LASSO finds a sparse
solution β˚0 , the number of nonzero entries in βk is expected to be much smaller than p. In the
following, we show that the computational cost can also be reduced to the number of active indices
Jk :“ tj P rps : |βkj | ą δku. For this, we employ the Sherman-Morrison-Woodbury formula.

Lemma 30 (Sherman and Morrison (1950)) Let B P Rpˆp, C P Rmˆm and E,F P Rpˆm. If B
and C are invertible, then

pECF T `Bq´1 “ B´1 ´B´1EpC´1 ` F TB´1Eq´1F TB´1.

Set m as rankpXq and let XTX “ UΛUT be the eigendecomposition of XTX with orthogonal
U P Rpˆm and diagonal Λ P Rmˆm with positive diagonal entries. Then, we apply the Sherman-
Morrison-Woodbury formula with C “ λ´1skΛ, B “ Σk and E “ F “ U . This yields

βk`1 “
?
skλ

`

Σ´1
k ´ Σ´1

k Upλs´1
k Λ´1 ` UTΣ´1

k Uq´1UTΣ´1
k

˘

XT y, (40)

Let us focus on M :“ λs´1
k Λ´1 ` UTΣ´1

k U . By the definition of Σk, we get

pΣ´1
k qj,j “ maxt|βkj |, δku “ δk `maxt|βkj | ´ δk, 0u “: δkpIpqj,j ` pDkqj,j , j P rps,

where Ip is the pˆ p identity matrix. Note that Dj,j “ 0 whenever j R Jk. This leads to

Mk “ λs´1
k Λ´1 ` UTΣ´1

k U “ λs´1
k Λ´1 ` δkU

T IpU ` U
TDkU

“ λs´1
k Λ´1 ` δkIm ` U

T
Jk
pDkqJkUJk ,

where UJk P R|Jk|ˆm denotes the matrix formed by rows of U with indices in Jk and pDkqJk P

R|Jk|ˆ|Jk| is a diagonal matrix with nonzero entries of Dk.

43



VERDUN MELNYK KRAHMER JUNG

Rewriting (40) in the form

UTXT y ´ s
´1{2
k λ´1UTΣkβ

k`1 “M´1
k UTΣ´1

k XT y.

gives again a system of the form (39), however, this time multiplication with M requires only
Opm|Jk|q operations. Asm “ Opnq and |Jk| “ Opsq, the computational costs reduce significantly.

Thus, we summarize a fast IRLS implementation in Algorithm 2. We set ξk “ λδk in the
numerical experiments. For the least squares, we again used the LSQR solver developed in Paige
and Saunders (1982), which stopped after 100 iterations or if the relative residual is below 10´8.

Algorithm 2 Fast IRLS Implementation

Input: Parameters λ ą 0, ξ0, δ0 ą 0, initial guess β0.
Precompute eigendecomposition of XTX “ UTΛU .
for k “ 1, 2 . . . do

Set z0 “ UTXT y ´ s
´1{2
k λ´1UTΣkβ

k

Find a solution z of the linear system Mkz “ UTΣ´1
k XT y with a least squares solver given

an initial guess z0.
Compute βk`1 “

?
skλΣ´1

k

`

XT y ´ Uz
˘

Construct ξk`1 and δk`1 using the strategy of choice.
Check stopping criteria

end for
return Sequence tβkukě0.

Appendix F. On the optimization procedures

In the following, we provide a more detailed description of the other optimization algorithms used
for numerical trials in Section 7 and in the last part of this appendix. In particular, we consider the
concominant LASSO by Ndiaye et al. (2017), proximal gradient and proximal Newton methods ap-
plied to the square-root LASSO objective function by Li et al. (2020) and the Information-Theoretic
Exact Method (ITEM) by Taylor and Drori (2023), which in turn is equivalent to the Optimized Gra-
dient Method developed by Kim and Fessler (2016) when the function to be minimized is convex
but not strongly convex, as in this work and, finally, Frank-Wolfe algorithm adapter for square-
root LASSO objective via epigraphic lifting Frank and Wolfe (1956); Harchaoui et al. (2012). All
experiments are conducted on a laptop with Intel(R) Core(TM) i7-8550U CPU and 16 GB RAM.

F.1. Oracle

In this work, by the oracle algorithm in our experiments, we refer to a least squares solver, which
is a priori restricted on the support of the ground truth. This means that if β is supported on S, and
we denote by XS the matrix formed by columns in S, then we find arg minβPRs }XSβ´ y}

2
2 with a

stable and efficient least-squares solver such as the LSQR developed by Paige and Saunders (1982).

