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Abstract
Suppose that a cascade (e.g., an epidemic) spreads on an unknown graph, and only the infection
times of vertices are observed. What can be learned about the graph from the infection times caused
by multiple distinct cascades? Most of the literature on this topic focuses on the task of recovering
the entire graph, which requires Ω(log n) cascades for an n-vertex bounded degree graph. Here
we ask a different question: can the important parts of the graph be estimated from just a few (i.e.,
constant number) of cascades, even as n grows large?

In this work, we focus on identifying super-spreaders (i.e., high-degree vertices) from infection
times caused by a Susceptible-Infected process on a graph. Our first main result shows that vertices
of degree greater than n3/4 can indeed be estimated from a constant number of cascades. Our algo-
rithm for doing so leverages a novel connection between vertex degrees and the second derivative
of the cumulative infection curve. Conversely, we show that estimating vertices of degree smaller
than n1/2 requires at least log(n)/ log log(n) cascades. Surprisingly, this matches (up to log log n
factors) the number of cascades needed to learn the entire graph if it is a tree.
Keywords: Network cascades, Susceptible-Infected process, structure learning, sample complexity

1. Introduction

Cascading behaviors in networks are ubiquitous. In human interaction networks, the spread of dis-
eases through local interactions can quickly escalate, causing population-level pandemics (Brauer
and Castillo-Chavez, 2012). Similarly, the structure of social networks plays a fundamental role in
the mass dissemination of ideas, such as product adoption or misinformation (Leskovec et al., 2007;
Strang and Soule, 1998; Rogers, 2003; Friggeri et al., 2014). In all of these examples, understanding
the key factors which facilitate cascades is crucial for the analysis and control of these processes.

The structure of the underlying network plays a fundamental role in the evolution of a cascading
process. Consider, for instance, the impact of a high-degree vertex. Once such a vertex is affected
by the cascade, they may, in turn, disseminate the cascade’s effects on a massive scale to their neigh-
bors. Due to their potential to accelerate the course of a cascade in this manner, high-degree vertices
are of special interest in the analysis of spreading processes. In the context of epidemics, quarantin-
ing or immunizing high-degree individuals, also known as super-spreaders, can greatly mitigate the
damage caused by a pandemic (Pastor-Satorras and Vespignani, 2002; Dezső and Barabási, 2002).
In social networks, firms may want to leverage the impact of high-degree vertices, also known as
influencers, to accelerate the speed of product adoption (Hinz et al., 2011).

A fundamental hurdle in carrying out these ideas in practice is that the underlying network may
be partially or fully unknown. In epidemiology, disease-spreading contacts between individuals are
often not measured. In marketing, even if retailers have access to certain social networks, only
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some of the observed links may be effective in facilitating a cascade, and many links may also
be unobserved (e.g., if two individuals communicate through other means). While it is possible
to learn aspects of the network through contact tracing or interviewing, such approaches are quite
intensive and time-consuming (Spencer et al., 2020). To mitigate this issue, we aim to understand
the extent to which more efficient data-driven approaches can be used to learn about the network.
Specifically, we study how network structure can be estimated from the set of “infection times”
caused by a cascade, which we call the cascade trace. Typically, a single cascade trace may not
be enough to learn meaningful information, but much more can be said by combining information
from multiple different cascades on the same network.

The task of estimating a network from multiple cascade traces, known as structure learning,
has received considerable attention in the past decade (Gomez-Rodriguez et al., 2012; Du et al.,
2012; Netrapalli and Sanghavi, 2012; Abrahao et al., 2013; Daneshmand et al., 2014; Khim and
Loh, 2018; Hoffmann and Caramanis, 2019; He et al., 2020; Hoffmann et al., 2020; Wilinski and
Lokhov, 2021). Almost all the literature on this topic focuses on exactly recovering the entire
network under sparsity constraints (i.e., bounds on the maximum degree). However, the number of
cascade traces required to do so grows as a function of the network size (Netrapalli and Sanghavi,
2012; Abrahao et al., 2013; Daneshmand et al., 2014). This can be prohibitive in applications such
as epidemiology where it is costly to allow many cascades to spread. Motivated by this limitation,
we ask a different question:

Can the important parts of the network, such as the location of high-degree vertices,
be learned from just a few cascade traces?

We find that the answer is quite subtle. In an n-vertex graph, we show that vertices of degree at
least n3/4 can indeed be correctly estimated from a constant number of cascade traces. Conversely,
estimating vertices of degree smaller than

√
n can be almost as hard as learning the entire network,

in terms of the number of cascade traces required.

1.1. Summary of contributions

In a bit more detail, we assume that each cascade spreads on an n-vertex graph G with the following
structure: a constant number of (high-degree) vertices have degree at least nα for some α ∈ (0, 1),
and all other vertices have degree at most no(1). The goal is to understand how many cascade traces
are needed to estimate the set of high-degree vertices with probability 1− o(1).

Our first main contribution is an estimator for the set of high-degree vertices which requires only
a constant number of cascade traces. Our estimator is quite simple, and relies only on properties of
the infection curve I(t), which counts the number of infections that occur before time t. The key
idea behind our method is a novel connection between vertex degrees and the second derivative of
the infection curve. Specifically, we show that if v becomes infected at time T (v), then a discretized
version of the second derivative of I(t) evaluated at time T (v) is a (nearly) unbiased estimator for
the degree of v. Motivated by this insight, our estimator computes the (appropriately discretized)
second derivative of I(t) at T (v) for each v, and compares it to a threshold. The set of estimated
high-degree vertices is then given by all vertices which pass the threshold in all of the observed
cascade traces (see Algorithm 1 for more details). Our analysis shows that this estimator succeeds
provided α > 3/4. Notably, our algorithm is a significant departure from existing methods in the
literature on learning in graphical models. Indeed, prior algorithms typically focus on learning the
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Figure 1: Phase diagram for the possibility and impossibility of estimating high-degree vertices
in a graph G. Blue region: High-degree vertices can be estimated from more than 1/(α − 3/4)
traces. Red region: Estimating high-degree vertices is impossible, even when G is known to be a
tree. Green region: Full recovery of G is possible if G is a tree, hence estimation of high-degree
vertices is also possible. White region: Regimes with small gap between the bounds provided by
our analysis. Yellow region: The main open problem left given our work is to determine the sample
complexity in this region.

precise edges and neighborhoods in the graph (Netrapalli and Sanghavi, 2012; Abrahao et al., 2013;
Daneshmand et al., 2014; Gomez-Rodriguez et al., 2012; Du et al., 2012; He et al., 2020; Wilinski
and Lokhov, 2021). In contrast, we demonstrate how degree information can be directly estimated
from just a few traces without needing to infer neighborhoods.

A natural follow-up question is whether one can identify high-degree vertices of degree much
smaller than n3/4, while still using only a constant number of traces. We provide a negative answer,
showing that when α ∈ (0, 1/2), there exist “hard” instances for which log(n)/ log log(n) traces are
needed to estimate high-degree vertices, no matter the estimator. In other words, it is information-
theoretically impossible to correctly estimate high-degree vertices in this case. In our proof, we
show that estimating high-degree vertices in a particular ensemble of graphs is equivalent to a variant
of the sparse mixture detection problem (Dobrusin, 1958; Burnashev and Begmatov, 1991; Ingster,
1996; Donoho and Jin, 2004; Cai and Wu, 2014). Following the approach of Cai and Wu (2014),
we solve our version of the sparse mixture detection problem, which leads to a lower bound of
log(n)/ log log(n) traces for the estimation of high-degree vertices. A surprising implication of our
impossibility result is that for α ∈ (0, 1/2), estimating high-degree vertices can be nearly as hard
as learning the entire network. Indeed, using log(n) traces, the Tree Reconstruction algorithm of
Abrahao et al. (2013) is able to exactly recover G, provided it is a tree. On the other hand, the
graphs in our ensemble of hard instances are all trees, hence log(n)/ log log(n) traces are required
to estimate high-degree vertices even if G is known to be a tree. In summary, if G is known to be a
tree, the sample complexity (with respect to the number of cascade traces) of estimating high-degree
vertices matches that of learning G exactly, up to at most a log log(n) factor.

Together, our two results highlight a curious phase transition in α (see Figure 1). When α ∈
(3/4, 1), high-degree vertices can be identified using essentially minimal data about the cascade.
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When α ∈ (0, 1/2), we have the other extreme: learning high-degree vertices is nearly as challeng-
ing as learning the entire network, when G is a tree. Our work leaves open the intriguing regime of
α ∈ [1/2, 3/4].

1.2. Related Work

The problem of inferring a network from cascade traces was first studied in the context of epidemi-
ology (Wallinga and Teunis, 2004) and information flow in blogs (Adar and Adamic, 2005). Since
then, there has been a large body of theoretical and empirical work on the subject. On the empiri-
cal side, Gomez-Rodriguez et al. (2012) initiated a study of scalable and mathematically principled
methods with their NetInf algorithm. Since then, a number of follow-up works have tackled the
exact network inference problem using a combination of likelihood-based approaches, convex op-
timization, message passing and machine learning (Daneshmand et al., 2014; Gomez-Rodriguez
et al., 2012; Du et al., 2012; He et al., 2020; Wilinski and Lokhov, 2021). In a related vein, there
has been significant interest from the machine learning community in the task of learning Hawkes
processes from vertex activation times; see Lima (2023) and references therein. We expect that our
methods may be useful in this setting as well.

The first results on the sample complexity (i.e., number of traces needed) of exactly recovering
the underlying graph were by Netrapalli and Sanghavi (2012), which applied to discrete-time cas-
cades (i.e., the independent cascade model) spreading on bounded-degree graphs. This work was
soon followed by Abrahao et al. (2013), who studied the sample complexity of exact network infer-
ence using a variant of the SI process to model the cascade. Since their work, a number of exten-
sions have been explored, including inference from noisy infection times (Hoffmann and Caramanis,
2019), correlated cascades (Khim and Loh, 2018) and learning mixtures of graphs (Hoffmann et al.,
2020). A common technique underlying these is an analysis of maximum likelihood estimator for
the underlying network. We note that our algorithm is a significant departure from these methods,
as it is able to directly estimate degree information without knowledge of the precise topology.

Our work falls under the broader umbrella of literature studying the sample complexity of learn-
ing structures in graphical models. Our work deals with observations from transient models, though
learning from stationary models such as Gaussian Graphical Models and Ising models have also re-
ceived considerable attention (Ravikumar et al., 2011; Meinshausen and Bühlmann, 2006; Misra
et al., 2020; Wang et al., 2010; Cai et al., 2016; Kelner et al., 2020; Klivans and Meka, 2017; Wu
et al., 2019; Vuffray et al., 2020; Santhanam and Wainwright, 2012; Bresler, 2015; Bresler et al.,
2013). While such frameworks are naturally quite different from ours, there are also many qual-
itative similarities. For the task of recovering the precision matrix of a n-dimensional Gaussian
graphical model, it is known that Θ(log n) independent samples are necessary and sufficient under
some sparsity conditions (Misra et al., 2020; Wang et al., 2010; Cai et al., 2016; Kelner et al., 2020).
Similarly, Θ(log n) independent samples are necessary and sufficient for learning bounded-width
Ising models (Bresler et al., 2008; Wu et al., 2019; Vuffray et al., 2020; Santhanam and Wainwright,
2012; Bresler, 2015) as well as general classes of Markov Random Fields (Bresler et al., 2013).
These results parallel the sample complexity of exactly recovering the graph from cascade traces,
and many algorithmic approaches are similar in flavor.

While the work above largely focuses on recovering the underlying network, we mention a
few recent papers which also aim to learn the “important” parts of the relevant graphical model,
though with significantly different interpretations of importance. Boix-Adserà et al. (2022) as well
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as Bresler and Karzand (2020) focus on the task of learning tree-structured Ising models with a good
prediction accuracy with respect to the ground-truth model. Eckles et al. (2022) leverage cascade
traces from a discrete-time cascade model to perform influence maximization. These works, in
conjunction with ours, demonstrate the potential to learn key information about distributions and
systems without fully learning the underlying model.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we rigorously formulate the problem
of estimating high-degree vertices and state our main results. In Section 3, we present our method
for estimating high-degree vertices (Algorithm 1) and provide an overview of its proof of correct-
ness. Section 4 contains a proof sketch of our impossibility result. We conclude and discuss future
directions in Section 5. All proof details can be found in the appendices.

2. Definitions and Main Results

Notation. For a set S, we let |S| denote its cardinality. For a graph G = (V,E), we denote the
number of vertices by n := |V | and let N (v) denote the neighborhood of a vertex v. For a subset
of vertices S ⊂ V , we denote cut(S) := |{(u, v) ∈ E : u ∈ S, v /∈ S}|. Throughout the paper, we
use standard asymptotic notation and all limits are as n → ∞ unless otherwise specified.