F.2. Information-Theoretic Exact Method (ITEM)

The Information-Theoretic Exact Method (ITEM) was introduced by Taylor and Drori (2023). It is
an optimal gradient method in the sense that it attains the lower bound on the oracle complexity for
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smooth strongly convex minimization problems, i.e., it is an accelerated optimal first-order method
with the best possible constants to minimize the Lipschitz smooth (strongly) convex functions. As
(3) does not satisfy the assumptions required by the paper, we instead minimize

f̂εpβq :“
b

}Xβ ´ y}22 ` ξ
2 ` λ

p
ÿ

j“1

b

|βj |2 ` δ2,

with δ “ 10´4 and ξ “
?
λδ. The corresponding smoothness constant is then L “ λδ´1` ξ´1. As

f̂ε is not strongly convex, the strong convexity constant µ is set to zero in Algorithm 3. With all the
parameters, Algorithm 3 is performed until βk`1 satisfies the desired stopping criteria.

Algorithm 3 Information-Theoretic Exact Method (ITEM)

Input: Function f̂ε with 0 ď µ ď L ă 8, initial guess β0.
Initialize z´1 “ β0 “ β0, γ0 “ 0 and q “ µ{L.
for k “ 0, 1, 2 . . . do

Set γk`1 “
p1`qqγk`2

´

1`
?
p1`γkqp1`qγkq

¯

p1´qq2

Set αk “ γk{p1´ qqγk`1 and ηk “ 1
2
p1´qq2γk`1´p1`qqγk

1`q`qγk

zk “ p1´ αkqβ
k ` αkβ

k

βk`1 “ zk ´ 1
L∇f̂εpzkq

βk`1 “ p1´ qηkqz
k ` qηkβ

k ´
ηk
L∇f̂εpzkq

end for
return Sequence tβkukě0.

F.3. Proximal gradient descent

We consider an objective with smoothed data fidelity term,
b

}Xβ ´ y}22 ` ξ
2 ` λ}β}1 “: f̌ξpβq ` λ}β}1. (41)

Given a previous iterate βk, the proximal gradient method devised by Li et al. (2020) constructs
βk`1 by minimizing the quadratic approximation of the above loss at point βk,

Qλpβ, β
kq “ f̌ξpβ

kq `∇f̌ξpβkqT pβ ´ βkq `
Lk
2
}β ´ βk}22 ` λ}β}1,

where Lk denotes the step size chosen via backtracking line search. The closed-form solution is

βk`1 “ Sλ{Lkpβk ´∇f̌ξpβq{Lkq, (42)

with S denoting the soft thresholding operator. The complete algorithm is described in Algorithm 4.
The performance of the proximal gradient depends on the smoothness constant L “ ξ´1 of f̌

and, consequently, ξ. If it is large, the function is smooth, but its global minimum is far from the
solution of square-root LASSO. On the other hand, small ξ results in a large smoothness constant
and small gradient steps. To reduce this dependency on ξ, it is initially set to 102, and once the
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algorithm converges, we decrease ξ by multiplying it with 10´1{4. Note that this is similar to the
pathwise technique used in Li et al. (2020) and Ndiaye et al. (2017) for λ. In our experiments, the
parameter λ remains constant in order not to change the solution of the initial square-root LASSO
problem. It was also applied to ITEM but did not impact performance much.

Algorithm 4 Proximal gradient

Input: Parameters λ ą 0, ξ ě 0, Lmax ą 0, initial guess β0.
Initialize L0 “ L̃0 “ Lmax, β “ β0.
for k “ 0, 1, 2 . . . do

repeat
Construct βk`1 via (42) with L̃k
if f̌ξpβk`1q ` λ}βk`1}1 ă Qλpβ

k`1, βkq then
L̃k “ L̃k{2

end if
until f̌ξpβk`1q ` λ}βk`1}1 ě Qλpβ

k`1, βkq
Lk “ mint2L̃k, Lmaxu, L̃k`1 “ Lk
Construct βk`1 via (42) with Lk and check stopping criteria

end for
return Sequence tβkukě0.

Algorithm 5 Decreasing smoothing parameter

Input: Initial ξ ě 0, initial guess β0.
for k “ 0, 1, 2 . . . do

Set Lmax “ 10ξ´1
k (if required)

Construct βk`1 by running the algorithm of the choice with ξk and βk´1 as initialization.
Set ξk`1 “ 10´1{4ξk and check the stopping criteria.

end for
return Sequence tβkukě0.

In our experiments, for Algorithm 4 combined with Algorithm 5, we chose ξ0 “
?
λ.