The Susceptible-Infected process. We model the cascade using the well-known Susceptible-
Infected (SI) process, which is a continuous-time Markov process in which susceptible vertices
in a graph become infected upon interacting with infected neighbors. In more detail, we let G be
the graph upon which the cascade spreads. We denote by I(t) the set of vertices which are infected
at a time index t ≥ 0, and we let λ > 0 represent the interaction rate between individuals. Initially,
we assume that only a single vertex v0 is infected; that is, I(0) = {v0}. Given I(t), the cascade
evolves as follows: for v ∈ V \ I(t), it holds that as ϵ → 0,

P (v ∈ I(t+ ϵ)| Ft) = ϵλ|N (v) ∩ I(t)|+ o(ϵ), (1)

where {Ft}t≥0 is the natural filtration corresponding to the stochastic evolution of the cascade and
o(ϵ) → 0 faster than ϵ → 0. In words, the rate at which a susceptible vertex becomes infected is
proportional to the number of its infected neighbors and the interaction rate λ. Given the evolution
of the cascade I(t), a few important quantities include the infection curve I(t) := |I(t)|, the set
I[a, b] for 0 ≤ a ≤ b, which denotes the set of infections occurring in the interval [a, b], and
I[a, b] := |I[a, b]|.

We remark that the SI process (1) is closely related to a number of other well-studied models.
It is known to be equivalent to First Passage Percolation with Exp(λ) edge weights, a popular
model in mathematical physics (Auffinger et al., 2017; Richardson, 1973). It is also equivalent
to the Contact Process without recovery (Liggett, 1999; Mollison, 1978), and has been used as
a rigorous foundation for standard population-based epidemiological models (Brauer and Castillo-
Chavez, 2012, Chapter 9). In recent years, a large body of work has also investigated generalizations
of (1) with edge-dependent interaction rates (e.g., due to mask-wearing tendencies, multiple viral
strains); see, e.g., (Allard et al., 2009; Alexander and Day, 2010; Eletreby et al., 2020).

For a given vertex v ∈ V , we formally define its infection time in the SI process to be

T (v) := inf{t ≥ 0 : v ∈ I(t)}.
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We call the collection of infection times and associated vertices T := {(v, T (v))}v∈V the cascade
trace.

Learning from cascade traces. Suppose that the underlying graph G is unknown, but we observe
multiple independent cascade traces on G, given formally by

(T1, . . . ,TK) ∼ SI(G, v0,1)⊗ . . .⊗ SI(G, v0,K), (2)

where v0,i is the source vertex for the ith cascade. For brevity, for a graph G and collection of source
vertices v0 := (v0,1, . . . , v0,K), we denote PG,v0 to be the probability measure corresponding to (2).
Broadly, we are interested in the following question of structural inference: What can be learned
about G from K cascade traces?

While this has been a question of significant interest in the past decade, the existing literature on
the topic almost exclusively focuses on exactly recovering G. In the context of cascade traces, this
task was first studied by Netrapalli and Sanghavi (2012) for a discrete-time cascade model. In partic-
ular, they proved that for n-vertex graphs G with maximum degree at most ∆, K = poly(∆) log n
is necessary and sufficient to exactly recover G. Abrahao et al. (2013) studied the exact recovery
problem for a slightly more general version of the SI process (1), showing that K = poly(∆) log(n)
suffices for general graphs (provided ∆ does not scale as a function of n), and that K = Θ(log n)
traces suffices if G is a tree.

A key takeaway from this literature on exact recovery of G is that the number of cascade traces
K must grow as a function of the network size n. However, this requirement may be prohibitive in
settings such as epidemiology where one must make decisions based on a relatively small amount of
data. In light of this issue, we study whether it is possible to learn the important parts of a network
– such as the location of high-degree vertices – from just a few cascade traces. To the best of our
knowledge, this angle has not been previously investigated.

Estimating high-degree vertices. To formalize the task of estimating high-degree vertices, we
assume that most of the vertices in G have a relatively small degree, except for a constant number of
vertices with substantially larger degree. The latter type is the set of high-degree vertices we wish to
estimate. We mathematically capture this structural property with the class of graphs G(n,m, d,D),
described below.

Definition 1 We say that G ∈ G(n,m, d,D) if and only if (1) G is a connected graph on n vertices,
(2) there are at most m vertices of degree at least D, and (3) all other vertices have degree at most
d. We denote the set of high-degree vertices in G ∈ G(n,m, d,D) to be highdeg(G) := {v ∈ V :
deg(v) ≥ D}.

We remark that the assumption of connectivity ensures that all vertices are eventually infected,
which is in general necessary for the estimation of high-degree vertices. Indeed, if a high-degree
vertex never becomes infected, it is impossible to estimate it. Next, we assume the following about
the scaling of the parameters m, d,D with respect to n.

Assumption 2 We assume that m is constant, d = no(1) and D = nα for some α ∈ (0, 1).

We remark that this assumption is quite different from the usual assumption made in the litera-
ture on structure learning. Indeed, in much of the work on exact recovery of G, it is assumed that
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its maximum degree is bounded as n → ∞ (Netrapalli and Sanghavi, 2012; Abrahao et al., 2013;
Daneshmand et al., 2014). A notable exception is the Tree Reconstruction algorithm of Abrahao
et al. (2013), which has provable guarantees for any tree with a sufficiently large number of vertices.
However, as we are only interested in estimating high-degree vertices rather than specific connec-
tions in the network, we may take significantly more relaxed assumptions compared to the bulk of
the structure learning literature. In the remainder of the paper, when referencing any graph G we
will assume that G ∈ G(n,m, d,D) and that Assumption 2 holds.

Our first main result shows that we can correctly identify all vertices in G of degree larger than
n3/4, using a constant number of cascade traces – far less than what is needed to learn edges in the
graph.

Theorem 3 Suppose that α ∈ (3/4, 1) and that D = nα. If K satisfies

K >
1

α− 3/4
,

then there is an estimator ĤD such that for any G ∈ G(n,m, d,D) and any collection of source
vertices v0 = (v0,1, . . . , v0,K),

PG,v0

(
ĤD (T1, . . . ,TK) = highdeg(G)

)
= 1− o(1),

where o(1) → 0 as n → ∞.

Though Theorem 3 shows that a constant number of traces suffices for any α > 3/4, K grows
as α approaches 3/4. While this condition is needed in our analysis to handle worst-case examples
of G, we remark that in practice K could be smaller and may not explode as α approaches 3/4.
To prove the theorem, we develop a novel algorithm for estimating high-degree vertices from a
constant number of cascade traces (Algorithm 1). A key supporting result underlying the theorem
and Algorithm 1 is that the time at which a high-degree vertex is infected can be accurately estimated
from just a single cascade. See Section 3 for more details.

Our second main contribution is a negative result, showing that any estimator requires at least
log(n)/ log log(n) traces to successfully identify high-degree vertices of degree smaller than

√
n.

Theorem 4 Fix ϵ > 0, let α ∈ (0, 1/2). Suppose that D = nα, d ≥ log2 n and m = 1.
Additionally, assume that

K ≤
(
1− 2α− ϵ

5

)
log n

log log n
. (3)

Then there exists an ensemble H ⊂ G(n,m, d,D) and a probability distribution µ over graphs in
H and source vertices v0 = (v0,1, . . . , v0,K) such that, for any estimator HD,

PG,v0∼µ (HD(T1, . . . ,TK) = highdeg(G)) = o(1).

An important implication of the theorem is that if K is smaller than log(n)/ log log(n), no
estimator can successfully identify high-degree vertices for every graph in the class G(n,m, d,D).
The ensemble H used in the theorem is a collection of trees with a particular structure; see Sections
4 and D for more details. This observation, in the context of prior work on the sample complexity
of exact recovery of G (Abrahao et al., 2013), shows that learning high-degree vertices when α ∈
(0, 1/2) is nearly as hard as learning the full graph in the case of trees. To emphasize this point, we
rephrase the result of Abrahao et al. (2013) below.
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(a) (b)

Figure 2: Visualization of the edges contributing to cut(I(t)) before (a) and after (b) a vertex v
becomes infected. In Figure 2(b), the number of blue and red edges denote the positive and negative
change to cut(I(t)), respectively, upon v being infected.

Theorem 5 Suppose that K ≥ C log n, for some universal constant C > 0. Then there exists an
estimator Ĝ such that for any collection of source vertices v0 = (v0,1, . . . , v0,K) and any tree G, it
holds that PG,v0(Ĝ = G) = 1− o(1).

Together, Theorems 4 and 5 show that there is at most a log logn multiplicative gap between the
sample complexity of estimating high-degree vertices for α ∈ (0, 1/2) and that of fully recovering
G, in the case where G is a tree.

3. Estimating high-degree vertices when α > 3/4

The starting point for the design of our estimator is the following simple observation: when a high-
degree vertex becomes infected, many of its neighbors will become infected shortly after. In a
bit more detail, we could assess whether a vertex v is high-degree by examining the number of
infections occurring in a δ-size interval after v is infected, given formally by I[T (v), T (v) + δ].
Since we can write I[T (v), T (v) + δ] = I(T (v) + δ) − I(T (v)), the quantity I[T (v), T (v) + δ]
can be thought of as the discrete first derivative of the infection curve I(t). This suggests that high-
degree vertices could be estimated by examining the points at which the first derivative of I(t) is
large. Unfortunately, such an approach fails in general. Indeed, if we observe many infections in the
interval [T (v), T (v)+δ], then it is challenging to discern whether the infections were mainly caused
by a single, common infection (namely, v), or by many other infected vertices which just happened
to be infected around the same time as v. However, it turns out that if one considers higher-order
information – specifically, the second derivative of I(t) – then high-degree vertices can be clearly
identified.

To see this concretely, we begin by examining the first derivative of I(t) in more detail. By (1),

J(t) := E
[
d

dt
I(t)

∣∣∣∣Ft

]
= λ

∑
v∈V \I(t)

|N (v) ∩ I(t)| = λ cut(I(t)). (4)
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(a) (b)

Figure 3: Plots of the discrete first (a) and second derivative (b) of the infection curve with δ =
0.075 generated from a graph G with approximately 500,000 vertices and one high-degree vertex.
The infection time of the high-degree vertex can be identified by the red dotted line in (a) and the
large peak in the second derivative plot (b), highlighted by the red rectangle. G was chosen to be a
balanced, 5-regular tree of height 8, where one vertex in the 6th layer of the tree has degree 7500.

Now suppose that a vertex v joins the cascade at time t (that is, T (v) = t). Since no other vertices
can be infected at the exact same time due to the continuous-time nature of the cascade, we have

J(t)− J(t−) = λ (|N (v) \ I(t)| − |N (v) ∩ I(t)|) = λ deg(v)− 2λ|N (v) ∩ I(t)|. (5)

The first equality in (5) can be explained as follows. When v joins the cascade, all of its susceptible
neighbors, i.e., those in N (v) \ I(t), become exposed. On the other hand, the edges which connect
v to I(t) – namely, edges which connect v to N (v) ∩ I(t) – can no longer lead to infection events,
hence the contribution for these edges is subtracted. See Figure 2 for a visualization of this idea.

Crucially, (5) shows that as long as a vertex is infected before most of its neighborhood (i.e.,
|N (v) ∩ I(t)| is much smaller than deg(v)), the second-order changes in the infection curve, cap-
tured by J(t) − J(t−), can reveal the degree of a vertex. However, since J(t) is not a directly
observable quantity, we must approximate it from the cascade traces. A natural way to do so is by
choosing δ > 0 and using the discrete derivative I[t, t+ δ]/δ as a proxy for J(t). Similarly, we can
use I[t− δ, t]/δ as a proxy for J(t−). We can therefore approximate the degree of v using

d̂egδ(v) :=
I[T (v), T (v) + δ]− I[T (v)− δ, T (v)]

δ
.

In words, we estimate the degree of v by computing the discrete second derivative of the infection
curve when v gets infected. As shown through the empirical example in Figure 3, this statistic is
quite effective in identifying the infection time of a high-degree vertex from just a single cascade
(this is also shown formally in Section B).

In light of (5), our estimator for highdeg(G) returns the set of all vertices v for which d̂egδ(v) is
large in all cascade traces; see Algorithm 1. As Theorem 6 shows, this method succeeds with high
probability provided α > 3/4.
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Algorithm 1 Finding high-degree vertices via second derivative thresholding

Input: Cascade traces T1, . . . ,TK and parameters δ, τ > 0
Output: A set ĤD ⊂ V

1: For each i ∈ [K] and v ∈ V compute

d̂egδ,i(v) :=
Ii[Ti(v), Ti(v) + δ]− Ii[Ti(v)− δ, Ti(v)]

δ
.

2: Return ĤD :=
{
v ∈ V : d̂egδ,i(v) ≥ τ, for all i ∈ [K]

}
.

Theorem 6 Suppose that α > 3/4 and that

δ =
1

nα−1/4
, τ =

nα

log n
, K >

1

α− 3/4
.

Additionally assume that d = no(1) and D = nα. Then for any G ∈ G(n,m, d,D), the output of
Algorithm 1 is equal to highdeg(G), with probability 1− o(1).

Remark 7 A useful feature of Algorithm 1 is that it is adaptive to the unknown parameters m (the
number of high-degree vertices) and λ (the spreading rate of the cascade). In contrast, the prior
work on structure learning leverages likelihood-based methods which require precise knowledge of
the cascade model (Netrapalli and Sanghavi, 2012; Abrahao et al., 2013).

Remark 8 Though our main result concerns the number of cascades K needed to learn high degree
vertices, our techniques show that the infection times of high-degree vertices can be estimated from
a single cascade; see Lemma 20 in Section B.

We note that Theorem 3 follows immediately from Theorem 6 as a corollary. We provide a
sketch of the proof of Theorem 6 below, and defer the full details to Sections B and C.
Proof [Proof sketch of Theorem 6] Let γ < α be sufficiently close to α. The strategy of our proof
is to show, for all v ∈ V , that ∣∣∣d̂egδ,i(v)− λ deg(v)

∣∣∣ ≤ nγ , (6)

in all cascades. If (6) is true for a particular i ∈ [K] and v is a low-degree vertex, then d̂egδ,i(v) ≤
λ deg(v) + nγ ≤ 2nγ . Else if v is high-degree, then d̂egδ,i(v) ≥ λ deg(v) − nγ ≥ λ

2n
α. If λ is

not known a priori, any choice of threshold satisfying τ = nα−o(1) works in distinguishing the two
cases. In particular, τ = nα/ log(n) suffices.

Due to the way d̂egδ,i(v) is computed, establishing (6) reduces to showing that I[t, t+δ]/δ con-
centrates around J(t) and I[t, t− δ]/δ concentrates around J(t−) for the values of t corresponding
to vertices’ infection times. For this task, choosing the right value of δ is crucial. If δ is too small,
then I[t, t+ δ] may also be quite small, making meaningful concentration around its mean impossi-
ble. On the other hand, if δ is too large, the mean of I[t, t+δ]/δ may deviate significantly from J(t)
due to the potentially large changes to the set of infections in the interval (t, t + δ]. An additional
complication arising if δ is too large is that there may be a large number of low-degree vertices
consistently infected around the same time as a high-degree vertex. If u is one such low-degree
vertex, then d̂egδ(u) can be quite large across multiple traces, leading to false positives.

10
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Examining these conditions in more detail exposes why we must assume α > 3/4 for Algorithm
1 to succeed. Let us focus on the behavior of I[t, t + δ]/δ (the analysis of I[t − δ, t]/δ is similar).
We show that

I[t, t+ δ]

δ
= J(t)±O (nδ)±O

(√
n

δ

)
. (7)

Above, the O(nδ) fluctuation represents the deviation between J(t) and the (conditional) mean of
I[t, t + δ]/δ. This is essentially caused by the additional O(nδ) additional infections which occur
in the interval [t, t + δ]. The O(

√
n/δ) fluctuation comes from the deviation of I[t, t + δ] from

its mean, which can be derived through subgaussian-type concentration inequalities. To correctly
estimate high-degree vertices through (5), both fluctuations need to be smaller than D = nα. We
therefore require that max{nδ,

√
n/δ} = o(nα), which is equivalent to

δ = o
(
n−(1−α)

)
and δ = ω

(
n−(2α−1)

)
. (8)

We remark that (8) already requires α > 2/3. Next, we need to ensure that there is no low-
degree vertex u that is infected around the same time as a high-degree vertex in all cascade traces.
Otherwise, as we mentioned earlier, d̂egδ,i(u) could be quite large, which would imply that the
output of Algorithm 1 contains false positives. With this scenario in mind, suppose that a low-
degree u becomes infected first at time t, and at that point in time, a high-degree v has M infected
neighbors. By (1), it holds for small δ that

P(|T (u)− T (v)| ≤ δ|Ft) = P(v ∈ I(t+ δ)|Ft) = δM + o(δ).

The probability that u and v are close in all cascade traces is therefore at most O((δM)K). A union
bound over pairs of low-degree u and high-degree v shows that

P(∃u ∈ V, v ∈ highdeg(G) : |Ti(u)− Ti(v)| ≤ δ in all cascades) ≤ O
(
nm(δM)K

)
. (9)

To show that the right hand side of (9) is o(1), we first need to choose δ such that δM = o(1).
Although M can in principle be as large as deg(v) (i.e., if all of v’s neighbors are infected before
v), we show that with high probability M ≤

√
n (see Lemma 15 in Section A). Hence we may

choose δ satisfying
δ = o

(
n−1/2

)
. (10)

Writing δ = n−β for β > 0, (8) and (10) imply that β ∈ (1/2, 2α − 1). This interval is nonempty
when α > 3/4, and we may choose β := α − 1/4 to satisfy (8) and (10). Finally, since δ =
n−(α−1/4) and M ≤

√
n, K > (α− 3/4)−1 is needed for the right hand side of (9) to be o(1).

4. Impossibility of estimation when α ∈ (0, 1/2)

Connections to sparse mixture detection. The cornerstone of our proof is a correspondence
between high-degree estimation and the problem of sparse mixture detection. In a bit more detail,
let G′ be a graph on n/2 vertices of maximum degree no(1) (i.e., all its vertices are low-degree).
The graph G will be formed by adding an additional n/2 vertices labelled 1, . . . , n/2 to G′, along
with a single edge per added vertex which connects to a vertex in G′. A natural way of generating a

11
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graph G without any high-degree vertices is to let each of the new n/2 vertices connect to a uniform
random parent in G′. Through standard probabilistic arguments, it can be seen that no more than
O(log n) neighbors are added to any particular vertex in G′, so G contains no high-degree vertices.

A simple modification of this procedure can also generate graphs with a high-degree vertex.
Suppose we fix a vertex v in G′. For each of the additional n/2 vertices, with probability 2D/n,
it connects to v. Otherwise, with probability 1 − 2D/n, it connects to a uniform random vertex in
G′. In expectation, v receives D additional connections (so, in particular, deg(v) ≥ D in expecta-
tion). As before, all of the other vertices receive at most O(log n) additional neighbors, with high
probability. Hence we obtain a graph G in which v is the only high-degree vertex.

Observe that in the second procedure, the distribution of the infection times of each of the added
n/2 vertices can be viewed as a mixture of two distributions. To be precise, let P be the distribution
of a vertex’s infection times in the observed cascade traces if they connect to a uniform random
neighbor in G′. Similarly, let Q be the distribution of a vertex’s infection times if they connect to
v. Then the task of differentiating between the two generative models for G – or equivalently, of
testing whether v is high-degree – can be phrased as the following hypothesis testing problem:

H0 : T(1), . . .T(n/2) ∼ P H1 : T(1), . . . ,T(n/2) ∼ ((1− ϵn)P + ϵnQ) , (11)

where we set ϵn := 2D/n above, and we denote T(j) := (T1(j), . . . , TK(j)) where Ti(j) is the
infection time of vertex j in the ith cascade.

It turns out that (11) is a special case of a well-studied problem known as sparse mixture detec-
tion, which dates back to the work of Dobrusin (1958). Burnashev and Begmatov (1991) studied a
variant related to Gaussian processes, and Ingster (1996) identified a subtle phase transition between
the possibility and impossibility of detection for mixtures of Gaussian distributions. The problem
was popularized by the work of Donoho and Jin (2004), who formulated an adaptive method in
place of the likelihood ratio called higher criticism, again for mixtures of Gaussians. Later, Cai
and Wu (2014) developed an analysis of the sparse mixture problem for generic distributions. We
remark that Mossel and Roch (2017) used sparse mixture detection in the inference of combinatorial
structure, though in a very different context.

Impossibility of detecting high-degree vertices. We solve our instance of the sparse mixture
detection problem (11) using the techniques developed by Cai and Wu (2014). That is, we bound the
total variation distance between the two distributions in (11) by the χ2 divergence since it tensorizes
and because it is easier to study for problems involving mixtures. Our analysis shows that if K
satisfies (3), then the χ2 divergence tends to zero. As a result, it is impossible to distinguish between
scenarios where there are no high-degree vertices (H0) and where v is a high-degree vertex (H1).

Putting everything together. Finally, we show that the impossibility of detection implies that no
estimator can successfully output the correct high-degree vertex with probability greater than o(1).
We remark that the ensemble H and distribution µ stated in the theorem essentially corresponds to
the random constructions for G described in this subsection. For more details, see Section D.
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5. Discussion and future work

In this work, we study the sample complexity of estimating super-spreaders (i.e., high-degree ver-
tices) in network cascades, using only the infection times of vertices across multiple cascades. This
is the first work to consider this task, to the best of our knowledge. Our results show that estimating
vertices with degree at least n3/4 can be done using a constant number of cascades, while estimating
vertices with degree at most n1/2 requires almost as many cascades as learning the entire graph (if
the graph is a tree). We discuss several important avenues for future work below.

• The regime α ∈ [1/2, 3/4]. In terms of sample complexity, our results show that the regime
α ∈ (3/4, 1) is “easy”, i.e., the number of traces needed is minimal. On the other hand,
α ∈ (0, 1/2) captures a “hard” regime, where the sample complexity nearly matches that of
learning the entire graph exactly. What is the right sample complexity for α ∈ [1/2, 3/4]? Is
it in the easy regime, the hard regime, or something in between?

• Estimation in general graphs when α ∈ (0, 1/2). The Tree Reconstruction algorithm of
Abrahao et al. (2013) provides a means of estimating high-degree vertices when the graph is
a tree. What about estimating high-degree vertices for general graphs in G(n,m, d,D)?

• Noisy observations. In practice, the infection times may be noisy due to delays in reporting
or due to quantization (e.g., positive cases being consolidated on a day-by-day basis). To what
extent can our methods be adapted to handle these more realistic scenarios?

• Other motifs. A high-degree vertex can be viewed as a particular type of motif. What is the
sample complexity of detecting and estimating other types of motifs (e.g., cliques)?

• Other types of graphical models. Our methods fundamentally leverage the temporal nature
of the observed data. How can high-degree vertices be estimated in stationary graphical
models, such as Gaussian graphical models or Ising models?
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Appendix A. Preliminaries: Cascade dynamics and infection times

In this section we derive several useful results on the behavior of the SI process (1) and the distri-
bution of infection times. Throughout, we will assume that I(t) is a realization of SI(G, v0) for a
particular graph G ∈ G(n,m, d,D) and vertex v0 ∈ V .

We begin by discussing an important equivalence between (1) and First Passage Percolation
on G with Exp(λ) edge weights. In a bit more detail, let {Ft}t≥0 denote the natural filtration
corresponding to the SI process. Fix t ≥ 0, and let {F (e)}e∈E be a collection of i.i.d. Exp(λ)
random variables that are independent of Ft. For a path1 P in the graph, we define the weight of
the path to be weight(P ) :=

∑
e∈P F (e). Then we have the following result.

Proposition 9 Let t ≥ 0, and condition on Ft. Suppose that v ∈ V \ I(t). Let P(v, t) be the
collection of paths from I(t) to v where only the first edge in the path has an endpoint in I(t). Then
the conditional distribution of T (v) with respect to Ft is given by

T (v) = t+ min
P∈P(v,t)

weight(P ).

1. Recall that a path is a finite sequence of edges e1, . . . , em such that for each i ≥ 1, ei and ei+1 share exactly one
endpoint.
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This result is standard, and essentially follows from the memoryless property of exponential
distributions. We defer the reader to (Auffinger et al., 2017, Chapter 6), or to Section E for full
details of the proof.

Using the representation in Proposition 9, we can derive a number of useful results on the infec-
tion times of vertices. We start by establishing probabilistic upper and lower bounds on conditional
infection times of vertices.

Lemma 10 Let t ≥ 0, and condition on Ft. Suppose that v ∈ V \ I(t). Then T (v) − t is
stochastically dominated by a Exp(λ|N (v) ∩ I(t)|) random variable.

Proof Conditioned on Ft, Proposition 9 implies that

T (v)− t = min
P∈P(v,t)

weight(P ) ≤ min
P∈P(v,t):|P |=1

weight(P ) = min
u∈N (v)∩I(t)

F (u, v).

Due to properties of exponential random variables, we have that

min
u∈N (v)∩I(t)

F (u, v) ∼ Exp (λ|N (v) ∩ I(t)|) ,

which proves the claimed result.

Lemma 11 Let t ≥ 0, condition on Ft, and suppose that v ∈ V \I(t). Then T (v)−t stochastically
dominates a Exp(λ|N (v)|) random variable.

Proof Conditioned on Ft, we have that

T (v)− t = min
P∈P(v,t)

weight(P ) ≥ min
u∈N (v)

F (u, v),

where the inequality follows since any path ending in v must include one of the edges incident to v.
The claim follows since minu∈N (v) F (u, v) ∼ Exp(λ|N (v)|).

We next define a useful event concerning the number of infected neighbors of high-degree ver-
tices. We remark that the control of this quantity is especially important for us, as it is equal to the
bias of our estimate of vertex degrees (see (5)).