F.4. Proximal Newton method

Compared to the proximal gradient, the proximal Newton algorithm, also proposed by Li et al.
(2020), includes second-order derivatives into quadratic approximation,

QNewλ pβ, βkq “ f̌ξpβ
kq `∇f̌ξpβkqT pβ ´ βkq ` 1

2pβ ´ β
kqT∇2f̌ξpβ

kqpβ ´ βkq ` λ}β}1.

Then, the new iterate of the proximal Newton algorithm is constructed as

βk`1{2 “ arg min
β

QNewλ pβ, βkq, βk`1 “ βk ` νkpβ
k`1{2 ´ βkq,

where the minimum is found via coordinate descent with safe screening, see Zhao et al. (2018),
and νk is selected by backtracking line search. The procedure is summarized in Algorithm 6 and
repeated until the desired stopping criterion is reached.
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Algorithm 6 Proximal Newton

Input: Parameters λ ą 0, ξ0 ě 0, initial guess β0.
Initialize µ “ 0.9, α “ 0.25.
for k “ 0, 1, 2 . . . do

Construct βk`1{2 “ arg minβ Q
New
λ pβ, βkq via coordinate descent.

∆k “ βk`1{2 ´ βk

γk “ ∇f̌ξpβkqT∆k ` λp}βk`1{2}1 ´ }β
k}1q

νk “ 1
repeat
νk “ µνk
βk`1 “ βk ` νk∆

k

until f̌ξpβk`1q ` λ}βk`1}1 ď f̌ξpβ
kq ` λ}βk}1 ` ανkγk

end for
return Sequence tβkukě0.

Similarly, we combined Algorithm 6 with Algorithm 5. In the case λ “ 1
100 initial smoothing

was set to
?

10λ and for λ “ 1
7 to

a

λ{10.

F.5. Concomitant LASSO

The concomitant LASSO, developed by Ndiaye et al. (2017), considers an optimization problem

arg min
βPRp,σPR

1

2σ
}Xβ ´ y}22 `

σ

2
` λ}β}1 ` ιrξ,`8qpσq. (43)

Here, ξ ě 0 and ιrξ,`8q denotes the characteristic function of the set rξ,`8q which is `8 if
σ R rξ,`8q and zero otherwise. The loss function described in (43) can be split into a convex
1{ξ-smooth function 1

2σ }Xβ ´ y}22 `
σ
2 and a separable λ}β}1 ` ιrξ,`8qpσq, and, therefore, it is

optimized via a coordinate descent algorithm, where σ is updated after each sub-iteration on each
coordinate.

The authors describe that they achieve computational efficiency by implementing safe screening
rules that rule out unnecessary variables at each iteration as described in Algorithm 7. See (Ndiaye
et al., 2017, Section 3) for more details.

Furthermore, Algorithm 7 is applied together with Algorithm 5. In our experiments, the initial
values are ξ0 “

?
10λ for λ “ 1

100 and ξ0 “
a

λ{10 for λ “ 1
7 .

F.6. Frank-Wolfe

The Frank-Wolfe method is a fast first-order algorithm for minimizinga convex function over a
convex set Frank and Wolfe (1956); Jaggi (2013); Lacoste-Julien and Jaggi (2015); Cherfaoui et al.
(2019). In this section, we apply it for minimization of (41) using an epigraphical lifting technique
similar to Harchaoui et al. (2012); Denoyelle et al. (2019); Jarret et al. (2022). First, we observe
that the minimizer β˚ of (41) admits

λ}β˚}1 ď f̌pβ˚q ` λ}β˚}1 “ arg min f̌pβq ` λ}β}1 ď f̌p0q ` λ ¨ 0 “
b

}y}22 ` ξ
2.
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Algorithm 7 Concomitant LASSO

Input: Parameters λ ą 0, ξ ą 0, initial guess β0.
Initialize r “ Xβ0 ´ y, q “ }r}2, σ “ maxtξ, qu.
Precompute the squared norms nj “ }Xj}

2
2 for j “ 1, . . . , p.

for k “ 1, 2 . . . do
βk “ βk´1

if k mod 5 “ 1 then
Perform the safe screening to obtain index set I Ď rps.

end if
for j P I do

Set Xj as a j-th column of X .
∆ “ XT

j r

βkj “ Sσλ{nj pβkj ´∆q{nj

r “ r ` pβkj ´ β
k´1
j qXj

q “
b

q2 ` 2pβkj ´ β
k´1
j q∆` pβkj ´ β

k´1
j q2nj

σ “ maxtξ, qu
end for
Check stopping criteria

end for
return Sequence tβkukě0.

Consequently, the search space can restricted to `1-ball tβ P Rp : }β}1 ď ρuwith ρ :“
a

}y}22 ` ξ
2{λ.