Definition 12 The event A holds if and only if

|N (v) ∩ I(T (v))| ≤ 2d
√
n log2 n,

for all v ∈ V .

Remark 13 As we assume throughout this paper that d = no(1), we will often use that |N (v) ∩
I(T (v))| ≤ n1/2+o(1) when using the event A.

Remark 14 Assuming that G ∈ G(n,m, d,D), the event A is only relevant for high-degree ver-
tices, since

|N (v) ∩ I(T (v))| ≤ deg(v) = no(1) ≤ 2d
√
n log2 n,

otherwise.

18



FINDING SUPER-SPREADERS IN NETWORK CASCADES

Lemma 15 Suppose that m = o(log2 n). Then P(A) = 1− o(1).

Proof If deg(v) ≤ 2d
√
n log2 n, then

|N (v) ∩ I(T (v))| ≤ |N (v)| ≤ 2d
√
n log2 n,

which satisfies the condition in A corresponding to v. It therefore suffices to consider the case
deg(v) ≥ 2d

√
n log2 n. Define the event

Ev :=
{
|N (v) ∩ I(T (v))| ≥ 2d

√
n log2 n

}
,

and let T be the stopping time at which
√
n log n neighbors of v are first infected.

Let t ≥ 0, and condition on Ft. Let us also assume that T = t (an event that is Ft-measurable),
so that |N (v) ∩ I(t)| =

√
n log n. If T (v) ≤ t, then we have that P(Ev|Ft) = 0. We therefore

proceed by considering the case where T (v) > t. Notice that if T = t,

|N (v) ∩ I(T (v))| = |N (v) ∩ I(t)|+ |N (v) ∩ I[t, T (v)]| =
√
n log n+ |N (v) ∩ I[t, T (v)]|.

As a result, we have that

P(Ev|Ft)1(T = t) ≤ P(|N (v) ∩ I[t, T (v)]| ≥ d
√
n log2 n|Ft)1(T = t). (12)

To bound the probability on the right hand side, we start by bounding T (v). Lemma 10 implies that
T (v)− t is stochastically dominated by a Exp(λ

√
n log n) random variable. Hence

P
(
T (v) ≥ t+

1

λ
√
n

∣∣∣∣Ft

)
≤ 1

n
. (13)

We can now bound the probability of interest as follows.

P(|N (v) ∩ I[t, T (v)]| ≥ d
√
n log2 n|Ft)

(a)

≤ P(T (v) ≥ t′|Ft) + P(|N (v) ∩ I[t, t′]| ≥ d
√
n log2 n|Ft)

(b)

≤ 1

n
+

E[|N (v) ∩ I[t, t′]||Ft]

d
√
n log2 n

. (14)

Above, (a) is due to a union bound, and since |N (v) ∩ I[t, T (v)]| ≤ |N (v) ∩ I[t, t′]| whenever
T (v) < t′. The inequality (b) is due to (13) and Markov’s inequality.

We proceed by bounding E[|N (v) ∩ I[t, t′]||Ft]; to do so, we study the probability that a given
u ∈ N (v) \ I(t) is infected in the interval [t, t′]. If u ∈ highdeg(G), we trivially bound the
probability by 1. If u /∈ highdeg(G), deg(u) ≤ d so by Lemma 11, T (u) − t stochastically
dominates a Exp(λd) random variable. As a result, for such u, we have that

P(T (u) ∈ [t, t′]|Ft) ≤ 1− e−λ(t′−t) ≤ d√
n
.

In the final inequality above, we have used 1 − e−x ≤ x as well as the definition of t′. It follows
that

E[|N (v) ∩ I[t, t′]||Ft] =
∑

u∈N (v)\I(t)

P(T (u) ∈ [t, t′]|Ft) ≤ m+ d
√
n ≤ 2d

√
n. (15)
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In the first inequality above, we have used that there are at most m high-degree vertices in N (v)
and at most n low-degree vertices. Together, (12), (14) and (15) show that

P(Ev|Ft)1(T = t) ≤ 3

log2 n
1(T = t).

Since T < ∞ almost surely (since all vertices become infected in finite time), it holds that

P(Ev|FT ) =

∫ ∞

0
P(Ev|Ft)1(T = t)dt ≤ 3

log2 n
.

Taking an expectation over FT shows that P(Ev) ≤ 3/ log2(n). Finally, we note that

Ac =
⋃

v∈V :deg(v)≥2d
√
n log2 n

Ev,

hence a union bound over these at most m events shows that

P(Ac) ≤ 3m

log n
= o(1).

As the following result shows, the event A is crucially used to obtain sharper characterizations
of infection times than what Lemma 11 can provide, especially for high-degree vertices.

Lemma 16 Let v ∈ V and let δ > 0 satisfy λ2δ2mn ≤ 1. Fix t ≥ 0, and let v ∈ V \ I(t). Then

P ({T (v) ∈ [t, t+ δ]} ∩ A|Ft) ≤ 3dλδ
√
n log2(n).

Proof Define the event

At :=
{

For all v ∈ V such that T (v) > t, it holds that |N (v) ∩ I(t)| ≤ 2d
√
n log2 n

}
.

Notice that At is Ft-measurable, and A ⊂ At. Moreover, for v such that T (v) > t,

P ({T (v) ≤ t+ δ} ∩ A|Ft) ≤ P ({T (v) ≤ t+ δ} ∩ At|Ft) = P(T (v) ≤ t+ δ|Ft)1(At). (16)

We will therefore proceed by bounding P(T (v) ≤ t+ δ|Ft) under the assumption that At holds.
Suppose that deg(v) ≤ d. Then by Lemma 11, T (v) − t stochastically dominates a Exp(λd)

random variable, so that

P(T (v) ≤ t+ δ|Ft) ≤ 1− e−δλd ≤ δλd. (17)

Next, suppose that deg(v) ≥ D, and let P2(v) be the set of paths of length 2 starting from v. Then
by Proposition 9,

T (v)− t = min
P∈P(v,t)

weight(P ) (18)

≥ min

{
min

u∈N (v)∩I(t)
F (u, v), min

P∈P2(v)
weight(P )

}
, (19)
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which can be explained as follows. If the minimizing path P ∈ P(v, t) in (18) has length 1, then
the minimum is achieved by F (u, v) for some u ∈ N (v)∩I(t). Otherwise, the minimizing path in
(18) has length at least 2, which must include a path of length 2 starting at v. In light of (19),

P(T (v) ≤ t+ δ|Ft) ≤ P
(
min

{
min

u∈N (v)∩I(t)
F (u, v), min

P∈P2(v)
weight(P )

}
≤ δ

∣∣∣∣Ft

)
≤

∑
u∈N (v)∩I(t)

P(F (u, v) ≤ δ|Ft) +
∑

P∈P2(v)

P(weight(P ) ≤ δ|Ft)

(a)

≤ |N (v) ∩ I(t)|λδ + |P2(v)|λ2δ2

(b)

≤ 2dλδ
√
n log2(n) + (dn+mn)λ2δ2

(c)

≤ 3dλδ
√
n log2(n), (20)

where the inequality (a) follows since F (u, v) ∼ Exp(λ) and weight(P ) ∼ Gamma(2, λ) for
P ∈ P2(v). The inequality (b) uses the bound |N (v) ∩ I(t)| ≤ 2d

√
n log2 n which holds on the

event At, and also uses that the number of paths of length 2 starting from v is at most dn + mn,
since there are at most n neighbors of degree at most d and at most m neighbors of degree at most
n. Finally, (c) holds by our assumption that λ2δ2mn ≤ 1.

A useful consequence of Lemma 16 is a bound on the probability that T (u) and T (v) are close,
for distinct vertices u, v.

Lemma 17 Let u, v ∈ V be distinct vertices and let δ > 0 satisfy λ2δ2n ≤ 1. Then

P({|T (u)− T (v)| ≤ δ} ∩ A) ≤ 6dλδ
√
n log2(n).

Proof Suppose without loss of generality that T (u) < T (v), so that |T (u)−T (v)| ≤ δ is equivalent
to T (v) ∈ [T (u), T (u) + δ]. Then by Lemma 16,

P({T (v) ∈ [T (u), T (u) + δ]} ∩ A|Ft)1(T (u) = t) = P({T (v) ∈ [t, t+ δ]} ∩ A|Ft)1(T (u) = t)

≤ 3dλδ
√
n log2(n).

Since T (u) < ∞ almost surely, we have that

P({T (v) ∈ [T (u), T (u) + δ]} ∩ A|FT (u))

=

∫ ∞

0
P({T (v) ∈ [T (u), T (u) + δ]} ∩ A|Ft)1(T (u) = t)dt ≤ 3dλδ

√
n log2(n).

Finally, the claim follows from taking an expectation over FT (u).

Lemma 18 For any 0 ≤ t1 < t2 < ∞, |I(t2)\I(t1)| is stochastically bounded by a Poi(λmnd(t2−
t1)) random variable.
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Proof Recall that |E| is the number of edges in the graph, and let A1, A2, . . . be a sequence of
i.i.d. Exp(λ|E|) random variables. As a shorthand, for a positive integer k, let τk denote the time
at which the kth vertex is infected, after time t1. We claim that it suffices to show that, conditioned
on Ft1 ,

τk − t1 ≽
k∑

i=1

Ai. (21)

With (21) in hand, it is readily seen that the arrival times of vertices after time t1 stochastically
bounds the arrival times of a homogeneous Poisson point process with rate λ|E|. As a result,
|I(t2) \ I(t1)| is stochastically bounded by a Poi(λ|E|(t2 − t1)) random variable. Finally, the
claim follows since we can upper bound

|E| ≤
∑
v∈V

deg(v) ≤ nd+mn ≤ mnd,

where the second inequality above follows since there are at most n vertices of degree at most d and
there are m vertices of degree at most n.

It remains to prove (21); we do so by induction. Let E(t1) ⊂ E be the set of edges where one
endpoint is in I(t) and the other is not in I(t). Since the next infection must be a vertex which neigh-
bors a currently infected vertex, we have by Proposition 9 that τ1−t1 ≥ mine∈E(t1) F (e), where we
recall that {F (e)}e∈E is a collection of i.i.d. Exp(λ) random variables. Notice that by properties of
Exponential random variables, mine∈E(t1) F (e) is equal in distribution to a Exp(λ|E(t1)|) random
variable, which in turn stochastically bounds a Exp(λ|E|) random variable. This proves the base
case.

Now let k ≥ 1, and assume that (21) holds for k. We may assume without loss of generality that
τk+1 < ∞ almost surely. Otherwise, since G is connected, this must mean that there are no more
infection events that can happen after the kth infection. In this case, τk+1 = ∞, hence (21) trivially
holds with k replaced with k + 1. Let us now proceed with the assumption that τk+1 < ∞ almost
surely. Fix s ≥ t1, condition on Fs, and let us assume that τk = s (an event that is Fs-measurable).
Repeating the same arguments above, we see that, conditioned on Fs and assuming τk = s, we
have that τk+1 − s stochastically dominates a Exp(λ|E|) random variable. Hence, letting x ≥ 0
and A ∼ Exp(λ|E|), we have that

P(A ≥ x)1(τk = s) ≤ P(τk+1 − s ≥ x|Fs)1(τk = s) = P(τk+1 − τk ≥ x|Fs)1(τk = s).

Taking an integral over 0 ≤ s < ∞, we have that

P(A ≥ x) ≤
∫ ∞

0
P(τk+1 − τk ≥ x|Fs)1(τk = s)ds = P(τk+1 − τk ≥ x|Fτk).

In particular, τk+1 − τk ≽ A conditioned on τk. As A is independent of τk and (21) holds, it
immediately follows that (21) also holds with k replaced with k + 1.

Appendix B. Analysis of Algorithm 1: Proof of Theorem 6

The following lemma, which characterizes when d̂egδ(v) is a good approximation for deg(v), is the
main result of this section.

22



FINDING SUPER-SPREADERS IN NETWORK CASCADES

Lemma 19 Suppose that β, γ ∈ (0, 1) satisfy γ > max{1 − β, (1 + β)/2, β}, and let δ := n−β .
It holds with probability 1− o(1) that for all v ∈ V , at least one of the following conditions is true:

(C1)
∣∣∣d̂egδ(v)− λ deg(v)

∣∣∣ ≤ nγ .

(C2) There exists u ∈ highdeg(G) \ {v} such that |T (v)− T (u)| < n−β .

Before proving Lemma 19, we show how it can be used to prove Theorem 6. We first analyze
what can be learned from a single cascade.

Lemma 20 Suppose that α, β ∈ (0, 1) satisfy α > max{1−β, (1+β)/2, β} and β > 1/2. Define

S :=

{
v : d̂eg(v) ≥ nα

log n

}
. (22)

Then with probability 1− o(1),

highdeg(G) ⊆ S ⊆
{
u ∈ V : ∃v ∈ highdeg(G) with |T (u)− T (v)| ≤ 1

nβ

}
. (23)

Proof Throughout this proof, we will assume that the event described in Lemma 19 holds. We may
do so since this event holds with probability 1− o(1).

We start by proving that the first inclusion in (23) holds with probability 1− o(1). To this end,
define the event

E :=

{
For all distinct u, v ∈ highdeg(G), it holds that |T (u)− T (v)| > 1

nβ

}
.

Suppose that E holds, and choose γ such that α > γ > max{1 − β, (1 + β)/2, β}. Then for all
v ∈ highdeg(G), we must have that |d̂eg(v)− λ deg(v)| ≤ nγ , since the condition (C2) in Lemma
19 cannot hold on E as v ∈ highdeg(G). Hence

d̂eg(v) ≥ λ deg(v)− nγ ≥ λnα − nγ ≥ nα

log n
, (24)

where we have used the fact that λ is constant with respect to n, and that α > γ. Moreover, an
important consequence of (24) is that highdeg(G) ⊆ S. To complete the proof of the first inclusion
in (23), we need to show that E holds with probability 1 − o(1). To this end, let us recall the event
A (see Definition 12). We can bound

P(Ec ∩ A) ≤
∑

u,v∈highdeg(G):u̸=v

P
({

|T (u)− T (v)| ≤ 1

nβ

}
∩ A

)
(a)

≤ n−(β−1/2)+o(1) (b)
= o(1).

(25)
Above, (a) follows since there are at most m2 = no(1) terms in the summation, and each term in
the summation can be bounded via Lemma 17. The equality (b) holds under our assumption that
β > 1/2. By a union bound, we have that

P(Ec) ≤ P(Ec ∩ A) + P(Ac) = o(1),
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where the bound on the right hand side is due to (25) and Lemma 15.
We now turn to the proof of the second inclusion in (23). As a shorthand, let us denote

S′ :=

{
u ∈ V : ∃v ∈ highdeg(G) with |T (u)− T (v)| ≤ 1

nβ

}
.

Let u ∈ S. If u ∈ highdeg(G), then we trivially have that u ∈ S′. On the other hand, if u /∈
highdeg(G), then deg(u) ≤ no(1) so, under condition (C1) of Lemma 19, it cannot be the case that
u ∈ S. Thus, (C2) must hold, which implies that u ∈ S′ in this case as well. Both cases prove that
S ⊆ S′.

We are now ready to prove the main result of this section.
Proof [Proof of Theorem 6] Let Si denote the version of the set in (22) corresponding to the ith
cascade, for i ∈ [K]. In particular, we have that ĤD =

⋂K
i=1 Si, where ĤD is the output of

Algorithm 1. With this notation in hand, it suffices to show that
⋂K

i=1 Si = highdeg(G) with
probability 1−o(1). By Lemma 20, we have with probability 1−o(1) that

⋂K
i=1 Si ⊇ highdeg(G),

provided K is constant with respect to n. In the remainder of the proof, we therefore focus on
proving that

⋂K
i=1 Si ⊆ highdeg(G) with high probability. It will be useful to define Ai to be the

event described in Definition 12 which concerns the ith cascade, for each i ∈ [K].
We proceed by bounding the probability that there exists a vertex u satisfying u /∈ highdeg(G)

and u ∈ Si, for a fixed i ∈ [K]. If there exists such a vertex, then by the characterization in Lemma
20, there must exist v ∈ highdeg(G) such that |Ti(u)− Ti(v)| ≤ n−β . We have that

P ({u ∈ Si} ∩ Ai) ≤ P
({

∃v ∈ highdeg(G) : |Ti(u)− Ti(v)| ≤
1

nβ

}
∩ Ai

)
≤

∑
v∈highdeg(G)

P
({

|Ti(u)− Ti(v)| ≤
1

nβ

}
∩ Ai

)
≤ n−(β−1/2)+o(1).

Above, the final inequality follows from Lemma 17, and since |highdeg(G)| ≤ m = no(1). Next,
by the independence of cascades, we have that for u /∈ highdeg(G),

P

({
u ∈

K⋂
i=1

Si

}
∩

K⋂
i=1

Ai

)
=

K∏
i=1

P ({u ∈ Si} ∩ Ai) = n−K(β−1/2)+o(1).

Putting everything together, we have that

P

({∣∣∣∣∣
(

K⋂
i=1

Si

)
\ highdeg(G)

∣∣∣∣∣ ≥ 1

}
∩

K⋂
i=1

Ai

)
≤ E

[∣∣∣∣∣
(

K⋂
i=1

Si

)
\ highdeg(G)

∣∣∣∣∣1
(

K⋂
i=1

Ai

)]

=
∑

u/∈highdeg(G)

P

({
u ∈

K⋂
i=1

Si

}
∩

K⋂
i=1

Ai

)
= n1−K(β−1/2)+o(1)

= o(1),
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where (a) is due to Markov’s inequality, and (b) holds whenever K > 1/(β − 1/2). Finally, the
theorem follows from setting β = α − 1/4, and by noting that P(

⋂K
i=1Ai) = 1 − o(1) in light of

Lemma 15.

In the rest of this section, we will focus on proving Lemma 19. For our analysis, it will be
convenient to define the quantities

d̂Iβ(t) := nβ

(
I

[
t, t+

1

nβ

]
− I

[
t− 1

nβ
, t

])
(26)

dI(t) := λ
(
cut(I(t))− cut(I(t−))

)
. (27)

In words, d̂Iβ(t) and dI(t) are the discretized and expected second derivatives of the infection curve,
respectively. Recall that we can relate these to the quantities of interest via d̂egδ(v) = d̂Iβ(T (v))
for δ = n−β and dI(T (v)) = λ(deg(v)− 2|N (v) ∩ I(T (v))|).

Our first intermediate result towards proving Lemma 19 controls the difference between d̂Iβ(t)
and dI(t) for a fixed t ≥ 0.

Lemma 21 Let β, γ ∈ (0, 1) satisfy γ > max{1− β, (1 + β)/2}. Let us also define the event

Bt :=

{
∀v ∈ highdeg(G), T (v) /∈

(
t− 1

nβ
, t

)
∪
(
t, t+

1

nβ

)}
. (28)

Then for any t ≥ 0, it holds that

P
({∣∣∣d̂Iβ(t)− dI(t)

∣∣∣ ≥ nγ
}
∩ Bt

)
≤ exp

(
−n2γ−(1+β)+o(1)

)
.

Since the proof of the lemma is somewhat involved, we defer the details to Section C.
Our next goal is to show that d̂Iβ(t) and dI(t) are close for all t ≥ 0 whenever Bt holds, rather

than for just a fixed t ≥ 0. To prove this, we will employ a discretization argument. Define the finite
set of time indices

Tn :=

{
k

n5
: k ∈ Z≥0

}
∩ [0, n2].

The following result shows that the discretization Tn is rich enough to capture the continuous-time
dynamics of the cascade.

Lemma 22 With probability 1 − o(1), for each v ∈ V there exists a unique t ∈ Tn such that
t− 1/n5 ≤ T (v) ≤ t.

Proof We first show that maxv∈V T (v) ≤ n2. From the representation in Proposition 9, we can
upper bound maxv∈V T (v) by

∑
e∈E F (e), so we focus on characterizing the latter quantity. In

particular, we have that

E

[∑
e∈E

F (e)

]
=

|E|
λ

.
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We can upper bound the expectation by noting that |E| ≤ dn +mn = n1+o(1), which holds since
there are at most n vertices of degree at most d and at most m vertices of degree at most n for
G ∈ G(n,m, d,D). Markov’s inequality now implies

P
(
max
v∈V

T (v) ≥ n2

)
≤ n−1+o(1).

Hence there must exist some interval of the form [t, t+1/n5] which contains T (v), for every v ∈ V .
We next show that in each interval of the form [t, t + 1/n5], there exists at most one infection

event. Condition on Ft. If there are at least 2 infection events in [t, t + 1/n5], then there must
exist distinct e1, e2 ∈ E such that F (e1), F (e2) ≤ n−5 (if not, at most one vertex is infected in the
interval). The probability of this occurring is at most(

|E|
2

)(
1− e−λ/n5

)2
≤ n2+o(1)

(
λ

n5

)2

= n−8+o(1).

We conclude by taking a union bound over the O(n7) elements of Tn.

Together, Lemmas 21 and 22 prove Lemma 19.
Proof [Proof of Lemma 19] We start by relating maximal deviations between d̂egδ(v) and λ deg(v)

to maximal deviations between d̂Iβ(t) and dI(t). Recall that d̂Iβ(T (v)) = d̂egδ(v) for δ = n−β

and that dI(T (v)) = λ(deg(v)− 2|N (v) ∩ I(T (v))|). By the triangle inequality, we have that∣∣∣d̂egδ(v)− λ deg(v)
∣∣∣ ≤ ∣∣∣d̂Iβ(T (v))− dI(T (v))

∣∣∣+ 2λ |N (v) ∩ I(T (v))| .

Recall the event A from Definition 12 as well as the event Bt from (28). On A, it holds that

max
v∈V

∣∣∣d̂egδ(v)− λdeg(v)
∣∣∣1(BT (v))

≤ max
v∈V

∣∣∣d̂Iβ(T (v))− dI(T (v))
∣∣∣1(BT (v)) + 2λmax

v∈V
|N (v) ∩ I(T (v))|

≤ sup
t≥0

∣∣∣d̂Iβ(t)− dI(t)
∣∣∣1(Bt) + 4λd

√
n log2 n. (29)

In light of (29), we have for any γ satisfying the conditions of the lemma that

P
(
max
v∈V

∣∣∣d̂egδ(v)− λ deg(v)
∣∣∣1(BT (v)) ≥ nγ

)
≤ P(Ac) + P

(
sup
t≥0

∣∣∣d̂Iβ(t)− dI(t)
∣∣∣1(Bt) ≥ nγ − 4λd

√
n log2 n

)
≤ o(1) + P

(
sup
t≥0

∣∣∣d̂Iβ(t)− dI(t)
∣∣∣1(Bt) ≥ nγ′

)
. (30)

In the second line, the o(1) bound is due to Lemma 15, and we have used the fact that γ > 1/2 to
argue that nγ − 4λd

√
n log2 n ≥ nγ′

for some γ′ < γ satisfying the same conditions as γ in the
lemma statement. In the remainder of the proof, we show that the probability on the right hand side
in (30) is also o(1). Once this is shown, the proof is concluded, since the event{

max
v∈V

∣∣∣d̂egδ(v)− λ deg(v)
∣∣∣1(BT (v)) ≤ nγ

}
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is equivalent to the one described in the statement of Lemma 19.
We therefore proceed by upper bounding the probability on the right hand side of (30). Assume

that the event described in the statement of Lemma 22 holds. Fix t ≥ 0, and let t′ ∈ Tn satisfy
t′ ≤ t < t′ + n−5. We first claim that dI(t) = dI(t′) or dI(t) = dI(t′ + n−5). To see why, we
consider three cases. In the first case, suppose that no vertex is infected in the interval [t′, t′+n−5).
Then there is no change in I(t) across the entire interval, hence dI(t) = dI(t′) = dI(t′ + n−5).
In the second case, suppose that there is a single infection event in the interval, which occurs in
the sub-interval [t′, t). Then there is no change in I(t) in the interval [t, t′ + n−5], hence dI(t) =
dI(t′ + n−5). Finally, in the third case, suppose again that there is a single infection event in the
interval, which occurs in the sub-interval [t, t′ + n−5). By analogous arguments, it follows that
dI(t) = dI(t′). There are no other cases since, on the event described in the statement of Lemma
22, at most one infection event can occur in [t′, t′ + n−5).

Next, we study d̂I(t). By the triangle inequality,

1

nβ

∣∣∣d̂I(t)− d̂I(t′)
∣∣∣ ≤ ∣∣∣∣I [t, t+ 1

nβ

]
− I

[
t′, t′ +

1

nβ

]∣∣∣∣+ ∣∣∣∣I [t− 1

nβ
, t

]
− I

[
t′ − 1

nβ
, t′
]∣∣∣∣

=

∣∣∣∣I [t′ + 1

nβ
, t+

1

nβ

]
− I[t′, t]

∣∣∣∣+ ∣∣∣∣I[t′, t]− I

[
t′ − 1

nβ
, t− 1

nβ

]∣∣∣∣
≤ I

[
t′ +

1

nβ
, t+

1

nβ

]
+ I

[
t′ − 1

nβ
, t− 1

nβ

]
+ 2I[t′, t].

Notice that the interval [t′ + n−β, t + n−β] intersects at most 2 intervals of the form [a, b] for
a, b ∈ Tn, so we can bound I[t′ + n−β, t + n−β] by 2. The same argument holds for the intervals
[t′ − n−β, t − n−β] and [t′, t], leading to the bound |d̂I(t) − d̂I(t′)| ≤ 8nβ . Identical arguments
show that |d̂I(t)− d̂I(t′ + n−5)| ≤ 8nβ as well.