Then, the minimization of (41) can be rewritten as

arg min
βPRp

f̌pβq ` λ}β}1 “ arg min
pβ,tqPC

f̌pβq ` λt,

where
C :“ tpβ, tq P RpˆRě0 : }β}1 ď t ď ρu .

This step is known as the epigraphic lifting. As C is nonempty, closed, and convex, and f̌ is a
proper, coercive, continuous, convex function, the Frank-Wolfe algorithm can be applied. Given
an initial guess β0 and t0 “ }β0}1, it constructs the iterates tpβk, tkqukě0 in a descend-like fash-
ion. More precisely, the descent direction is constructed by minimization of the first-order Taylor
approximation of f̌pβq ` λt,

pzk, rkq P arg min
pβ,tqPC

f̌pβkq ` x∇f̌pβkq, βy ` λt

As the above functional is linear in pβ, tq and C is convex, the minimum is achieved in one of the
extreme points of C, namely, tp0, 0q, p˘ρej , ρq, j P rpsu with teju

p
j“1 denoting the standard basis.

Consequently, with q P arg maxj |r∇f̌pβkqsj | the minimizer is given by

pzk, rkq “

#

p´ρ sgnpr∇f̌pβkqsqq, ρq, if }∇f̌pβkq}8 ą λ,

p0, 0q, otherwise.
(44)
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With pzk, rkq computed, the next iterates pβk`1, tk`1q are selected on the interval connecting
pzk, rkq and pβk, tkq such that f̌pβk`1q`λtk`1 is minimal. That is, we search for the minimizer of

min
γPr0,1s

f̌pβk ` γpzk ´ βkqq ` λptk ` γprk ´ tkqq. (45)

The Lagrange functional for the above problem is

Lpγ, u, `q “ f̌pβk ` γpzk ´ βkqq ` γλprk ´ tkq ` upγ ´ 1q ´ `γ,

with dual variables u, ` ě 0, and the KKT conditions read as

pzk ´ βkqT∇f̌pβk ` γpzk ´ βkqq ` λprk ´ tkq ` u´ ` “ 0

0 ď γ ď 1, `γ “ 0, upγ ´ 1q “ 0.

In the following, we narrow down the candidates for γ to at most 4 values. The first two are the
extreme points γ “ 0 and γ “ 1. When 0 ă γ ă 1, both dual variables u and ` are zero. Using that

∇f̌pβq “ XT pXβ ´ yq
a

}Xβ ´ y}22 ` ξ
2

and notation v :“ Xpzk´βkq, w :“ Xβk´y, and α :“ λptk´ rkq we rewrite the remaining KKT
condition as

vT pw ` γvq
a

}w ` γv}22 ` ξ
2
“ α.

If there exists γ satisfying the above equality, it also satisfies

`

xw, vy ` γ}v}22
˘2
“ α2

`

}w ` γv}22 ` ξ
2
˘

.

Expanding the squares and rearranging the terms leads to the following quadratic equation

γ2}v}22pα
2 ´ }v}22q ` 2γxw, vypα2 ´ }v}22q ` α

2p}w}22 ` ξ
2q ´ xw, vy2 “ 0. (46)

Note, the if either v “ 0 or }v}22 “ α2, the both coefficients in front of γ2 and γ are zero. Therefore,
the above equation has no solutions unless α “ }v}2 “ 0, in which case (45) is constant with
respect to γ.

In all other cases, if the roots γ` and γ´ of (46) are in the open interval p0, 1q, they may be the
extremum points of (45). Hence, we obtain the minimizer of the objective of (45) by evaluating the
objective at 0, 1, and, if relevant, γ` and γ´. In summary, we obtain the following version of the
Frank-Wolfe algorithm.

For our numerical trials, we used ξ “ 10´4
?
λ. Unlike other algorithms, where initialization is

random, for the Frank-Wolfe algorithm, we used β0 “ 0, which leads to better performance.

49



VERDUN MELNYK KRAHMER JUNG

Algorithm 8 Frank-Wolfe for square-root LASSO

Input: Parameters λ ą 0, ξ ě 0, initial guess β0.
Set t0 “ }β0}1 and ρ “

a

}y}22 ` ξ
2{λ

for k “ 0, 1, 2 . . . do
Construct pzk, rkq as in (44).
Compute roots γ` and γ´ of (46).
Set up Γ “ t0, 1, γ`, γ´u X r0, 1s.
Evaluate the loss function in (45) for γ P Γ and set γ˚ to be its minimizer.
Update βk`1 “ p1´ γ˚qβ

k ` γ˚z
k and tk`1 “ p1´ γ˚qt

k ` γ˚r
k.

end for
return Sequence tβkukě0.
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