Combining our results on dI(t) and d̂I(t), we see that

∣∣∣d̂I(t)− dI(t)
∣∣∣ ≤ max

{∣∣∣d̂I(t′)− dI(t′)
∣∣∣ , ∣∣∣∣d̂I (t′ + 1

n5

)
− dI

(
t′ +

1

n5

)∣∣∣∣}+ 8nβ. (31)

We can therefore bound the probability of interest as follows.

P
(
sup
t≥0

∣∣∣d̂I(t)− dI(t)
∣∣∣1(Bt) ≥ nγ

)
(a)

≤ P
(
max
t∈Tn

∣∣∣d̂I(t)− dI(t)
∣∣∣1(Bt) ≥ nγ − 8nβ

)
≤
∑
t∈Tn

P
({∣∣∣d̂I(t)− dI(t)

∣∣∣ ≥ nγ − 8nβ
}
∩ Bt

)
(b)

≤ n7 exp
(
−nγ+o(1)

)
= o(1).

Above, (a) is a direct consequence of (31). Inequality (b) uses that γ > β, that there are n7 elements
of Tn, and Lemma 21.
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Appendix C. Concentration of the second derivative: Proof of Lemma 21

The proof of Lemma 21 relies on the following two results.

Lemma 23 Let t ≥ 0, β > 0 and assume that γ ∈ ((1 + β)/2, 1). Then

P

(∣∣∣∣∣I
[
t, t+

1

nβ

]
−
∫ t+n−β

t
λ cut(I(s))ds

∣∣∣∣∣ ≥ nγ−β

)
≤ exp

(
−n2γ−(1+β)+o(1)

)
.

Lemma 24 Let γ, β > 0 satisfy γ > 1− β. Recall the event

Bt :=

{
∀v ∈ highdeg(G), T (v) /∈

(
t− 1

nβ
, t

)
∪
(
t, t+

1

nβ

)}
.

Then the following hold:

P

({∣∣∣∣∣
∫ t+n−β

t
cut(I(s))ds− cut(I(t))

nβ

∣∣∣∣∣ ≥ nγ−β

}
∩ Bt

)
≤ exp

(
−nγ+o(1)

)
, (32)

P
({∣∣∣∣∫ t

t−n−β

cut(I(s))ds− cut(I(t−))
nβ

∣∣∣∣ ≥ nγ−β

}
∩ Bt

)
≤ exp

(
−nγ+o(1)

)
. (33)

Before proving the two lemmas, we show how they can be combined to prove the main result.
Proof [Proof of Lemma 21] It is immediate from Lemmas 23 and 24 and the triangle inequality that

P
({∣∣∣∣I [t, t+ 1

nβ

]
− cut(I(t))

nβ

∣∣∣∣ ≥ 2nγ−β

}
∩ Bt

)
≤ 2 exp

(
−n2γ−(1+β)+o(1)

)
, (34)

P
({∣∣∣∣I [t− 1

nβ
, t

]
− cut(I(t−))

nβ

∣∣∣∣ ≥ 2nγ−β

}
∩ Bt

)
≤ 2 exp

(
−n2γ−(1+β)+o(1)

)
. (35)

Above, we have used the fact that 2γ − (1 + β) < γ whenever γ < 1 to simplify the probability
bounds. The bounds (34) and (35) along with the definitions of dI(t) and d̂Iβ(t) (see (27) and (26))
proves that

P
({∣∣∣d̂Iβ(t)− dI(t)

∣∣∣ ≥ 4nγ
}
∩ Bt

)
≤ 4 exp

(
−n2γ−(1+β)+o(1)

)
,

which is equivalent to the claimed result.

The rest of this section is devoted to the proofs of the two lemmas. The proof of Lemma 23 is
in Section C.1, and the proof of Lemma 24 is in Section C.2.

C.1. Approximating the cut: Proof of Lemma 23

The key tool used to prove Lemma 23 is a version of Freedman’s inequality due to Shorack and
Wellner; see (Shorack and Wellner, 1986, Appendix B).
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Lemma 25 (Freedman’s inequality for continuous-time martingales) Suppose that {X(t)}t≥0

is a real-valued continuous-time martingale adapted to the filtration {Ft}t≥0. Suppose further that
Xt has jumps that are bounded by C > 0 in absolute value, almost surely. Define the quadratic
variation of the process

⟨X⟩t := lim
ξ→0

⌊t/ξ⌋∑
k=0

E
[
(X((k + 1)ξ)−X(kξ))2

∣∣∣Fkξ

]
.

Then for any x ≥ 0 and σ > 0, it holds that

P(X(t)−X(0) ≥ x and ⟨X⟩t ≤ σ2 for some t ≥ 0) ≤ exp

(
− x2/2

σ2 + Cx/3

)
.

Proof For y ≥ t, define the process

M(y) := I(y)− I(t)−
∫ y

t
λ cut(I(s))ds.

Notice that M(y) is a martingale. This is evident from the formula for the condition expectation of
the derivative of I , given in (4). To apply the concentration inequality of Lemma 25, we derive a
few basic properties of M(y). The process jumps by 1 precisely when a new vertex is infected, so
we may set C = 1. To bound the quadratic variation, we have, for ξ > 0 sufficiently small,

E
[
(M(y + ξ)−M(y))2

∣∣Fy

]
≤ 2E

[
(I(y + ξ)− I(y))2

∣∣Fy

]
+ 2E

[(∫ y+ξ

y
λ cut(I(s))ds

)2
∣∣∣∣∣Fy

]
, (36)

where we have used the inequality (a + b)2 ≤ 2a2 + 2b2. To bound the first term on the right
hand side of (36), we recall from Lemma 18 that I(y + ξ) − I(y) is stochastically bounded by a
Poi(λmndξ) random variable conditioned on Fy. It follows that

E
[
(I(y + ξ)− I(y))2

∣∣Fy

]
≤ λmndξ + (λmndξ)2 = λmndξ + o(ξ). (37)

To bound the second term on the right hand side of (36), use the (somewhat loose) bound cut(I(s)) ≤
|E| ≤ n2 to arrive at ∫ y+ξ

y
λ cut(I(s))ds ≤ ξλn2. (38)

Together, (37) and (38) show that

E
[
(M(y + ξ)−M(y))2

∣∣Fy

]
≤ 2λmndξ + o(ξ),

hence ⟨M⟩y ≤ 2λmnd(y − t).
Next, define the stopped process M(y) := M(y ∧ (t + n−β)). For this process, we have that

M(t+ n−β) = M(t+ n−β) and that ⟨M⟩y ≤ 2λmdn1−β almost surely. Lemma 25 applied to the
process M shows that

P
(
M(t+ n−β)−M(t) ≥ x|Ft

)
= P

(
M(t+ n−β)−M(t) ≥ x|Ft

)
≤ exp

(
− x2/2

2λmdn1−β + x/3

)
.
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Applying the same analysis to the martingale −M and taking a union bound shows that, for x ≥ 0,

P

(∣∣∣∣∣I
[
t, t+

1

nβ

]
−
∫ t+n−β

t
λ cut(I(s))ds

∣∣∣∣∣ ≥ x

∣∣∣∣∣Ft

)
≤ 2 exp

(
− x2/2

2λmdn1−β + x/3

)
.

Substituting x = nγ−β into the expression above yields a probability bound of

exp
(
−nmin{γ−β,2γ−1−β}+o(1)

)
.

The desired claim follows since 2γ − 1− β < γ − β whenever γ < 1.

C.2. Changes in the cut: Proof of Lemma 24

As a shorthand, denote δ := n−β . We can bound∣∣∣∣∫ t+δ

t
cut(I(s))ds− δ cut(I(t))

∣∣∣∣ ≤ ∫ t+δ

t
| cut(I(s))− cut(I(t))|ds

≤ δ sup
t<s<t+δ

| cut(I(s))− cut(I(t))|. (39)

Recall the event Bt := {∀v ∈ highdeg(G), T (v) /∈ (t − δ, t) ∪ (t, t + δ)}. On Bt, all vertices in
I(t+ δ) \ I(t) have degree at most d. As a result, for all s ∈ (t, t+ δ), it holds that

|cut(I(s))− cut(I(t))| ≤
∑

v∈I(s)\I(t)

deg(v) ≤ d|I(s) \ I(t)| ≤ d|I(t+ δ) \ I(t)|. (40)

The first inequality in (40) follows since the size of the cut changes by at most deg(v) vertices when
v is added to the cascade. The second inequality holds since I(t) ⊆ I(s) ⊆ I(t+ δ).

We proceed by studying |I(t+ δ) \ I(t)|. Let X ∼ Poi(λmndδ). By Lemma 18, it holds that

P
(
|I(t+ δ) \ I(t)| ≥ nγ

d

)
(a)

≤ P
(
X ≥ nγ

2d
+ E[X]

)
(b)

≤ exp

(
− n2γ/(8d2)

n1−β+o(1) + nγ/(6d)

)
(c)

≤ exp
(
−nγ+o(1)

)
. (41)

Above, (a) holds since E[X] ≤ λmn1−β+o(1) ≤ nγ/(2d) provided γ > 1 − β. The inequality
(b) follows from Bernstein’s inequality and the fact that λmnd = n1+o(1). The final inequality (c)
holds by our assumption that γ > 1− β. Together, (39), (40) and (41) imply the result (32).

To prove (32), we may follow identical reasoning. Analogously to (39) and (40), it holds on the
event Bt that∣∣∣∣∫ t

t−δ
cut(I(s))ds− δ cut(I(t−))

∣∣∣∣ ≤ δ sup
t−δ<s<t

| cut(I(s))− cut(I(t))| ≤ d|I(t) \ I(t− δ)|.

We may then analyze |I(t) \ I(t − δ)| in the same manner as (41). Putting everything together
yields the second result (33).

30



FINDING SUPER-SPREADERS IN NETWORK CASCADES

Appendix D. Lower bounds for α ∈ (0, 1/2): Proof of Theorem 4

To prove the theorem, we will construct a tailored family of graphs H ⊂ G for which we can
tractably analyze the distribution of infection times, while also constituting a “hard” instance for
estimating high-degree vertices. To construct H, we first describe a particular deterministic graph
H .

Definition 26 Fix a positive integer N . Let H ′ be a connected tree with N vertices, maximum
degree at most 3, and diameter at most 2 logN (e.g., a balanced binary tree). For each vertex in
u ∈ H ′, we add a path of length log5 n starting at u; all added paths are disjoint. We call the
resulting graph H . The set of endpoints of the paths added to H ′, which are also the set of leaves
of H , is denoted by L.

The addition of paths which are much longer than the diameter of H ′ is a crucial aspect of
our construction. At a high level, it ensures that the infection times of vertices in L are primarily
determined by the infection times of vertices in the corresponding path, rather than the infection
times of vertices in H ′. Since all the added paths are disjoint, the infection times of vertices in L
become almost independent, which simplifies much of our analysis. A bit more formally, we have
the following useful observation.

Fact 27 The infection times of vertices in L, given by the collection {T(v)}v∈L, are conditionally
independent with respect to {T(z)}z∈H′ , the collection of infection times of vertices in H ′.

To construct the graphs of interest, we will introduce additional vertices to H which connect to
L in a particular manner.

Definition 28 Suppose that N vertices, labelled from 1 to N , are added to H . Each vertex in [N ]
forms an edge with a single element of L. Define H∅ to be the set of resulting graphs for which all
vertices in L have degree at most log2 n. For each v ∈ L, define Hv to be the set of graphs for
which each u ∈ L \ {v} has degree at most log2 n, but v has degree at least D/2. The union of all
such graphs is given by H :=

⋃
x∈L∪{∅}Hx.

We make a few simple observations about the family H.

• If G ∈ H∅ then highdeg(G) = ∅, and if G ∈ Hv for v ∈ L then highdeg(G) = {v}.

• The total number of vertices in G ∈ H is n := 2N +N log5N . In particular, N = n1−o(1).

The first step in our analysis is to show that it is challenging to even detect whether the set of
observed infection times are due to a graph in H∅ or in Hv for some v ∈ L. To do so, we construct
convenient distributions µ∅ over elements of H∅ and µv over elements of Hv, v ∈ L. We let P∅ and
Pv, v ∈ L denote the induced distributions over the infection times. That is, for x ∈ L ∪ {∅}, Px is
the distribution corresponding to SI(G, v0)

⊗K where G ∼ µx and v0ıH
′ is chosen arbitrarily (but

is fixed across all cascades). We defer the precise description of the distributions {µx}x∈L∪{∅} to
Section D.1, and move forward with the proof for now.
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Lemma 29 Let ϵ > 0 and α ∈ (0, 1/2). Suppose that D ≤ nα for some α ∈ (0, 1/2) and that

K ≤
(
1− 2α− ϵ

5

)
log n

log log n
.

Then it holds for all v ∈ L that TV(P∅, Pv) = o(1).

At a high level, we prove Lemma 29 by studying the χ2-divergence between P∅ and Pv for
v ∈ L, which provides an upper bound for the total variation distance and has a useful tensorization
property which we leverage in our analysis. Before proving the lemma, we show how it can be used
to prove the theorem.
Proof [Proof of Theorem 4] Define the measure µ over the ensemble H via µ := 1

N+1

∑
x∈L∪{∅} µx,

and similarly define the induced measure over vertex infection times P := 1
N+1

∑
x∈L∪{∅} Px. Let

us also define δ := maxx,y∈L∪{∅}TV(Px, Py) and note that δ = o(1) by Lemma 29 and the triangle
inequality. For any estimator HD, it holds that

P (HD = highdeg(G)) =
1

N + 1

∑
x∈L∪{∅}

Px(HD = {x})

(a)
= 1− 1

N + 1

∑
x,y∈L∪{∅}:x ̸=y

Px(HD = {y})

(b)

≤ 1− 1

N + 1

∑
x,y∈L∪{∅}:x ̸=y

(Py(HD = {y})− δ)

(c)
= 1 +Nδ −NP (HD = highdeg(G)),

where (a) is due to the law of total probability, (b) uses the definition of the total variation distance,
and (c) follows as each term Py(HD = {y}) is counted N times in the summation. Rearranging
terms shows that

P (HD = highdeg(G)) ≤ 1 +Nδ

1 +N
= o(1).

The remainder of this section is devoted to the proof of Lemma 29.

D.1. Distributions of graphs in H

Before proving the lemma, we must describe the distributions {µx}x∈L∪{∅} over graphs in H. To
this end, it is useful to first define corresponding “auxiliary” distributions {µ′

x}x∈L∪{∅}. We say that
G ∼ µ′

∅ if each vertex in [N ] chooses a uniform random element of L with which they form an
edge. On the other hand, we say that G ∼ µ′

v if, for each u ∈ [N ], u connects to a uniform random
element of L with probability 1−D/N , otherwise u connects to v with probability D/N . Finally,
for x ∈ L ∪ {∅}, the measure µx is equal to µ′

x conditioned on the sampled graph being an element
of Hx.

For x ∈ L ∪ {∅}, we recall that Px is the distribution corresponding to SI(G, v0)
⊗K , where

G ∼ µx. Similarly, we define P ′
x to be the distribution corresponding to SI(G, v0)

⊗K , where
G ∼ µ′

x. The following result shows that the total variation distance between Px and P ′
x is small.
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Lemma 30 It holds for any x ∈ L ∪ {∅} that TV(Px, P
′
x) = o(1).

The lemma implies that we can essentially replace Px with P ′
x in our analysis moving forward.

Indeed, by the triangle inequality for the total variation distance, we have for any v ∈ L that

TV(P∅, Pv) ≤ TV(P ′
∅, P

′
v) + TV(P ′

∅, P∅) + TV(P ′
v, Pv) = TV(P ′

∅, P
′
v) + o(1), (42)

where the final equality is due to Lemma 30. Hence it suffices to bound the total variation between
the auxiliary distributions.
Proof [Proof of Lemma 30] Let x ∈ L ∪ {∅}. By the data processing inequality for the total
variation distance, it holds that TV(Px, P

′
x) ≤ TV(µx, µ

′
x). By the definition of µx and µ′

x, the two
distributions can be coupled precisely when G ∼ µ′

x satisfies G ∈ Hx. Hence

TV(Px, P
′
x) ≤ TV(µx, µ

′
x) = µ′

x(Hc
x). (43)

In light of (43), we proceed by proving that µ′
x(Hc

x) = o(1). Notice that for G ∼ µ′
x, all vertices

except for those in L have a deterministic degree which is at most 3, hence it suffices to study the
degrees of vertices in L alone. In the case x = ∅, it holds for every v ∈ L that degG(v) − 1 ∼
Bin(N, 1/N). Bernstein’s inequality implies

µ′
∅
(
degG(v) ≥ log2N

)
≤ µ′

∅

(
degG(v)− 1 ≥ 1 +

1

2
log2N

)
≤ exp

(
−2

3
log2N

)
. (44)

It follows that

µ′
∅
(
Hc

∅
)
= µ′

∅
(
∃v ∈ L : degG(v) > log2 n

)
(a)

≤ µ′
∅
(
∃v ∈ L : degG(v) > log2N

)
(b)

≤ N exp

(
−2

3
log2N

)
= o(1). (45)

Above, (a) follows since N ≤ n, and (b) is due to a union bound over the N elements of L.
We now turn to the case where x ∈ L. If v ∈ L\{x}, then degG(v)−1 ∼ Bin

(
N,
(
1− D

N

)
1
N

)
,

which is stochastically bounded by Bin(N, 1/N). Following the same steps as (44), we have that

µ′
x

(
degG(v) ≥ log2 n

)
≤ µ′

x

(
degG(v) ≥ log2N

)
≤ exp

(
−2

3
log2N

)
.

On the other hand, when v = x, degG(v) stochastically dominates Bin(N,D/N). By Bernstein’s
inequality,

µ′
x

(
degG(v) ≤

D

2

)
≤ exp

(
− 3

56
D

)
.

It follows that

µ′
x (Hc

x) = µ′
x

(
∃v ∈ L \ {x} : degG(v) > log2 n or degG(x) <

D

2

)
≤

∑
v∈L\{x}

µ′
x

(
degG(v) > log2 n

)
+ µ′

x

(
degG(x) <

D

2

)

≤ N exp

(
−2

3
log2N

)
+ exp

(
− 3

56
D

)
= o(1). (46)

Together, (45), (46) and (43) prove the claim.
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D.2. Impossibility of detection: Proof of Lemma 29

The advantage of using the auxiliary distributions is that they are product distributions conditioned
on the infection times in H , which makes it easier to analyze the infection times in [N ]. To see this
concretely, let us assume without loss of generality that λ = 1, and define

E(j) = (E1(j), . . . , EK(j))
i.i.d.∼ Exp(1)⊗K , j ∈ [N ].

Let us also define the collection of independent variables {U(j)}j∈[N ] where U(j) ∼ Unif(L)
denotes the random neighbor of the vertex j in the construction of G ∼ P ′

∅. We then have the
representation

T(j) = T(U(j)) +E(j), j ∈ [N ]. (47)

On the other hand, if G ∼ P ′
v for some v ∈ L, then we have the representation

T(j) =

{
T(U(j)) +E(j) with probability 1−D/N

T(v) +E(j) with probability D/N .
(48)

We can also succinctly characterize the distributions of infection times in [N ] for the cases
described in (47) and (48). Define the following (conditional) distributions over t := (t1, . . . , tK) ∈
RK
+ ,

fv(t) :=
K∏
i=1

e−(ti−Ti(v))1(ti ≥ Ti(v)) = e−
∑K

i=1 ti

K∏
i=1

eTi(v)1(ti ≥ Ti(v))

f∅(t) :=
1

N

∑
w∈L

fw(t) =
e−

∑K
i=1 ti

N

∑
w∈L

K∏
i=1

eTi(w)1(ti ≥ Ti(w)).

Then it is readily seen that

Law
(
{T(j)}j∈[N ]

∣∣ {T(u)}u∈L
)
=

{
f⊗N
∅ G ∼ P ′

∅[(
1− D

N

)
f∅ +

D
N fv

]⊗N
G ∼ P ′

v, v ∈ L.
(49)

Our strategy moving forward is to determine when the distributions in (49) are indistinguishable,
which amounts to bounding the total variation distance between them. To do so, we will instead
bound a larger distance measure – the χ2 divergence. We recall that the χ2 divergence between
probability measures P and Q is defined as

χ2(P∥Q) :=

∫
(dP − dQ)2

dQ
.

The total variation distance and the χ2 divergence can be related through the inequality (Polyanskiy
and Wu, 2024+, Proposition 7.15)

TV(P,Q) ≤ 2
√
χ2(P∥Q).

For our setting, the χ2 divergence has two advantageous properties. First, it tensorizes; that is, for
any positive integer k, it holds that (Polyanskiy and Wu, 2024+, Chapter 7.12)

χ2
(
P⊗k

∥∥∥Q⊗k
)
=
(
1 + χ2(P∥Q)

)k − 1.
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Additionally, the formula for the χ2 divergence involves the difference between the densities of P
and Q, which makes it convenient to analyze mixture distributions, as is the case for our setting.

We apply these ideas to the conditional distributions in (49). Conditioned on {T(u)}u∈H , we
have that

TV

(
f⊗N
∅ ,

[(
1− D

N

)
f∅ +

D

N
fv

]⊗N
)

≤ 2

√√√√χ2

([(
1− D

N

)
f∅ +

D

N
fv

]⊗N
∥∥∥∥∥ f⊗N

∅

)

= 2

√[
1 + χ2

((
1− D

N

)
f∅ +

D

N
fv

∥∥∥∥ f∅)]N − 1

≤ 2

√
exp

{
Nχ2

((
1− D

N

)
f∅ +

D

N
fv

∥∥∥∥ f∅)}− 1.

In particular, we see that the conditional total variation tends to 0 if

χ2

((
1− D

N

)
f∅ +

D

N
fv

∥∥∥∥ f∅) = o

(
1

N

)
. (50)

We proceed by bounding the χ2 divergence between the two distributions. Letting t = (t1, . . . , tK) ∈
RK , it holds that

χ2

((
1− D

N

)
f∅ +

D

N
fv

∥∥∥∥ f∅) =

(
D

N

)2 ∫
RK
+

(fv(t)− f∅(t))
2

f∅(t)
dt

≤
(
D

N

)2 ∫
RK
+

(
fv(t)

f∅(t)

)
fv(t)dt. (51)

To bound the χ2 divergence, we therefore need to study the likelihood ratio fv/f∅. This is accom-
plished in the following result.

Lemma 31 For every v ∈ L, it holds with probability 1− o(1) that

sup
t∈RK

+

fv(t)

f∅(t)
≤ log5K n.

Before proving Lemma 31, we show how it can be used to prove the main result.
Proof [Proof of Lemma 29] Let Av denote the event described in Lemma 31; note that Av is
measurable with respect to {T(u)}u∈L. On this event, it follows from (51) that

χ2

((
1− D

N

)
f∅ +

D

N
fv

∥∥∥∥ f∅) ≤
(
D

N

)2 ∫
RK
+

(
log5K n

)
fv(t)dt ≤

(
D

N

)2

log5K n.

Since D/N = nα−1+o(1), for any ϵ > 0 the condition (50) is satisfied if

K ≤ 1− 2α− ϵ

5

(
log n

log logn

)
. (52)
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We now translate our results on the conditional distributions f⊗N
∅ and [(1−D/N)f∅+(D/N)fv]

⊗N

to their unconditional counterparts P ′
∅ and P ′

v. If (52) holds, then

TV(P ′
∅, P

′
v)

(a)

≤ E

[
TV

(
f⊗N
∅ ,

[(
1− D

N

)
f∅ +

D

N
fv

]⊗N
)]

(b)

≤ E

[
TV

(
f⊗N
∅ ,

[(
1− D

N

)
f∅ +

D

N
fv

]⊗N
)
1(Av)

]
+ P(Ac

v) = o(1).

Above, the inequality (a) follows from the property that conditioning increases the total variation
(Polyanskiy and Wu, 2024+, Theorem 7.5), and inequality (b) holds since the total variation is
always upper bounded by 1. Finally, TV(P ′

∅, P
′
v) = o(1) implies that TV(P∅, Pv) = o(1) as well

in light of (42).

In the remainder of this subsection, we study the likelihood ratio

fv(t)

f∅(t)
=

∏K
i=1 e

Ti(v)1(ti ≥ Ti(v))
1
N

∑
w∈L

∏K
i=1 e

Ti(w)1(ti ≥ Ti(w))
.

When there exists i ∈ [K] such that ti < Ti(v), it is clear from the formula that the likelihood ratio
is zero. On the other hand, when ti ≥ Ti(v) for all i ∈ [K],

fv(t)

f∅(t)
=

∏K
i=1 e

Ti(v)

1
N

∑
w∈L

∏K
i=1 e

Ti(w)1(ti ≥ Ti(w))

≤
∏K

i=1 e
Ti(v)

1
N

∑
w∈L

∏K
i=1 e

Ti(w)1(Ti(v) ≥ Ti(w))

=

(
1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

)−1

.

Above, the inequality on the second line holds since 1(Ti(v) ≥ Ti(w)) ≤ 1(ti ≥ Ti(w)) if ti ≥
Ti(v). Importantly, the upper bound derived for the likelihood ratio does not depend on t. Hence,
to control supt∈RK

+
fv(t)/f∅(t), we establish a lower bound for the quantity

1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w)). (53)

We remark that the analysis of (53) is greatly facilitated by the way in which the graph H is
constructed (see Definition 26). To see this concretely, for each v ∈ L let v′ be the first vertex in H ′

on the unique path in H connecting v to H ′. Then we can write

Ti(v) = Ti(v
′) +Xi(v), i ∈ [K], (54)

where Xi(v) is the time it takes for the cascade to spread from v′ to v. Importantly, as the paths
added to H ′ to form H are all disjoint, {Xi(v)}v∈L is a collection of i.i.d. Gamma(log5N) random
variables. Since the diameter of H ′ is assumed to be much smaller than log5N , we can show that
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Ti(v
′) = o(log5N), and the behavior of Ti(v) is largely dictated by Xi(v), a random variable that

is independent across v ∈ L. As we shall see, this reduction to i.i.d. random variables leads to a
tractable analysis of (53).

To formalize these ideas, we begin by defining the following “nice” event.

Definition 32 Let v ∈ L. The event Ev holds if and only if the following conditions are satisfied:

1. Ti(z) ≤ log2N for all z ∈ H ′ and i ∈ [K].

2. Ti(v) ≥ 2
3 log

5N for all i ∈ [K].

3.
∑K

i=1

(
Xi(v)− log5N

)2 ≤ 2K log5N .

Importantly, as the following result shows, Ev holds with high probability.

Lemma 33 For all v ∈ L, it holds that P(Ev) = 1− o(1).

Proof We let Ev,1, Ev,2 and Ev,3 denote the events corresponding to the first, second and third
conditions of Ev in Definition 32. We start by showing that Ev,1 holds with probability 1 − o(1).
Since H ′ is a tree and the diameter of H ′ is at most 2 logN (see Definition 26), we have that Ti(z)
is stochastically upper bounded by a Gamma(2 logN, 1) random variable. Hence

P
(
Ti(z) ≥ log2N

)
≤ e−

1
2
log2 N2logN ≤ e−

1
4
log2 N ,

where the first inequality is due to a Chernoff bound, and the second inequality holds for N suffi-
ciently large. Taking a union bound over all z ∈ H ′ and i ∈ [K], we obtain

P(Ec
v,1) = P

(
max

z∈H′,i∈[K]
Ti(z) ≥ log2N

)
≤

∑
z∈H′,i∈[K]

P
(
Ti(z) ≥ log2N

)
≤ NKe−

1
4
log2 N = o(1).

(55)
We now turn to the events Ev,2 and Ev,3. Notice that if Ev,1 holds and there exists i ∈ [K] such that
Ti(v) <

2
3 log

5N , then

K∑
i=1

(
Xi(v)− log5N

)2 ≥ ( log5N

4

)2

> 2K log5N, (56)

where the final inequality holds for N sufficiently large. As a consequence of (56), we have that

Ev,1 ∩ Ec
v,2 ⊆ Ec

v,3, (57)

so we focus on bounding the probability of the latter event. We do so through a second mo-
ment argument. As a shorthand, let R := log5N . The first moment of each of the summands
is E[(Xi(v)−R)2] = Var(Xi(v)) = R, where we have used the fact that Xi(v) ∼ Gamma(R, 1).
The second moment is

E
[
(Xi(v)−R)4

]
= E[Xi(v)

4]− 4RE[Xi(v)
3] + 6R2 E[Xi(v)

2]− 4R3 E[Xi(v)] +R4

= R(R+ 1)(R+ 2)(R+ 3)− 4R2(R+ 1)(R+ 2) + 6R3(R+ 1)− 4R4 +R4

= 3R2 + 6R.
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In particular, Var((Xi(v)−R)2) = 2R2 + 6R ≤ 8R2, and furthermore,

Var

(
K∑
i=1

(Xi(v)−R)2

)
=

K∑
i=1

Var((Xi(v)−R)2) ≤ 8KR2.

Finally, by Chebyshev’s inequality,

P(Ec
v,3) = P

(
K∑
i=1

(Xi(v)−R)2 > 2KR

)
≤ 1

K2R2
Var

(
K∑
i=1

(Xi(v)−R)2

)
≤ 8

K
= o(1).

(58)
Together, (55), (57) and (58) prove that P(Ec

v) = o(1) as claimed.

Next, we state a simple consequence of Taylor’s theorem that will be useful for the proof of
Lemma 31.

Lemma 34 Suppose that a, b are real numbers such that b ̸= 0 and a/b ≥ −1/2. Then

e−a
(
1 +

a

b

)b
≥ e−2a2/b.

Proof Taylor’s theorem implies that for any z ≥ −1/2, it holds that log(1 + z) ≥ z − 2z2. Using
this inequality, we have that

log

(
e−a

(
1 +

a

b

)b)
= −a+ b log

(
1 +

a

b

)
≥ −a+ b

(
a

b
− 2

(a
b

)2)
= −2a2

b
.

We now prove the main result of this section.
Proof [Proof of Lemma 31] Throughout this proof, we shall condition on the infection times in
H ′, given by the collection {T(z)}z∈H′ , as well as v, given by T(v). We will also assume that
the “nice” event Ev holds, which is measurable with respect to {T(z)}z∈H′ ,T(v). Finally, as a
shorthand, we will denote R := log5N .

Recall from Fact 27 that {T(u)}u∈L is a collection of conditionally independent variables with
respect to {T(z)}z∈H′ . As a result, if we condition on both {T(z)}z∈H′ and T(v), then the terms

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w)), w ∈ L, (59)

are mutually (conditionally) independent. Moreover, each of the terms in (59) are bounded between
0 and 1. Hoeffding’s inequality therefore implies that

1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

≥ E

[
1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣∣∣ {T(z)}z∈H′ ,T(v)

]
−N−1/3, (60)
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with probability at least 1 − 2 exp(−2N1/3). We proceed by studying the conditional expectation
in (60). To this end, for any w ∈ L, we denote w′ to be the last vertex in H ′ on the unique path
starting from v0 and ending at w; such a vertex exists since H is connected. We have that

E

[
1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣∣∣ {T(z)}z∈H′ ,T(v)

]

=
1

N

∑
w∈L

E

[
K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣∣∣ {T(z)}z∈H′ ,T(v)

]

=
1

N

∑
w∈L

E

[
K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣∣∣T(w′),T(v)

]

=
1

N

∑
w∈L

K∏
i=1

E
[
eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣Ti(w
′), Ti(v)

]
. (61)

Above, the second equality uses that the conditional expectation depends only on the random vari-
ables Ti(w), Ti(v), and that the distribution of Ti(w) conditioned on {T(z)}z∈H′ is the same as the
distribution conditioned on T (w′) in light of (54). The final equality follows from the independence
of the Ti(w)’s over i ∈ [K].

We continue by lower bounding the conditional expectations in (61). Recall that for w ∈ L, we
have from (54) that Ti(w) = Ti(w

′) +Xi(w) where Xi(w) ∼ Gamma(R, 1). Then

E
[
eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣Ti(w
′), Ti(v)

]
= eTi(w

′)−Ti(v) E
[
eXi(w)1(Ti(v)− Ti(w

′) ≥ Xi(w))
∣∣∣Ti(w

′), Ti(v)
]

(a)
=

eTi(w
′)−Ti(v)

Γ(R)

∫ Ti(v)−Ti(w
′)

0
xR−1dx

=
eTi(w

′)−Ti(v)(Ti(v)− Ti(w
′))R

Γ(R+ 1)

(b)

≥ eTi(w
′)−Ti(v)(Ti(v)− Ti(w

′))R

3
√
R(R/e)R

=
1

3
√
R
e−(Ti(v)−Ti(w

′)−R)

(
1 +

Ti(v)− Ti(w
′)−R

R

)R

(c)

≥ 1

3
√
R

exp

{
−2(Ti(v)− Ti(w

′)−R)2

R

}
(d)

≥ 1

3
√
R

exp

{
− 4

R
(Xi(v)−R)2 − 4

R

(
Ti(v

′) + Ti(w
′)
)2}

(e)

≥ e−16

3
√
R

exp

{
− 4

R
(Xi(v)−R)2

}
. (62)

In the display above, the equality (a) uses that Ti(v) − Ti(w
′) ≥ 0, which holds since Ti(v) ≥

2R/3 ≥
√
R ≥ maxz∈G′ Ti(z) on the event Ev. The inequality (b) is due to Stirling’s approxima-

tion. The inequality (c) follows from Lemma 34, which can be applied here since Ti(v)−Ti(w
′) ≥
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R/2 on Ev. The inequality (d) uses (a + b)2 ≤ 2a2 + 2b2, and the inequality (e) follows since
Ti(v

′), Ti(w
′) ≤

√
R on the event Ev.

Substituting the lower bound (62) into (61), we obtain

E

[
1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w))

∣∣∣∣∣ {T(z)}z∈H′ ,T(v)

]

≥
(
e−16

3
√
R

)K

exp

{
− 4

R

K∑
i=1

(Xi(v)−R)2

}
(f)

≥
(
e−30

√
R

)K

, (63)

where (f) holds on the event Ev.
Together, (60) and (63) imply that conditioned on {T(z)}z∈H′ ,T(v), and provided Ev holds,

we have with probability at least 1− 2 exp(2N1/3) that

1

N

∑
w∈L

K∏
i=1

eTi(w)−Ti(v)1(Ti(v) ≥ Ti(w)) ≥
(
e−30

√
R

)K

−N−1/3 ≥ R−K .

Finally, the desired result holds since P(Ev) = 1− o(1).

Appendix E. Proof of Proposition 9

It suffices to show that the model described in Proposition 9 satisfies the equation (1). As (1)
describes a unique Markov process, the claim will then follow. We start by showing that it is
unlikely for two vertices to become infected in a very small time interval.

Lemma 35 For any t ≥ 0, it holds that

P ( |I[t, t+ ϵ]| ≥ 2| Ft) = o(ϵ).

Proof Define τ1 and τ2 to be the first and second times after t when a new vertex is added to the
cascade, respectively. Conditionally on Ft, the memoryless property of Exponential distributions
implies that τ1− t is equal in distribution to Exp(λ| cut(I[0, t])|), which stochastically dominates a
Exp(λn2) random variable (here, we have used that the number of edges in G is at most n2). By the
memoryless property of Exponential distributions, τ2− τ1 is independent of τ1− t. Through similar
argument as above, it holds that τ2 − τ1 stochastically dominates a Exp(λn2) random variable as
well. Consequently, the probability that at least two vertices join the cascade in the time interval
[t, t+ ϵ] is

P(τ2 − t ≤ ϵ|Ft) ≤ P (τ1 − t ≤ ϵ and τ2 − τ1 ≤ ϵ|Ft)

= P (τ1 − t ≤ ϵ|Ft)P (τ2 − τ1 ≤ ϵ|Ft)

≤
(
1− e−ϵλn2

)2
≤ ϵ2λ2n4 = o(ϵ).
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We now turn to the proof of the main result of this section.
Proof [Proof of Proposition 9] We start by defining some relevant notation. Condition on Ft, and
let v ∈ V \ I[0, t]. Recalling that {F (e)}e∈E is a collection of i.i.d. Exp(λ) random variables, we
define

W := min{F (w, v) : w ∈ I[0, t], (w, v) ∈ E}.

By basic properties of Exponential distributions, we have that W ∼ Exp(λ|N (v)∩ I[0, t]|). Addi-
tionally define the event E to hold if and only if at most one vertex joins the cascade in the interval
(t, t+ ϵ].

We claim that if E holds, then v ∈ I[0, t + ϵ] ⇐⇒ W ≤ ϵ. Indeed, if W ≤ ϵ, then from
the description of T (v) in the proposition statement, we have that T (v) ≤ t+ ϵ, which implies that
v ∈ I[t, t + ϵ]. On the other hand, if W > ϵ, then we consider two cases: (1) no vertex becomes
infected in [t, t + ϵ] or (2) one vertex becomes infected in [t, t + ϵ]. Note that no other case is
possible if E holds. In the first case, it holds for all e ∈ cut(I[0, t]) that F (e) > ϵ, hence the weight
of any path starting in I[0, t] and ending at v is at least ϵ, implying that T (v) > t+ ϵ. In the second
case, if v ∈ I[t, t+ ϵ] despite W > ϵ, there must exist a path P ∈ P(v, t) of length at least 2 such
that weight(P, t) ≤ ϵ. However, this implies the existence of another vertex u on the path which
is not an element of I[0, t]. Since the portion of the path halting at u has a smaller weight than P ,
it follows that T (u) ∈ I[t, t + ϵ]. However, it is not possible for both u and v to be elements of
I[t, t+ ϵ] if E holds, hence we must have that T (v) > t+ ϵ.

As a result of the argument above, we have that

P ({v ∈ I[0, t+ ϵ]} ∩ E|Ft) = P ({W ≤ ϵ} ∩ E|Ft)

= P(W ≤ ϵ|Ft)− P ({W ≤ ϵ} ∩ Ec|Ft)

= ϵλ|N (v) ∩ I[0, t]|+ o(ϵ).

Finally, since P(E|Ft) = 1− o(ϵ) by Lemma 35, it holds that

P (v ∈ I[0, t+ ϵ]|Ft) = ϵλ|N (v) ∩ I[0, t]|+ o(ϵ),

hence (1) is satisfied.
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